Sample records for field strength time

  1. Dependence of Brownian and Néel relaxation times on magnetic field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deissler, Robert J., E-mail: rjd42@case.edu; Wu, Yong; Martens, Michael A.

    2014-01-15

    Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a stepmore » function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. Conclusions: A simple treatment of Néel relaxation using the common zero-field relaxation time overestimates the relaxation time of the magnetization in situations relevant for MPI and MPS. For sinusoidally driven (or ramped) systems, whether or not a particular relaxation mechanism dominates or is even relevant depends on the magnetic field strength, the frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field.« less

  2. Helioseismic Holography of Simulated Sunspots: dependence of the travel time on magnetic field strength and Wilson depression

    PubMed Central

    Felipe, T.; Braun, D. C.; Birch, A. C.

    2018-01-01

    Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods. PMID:29670298

  3. Helioseismic Holography of Simulated Sunspots: dependence of the travel time on magnetic field strength and Wilson depression.

    PubMed

    Felipe, T; Braun, D C; Birch, A C

    2017-01-01

    Improving methods for determining the subsurface structure of sunspots from their seismic signature requires a better understanding of the interaction of waves with magnetic field concentrations. We aim to quantify the impact of changes in the internal structure of sunspots on local helioseismic signals. We have numerically simulated the propagation of a stochastic wave field through sunspot models with different properties, accounting for changes in the Wilson depression between 250 and 550 km and in the photospheric umbral magnetic field between 1500 and 3500 G. The results show that travel-time shifts at frequencies above approximately 3.50 mHz (depending on the phase-speed filter) are insensitive to the magnetic field strength. The travel time of these waves is determined exclusively by the Wilson depression and sound-speed perturbation. The travel time of waves with lower frequencies is affected by the direct effect of the magnetic field, although photospheric field strengths below 1500 G do not leave a significant trace on the travel-time measurements. These results could potentially be used to develop simplified travel-time inversion methods.

  4. 47 CFR 73.186 - Establishment of effective field at one kilometer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... coordinate paper, plot field strengths as ordinate and distance as abscissa. (ii) Using semi-log coordinate paper, plot field strength times distance as ordinate on the log scale and distance as abscissa on the...

  5. Effect of strong electric field on the conformational integrity of insulin.

    PubMed

    Wang, Xianwei; Li, Yongxiu; He, Xiao; Chen, Shude; Zhang, John Z H

    2014-10-02

    A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.

  6. The Electron Drift Technique for Measuring Electric and Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Paschmann, G.; McIlwain, C. E.; Quinn, J. M.; Torbert, R. B.; Whipple, E. C.; Christensen, John (Technical Monitor)

    1998-01-01

    The electron drift technique is based on sensing the drift of a weak beam of test electrons that is caused by electric fields and/or gradients in the magnetic field. These quantities can, by use of different electron energies, in principle be determined separately. Depending on the ratio of drift speed to magnetic field strength, the drift velocity can be determined either from the two emission directions that cause the electrons to gyrate back to detectors placed some distance from the emitting guns, or from measurements of the time of flight of the electrons. As a by-product of the time-of-flight measurements, the magnetic field strength is also determined. The paper describes strengths and weaknesses of the method as well as technical constraints.

  7. Retained Austenite in SAE 52100 Steel Post Magnetic Processing and Heat Treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pappas, Nathaniel R; Watkins, Thomas R; Cavin, Odis Burl

    2007-01-01

    Steel is an iron-carbon alloy that contains up to 2% carbon by weight. Understanding which phases of iron and carbon form as a function of temperature and percent carbon is important in order to process/manufacture steel with desired properties. Austenite is the face center cubic (fcc) phase of iron that exists between 912 and 1394 C. When hot steel is rapidly quenched in a medium (typically oil or water), austenite transforms into martensite. The goal of the study is to determine the effect of applying a magnetic field on the amount of retained austenite present at room temperature after quenching.more » Samples of SAE 52100 steel were heat treated then subjected to a magnetic field of varying strength and time, while samples of SAE 1045 steel were heat treated then subjected to a magnetic field of varying strength for a fixed time while being tempered. X-ray diffraction was used to collect quantitative data corresponding to the amount of each phase present post processing. The percentage of retained austenite was then calculated using the American Society of Testing and Materials standard for determining the amount of retained austenite for randomly oriented samples and was plotted as a function of magnetic field intensity, magnetic field apply time, and magnetic field wait time after quenching to determine what relationships exist with the amount of retained austenite present. In the SAE 52100 steel samples, stronger field strengths resulted in lower percentages of retained austenite for fixed apply times. The results were inconclusive when applying a fixed magnetic field strength for varying amounts of time. When applying a magnetic field after waiting a specific amount of time after quenching, the analyses indicate that shorter wait times result in less retained austenite. The SAE 1045 results were inconclusive. The samples showed no retained austenite regardless of magnetic field strength, indicating that tempering removed the retained austenite. It is apparent that applying a magnetic field after quenching will result in a lower amount of retained austenite but that the exact relationship, linear or other, is inconclusive. This project is a part of a larger, ongoing project investigating the application of a magnetic field during heat treatment and its influence on the iron-carbon phase-equilibria.« less

  8. C-phycocyanin extraction assisted by pulsed electric field from Artrosphira platensis.

    PubMed

    Martínez, Juan Manuel; Luengo, Elisa; Saldaña, Guillermo; Álvarez, Ignacio; Raso, Javier

    2017-09-01

    This paper assesses the application of pulsed electric fields (PEF) to the fresh biomass of Artrhospira platensis in order to enhance the extraction of C-phycocyanin into aqueous media. Electroporation of A. platensis depended on both electric field strength and treatment duration. The minimum electric field intensity for detecting C-phycocyanin in the extraction medium was 15kV/cm after the application of a treatment time 150μs (50 pulses of 3μs). However higher electric field strength were required when shorter treatment times were applied. Response surface methodology was used in order to investigate the influence of electric field strength (15-25kV/cm), treatment time (60-150μs), and temperature of application of PEF (10-40°C) on C-phycocyanin extraction yield (PEY). The increment of the temperature PEF treatment reduced the electric field strength and the treatment time required to obtain a given PEY and, consequently decreased the total specific energy delivered by the treatment. For example, the increment of temperature from 10°C to 40°C permitted to reduce the electric field strength required to extract 100mg/g d w of C-phycocyanin from 25 to 18kV/cm, and the specific energy input from 106.7 to 67.5kJ/Kg. Results obtained in this investigation demonstrated PEF's potential for selectively extraction C-phycocyanin from fresh A. platensis biomass. The purity of the C-phycocyanin extract obtained from the electroporated cells was higher than that obtained using other techniques based on the cell complete destruction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Investigation of Influence of Surface Nanoparticle on Emission Properties of Scandia-Doped Dispenser Cathodes

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan

    2013-06-01

    The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.

  10. A generic signature of a fluctuating magnetic field: An additional turnover prior to the Kramers' one

    NASA Astrophysics Data System (ADS)

    Mondal, Shrabani; Baura, Alendu; Das, Sudip; Bag, Bidhan Chandra

    2018-07-01

    In this paper we have presented the dynamics of a Brownian particle which is coupled to a thermal bath in the presence of a fluctuating magnetic field (FMF). By virtue of the FMF the Brownian particle experiences a time dependent damping strength for the x -direction motion even in the presence of a stationary Markovian thermal bath. There is a transition state along this direction. The time dependent damping strength leads to appear a bi-turnover phenomenon in the variation of the barrier crossing rate as a function of the thermal bath induced damping strength. It is a generic signature of the fluctuating magnetic field.

  11. Relationship between magnetic field strength and magnetic-resonance-related acoustic noise levels.

    PubMed

    Moelker, Adriaan; Wielopolski, Piotr A; Pattynama, Peter M T

    2003-02-01

    The need for better signal-to-noise ratios and resolution has pushed magnetic resonance imaging (MRI) towards high-field MR-scanners for which only little data on MR-related acoustic noise production have been published. The purpose of this study was to validate the theoretical relationship of sound pressure level (SPL) and static magnetic field strength. This is relevant for allowing adequate comparisons of acoustic data of MR systems at various magnetic field strengths. Acoustic data were acquired during various pulse sequences at field strengths of 0.5, 1.0, 1.5 and 2.0 Tesla using the same MRI unit by means of a Helicon rampable magnet. Continuous-equivalent, i.e. time-averaged, linear SPLs and 1/3-octave band frequencies were recorded. Ramping from 0.5 to 1.0 Tesla and from 1.0 to 2.0 Tesla resulted in an SPL increase of 5.7 and 5.2 dB(L), respectively, when averaged over the various pulse sequences. Most of the acoustic energy was in the 1-kHz frequency band, irrespective of magnetic field strength. The relation between field strength and SPL was slightly non-linear, i.e. a slightly less increase at higher field strengths, presumably caused by the elastic properties of the gradient coil encasings.

  12. Effect of electrical field strength applied by PEF processing and storage temperature on the outgrowth of yeasts and moulds naturally present in a fresh fruit smoothie.

    PubMed

    Timmermans, R A H; Nederhoff, A L; Nierop Groot, M N; van Boekel, M A J S; Mastwijk, H C

    2016-08-02

    Pulsed electrical field (PEF) technology offers an alternative to thermal pasteurisation of high-acid fruit juices, by extending the shelf life of food products, while retaining its fresh taste and nutritional value. Substantial research has been performed on the effect of electrical field strength on the inactivation kinetics of spoilage and pathogenic micro-organisms and on the outgrowth of spoilage micro-organisms during shelf life. However, studies on the effect of electrical field strength on the inactivation and outgrowth of surviving populations during shelf life are missing. In this study, we assessed the influence of electrical field strength applied by PEF processing and storage temperature on the outgrowth of surviving yeast and mould populations naturally present in fresh fruit smoothie in time. Therefore, an apple-strawberry-banana smoothie was treated in a continuous-flow PEF system (130L/h), using similar inlet and outlet conditions (preheating temperature 41°C, maximum temperature 58°C) to assure that the amount of energy across the different conditions was kept constant. Smoothies treated with variable electrical field strengths (13.5, 17.0, 20.0 and 24.0kV/cm) were compared to smoothies without treatment for outgrowth of yeasts and moulds. Outgrowth of yeasts and moulds stored at 4°C and 7°C was analysed by plating and visual observation and yeast growth was modelled using the modified logistic growth model (Zwietering model). Results showed that the intensity of the electrical field strength had an influence on the degree of inactivation of yeast cells, resulting in a faster outgrowth over time at lower electrical field strength. Outgrowth of moulds over time was not affected by the intensity of the electrical field strength used. Application of PEF introduces a trade-off between type of spoilage: in untreated smoothie yeasts lead to spoilage after 8days when stored at 4 or 7°C, whereas in PEF treated smoothie yeasts were (partly) inactivated and provided outgrowth opportunities for moulds, which led to spoilage by moulds after 14days (7°C) or 18days (4°C). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of continuous ohmic heating to inactivate Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice.

    PubMed

    Lee, S-Y; Sagong, H-G; Ryu, S; Kang, D-H

    2012-04-01

    The purpose of this study was to investigate the efficacy of continuous ohmic heating for reducing Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in orange juice and tomato juice. Orange juice and tomato juice were treated with electric field strengths in the range of 25-40 V cm(-1) for different treatment times. The temperature of the samples increased with increasing treatment time and electric field strength. The rate of temperature change for tomato juice was higher than for orange juice at all voltage gradients applied. Higher electric field strength or longer treatment time resulted in a greater reduction of pathogens. Escherichia coli O157:H7 was reduced by more than 5 log after 60-, 90- and 180-s treatments in orange juice with 40, 35 and 30 V cm(-1) electric field strength, respectively. In tomato juice, treatment with 25 V cm(-1) for 30 s was sufficient to achieve a 5-log reduction in E. coli O157:H7. Similar results were observed in Salm. Typhimurium and L. monocytogenes. The concentration of vitamin C in continuous ohmic heated juice was significantly higher than in conventionally heated juice (P < 0·05). Continuous ohmic heating can be effective in killing foodborne pathogens on orange juice and tomato juice with lower degradation of quality than conventional heating. These results suggest that continuous ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a short operating time and that the effect of inactivation depends on applied electric field strengths, treatment time and electric conductivity. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  14. Bats Respond to Very Weak Magnetic Fields

    PubMed Central

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth’s magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth’s magnetic field strength varied and the polarity reversed tens of times over the past fifty million years. PMID:25922944

  15. Bats respond to very weak magnetic fields.

    PubMed

    Tian, Lan-Xiang; Pan, Yong-Xin; Metzner, Walter; Zhang, Jin-Shuo; Zhang, Bing-Fang

    2015-01-01

    How animals, including mammals, can respond to and utilize the direction and intensity of the Earth's magnetic field for orientation and navigation is contentious. In this study, we experimentally tested whether the Chinese Noctule, Nyctalus plancyi (Vespertilionidae) can sense magnetic field strengths that were even lower than those of the present-day geomagnetic field. Such field strengths occurred during geomagnetic excursions or polarity reversals and thus may have played an important role in the evolution of a magnetic sense. We found that in a present-day local geomagnetic field, the bats showed a clear preference for positioning themselves at the magnetic north. As the field intensity decreased to only 1/5th of the natural intensity (i.e., 10 μT; the lowest field strength tested here), the bats still responded by positioning themselves at the magnetic north. When the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT), despite the fact that the artificial field orientation was opposite to the natural geomagnetic field (P<0.05). Hence, N. plancyi is able to detect the direction of a magnetic field even at 1/5th of the present-day field strength. This high sensitivity to magnetic fields may explain how magnetic orientation could have evolved in bats even as the Earth's magnetic field strength varied and the polarity reversed tens of times over the past fifty million years.

  16. Influence of hydrostatic pressure on the switching time and switching coefficient of NiZnCo ferrites

    NASA Astrophysics Data System (ADS)

    Romanowski, S.; Goldberg, S.

    1980-04-01

    Results of the investigation of the effect of hydrostatic pressure on the pulse performance of NiZnCo ferrites with square hysteresis loop are given. It is stated that with increasing hydrostatic pressure, the threshold field strength increases, the switching coefficient value decreases, while the switching time value may increase monotonically or reach a maximum depending on the magnetizing field strength.

  17. Mechanical Characteristics of Resin-Coated Papers and their Electrical Breakdown Characteristics in Composite Insulation Systems with Insulation Oil

    NASA Astrophysics Data System (ADS)

    Kurihara, Takashi; Takahashi, Toshihiro; Mizutani, Yoshinobu; Suzuki, Hiroshi; Okamoto, Tatsuki; Ogura, Nobuyuki; Iwamoto, Kazuyoshi; Kitagawa, Setsuo

    Three types of resin-coated papers were investigated; kraft papers and heat-resistant kraft papers partially covered with epoxy resin, and a kraft paper covered with phenol resin; those were laminated to certain thickness. They were thermally degraded at 120°C for 240 to 1320 hours, and their mechanical characteristics such as tensile strength and average polymerization degree were measured. As a result, it was found that the tensile strength of the first and second resin-coated papers was larger than that of the pressboard, but the tensile strength of the third one was smaller. As the effect of the heating time, it was found that the tensile strength of the first resin-coated paper decreased down to that of pressboards after 500 hours of heating time while those of the second and third ones almost retained the initial values after 1320 hours of the heating time. Then, electrical breakdown characteristics of composite insulation systems with a resin-coated paper and insulation oil were investigated. In the system, an oil-filled gap was artificially introduced between a resin-coated paper and a plane electrode to induce partial discharges (PDs) at the same location. PDs occurred before breakdowns and it was found that their PD inception electric field strength was almost as high as that of the pressboard and the effect of the heating time was negligible. It was also found that the electrical breakdown field strength has similar characteristics to those of the PD inception field strength; negligible effects of the type of resin-coated papers and the heating time. Electrical breakdown occurred at the oil-filled gap and the edge of a high voltage electrode.

  18. Fast torsional waves and strong magnetic field within the Earth's core.

    PubMed

    Gillet, Nicolas; Jault, Dominique; Canet, Elisabeth; Fournier, Alexandre

    2010-05-06

    The magnetic field inside the Earth's fluid and electrically conducting outer core cannot be directly probed. The root-mean-squared (r.m.s.) intensity for the resolved part of the radial magnetic field at the core-mantle boundary is 0.3 mT, but further assumptions are needed to infer the strength of the field inside the core. Recent diagnostics obtained from numerical geodynamo models indicate that the magnitude of the dipole field at the surface of a fluid dynamo is about ten times weaker than the r.m.s. field strength in its interior, which would yield an intensity of the order of several millitesla within the Earth's core. However, a 60-year signal found in the variation in the length of day has long been associated with magneto-hydrodynamic torsional waves carried by a much weaker internal field. According to these studies, the r.m.s. strength of the field in the cylindrical radial direction (calculated for all length scales) is only 0.2 mT, a figure even smaller than the r.m.s. strength of the large-scale (spherical harmonic degree n

  19. The effect of vertical drift on the equatorial F-region stability

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Cragin, B. L.; Dennis, A.

    1986-01-01

    Time-dependent ionospheric model calculations for day-time and night-time solutions are presented. The behavior of the growth rate and ion-electron recombination rate for the Rayleigh-Taylor instability on the F-region bottomside is examined as a function of the vertical eastward electric field-magnetic field strength drift velocity. It is observed that on the bottomside F-layer the growth rate exceeds the ion-electron recombination rate even without vertical drift; however, an eastward electric field-magnetic field strength drift can produce an increase in the growth rate by an order of magnitude. The calculated data are compared with previous research and good correlation is detected. The formation of bubbles from a seeding mechanism is investigated.

  20. Sound source identification and sound radiation modeling in a moving medium using the time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2015-05-01

    Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.

  1. The evolution of surface magnetic fields in young solar-type stars II: the early main sequence (250-650 Myr)

    NASA Astrophysics Data System (ADS)

    Folsom, C. P.; Bouvier, J.; Petit, P.; Lèbre, A.; Amard, L.; Palacios, A.; Morin, J.; Donati, J.-F.; Vidotto, A. A.

    2018-03-01

    There is a large change in surface rotation rates of sun-like stars on the pre-main sequence and early main sequence. Since these stars have dynamo-driven magnetic fields, this implies a strong evolution of their magnetic properties over this time period. The spin-down of these stars is controlled by interactions between stellar and magnetic fields, thus magnetic evolution in turn plays an important role in rotational evolution. We present here the second part of a study investigating the evolution of large-scale surface magnetic fields in this critical time period. We observed stars in open clusters and stellar associations with known ages between 120 and 650 Myr, and used spectropolarimetry and Zeeman Doppler Imaging to characterize their large-scale magnetic field strength and geometry. We report 15 stars with magnetic detections here. These stars have masses from 0.8 to 0.95 M⊙, rotation periods from 0.326 to 10.6 d, and we find large-scale magnetic field strengths from 8.5 to 195 G with a wide range of geometries. We find a clear trend towards decreasing magnetic field strength with age, and a power law decrease in magnetic field strength with Rossby number. There is some tentative evidence for saturation of the large-scale magnetic field strength at Rossby numbers below 0.1, although the saturation point is not yet well defined. Comparing to younger classical T Tauri stars, we support the hypothesis that differences in internal structure produce large differences in observed magnetic fields, however for weak-lined T Tauri stars this is less clear.

  2. Multi-site study of diffusion metric variability: effects of site, vendor, field strength, and echo time on regions-of-interest and histogram-bin analyses.

    PubMed

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    It is now common for magnetic-resonance-imaging (MRI) based multi-site trials to include diffusion-weighted imaging (DWI) as part of the protocol. It is also common for these sites to possess MR scanners of different manufacturers, different software and hardware, and different software licenses. These differences mean that scanners may not be able to acquire data with the same number of gradient amplitude values and number of available gradient directions. Variability can also occur in achievable b-values and minimum echo times. The challenge of a multi-site study then, is to create a common protocol by understanding and then minimizing the effects of scanner variability and identifying reliable and accurate diffusion metrics. This study describes the effect of site, scanner vendor, field strength, and TE on two diffusion metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA) using two common analyses (region-of-interest and mean-bin value of whole brain histograms). The goal of the study was to identify sources of variability in diffusion-sensitized imaging and their influence on commonly reported metrics. The results demonstrate that the site, vendor, field strength, and echo time all contribute to variability in FA and MD, though to different extent. We conclude that characterization of the variability of DTI metrics due to site, vendor, field strength, and echo time is a worthwhile step in the construction of multi-center trials.

  3. The Effects of Ion heating in Martian Magnetic Crustal Fields: Particle Tracing and Ion Distributions

    NASA Astrophysics Data System (ADS)

    Fowler, C. M.; Andersson, L.

    2014-12-01

    Ion heating is a process that may allow low energy ions within the Martian ionosphere to be accelerated and escape. Ion heating can be especially efficient if the ions stay in the heating region for long time durations. With this in mind, the magnetic crustal field regions on Mars are particularly interesting. We focus on ions present within these regions, where changes in magnetic field strength and direction can heat these ions. Since crustal magnetic fields can maintain a trapped particle population it is unclear how efficiently plasma can be built up that can later escape to space. We investigate here two drivers: rotation of the planet and the solar wind pressure. As crustal fields rotate from the wake of the planet to the sub solar point and back, they experience compression and expansion over time scales of ~24 hours. The solar wind pressure on the other hand can cause variations over much shorter time scales (minutes). The effect of these two drivers using a particle tracing simulation that solves the Lorentz force is presented. O+ ions are seeded within the simulation box. The magnetic environment is a linear sum of a dipole field and a solar wind magnetic field. The dipole field represents the magnetic crustal field and the dipole strength is chosen to be consistent with MGS magnetometer observations of Martian crustal field regions. By increasing the solar wind strength the magnetic dipole is compressed. Decreasing solar wind strength allows the dipole to expand. Small magnitude, short time scale variations can be imposed over the top of this larger variation to represent short time scale solar wind variations. Since the purpose of this analysis is to understand the changes of the ion distribution inside the crustal field, simplistic assumptions of the field outside the crustal field can be made. Initial results are presented, with the focus on two main questions: (a) can low energy ions be heated and escape the closed dipole field lines as a result of varying magnetic fields; (b) is the compression and relaxation of the crustal field due to rotation important for the oxygen escape rates when compared to the particle evolution due to high frequency changes in magnetic field and the lifetimes of these ions.

  4. The effects of magnetic fields on the growth of thermal instabilities in cooling flows

    NASA Technical Reports Server (NTRS)

    David, Laurence P.; Bregman, Joel N.

    1989-01-01

    The effects of heat conduction and magnetic fields on the growth of thermal instabilities in cooling flows are examined using a time-dependent hydrodynamics code. It is found that, for magnetic field strengths of roughly 1 micro-Gauss, magnetic pressure forces can completely suppress shocks from forming in thermally unstable entropy perturbations with initial length scales as large as 20 kpc, even for initial amplitudes as great as 60 percent. Perturbations with initial amplitudes of 50 percent and initial magnetic field strengths of 1 micro-Gauss cool to 10,000 K on a time scale which is only 22 percent of the initial instantaneous cooling time. Nonlinear perturbations can thus condense out of cooling flows on a time scale substantially less than the time required for linear perturbations and produce significant mass deposition of cold gas while the accreting intracluster gas is still at large radii.

  5. STS-3/OSS-1 Plasma Diagnostics Package (PDP) measurements of Orbiter transmitter and subsystem electromagnetic interference

    NASA Technical Reports Server (NTRS)

    Shawhan, S. D.; Murphy, G.

    1983-01-01

    The plasma diagnostics package receiver system is described to identify the various antennas and to characterize the complement of receivers which cover the frequency range of 30 Hz to 800 Hz and S-band at 2200 + or - 300 MHz. Sample results are presented to show the variability of electromagnetic effects associated with the orbiter and the time variability of these effects. The electric field and magnetic field maximum and minimum field strength spectra observed during the mission at the pallet location are plotted. Values are also derived for the maximum UHF transmitter and S-band transmitter field strengths. Calibration data to convert from the survey plots to actual narrowband and broadband field strengths are listed.

  6. High resolution separations of charge variants and disulfide isomers of monoclonal antibodies and antibody drug conjugates using ultra-high voltage capillary electrophoresis with high electric field strength.

    PubMed

    Henley, W Hampton; He, Yan; Mellors, J Scott; Batz, Nicholas G; Ramsey, J Michael; Jorgenson, James W

    2017-11-10

    Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development. Ideally, the resolution obtained for a given CE buffer system scales with the square root of the applied voltage. Currently available commercial CE instrumentation is limited to an applied voltage of approximately 30kV and a maximum electric field strength of 1kV/cm due to design limitations. The instrumentation described here is capable of safely applying potentials of at least 120kV with electric field strengths over 2000V/cm, potentially doubling the resolution of the best conventional CE buffer/capillary systems while decreasing analysis time in some applications. Separations of these complex mixtures using this new instrumentation demonstrate the potential of ultra-high voltage CE to identify the presence of previously unresolved components and to reduce analysis time for complex mixtures of antibody variants and drug conjugates. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Using coronal seismology to estimate the magnetic field strength in a realistic coronal model

    NASA Astrophysics Data System (ADS)

    Chen, F.; Peter, H.

    2015-09-01

    Aims: Coronal seismology is used extensively to estimate properties of the corona, e.g. the coronal magnetic field strength is derived from oscillations observed in coronal loops. We present a three-dimensional coronal simulation, including a realistic energy balance in which we observe oscillations of a loop in synthesised coronal emission. We use these results to test the inversions based on coronal seismology. Methods: From the simulation of the corona above an active region, we synthesise extreme ultraviolet emission from the model corona. From this, we derive maps of line intensity and Doppler shift providing synthetic data in the same format as obtained from observations. We fit the (Doppler) oscillation of the loop in the same fashion as done for observations to derive the oscillation period and damping time. Results: The loop oscillation seen in our model is similar to imaging and spectroscopic observations of the Sun. The velocity disturbance of the kink oscillation shows an oscillation period of 52.5 s and a damping time of 125 s, which are both consistent with the ranges of periods and damping times found in observations. Using standard coronal seismology techniques, we find an average magnetic field strength of Bkink = 79 G for our loop in the simulation, while in the loop the field strength drops from roughly 300 G at the coronal base to 50 G at the apex. Using the data from our simulation, we can infer what the average magnetic field derived from coronal seismology actually means. It is close to the magnetic field strength in a constant cross-section flux tube, which would give the same wave travel time through the loop. Conclusions: Our model produced a realistic looking loop-dominated corona, and provides realistic information on the oscillation properties that can be used to calibrate and better understand the result from coronal seismology. A movie associated with Fig. 1 is available in electronic form at http://www.aanda.org

  8. Fractal structure of the interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Klein, L. W.

    1985-01-01

    Under some conditions, time series of the interplanetary magnetic field strength and components have the properties of fractal curves. Magnetic field measurements made near 8.5 AU by Voyager 2 from June 5 to August 24, 1981 were self-similar over time scales from approximately 20 sec to approximately 3 x 100,000 sec, and the fractal dimension of the time series of the strength and components of the magnetic field was D = 5/3, corresponding to a power spectrum P(f) approximately f sup -5/3. Since the Kolmogorov spectrum for homogeneous, isotropic, stationary turbulence is also f sup -5/3, the Voyager 2 measurements are consistent with the observation of an inertial range of turbulence extending over approximately four decades in frequency. Interaction regions probably contributed most of the power in this interval. As an example, one interaction region is discussed in which the magnetic field had a fractal dimension D = 5/3.

  9. The Holocene Geomagnetic Field: Spikes, Low Field Anomalies, and Asymmetries

    NASA Astrophysics Data System (ADS)

    Constable, C.

    2017-12-01

    Our understanding of the Holocene magnetic field is constrained by individual paleomagnetic records of variable quality and resolution, composite regional secular variation curves, and low resolution global time-varying geomagnetic field models. Although spatial and temporal data coverages have greatly improved in recent years, typical views of millennial-scale secular variation and the underlying physical processes continue to be heavily influenced by more detailed field structure and short term variability inferred from the historical record and modern observations. Recent models of gyre driven decay of the geomagnetic dipole on centennial time scales, and studies of the evolution of the South Atlantic Anomaly provide one prominent example. Since 1840 dipole decay has largely been driven by meridional flux advection, with generally smaller fairly steady contributions from magnetic diffusion. The decay is dominantly associated with geomagnetic activity in the Southern Hemisphere. In contrast to the present decay, dipole strength generally grew between 1500 and 1000 BC, sustaining high but fluctuating values around 90-100 ZAm2 until after 1500 AD. Thus high dipole moments appear to have been present shortly after 1000 AD at the time of the Levantine spikes, which represent extreme variations in regional geomagnetic field strength. It has been speculated that the growth in dipole moment originated from a strong flux patch near the equatorial region at the core-mantle boundary that migrated north and west to augment the dipole strength, suggesting the presence of a large-scale anticyclonic gyre in the northern hemisphere, not totally unlike the southern hemisphere flow that dominates present day dipole decay. The later brief episodes of high field strength in the Levant may have contributed to prolonged values of high dipole strength until the onset of dipole decay in the late second millennium AD. This could support the concept of a large-scale stable flow configuration for several millennia.

  10. Vlasov Simulation Study of Landau Damping Near the Persisting to Arrested Transition

    NASA Astrophysics Data System (ADS)

    Vinas, A. F.; Klimas, A. J.; Araneda, J. A.

    2017-12-01

    A 1-D electrostatic filtered Vlasov-Poisson simulation study is discussed. The transition from persisting to arrested Landau damping that is produced by increasing the strength of a sinusoidal perturbation on a background Vlasov-Poisson equilibrium is explored. Emphasis is placed on observed features of the electron phase-space distribution when the perturbation strength is near the transition value. A single ubiquitous waveform is found perturbing the space-averaged phase space distribution at almost any time in all of the simulations; the sole exception is the saturation stage that can occur at the end of the arrested damping scenario. This waveform contains relatively strong, very narrow structures in velocity bracketing ±vres - the velocities at which electrons must move to traverse the dominant field mode wavelength in one of its oscillation periods - and propagating with ±vres respectively. Local streams of electrons are found in these structures crossing the resonant velocities from low speed to high speed during Landau damping and from high speed to low speed during Landau growth. At the arrest time, when the field strength is briefly constant, these streams vanish. It is conjectured that the expected transfer of energy between electrons and field during Landau growth or damping has been visualized for the first time. No evidence is found in the phase-space distribution to support recent well established discoveries of a second order phase transition in the electric field evolution. While trapping is known to play a role for larger perturbation strengths, it is shown that trapping plays no role at any time in any of the simulations near the transition perturbation strength.

  11. Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping

    2017-11-01

    This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.

  12. Observations of magnetic fields on solar-type stars

    NASA Technical Reports Server (NTRS)

    Marcy, G. W.

    1982-01-01

    Magnetic-field observations were carried out for 29 G and K main-sequence stars. The area covering-factors of magnetic regions tends to be greater in the K dwarfs than in the G dwarfs. However, no spectral-type dependence is found for the field strengths, contrary to predictions that pressure equilibrium with the ambient photospheric gas pressure would determine the surface field strengths. Coronal soft X-ray fluxes from the G and K dwarfs correlate well with the fraction of the stellar surface covered by magnetic regions. The dependence of coronal soft X-ray fluxes on photospheric field strengths is consistent with Stein's predicted generation-rates for Alfven waves. These dependences are inconsistent with the one dynamo model for which a specific prediction is offered. Finally, time variability of magnetic fields is seen on the two active stars that have been extensively monitored. Significant changes in magnetic fields are seen to occur on timescales as short as one day.

  13. Effect of pulsed electric field treatment during cold maceration and alcoholic fermentation on major red wine qualitative and quantitative parameters.

    PubMed

    El Darra, Nada; Rajha, Hiba N; Ducasse, Marie-Agnès; Turk, Mohammad F; Grimi, Nabil; Maroun, Richard G; Louka, Nicolas; Vorobiev, Eugène

    2016-12-15

    This work studies the effect of pulsed electric field (PEF) treatment at moderate and high field strengths (E=0.8kV/cm & 5kV/cm) prior and during alcoholic fermentation (AF) of red grapes on improving different parameters of pre-treated extracts: pH, °Brix, colour intensity (CI), total polyphenols content (TPI) of Cabernet Sauvignon red wine. Similar trends were observed for treating grapes using moderate and high electric field strength on the enhancement of CI and TPI of the wine after AF. The application of PEF using moderate strengths at different times during cold maceration (CM) (0, 2 and 4days) was more efficient for treatment during CM. The treatment during AF showed lower extraction rate compared to treating during CM and prior to AF. Our results clearly show that the best time for applying the PEF-treatment through the red fermentation is during the CM step. Copyright © 2016. Published by Elsevier Ltd.

  14. Giant Electric Field Enhancement in Split Ring Resonators Featuring Nanometer-Sized Gaps

    NASA Astrophysics Data System (ADS)

    Bagiante, S.; Enderli, F.; Fabiańska, J.; Sigg, H.; Feurer, T.

    2015-01-01

    Today's pulsed THz sources enable us to excite, probe, and coherently control the vibrational or rotational dynamics of organic and inorganic materials on ultrafast time scales. Driven by standard laser sources THz electric field strengths of up to several MVm-1 have been reported and in order to reach even higher electric field strengths the use of dedicated electric field enhancement structures has been proposed. Here, we demonstrate resonant electric field enhancement structures, which concentrate the incident electric field in sub-diffraction size volumes and show an electric field enhancement as high as ~14,000 at 50 GHz. These values have been confirmed through a combination of near-field imaging experiments and electromagnetic simulations.

  15. New topics in coherent anti-stokes raman scattering gas-phase diagnostics : femtosecond rotational CARS and electric-field measurements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lempert, Walter R.; Barnat, Edward V.; Kearney, Sean Patrick

    2010-07-01

    We discuss two recent diagnostic-development efforts in our laboratory: femtosecond pure-rotational Coherent anti-Stokes Raman scattering (CARS) for thermometry and species detection in nitrogen and air, and nanosecond vibrational CARS measurements of electric fields in air. Transient pure-rotational fs-CARS data show the evolution of the rotational Raman polarization in nitrogen and air over the first 20 ps after impulsive pump/Stokes excitation. The Raman-resonant signal strength at long time delays is large, and we additionally observe large time separation between the fs-CARS signatures of nitrogen and oxygen, so that the pure-rotational approach to fs-CARS has promise for simultaneous species and temperature measurementsmore » with suppressed nonresonant background. Nanosecond vibrational CARS of nitrogen for electric-field measurements is also demonstrated. In the presence of an electric field, a dipole is induced in the otherwise nonpolar nitrogen molecule, which can be probed with the introduction of strong collinear pump and Stokes fields, resulting in CARS signal radiation in the infrared. The electric-field diagnostic is demonstrated in air, where the strength of the coherent infrared emission and sensitivity our field measurements is quantified, and the scaling of the infrared signal with field strength is verified.« less

  16. T1 and susceptibility contrast at high fields

    NASA Astrophysics Data System (ADS)

    Neelavalli, Jaladhar

    Clinical imaging at high magnetic field strengths (≥ 3Tesla) is sought after primarily due to the increased signal strength available at these fields. This increased SNR can be used to perform: (a) high resolution imaging in the same time as at lower field strengths; (b) the same resolution imaging with much faster acquisition; and (c) functional MR imaging (fMRI), dynamic perfusion and diffusion imaging with increased sensitivity. However they are also associated with increased power deposition (SAR) due to increase in imaging frequency and longer T1 relaxation times. Longer T1s mean longer imaging times for generating good T1 contrast images. On the other hand for faster imaging, at high fields fast spin echo or magnetization prepared sequences are conventionally proposed which are, however, associated with high SAR values. Imaging with low SAR is more and more important as we move towards high fields and particularly for patients with metallic implants like pacemakers or deep brain stimulator. The SAR limit acceptable for these patients is much less than the limit acceptable for normal subjects. A new method is proposed for imaging at high fields with good contrast with simultaneous reduction in power deposition. Further, T1 based contrast optimization problem in FLASH imaging is considered for tissues with different T1s but same spin densities. The solution providing optimal imaging parameters is simplified for quick and easy computation in a clinical setting. The efficacy of the simplification is evaluated and practical limits under which the simplification can be applied are worked out. The phase difference due to variation in magnetic susceptibility property among biological tissues is another unique source of contrast which is different from the conventional T1, T2 and T2* contrast. This susceptibility based phase contrast has become more and more important at high fields, partly due to contrast generation issues due to longer T 1s and shorter T2s and partly because of the invariance of most tissue susceptibilities with field strength. This essentially ensures a constant available phase contrast between tissues across field strengths. In fact, with the increased SNR at high fields, the phase CNR actually increases with field strength which is even better. Susceptibility weighted imaging, which uniquely combines this phase and magnitude information to generate enhanced susceptibility contrast magnitude images, has proven to be an important tool in the study of various neurological conditions like, Alzheimer's, Parkinson's, Huntington's disease and multiple sclerosis even at conventional field strength of 1.5T and should have more applicability at high fields. A major issue in using phase images for susceptibility contrast, directly or as processed SWI magnitude images, is the large scale background phase variations that obscure the local susceptibility based contrast. A novel method is proposed for removing such geometrically induced large scale phase variations using a Fourier Transform based field calculation method. It is shown that the new method is capable of successfully removing the background field effects. It is shown that the new method is not only capable of successfully removing the background field effects but also helps in preserving more local phase information.

  17. Nonlinear dynamic theory for photorefractive phase hologram formation

    NASA Technical Reports Server (NTRS)

    Kim, D. M.; Shah, R. R.; Rabson, T. A.; Tittle, F. K.

    1976-01-01

    A nonlinear dynamic theory is developed for the formation of photorefractive volume phase holograms. A feedback mechanism existing between the photogenerated field and free-electron density, treated explicitly, yields the growth and saturation of the space-charge field in a time scale characterized by the coupling strength between them. The expression for the field reduces in the short-time limit to previous theories and approaches in the long-time limit the internal or photovoltaic field. Additionally, the phase of the space charge field is shown to be time-dependent.

  18. Electromagnetic-field dependence of the internal excited state of the polaron and the qubit in quantum dot with thickness

    NASA Astrophysics Data System (ADS)

    Bai, Xu-Fang; Xin, Wei; Yin, Hong-Wu; Eerdunchaolu

    2017-06-01

    The electromagnetic-field dependence of the ground and the first excited-state (GFES) energy eigenvalues and eigenfunctions of the strong-coupling polaron in a quantum dot (QD) was studied for various QD thicknesses by using the variational method of the Pekar type (VMPT). On this basis, we construct a qubit in the quantum dot (QQD) by taking a two-level structure of the polaron as the carrier. The results of numerical calculations indicate that the oscillation period of the qubit, {itT}{in0}, increases with increasing the thickness of the quantum dot (TQD) {itL}, but decreases with increasing the cyclotron frequency of the magnetic field (CFMF) ω{in{itc}}, electric-field strength {itF}, and electron-phonon coupling strength (EPCS) α. The probability density of the qubit |Ψ({itρ}, {itz}, {itt})|{su2} presents a normal distribution of the electronic transverse coordinate ρ, significantly influenced by the TQD and effective radius of the quantum dot (ERQD) {itR}{in0}, and shows a periodic oscillation with variations in the electronic longitudinal coordinate {itz}, polar angle φ and time {itt}. The decoherence time τ and the quality factor {itQ} of the free rotation increase with increasing the CFMF ω{in{itc}}, dispersion coefficient η, and EPCS α, but decrease with increasing the electric-field strength {itF}, TQD {itL}, and ERQD {itR}{in0}. The TQD is an important parameter of the qubit. Theoretically, the target, which is to regulate the oscillation period, decoherence time and quality factor of the free rotation of the qubit, can be achieved by designing different TQDs and regulating the strength of the electromagnetic field.

  19. Laboratory or field tests for evaluating firefighters' work capacity?

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = -0.81) and barbell shoulder press (rs = -0.77), for Pulling: IE shoulder extension (rs = -0.82) and bench press (rs = -0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = -0.83) and bench press (rs = -0.82), and for the Terrain work task: IE trunk flexion (rs = -0.58) and upright barbell row (rs = -0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.

  20. Comparison of electric field strength and spatial distribution of electroconvulsive therapy and magnetic seizure therapy in a realistic human head model

    PubMed Central

    Lee, Won Hee; Lisanby, Sarah H.; Laine, Andrew F.; Peterchev, Angel V.

    2017-01-01

    Background This study examines the strength and spatial distribution of the electric field induced in the brain by electroconvulsive therapy (ECT) and magnetic seizure therapy (MST). Methods The electric field induced by standard (bilateral, right unilateral, and bifrontal) and experimental (focal electrically administered seizure therapy and frontomedial) ECT electrode configurations as well as a circular MST coil configuration was simulated in an anatomically realistic finite element model of the human head. Maps of the electric field strength relative to an estimated neural activation threshold were used to evaluate the stimulation strength and focality in specific brain regions of interest for these ECT and MST paradigms and various stimulus current amplitudes. Results The standard ECT configurations and current amplitude of 800–900 mA produced the strongest overall stimulation with median of 1.8–2.9 times neural activation threshold and more than 94% of the brain volume stimulated at suprathreshold level. All standard ECT electrode placements exposed the hippocampi to suprathreshold electric field, although there were differences across modalities with bilateral and right unilateral producing respectively the strongest and weakest hippocampal stimulation. MST stimulation is up to 9 times weaker compared to conventional ECT, resulting in direct activation of only 21% of the brain. Reducing the stimulus current amplitude can make ECT as focal as MST. Conclusions The relative differences in electric field strength may be a contributing factor for the cognitive sparing observed with right unilateral compared to bilateral ECT, and MST compared to right unilateral ECT. These simulations could help understand the mechanisms of seizure therapies and develop interventions with superior risk/benefit ratio. PMID:27318858

  1. [Clinical MR at 3 Tesla: current status].

    PubMed

    Baudendistel, K T; Heverhagen, J T; Knopp, M V

    2004-01-01

    Clinical MRI is mostly performed at field strengths up to 1.5 Tesla (T). Recently, approved clinical whole-body MR-systems with a field strength of 3 T became available. Its installation base is more rapidly growing than anticipated. While site requirements and operation of these systems do not differ substantially from systems with lower field strength, there are differences in practical applications. Imaging applications can use the gain in signal-to-noise for increased spatial resolution or gain in speed. This comes at a trade off in increased sensitivity to field inhomogeneities and changes in relaxation times, which lead to changes in image contrast. The benefit of high field for spectroscopy consists in increased signal-to-noise-ratio and improvement in frequency resolution. The increase in energy deposition necessitates the use of special strategies to reduce the specific absorption rate (SAR). This paper summarizes the current state of MR at 3 T.

  2. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media

    PubMed Central

    Chen, Zhen; Dorfman, Kevin D.

    2013-01-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such “tilted” post arrays is superior to the standard “un-tilted” approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the “free path”, i.e., the average distance of ballistic trajectories of point sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. PMID:23868490

  3. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  4. Dynamics of absence seizures

    NASA Astrophysics Data System (ADS)

    Deeba, Farah; Sanz-Leon, Paula; Robinson, Peter

    A neural field model of the corticothalamic system is used to investigate the dynamics of absence seizures in the presence of temporally varying connection strength between the cerebral cortex and thalamus. Variation of connection strength from cortex to thalamus drives the system into seizure once a threshold is passed and a supercritical Hopf bifurcation occurs. The dynamics and spectral characteristics of the resulting seizures are explored as functions of maximum connection strength, time above threshold, and ramp rate. The results enable spectral and temporal characteristics of seizures to be related to underlying physiological variations via nonlinear dynamics and neural field theory. Notably, this analysis adds to neural field modeling of a wide variety of brain activity phenomena and measurements in recent years. Australian Research Council Grants FL1401000225 and CE140100007.

  5. Statistical Study of Interplanetary Coronal Mass Ejections with Strong Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Murphy, Matthew E.

    Coronal Mass Ejections (CMEs) with strong magnetic fields (B ) are typically associated with significant Solar Energetic Particle (SEP) events, high solar wind speed and solar flare events. Successful prediction of the arrival time of a CME at Earth is required to maximize the time available for satellite, infrastructure, and space travel programs to take protective action against the coming flux of high-energy particles. It is known that the magnetic field strength of a CME is linked to the strength of a geomagnetic storm on Earth. Unfortunately, the correlations between strong magnetic field CMEs from the entire sun (especially from the far side or non-Earth facing side of the sun) to SEP and flare events, solar source regions and other relevant solar variables are not well known. New correlation studies using an artificial intelligence engine (Eureqa) were performed to study CME events with magnetic field strength readings over 30 nanoteslas (nT) from January 2010 to October 17, 2014. This thesis presents the results of this study, validates Eureqa to obtain previously published results, and presents previously unknown functional relationships between solar source magnetic field data, CME initial speed and the CME magnetic field. These new results enable the development of more accurate CME magnetic field predictions and should help scientists develop better forecasts thereby helping to prevent damage to humanity's space and Earth assets.

  6. Non-extensive entropy and properties of polaron in RbCl delta quantum dot under an applied electric field and Coulombic impurity

    NASA Astrophysics Data System (ADS)

    Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.

    2017-08-01

    Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence

  7. 47 CFR 73.683 - Field strength contours and presumptive determination of field strength at individual locations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours and presumptive determination of field strength at individual locations. 73.683 Section 73.683 Telecommunication FEDERAL... Stations § 73.683 Field strength contours and presumptive determination of field strength at individual...

  8. Separation of non-stationary multi-source sound field based on the interpolated time-domain equivalent source method

    NASA Astrophysics Data System (ADS)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2016-05-01

    In the sound field with multiple non-stationary sources, the measured pressure is the sum of the pressures generated by all sources, and thus cannot be used directly for studying the vibration and sound radiation characteristics of every source alone. This paper proposes a separation model based on the interpolated time-domain equivalent source method (ITDESM) to separate the pressure field belonging to every source from the non-stationary multi-source sound field. In the proposed method, ITDESM is first extended to establish the relationship between the mixed time-dependent pressure and all the equivalent sources distributed on every source with known location and geometry information, and all the equivalent source strengths at each time step are solved by an iterative solving process; then, the corresponding equivalent source strengths of one interested source are used to calculate the pressure field generated by that source alone. Numerical simulation of two baffled circular pistons demonstrates that the proposed method can be effective in separating the non-stationary pressure generated by every source alone in both time and space domains. An experiment with two speakers in a semi-anechoic chamber further evidences the effectiveness of the proposed method.

  9. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  10. Brownian escape and force-driven transport through entropic barriers: Particle size effect.

    PubMed

    Cheng, Kuang-Ling; Sheng, Yu-Jane; Tsao, Heng-Kwong

    2008-11-14

    Brownian escape from a spherical cavity through small holes and force-driven transport through periodic spherical cavities for finite-size particles have been investigated by Brownian dynamic simulations and scaling analysis. The mean first passage time and force-driven mobility are obtained as a function of particle diameter a, hole radius R(H), cavity radius R(C), and external field strength. In the absence of external field, the escape rate is proportional to the exit effect, (R(H)R(C))(1-a2R(H))(32). In weak fields, Brownian diffusion is still dominant and the migration is controlled by the exit effect. Therefore, smaller particles migrate faster than larger ones. In this limit the relation between Brownian escape and force-driven transport can be established by the generalized Einstein-Smoluchowski relation. As the field strength is strong enough, the mobility becomes field dependent and grows with increasing field strength. As a result, the size selectivity diminishes.

  11. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance.

    PubMed

    Helmer, K G; Chou, M-C; Preciado, R I; Gimi, B; Rollins, N K; Song, A; Turner, J; Mori, S

    2016-02-27

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables.

  12. Relativistic diffusive motion in random electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2011-08-01

    We show that the relativistic dynamics in a Gaussian random electromagnetic field can be approximated by the relativistic diffusion of Schay and Dudley. Lorentz invariant dynamics in the proper time leads to the diffusion in the proper time. The dynamics in the laboratory time gives the diffusive transport equation corresponding to the Jüttner equilibrium at the inverse temperature β-1 = mc2. The diffusion constant is expressed by the field strength correlation function (Kubo's formula).

  13. Input-output relationship in galvanotactic response of Dictyostelium cells.

    PubMed

    Sato, Masayuki J; Ueda, Michihito; Takagi, Hiroaki; Watanabe, Tomonobu M; Yanagida, Toshio; Ueda, Masahiro

    2007-04-01

    Under a direct current electric field, Dictyostelium cells exhibit migration towards the cathode. To determine the input-output relationship of the cell's galvanotactic response, we developed an experimental instrument in which electric signals applied to the cells are highly reproducible and the motile response are analyzed quantitatively. With no electric field, the cells moved randomly in all directions. Upon applying an electric field, cell migration speeds became about 1.3 times faster than those in the absence of an electric field. Such kinetic effects of electric fields on the migration were observed for cells stimulated between 0.25 and 10 V/cm of the field strength. The directions of cell migrations were biased toward the cathode in a positive manner with field strength, showing galvanotactic response in a dose-dependent manner. Quantitative analysis of the relationship between field strengths and directional movements revealed that the biased movements of the cells depend on the square of electric field strength, which can be described by one simple phenomenological equation. The threshold strength for the galvanotaxis was between 0.25 and 1 V/cm. Galvanotactic efficiency reached to half-maximum at 2.6 V/cm, which corresponds to an approximate 8 mV voltage difference between the cathode and anode direction of 10 microm wide, round cells. Based on these results, possible mechanisms of galvanotaxis in Dictyostelium cells were discussed. This development of experimental system, together with its good microscopic accessibility for intracellular signaling molecules, makes Dictyostelium cells attractive as a model organism for elucidating stochastic processes in the signaling systems responsible for cell motility and its regulations.

  14. A family of metric gravities

    NASA Astrophysics Data System (ADS)

    Shuler, Robert

    2018-04-01

    The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one theory to mimic another implying that such estimates or distributions should be first obtained from weakfield measurements before being used to discriminate verification candidates. By this method theorists gain insight into the local constraints on space-time, and GR verification gains strong-field comparative objectives.

  15. Cooperative effect of random and time-periodic coupling strength on synchronization transitions in one-way coupled neural system: mean field approach.

    PubMed

    Jiancheng, Shi; Min, Luo; Chusheng, Huang

    2017-08-01

    The cooperative effect of random coupling strength and time-periodic coupling strengh on synchronization transitions in one-way coupled neural system has been investigated by mean field approach. Results show that cooperative coupling strength (CCS) plays an active role for the enhancement of synchronization transitions. There exist an optimal frequency of CCS which makes the system display the best CCS-induced synchronization transitions, a critical frequency of CCS which can not further affect the CCS-induced synchronization transitions, and a critical amplitude of CCS which can not occur the CCS-induced synchronization transitions. Meanwhile, noise intensity plays a negative role for the CCS-induced synchronization transitions. Furthermore, it is found that the novel CCS amplitude-induced synchronization transitions and CCS frequency-induced synchronization transitions are found.

  16. 47 CFR 24.236 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Field strength limits. 24.236 Section 24.236... SERVICES Broadband PCS § 24.236 Field strength limits. The predicted or measured median field strength at... to a higher field strength. ...

  17. 47 CFR 24.236 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Field strength limits. 24.236 Section 24.236... SERVICES Broadband PCS § 24.236 Field strength limits. The predicted or measured median field strength at... to a higher field strength. ...

  18. Magnetic Field Amplification in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Xu, Siyao; Lazarian, Alex

    2017-12-01

    Based on the new findings on the turbulent dynamo in Xu & Lazarian, we examine the magnetic field amplification in the context of supernova remnants. Due to the strong ion-neutral collisional damping in the weakly ionized interstellar medium, the dynamo in the preshock turbulence remains in the damping kinematic regime, which leads to a linear-in-time growth of the magnetic field strength. The resultant magnetic field structure enables effective diffusion upstream and shock acceleration of cosmic rays to energies above the “knee.” Differently, the nonlinear dynamo in the postshock turbulence leads to a linear-in-time growth of the magnetic energy due to the turbulent magnetic diffusion. Given a weak initial field strength in the postshock region, the magnetic field saturates at a significant distance from the shock front as a result of the inefficiency of the nonlinear dynamo. This result is in a good agreement with existing numerical simulations and well explains the X-ray spots detected far behind the shock front.

  19. Geodynamo, solar wind, and magnetopause 3.4 to 3.45 billion years ago.

    PubMed

    Tarduno, John A; Cottrell, Rory D; Watkeys, Michael K; Hofmann, Axel; Doubrovine, Pavel V; Mamajek, Eric E; Liu, Dunji; Sibeck, David G; Neukirch, Levi P; Usui, Yoichi

    2010-03-05

    Stellar wind standoff by a planetary magnetic field prevents atmospheric erosion and water loss. Although the early Earth retained its water and atmosphere, and thus evolved as a habitable planet, little is known about Earth's magnetic field strength during that time. We report paleointensity results from single silicate crystals bearing magnetic inclusions that record a geodynamo 3.4 to 3.45 billion years ago. The measured field strength is approximately 50 to 70% that of the present-day field. When combined with a greater Paleoarchean solar wind pressure, the paleofield strength data suggest steady-state magnetopause standoff distances of < or = 5 Earth radii, similar to values observed during recent coronal mass ejection events. The data also suggest lower-latitude aurora and increases in polar cap area, as well as heating, expansion, and volatile loss from the exosphere that would have affected long-term atmospheric composition.

  20. Diagnostic relevance of high field MRI in clinical neuroradiology: the advantages and challenges of driving a sports car.

    PubMed

    Wattjes, Mike P; Barkhof, Frederik

    2012-11-01

    High field MRI operating at 3 T is increasingly being used in the field of neuroradiology on the grounds that higher magnetic field strength should theoretically lead to a higher diagnostic accuracy in the diagnosis of several disease entities. This Editorial discusses the exhaustive review by Wardlaw and colleagues of research comparing 3 T MRI with 1.5 T MRI in the field of neuroradiology. Interestingly, the authors found no convincing evidence of improved image quality, diagnostic accuracy, or reduced total examination times using 3 T MRI instead of 1.5 T MRI. These findings are highly relevant since a new generation of high field MRI systems operating at 7 T has recently been introduced. • Higher magnetic field strengths do not necessarily lead to a better diagnostic accuracy. • Disadvantages of high field MR systems have to be considered in clinical practice. • Higher field strengths are needed for functional imaging, spectroscopy, etc. • Disappointingly there are few direct comparisons of 1.5 and 3 T MRI. • Whether the next high field MR generation (7 T) will improve diagnostic accuracy has to be investigated.

  1. High-resolution observations of the polar magnetic fields of the sun

    NASA Technical Reports Server (NTRS)

    Lin, H.; Varsik, J.; Zirin, H.

    1994-01-01

    High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor (the ratio of the area occupied by the magnetic elements to the total area) of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993. We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle. We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70-80 deg) and low (60-70 deg) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.

  2. The assessment of electromagnetic field radiation exposure for mobile phone users.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas

    2014-12-01

    During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.

  3. Initial experience of using high field strength intraoperative MRI for neurosurgical procedures.

    PubMed

    Raheja, Amol; Tandon, Vivek; Suri, Ashish; Sarat Chandra, P; Kale, Shashank S; Garg, Ajay; Pandey, Ravindra M; Kalaivani, Mani; Mahapatra, Ashok K; Sharma, Bhawani S

    2015-08-01

    We report our initial experience to optimize neurosurgical procedures using high field strength intraoperative magnetic resonance imaging (IOMRI) in 300 consecutive patients as high field strength IOMRI rapidly becomes the standard of care for neurosurgical procedures. Three sequential groups (groups A, B, C; n=100 each) were compared with respect to time management, complications and technical difficulties to assess improvement in these parameters with experience. We observed a reduction in the number of technical difficulties (p<0.001), time to induction (p<0.001) and total anesthesia time (p=0.007) in sequential groups. IOMRI was performed for neuronavigation guidance (n=252) and intraoperative validation of extent of resection (EOR; n=67). Performing IOMRI increased the EOR over and beyond the primary surgical attempt in 20.5% (29/141) and 18% (11/61) of patients undergoing glioma and pituitary surgery, respectively. Overall, EOR improved in 59.7% of patients undergoing IOMRI (40/67). Intraoperative tractography and real time navigation using re-uploaded IOMRI images (accounting for brain shift) helps in intraoperative planning to reduce complications. IOMRI is an asset to neurosurgeons, helping to augment the EOR, especially in glioma and pituitary surgery, with no significant increase in morbidity to the patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. The Magnetohydrodynamic Kelvin-Helmholtz Instability. III. The Role of Sheared Magnetic Field in Planar Flows

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunju; Ryu, Dongsu; Jones, T. W.; Frank, Adam

    2000-01-01

    We have carried out simulations of the nonlinear evolution of the magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible fluids in 2.5 dimensions, extending our previous work by Frank et al. and Jones et al. In the present work we have simulated flows in the x-y plane in which a ``sheared'' magnetic field of uniform strength smoothly rotates across a thin velocity shear layer from the z-direction to the x-direction, aligned with the flow field. The sonic Mach number of the velocity transition is unity. Such flows containing a uniform field in the x-direction are linearly stable if the magnetic field strength is great enough that the Alfvénic Mach number MA=U0/cA<2. That limit does not apply directly to sheared magnetic fields, however, since the z-field component has almost no influence on the linear stability. Thus, if the magnetic shear layer is contained within the velocity shear layer, the KH instability may still grow, even when the field strength is quite large. So, here we consider a wide range of sheared field strengths covering Alfvénic Mach numbers, MA=142.9 to 2. We focus on dynamical evolution of fluid features, kinetic energy dissipation, and mixing of the fluid between the two layers, considering their dependence on magnetic field strength for this geometry. There are a number of differences from our earlier simulations with uniform magnetic fields in the x-y plane. For the latter, simpler case we found a clear sequence of behaviors with increasing field strength ranging from nearly hydrodynamic flows in which the instability evolves to an almost steady cat's eye vortex with enhanced dissipation, to flows in which the magnetic field disrupts the cat's eye once it forms, to, finally, flows that evolve very little before field-line stretching stabilizes the velocity shear layer. The introduction of magnetic shear can allow a cat's eye-like vortex to form, even when the field is stronger than the nominal linear instability limit given above. For strong fields that vortex is asymmetric with respect to the preliminary shear layer, however, so the subsequent dissipation is enhanced over the uniform field cases of comparable field strength. In fact, so long as the magnetic field achieves some level of dynamical importance during an eddy turnover time, the asymmetries introduced through the magnetic shear will increase flow complexity and, with that, dissipation and mixing. The degree of the fluid mixing between the two layers is strongly influenced by the magnetic field strength. Mixing of the fluid is most effective when the vortex is disrupted by magnetic tension during transient reconnection, through local chaotic behavior that follows.

  5. Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE

    NASA Technical Reports Server (NTRS)

    Wilms, Jorn; Felix, Furst; Rothschild, Richard E.; Pottschmidt, Katja; Smith, David M.; Lingenfelter, Richard

    2009-01-01

    The evolution of the particle background at an altitude of approx.540km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by approx.1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field. Key words: space radiation environment, South Atlantic Anomaly, radiation monitors, Rossi X-ray Timing Explorer

  6. Development of a Real Time Internal Charging Tool for Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Posey, Nathaniel A.; Minow, Joesph I.

    2013-01-01

    The high-energy electron fluxes encountered by satellites in geosynchronous orbit pose a serious threat to onboard instrumentation and other circuitry. A substantial build-up of charge within a satellite's insulators can lead to electric fields in excess of the breakdown strength, which can result in destructive electrostatic discharges. The software tool we've developed uses data on the plasma environment taken from NOAA's GOES-13 satellite to track the resulting electric field strength within a material of arbitrary depth and conductivity and allows us to monitor the risk of material failure in real time. The tool also utilizes a transport algorithm to simulate the effects of shielding on the dielectric. Data on the plasma environment and the resulting electric fields are logged to allow for playback at a variable frame rate.

  7. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    PubMed

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 17O Relaxation Times in the Rat Brain at 16.4T

    PubMed Central

    Wiesner, Hannes M.; Balla, Dávid Z.; Shajan, G.; Scheffler, Klaus; Uğurbil, Kâmil; Chen, Wei; Uludağ, Kâmil; Pohmann, Rolf

    2015-01-01

    Purpose Measurement of the cerebral metabolic rate of oxygen (CMRO2) via direct imaging of the 17O signal can be a valuable tool in neuroscientific research. However, knowledge of the longitudinal and transverse relaxation times of different brain tissue types is required, which is difficult to obtain because of the low sensitivity of natural abundance H217O measurements. Methods Using the improved sensitivity at a field strength of 16.4 T, relaxation time measurements in the rat brain were performed in vivo and postmortem with relatively high spatial resolutions, using a chemical shift imaging sequence. Results In vivo relaxation times of rat brain were found to be T1 = 6.84 ± 0.67 ms and T2* = 1.77 ± 0.04 ms. Postmortem H217O relaxometry at enriched concentrations after inhalation of 17O2 showed similar T2* values for gray (1.87 ± 0.04 ms) and white matter, significantly longer than muscle (1.27 ± 0.05 ms) and shorter than CSF (2.30 ± 0.16 ms). Conclusion Relaxation times of brain H217O were measured for the first time in vivo in different types of tissues with high spatial resolution. Since the relaxation times of H217O are expected to be independent of field strength, our results should help in optimizing the acquisition parameters for experiments also at other MRI field strengths. PMID:26098931

  9. Current Sheet Formation in a Conical Theta Pinch Faraday Accelerator with Radio-frequency Assisted Discharge

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.; Hallock, Ashley K.; Choueiri, Edgar Y.

    2008-01-01

    Data from an inductive conical theta pinch accelerator are presented to gain insight into the process of inductive current sheet formation in the presence of a preionized background gas produced by a steady-state RF-discharge. The presence of a preionized plasma has been previously shown to allow for current sheet formation at lower discharge voltages and energies than those found in other pulsed inductive accelerator concepts, leading to greater accelerator efficiencies at lower power levels. Time-resolved magnetic probe measurements are obtained for different background pressures and pulse energies to characterize the effects of these parameters on current sheet formation. Indices are defined that describe time-resolved current sheet characteristics, such as the total current owing in the current sheet, the time-integrated total current ('strength'), and current sheet velocity. It is found that for a given electric field strength, maximums in total current, strength, and velocity occur for one particular background pressure. At other pressures, these current sheet indices are considerably smaller. The trends observed in these indices are explained in terms of the principles behind Townsend breakdown that lead to a dependence on the ratio of the electric field to the background pressure. Time-integrated photographic data are also obtained at the same experimental conditions, and qualitatively they compare quite favorably with the time-resolved magnetic field data.

  10. Laboratory or Field Tests for Evaluating Firefighters' Work Capacity?

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity. PMID:24614596

  11. PREDICTION OF GEOMAGNETIC STORM STRENGTH FROM INNER HELIOSPHERIC IN SITU OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubicka, M.; Möstl, C.; Amerstorfer, T.

    2016-12-20

    Prediction of the effects of coronal mass ejections (CMEs) on Earth strongly depends on knowledge of the interplanetary magnetic field southward component, B{sub z}. Predicting the strength and duration of B{sub z} inside a CME with sufficient accuracy is currently impossible, forming the so-called B{sub z} problem. Here, we provide a proof-of-concept of a new method for predicting the CME arrival time, speed, B{sub z}, and resulting disturbance storm time ( Dst ) index on Earth based only on magnetic field data, measured in situ in the inner heliosphere (<1 au). On 2012 June 12–16, three approximately Earthward-directed and interactingmore » CMEs were observed by the Solar Terrestrial Relations Observatory imagers and Venus Express (VEX) in situ at 0.72 au, 6° away from the Sun–Earth line. The CME kinematics are calculated using the drag-based and WSA–Enlil models, constrained by the arrival time at VEX , resulting in the CME arrival time and speed on Earth. The CME magnetic field strength is scaled with a power law from VEX to Wind . Our investigation shows promising results for the Dst forecast (predicted: −96 and −114 nT (from 2 Dst models); observed: −71 nT), for the arrival speed (predicted: 531 ± 23 km s{sup −1}; observed: 488 ± 30 km s{sup −1}), and for the timing (6 ± 1 hr after the actual arrival time). The prediction lead time is 21 hr. The method may be applied to vector magnetic field data from a spacecraft at an artificial Lagrange point between the Sun and Earth or to data taken by any spacecraft temporarily crossing the Sun–Earth line.« less

  12. Optical Boron Nitride Insulator Erosion Characterization of a 200 W Xenon Hall Thruster

    DTIC Science & Technology

    2005-05-01

    Hall thruster boron nitride insulator is evaluated as a diagnostic for real-time evaluation of thruster insulator erosion. Three Hall thruster plasma control variables are examined: ion energy (discharge potential), ion flux (propellant flow), and plasma conductivity (magnetic field strength). The boron emission, and hence the insulator erosion rate, varies linearly with ion energy and ion flux. A minimum erosion rate appears at intermediate magnetic field strengths. This may indicate that local plasma conductivity significantly affects the divergence

  13. Magnetism in the AM Herculis variable CW 1103+254

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, G.D.; Stockman, H.W.; Grandi, S.A.

    Time-resolved spectropolarimetry and spectrophotometry of the recently discovered magnetic binary CW 1103+254 reveal Zeeman-split Balmer polarization and absorption features corresponding to a mean photospheric field on the white dwarf primary of strength B = (19 +- 2) x 10/sup 6/ gauss. The orbital inclination i = 69/sup 0/ and latitude of the accreting magnetic pole ..delta.. = -56/sup 0/. With this perspective, we estimate the polar field strength B/sub p/ = (30 +- 5) x 10/sup 6/ gauss.

  14. 19F spin-lattice relaxation of perfluoropolyethers: Dependence on temperature and magnetic field strength (7.0-14.1 T)

    NASA Astrophysics Data System (ADS)

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W. M.; Ahrens, Eric T.

    2014-05-01

    Fluorine (19F) MRI of perfluorocarbon-labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated the R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323 K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed.

  15. 19F Spin-lattice Relaxation of Perfluoropolyethers: Dependence on Temperature and Magnetic Field Strength (7.0-14.1T)

    PubMed Central

    Kadayakkara, Deepak K.; Damodaran, Krishnan; Hitchens, T. Kevin; Bulte, Jeff W.M.; Ahrens, Eric T.

    2014-01-01

    Fluorine (19F) MRI of perfluorocarbon labeled cells has become a powerful technique to track the migration and accumulation of cells in living organisms. It is common to label cells for 19F MRI with nanoemulsions of perfluoropolyethers that contain a large number of chemically equivalent fluorine atoms. Understanding the mechanisms of 19F nuclear relaxation, and in particular the spin-lattice relaxation of these molecules, is critical to improving experimental sensitivity. To date, the temperature and magnetic field strength dependence of spin-lattice relaxation rate constant (R1) for perfluoropolyethers has not been described in detail. In this study, we evaluated R1 of linear perfluoropolyether (PFPE) and cyclic perfluoro-15-crown-5 ether (PCE) at three magnetic field strengths (7.0, 9.4, and 14.1 T) and at temperatures ranging from 256-323K. Our results show that R1 of perfluoropolyethers is dominated by dipole-dipole interactions and chemical shift anisotropy. R1 increased with magnetic field strength for both PCE and PFPE. In the temperature range studied, PCE was in the fast motion regime (ωτc < 1) at all field strengths, but for PFPE, R1 passed through a maximum, from which the rotational correlation time was estimated. The importance of these measurements for the rational design of new 19F MRI agents and methods is discussed. PMID:24594752

  16. Internal Wave Impact on the Performance of a Hypothetical Mine Hunting Sonar

    DTIC Science & Technology

    2014-10-01

    time steps) to simulate the propagation of the internal wave field through the mine field. Again the transmission loss and acoustic signal strength...dependent internal wave perturbed sound speed profile was evaluated by calculating the temporal variability of the signal excess (SE) of acoustic...internal wave perturbation of the sound speed profile, was calculated for a limited sound speed field time section. Acoustic signals were projected

  17. Evolution of hydromagnetic turbulence from the electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Kahniashvili, Tina; Mandal, Sayan; Pol, Alberto Roper; Tevzadze, Alexander G.; Vachaspati, Tanmay

    2017-12-01

    We present new simulations of decaying hydromagnetic turbulence for a relativistic equation of state relevant to the early Universe. We compare helical and nonhelical cases either with kinetically or magnetically dominated initial fields. Both kinetic and magnetic initial helicities lead to maximally helical magnetic fields after some time, but with different temporal decay laws. Both are relevant to the early Universe, although no mechanisms have yet been identified that produce magnetic helicity with strengths comparable to the big bang nucleosynthesis limit at scales comparable to the Hubble horizon at the electroweak phase transition. Nonhelical magnetically dominated fields could still produce picoGauss magnetic fields under most optimistic conditions. Only helical magnetic fields can potentially have nanoGauss strengths at scales up to 30 kpc today.

  18. Unitary limit of two-nucleon interactions in strong magnetic fields

    DOE PAGES

    Detmold, William; Orginos, Kostas; Parreño, Assumpta; ...

    2016-03-14

    In this study, two-nucleon systems are shown to exhibit large scattering lengths in strong magnetic fields at unphysical quark masses, and the trends toward the physical values indicate that such features may exist in nature. Lattice QCD calculations of the energies of one and two nucleons systems are performed at pion masses of m π ~ 450 and 806 MeV in uniform, time-independent magnetic fields of strength |B| ~ 10 19 – 10 20 Gauss to determine the response of these hadronic systems to large magnetic fields. Fields of this strength may exist inside magnetars and in peripheral relativistic heavymore » ion collisions, and the unitary behavior at large scattering lengths may have important consequences for these systems.« less

  19. Analysis of temporal decay of diffuse broadband sound fields in enclosures by decomposition in powers of an absorption parameter

    NASA Astrophysics Data System (ADS)

    Bliss, Donald; Franzoni, Linda; Rouse, Jerry; Manning, Ben

    2005-09-01

    An analysis method for time-dependent broadband diffuse sound fields in enclosures is described. Beginning with a formulation utilizing time-dependent broadband intensity boundary sources, the strength of these wall sources is expanded in a series in powers of an absorption parameter, thereby giving a separate boundary integral problem for each power. The temporal behavior is characterized by a Taylor expansion in the delay time for a source to influence an evaluation point. The lowest-order problem has a uniform interior field proportional to the reciprocal of the absorption parameter, as expected, and exhibits relatively slow exponential decay. The next-order problem gives a mean-square pressure distribution that is independent of the absorption parameter and is primarily responsible for the spatial variation of the reverberant field. This problem, which is driven by input sources and the lowest-order reverberant field, depends on source location and the spatial distribution of absorption. Additional problems proceed at integer powers of the absorption parameter, but are essentially higher-order corrections to the spatial variation. Temporal behavior is expressed in terms of an eigenvalue problem, with boundary source strength distributions expressed as eigenmodes. Solutions exhibit rapid short-time spatial redistribution followed by long-time decay of a predominant spatial mode.

  20. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required to...

  1. 47 CFR 90.671 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.671 Section 90.671... 896-901/935-940 Mhz Band § 90.671 Field strength limits. The predicted or measured field strength at... all bordering MTA licensees agree to a higher field strength. MTA licensees are also required to...

  2. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun

    NASA Astrophysics Data System (ADS)

    Amenomori, M.; Bi, X. J.; Chen, D.; Chen, T. L.; Chen, W. Y.; Cui, S. W.; Danzengluobu, Ding, L. K.; Feng, C. F.; Feng, Zhaoyang; Feng, Z. Y.; Gou, Q. B.; Guo, Y. Q.; He, H. H.; He, Z. T.; Hibino, K.; Hotta, N.; Hu, Haibing; Hu, H. B.; Huang, J.; Jia, H. Y.; Jiang, L.; Kajino, F.; Kasahara, K.; Katayose, Y.; Kato, C.; Kawata, K.; Kozai, M.; Labaciren, Le, G. M.; Li, A. F.; Li, H. J.; Li, W. J.; Liu, C.; Liu, J. S.; Liu, M. Y.; Lu, H.; Meng, X. R.; Miyazaki, T.; Mizutani, K.; Munakata, K.; Nakajima, T.; Nakamura, Y.; Nanjo, H.; Nishizawa, M.; Niwa, T.; Ohnishi, M.; Ohta, I.; Ozawa, S.; Qian, X. L.; Qu, X. B.; Saito, T.; Saito, T. Y.; Sakata, M.; Sako, T. K.; Shao, J.; Shibata, M.; Shiomi, A.; Shirai, T.; Sugimoto, H.; Takita, M.; Tan, Y. H.; Tateyama, N.; Torii, S.; Tsuchiya, H.; Udo, S.; Wang, H.; Wu, H. R.; Xue, L.; Yamamoto, Y.; Yamauchi, K.; Yang, Z.; Yuan, A. F.; Yuda, T.; Zhai, L. M.; Zhang, H. M.; Zhang, J. L.; Zhang, X. Y.; Zhang, Y.; Zhang, Yi; Zhang, Ying; Zhaxisangzhu, Zhou, X. X.; Tibet AS γ Collaboration

    2018-01-01

    We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54 ±0.21stat±0.20syst (1.62 ±0.15stat±0.22syst ) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

  3. Evaluation of the Interplanetary Magnetic Field Strength Using the Cosmic-Ray Shadow of the Sun.

    PubMed

    Amenomori, M; Bi, X J; Chen, D; Chen, T L; Chen, W Y; Cui, S W; Danzengluobu; Ding, L K; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, Y Q; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Kozai, M; Labaciren; Le, G M; Li, A F; Li, H J; Li, W J; Liu, C; Liu, J S; Liu, M Y; Lu, H; Meng, X R; Miyazaki, T; Mizutani, K; Munakata, K; Nakajima, T; Nakamura, Y; Nanjo, H; Nishizawa, M; Niwa, T; Ohnishi, M; Ohta, I; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yamauchi, K; Yang, Z; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu; Zhou, X X

    2018-01-19

    We analyze the Sun's shadow observed with the Tibet-III air shower array and find that the shadow's center deviates northward (southward) from the optical solar disk center in the "away" ("toward") interplanetary magnetic field (IMF) sector. By comparing with numerical simulations based on the solar magnetic field model, we find that the average IMF strength in the away (toward) sector is 1.54±0.21_{stat}±0.20_{syst} (1.62±0.15_{stat}±0.22_{syst}) times larger than the model prediction. These demonstrate that the observed Sun's shadow is a useful tool for the quantitative evaluation of the average solar magnetic field.

  4. Multi-site Study of Diffusion Metric Variability: Characterizing the Effects of Site, Vendor, Field Strength, and Echo Time using the Histogram Distance

    PubMed Central

    Helmer, K. G.; Chou, M-C.; Preciado, R. I.; Gimi, B.; Rollins, N. K.; Song, A.; Turner, J.; Mori, S.

    2016-01-01

    MRI-based multi-site trials now routinely include some form of diffusion-weighted imaging (DWI) in their protocol. These studies can include data originating from scanners built by different vendors, each with their own set of unique protocol restrictions, including restrictions on the number of available gradient directions, whether an externally-generated list of gradient directions can be used, and restrictions on the echo time (TE). One challenge of multi-site studies is to create a common imaging protocol that will result in a reliable and accurate set of diffusion metrics. The present study describes the effect of site, scanner vendor, field strength, and TE on two common metrics: the first moment of the diffusion tensor field (mean diffusivity, MD), and the fractional anisotropy (FA). We have shown in earlier work that ROI metrics and the mean of MD and FA histograms are not sufficiently sensitive for use in site characterization. Here we use the distance between whole brain histograms of FA and MD to investigate within- and between-site effects. We concluded that the variability of DTI metrics due to site, vendor, field strength, and echo time could influence the results in multi-center trials and that histogram distance is sensitive metrics for each of these variables. PMID:27350723

  5. Dynamical Origin of Highly Efficient Energy Dissipation in Soft Magnetic Nanoparticles for Magnetic Hyperthermia Applications

    NASA Astrophysics Data System (ADS)

    Kim, Min-Kwan; Sim, Jaegun; Lee, Jae-Hyeok; Kim, Miyoung; Kim, Sang-Koog

    2018-05-01

    We explore robust magnetization-dynamic behaviors in soft magnetic nanoparticles in single-domain states and find their related high-efficiency energy-dissipation mechanism using finite-element micromagnetic simulations. We also make analytical derivations that provide deeper physical insights into the magnetization dynamics associated with Gilbert damping parameters under applications of time-varying rotating magnetic fields of different strengths and frequencies and static magnetic fields. Furthermore, we find that the mass-specific energy-dissipation rate at resonance in the steady-state regime changes remarkably with the strength of rotating fields and static fields for given damping constants. The associated magnetization dynamics are well interpreted with the help of the numerical calculation of analytically derived explicit forms. The high-efficiency energy-loss power can be obtained using soft magnetic nanoparticles in the single-domain state by tuning the frequency of rotating fields to the resonance frequency; what is more, it is controllable via the rotating and static field strengths for a given intrinsic damping constant. We provide a better and more efficient means of achieving specific loss power that can be implemented in magnetic hyperthermia applications.

  6. Influence of a constant magnetic field on thrombocytes. [delay of blood coagulation time

    NASA Technical Reports Server (NTRS)

    Meyerova, Y. A.

    1974-01-01

    In an experiment on white mice it was found that a constant electromagnetic field with strength of 250-275 oersteds is biologically active at an exposure of 55 minutes. Qualitative and morphological changes in thrombocytes 1-3 days following exposure reduced their numbers, prolonged blood coagulation time and increased the number of leucocytes.

  7. MRI of the Musculoskeletal System: Advanced Applications using High and Ultrahigh Field MRI.

    PubMed

    Alizai, Hamza; Chang, Gregory; Regatte, Ravinder R

    2015-09-01

    In vivo MRI has revolutionized the diagnosis and treatment of musculoskeletal disorders over the past 3 decades. Traditionally performed at 1.5 T, MRI at higher field strengths offers several advantages over lower field strengths including increased signal-to-noise ratio, higher spatial resolution, improved spectral resolution for spectroscopy, improved sensitivity for X-nucleus imaging, and decreased image acquisition times. However, the physics of imaging at higher field strengths also presents technical challenges. These include B0 and B1+ field inhomogeneity, design and construction of dedicated radiofrequency (RF) coils for use at high field, increased chemical shift and susceptibility artifacts, increased RF energy deposition (specific absorption rate), increased metal artifacts, and changes in relaxation times compared with the lower field scanners. These challenges were overcome in optimizing high-field (HF) (3 T) MRI over a decade ago. HF MRI systems have since gained universal acceptance for clinical musculoskeletal imaging and have also been widely utilized for the study of musculoskeletal anatomy and physiology. Recently there has been an increasing interest in exploring musculoskeletal applications of ultrahigh field (UHF) (7 T) systems. However, technical challenges similar to those encountered when moving from 1.5 T to 3 T have to be overcome to optimize 7 T musculoskeletal imaging. In this narrative review, we discuss the many potential opportunities and technical challenges presented by the HF and UHF MRI systems. We highlight recent developments in in vivo imaging of musculoskeletal tissues that benefit most from HF imaging including cartilage, skeletal muscle, and bone. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. 60-Hz electric-field effects on pineal melatonin rhythms: time course for onset and recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B.W.; Chess, E.K.; Anderson, L.E.

    Rats exposed for 3 weeks to uniform 60-Hz electric fields of 39 kV/m (effective field strength) failed to show normal pineal gland circadian rhythms in serotonin N-acetyl transferase activity and melatonin concentrations. The time required for recovery of the melatonin rhythm after cessation of field exposure was determined to be less than 3 days. The rapid recovery suggests that the overall metabolic competence of the pineal is not permanently compromised by electric-field exposure, and that the circadian rhythm effect may be neuronally mediated.

  9. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    NASA Astrophysics Data System (ADS)

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-12-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.

  10. New developments in the field of high voltage and extra-high voltage cables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jocteur, R.

    1990-04-01

    In this paper, the author presents the developments in progress at the present time in France concerning the high voltage (HV) and extra-high voltage (EHV) cables with synthetic insulation and their accessories up to the 500 kV range. The authors have adopted a maximum operating field strength approaching 16 kV/mm (405 V/mil) for low density polyethylene (LDPE) insulated cables. The on-going studies should allow to bring the maximum operating field strength for crosslinked polyethylene (XLPE) insulation from 7 to 10 kV/mm (180 to 255 V/mil) and cables could be manufactured more economically with this material.

  11. Situational Strength Cues from Social Sources at Work: Relative Importance and Mediated Effects

    PubMed Central

    Alaybek, Balca; Dalal, Reeshad S.; Sheng, Zitong; Morris, Alexander G.; Tomassetti, Alan J.; Holland, Samantha J.

    2017-01-01

    Situational strength is considered one of the most important situational forces at work because it can attenuate the personality–performance relationship. Although organizational scholars have studied the consequences of situational strength, they have paid little attention to its antecedents. To address this gap, the current study focused on situational strength cues from different social sources as antecedents of overall situational strength at work. Specifically, we examined how employees combine situational strength cues emanating from three social sources (i.e., coworkers, the immediate supervisor, and top management). Based on field theory, we hypothesized that the effect of situational strength from coworkers and immediate supervisors (i.e., proximal sources of situational strength) on employees' perceptions of overall situational strength on the job would be greater than the effect of situational strength from the top management (i.e., the distal source of situational strength). We also hypothesized that the effect of situational strength from the distal source would be mediated by the effects of situational strength from the proximal sources. Data from 363 full-time employees were collected at two time points with a cross-lagged panel design. The former hypothesis was supported for one of the two situational strength facets studied. The latter hypothesis was fully supported. PMID:28928698

  12. Ordering dynamics of self-propelled particles in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Das, Rakesh; Mishra, Shradha; Puri, Sanjay

    2018-02-01

    Ordering dynamics of self-propelled particles in an inhomogeneous medium in two dimensions is studied. We write coarse-grained hydrodynamic equations of motion for density and polarisation fields in the presence of an external random disorder field, which is quenched in time. The strength of inhomogeneity is tuned from zero disorder (clean system) to large disorder. In the clean system, the polarisation field grows algebraically as LP ∼ t0.5 . The density field does not show clean power-law growth; however, it follows Lρ ∼ t0.8 approximately. In the inhomogeneous system, we find a disorder-dependent growth. For both the density and the polarisation, growth slows down with increasing strength of disorder. The polarisation shows a disorder-dependent power-law growth LP(t,Δ) ∼ t1/\\bar zP(Δ) for intermediate times. At late times, there is a crossover to logarithmic growth LP(t,Δ) ∼ (\\ln t)1/\\varphi , where φ is a disorder-independent exponent. Two-point correlation functions for the polarisation show dynamical scaling, but the density does not.

  13. First indication of the coherent unipolar diffraction radiation generated by relativistic electrons

    NASA Astrophysics Data System (ADS)

    Naumenko, G.; Shevelev, M.

    2018-05-01

    As is generally known, the integral of the electric field strength over all time for usual (bipolar) radiation is zero. The first demonstration of the possibility of unipolar radiation generation has been considered theoretically by Bessonov in 1981 [E.G. Bessonov, Zh. Eksp. Teor. Fiz. 80 (1981) 852]. According to this work, the unipolar radiation (or strange electromagnetic waves) is radiation for which the integral of the electric field strength over the entire duration of a pulse differs significantly from zero. Later, several theoretical papers devoted to this phenomenon have appeared in the literature, where authors investigated mainly synchrotron radiation. However, despite the critical interest, the experimental investigations ignored this effect. In this paper we present results of the first experimental investigation of the unipolar radiation generated by a relativistic electron beam. To detect the unipolar radiation the detector that is sensitive to the selected direction of the electric field strength has been elaborated and tested. We used a designed detector to observe the coherent backward diffraction radiation appearing when a bunched electron beam travels in the vicinity of a flat conductive target. The asymmetry of the electric field strength of the coherent backward diffraction radiation has been demonstrated.

  14. The Magnetic Binary GJ 65: A Test of Magnetic Diffusivity Effects

    NASA Astrophysics Data System (ADS)

    MacDonald, James; Mullan, D. J.; Dieterich, Sergio

    2018-06-01

    GJ 65 is an M dwarf binary system consisting of the two flare stars BL Cet (GJ 65A) and UV Cet (GJ 65B). Two teams of investigators have recently reported total magnetic fluxes corresponding to fields of 4.5 and 5.2 kG for GJ 65A and 5.8 and 6.7 kG for GJ 65B: for each component, the magnetic results obtained by the two teams agree with each other to within 1σ. For the first time, we can directly compare the predictions of our magneto-convective models, based on fitting observed stellar parameters, with measured field strengths. We find that our models agree with the observed field strengths, provided the effects of finite conductivity are accounted for. Thus, GJ 65 provides us with an opportunity to use observations of field strengths to distinguish between the predictions of our models that assume perfect electrical conductivity and those that allow for finite conductivity.

  15. Brownian motion of electrons in time-dependent magnetic fields.

    NASA Technical Reports Server (NTRS)

    Iverson, G. J.; Williams, R. M.

    1973-01-01

    The behavior of a weakly ionized plasma in slowly varying time-dependent magnetic fields is studied through an extension of Williamson's stochastic theory. In particular, attention is focused on the properties of electron diffusion in the plane perpendicular to the direction of the magnetic field, when the field strength is large. It is shown that, in the strong field limit, the classical 1/B-squared dependence of the perpendicular diffusion coefficient is obtained for two models in which the field B(t) is monotonic in t and for two models in which B(t) possesses at least one turning point.

  16. Enhancement of the Electrical Conductivity and Interlaminar Shear Strength of CNT/GFRP Hierarchical Composite Using an Electrophoretic Deposition Technique

    PubMed Central

    Haghbin, Amin; Liaghat, Gholamhossein; Arabi, Amir Masoud; Pol, Mohammad Hossein

    2017-01-01

    In this work, an electrophoretic deposition (EPD) technique has been used for deposition of carbon nanotubes (CNTs) on the surface of glass fiber textures (GTs) to increase the volume conductivity and the interlaminar shear strength (ILSS) of CNT/glass fiber-reinforced polymers (GFRPs) composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%. PMID:28937635

  17. The urban decline of the house sparrow (Passer domesticus): a possible link with electromagnetic radiation.

    PubMed

    Balmori, Alfonso; Hallberg, Orjan

    2007-01-01

    During recent decades, there has been a marked decline of the house sparrow (Passer domesticus) population in the United Kingdom and in several western European countries. The aims of this study were to determine whether the population is also declining in Spain and to evaluate the hypothesis that electromagnetic radiation (microwaves) from phone antennae is correlated with the decline in the sparrow population. Between October 2002 and May 2006, point transect sampling was performed at 30 points during 40 visits to Valladolid, Spain. At each point, we carried out counts of sparrows and measured the mean electric field strength (radiofrequencies and microwaves: 1 MHz-3 GHz range). Significant declines (P = 0.0037) were observed in the mean bird density over time, and significantly low bird density was observed in areas with high electric field strength. The logarithmic regression of the mean bird density vs. field strength groups (considering field strength in 0.1 V/m increments) was R = -0.87 (P = 0.0001). The results of this article support the hypothesis that electromagnetic signals are associated with the observed decline in the sparrow population. We conclude that electromagnetic pollution may be responsible, either by itself or in combination with other factors, for the observed decline of the species in European cities during recent years. The appearently strong dependence between bird density and field strength according to this work could be used for a more controlled study to test the hypothesis.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Yuyuan; Wang, Siqi; Wang, Rui

    The spin-orbit coupling strength of graphene can be enhanced by depositing iridium nanoclusters. Weak localization is intensely suppressed near zero fields after the cluster deposition, rather than changing to weak anti-localization. Fitting the magnetoresistance gives the spin relaxation time, which increases by two orders with the application of a back gate. The spin relaxation time is found to be proportional to the electronic elastic scattering time, demonstrating the Elliot–Yafet spin relaxation mechanism. A sizeable Kane–Mele-like coupling strength of over 5.5 meV is determined by extrapolating the temperature dependence to zero.

  19. Floquet topological polaritons in semiconductor microcavities

    NASA Astrophysics Data System (ADS)

    Ge, R.; Broer, W.; Liew, T. C. H.

    2018-05-01

    We propose and model Floquet topological polaritons in semiconductor microcavities, using the interference of frequency-detuned coherent fields to provide a time-periodic potential. For arbitrarily weak field strength, where the Floquet frequency is larger than the relevant bandwidth of the system, a Chern insulator is obtained. As the field strength is increased, a topological phase transition is observed with an unpaired Dirac cone proclaiming the anomalous Floquet topological insulator. As the relevant bandwidth increases even further, an exotic Chern insulator with flatband is observed with unpaired Dirac cone at the second critical point. Considering the polariton spin degree of freedom, we find that the choice of field polarization allows oppositely polarized polaritons to either copropagate or counterpropagate in chiral edge states.

  20. Two-dimensional simulation research of secondary electron emission avalanche discharge on vacuum insulator surface

    NASA Astrophysics Data System (ADS)

    Cai, Libing; Wang, Jianguo; Zhu, Xiangqin; Wang, Yue; Zhang, Dianhui

    2015-01-01

    Based on the secondary electron emission avalanche (SEEA) model, the SEEA discharge on the vacuum insulator surface is simulated by using a 2D PIC-MCC code developed by ourselves. The evolutions of the number of discharge electrons, insulator surface charge, current, and 2D particle distribution are obtained. The effects of the strength of the applied electric field, secondary electron yield coefficient, rise time of the pulse, length of the insulator on the discharge are investigated. The results show that the number of the SEEA electrons presents a quadratic dependence upon the applied field strength. The SEEA current, which is on the order of Ampere, is directly proportional to the field strength and secondary electron yield coefficient. Finally, the electron-stimulated outgassing is included in the simulation code, and a three-phase discharge curve is presented by the simulation, which agrees with the experimental data.

  1. [Objectivized evaluation of surgeons exposure to radiofrequency electromagnetic fields -- in the context of exposure duration and Polish and new international requirements regarding workers protection].

    PubMed

    Karpowicz, Jolanta; Gryz, Krzysztof; Leszko, Wieslaw; Zradziński, Patryk

    2013-01-01

    Use of electro surgery units (ESU) in surgeries is linked with electromagnetic field emission, which is assessed according to the requirements of occupational health and safety legislation. Surgeons' exposure characteristics was monitored during 11 surgeries (proctectomy, patency of artery, hepatectomy, cystectomy, tonsilectomy, laparoscopy) by real time of monopolar ESU activity recorder. Investigations of root-mean-square value of electric and magnetic field strength was also performed at various modes of ESU operations during cutting (output power, 55-150 W; frequency, 330-445 kHz) and coagulating (40-240 W, 335-770 kHz). Statistical parameters of distribution of ESU operation over any 6-min periods (according to international requirements regarding protection against adverse thermal effects of electromagnetic field) were assessed. Electric field strength, measured 10 cm from the cable supplying an active electrode was 147-675 V/m during cutting and 297-558 V/m during coagulating; magnetic field strength was less than 0.2 A/m in both modes. Monitoring of ESUs showed the following ranges of their operation during surgeries 5-66% of time over starting 3 min of surgery, 3-40% over starting 6 min, and the distribution of their use over any 6-min periods 0-12% (median) / 7-43% (maximum value). The real operation time of ESUs ing surgeries was significantly shorter than that declared by workers. The distance of at least 15 cm between cables, connecting electrodes with generator and workers meets the requirements of the Polish legislation on permissible exposure limits. The assessment of localized exposure of the hand needs a detailed analysis of the SAR ratio distribution and further studies are required.

  2. Contribution of Field Strength Gradients to the Net Vertical Current of Active Regions

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.

    2017-12-01

    We examined the contribution of field strength gradients for the degree of net vertical current (NVC) neutralization in active regions (ARs). We used photospheric vector magnetic field observations of AR 11158 obtained by Helioseismic and Magnetic Imager on board SDO and Hinode. The vertical component of the electric current is decomposed into twist and shear terms. The NVC exhibits systematic evolution owing to the presence of the sheared polarity inversion line between rotating and shearing magnetic regions. We found that the sign of shear current distribution is opposite in dominant pixels (60%–65%) to that of twist current distribution, and its time profile bears no systematic trend. This result indicates that the gradient of magnetic field strength contributes to an opposite signed, though smaller in magnitude, current to that contributed by the magnetic field direction in the vertical component of the current. Consequently, the net value of the shear current is negative in both polarity regions, which when added to the net twist current reduces the direct current value in the north (B z > 0) polarity, resulting in a higher degree of NVC neutralization. We conjecture that the observed opposite signs of shear and twist currents are an indication, according to Parker, that the direct volume currents of flux tubes are canceled by their return currents, which are contributed by field strength gradients. Furthermore, with the increase of spatial resolution, we found higher values of twist, shear current distributions. However, the resolution effect is more useful in resolving the field strength gradients, and therefore suggests more contribution from shear current for the degree of NVC neutralization.

  3. Upper body push and pull strength ratio in recreationally active adults.

    PubMed

    Negrete, Rodney J; Hanney, William J; Pabian, Patrick; Kolber, Morey J

    2013-04-01

    Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18-45 years) performed two tests of upper body strength in random order: 1. Push-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull-ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. The push-up to modified pull-up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body "pushing" musculature is approximately 1.5-2.7 times stronger than the musculature involved for pulling. In this study, these recreationally active adults displayed greater strength during the timed push-ups than the modified pull-ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. 2b.

  4. UPPER BODY PUSH AND PULL STRENGTH RATIO IN RECREATIONALLY ACTIVE ADULTS

    PubMed Central

    Hanney, William J.; Pabian, Patrick; Kolber, Morey J.

    2013-01-01

    Introduction: Agonist to antagonist strength data is commonly analyzed due to its association with injury and performance. The purpose of this study was to examine the agonist to antagonist ratio of upper body strength using two simple field tests (timed push up/timed modified pull up) in recreationally active adults and to establish the basis for reference standards. Methods: One hundred eighty (180) healthy recreationally active adults (111 females and 69 males, aged 18‐45 years) performed two tests of upper body strength in random order: 1. Push‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set and 2. Modified pull‐ups completed during 3 sets of 15 seconds with a 45 second rest period between each set. Results: The push‐up to modified pull‐up ratio for the males was 1.57:1, whereas females demonstrated a ratio of 2.72:1. The results suggest that for our group of healthy recreationally active subjects, the upper body “pushing” musculature is approximately 1.5–2.7 times stronger than the musculature involved for pulling. Conclusions: In this study, these recreationally active adults displayed greater strength during the timed push‐ups than the modified pull‐ups. The relationship of these imbalances to one's performance and or injury risk requires further investigation. The reference values, however, may serve the basis for future comparison and prospective investigations. The field tests in this study can be easily implemented by clinicians and an agonist/antagonist ratio can be determined and compared to our findings. Level of Evidence: 2b PMID:23593552

  5. The effect of the geomagnetic field on negative voltage spheres in the ionospheric plasma: Fluid simulation

    NASA Astrophysics Data System (ADS)

    Ma, T.-Z.; Schunk, R. W.

    1994-07-01

    Experiments involving the interaction of spherical conducting objects biases with hight voltages in the Low-Earth-Orbit (LEO) environment have been conducted and designed. In these experiments, both positive and negative voltages have been applied to the spheres. Previously, there have been theoretical and numerical studies of positive voltage spheres in plasmas with and without magnetic fields. There also have been studies of negative voltage objects in unmagnetized plasmas. Here, we used a fluid model to study the plasma response to a negative voltage sphere immersed in a magnetized plasma. Our main purpose was to investigate the role of the magnetic field during the early-time interaction between the negative voltage sphere and the ambient plasma in the LEO environment. In this study, different applied voltages, magnetic field strengths, and rise-times of the applied voltages were considered. It was found that with the strength of the geomagnetic field the ions are basically not affected by the magnetic field on the time scale of hundreds of plasma periods considered in this study. The ion density distribution around the sphere and the collected ion flux by the sphere are basically the same as in the case without the magnetic field. The electron motion is strongly affected by the magnetic field. One effect is to change the nature of the electron over-shoot oscillation from regular to somewhat turbulent. Although the electrons move along the magnetic field much more easily than across the magnetic field, some redirection effect causes the electron density to distribute as if the magnetic field effect is minimal. The sheath struture and the electric field around the sphere tend to be spherical. A finite rise-time of the applied voltage reduces the oscillatory activities and delays the ion acceleration. However, the effect of the rise-time depends on both the duration of the rise-time and the ion plasma period.

  6. A field like today's? The strength of the geomagnetic field 1.1 billion years ago

    NASA Astrophysics Data System (ADS)

    Sprain, Courtney J.; Swanson-Hysell, Nicholas L.; Fairchild, Luke M.; Gaastra, Kevin

    2018-06-01

    Palaeomagnetic data from ancient rocks are one of the few types of observational data that can be brought to bear on the long-term evolution of Earth's core. A recent compilation of palaeointensity estimates from throughout Earth history has been interpreted to indicate that Earth's magnetic field strength increased in the Mesoproterozoic (between 1.5 and 1.0 billion years ago), with this increase taken to mark the onset of inner core nucleation. However, much of the data within the Precambrian palaeointensity database are from Thellier-style experiments with non-ideal behaviour that manifests in results such as double-slope Arai plots. Choices made when interpreting these data may significantly change conclusions about long-term trends in the intensity of Earth's geomagnetic field. In this study, we present new palaeointensity results from volcanics of the ˜1.1-billion-year-old North American Midcontinent Rift. While most of the results exhibit non-ideal double-slope or sagging behaviour in Arai plots, some flows have more ideal single-slope behaviour leading to palaeointensity estimates that may be some of the best constraints on the strength of Earth's field for this time. Taken together, new and previously published palaeointensity data from the Midcontinent Rift yield a median field strength estimate of 56.0 ZAm2—very similar to the median for the past 300 Myr. These field strength estimates are distinctly higher than those for the preceding billion years (Ga) after excluding ca. 1.3 Ga data that may be biased by non-ideal behaviour—consistent with an increase in field strength in the late Mesoproterozoic. However, given that ˜90 per cent of palaeointensity estimates from 1.1 to 0.5 Ga come from the Midcontinent Rift, it is difficult to evaluate whether these high values relative to those estimated for the preceding billion years are the result of a stepwise, sustained increase in dipole moment. Regardless, palaeointensity estimates from the Midcontinent Rift indicate that the surface expression of Earth's geomagnetic field at ˜1.1 Ga may have been similar to that on the present-day Earth.

  7. A field like today's? The strength of the geomagnetic field 1.1 billion years ago

    NASA Astrophysics Data System (ADS)

    Sprain, Courtney J.; Swanson-Hysell, Nicholas L.; Fairchild, Luke M.; Gaastra, Kevin

    2018-02-01

    Paleomagnetic data from ancient rocks are one of the few types of observational data that can be brought to be bear on the long-term evolution of Earth's core. A recent compilation of paleointensity estimates from throughout Earth history has been interpreted to indicate that Earth's magnetic field strength increased in the Mesoproterozoic (between 1.5 and 1.0 billion years ago), with this increase taken to mark the onset of inner core nucleation. However, much of the data within the Precambrian paleointensity database are from Thellier-style experiments with non-ideal behavior that manifests in results such as double-slope Arai plots. Choices made when interpreting these data may significantly change conclusions about long-term trends in the intensity of Earth's geomagnetic field. In this study, we present new paleointensity results from volcanics of the ˜1.1 billion-year-old North American Midcontinent Rift. While most of the results exhibit non-ideal double-slope or sagging behavior in Arai plots, some flows have more ideal single-slope behavior leading to paleointensity estimates that may be some of the best constraints on the strength of Earth's field for this time. Taken together, new and previously published paleointensity data from the Midcontinent Rift yield a median field strength estimate of 56.0 ZAm2—very similar to the median for the past 300 million years. These field strength estimates are distinctly higher than those for the preceding billion years after excluding ca. 1.3 Ga data that may be biased by non-ideal behavior—consistent with an increase in field strength in the late Mesoproterozoic. However, given that ˜90 per cent of paleointensity estimates from 1.1 to 0.5 Ga come from the Midcontinent Rift, it is difficult to evaluate whether these high values relative to those estimated for the preceding billion years are the result of a stepwise, sustained increase in dipole moment. Regardless, paleointensity estimates from the Midcontinent Rift indicate that the surface expression of Earth's geomagnetic field at ˜1.1 Ga may have been similar to that on the present-day Earth.

  8. A deep dynamo generating Mercury's magnetic field.

    PubMed

    Christensen, Ulrich R

    2006-12-21

    Mercury has a global magnetic field of internal origin and it is thought that a dynamo operating in the fluid part of Mercury's large iron core is the most probable cause. However, the low intensity of Mercury's magnetic field--about 1% the strength of the Earth's field--cannot be reconciled with an Earth-like dynamo. With the common assumption that Coriolis and Lorentz forces balance in planetary dynamos, a field thirty times stronger is expected. Here I present a numerical model of a dynamo driven by thermo-compositional convection associated with inner core solidification. The thermal gradient at the core-mantle boundary is subadiabatic, and hence the outer region of the liquid core is stably stratified with the dynamo operating only at depth, where a strong field is generated. Because of the planet's slow rotation the resulting magnetic field is dominated by small-scale components that fluctuate rapidly with time. The dynamo field diffuses through the stable conducting region, where rapidly varying parts are strongly attenuated by the skin effect, while the slowly varying dipole and quadrupole components pass to some degree. The model explains the observed structure and strength of Mercury's surface magnetic field and makes predictions that are testable with space missions both presently flying and planned.

  9. Hg-201 (+) CO-Magnetometer for HG-199(+) Trapped Ion Space Atomic Clocks

    NASA Technical Reports Server (NTRS)

    Burt, Eric A. (Inventor); Taghavi, Shervin (Inventor); Tjoelker, Robert L. (Inventor)

    2011-01-01

    Local magnetic field strength in a trapped ion atomic clock is measured in real time, with high accuracy and without degrading clock performance, and the measurement is used to compensate for ambient magnetic field perturbations. First and second isotopes of an element are co-located within the linear ion trap. The first isotope has a resonant microwave transition between two hyperfine energy states, and the second isotope has a resonant Zeeman transition. Optical sources emit ultraviolet light that optically pump both isotopes. A microwave radiation source simultaneously emits microwave fields resonant with the first isotope's clock transition and the second isotope's Zeeman transition, and an optical detector measures the fluorescence from optically pumping both isotopes. The second isotope's Zeeman transition provides the measure of magnetic field strength, and the measurement is used to compensate the first isotope's clock transition or to adjust the applied C-field to reduce the effects of ambient magnetic field perturbations.

  10. Dielectrophoresis of Cells

    PubMed Central

    Pohl, Herbert A.; Crane, Joe S.

    1971-01-01

    Dielectrophoresis, the motion produced by the action of nonuniform electric field upon a neutral object, is shown to be a simple and useful technique for the study of cellular organisms. In the present study of yeast (Saccharomyces cerevisiae) using a simple pin-pin electrode system of platinum and high-frequency alternating fields, one observes that the collectability of cells at the electrode tip, i.e. at the region of highest field strength, depends upon physical parameters such as field strength, field uniformity, frequency, cell concentration, suspension conductivity, and time of collection. The yield of cells collected is also observed to depend upon biological factors such as colony age, thermal treatment of the cells, and chemical poisons, but not upon irradiation with ultraviolet light. Several interesting side effect phenomena coincident with nonuniform electric field conditions were observed, including stirring (related to “jet” effects at localized electrode sites), discontinuous repulsions, and cellular rotation which was found to be frequency dependent. ImagesFIGURE 2 PMID:5132497

  11. 47 CFR 73.153 - Field strength measurements in support of applications or evidence at hearings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength measurements in support of... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.153 Field strength..., groundwave field strength measurements will take precedence over theoretical values, provided such...

  12. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...

  13. 47 CFR 73.153 - Field strength measurements in support of applications or evidence at hearings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Field strength measurements in support of... (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.153 Field strength..., groundwave field strength measurements will take precedence over theoretical values, provided such...

  14. 47 CFR 73.311 - Field strength contours.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Field strength contours. 73.311 Section 73.311... Broadcast Stations § 73.311 Field strength contours. (a) Applications for FM broadcast authorizations must show the field strength contours required by FCC Form 301 or FCC Form 340, as appropriate. (b) The...

  15. Apparatus and method for magnetically processing a specimen

    DOEpatents

    Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

    2013-09-03

    An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

  16. Magnetic field evolution in white dwarfs: The hall effect and complexity of the field

    NASA Technical Reports Server (NTRS)

    Muslimov, A. G.; Van Horn, H. M.; Wood, M. A.

    1995-01-01

    We calculate the evolution of the magnetic fields in white dwarfs, taking into account the Hall effect. Because this effect depends nonlinearly upon the magnetic field strength B, the time dependences of the various multipole field components are coupled. The evolution of the field is thus significantly more complicated than has been indicated by previous investigations. Our calculations employ recent white dwarf evolutionary sequences computed for stars with masses 0.4, 0.6, 0.8, and 1.0 solar mass. We show that in the presence of a strong (up to approximately 10(exp 9) G) internal toroidal magnetic field; the evolution of even the lowest order poloidal modes can be substantially changed by the Hall effect. As an example, we compute the evolution of an initially weak quadrupole component, which we take arbitrarily to be approximately 0.1%-1% of the strength of a dominant dipole field. We find that coupling provided by the Hall effect can produce growth of the ratio of the quadrupole to the dipole component of the surface value of the magnetic field strength by more than a factor of 10 over the 10(exp 9) to 10(exp 10) year cooling lifetime of the white dwarf. Some consequences of these results for the process of magnetic-field evolution in white dwarfs are briefly discussed.

  17. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  18. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  19. Effect of etching time and resin bond on the flexural strength of IPS e.max Press glass ceramic.

    PubMed

    Xiaoping, Luo; Dongfeng, Ren; Silikas, Nick

    2014-12-01

    To evaluate the effect of hydrofluoric acid (HFA) etching time and resin cement bond on the flexural strength of IPS e.max(®) Press glass ceramic. Two hundred and ten bars, 25mm×3mm×2mm, were made from IPS e.max(®) Press ingots through lost-wax, hot-pressed ceramic fabrication technology and randomly divided into five groups with forty-two per group after polishing. The ceramic surfaces of different groups were etched by 9.5% hydrofluoric acid gel for 0, 20, 40, 60 and 120s respectively. Two specimens of each group were selected randomly to examine the surface roughness and 3-dimensional topography with atomic force microscope (AFM), and microstructure was analyzed by the field emission scanning electron microscope (FE-SEM). Then each group were subdivided into two subgroups (n=20). One subgroup of this material was selected to receive a thin (approximately 0.1mm) layer of resin luting agent (Variolink N) whereas the other subgroup remained unaltered. Half of subgroup's specimens were thermocycled 10,000 times before a 3-point bending test in order to determine the flexural strength. Interface between resin cement and ceramic was examined with field emission scanning electronic microscope. Roughness values increased with increasing etching time. The mean flexural strength values of group 0s, 20s, 40s, 60s and 120s were 384±33, 347±43, 330±53, 327±67 and 317±41MPa respectively. Increasing HF etching times reduced the mean flexural strength (p<0.05). However, the mean flexural strength of each group, except group 0s, increased significantly to 420±31, 435±50, 400±39 and 412±58MPa after the application of dual-curing resin cement. In the present investigation, no significant differences after thermocycling on the flexural strengths were evident. Overtime HF etching could have a wakening effect on IPS e.max(®) Press glass ceramic, but resin cement bonding to appropriately etched surface would strengthen the dental ceramic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. 47 CFR 73.314 - Field strength measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...

  1. 47 CFR 73.314 - Field strength measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...

  2. 47 CFR 73.314 - Field strength measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...

  3. 47 CFR 73.314 - Field strength measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., such as topography, height and types of vegetation, buildings, obstacles, weather, and other local... the approximate time of measurement, weather, topography, overhead wiring, heights and types of...

  4. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for EA...

  5. 47 CFR 90.689 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits. 90.689 Section 90.689...-824/851-869 Mhz Band § 90.689 Field strength limits. (a) For purposes of implementing §§ 90.689... or measured field strength at any location on the border of the EA-based service area for EA...

  6. The Effects of Magnetic Exposure on the Nervous System: A study on the effects of low-strength low-frequency magnetic fields on neurotransmitter exocytosis and cell viability through ionic cyclotron resonance frequency

    NASA Astrophysics Data System (ADS)

    Saveriades, George

    This PhD dissertation focuses on the study of the effects of magnetic exposure on biological systems using amperometry techniques and viability assays. In our prior work based on the cyclotron resonance model, chromaffin cells in physiological saline and Ca2+-free media were exposed for 5 minutes to a 2.7 muT magnetic field, with frequency sweeps going from 30-60 Hz (targeting several ions involved in exocytosis) and 44-48 Hz (targeting specifically Ca2+ ions), with noticeable effects on exocytosis. The present study extended the work on chromaffin cells by covering frequency sweeps for different ions, manipulating the time of exposure and the strength of the magnetic field. Furthermore, amperometry was conducted on acute coronal brain slices, to demonstrate that the recorded effects could be measured on neuronal tissue. The viability of chromaffin cells and primary neuronal cultures exposed to magnetic fields was also addressed. The results demonstrate that cellular exocytosis is sensitive to the frequency of the magnetic field it is exposed to, the strength of the magnetic field and the duration of exposure. No significant effects were established with regards to the viability of the cells exposed to magnetic fields.

  7. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution

    PubMed Central

    Gross, Simon; Barmet, Christoph; Dietrich, Benjamin E.; Brunner, David O.; Schmid, Thomas; Pruessmann, Klaas P.

    2016-01-01

    High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10−12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets. PMID:27910860

  8. Asymptotic expansion of pair production probability in a time-dependent electric field

    NASA Astrophysics Data System (ADS)

    Arai, Takashi

    2015-12-01

    We study particle creation in a single pulse of an electric field in scalar quantum electrodynamics. We investigate the parameter condition for the case where the dynamical pair creation and Schwinger mechanism respectively dominate. Then, an asymptotic expansion for the particle distribution in terms of the time interval of the applied electric field is derived. We compare our result with particle creation in a constant electric field with a finite-time interval. These results coincide in an extremely strong field, however they differ in general field strength. We interpret the reason of this difference as a nonperturbative effect of high-frequency photons in external electric fields. Moreover, we find that the next-to-leading-order term in our asymptotic expansion coincides with the derivative expansion of the effective action.

  9. The source of marine magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Harrison, Christopher G. A.

    1987-01-01

    The Vine-Matthews hypothesis (1963) is examined. This hypothesis suggests that oceanic rocks become polarized in the direction of the magnetic field at the time of their formation, thus recording the polarity history of the earth's magnetic field. This produces the lineated magnetic anomalies on either side of the midoceanic ridge crests. The strength of these magnetic anomalies is studied to determine the strength of magnetization. Indirect determinations of the magnetization intensity of the oceanic crust and direct observations of the oceanic crust are compared. It is found that the average magnetization of a 6-km thick oceanic crust is 1.18 A/m.

  10. Trapping and breaking of in vivo nicked DNA during pulsed-field gel electrophoresis

    PubMed Central

    Khan, Sharik R.; Kuzminov, Andrei

    2013-01-01

    Pulsed field gel electrophoresis (PFGE) offers a high-resolution approach to quantify chromosomal fragmentation in bacteria, measured as percent of chromosomal DNA entering the gel. The degree of separation in PFG depends upon the size of DNA, as well as various conditions of electrophoresis, such as electric field strength (FS), time of electrophoresis, switch time and buffer composition. Here we describe a new parameter, the structural integrity of the sample DNA itself, that influences its migration through PFGs. We show that sub-chromosomal fragments containing both spontaneous and DNA damage-induced nicks are prone to breakage during PFGE. Such breakage at single strand interruptions results in artefactual decrease in molecular weight of linear DNA making accurate determination of the number of double strand breaks difficult. While breakage of nicked sub-chromosomal fragments is FS-independent, some high molecular weight sub-chromosomal fragments are also trapped within wells under the standard PFGE conditions. This trapping can be minimized by lowering the field strength and increasing the time of electrophoresis. We discuss how breakage of nicked DNA may be mechanistically linked to trapping. Our results suggest how to optimize conditions for PFGE when quantifying chromosomal fragmentation induced by DNA damage. PMID:23770235

  11. Correlation of Coronal Plasma Properties and Solar Magnetic Field in a Decaying Active Region

    NASA Technical Reports Server (NTRS)

    Ko, Yuan-Kuen; Young, Peter R.; Muglach, Karin; Warren, Harry P.; Ugarte-Urra, Ignacio

    2016-01-01

    We present the analysis of a decaying active region observed by the EUV Imaging Spectrometer on Hinode during 2009 December 7-11. We investigated the temporal evolution of its structure exhibited by plasma at temperatures from 300,000 to 2.8 million degrees, and derived the electron density, differential emission measure, effective electron temperature, and elemental abundance ratios of Si/S and Fe/S (as a measure of the First Ionization Potential (FIP) Effect). We compared these coronal properties to the temporal evolution of the photospheric magnetic field strength obtained from the Solar and Heliospheric Observatory Michelson Doppler Imager magnetograms. We find that, while these coronal properties all decreased with time during this decay phase, the largest change was at plasma above 1.5 million degrees. The photospheric magnetic field strength also decreased with time but mainly for field strengths lower than about 70 Gauss. The effective electron temperature and the FIP bias seem to reach a basal state (at 1.5 x 10(exp 6) K and 1.5, respectively) into the quiet Sun when the mean photospheric magnetic field (excluding all areas <10 G) weakened to below 35 G, while the electron density continued to decrease with the weakening field. These physical properties are all positively correlated with each other and the correlation is the strongest in the high-temperature plasma. Such correlation properties should be considered in the quest for our understanding of how the corona is heated. The variations in the elemental abundance should especially be considered together with the electron temperature and density.

  12. Electrostatically Induced Carbon Nanotube Alignment for Polymer Composite Applications

    NASA Astrophysics Data System (ADS)

    Chapkin, Wesley Aaron

    We have developed a non-invasive technique utilizing polarized Raman spectroscopy to measure changes in carbon nanotube (CNT) alignment in situ and in real time in a polymer matrix. With this technique, we have confirmed the prediction of faster alignment for CNTs in higher electric fields. Real-time polarized Raman spectroscopy also allows us to demonstrate the loss of CNT alignment that occurs after the electric field is removed, which reveals the need for fast polymerization steps or the continued application of the aligning force during polymerization to lock in CNT alignment. Through a study on the effect of polymer viscosity on the rate of CNT alignment, we have determined that shear viscosity serves as the controlling mechanism for CNT rotation. This finding matches literature modeling of rigid rod mobility in a polymer melt and demonstrates that the rotational mobility of CNTs can be explained by a continuum model even though the diameters of single-walled CNTs are 1-2 nm. The viscosity dependence indicates that the manipulation of temperature (and indirectly viscosity) will have a direct effect on the rate of CNT alignment, which could prove useful in expediting the manufacturing of CNT-reinforced composites cured at elevated temperatures. Using real-time polarized Raman spectroscopy, we also demonstrate that electric fields of various strengths lead not only to different speeds of CNT rotation but also to different degrees of alignment. We hypothesize that this difference in achievable alignment results from discrete populations of nanotubes based on their length. The results are then explained by balancing the alignment energy for a given electric field strength with the randomizing thermal energy of the system. By studying the alignment dynamics of different CNT length distributions, we show that different degrees of alignment achieved as a function of the applied electric field strength are directly related to the square of the nanotube length. This finding matches an electrostatic potential energy model for CNT rotation. Lastly, we investigate the effects of conductive carbon fibers on electrostatically induced alignment of CNTs within carbon fiber composites. The relative electric field strength throughout the composite is modeled using COMSOL Multiphysics. We show the ability to generate enhanced electric field gradients within the gaps between carbon fibers for various fiber orientations. Using polarized Raman spectroscopy, increased levels of CNT alignment are observed between carbon fiber tows, which is consistent with the modeled higher electric field strengths in these regions. These findings could potentially lead to the development of carbon fiber composites with CNT additions that selectively enhance the composite properties outside the carbon fiber interphase in the neat epoxy.

  13. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Field strength limits for EA-licensed LMS... § 90.359 Field strength limits for EA-licensed LMS systems. EA-licensed multilateration systems shall limit the field strength of signals transmitted from their base stations to 47 dBuV/m at their EA...

  14. Development of 3-dimensional compact magnetic dosimeter for environmental magnetic field monitoring

    NASA Astrophysics Data System (ADS)

    Kubota, Yusuke; Obayashi, Haruo; Miyahara, Akira; Ohno, Kazuko; Nakamura, Kouichi; Horii, Kenzi

    1991-07-01

    A computer-driven, three-dimensional magnetic fluxmeter to be used for magnetic field dosimetry has been developed. A magnetic monitor applicable to this object should be measurable to an absolute value of local magnetic field strength and also be able to record its time integration as a measure of exposed dose to the magnetic field. The present fluxmeter consists of signal amplifiers, rectifiers, an A/D converter, and a pocket computer (PC). The signal outputs from the sensors are processed with the PC to compose an absolute strength of magnetic flux density and its time-integrated value. The whole system is driven by a battery and is quite compact in size to be used as a handy portable system. Further details of the design, idea, construction, specification, and testing result of the fluxmeter are described. The measurable range are from 0.4G to 20,000G in normal mode and 8mG to 400G in high-sensitivity AC mode, and the sensitivity is well independent of the magnetic field direction. These measured data are displayed in real time on the LCD panel of the PC and memorized in RAM files. Possible application of the fluxmeter is discussed with special attention to the search of the leakage and/or disturbing error fields around LHD (Large Helical Device) and other magnetic systems, the individual dose control to the workers in strong magnetic fields, and the evaluation of the effects of long irradiation of magnetic fields.

  15. Coronal heating by stochastic magnetic pumping

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Uchida, Y.

    1980-01-01

    Recent observational data cast serious doubt on the widely held view that the Sun's corona is heated by traveling waves (acoustic or magnetohydrodynamic). It is proposed that the energy responsible for heating the corona is derived from the free energy of the coronal magnetic field derived from motion of the 'feet' of magnetic field lines in the photosphere. Stochastic motion of the feet of magnetic field lines leads, on the average, to a linear increase of magnetic free energy with time. This rate of energy input is calculated for a simple model of a single thin flux tube. The model appears to agree well with observational data if the magnetic flux originates in small regions of high magnetic field strength. On combining this energy input with estimates of energy loss by radiation and of energy redistribution by thermal conduction, we obtain scaling laws for density and temperature in terms of length and coronal magnetic field strength.

  16. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  17. Time-dependent performance of soil mix technology stabilized/solidified contaminated site soils.

    PubMed

    Wang, Fei; Wang, Hailing; Al-Tabbaa, Abir

    2015-04-09

    This paper presents the strength and leaching performance of stabilized/solidified organic and inorganic contaminated site soil as a function of time and the effectiveness of modified clays applied in this project. Field trials of deep soil mixing application of stabilization/solidification (S/S) were performed at a site in Castleford in 2011. A number of binders and addictives were applied in this project including Portland cement (PC), ground granulated blastfurnace slag (GGBS), pulverised fuel ash (PFA), MgO and modified clays. Field trial samples were subjected to unconfined compressive strength (UCS), BS CN 12457 batch leaching test and the extraction of total organics at 28 days and 1.5 years after treatment. The results of UCS test show that the average strength values of mixes increased from 0-3250 kPa at 28 days to 250-4250 kPa at 1.5 years curing time. The BS EN 12457 leachate concentrations of all metals were well below their drinking water standard, except Ni in some mixes exceed its drinking water standard at 0.02 mg/l, suggesting that due to varied nature of binders, not all of them have the same efficiency in treating contaminated soil. The average leachate concentrations of total organics were in the range of 20-160 mg/l at 28 days after treatment and reduced to 18-140 mg/l at 1.5 years. In addition, organo clay (OC)/inorgano-organo clay (IOC) slurries used in this field trial were found to have a negative effect on the strength development, but were very effective in immobilizing heavy metals. The study also illustrates that the surfactants used to modify bentonite in this field trail were not suitable for the major organic pollutants exist in the site soil in this project. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Spindle disturbances in human-hamster hybrid (AL) cells induced by mobile communication frequency range signals.

    PubMed

    Schrader, Thorsten; Münter, Klaus; Kleine-Ostmann, Thomas; Schmid, Ernst

    2008-12-01

    The production of spindle disturbances in FC2 cells, a human-hamster hybrid (A(L)) cell line, by non-ionizing radiation was studied using an electromagnetic field with a field strength of 90 V/m at a frequency of 835 MHz. Due to the given experimental conditions slide flask cultures were exposed at room temperature in a microTEM (transversal electromagnetic field) cell, which allows optimal experimental conditions for small samples of biological material. Numerical calculations suggest that specific absorption rates of up to 60 mW/kg are reached for maximum field exposure. All exposure field parameters--either measured or calculable--are precisely defined and, for the first time, traceable to the standards of the SI system of physical units. Compared with co-incident negative controls, the results of two independently performed experiments suggest that exposure periods of time from 0.5 to 2 h with an electric field strength of 90 V/m are spindle acting agents as predominately indicated by the appearance of spindle disturbances at the ana- and telophase stages (especially lagging and non-disjunction of single chromosomes) of cell divisions. The spindle disturbances do not change the fraction of mitotic cells with increasing exposure time up to 2 h. Due to the applied experimental conditions an influence of temperature as a confounder parameter for spindle disturbances can be excluded.

  19. Power-law Magnetic Field Decay and Constant Core Temperatures of Magnetars, Normal and Millisecond Pulsars

    NASA Astrophysics Data System (ADS)

    Xie, Y.; Zhang, S.

    2011-12-01

    The observed correlations, between the characteristic ages and dipole surface magnetic field strengths of all pulsars, can be well explained by magnetic field decay with core temperatures of 2×108 K, ˜2×107 K, and ˜105 K, for magnetars, normal radio pulsars, and millisecond pulsars, respectively; assuming that their characteristic ages are about two orders of magnitude larger than their true ages, the required core temperatures may be reduced by about a factor of 10. The magnetic decay follows a power-law and is dominated by the solenoidal component of the ambipolar diffusion mode. In this model, all NSs are assumed to have the same initial magnetic field strength, but different core temperature which does not change as the magnetic field decays. This suggests that the key distinguishing property between magnetars and normal pulsars is that magnetars were born much hotter than normal pulsars, and thus have much longer magnetic field decay time scales, resulting in higher surface magnetic field strength even with the same ages of normal pulsars. The above conclusion agrees well with the observed correlations between the surface temperatures of magnetars and other young NSs, which do not agree with the cooling dominated evolution of neutron stars. This suggests a possible scenario that heating, perhaps due to magnetic field decay, balances neutron star cooling for observed pulsars.

  20. Electromagnetic field strength prediction in an urban environment: A useful tool for the planning of LMSS

    NASA Technical Reports Server (NTRS)

    Vandooren, G. A. J.; Herben, M. H. A. J.; Brussaard, G.; Sforza, M.; Poiaresbaptista, J. P. V.

    1993-01-01

    A model for the prediction of the electromagnetic field strength in an urban environment is presented. The ray model, that is based on the Uniform Theory of Diffraction (UTD), includes effects of the non-perfect conductivity of the obstacles and their surface roughness. The urban environment is transformed into a list of standardized obstacles that have various shapes and material properties. The model is capable of accurately predicting the field strength in the urban environment by calculating different types of wave contributions such as reflected, edge and corner diffracted waves, and combinations thereof. Also, antenna weight functions are introduced to simulate the spatial filtering by the mobile antenna. Communication channel parameters such as signal fading, time delay profiles, Doppler shifts and delay-Doppler spectra can be derived from the ray-tracing procedure using post-processing routines. The model has been tested against results from scaled measurements at 50 GHz and proves to be accurate.

  1. Quasi-elastic light scattering of carnauba wax in the liquid phase: dynamics 2.

    PubMed

    de Almeida, F J; Barbosa, G A

    1983-12-01

    Quasi-elastic light scattering of carnauba wax in the liquid phase is obtained in a heterodyne setup, and dynamic processes are analyzed through electrophoresis. Nonspherical polar clusters are found, containing a net electrical charge. An applied square-wave electric field induces drift and rotation of these clusters.These effects are dependent on strength and frequency of the applied electric field. At 373 K and in the low frequency limit the local electric field strength is approximately 70 times the strength of the applied one. This enhancement is believed to be caused by collective orientation of the clusters. The electrophoretic mobility is 1.1 X 10(-12) m2/V sec in the high frequency limit and 7.4 X 10(-11) m2/V sec in the low frequency limit. The electric dipole moment is 6.3 X 10(-16) N(-1/2) m(-1/2) where N is the cluster density/cubic meter and the net charge is about one or two elementary charges.

  2. The intensity of the ancient lunar field from magnetic studies on lunar samples

    NASA Technical Reports Server (NTRS)

    Stephenson, A.; Collinson, D. W.; Runchorn, S. K.

    1977-01-01

    Palaeointensity determination on Apollo 11, 16, and 17 rocks have indicated that from 3.9 to 4.0 AE ago the strength of the surface lunar magnetic field was about 1.3 Oe, while there is evidence from younger rocks that a field of about one quarter of this value was present at a later time (3.6 AE).

  3. Global enhancement and structure formation of the magnetic field in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also support the presence of sufficient conditions for the development of magnetorotational instability at distances >11 kpc after >300 Myr of evolution.

  4. Solid-state NMR imaging system

    DOEpatents

    Gopalsami, Nachappa; Dieckman, Stephen L.; Ellingson, William A.

    1992-01-01

    An apparatus for use with a solid-state NMR spectrometer includes a special imaging probe with linear, high-field strength gradient fields and high-power broadband RF coils using a back projection method for data acquisition and image reconstruction, and a real-time pulse programmer adaptable for use by a conventional computer for complex high speed pulse sequences.

  5. A determination of the intensity of the ancient lunar magnetic field.

    NASA Technical Reports Server (NTRS)

    Gose, W. A.; Strangway, D. W.; Pearce, G. W.

    1973-01-01

    Thermal demagnetization of lunar breccia 15498,36 shows that the natural remanent magnetization is a simple thermoremanence carried by metallic iron. Using the classical Thellier-Thellier method the strength of the magnetizing field at the time of sample formation was found to be 2100 plus or minus 80 gammas.

  6. Analysis of the processes occurring in a submicrosecond discharge with a linear current density of up to 3 MA/cm through a thick-wall stainless-steel electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branitsky, A. V.; Grabovski, E. V.; Dzhangobegov, V. V.

    The state of conductors carrying a megampere current from the generator to the load is studied experimentally. It is found that the plasma produced from cylindrical stainless-steel tubes during the passage of a submicrosecond current pulse with a linear density of 3 MA/cm expands with a velocity of 5.5 km/s. Numerical results on the diffusion of the magnetic field induced by a current with a linear density of 1–3MA/cm into metal electrodes agree with the experimental data on the penetration time of the magnetic field. For a linear current density of 3.1 MA/cm, the experimentally determined electric field strength onmore » the inner surface of the tube is 4 kV/cm. The calculated electric field strength on the inner surface of the tube turns out to be two times higher, which can be explained by plasma production on the outer and inner surfaces of the electrode.« less

  7. Optimization of pulsed electric field pre-treatments to enhance health-promoting glucosinolates in broccoli flowers and stalk.

    PubMed

    Aguiló-Aguayo, Ingrid; Suarez, Manuel; Plaza, Lucia; Hossain, Mohammad B; Brunton, Nigel; Lyng, James G; Rai, Dilip K

    2015-07-01

    The effect of pulsed electric field (PEF) treatment variables (electric field strength and treatment time) on the glucosinolate content of broccoli flowers and stalks was evaluated. Samples were subjected to electric field strengths from 1 to 4 kV cm(-1) and treatment times from 50 to 1000 µs at 5 Hz. Data fitted significantly (P < 0.0014) the proposed second-order response functions. The results showed that PEF combined treatment conditions of 4 kV cm(-1) for 525 and 1000 µs were optimal to maximize glucosinolate levels in broccoli flowers (ranging from 187.1 to 212.5%) and stalks (ranging from 110.6 to 203.0%) respectively. The predicted values from the developed quadratic polynomial equation were in close agreement with the actual experimental values, with low average mean deviations (E%) ranging from 0.59 to 8.80%. The use of PEF processing at moderate conditions could be a suitable method to stimulate production of broccoli with high health-promoting glucosinolate content. © 2014 Society of Chemical Industry.

  8. Developments in deep brain stimulation using time dependent magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  9. Developments in deep brain stimulation using time dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Crowther, L. J.; Nlebedim, I. C.; Jiles, D. C.

    2012-04-01

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  10. Deformation and Rotation of a Drop in a Uniform Electric Field

    NASA Astrophysics Data System (ADS)

    Salipante, Paul; Hanna, James; Vlahovska, Petia

    2009-11-01

    Drop deformation in uniform electric fields is a classic problem. The pioneering work of G.I.Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational mode for drops of lower conductivity than the surrounding medium, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We will present an experimental and theoretical study of this phenomenon in DC fields. The critical electric field, drop inclination angle, and rate of rotation are measured. For small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. We also observe a hysteresis in the tilt angle for low-viscosity drops. The effects of AC fields and surfactants are also explored.

  11. A Review of Subsequence Time Series Clustering

    PubMed Central

    Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies. PMID:25140332

  12. A review of subsequence time series clustering.

    PubMed

    Zolhavarieh, Seyedjamal; Aghabozorgi, Saeed; Teh, Ying Wah

    2014-01-01

    Clustering of subsequence time series remains an open issue in time series clustering. Subsequence time series clustering is used in different fields, such as e-commerce, outlier detection, speech recognition, biological systems, DNA recognition, and text mining. One of the useful fields in the domain of subsequence time series clustering is pattern recognition. To improve this field, a sequence of time series data is used. This paper reviews some definitions and backgrounds related to subsequence time series clustering. The categorization of the literature reviews is divided into three groups: preproof, interproof, and postproof period. Moreover, various state-of-the-art approaches in performing subsequence time series clustering are discussed under each of the following categories. The strengths and weaknesses of the employed methods are evaluated as potential issues for future studies.

  13. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Field strength limits. 18.305 Section 18.305... Standards § 18.305 Field strength limits. (a) ISM equipment operating on a frequency specified in § 18.301... strength levels of emissions which lie outside the bands specified in § 18.301, unless otherwise indicated...

  14. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  15. The cooling time scales of growing sunspots

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi

    1987-01-01

    The evolution of brightness and magnetic fields of growing sunspots is studied. Growing sunspots are found to be brighter (or less dark) than stable sunspots with the same magnetic field strength. From comparison of brightness and magnetic fields of a growing sunspot with those of stable sunspots, a dynamical parameter, the cooling time, of the growing sunspot is obtained. Ten growing sunspots are studied, and cooling times of 0.5 to 9 hr are found. Two models, the inhibition model and the Alfven wave model, give cooling times of about 0.05 hr, based on linear theory. The discrepancy between theory and observation may be due to the fact that the observed sunspots are in the nonlinear regime.

  16. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  17. Ultra high field TOF-MRA: A method to visualize small cerebral vessels. 7T TOF-MRA sequence parameters on different MRI scanners - Literature review.

    PubMed

    Grochowski, Cezary; Staśkiewicz, Grzegorz

    Time-of-flight (TOF) angiography is a technique allowing to visualize the blood flow in vessels. 7T ToF-MRA is able to visualize the whole Circle of Willis including small perforating branches without any known side effects as opposed to usually used DSA and CTA with high exposition to the radiation and high doses of contrast as far as CTA is concerned. The aim of this review is to describe ultra-high field ToF-MRA and present different protocol data depending on the scanner used in the study. PubMed, Embase, Ovid, Google Scholar databases were searched. Selection of studies for this systematic review included 7T magnetic resonance angiography studies. We searched for type of head coil used in various studies, flip angle, echo time, repetition time, field-of-view (FOV), number of slices per slab, matrix, voxel size and acquisition time. Visualization for the small perforating vessels of the Circle of Willis, that are not fully visualized using low-field-strength MRA is improving with increasing magnetic field strength, which has been proved by several studies. Ultra-high filed ToF-MRA has found to be a superior method in depicting cerebral microvasculature. 7T ToF-MRA seems to be a reliable method for visualization of arteries up to the second order cerebral arteries and has a potential to replace DSA. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  18. Magnetized Turbulent Dynamo in Protogalaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonid Malyshkin; Russell M. Kulsrud

    The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperaturemore » is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.« less

  19. Electrohydrodynamics of drops in strong uniform dc electric fields

    NASA Astrophysics Data System (ADS)

    Salipante, Paul F.; Vlahovska, Petia M.

    2010-11-01

    Drop deformation in an uniform dc electric field is a classic problem. The pioneering work of Taylor demonstrated that for weakly conducting media, the drop fluid undergoes a toroidal flow and the drop adopts a prolate or oblate spheroidal shape, the flow and shape being axisymmetrically aligned with the applied field. However, recent studies have revealed a nonaxisymmetric rotational flow in strong fields, similar to the rotation of solid dielectric particles observed by Quincke in the 19th century. We present a systematic experimental study of this phenomenon, which highlights the importance of charge convection along the drop surface. The critical electric field, drop inclination angle, and rate of rotation are measured. We find that for small, high viscosity drops, the threshold field strength is well approximated by the Quincke rotation criterion. Reducing the viscosity ratio shifts the onset for rotation to stronger fields. The drop inclination angle increases with field strength. The rotation rate is approximately given by the inverse Maxwell-Wagner polarization time. Novel features are also observed such as a hysteresis in the tilt angle for large low-viscosity drops.

  20. Effect of steady and time-harmonic magnetic fields on macrosegragation in alloy solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Incropera, F.P.; Prescott, P.J.

    Buoyancy-induced convection during the solidification of alloys can contribute significantly to the redistribution of alloy constituents, thereby creating large composition gradients in the final ingot. Termed macrosegregation, the condition diminishes the quality of the casting and, in the extreme, may require that the casting be remelted. The deleterious effects of buoyancy-driven flows may be suppressed through application of an external magnetic field, and in this study the effects of both steady and time-harmonic fields have been considered. For a steady magnetic field, extremely large field strengths would be required to effectively dampen convection patterns that contribute to macrosegregation. However, bymore » reducing spatial variations in temperature and composition, turbulent mixing induced by a time-harmonic field reduces the number and severity of segregates in the final casting.« less

  1. Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage

    NASA Astrophysics Data System (ADS)

    Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried

    2011-12-01

    The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.

  2. CNR considerations for rapid real-time MRI tumor tracking in radiotherapy hybrid devices: Effects of B{sub 0} field strength

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wachowicz, K., E-mail: keith.wachowicz@albertaheal

    2016-08-15

    Purpose: This work examines the subject of contrast-to-noise ratio (CNR), specifically between tumor and tissue background, and its dependence on the MRI field strength, B{sub 0}. This examination is motivated by the recent interest and developments in MRI/radiotherapy hybrids where real-time imaging can be used to guide treatment beams. The ability to distinguish a tumor from background tissue is of primary importance in this field, and this work seeks to elucidate the complex relationship between the CNR and B{sub 0} that is too often assumed to be purely linear. Methods: Experimentally based models of B{sub 0}-dependant relaxation for various tumormore » and normal tissues from the literature were used in conjunction with signal equations for MR sequences suitable for rapid real-time imaging to develop field-dependent predictions for CNR. These CNR models were developed for liver, lung, breast, glioma, and kidney tumors for spoiled gradient-echo, balanced steady-state free precession (bSSFP), and single-shot half-Fourier fast spin echo sequences. Results: Due to the pattern in which the relaxation properties of tissues are found to vary over B{sub 0} field (specifically the T{sub 1} time), there was always an improved CNR at lower fields compared to linear dependency. Further, in some tumor sites, the CNR at lower fields was found to be comparable to, or sometimes higher than those at higher fields (i.e., bSSFP CNR for glioma, kidney, and liver tumors). Conclusions: In terms of CNR, lower B{sub 0} fields have been shown to perform as well or better than higher fields for some tumor sites due to superior T{sub 1} contrast. In other sites this effect was less pronounced, reversing the CNR advantage. This complex relationship between CNR and B{sub 0} reveals both low and high magnetic fields as viable options for tumor tracking in MRI/radiotherapy hybrids.« less

  3. Human T cells monitored by impedance spectrometry using field-effect transistor arrays: a novel tool for single-cell adhesion and migration studies.

    PubMed

    Law, Jessica Ka Yan; Susloparova, Anna; Vu, Xuan Thang; Zhou, Xiao; Hempel, Felix; Qu, Bin; Hoth, Markus; Ingebrandt, Sven

    2015-05-15

    Cytotoxic T lymphocytes (CTLs) play an important role in the immune system by recognizing and eliminating pathogen-infected and tumorigenic cells. In order to achieve their function, T cells have to migrate throughout the whole body and identify the respective targets. In conventional immunology studies, interactions between CTLs and targets are usually investigated using tedious and time-consuming immunofluorescence imaging. However, there is currently no straightforward measurement tool available to examine the interaction strengths. In the present study, adhesion strengths and migration of single human CD8(+) T cells on pre-coated field-effect transistor (FET) devices (i.e. fibronectin, anti-CD3 antibody, and anti-LFA-1 antibody) were measured using impedance spectroscopy. Adhesion strengths to different protein and antibody coatings were compared. By fitting the data to an electronically equivalent circuit model, cell-related parameters (cell membrane capacitance referring to cell morphology and seal resistance referring to adhesion strength) were obtained. This electronically-assessed adhesion strength provides a novel, fast, and important index describing the interaction efficiency. Furthermore, the size of our detection transistor gates as well as their sensitivity reaches down to single cell resolution. Real-time motions of individually migrating T cells can be traced using our FET devices. The in-house fabricated FETs used in the present study are providing a novel and very efficient insight to individual cell interactions. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A search for cataclysmic binaries containing strongly magnetic white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Chanmugam, G.

    1982-01-01

    The AM Herculis type binaries which contain accreting white dwarfs with surface magnetic fields of a few times 10 to the seventh power gauss were studied. If white dwarfs in cataclysmic binaries have a range of field strengths similar to that among single white dwarfs. AM Her like systems should exist with fields as high as 3 x 10 to the eighth power gauss. It is suggested that such objects will not have the strong optical polarization of the AM Her variables; however, they exhibit high harmonic cyclotron emission, making them spectacular UV sources. We made IUE observations of seven candidate cataclysmic variables selected for optical similarity to AM Her binaries. Although all seven objects were detected in the UV, none display unusually strong UV continua. It is suggested that the distribution of magnetic field strengths among single white dwarfs may be different from that among binaries.

  5. Direction sensitive neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-findingmore » to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.« less

  6. Physical modelling of Czochralski crystal growth in horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter

    2017-07-01

    This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.

  7. Strong transverse fields in delta-spots

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Wang, Haimin

    1993-01-01

    Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.

  8. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    NASA Astrophysics Data System (ADS)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  9. Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

    NASA Astrophysics Data System (ADS)

    Ellington, S. M.; Moldwin, M. B.; Liemohn, M. W.

    2016-03-01

    We present evidence of resonant wave-wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework's (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large-scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time-dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin-Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.

  10. Accessible magnetic resonance imaging.

    PubMed

    Kaufman, L; Arakawa, M; Hale, J; Rothschild, P; Carlson, J; Hake, K; Kramer, D; Lu, W; Van Heteren, J

    1989-10-01

    The cost of magnetic resonance imaging (MRI) is driven by magnetic field strength. Misperceptions as to the impact of field strength on performance have led to systems that are more expensive than they need to be. Careful analysis of all the factors that affect diagnostic quality lead to the conclusion that field strength per se is not a strong determinant of system performance. Freed from the constraints imposed by high-field operation, it is possible to exploit a varied set of opportunities afforded by low-field operation. In addition to lower costs and easier siting, we can take advantage of shortened T1 times, higher contrast, reduced sensitivity to motion, and reduced radiofrequency power deposition. These conceptual advantages can be made to coalesce onto practical imaging systems. We describe a low-cost MRI system that utilizes a permanent magnet of open design. Careful optimization of receiving antennas and acquisition sequences permit performance levels consistent with those needed for an effective diagnostic unit. Ancillary advantages include easy access to the patient, reduced claustrophobia, quiet and comfortable operation, and absence of a missile effect. The system can be sited in 350 sq ft and consumes a modest amount of electricity. MRI equipment of this kind can widen the population base than can access this powerful and beneficial diagnostic modality.

  11. Modelling and assessment of the electric field strength caused by mobile phone to the human head.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas; Stukas, Rimantas

    2016-06-01

    Electromagnetic field exposure is the one of the most important physical agents that actively affects live organisms and environment. Active use of mobile phones influences the increase of electromagnetic field radiation. The aim of the study was to measure and assess the electric field strength caused by mobile phones to the human head. In this paper the software "COMSOL Multiphysics" was used to establish the electric field strength created by mobile phones around the head. The second generation (2G) Global System for Mobile (GSM) phones that operate in the frequency band of 900 MHz and reach the power of 2 W have a stronger electric field than (2G) GSM mobile phones that operate in the higher frequency band of 1,800 MHz and reach the power up to 1 W during conversation. The third generation of (3G) UMTS smart phones that effectively use high (2,100 MHz) radio frequency band emit the smallest electric field strength values during conversation. The highest electric field strength created by mobile phones is around the ear, i.e. the mobile phone location. The strength of mobile phone electric field on the phantom head decreases exponentially while moving sidewards from the center of the effect zone (the ear), and constitutes 1-12% of the artificial head's surface. The highest electric field strength values of mobile phones are associated with their higher power, bigger specific energy absorption rate (SAR) and lower frequency of mobile phone. The stronger electric field emitted by the more powerful mobile phones takes a higher percentage of the head surface. The highest electric field strength created by mobile phones is distributed over the user's ear.

  12. 47 CFR 27.55 - Power strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Power strength limits. 27.55 Section 27.55... COMMUNICATIONS SERVICES Technical Standards § 27.55 Power strength limits. (a) Field strength limits. For the following bands, the predicted or measured median field strength at any location on the geographical border...

  13. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  14. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  15. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  16. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... earth radius, of the largest available scale. (c) Collection of field strength data to determine... through the measurement area. (iii) Antenna elevation. When field strength is being measured for a one....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  17. A simple and cost effective liquid culture system for the micropropagation of two commercially important apple rootstocks.

    PubMed

    Mehta, Mohina; Ram, Raja; Bhattacharya, Amita

    2014-07-01

    The two commercially important apple rootstocks i.e., MM106 and B9 were micropropagated using a liquid culture system. Three different strengths of 0.8% agar solidified PGR free basal MS medium were first tested to optimize the culture media for both the rootstocks. Full strength medium (MS0) supported maximum in vitro growth, multiplication, rooting and survival under field conditions as opposed to quarter and half strength media. When three different volumes of liquid MS0 were tested, highest in vitro growth, multiplication, rooting and also survival under field conditions were achieved in 20 mL liquid MS0. The cost of one litre of liquid medium was also reduced by 8 times to Rs. 6.29 as compared to solid medium. The cost of 20 mL medium was further reduced to Rs. 0.125.

  18. ARC-2012-ACD12-0020-001

    NASA Image and Video Library

    2012-02-02

    Stein_Sun: Visualization of the complex magnetic field produced as magnetic flux rises toward the Sun¹s surface from the deep convection zone. The image shows a snapshot of how the magnetic field has evolved two days from the time uniform, untwisted, horizontal magnetic field started to be advected by inflows at the bottom (20 megameters deep). Axes are in megameters, and the color scale shows the log of the magnetic field strength. Credit: Robert Stein, Michigan State University; Tim Sandstrom, NASA/Ames

  19. Detection of Primordial Magnetic Fields in TeV gamma-ray data

    NASA Astrophysics Data System (ADS)

    Wingler, A.

    The analysis of the time-variable flux of γ-ray photons from extragalactic sources is currently the only proposed way to directly determine the magnetic field strengths in intergalactic space - far away from galaxies and clusters (in the cosmological "voids") - in the range below about 10,10 Gauss (Plaga 1995). Remnant magnetic fields with field strengths much below this, which may well have formed in early cosmological times, could exist in these voids. Due to their interaction with infrared photons TeV gamma-rays induce pair production in intergalactic space. The electrons and positrons are deflected by ambient magnetic fields and produce γ-rays via inverse Compton scattering that are delayed with respect to the original photons in an energy-dependent, characteristic manner. A standard method to identify these delayed events in a data sample of a source with a variable VHE γ-ray flux (as available from several Cherenkov telescope experiments for the high-emission phase of the AGN Mrk 501 in 1997) is described. Monte-Carlo simulations of existing data sets (taking into backgrounds and instrumental limitations) are used to explore how sensitive data sets similar to the existing ones are to primordial magnetic fields. We find that about 22000 (15000) events from a source with characteristics similar to Mrk 501 are needed to detect a primordial B field of 3 (10) atto Gauss (10,18 G) with a 3 significance.

  20. Ignition dynamics of a laminar diffusion flame in the field of a vortex embedded in a shear flow

    NASA Technical Reports Server (NTRS)

    Macaraeg, Michele G.; Jackson, T. L.; Hussaini, M. Y.

    1994-01-01

    The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small Mach number. An idealized model is employed to describe the interaction process. The model consists of a one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow. It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscillations which increase in magnitude with shear strength. These oscillations give rise to regions of strong temperature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis is placed on the ignition time and structure as a function of vortex and shear strength.

  1. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Peng; Liu, Hui; Gao, Yuanyuan

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weakermore » magnetic field in the discharge channel.« less

  2. Imaging shear strength along subduction faults

    USGS Publications Warehouse

    Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Hardebeck, Jeanne L.

    2017-01-01

    Subduction faults accumulate stress during long periods of time and release this stress suddenly, during earthquakes, when it reaches a threshold. This threshold, the shear strength, controls the occurrence and magnitude of earthquakes. We consider a 3-D model to derive an analytical expression for how the shear strength depends on the fault geometry, the convergence obliquity, frictional properties, and the stress field orientation. We then use estimates of these different parameters in Japan to infer the distribution of shear strength along a subduction fault. We show that the 2011 Mw9.0 Tohoku earthquake ruptured a fault portion characterized by unusually small variations in static shear strength. This observation is consistent with the hypothesis that large earthquakes preferentially rupture regions with relatively homogeneous shear strength. With increasing constraints on the different parameters at play, our approach could, in the future, help identify favorable locations for large earthquakes.

  3. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  4. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  5. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  6. Coronal magnetic fields from multiple type II bursts

    NASA Astrophysics Data System (ADS)

    Honnappa, Vijayakumar; Raveesha, K. H.; Subramanian, K. R.

    Coronal magnetic fields from multiple type II bursts Vijayakumar H Doddamani1*, Raveesha K H2 and Subramanian3 1Bangalore University, Bangalore, Karnataka state, India 2CMR Institute of Technology, Bangalore, Karnataka state, India 3 Retd, Indian Institute of Astrophysics, Bangalore, Karnataka state, India Abstract Magnetic fields play an important role in the astrophysical processes occurring in solar corona. In the solar atmosphere, magnetic field interacts with the plasma, producing abundant eruptive activities. They are considered to be the main factors for coronal heating, particle acceleration and the formation of structures like prominences, flares and Coronal Mass Ejections. The magnetic field in solar atmosphere in the range of 1.1-3 Rsun is especially important as an interface between the photospheric magnetic field and the solar wind. Its structure and time dependent change affects space weather by modifying solar wind conditions, Cho (2000). Type II doublet bursts can be used for the estimation of the strength of the magnetic field at two different heights. Two type II bursts occur sometimes in sequence. By relating the speed of the type II radio burst to Alfven Mach Number, the Alfven speed of the shock wave generating type II radio burst can be calculated. Using the relation between the Alfven speed and the mean frequency of emission, the magnetic field strength can be determined at a particular height. We have used the relative bandwidth and drift rate properties of multiple type II radio bursts to derive magnetic field strengths at two different heights and also the gradient of the magnetic field in the outer corona. The magnetic field strength has been derived for different density factors. It varied from 1.2 to 2.5 gauss at a solar height of 1.4 Rsun. The empirical relation of the variation of the magnetic field with height is found to be of the form B(R) = In the present case the power law index ‘γ’ varied from -3 to -2 for variation of density factor from 1 to 5. Key Words: Magnetic field, photosphere, corona, solar wind, bursts *Email:drvkdmani@gmail.com

  7. Curved backgrounds in emergent gravity

    NASA Astrophysics Data System (ADS)

    Chaurasia, Shikha; Erlich, Joshua; Zhou, Yiyu

    2018-06-01

    Field theories that are generally covariant but nongravitational at tree level typically give rise to an emergent gravitational interaction whose strength depends on a physical regulator. We consider emergent gravity models in which scalar fields assume the role of clock and rulers, addressing the problem of time in quantum gravity. We discuss the possibility of nontrivial dynamics for clock and ruler fields, and describe some of the consequences of those dynamics for the emergent gravitational theory.

  8. 47 CFR 27.804 - Field strength limits at WMTS facility.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Field strength limits at WMTS facility. 27.804... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility. For any operation in the 1392-1395 MHz band, the predicted or measured field strength—into the WMTS band...

  9. 47 CFR 27.804 - Field strength limits at WMTS facility.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 2 2011-10-01 2011-10-01 false Field strength limits at WMTS facility. 27.804... MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1.4 GHz Band § 27.804 Field strength limits at WMTS facility. For any operation in the 1392-1395 MHz band, the predicted or measured field strength—into the WMTS band...

  10. Electron Dynamics in Nanostructures in Strong Laser Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kling, Matthias

    2014-09-11

    The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.

  11. In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T

    PubMed Central

    Ramadan, Saadallah; Ratai, Eva-Maria; Wald, Lawrence L.; Mountford, Carolyn E.

    2013-01-01

    Aim This study aims to (1) undertake and analyse 1D and 2D MR correlation spectroscopy from human soleus muscle in vivo at 7T, and (2) determine T1 and T2 relaxation time constants at 7T field strength due to their importance in sequence design and spectral quantitation. Method Six healthy, male volunteers were consented and scanned on a 7T whole-body scanner (Siemens AG, Erlangen, Germany). Experiments were undertaken using a 28 cm diameter detunable birdcage coil for signal excitation and an 8.5 cm diameter surface coil for signal reception. The relaxation time constants, T1 and T2 were recorded using a STEAM sequence, using the ‘progressive saturation’ method for the T1 and multiple echo times for T2. The 2D L-Correlated SpectroscopY (L-COSY) method was employed with 64 increments (0.4 ms increment size) and eight averages per scan, with a total time of 17 min. Results T1 and T2 values for the metabolites of interest were determined. The L-COSY spectra obtained from the soleus muscle provided information on lipid content and chemical structure not available, in vivo, at lower field strengths. All molecular fragments within multiple lipid compartments were chemically shifted by 0.20–0.26 ppm at this field strength. 1D and 2D L-COSY spectra were assigned and proton connectivities were confirmed with the 2D method. Conclusion In vivo 1D and 2D spectroscopic examination of muscle can be successfully recorded at 7T and is now available to assess lipid alterations as well as other metabolites present with disease. T1 and T2 values were also determined in soleus muscle of male healthy volunteers. PMID:20206561

  12. Influence of a constant magnetic field on the fibrinogen-fibrin system. [in blood coagulation process

    NASA Technical Reports Server (NTRS)

    Matskevichene, V. B.; Platonova, A. T.

    1974-01-01

    The effect of a constant magnetic field with a strength of 2500 oersteds on the fibrinogen-fibrin system was studied in the organism of healthy rabbits with exposure times of 1 and 5 hours. The results obtained indicate disruptions in the stage of conversion of fibrinogen to fibrin and an increase in the amount of fibrinogen.

  13. Simulating nanostorm heating in coronal loops using hydrodynamics and non-thermal particle evolution

    NASA Astrophysics Data System (ADS)

    Migliore, Christina; Winter, Henry; Murphy, Nicholas

    2018-01-01

    The solar corona is filled with loop-like structures that appear bright against the background when observed in the extreme ultraviolet (EUV). These loops have several remarkable properties that are not yet well understood. Warm loops (∼ 1 MK) appear to be ∼ 2 ‑ 9 times as dense at their apex as the predictions of hydrostatic atmosphere models. These loops also appear to be of constant cross-section despite the fact that the field strength in a potential magnetic field should decrease in the corona, causing the loops to expand. It is not clear why many active region loops appear to be of constant cross-section. Theories range from an internal twist of the magnetic field to observational effects. In this work we simulate active region loops heated by nanoflare storms using a dipolar magnetic field. We calculate the hydrodynamic properties for each loop using advanced hydrodynamics codes to simulate the corona and chromospheric response and basic dipole models to represent the magnetic fields of the loops. We show that even modest variations of the magnetic field strength along the loop can lead to drastic changes in the density profiles of active region loops, and they can also explain the overpressure at the apex of these loops. Synthetic AIA images of each loop are made to show the observable consequences of varying magnetic field strengths along the loop’s axis of symmetry. We also show how this work can lead to improved modeling of larger solar and stellar flares.

  14. Energy flux determines magnetic field strength of planets and stars.

    PubMed

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  15. In vivo1H NMR spectroscopy of the human brain at 9.4 T: Initial results

    NASA Astrophysics Data System (ADS)

    Deelchand, Dinesh Kumar; Moortele, Pierre-François Van de; Adriany, Gregor; Iltis, Isabelle; Andersen, Peter; Strupp, John P.; Thomas Vaughan, J.; Uğurbil, Kâmil; Henry, Pierre-Gilles

    2010-09-01

    In vivo proton NMR spectroscopy allows non-invasive detection and quantification of a wide range of biochemical compounds in the brain. Higher field strength is generally considered advantageous for spectroscopy due to increased signal-to-noise and increased spectral dispersion. So far 1H NMR spectra have been reported in the human brain up to 7 T. In this study we show that excellent quality short echo time STEAM and LASER 1H NMR spectra can be measured in the human brain at 9.4 T. The information content of the human brain spectra appears very similar to that measured in the past decade in rodent brains at the same field strength, in spite of broader linewidth in human brain. Compared to lower fields, the T1 relaxation times of metabolites were slightly longer while T2 relaxation values of metabolites were shorter (<100 ms) at 9.4 T. The linewidth of the total creatine (tCr) resonance at 3.03 ppm increased linearly with magnetic field (1.35 Hz/T from 1.5 T to 9.4 T), with a minimum achievable tCr linewidth of around 12.5 Hz at 9.4 T. At very high field, B0 microsusceptibility effects are the main contributor to the minimum achievable linewidth.

  16. Bianchi cosmologies with p-form gauge fields

    NASA Astrophysics Data System (ADS)

    Normann, Ben David; Hervik, Sigbjørn; Ricciardone, Angelo; Thorsrud, Mikjel

    2018-05-01

    In this paper the dynamics of free gauge fields in Bianchi type I–VII h space-times is investigated. The general equations for a matter sector consisting of a p-form field strength (p \\in \\{1, 3\\} ), a cosmological constant (4-form) and perfect fluid in Bianchi type I–VII h space-times are computed using the orthonormal frame method. The number of independent components of a p-form in all Bianchi types I–IX are derived and, by means of the dynamical systems approach, the behaviour of such fields in Bianchi type I and V are studied. Both a local and a global analysis are performed and strong global results regarding the general behaviour are obtained. New self-similar cosmological solutions appear both in Bianchi type I and Bianchi type V, in particular, a one-parameter family of self-similar solutions, ‘Wonderland (λ)’ appears generally in type V and in type I for λ=0 . Depending on the value of the equation of state parameter other new stable solutions are also found (‘The Rope’ and ‘The Edge’) containing a purely spatial field strength that rotates relative to the co-moving inertial tetrad. Using monotone functions, global results are given and the conditions under which exact solutions are (global) attractors are found.

  17. Impulsive signals in the night ionosphere of Venus - Comparison of results obtained below the local electron gyro frequency with those above

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Von Dornum, M.; Scarf, F. L.

    1990-01-01

    Impulsive VLF signals at low altitudes in the night ionosphere of Venus occur both above and below the electron gyro frequency. The strength of the magnetic field has a very strong influence on the occurrence rates of these impulsive emissions at all frequencies. Above about one-quarter of the local electron gyro frequency the waves occur most frequently for strong magnetic fields and much less frequently for weak fields. However, below about one-quarter of the electron gyro frequency, the occurrence rate is much less sensitive to field strength. At all frequencies the occurrence rate depends little on the direction of the magnetic field. The occurrence rate is strongly dependent on local time especially above the electron gyro frequency. Here, the occurrence rate peaks sharply at 2100 LT. Below the local electron gyro frequency the occurrence rate also shows a maximum near 2100 LT but decreases much more slowly with increasing local time. The rate of occurrence of low frequency signals varies little with altitude but the occurrence of the higher frequency signals decreases rapidly. These properties are consistent with a broadband source of VLF waves in the Venus atmosphere such as would be provided by intracloud lightning.

  18. Long-term Trends in Interplanetary Magnetic Field Strength and Solar Wind Structure during the 20th Century

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cliver, E. W.; Cane, H. V.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    Lockwood et al have recently reported an approximately 40% increase in the radial component of the interplanetary magnetic field (IMF) at Earth between 1964 and 1996. We argue that this increase does not constitute a secular trend but is largely the consequence of lower than average fields during solar cycle 20 (1964-1976) in comparison with surrounding cycles. For times after 1976 the average IMF strength has actually decreased slightly. Examination of the cosmic ray intensity, an indirect measure of the IMF strength, over the last five solar cycles (19-23) also indicates that cycle averages of the IMF strength have been relatively constant since approximately 1954. We also consider the origin of the well-documented increase in the geomagnetic alphaalpha index that occurred primarily during the first half of the twentieth century. We surmise that the coronal mass ejection (CME) rate for recent solar cycles was approximately twice as high as that for solar cycles 100 years ago. However, this change in the CME rate and the accompanying increase in 27-day recurrent storm activity reported by others are unable to account completely for the increase in alphaalpha. Rather, the CMEs and recurrent high-speed streams at the beginning of the twentieth century must have been embedded in a background of slow solar wind that was less geoeffective (having, for example, lower IMF strength and/or flow speed) than its modern counterpart.

  19. Residential exposure to radiofrequency fields from mobile phone base stations, and broadcast transmitters: a population-based survey with personal meter.

    PubMed

    Viel, J F; Clerc, S; Barrera, C; Rymzhanova, R; Moissonnier, M; Hours, M; Cardis, E

    2009-08-01

    Both the public perceptions, and most published epidemiologic studies, rely on the assumption that the distance of a particular residence from a base station or a broadcast transmitter is an appropriate surrogate for exposure to radiofrequency fields, although complex propagation characteristics affect the beams from antennas. The main goal of this study was to characterise the distribution of residential exposure from antennas using personal exposure meters. A total of 200 randomly selected people were enrolled. Each participant was supplied with a personal exposure meter for 24 h measurements, and kept a time-location-activity diary. Two exposure metrics for each radiofrequency were then calculated: the proportion of measurements above the detection limit (0.05 V/m), and the maximum electric field strength. Residential address was geocoded, and distance from each antenna was calculated. Much of the time, the recorded field strength was below the detection level (0.05 V/m), the FM band standing apart with a proportion above the detection threshold of 12.3%. The maximum electric field strength was always lower than 1.5 V/m. Exposure to GSM and DCS waves peaked around 280 m and 1000 m from the antennas. A downward trend was found within a 10 km range for FM. Conversely, UMTS, TV 3, and TV 4&5 signals did not vary with distance. Despite numerous limiting factors entailing a high variability in radiofrequency exposure assessment, but owing to a sound statistical technique, we found that exposures from GSM and DCS base stations increase with distance in the near source zone, to a maximum where the main beam intersects the ground. We believe these results will contribute to the ongoing public debate over the location of base stations and their associated emissions.

  20. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...

  1. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...

  2. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...

  3. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...

  4. 47 CFR 73.61 - AM directional antenna field strength measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false AM directional antenna field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.61 AM directional antenna field strength measurements. (a) Each AM station using a directional antenna with monitoring point locations...

  5. Magnetic hyperthermia performance of magnetite nanoparticle assemblies under different driving fields

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Wang, Jian-Ping

    2017-05-01

    The heating performance of magnetic nanoparticles (MNPs) under an alternating magnetic field (AMF) is dependent on several factors. Optimizing these factors improves the heating efficiency for cancer therapy and meanwhile lowers the MNP treatment dosage. AMF is one of the most easily controllable variables to enhance the efficiency of heat generation. This paper investigated the optimal magnetic field strength and frequency for an assembly of magnetite nanoparticles. For hyperthermia treatment in clinical applications, monodispersed NPs are forming nanoclusters in target regions where a strong magnetically interactive environment is anticipated, which leads to a completely different situation than MNPs in ferrofluids. Herein, the energy barrier model is revisited and Néel relaxation time is tailored for high MNP packing densities. AMF strength and frequency are customized for different magnetite NPs to achieve the highest power generation and the best hyperthermia performance.

  6. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    PubMed

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  7. Character Strengths and Intellectual and Developmental Disability: A Strengths-Based Approach from Positive Psychology

    ERIC Educational Resources Information Center

    Niemiec, Ryan M.; Shogren, Karrie A.; Wehmeyer, Michael L.

    2017-01-01

    There has been limited focus in the disability field on assessing and intervening to promote strengths of character. However, character strengths have received significant attention in the broader field of positive psychology. This paper provides an overview of the growing science of character strengths and explores why and how character strengths…

  8. Ultralong time response of magnetic fluid based on fiber-optic evanescent field.

    PubMed

    Du, Bobo; Yang, Dexing; Bai, Yang; Yuan, Yuan; Xu, Jian; Jiang, Yajun; Wang, Meirong

    2016-07-20

    The ultralong time (a few hours) response properties of magnetic fluid using etched optical fiber are visualized and investigated experimentally. The operating structure is made by injecting magnetic fluid into a capillary tube that contains etched single-mode fiber. An interesting extreme asymmetry is observed, in which the transmitted light intensity after the etched optical fiber cannot reach the final steady value when the external magnetic field is turned on (referred to as the falling process), while it can reach the stable state quickly once the magnetic field is turned off (referred to as the rising process). The relationship between the response times/loss rates of the transmitted light and the strength of the applied magnetic field is obtained. The physical mechanisms of two different processes are discussed qualitatively.

  9. Large-scale, near-field magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1985-01-01

    Data from Magsat analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The Magsat data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  10. Magnetic field induced dynamical chaos.

    PubMed

    Ray, Somrita; Baura, Alendu; Bag, Bidhan Chandra

    2013-12-01

    In this article, we have studied the dynamics of a particle having charge in the presence of a magnetic field. The motion of the particle is confined in the x-y plane under a two dimensional nonlinear potential. We have shown that constant magnetic field induced dynamical chaos is possible even for a force which is derived from a simple potential. For a given strength of the magnetic field, initial position, and velocity of the particle, the dynamics may be regular, but it may become chaotic when the field is time dependent. Chaotic dynamics is very often if the field is time dependent. Origin of chaos has been explored using the Hamiltonian function of the dynamics in terms of action and angle variables. Applicability of the present study has been discussed with a few examples.

  11. 47 CFR 1.544 - Application for broadcast station to conduct field strength measurements and for experimental...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Application for broadcast station to conduct field strength measurements and for experimental operation. 1.544 Section 1.544 Telecommunication... General Filing Requirements § 1.544 Application for broadcast station to conduct field strength...

  12. Determining and analyzing the strength and impact resistance of high modulus glass

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.

    1972-01-01

    A number of new glass compositions have been prepared with increased emphasis on compositions without beryllia. Glass preparations have been much more broadly based and have included the eutectic glass fields, and the mullite-rare earth glass systems. Of the new glasses, the best non-toxic composition is UARL 472 with a bulk modulus of only 18.20 million psi. A second experimental glass, UARL 417, was chosen for research in making large quantities of fiber in monofilament form. Tests of these UARL 417 epoxy resin samples in comparison to similar composites made with the DuPont organic fiber, PRD-49-1, show that the UARL composites have a compressive strength 41/2 times higher and a specific compressive strength at least 21/2 times greater. Much of the research effort attempted to answer the question of why a given glass should have an impact strength superior to other glasses. No definitive answer to the question was found.

  13. Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.

    1982-01-01

    The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.

  14. Research on breakdown characteristics of oil-paper insulation in compound field at different temperatures

    NASA Astrophysics Data System (ADS)

    Li, L.; Chen, M. Y.; Zhu, X. C.; Gao, Z. W.; Zhang, H. D.; Li, G. X.; Zhang, J.; Yu, C. L.; Feng, Y. M.

    2018-01-01

    The breakdown characteristics of oil-paper insulation in AC, DC and compound field at different temperatures were studied. The breakdown mechanism of oil-paper insulation at different temperatures and in AC and DC electric fields was analyzed. The breakdown characteristic mechanisms of the oil-paper insulation in the compound field at different temperatures were obtained: the dielectric strength of oil-paper compound insulation is changed gradually from dependence on oil dielectric strength to dependence on paperboard dielectric strength at low temperature. The dielectric strength of oil-paper compound insulation is always related to the oil dielectric strength closely at high temperature with decrease of AC content.

  15. Development and initial assessment of objective fatigue measures for apple harvest work.

    PubMed

    Earle-Richardson, Giulia; Jenkins, Paul L; Strogatz, David; Bell, Erin M; May, John J

    2006-11-01

    Previous research has shown that neck, back and shoulder musculoskeletal strain is a major occupational health problem affecting migrant orchard harvest workers. Researchers seek to measure the effect of an ergonomic modification to the apple picking bucket on muscle fatigue, however objective measures for use in the orchard are not yet available. The purpose of this study is to develop simple back, shoulder or arm strength measures, which detect statistically significant drops in strength over one workday. Candidate muscle strength measures were piloted in the laboratory, adapted for the orchard and evaluated (n=102). Data were analyzed for morning to afternoon fatigue, and for correlation between fatigue score and hours worked. In the laboratory, the timed arm hold (35.7% time reduction, 95% CI: 21.81-49.61), and the timed spinal extension (31.8% time reduction, 95% CI: 23.54-39.96) showed significant fatigue. In the orchard (n=102), only the timed arm hold showed significant (11.4%, p<.0001) fatigue. The potential effect of field conditions and subject motivation on these results needs further exploration.

  16. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    PubMed

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  17. Aging in the three-dimensional random-field Ising model

    NASA Astrophysics Data System (ADS)

    von Ohr, Sebastian; Manssen, Markus; Hartmann, Alexander K.

    2017-07-01

    We studied the nonequilibrium aging behavior of the random-field Ising model in three dimensions for various values of the disorder strength. This allowed us to investigate how the aging behavior changes across the ferromagnetic-paramagnetic phase transition. We investigated a large system size of N =2563 spins and up to 108 Monte Carlo sweeps. To reach these necessary long simulation times, we employed an implementation running on Intel Xeon Phi coprocessors, reaching single-spin-flip times as short as 6 ps. We measured typical correlation functions in space and time to extract a growing length scale and corresponding exponents.

  18. AC-electric field dependent electroformation of giant lipid vesicles.

    PubMed

    Politano, Timothy J; Froude, Victoria E; Jing, Benxin; Zhu, Yingxi

    2010-08-01

    Giant vesicles of larger than 5 microm, which have been of intense interest for their potential as drug delivery vehicles and as a model system for cell membranes, can be rapidly formed from a spin-coated lipid thin film under an electric field. In this work, we explore the AC-field dependent electroformation of giant lipid vesicles in aqueous media over a wide range of AC-frequency from 1 Hz to 1 MHz and peak-to-peak field strength from 0.212 V/mm to 40 V/mm between two parallel conducting electrode surfaces. By using fluorescence microscopy, we perform in-situ microscopic observations of the structural evolution of giant vesicles formed from spin-coated lipid films under varied uniform AC-electric fields. The real-time observation of bilayer bulging from the lipid film, vesicle growth and fusing further examine the critical role of AC-induced electroosmotic flow of surrounding fluids for giant vesicle formation. A rich AC-frequency and field strength phase diagram is obtained experimentally to predict the AC-electroformation of giant unilamellar vesicles (GUVs) of l-alpha-phosphatidylcholine, where a weak dependence of vesicle size on AC-frequency is observed at low AC-field voltages, showing decreased vesicle size with a narrowed size distribution with increased AC-frequency. Formation of vesicles was shown to be constrained by an upper field strength of 10 V/mm and an upper AC-frequency of 10 kHz. Within these parameters, giant lipid vesicles were formed predominantly unilamellar and prevalent across the entire electrode surfaces. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Climatology of the Auroral Electrojets Derived From the Along-Track Gradient of Magnetic Field Intensity Measured by POGO, Magsat, CHAMP, and Swarm

    NASA Astrophysics Data System (ADS)

    Smith, A. R. A.; Beggan, C. D.; Macmillan, S.; Whaler, K. A.

    2017-10-01

    The auroral electrojets (AEJs) are complex and dynamic horizontal ionospheric electric currents which form ovals around Earth's poles, being controlled by the morphology of the main magnetic field and the energy input from the solar wind interaction with the magnetosphere. The strength and location of the AEJ varies with solar wind conditions and the solar cycle but should also be controlled on decadal timescales by main field secular variation. To determine the AEJ climatology, we use data from four polar Low Earth Orbit magnetic satellite missions: POGO, Magsat, CHAMP, and Swarm. A simple estimation of the AEJ strength and latitude is made from each pass of the satellites, from peaks in the along-track gradient of the magnetic field intensity after subtracting a core and crustal magnetic field model. This measure of the AEJ activity is used to study the response in different sectors of magnetic local time (MLT) during different seasons and directions of the interplanetary magnetic field (IMF). We find a season-dependent hemispherical asymmetry in the AEJ response to IMF By, with a tendency toward stronger (weaker) AEJ currents in the north than the south during By>0 (By<0) around local winter. This effect disappears during local summer when we find a tendency toward stronger currents in the south than the north. The solar cycle modulation of the AEJ and the long-term shifting of its position and strength due to the core field variation are presented as challenges to internal field modeling.

  20. Metastability versus collapse following a quench in attractive Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Golde, Jake; Ruhl, Joanna; Olshanii, Maxim; Dunjko, Vanja; Datta, Sumita; Malomed, Boris A.

    2018-05-01

    We consider a Bose-Einstein condensate (BEC) with attractive two-body interactions in a cigar-shaped trap, initially prepared in its ground state for a given negative scattering length, which is quenched to a larger absolute value of the scattering length. Using the mean-field approximation, we compute numerically, for an experimentally relevant range of aspect ratios and initial strengths of the coupling, two critical values of quench. One corresponds to the weakest attraction strength, the quench to which causes the system to collapse before completing even a single return from the narrow configuration (pericenter) in its breathing cycle. The other is a similar critical point for the occurrence of collapse before completing two returns. In the latter case, we also compute the limiting value, as we keep increasing the strength of the postquench attraction towards its critical value, of the time interval between the first two pericenters. We also use a Gaussian variational model to estimate the critical quenched attraction strength below which the system is stable against the collapse for long times. These time intervals and critical attraction strengths, apart from being fundamental properties of nonlinear dynamics of self-attractive BECs, may provide clues to the design of upcoming experiments that are trying to create robust BEC breathers.

  1. Electroporation of cells using EM induction of ac fields by a magnetic stimulator

    NASA Astrophysics Data System (ADS)

    Chen, C.; Evans, J. A.; Robinson, M. P.; Smye, S. W.; O'Toole, P.

    2010-02-01

    This paper describes a method of effectively electroporating mammalian cell membranes with pulsed alternating-current (ac) electric fields at field strengths of 30-160 kV m-1. Although many in vivo electroporation protocols entail applying square wave or monotonically decreasing pulses via needles or electrode plates, relatively few have explored the use of pulsed ac fields. Following our previous study, which established the effectiveness of ac fields for electroporating cell membranes, a primary/secondary coil system was constructed to produce sufficiently strong electric fields by electromagnetic induction. The primary coil was formed from the applicator of an established transcranial magnetic stimulation (TMS) system, while the secondary coil was a purpose-built device of a design which could eventually be implanted into tissue. The effects of field strength, pulse interval and cumulative exposure time were investigated using microscopy and flow cytometry. Results from experiments on concentrated cell suspensions showed an optimized electroporation efficiency of around 50%, demonstrating that electroporation can be practicably achieved by inducing such pulsed ac fields. This finding confirms the possibility of a wide range of in vivo applications based on magnetically coupled ac electroporation.

  2. History of the geomagnetic field

    USGS Publications Warehouse

    Doell, Richard R.

    1969-01-01

    Direct measurements of the direction and strength of the earth's magnetic field have provided a knowledge of the field's form and behavior during the last few hundreds of years. For older times, however, it has been necessary to measure the magnetism of certain rocks to learn what the geomagnetic field was like. For example, when a lava flow solidifies (at temperatures near 1000??C) and cools through the Curie point of the magnetic minerals contained in it (around 500??C) it acquires a remanent magnetism that is (1) very weak, (2) very stablel, (3) paralle to the direction of the ambient geomagnetic field, and (4) proportional in intensity to the ambient field. Separating, by various analytical means, this magnetization from other 'unwanted' magnetizations has allowed paleomagnetists to study the historical and prehistorical behavior of the earth's field. It has been learned, for example, that the strength of the field was almost twice its present value 2000 years ago and that it has often completely reversed its polarity. Paleo-magnetists have also confirmed that most oceans are, geologically speaking, relatively new features, and that the continents have markedly changed their positions over the surface of the earth. ?? 1969 The American Institute of Physics.

  3. Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach

    NASA Astrophysics Data System (ADS)

    Chegel, Raad; Behzad, Somayeh

    2013-11-01

    We have investigated the electronic properties of SiNTs, under the external electric field, using Tight Binding (TB) approximation. It was found that the energy levels, energy gaps, and density of states (DOS) strongly depend on the electric field strength. The large electric strength leads to coupling the neighbor subbands and induce destruction of subband degeneracy, increase of low-energy states, and strong modulation of energy gap which these effects reflect in the DOS spectrum. It has been shown that, the band gap reduction of Si g-NTs is linearly proportional to the electric field strength. The band gap variation for Si h-NTs increases first and later decreases (Metallic) or first remains constant and then decreases (semiconductor). Also we show that the larger diameter tubes are more sensitive to the field strength than smaller ones. The semiconducting metallic transition or vice versa can be achieved through an increasing of applied fields. Number and position of peaks in DOS spectrum are dependent on electric field strength.

  4. Experimental studies on the enhanced performance of lightweight oil recovery using a combined electrocoagulation and magnetic field processes.

    PubMed

    Liu, Yang; Yang, Jie; Jiang, Wenming; Chen, Yimei; Yang, Chaojiang; Wang, Tianyu; Li, Yuxing

    2018-08-01

    On marine oil spill, inflammable lightweight oil has characteristics of explosion risk and contamination of marine enviroment, therefore treatment of stable emulsion with micron oil droplets is urgent. This study aimed to propose a combined electrocoagulation and magnetic field processes to enhance performance of lightweight oil recovery with lower energy consumption. The effects of current density, electrolysis time, strength and direction of magnetic field on the overall treatment efficiency of the reactor were explored. Furthermore, the comparison between coupling device and only electrocoagulation through tracking oil removal in nine regions between the electrodes. The results were shown that the permanent magnets applied was found to enhance demulsification process within electrocoagulation reactor. For a given current density of 60 A m -2 at 16 min, Lorentz force downward was proved to promote the sedimentation of coagulants. As the magnetic field strength increases from 20 to 60 mT, oil removal efficiency was observed to increase and then decrease, and simultaneously energy consumption reduced and then present constantly. The results were found that the magnetic field strength of 40 mT was optimal within electrocoagulation reactor, which can not only diminishe difference of mass transfer rate along the height of vertical plate but also consume lowest energy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of magnetic field inhomogeneity on ion cyclotron motion coherence at high magnetic field.

    PubMed

    Vladimirov, Gleb; Kostyukevich, Yury; Hendrickson, Christopher L; Blakney, Greg T; Nikolaev, Eugene

    2015-01-01

    A three-dimensional code based on the particle-in-cell algorithm modified to account for the inhomogeneity of the magnetic field was applied to determine the effect of Z(1), Z(2), Z(3), Z(4), X, Y, ZX, ZY, XZ(2) YZ(2), XY and X(2)-Y(2) components of an orthogonal magnetic field expansion on ion motion during detection in an FT-ICR cell. Simulations were performed for magnetic field strengths of 4.7, 7, 14.5 and 21 Tesla, including experimentally determined magnetic field spatial distributions for existing 4.7 T and 14.5 T magnets. The effect of magnetic field inhomogeneity on ion cloud stabilization ("ion condensation") at high numbers of ions was investigated by direct simulations of individual ion trajectories. Z(1), Z(2), Z(3) and Z(4) components have the largest effect (especially Z(1)) on ion cloud stability. Higher magnetic field strength and lower m/z demand higher relative magnetic field homogeneity to maintain cloud coherence for a fixed time period. The dependence of mass resolving power upper limit on Z(1) inhomogeneity is evaluated for different magnetic fields and m/z. The results serve to set the homogeneity requirements for various orthogonal magnetic field components (shims) for future FT-ICR magnet design.

  6. 47 CFR 90.359 - Field strength limits for EA-licensed LMS systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Field strength limits for EA-licensed LMS systems. 90.359 Section 90.359 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES Intelligent Transportation Systems Radio Service § 90.359 Field strength limits for...

  7. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...

  8. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...

  9. 47 CFR 5.87 - Frequencies for field strength surveys or equipment demonstrations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Frequencies for field strength surveys or... EXPERIMENTAL RADIO SERVICE (OTHER THAN BROADCAST) Applications and Licenses § 5.87 Frequencies for field strength surveys or equipment demonstrations. (a) Authorizations issued under §§ 5.3 (e) and (f) of this...

  10. Optical Field-Strength Polarization of Two-Mode Single-Photon States

    ERIC Educational Resources Information Center

    Linares, J.; Nistal, M. C.; Barral, D.; Moreno, V.

    2010-01-01

    We present a quantum analysis of two-mode single-photon states based on the probability distributions of the optical field strength (or position quadrature) in order to describe their quantum polarization characteristics, where polarization is understood as a significative confinement of the optical field-strength values on determined regions of…

  11. Magnetic fluorescent lamp

    DOEpatents

    Berman, S.M.; Richardson R.W.

    1983-12-29

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly is enhanced by providing means for establishing a magnetic field with lines of force along the path of electron flow through the bulb of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  12. Strong coupling in electromechanical computation

    NASA Astrophysics Data System (ADS)

    Füzi, János

    2000-06-01

    A method is presented to carry out simultaneously electromagnetic field and force computation, electrical circuit analysis and mechanical computation to simulate the dynamic operation of electromagnetic actuators. The equation system is solved by a predictor-corrector scheme containing a Powell error minimization algorithm which ensures that every differential equation (coil current, field strength rate, flux rate, speed of the keeper) is fulfilled within the same time step.

  13. Electric field strength determination in filamentary DBDs by CARS-based four-wave mixing

    NASA Astrophysics Data System (ADS)

    Boehm, Patrick; Kettlitz, Manfred; Brandenburg, Ronny; Hoeft, Hans; Czarnetzki, Uwe

    2016-09-01

    The electric field strength is a basic parameter of non-thermal plasmas. Therefore, a profound knowledge of the electric field distribution is crucial. In this contribution a four wave mixing technique based on Coherent Anti-Stokes Raman spectroscopy (CARS) is used to measure electric field strengths in filamentary dielectric barrier discharges (DBDs). The discharges are operated with a pulsed voltage in nitrogen at atmospheric pressure. Small amounts hydrogen (10 vol%) are admixed as tracer gas to evaluate the electric field strength in the 1 mm discharge gap. Absolute values of the electric field strength are determined by calibration of the CARS setup with high voltage amplitudes below the ignition threshold of the arrangement. Alteration of the electric field strength has been observed during the internal polarity reversal and the breakdown process. In this case the major advantage over emission based methods is that this technique can be used independently from emission, e.g. in the pre-phase and in between two consecutive, opposite discharge pulses where no emission occurs at all. This work was supported by the Deutsche Forschungsgemeinschaft, Forschergruppe FOR 1123 and Sonderforschungsbereich TRR 24 ``Fundamentals of complex plasmas''.

  14. Dynamical Model for Spindown of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Sood, Aditi; Kim, Eun-jin; Hollerbach, Rainer

    2016-12-01

    After their formation, stars slow down their rotation rates by the removal of angular momentum from their surfaces, e.g., via stellar winds. Explaining how this rotation of solar-type stars evolves in time is currently an interesting but difficult problem in astrophysics. Despite the complexity of the processes involved, a traditional model, where the removal of angular momentum by magnetic fields is prescribed, has provided a useful framework to understand observational relations between stellar rotation, age, and magnetic field strength. Here, for the first time, a spindown model is proposed where loss of angular momentum by magnetic fields evolves dynamically, instead of being prescibed kinematically. To this end, we evolve the stellar rotation and magnetic field simultaneously over stellar evolution time by extending our previous work on a dynamo model which incorporates nonlinear feedback mechanisms on rotation and magnetic fields. We show that our extended model reproduces key observations and is capable of explaining the presence of the two branches of (fast and slow rotating) stars which have different relations between rotation rate Ω versus time (age), magnetic field strength | B| versus rotation rate, and frequency of magnetic field {ω }{cyc} versus rotation rate. For fast rotating stars we find that: (I) there is an exponential spindown {{Ω }}\\propto {e}-1.35t, with t measured in Gyr; (II) magnetic activity saturates for higher rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}0.83. For slow rotating stars we find: (I) a power-law spindown {{Ω }}\\propto {t}-0.52; (II) that magnetic activity scales roughly linearly with rotation rate; (III) {ω }{cyc}\\propto {{{Ω }}}1.16. The results obtained from our investigations are in good agreement with observations. The Vaughan-Preston gap is consistently explained in our model by the shortest spindown timescale in this transition from fast to slow rotators. Our results highlight the importance of self-regulation of magnetic fields and rotation by direct and indirect interactions involving nonlinear feedback in stellar evolution.

  15. REVIEWS OF TOPICAL PROBLEMS: Superfluidity and the magnetic field of pulsars

    NASA Astrophysics Data System (ADS)

    Sedrakyan, D. M.; Shakhabasyan, K. M.

    1991-07-01

    The current state of the theory of superfluidity in pulsars is presented. The superfluidity of hadronic matter in neutron stars is considered. It is shown that strong interaction between the neutron and proton condensates leads to a drag current of superconducting protons and to the generation of a strong time-independent magnetic field (B = 1012 G) parallel to the axis of rotation. The strength of this field depends on the microscopic parameters of the superfluid hadrons. Models explaining the origin of glitches and postglitch relaxation are discussed. The coupling time between the neutron superfluid and the rigid crust of the neutron star is calculated.

  16. Time-Dependent Behavior of Reinforced Polymer Concrete Columns under Eccentric Axial Loading

    PubMed Central

    Berardi, Valentino Paolo; Mancusi, Geminiano

    2012-01-01

    Polymer concretes (PCs) represent a promising alternative to traditional cementitious materials in the field of new construction. In fact, PCs exhibit high compressive strength and ultimate compressive strain values, as well as good chemical resistance. Within the context of these benefits, this paper presents a study on the time-dependent behavior of polymer concrete columns reinforced with different bar types using a mechanical model recently developed by the authors. Balanced internal reinforcements are considered (i.e., two bars at both the top and bottom of the cross-section). The investigation highlights relevant stress and strain variations over time and, consequently, the emergence of a significant decrease in concrete’s stiffness and strength over time. Therefore, the results indicate that deferred effects due to viscous flow may significantly affect the reliability of reinforced polymer concrete elements over time.

  17. [Methodological aspects of functional neuroimaging at high field strength: a critical review].

    PubMed

    Scheef, L; Landsberg, M W; Boecker, H

    2007-09-01

    The last few years have proven that high field magnetic resonance imaging (MRI) is superior in nearly every way to conventional equipment up to 1.5 tesla (T). Following the global success of 3T-scanners in research institutes and medical practices, a new generation of MRI devices with field strengths of 7T and higher is now on the horizon. The introduction of ultra high fields has brought MRI technology closer to the physical limitations and increasingly greater costs are required to achieve this goal. This article provides a critical overview of the advantages and problems of functional neuroimaging using ultra high field strengths. This review is principally limited to T2*-based functional imaging techniques not dependent on contrast agents. The main issues include the significance of high field technology with respect to SNR, CNR, resolution, and sequences, as well as artifacts, noise exposure, and SAR. Of great relevance is the discussion of parallel imaging, which will presumably determine the further development of high and ultra high field strengths. Finally, the importance of high field strengths for functional neuroimaging is explained by selected publications.

  18. Solar Magnetic Carpet III: Coronal Modelling of Synthetic Magnetograms

    NASA Astrophysics Data System (ADS)

    Meyer, K. A.; Mackay, D. H.; van Ballegooijen, A. A.; Parnell, C. E.

    2013-09-01

    This article is the third in a series working towards the construction of a realistic, evolving, non-linear force-free coronal-field model for the solar magnetic carpet. Here, we present preliminary results of 3D time-dependent simulations of the small-scale coronal field of the magnetic carpet. Four simulations are considered, each with the same evolving photospheric boundary condition: a 48-hour time series of synthetic magnetograms produced from the model of Meyer et al. ( Solar Phys. 272, 29, 2011). Three simulations include a uniform, overlying coronal magnetic field of differing strength, the fourth simulation includes no overlying field. The build-up, storage, and dissipation of magnetic energy within the simulations is studied. In particular, we study their dependence upon the evolution of the photospheric magnetic field and the strength of the overlying coronal field. We also consider where energy is stored and dissipated within the coronal field. The free magnetic energy built up is found to be more than sufficient to power small-scale, transient phenomena such as nanoflares and X-ray bright points, with the bulk of the free energy found to be stored low down, between 0.5 - 0.8 Mm. The energy dissipated is currently found to be too small to account for the heating of the entire quiet-Sun corona. However, the form and location of energy-dissipation regions qualitatively agree with what is observed on small scales on the Sun. Future MHD modelling using the same synthetic magnetograms may lead to a higher energy release.

  19. Estimation of activation energy for electroporation and pore growth rate in liquid crystalline and gel phases of lipid bilayers using molecular dynamics simulations.

    PubMed

    Majhi, Amit Kumar; Kanchi, Subbarao; Venkataraman, V; Ayappa, K G; Maiti, Prabal K

    2015-11-28

    Molecular dynamics simulations of electroporation in POPC and DPPC lipid bilayers have been carried out at different temperatures ranging from 230 K to 350 K for varying electric fields. The dynamics of pore formation, including threshold field, pore initiation time, pore growth rate, and pore closure rate after the field is switched off, was studied in both the gel and liquid crystalline (Lα) phases of the bilayers. Using an Arrhenius model of pore initiation kinetics, the activation energy for pore opening was estimated to be 25.6 kJ mol(-1) and 32.6 kJ mol(-1) in the Lα phase of POPC and DPPC lipids respectively at a field strength of 0.32 V nm(-1). The activation energy decreases to 24.2 kJ mol(-1) and 23.7 kJ mol(-1) respectively at a higher field strength of 1.1 V nm(-1). At temperatures below the melting point, the activation energy in the gel phase of POPC and DPPC increases to 28.8 kJ mol(-1) and 34.4 kJ mol(-1) respectively at the same field of 1.1 V nm(-1). The pore closing time was found to be higher in the gel than in the Lα phase. The pore growth rate increases linearly with temperature and quadratically with field, consistent with viscosity limited growth models.

  20. Consistency restrictions on maximal electric-field strength in quantum field theory.

    PubMed

    Gavrilov, S P; Gitman, D M

    2008-09-26

    Quantum field theory with an external background can be considered as a consistent model only if backreaction is relatively small with respect to the background. To find the corresponding consistency restrictions on an external electric field and its duration in QED and QCD, we analyze the mean-energy density of quantized fields for an arbitrary constant electric field E, acting during a large but finite time T. Using the corresponding asymptotics with respect to the dimensionless parameter eET2, one can see that the leading contributions to the energy are due to the creation of particles by the electric field. Assuming that these contributions are small in comparison with the energy density of the electric background, we establish the above-mentioned restrictions, which determine, in fact, the time scales from above of depletion of an electric field due to the backreaction.

  1. Quench field sensitivity of two-particle correlation in a Hubbard model

    PubMed Central

    Zhang, X. Z.; Lin, S.; Song, Z.

    2016-01-01

    Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080

  2. Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene.

    PubMed

    Crosse, J A; Xu, Xiaodong; Sherwin, Mark S; Liu, R B

    2014-09-24

    In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron-hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm(-1)), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm(-1) can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron-hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications.

  3. Driving Force of Plasma Bullet in Atmospheric-Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Masuda, Seiya; Kondo, Shoma

    2018-06-01

    When plasma is generated by applying high-voltage alternating current (AC), the driving force of the temporally and spatially varying electric field is applied to the plasma. The strength of the driving force of the plasma at each spatial position is different because the electrons constituting the atmospheric-pressure nonequilibrium (cold) plasma move at a high speed in space. If the force applied to the plasma is accelerated only by the driving force, the plasma will be accelerated infinitely. The equilibrium between the driving force and the restricting force due to the collision between the plasma and neutral particles determines the inertial force and the drift velocity of the plasma. Consequently, the drift velocity depends on the strength of the time-averaged AC electric field. The pressure applied by the AC electric field equilibrates with the plasma pressure. From the law of conservation of energy, the pressure equilibrium is maintained by varying the drift velocity of the plasma.

  4. Large-scale, near-Earth, magnetic fields from external sources and the corresponding induced internal field

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Estes, R. H.

    1983-01-01

    Data from MAGSAT analyzed as a function of the Dst index to determine the first degree/order spherical harmonic description of the near-Earth external field and its corresponding induced field. The analysis was done separately for data from dawn and dusk. The MAGSAT data was compared with POGO data. A local time variation of the external field persists even during very quiet magnetic conditions; both a diurnal and 8-hour period are present. A crude estimate of Sq current in the 45 deg geomagnetic latitude range is obtained for 1966 to 1970. The current strength, located in the ionosphere and induced in the Earth, is typical of earlier determinations from surface data, although its maximum is displaced in local time from previous results.

  5. Anhydrous octyl-glucoside phase transition from lamellar to isotropic induced by electric and magnetic fields.

    PubMed

    Hashim, Rauzah; Sugimura, Akihiko; Nguan, Hock-Seng; Rahman, Matiur; Zimmermann, Herbert

    2017-02-28

    A static deuterium nuclear magnetic resonance ( 2 HNMR) technique (magnetic field, B = 7.05 T) was employed to monitor the thermotropic lamellar phase of the anhydrous 1:1 mixture sample of octyl-b-D-glucoside (βOG) and that of partially deuterium labelled at the alpha position on the chain, i.e.,βOG-d 2 In the absence of an electric field, the 2 H NMR spectrum of the mixture gives a typical quadrupolar doublet representing the aligned lamellar phase. Upon heating to beyond the clearing temperature at 112 °C, this splitting converts to a single line expected for an isotropic phase. Simultaneous application of magnetic and electric fields (E = 0.4 MV/m) at 85 °C in the lamellar phase, whose direction was set to be parallel or perpendicular to the magnetic field, resulted in the change of the doublet into a single line and this recovers to the initial doublet with time for both experimental geometries. This implies E- and B-field-induced phase transitions from the lamellar to an isotropic phase and a recovery to the lamellar phase again with time. Moreover, these phase transformations are accompanied by a transient current. A similar observation was made in a computational study when an electric field was applied to a water cluster system. Increasing the field strength distorts the water cluster and weakens its hydrogen bonds leading to a structural breakdown beyond a threshold field-strength. Therefore, we suggest the observed field-induced transition is likely due to a structure change of the βOG lamellar assembly caused by the field effect and not due to Joule heating.

  6. Quantum phases of dipolar rotors on two-dimensional lattices

    NASA Astrophysics Data System (ADS)

    Abolins, B. P.; Zillich, R. E.; Whaley, K. B.

    2018-03-01

    The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant. For the triangular lattice, the generic orientationally disordered phase found at zero and weak values of both dipolar interaction strength and applied field is found to show a transition to a phase characterized by net polarization in the lattice plane as the strength of the dipole-dipole interaction is increased, independent of the strength of the applied transverse field, in addition to the expected transition to a transverse polarized phase as the electric field strength increases. The square lattice is also found to exhibit a transition from a disordered phase to an ordered phase as the dipole-dipole interaction strength is increased, as well as the expected transition to a transverse polarized phase as the electric field strength increases. In contrast to the situation with a triangular lattice, on square lattices, the ordered phase at high dipole-dipole interaction strength possesses a striped ordering. The properties of these quantum dipolar rotor phases are dominated by the anisotropy of the interaction and provide useful models for developing quantum phases beyond the well-known paradigms of spin Hamiltonian models, implementing in particular a novel physical realization of a quantum rotor-like Hamiltonian that possesses an anisotropic long range interaction.

  7. Rolling up of Large-scale Laminar Vortex Ring from Synthetic Jet Impinging onto a Wall

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Pan, Chong; Wang, Jinjun; Flow Control Lab Team

    2015-11-01

    Vortex ring impinging onto a wall exhibits a wide range of interesting behaviors. The present work devotes to an experimental investigation of a series of small-scale vortex rings impinging onto a wall. These laminar vortex rings were generated by a piston-cylinder driven synthetic jet in a water tank. Laser Induced Fluorescence (LIF) and Particle Image Velocimetry (PIV) were used for flow visualization/quantification. A special scenario of vortical dynamic was found for the first time: a large-scale laminar vortex ring is formed above the wall, on the outboard side of the jet. This large-scale structure is stable in topology pattern, and continuously grows in strength and size along time, thus dominating dynamics of near wall flow. To quantify its spatial/temporal characteristics, Finite-Time Lyapunov Exponent (FTLE) fields were calculated from PIV velocity fields. It is shown that the flow pattern revealed by FTLE fields is similar to the visualization. The size of this large-scale vortex ring can be up to one-order larger than the jet vortices, and its rolling-up speed and entrainment strength was correlated to constant vorticity flux issued from the jet. This work was supported by the National Natural Science Foundation of China (Grants No.11202015 and 11327202).

  8. Microchip Electrophoresis at Elevated Temperatures and High Separation Field Strengths

    PubMed Central

    Mitra, Indranil; Marczak, Steven P.; Jacobson, Stephen C.

    2014-01-01

    We report free-solution microchip electrophoresis performed at elevated temperatures and high separation field strengths. We used microfluidic devices with 11-cm long separation channels to conduct separations at temperatures between 22 (ambient) and 45 °C and field strengths from 100 to 1000 V/cm. To evaluate separation performance, N-glycans were used as a model system and labeled with 8-aminopyrene-1,3,6-trisulfonic acid to impart charge for electrophoresis and render them fluorescent. Typically, increased diffusivity at higher temperatures leads to increased axial dispersion and poor separation performance; however, we demonstrate that sufficiently high separation field strengths can be used to offset the impact of increased diffusivity in order to maintain separation efficiency. Efficiencies for these free-solution separations are the same at temperatures of 25, 35, and 45 °C with separation field strengths ≥500 V/cm. PMID:24114979

  9. Wireless Concrete Strength Monitoring of Wind Turbine Foundations.

    PubMed

    Perry, Marcus; Fusiek, Grzegorz; Niewczas, Pawel; Rubert, Tim; McAlorum, Jack

    2017-12-16

    Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete's initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance.

  10. Wireless Concrete Strength Monitoring of Wind Turbine Foundations

    PubMed Central

    Niewczas, Pawel; Rubert, Tim

    2017-01-01

    Wind turbine foundations are typically cast in place, leaving the concrete to mature under environmental conditions that vary in time and space. As a result, there is uncertainty around the concrete’s initial performance, and this can encourage both costly over-design and inaccurate prognoses of structural health. Here, we demonstrate the field application of a dense, wireless thermocouple network to monitor the strength development of an onshore, reinforced-concrete wind turbine foundation. Up-to-date methods in fly ash concrete strength and maturity modelling are used to estimate the distribution and evolution of foundation strength over 29 days of curing. Strength estimates are verified by core samples, extracted from the foundation base. In addition, an artificial neural network, trained using temperature data, is exploited to demonstrate that distributed concrete strengths can be estimated for foundations using only sparse thermocouple data. Our techniques provide a practical alternative to computational models, and could assist site operators in making more informed decisions about foundation design, construction, operation and maintenance. PMID:29258176

  11. Magnetic-field-induced dose effects in MR-guided radiotherapy systems: dependence on the magnetic field strength.

    PubMed

    Raaijmakers, A J E; Raaymakers, B W; Lagendijk, J J W

    2008-02-21

    Several institutes are currently working on the development of a radiotherapy treatment system with online MR imaging (MRI) modality. The main difference between their designs is the magnetic field strength of the MRI system. While we have chosen a 1.5 Tesla (T) magnetic field strength, the Cross Cancer Institute in Edmonton will be using a 0.2 T MRI scanner and the company Viewray aims to use 0.3 T. The magnetic field strength will affect the severity of magnetic field dose effects, such as the electron return effect (ERE): considerable dose increase at tissue air boundaries due to returning electrons. This paper has investigated how the ERE dose increase depends on the magnetic field strength. Therefore, four situations where the ERE occurs have been simulated: ERE at the distal side of the beam, the lateral ERE, ERE in cylindrical air cavities and ERE in the lungs. The magnetic field comparison values were 0.2, 0.75, 1.5 and 3 T. Results show that, in general, magnetic field dose effects are reduced at lower magnetic field strengths. At the distal side, the ERE dose increase is largest for B = 0.75 T and depends on the irradiation field size for B = 0.2 T. The lateral ERE is strongest for B = 3 T but shows no effect for B = 0.2 T. Around cylindrical air cavities, dose inhomogeneities disappear if the radius of the cavity becomes small relative to the in-air radius of the secondary electron trajectories. At larger cavities (r > 1 cm), dose inhomogeneities exist for all magnetic field strengths. In water-lung-water phantoms, the ERE dose increase takes place at the water-lung transition and the dose decreases at the lung-water transition, but these effects are minimal for B = 0.2 T. These results will contribute to evaluating the trade-off between magnetic field dose effects and image quality of MR-guided radiotherapy systems.

  12. Characterisation of cationic potato starch by asymmetrical flow field-flow fractionation. Influence of ionic strength and degree of substitution.

    PubMed

    Santacruz, Stalin

    2014-06-15

    The properties of a paper sheet depend on the absorption together with the physico-chemical properties of additives used in the paper processing. The effect of ionic strength and degree of substitution of cationic potato starch on the elution pattern of asymmetrical flow field-flow fractionation was analysed. The effect of starch derivatisation, in either dry or wet phase, was also investigated. Average molar mass showed no difference between the starches obtained from the two derivatisation processes. Apparent densities showed that dry cationic starch had higher density than wet cationic starch for a hydrodynamic radius between 50 and 100 nm. Elution times of native and three cationic starches increased when the ionic strength increased from 50 to 100mM. No differences in the molar mass among cationic starches with different degree of substitution suggested no degradation due to a derivatisation process. Large sample loads can be used at 100mM without overloading. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. In-situ hydrogen in metal determination using a minimum neutron source strength and exposure time.

    PubMed

    Hatem, M; Agamy, S; Khalil, M Y

    2013-08-01

    Water is frequently present in the environment and is a source of hydrogen that can interact with many materials. Because of its small atomic size, a hydrogen atom can easily diffuse into a host metal, and though the metal may appear unchanged for a time, the metal will eventually abruptly lose its strength and ductility. Thus, measuring the hydrogen content in metals is important in many fields, such as in the nuclear industry, in automotive and aircraft fabrication, and particularly, in offshore oil and gas fields. It has been demonstrated that the use of nuclear methods to measure the hydrogen content in metals can achieve sensitivity levels on the order of parts per million. However, the use of nuclear methods in the field has not been conducted for two reasons. The first reason is due to exposure limitations. The second reason is due to the hi-tech instruments required for better accuracy. In this work, a new method using a low-strength portable neutron source is explored in conjunction with detectors based on plastic nuclear detection films. The following are the in-situ requirements: simplicity in setup, high reliability, minimal exposure dose, and acceptable accuracy at an acceptable cost. A computer model of the experimental setup is used to reproduce the results of a proof-of-concept experiment and to predict the sensitivity levels under optimised experimental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas.

    PubMed

    Wang, Huapei; Kent, Dennis V; Rochette, Pierre

    2015-12-08

    The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene-Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain-behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼ 60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 10(22) A ⋅ m(2).

  15. Design of a soil cutting resistance sensor for application in site-specific tillage.

    PubMed

    Agüera, Juan; Carballido, Jacob; Gil, Jesús; Gliever, Chris J; Perez-Ruiz, Manuel

    2013-05-10

    One objective of precision agriculture is to provide accurate information about soil and crop properties to optimize the management of agricultural inputs to meet site-specific needs. This paper describes the development of a sensor equipped with RTK-GPS technology that continuously and efficiently measures soil cutting resistance at various depths while traversing the field. Laboratory and preliminary field tests verified the accuracy of this prototype soil strength sensor. The data obtained using a hand-operated soil cone penetrometer was used to evaluate this field soil compaction depth profile sensor. To date, this sensor has only been tested in one field under one gravimetric water content condition. This field test revealed that the relationships between the soil strength profile sensor (SSPS) cutting force and soil cone index values are assumed to be quadratic for the various depths considered: 0-10, 10-20 and 20-30 cm (r2 = 0.58, 0.45 and 0.54, respectively). Soil resistance contour maps illustrated its practical value. The developed sensor provides accurate, timely and affordable information on soil properties to optimize resources and improve agricultural economy.

  16. Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas

    PubMed Central

    Wang, Huapei; Kent, Dennis V.; Rochette, Pierre

    2015-01-01

    The geomagnetic field is predominantly dipolar today, and high-fidelity paleomagnetic mean directions from all over the globe strongly support the geocentric axial dipole (GAD) hypothesis for the past few million years. However, the bulk of paleointensity data fails to coincide with the axial dipole prediction of a factor-of-2 equator-to-pole increase in mean field strength, leaving the core dynamo process an enigma. Here, we obtain a multidomain-corrected Pliocene–Pleistocene average paleointensity of 21.6 ± 11.0 µT recorded by 27 lava flows from the Galapagos Archipelago near the Equator. Our new result in conjunction with a published comprehensive study of single-domain–behaved paleointensities from Antarctica (33.4 ± 13.9 µT) that also correspond to GAD directions suggests that the overall average paleomagnetic field over the past few million years has indeed been dominantly dipolar in intensity yet only ∼60% of the present-day field strength, with a long-term average virtual axial dipole magnetic moment of the Earth of only 4.9 ± 2.4 × 1022 A⋅m2. PMID:26598664

  17. Colloidal particle electrorotation in a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Vlahovska, Petia M.; Miksis, Michael J.

    2018-01-01

    A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are determined. Particle dynamics becomes more complex with increasing electric field strength, changing from steady spinning around the particle center to time-dependent orbiting motion around the minimum field location. Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis, and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many particles in a general electric field.

  18. Colloidal particle electrorotation in a nonuniform electric field.

    PubMed

    Hu, Yi; Vlahovska, Petia M; Miksis, Michael J

    2018-01-01

    A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are determined. Particle dynamics becomes more complex with increasing electric field strength, changing from steady spinning around the particle center to time-dependent orbiting motion around the minimum field location. Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis, and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many particles in a general electric field.

  19. k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T.

    PubMed

    Heidemann, Robin M; Anwander, Alfred; Feiweier, Thorsten; Knösche, Thomas R; Turner, Robert

    2012-04-02

    There is ongoing debate whether using a higher spatial resolution (sampling k-space) or a higher angular resolution (sampling q-space angles) is the better way to improve diffusion MRI (dMRI) based tractography results in living humans. In both cases, the limiting factor is the signal-to-noise ratio (SNR), due to the restricted acquisition time. One possible way to increase the spatial resolution without sacrificing either SNR or angular resolution is to move to a higher magnetic field strength. Nevertheless, dMRI has not been the preferred application for ultra-high field strength (7 T). This is because single-shot echo-planar imaging (EPI) has been the method of choice for human in vivo dMRI. EPI faces several challenges related to the use of a high resolution at high field strength, for example, distortions and image blurring. These problems can easily compromise the expected SNR gain with field strength. In the current study, we introduce an adapted EPI sequence in conjunction with a combination of ZOOmed imaging and Partially Parallel Acquisition (ZOOPPA). We demonstrate that the method can produce high quality diffusion-weighted images with high spatial and angular resolution at 7 T. We provide examples of in vivo human dMRI with isotropic resolutions of 1 mm and 800 μm. These data sets are particularly suitable for resolving complex and subtle fiber architectures, including fiber crossings in the white matter, anisotropy in the cortex and fibers entering the cortex. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study

    PubMed Central

    Vegh, Viktor; Reutens, David C.

    2016-01-01

    Object We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. Materials and Methods The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. Results A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20–50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. Conclusions A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably. PMID:27271886

  1. Future Radiation Damage in Space due to South Atlantic Anomaly

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    Predictions of radiation damage for Low Earth Orbit (LEO) satellites now use semi-empirical models developed from prior satellite data. From these models it is clear that the low field strength of the South Atlantic Anomaly (SAA) controls where the maximum radiation damage occurs. One may make an estimate of future radiation damage to LEO spacecraft if one can predict the future of the SAA. Although reliable maps of the geomagnetic field strength and its secular change have only been made in the last few decades, certain geomagnetic observatories in South America and Africa have recorded the geomagnetic field for a much longer time. These observatories show that the present geomagnetic field change has persisted for more than 100 years. In spite of the fact that a few observatories have shown sudden changes in secular variation, those around the SAA have shown a stable secular variation. Assuming that this will continue for the next 50 to 100 years one can show that the SAA will expand to cover most of the South Atlantic Ocean and will become much weaker. This will greatly intensify the radiation hazard in LEO, put significant new limitations on radiation-hardened hardware, severely restrict the length of time that humans can remain in orbit, and materially change the configuration of the radiation belts.

  2. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting.

    PubMed

    Frank, Michael B; Naleway, Steven E; Haroush, Tsuk; Liu, Chin-Hung; Siu, Sze Hei; Ng, Jerry; Torres, Ivan; Ismail, Ali; Karandikar, Keyur; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-08-01

    Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population. Scaffolds made by magnetic freeze casting resemble the aligned porosity of spongy bone. A magnetic field applied throughout freezing induces particle chaining and alignment of lamellae structures between growing ice crystals. After freeze drying to extract the ice and sintering to strengthen the scaffold, cubes from the scaffold center are mechanically compressed along longitudinal (z-axis, ice growth direction) and transverse (y-axis, magnetic field direction) axes. The best alignment of lamellar walls in the scaffold center occurs when applying magnetic freeze casting with the largest particles (350nm) at an intermediate magnetic field strength (75mT), which also agrees with stiffness enhancement results in both z and y-axes. Magnetic moments of different sized magnetized alumina particles help determine the ideal magnetic field strength needed to induce alignment in the scaffold center rather than just at the poles. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Non-neutral plasma diode in the presence of a transverse magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pramanik, Sourav; Chakrabarti, Nikhil; Kuznetsov, V. I.

    An analytical study of the plasma states in non-neutral plasma diodes in the presence of an external transverse magnetic field is presented for an arbitrary neutralization parameter γ. Considerations are restricted to the regime where no electrons are turned around by the magnetic field. The emitter electric field strength E{sub 0} is used as a characteristic function to investigate the existence of solutions depending on the diode length, the applied voltage, the neutralization parameter, and the magnetic field strength. The potential distribution has a wave form for small magnitudes of the external magnetic field, as well as for the casemore » when magnetic field is absent. A new family of solutions appears along with the Bursian ones. On the other hand, as the Larmor radius becomes comparable with the beam Debye length, oscillations in the potential disappear, and only the Bursian branches remain. Unlike the vacuum diode, there are steady state solutions for the negative values of the emitter field strength. As the neutralization parameter (γ) increases, the emitter field strength relating to the SCL (space charge limit) bifurcation point diminishes, and at γ > 1, the value of the emitter's electric field strength at the space charge limit (E{sub 0,SCL}) turns out to be negative.« less

  4. Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties

    DOE PAGES

    Bai, Yang; He, Hui-Min; Li, Ying; ...

    2015-02-19

    Modulation of intermolecular interactions in response to external electric fields could be fundamental to the formation of unusual forms of water, such as water whiskers. However, a detailed understanding of the nature of intermolecular interactions in such systems is lacking. In this study, we present novel theoretical results based on electron correlation calculations regarding the nature of H-bonds in water whiskers, which is revealed by studying their evolution under external electric fields with various field strengths. We find that the water whiskers consisting of 2-7 water molecules all have a chain-length dependent critical electric field. Under the critical electric field,more » the most compact chain structures are obtained, featuring very strong H-bonds, herein referred to as covalent H-bonds. In the case of a water dimer whisker, the bond length of the novel covalent H-bond shortens by 25%, the covalent bond order increases by 9 times, and accordingly the H-bond energy is strengthened by 5 times compared to the normal H-bond in a (H 2O) 2 cluster. Below the critical electric field, it is observed that with increasing field strength, H-bonding orbitals display gradual evolutions in the orbital energy, orbital ordering, and orbital nature (i.e., from typical -style orbital to unusual -style double H-bonding orbital). We also show that beyond the critical electric field, a single water whisker may disintegrate to form a loosely bound zwitterionic chain due to a relay-style proton transfer, whereas two water whiskers may undergo intermolecular cross-linking to form a quasi-two-dimensional water network. In conclusion, these results help shed new insight on the effects of electric fields on water whisker formation.« less

  5. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  6. High-harmonic generation from Bloch electrons in solids

    NASA Astrophysics Data System (ADS)

    Wu, Mengxi; Ghimire, Shambhu; Reis, David A.; Schafer, Kenneth J.; Gaarde, Mette B.

    2015-04-01

    We study the generation of high-harmonic radiation by Bloch electrons in a model transparent solid driven by a strong midinfrared laser field. We solve the single-electron time-dependent Schrödinger equation (TDSE) using a velocity-gauge method [M. Korbman et al., New J. Phys. 15, 013006 (2013), 10.1088/1367-2630/15/1/013006] that is numerically stable as the laser intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis set, the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494], which allows us to separate interband and intraband contributions to the time-dependent current. We find that the interband and intraband contributions display very different time-frequency characteristics. We show that solutions in these two bases are equivalent under a unitary transformation but that, unlike the velocity-gauge method, the Houston state treatment is numerically unstable when more than a few low-lying energy bands are used.

  7. Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study

    NASA Technical Reports Server (NTRS)

    Tian, Pu; Smith, Grant D.

    2003-01-01

    We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  8. The Theory of Distributed Practice as Related to Acquisition of Psychomotor Skills by Adolescents in a Selected Curricular Field.

    ERIC Educational Resources Information Center

    Drake, James Bob

    1981-01-01

    From results on the tensile strength and nick-break average jury evaluations test, it was concluded that with the same total practice time, different distributions of welding practice time intervals (15, 30, and 45 minutes) influence the quality of butt welds made by ninth-grade vocational agriculture students. (Author/SJL)

  9. Effects of endurance training only versus same-session combined endurance and strength training on physical performance and serum hormone concentrations in recreational endurance runners.

    PubMed

    Schumann, Moritz; Mykkänen, Olli-Pekka; Doma, Kenji; Mazzolari, Raffaele; Nyman, Kai; Häkkinen, Keijo

    2015-01-01

    This study investigated the effects of endurance training only (E, n = 14) and same-session combined training, when strength training is repeatedly preceded by endurance loading (endurance and strength training (E+S), n = 13) on endurance (1000-m running time during incremental field test) and strength performance (1-repetition maximum (1RM) in dynamic leg press), basal serum hormone concentrations, and endurance loading-induced force and hormone responses in recreationally endurance-trained men. E was identical in the 2 groups and consisted of steady-state and interval running, 4-6 times per week for 24 weeks. E+S performed additional mixed-maximal and explosive-strength training (2 times per week) immediately following an incremental running session (35-45 min, 65%-85% maximal heart rate). E and E+S decreased running time at week 12 (-8% ± 5%, p = 0.001 and -7% ± 3%, p < 0.001) and 24 (-13% ± 5%, p < 0.001 and -9% ± 5%, p = 0.001). Strength performance decreased in E at week 24 (-5% ± 5%, p = 0.014) but was maintained in E+S (between-groups at week 12 and 24, p = 0.014 and 0.011, respectively). Basal serum testosterone and cortisol concentrations remained unaltered in E and E+S but testosterone/sex hormone binding globulin ratio decreased in E+S at week 12 (-19% ± 26%, p = 0.006). At week 0 and 24, endurance loading-induced acute force (-5% to -9%, p = 0.032 to 0.001) and testosterone and cortisol responses (18%-47%, p = 0.013 to p < 0.001) were similar between E and E+S. This study showed no endurance performance benefits when strength training was performed repeatedly after endurance training compared with endurance training only. This was supported by similar acute responses in force and hormonal measures immediately post-endurance loading after the training with sustained 1RM strength in E+S.

  10. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  11. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology.

    PubMed

    Bhattacharjee, N; Horowitz, L F; Folch, A

    2016-10-17

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  12. The Role of Storm Time Electrodynamics in Suppressing the Equatorial Plasma Bubble Development in the Recovery Phase of a Geomagnetic Storm

    NASA Astrophysics Data System (ADS)

    Sripathi, S.; Banola, S.; Emperumal, K.; Suneel Kumar, B.; Radicella, Sandro M.

    2018-03-01

    We investigate the role of storm time electrodynamics in suppressing the equatorial plasma bubble (EPB) development using multi-instruments over India during a moderate geomagnetic storm that occurred on 2 October 2013 where Dst minimum reached -80 nT. This storm produced unique signatures in the equatorial ionosphere such that equatorial electrojet strength showed signatures of an abrupt increase of its strength to 150 nT and occurrence of episodes of counter electrojet events. During the main phase of the storm, the interplanetary magnetic field Bz is well correlated with the variations in the equatorial electrojet/counter electrojet suggesting the role of undershielding/overshielding electric fields of magnetospheric origin. Further, observations showed the presence of strong F3 layers at multiple times at multiple stations due to undershielding electric field. Interestingly, we observed simultaneous presence of F3 layers and suppression of EPBs in the dusk sector during the recovery phase. While strong EPBs were observed before and after the day of the geomagnetic storm, suppression of the EPBs on the storm day during "spread F season" is intriguing. Our further analysis using low-latitude station, Hyderabad, during the time of prereversal enhancement suggests that intense Esb layers were observed on the storm day but were absent/weak on quiet days. Based on these results, we suggest that the altitude/latitude variation of disturbance dynamo electric fields/disturbance winds may be responsible for simultaneous detection of F3 layers, occurrence of low-latitude Es layers, and suppression of EPBs during the storm day along the sunset terminator.

  13. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  14. Characterization of time-dependent changes in strength and stiffness of Florida base materials : final report, October 2008.

    DOT National Transportation Integrated Search

    2008-10-01

    Resilient modulus and Youngs modulus are parameters increasingly used to fundamentally characterize the behavior : of pavement materials both in the laboratory and in the field. This study documents the small-strain Youngs modulus : and larger-...

  15. Upper limits to submillimetre-range forces from extra space-time dimensions.

    PubMed

    Long, Joshua C; Chan, Hilton W; Churnside, Allison B; Gulbis, Eric A; Varney, Michael C M; Price, John C

    2003-02-27

    String theory is the most promising approach to the long-sought unified description of the four forces of nature and the elementary particles, but direct evidence supporting it is lacking. The theory requires six extra spatial dimensions beyond the three that we observe; it is usually supposed that these extra dimensions are curled up into small spaces. This 'compactification' induces 'moduli' fields, which describe the size and shape of the compact dimensions at each point in space-time. These moduli fields generate forces with strengths comparable to gravity, which according to some recent predictions might be detected on length scales of about 100 microm. Here we report a search for gravitational-strength forces using planar oscillators separated by a gap of 108 micro m. No new forces are observed, ruling out a substantial portion of the previously allowed parameter space for the strange and gluon moduli forces, and setting a new upper limit on the range of the string dilaton and radion forces.

  16. Large-scale magnetic fields, non-Gaussianity, and gravitational waves from inflation

    NASA Astrophysics Data System (ADS)

    Bamba, Kazuharu

    2017-12-01

    We explore the generation of large-scale magnetic fields in the so-called moduli inflation. The hypercharge electromagnetic fields couple to not only a scalar field but also a pseudoscalar one, so that the conformal invariance of the hypercharge electromagnetic fields can be broken. We explicitly analyze the strength of the magnetic fields on the Hubble horizon scale at the present time, the local non-Gaussianity of the curvature perturbations originating from the massive gauge fields, and the tensor-to-scalar ratio of the density perturbations. As a consequence, we find that the local non-Gaussianity and the tensor-to-scalar ratio are compatible with the recent Planck results.

  17. The role of skin conductivity in a low frequency exposure assessment for peripheral nerve tissue according to the ICNIRP 2010 guidelines

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Cecil, Stefan; Überbacher, Richard

    2013-07-01

    Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future.

  18. Effects of 12-week on-field combined strength and power training on physical performance among U-14 young soccer players.

    PubMed

    Wong, Pui-lam; Chamari, Karim; Wisløff, Ulrik

    2010-03-01

    This study examined the effects of on-field combined strength and power training (CSPT) on physical performance among U-14 young soccer players. Players were assigned to experimental (EG, n = 28) and control groups (CG, n = 23). Both groups underwent preseason soccer training for 12 weeks. EG performed CSPT twice a week, which consisted of strength and power exercises that trained the major muscles of the core, upper, and lower body. CSPT significantly (p < 0.05) improved vertical jump height, ball-shooting speed, 10 m and 30 m sprint times, Yo-Yo intermittent endurance run (YYIER), and reduced submaximal running cost (RC). CSPT had moderate effect on vertical jump, ball-shooting, 30 m sprint, and YYIER, small effect on 10 m sprint, RC, and maximal oxygen uptake. YYIER had significant (p < 0.05) correlations with 10 m (r = -0.47) and 30 m (r = -0.43) sprint times, ball-shooting speed (r = 0.51), and vertical jump (r = 0.34). The CSPT can be performed together with soccer training with no concomitant interference on aerobic capacity and with improved explosive performances. In addition, it is suggested that CSPT be performed during the preseason period rather than in-season to avoid insufficient recovery/rest or overtraining.

  19. 47 CFR 18.305 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Field strength limit (uV/m) Distance (meters) Any type unless otherwise specified (miscellaneous) Any...Any 2515 300300 Ultrasonic Below 490 kHz Below 500500 or more 2,400/F(kHz)2,400/F(kHz)× SQRT(power/500... kHzOn or above 90 kHz AnyAny 1,500300 430 430 1 Field strength may not exceed 10 μV/m at 1600 meters...

  20. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  1. A Profile of Glenohumeral Internal and External Rotation Motion in the Uninjured High School Baseball Pitcher, Part II: Strength

    PubMed Central

    Hurd, Wendy J.; Kaplan, Kevin M.; ElAttrache, Neal S.; Jobe, Frank W.; Morrey, Bernard F.; Kaufman, Kenton R.

    2011-01-01

    Context: A database describing the range of normal rotator cuff strength values in uninjured high school pitchers has not been established. Chronologic factors that contribute to adaptations in strength also have not been established. Objectives: To establish a normative profile of rotator cuff strength in uninjured high school baseball pitchers and to determine whether bilateral differences in rotator cuff strength are normal findings in this age group. Design: Cohort study. Setting: Baseball playing field. Patients or Other Participants: A total of 165 uninjured male high school baseball pitchers (age = 16 ± 1 years, height = 1.8 ± 0.1 m, mass = 76.8 ± 10.1 kg, pitching experience = 7 ± 2 years). Main Outcome Measure(s): Isometric rotator cuff strength was measured bilaterally with a handheld dynamometer. We calculated side-to-side differences in strength (external rotation [ER], internal rotation [IR], and the ratio of ER:IR at 90° of abduction), differences in strength by age, and the influence of chronologic factors (participant age, years of pitching experience) on limb strength. Results: Side-to-side differences in strength were found for ER, IR, and ER:IR ratio at 90° of abduction. Age at the time of testing was a significant but weak predictor of both ER strength (R2 = 0.032, P = .02) and the ER:IR ratio (R2 = 0.051, P = .004) at 90° of abduction. Conclusions: We established a normative profile of rotator cuff strength for the uninjured high school baseball pitcher that might be used to assist clinicians and researchers in the interpretation of muscle strength performance in this population. These data further suggested that dominant-limb adaptations in rotator cuff strength are a normal finding in this age group and did not demonstrate that these adaptations were a consequence of the age at the time of testing or the number of years of pitching experience. PMID:21669099

  2. Intrinsic electric fields and proton diffusion in immobilized protein membranes. Effects of electrolytes and buffers.

    PubMed Central

    Zabusky, N J; Deem, G S

    1979-01-01

    We present a theory for proton diffusion through an immobilized protein membrane perfused with an electrolyte and a buffer. Using a Nernst-Planck equation for each species and assuming local charge neutrality, we obtain two coupled nonlinear diffusion equations with new diffusion coefficients dependent on the concentration of all species, the diffusion constants or mobilities of the buffers and salts, the pH-derivative of the titration curves of the mobile buffer and the immobilized protein, and the derivative with respect to ionic strength of the protein titration curve. Transient time scales are locally pH-dependent because of protonation-deprotonation reactions with the fixed protein and are ionic strength-dependent because salts provide charge carriers to shield internal electric fields. Intrinsic electric fields arise proportional to the gradient of an "effective" charge concentration. The field may reverse locally if buffer concentrations are large (greater to or equal to 0.1 M) and if the diffusivity of the electrolyte species is sufficiently small. The "ideal" electrolyte case (where each species has the same diffusivity) reduces to a simple form. We apply these theoretical considerations to membranes composed of papain and bovine serum albumin (BSA) and show that intrinsic electric fields greatly enhance the mobility of protons when the ionic strength of the salts is smaller than 0.1 M. These results are consistent with experiments where pH changes are observed to depend strongly on buffer, salt, and proton concentrations in baths adjacent to the membranes. PMID:233570

  3. Magnetic field generation in the cores of terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Runcorn, S. K.

    Efforts to find some scaling law for the dipole moments of planets seem illusory for, although dynamo theory is still in a rudimentary state, once the critical magnetic Reynolds Number is exceeded it appears that the field strength is determined by the energy source, it it is permissible to treat the core as a heat engine. For this reason the lunar magnetic field is of special significance as the paleomagnetic evidence strongly suggests that the surface field was about 1 G 3.9 by diminishing exponentially to about .02 G 3.2 by ago and completely disappearing some time later.

  4. Time-dependent modulation of galactic cosmic rays by merged interaction regions

    NASA Technical Reports Server (NTRS)

    Perko, J. S.

    1993-01-01

    Models that solve the one-dimensional, solar modulation equation have reproduced the 11-year galactic cosmic ray using functional representations of global merged interaction regions (MIRs). This study extends those results to the solution of the modulation equation with explicit time dependence. The magnetometers on Voyagers 1 and 2 provide local magnetic field intensities at regular intervals, from which one calculates the ratio of the field intensity to the average local field. These ratios in turn are inverted to form diffusion coefficients. Strung together in radius and time, these coefficents then fall and rise with the strength of the interplanetary magnetic field, becoming representations of MIRs. These diffusion coefficients, calculated locally, propagate unchanged from approx. 10 AU to the outer boundary (120 AU). Inside 10 AU, all parameters, including the diffusion coefficient are assumed constant in time and space. The model reproduces the time-intensity profiles of Voyager 2 and Pioneer 10. Radial gradient data from 1982-1990 between Pioneer 10 and Voyager 2 are about the same magnitude as those calculated in the model. It is also shows agreement in rough magnitude with the radial gradient between Pioneer 10 and 1 AU. When coupled with enhanced, time-dependent solar wind speed at the probe's high latitude, as measured by independent observers, the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source the model also follows Voyager 1's time-intensity profile reasonably well, providing a natural source for the observed negative latitudinal gradients. The model exhibits the 11-year cyclical cosmic ray intensity behavior at all radii, including 1 AU, not just at the location of the spacecraft where the magnetic fields are measured. In addition, the model's point of cosmic ray maximum correctly travels at the solar wind speed, illustrating the well-known propagation of modulation. Finally, at least in the inner heliosphere this model accounts for the delay experienced by lower-rigidity protons in reaching their time-intensity peak. The actual delays in this model, however, are somewhat smaller than the data. In the outer heliosphere the models sees no delays, and the data are ambiguous as to their existence. It appears that strong magnetic field compression regions (merged interaction regions) that are 3-4 times the average field strength can, at least in a helioequatorial band, disrupt effects, such as drifts, that could dominate in quieter magnetic fields. The question remains: Is the heliosphere ever quiet enough to allow such effects to be unambiguously measured, at least in the midlatitudes?

  5. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.

    PubMed

    Mahnič-Kalamiza, Samo; Kotnik, Tadej; Miklavčič, Damijan

    2012-10-30

    Electrochemotherapy is a local treatment that utilizes electric pulses in order to achieve local increase in cytotoxicity of some anticancer drugs. The success of this treatment is highly dependent on parameters such as tissue electrical properties, applied voltages and spatial relations in placement of electrodes that are used to establish a cell-permeabilizing electric field in target tissue. Non-thermal irreversible electroporation techniques for ablation of tissue depend similarly on these parameters. In the treatment planning stage, if oversimplified approximations for evaluation of electric field are used, such as U/d (voltage-to-distance ratio), sufficient field strength may not be reached within the entire target (tumor) area, potentially resulting in treatment failure. In order to provide an aid in education of medical personnel performing electrochemotherapy and non-thermal irreversible electroporation for tissue ablation, assist in visualizing the electric field in needle electrode electroporation and the effects of changes in electrode placement, an application has been developed both as a desktop- and a web-based solution. It enables users to position up to twelve electrodes in a plane of adjustable dimensions representing a two-dimensional slice of tissue. By means of manipulation of electrode placement, i.e. repositioning, and the changes in electrical parameters, the users interact with the system and observe the resulting electrical field strength established by the inserted electrodes in real time. The field strength is calculated and visualized online and instantaneously reflects the desired changes, dramatically improving the user friendliness and educational value, especially compared to approaches utilizing general-purpose numerical modeling software, such as finite element modeling packages. In this paper we outline the need and offer a solution in medical education in the field of electroporation-based treatments, e.g. primarily electrochemotherapy and non-thermal irreversible tissue ablation. We present the background, the means of implementation and the fully functional application, which is the first of its kind. While the initial feedback from students that have evaluated this application as part of an e-learning course is positive, a formal study is planned to thoroughly evaluate the current version and identify possible future improvements and modifications.

  6. A preliminary characterization of applied-field MPD thruster plumes

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn

    1991-01-01

    Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.

  7. Magnetic field formation in the Milky Way like disc galaxies of the Auriga project

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Gómez, Facundo A.; Grand, Robert J. J.; Marinacci, Federico; Simpson, Christine M.; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.; Guillet, Thomas; Pfrommer, Christoph; White, Simon D. M.

    2017-08-01

    The magnetic fields observed in the Milky Way and nearby galaxies appear to be in equipartition with the turbulent, thermal and cosmic ray energy densities, and hence are expected to be dynamically important. However, the origin of these strong magnetic fields is still unclear, and most previous attempts to simulate galaxy formation from cosmological initial conditions have ignored them altogether. Here, we analyse the magnetic fields predicted by the simulations of the Auriga Project, a set of 30 high-resolution cosmological zoom simulations of Milky Way like galaxies, carried out with a moving-mesh magnetohydrodynamics code and a detailed galaxy formation physics model. We find that the magnetic fields grow exponentially at early times owing to a small-scale dynamo with an e-folding time of roughly 100 Myr in the centre of haloes until saturation occurs around z = 2-3, when the magnetic energy density reaches about 10 per cent of the turbulent energy density with a typical strength of 10-50 {μ G}. In the galactic centres, the ratio between magnetic and turbulent energies remains nearly constant until z = 0. At larger radii, differential rotation in the discs leads to linear amplification that typically saturates around z = 0.5-0. The final radial and vertical variations of the magnetic field strength can be well described by two joint exponential profiles, and are in good agreement with observational constraints. Overall, the magnetic fields have only little effect on the global evolution of the galaxies as it takes too long to reach equipartition. We also demonstrate that our results are well converged with numerical resolution.

  8. Dependence of negative ion formation on inhomogeneous electric field strength in atmospheric pressure negative corona discharge

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2008-12-01

    The dependence of negative ion formation on the inhomogeneous electric field strength in atmospheric pressure negative corona discharge with point-to-plane electrodes has been described. The distribution of negative ions HO-, NOx - and COx - and their abundances on the plane electrode was obtained with a mass spectrometer. The ion distribution on the plane was divided into two regions, the center region on the needle axis and peripheral region occurring the dominant NOx - and COx - ions and HO- ion, respectively. The calculated electric field strength in inhomogeneous electric field established on the needle tip surface suggested that the abundant formation of NOx - and COx - ions and HO- ion is attributed to the high field strength at the tip apex region over 108 Vm-1 and the low field strength at the tip peripheral region of the order of 107 Vm-1, respectively. The formation of HO-, NOx - and COx - has been discussed from the standpoint of negative ion evolution based on the thermochemical reaction and the kinetic energy of electron emitted from the needle tip.

  9. Magnetic fluorescent lamp having reduced ultraviolet self-absorption

    DOEpatents

    Berman, Samuel M.; Richardson, Robert W.

    1985-01-01

    The radiant emission of a mercury-argon discharge in a fluorescent lamp assembly (10) is enhanced by providing means (30) for establishing a magnetic field with lines of force along the path of electron flow through the bulb (12) of the lamp assembly, to provide Zeeman splitting of the ultraviolet spectral line. Optimum results are obtained when the magnetic field strength causes a Zeeman splitting of approximately 1.7 times the thermal line width.

  10. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers.

    PubMed

    Baeßler, Bettina; Schaarschmidt, Frank; Stehning, Christian; Schnackenburg, Bernhard; Maintz, David; Bunck, Alexander C

    2015-11-01

    Previous studies showed that myocardial T2 relaxation times measured by cardiac T2-mapping vary significantly depending on sequence and field strength. Therefore, a systematic comparison of different T2-mapping sequences and the establishment of dedicated T2 reference values is mandatory for diagnostic decision-making. Phantom experiments using gel probes with a range of different T1 and T2 times were performed on a clinical 1.5T and 3T scanner. In addition, 30 healthy volunteers were examined at 1.5 and 3T in immediate succession. In each examination, three different T2-mapping sequences were performed at three short-axis slices: Multi Echo Spin Echo (MESE), T2-prepared balanced SSFP (T2prep), and Gradient Spin Echo with and without fat saturation (GraSEFS/GraSE). Segmented T2-Maps were generated according to the AHA 16-segment model and statistical analysis was performed. Significant intra-individual differences between mean T2 times were observed for all sequences. In general, T2prep resulted in lowest and GraSE in highest T2 times. A significant variation with field strength was observed for mean T2 in phantom as well as in vivo, with higher T2 values at 1.5T compared to 3T, regardless of the sequence used. Segmental T2 values for each sequence at 1.5 and 3T are presented. Despite a careful selection of sequence parameters and volunteers, significant variations of the measured T2 values were observed between field strengths, MR sequences and myocardial segments. Therefore, we present segmental T2 values for each sequence at 1.5 and 3T with the inherent potential to serve as reference values for future studies. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. On the Slow time Geomagnetic field Modulation of Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Okpala, K. C.; Egbunu, F.

    2016-12-01

    Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (CRdiff)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (Hdiff) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimums. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance do not play a significant role in modulating the cosmic ray flux.

  12. Signal-to-noise ratio, T2 , and T2* for hyperpolarized helium-3 MRI of the human lung at three magnetic field strengths.

    PubMed

    Komlosi, Peter; Altes, Talissa A; Qing, Kun; Mooney, Karen E; Miller, G Wilson; Mata, Jaime F; de Lange, Eduard E; Tobias, William A; Cates, Gordon D; Mugler, John P

    2017-10-01

    To evaluate T 2 , T2*, and signal-to-noise ratio (SNR) for hyperpolarized helium-3 ( 3 He) MRI of the human lung at three magnetic field strengths ranging from 0.43T to 1.5T. Sixteen healthy volunteers were imaged using a commercial whole body scanner at 0.43T, 0.79T, and 1.5T. Whole-lung T 2 values were calculated from a Carr-Purcell-Meiboom-Gill spin-echo-train acquisition. T2* maps and SNR were determined from dual-echo and single-echo gradient-echo images, respectively. Mean whole-lung SNR values were normalized by ventilated lung volume and administered 3 He dose. As expected, T 2 and T2* values demonstrated a significant inverse relationship to field strength. Hyperpolarized 3 He images acquired at all three field strengths had comparable SNR values and thus appeared visually very similar. Nonetheless, the relatively small SNR differences among field strengths were statistically significant. Hyperpolarized 3 He images of the human lung with similar image quality were obtained at three field strengths ranging from 0.43T and 1.5T. The decrease in susceptibility effects at lower fields that are reflected in longer T 2 and T2* values may be advantageous for optimizing pulse sequences inherently sensitive to such effects. The three-fold increase in T2* at lower field strength would allow lower receiver bandwidths, providing a concomitant decrease in noise and relative increase in SNR. Magn Reson Med 78:1458-1463, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  13. Modal energy analysis for mechanical systems excited by spatially correlated loads

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Fei, Qingguo; Li, Yanbin; Wu, Shaoqing; Chen, Qiang

    2018-10-01

    MODal ENergy Analysis (MODENA) is an energy-based method, which is proposed to deal with vibroacoustic problems. The performance of MODENA on the energy analysis of a mechanical system under spatially correlated excitation is investigated. A plate/cavity coupling system excited by a pressure field is studied in a numerical example, in which four kinds of pressure fields are involved, which include the purely random pressure field, the perfectly correlated pressure field, the incident diffuse field, and the turbulent boundary layer pressure fluctuation. The total energies of subsystems differ to reference solution only in the case of purely random pressure field and only for the non-excited subsystem (the cavity). A deeper analysis on the scale of modal energy is further conducted via another numerical example, in which two structural modes excited by correlated forces are coupled with one acoustic mode. A dimensionless correlation strength factor is proposed to determine the correlation strength between modal forces. Results show that the error on modal energy increases with the increment of the correlation strength factor. A criterion is proposed to establish a link between the error and the correlation strength factor. According to the criterion, the error is negligible when the correlation strength is weak, in this situation the correlation strength factor is less than a critical value.

  14. Programmable shunt valve interactions with osseointegrated hearing devices.

    PubMed

    Pierson, Matthew J; Wehrmann, Daniel; Albers, J Andrew; El Tecle, Najib E; Costa, Dary; Elbabaa, Samer K

    2017-04-01

    OBJECTIVE Patients with ventriculoperitoneal (VP) shunts with programmable valves who would benefit from osseointegrated hearing devices (OIHDs) represent a unique population. The aim of this study was to evaluate the magnetic field strengths of 4 OIHDs and their interactions with 5 programmable VP shunt valves. METHODS Magnetic field strength was measured as a function of distance for each hearing device (Cochlear Baha 5, Cochlear Baha BP110, Oticon Ponto Plus Power, and Medtronic Sophono) in the following modes: inactive, active in quiet, and active in 60 decibels of background noise in the sound booth. The hearing devices were introduced to each shunt valve (Aesculap proGAV, Aesculap proGAV 2.0, Codman Hakim, Codman Certas, and Medtronic Strata II) also as a function of distance in these identical 3 settings. Each trial was repeated 5 times. Between each trial, the valves were assessed for a change in setting. Finally, using a skull model, the devices were introduced to each other in standard anatomical locations and the valves were assessed for a change in settings. RESULTS The maximum magnetic field strengths generated by the Cochlear Baha 5, BP110, and Oticon OIHDs were 1.1, 36.2, and 48.7 gauss (G), respectively. The maximum strength generated by the Sophono device was > 800 G. The magnetic field strength of the hearing devices decreased markedly with increasing distance from the device. The strength of the Sophono's magnetic attachment decreased to 34.8 G at 5 mm. The Codman Hakim, Codman Certas, and Medtronic Strata II valve settings changed when rotating the valves next to the Sophono abutment. No other changes in valve settings occurred in the distance or anatomical models for any other trials. CONCLUSIONS This is the first study evaluating the interaction between OIHDs and programmable VP shunt valves. The findings suggest that it is safe to use these devices together without having to switch to a nonprogrammable valve or move the shunt valve to a more distant location. Still, care should be taken if the Sophono device is used to ensure that the valve is ≥ 5 mm away from the magnetic attachment.

  15. Seed orientation and magnetic field strength have more influence on tomato seed performance than relative humidity and duration of exposure to non-uniform static magnetic fields.

    PubMed

    Poinapen, Danny; Brown, Daniel C W; Beeharry, Girish K

    2013-09-15

    Different factors (e.g., light, humidity, and temperature) including exposure to static magnetic fields (SMFs), referred here as critical factors, can significantly affect horticultural seed performance. However, the link between magnetic field parameters and other interdependent factors affecting seed viability is unclear. The importance of these critical factors affecting tomato (Solanum lycopersicum L.) var. MST/32 seed performance was assessed after performing several treatments based on a L9 (3(4)) (four factors at three levels) orthogonal array (OA) design. The variable factors in the design were magnetic flux density (R1=332.1±37.8mT; R2=108.7±26.9mT; and R3=50.6±10.5mT), exposure time (1, 2, and 24h), seed orientation (North polarity, South polarity, and control - no magnetic field), and relative humidity (RH) (7.0, 25.5, and 75.5%). After seed moisture content stabilisation at the different chosen RH, seeds were exposed in dark under laboratory conditions to several treatments based on the OA design before performance evaluation. Treatments not employing magnetic field exposure were used as controls. Results indicate that electrolyte leakage rate was reduced by a factor of 1.62 times during seed imbibition when non-uniform SMFs were employed. Higher germination (∼11.0%) was observed in magnetically-exposed seeds than in non-exposed ones, although seedlings emerging from SMF treatments did not show a consistent increase in biomass accumulation. The respective influence of the four critical factors tested on seed performance was ranked (in decreasing order) as seed orientation to external magnetic fields, magnetic field strength, RH, and exposure time. This study suggests a significant effect of non-uniform SMFs on seed performance with respect to RH, and more pronounced effects are observed during seed imbibition rather than during later developmental stages. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, K; Weber, U; Simeonov, Y

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular andmore » thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system.« less

  17. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    PubMed

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  18. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides

    NASA Astrophysics Data System (ADS)

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene

    2016-02-01

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  19. A dynamics prediction of nitromethane → methyl nitrite isomerization in external electric field.

    PubMed

    Ren, Fu-de; Cao, Duan-lin; Shi, Wen-jing

    2016-04-01

    As a follow-up to our investigation into the effect of external electric field on the chemical bond strength, the effects of external electric field on the CH3NO2 → CH3ONO isomerization dynamics were investigated using the MP2/6-311++G(2d,p) and CCSD/6-311++G(2d,p) methods. The rate constants in the absence and presence of various field strengths were calculated. The results show that, when the field strength is larger than +0.0060 a.u. along the C-NO2 bond axis, the barriers of the isomerization are lower than the C-NO2 bond dissociation energies, leading to the preferences of the isomerization over the C-NO2 bond dissociation. In this case, the sensitivities are higher than that in no field. However, in the other fields, the C-NO2 bond scission is favored and the sensitivities are almost equal to that in no field. Several good linear correlations are found between the field strengths and the changes of the bond lengths or corresponding electron densities.

  20. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... For equipment operating on frequencies below 890 MHz, an open field test is normally required, with... either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Field strength of...

  1. Quantum resonant activation.

    PubMed

    Magazzù, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν^{*} which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  2. Quantum resonant activation

    NASA Astrophysics Data System (ADS)

    Magazzó, Luca; Hänggi, Peter; Spagnolo, Bernardo; Valenti, Davide

    2017-04-01

    Quantum resonant activation is investigated for the archetype setup of an externally driven two-state (spin-boson) system subjected to strong dissipation by means of both analytical and extensive numerical calculations. The phenomenon of resonant activation emerges in the presence of either randomly fluctuating or deterministic periodically varying driving fields. Addressing the incoherent regime, a characteristic minimum emerges in the mean first passage time to reach an absorbing neighboring state whenever the intrinsic time scale of the modulation matches the characteristic time scale of the system dynamics. For the case of deterministic periodic driving, the first passage time probability density function (pdf) displays a complex, multipeaked behavior, which depends crucially on the details of initial phase, frequency, and strength of the driving. As an interesting feature we find that the mean first passage time enters the resonant activation regime at a critical frequency ν* which depends very weakly on the strength of the driving. Moreover, we provide the relation between the first passage time pdf and the statistics of residence times.

  3. Comparisons of characteristic timescales and approximate models for Brownian magnetic nanoparticle rotations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Daniel B., E-mail: dbr@Dartmouth.edu; Weaver, John B.

    2015-06-21

    Magnetic nanoparticles are promising tools for a host of therapeutic and diagnostic medical applications. The dynamics of rotating magnetic nanoparticles in applied magnetic fields depend strongly on the type and strength of the field applied. There are two possible rotation mechanisms and the decision for the dominant mechanism is often made by comparing the equilibrium relaxation times. This is a problem when particles are driven with high-amplitude fields because they are not necessarily at equilibrium at all. Instead, it is more appropriate to consider the “characteristic timescales” that arise in various applied fields. Approximate forms for the characteristic time ofmore » Brownian particle rotations do exist and we show agreement between several analytical and phenomenological-fit models to simulated data from a stochastic Langevin equation approach. We also compare several approximate models with solutions of the Fokker-Planck equation to determine their range of validity for general fields and relaxation times. The effective field model is an excellent approximation, while the linear response solution is only useful for very low fields and frequencies for realistic Brownian particle rotations.« less

  4. Optical sensor of magnetic fields

    DOEpatents

    Butler, M.A.; Martin, S.J.

    1986-03-25

    An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.

  5. Peculiarities of the Short-Pulse Dielectric Strength of Vacuum Insulation

    NASA Astrophysics Data System (ADS)

    Nefedtsev, E. V.; Onischenko, S. A.; Batrakov, A. V.

    2017-12-01

    Results of a study of the short-pulse dielectric strength of millimeter plane vacuum gaps with electrodes that have been treated with an electron beam are presented. It is shown that the electric field strength of the first breakdown of vacuum gaps with pure metal electrodes is determined to a significant extent by the crystal structure of the metal. The development of the first short-pulse breakdown is accompanied by a very abrupt growth of the electric current. The short duration of the test pulses rules out the influence of all well-known inertial mechanisms of breakdown with characteristic action times greater than 20 ns. Some general assumptions regarding the nature of the factors stimulating the short-pulse breakdown of vacuum gaps are considered.

  6. Results of duct area ratio changes in the NASA Lewis H2-O2 combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1979-01-01

    MHD power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, generator loading B field strength, and electrode breakdown voltage were investigated. The effect of area ratio, multiple loading of the duct, and duct location within the magnetic field are considered.

  7. Development, refinement, and testing of a short term solar flare prediction algorithm

    NASA Technical Reports Server (NTRS)

    Smith, Jesse B., Jr.

    1993-01-01

    During the period included in this report, the expenditure of time and effort, and progress toward performance of the tasks and accomplishing the goals set forth in the two year research grant proposal, consisted primarily of calibration and analysis of selected data sets. The heliographic limits of 30 degrees from central meridian were continued. As previously reported, all analyses are interactive and are performed by the Principal Investigator. It should also be noted that the analysis time involved by the Principal Investigator during this reporting period was limited, partially due to illness and partially resulting from other uncontrollable factors. The calibration technique (as developed by MSFC solar scientists), incorporates sets of constants which vary according to the wave length of the observation data set. One input constant is then varied interactively to correct for observing conditions, etc., to result in a maximum magnetic field strength (in the calibrated data), based on a separate analysis. There is some insecurity in the methodology and the selection of variables to yield the most self-consistent results for variable maximum field strengths and for variable observing/atmospheric conditions. Several data sets were analyzed using differing constant sets, and separate analyses to differing maximum field strength - toward standardizing methodology and technique for the most self-consistent results for the large number of cases. It may be necessary to recalibrate some of the analyses, but the sc analyses are retained on the optical disks and can still be used with recalibration where necessary. Only the extracted parameters will be changed.

  8. TRUMP. Transient & S-State Temperature Distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    1992-03-03

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elrod, D.C.; Turner, W.D.

    TRUMP solves a general nonlinear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady-state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables, temperature, pressure, or field strength. Initial conditions may vary with spatial position,more » and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state.« less

  10. ELF Field Strength Measurements Made in Connecticut During 1974

    DTIC Science & Technology

    1975-10-01

    Ionospheric Phenomena on Extremely Low Frequency ( ELF ) Propagation," IEEE Transactions on Communications , vol. COM-22, no. 4, 1974, pp. 484-492...34f" ""WW" I I W»*-«P ’^ AD-A016 795 ELF FIELD STRENGTH MEASUREMENTS MADE IN CONNECTICUT DURING 1974 Peter R. Bannister...Report 4927 CD rH O ELF Field Strength Measurements Made In Connecticut During 1974 PETER R. BANNISTER FREDERICK J. WILLIAMS Submarin

  11. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  12. The dependence of the strength and thickness of field-aligned currents on solar wind and ionospheric parameters

    PubMed Central

    Johnson, Jay R.; Wing, Simon

    2017-01-01

    Sheared plasma flows at the low-latitude boundary layer (LLBL) correlate well with early afternoon auroral arcs and upward field-aligned currents. We present a simple analytic model that relates solar wind and ionospheric parameters to the strength and thickness of field-aligned currents (Λ) in a region of sheared velocity, such as the LLBL. We compare the predictions of the model with DMSP observations and find remarkably good scaling of the upward region 1 currents with solar wind and ionospheric parameters in region located at the boundary layer or open field lines at 1100–1700 magnetic local time. We demonstrate that Λ~nsw−0.5 and Λ ~ L when Λ/L < 5 where L is the auroral electrostatic scale length. The sheared boundary layer thickness (Δm) is inferred to be around 3000 km, which appears to have weak dependence on Vsw. J‖ has dependencies on Δm, Σp, nsw, and Vsw. The analytic model provides a simple way to organize data and to infer boundary layer structures from ionospheric data. PMID:29057194

  13. Theory of low-power ultra-broadband terahertz sideband generation in bi-layer graphene

    PubMed Central

    Crosse, J. A.; Xu, Xiaodong; Sherwin, Mark S.; Liu, R. B.

    2014-01-01

    In a semiconductor illuminated by a strong terahertz (THz) field, optically excited electron–hole pairs can recombine to emit light in a broad frequency comb evenly spaced by twice the THz frequency. Such high-order THz sideband generation is of interest both as an example of extreme nonlinear optics and also as a method for ultrafast electro-optical modulation. So far, this phenomenon has only been observed with large field strengths (~10 kV cm−1), an obstacle for technological applications. Here we predict that bi-layer graphene generates high-order sidebands at much weaker THz fields. We find that a THz field of strength 1 kV cm−1 can produce a high-sideband spectrum of about 30 THz, 100 times broader than in GaAs. The sidebands are generated despite the absence of classical collisions, with the quantum coherence of the electron–hole pairs enabling recombination. These remarkable features lower the barrier to desktop electro-optical modulation at THz frequencies, facilitating ultrafast optical communications. PMID:25249245

  14. DEVELOPMENT AND DEMONSTRATION OF CONCEPTS FOR IMPROVING COKE-OVEN DOOR SEALS

    EPA Science Inventory

    The report discusses the design, laboratory scale tests, construction, and field tests of an improved metal-to-metal seal for coke-oven end doors. Basic features of the seal are: high-strength temperature-resistant steel capable of 3 times the deflection of current seals without ...

  15. Is the Cerebellum Involved in Motor and Perceptual Timing: A Case Study.

    DTIC Science & Technology

    1985-05-15

    return to regular employment as a typist. *The visual fields and cranial nerves were intact. The extraocular movements wererfull and there was no nystagmus ...Her saccades were hypermetric, especially on gaze to the left. Examination of motor function in the upper extremities revealed normal strength

  16. [3 Tesla MRI: successful results with higher field strengths].

    PubMed

    Schmitt, F; Grosu, D; Mohr, C; Purdy, D; Salem, K; Scott, K T; Stoeckel, B

    2004-01-01

    The recent development of 3 Tesla MRI (3T MRI) has been fueled by promise of increased signal-to-noise ratio(SNR). Many are excited about the opportunity to not only use the increased SNR for clearer images, but also the chance to exchange it for better resolution or faster scans. These possibilities have caused a rapid increase in the market for 3T MRI, where the faster scanning tips an already advantageous economic outlook in favor of the user. As a result, the global market for 3T has grown from a research only market just a few years ago to an ever-increasing clinically oriented customer base. There are, however, significant obstacles to 3T MRI presented by the physics at higher field strengths. For example, the T1 relaxation times are prolonged with increasing magnet field strength. Further, the increased RF-energy deposition (SAR), the larger the chemical shift and the stronger susceptibility effect have to be considered as challenges. It is critical that one looks at both the advantages and disadvantages of using 3T. While there are many issues to address aand a number of different methods for doing so, to properly tackle each of these concerns will take time and effort on the part od researchers and clinicians. The optimization of 3T MRI scanning will have to be a combined effort, though much of the work to date has been in neuroimaging. Multiple applications have been explored in addition to clinical anatomical imaging, where resolution is improved showing structure in the brain never seen before in human MRI. Body and cardiac imaging provide a great challenge but are also achievable at 3T. As an example, the full range of clinical applications currently achieved on today's state-of-the-art 1.5T cardiac MR scanners has also been demonstrated at 3T. In the body, the full range of contrast is available over large fields of view allowing whole liver studies in the clinic or, as needed, one may choose a smaller field of view for high-resolution imaging of the pancreas. The ability to increase resolution for musculoskeletal imaging has provided previously unseen detail. Bone structure, cartilage, and tendons and ligaments can be clearly visualized and pathology more easily detected due to an increased image quality. As the increase in field strength continues, a push to look at 7T has begun. The design philosophy is to keep the system as similar as possible, while changing only the frequency-dependent components. To date, both animal and human imaging have been performed on a whole body 7T scanner. Results show promise for both detailed imaging and functional MRI, but the road ahead is too long to be able to predict where it will end. The move toward higher field strengths is an exciting adventure in which 3T plays the role of trailblazer.

  17. Mechanical & morphological properties of attapulgite/NR composites: Effect of mixing time variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nor, Nor Aina Mohd, E-mail: ayena90@yahoo.com; Othman, Nadras, E-mail: srnadras@usm.my; Ismail, Hanafi, E-mail: ihanafi@usm.my

    2015-07-22

    The development of composite material based on attapulgite clay (ATP) as a filler and natural rubber (NR) matrices were prepared by combination of melt mixing and latex compounding methods. Sonication technique was chosen in this work to disperse the attapulgite suspension. 6 phr of attapulgite loading was fabricated using different time of mixing ranging from 30 minutes until 2 hours and sonication time was kept constant at 15 minutes. Then, co-coagulating HA latex with attapulgite clay suspension through latex compounding method produced the masterbatch. The masterbatch was compounded with natural rubber by melt mixing method. The mechanical and morphological characteristicsmore » were investigated in this work. From mechanical testing, M1 showed the highest value of tensile and tear strength. By comparing with M30 and M2, M1 shows high 300% tensile modulus and lower crosslink density. However, when the time of mixing was prolonged to 2 hours, the results for tensile strength, elongation at break and tear strength were decreased. This is due to flocculation of attapulgite particles. Sonication techniques also proved that the tensile strength and elongation at break of these three samples were higher compared to gum NR (NR) and attapulgite compounded with NR using a conventional method (in-situ 6). From field emission scanning electron microscope (FESEM) results, it revealed that M1 had good dispersion in the NR system. It is proved that the higher tensile strength was due to good dispersion of attapulgite clay in the NR matrix. It was also supported from crosslink density, which is lower than NR and in-situ 6 results. It showed that the penetration of toluene solvent into rubber compound was restricted. The optimum time, M1 give the best results, which can be compared to control the sample.« less

  18. Iron Abundances in Lunar Impact Basin Melt Sheets From Orbital Magnetic Field Data

    NASA Astrophysics Data System (ADS)

    Oliveira, Joana S.; Wieczorek, Mark A.; Kletetschka, Gunther

    2017-12-01

    Magnetic field data acquired from orbit shows that the Moon possesses many magnetic anomalies. Though most of these are not associated with known geologic structures, some are found within large impact basins within the interior peak ring. The primary magnetic carrier in lunar rocks is metallic iron, but indigenous lunar rocks are metal poor and cannot account easily for the observed field strengths. The projectiles that formed the largest impact basins must have contained a significant quantity of metallic iron, and a portion of this iron would have been retained on the Moon's surface within the impact melt sheet. Here we use orbital magnetic field data to invert for the magnetization within large impact basins using the assumption that the crust is unidirectionally magnetized. We develop a technique based on laboratory thermoremanent magnetization acquisition to quantify the relationship between the strength of the magnetic field at the time the rock cooled and the abundance of metal in the rock. If we assume that the magnetized portion of the impact melt sheet is 1 km thick, we find average abundances of metallic iron ranging from 0.11% to 0.45 wt %, with an uncertainty of a factor of about 3. This abundance is consistent with the metallic iron abundances in sampled lunar impact melts and the abundance of projectile contamination in terrestrial impact melts. These results help constrain the composition of the projectile, the impact process, and the time evolution of the lunar dynamo.

  19. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station installed on buildings in Serbia.

    PubMed

    Koprivica, Mladen; Slavkovic, Vladimir; Neskovic, Natasa; Neskovic, Aleksandar

    2016-03-01

    As a result of dense deployment of public mobile base stations, additional electromagnetic (EM) radiation occurs in the modern human environment. At the same time, public concern about the exposure to EM radiation emitted by such sources has increased. In order to determine the level of radio frequency radiation generated by base stations, extensive EM field strength measurements were carried out for 664 base station locations, from which 276 locations refer to the case of base stations with antenna system installed on buildings. Having in mind the large percentage (42 %) of locations with installations on buildings, as well as the inevitable presence of people in their vicinity, a detailed analysis of this location category was performed. Measurement results showed that the maximum recorded value of total electric field strength has exceeded International Commission on Non-Ionizing Radiation Protection general public exposure reference levels at 2.5 % of locations and Serbian national reference levels at 15.6 % of locations. It should be emphasised that the values exceeding the reference levels were observed only outdoor, while in indoor total electric field strength in no case exceeded the defined reference levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Rapid Thermal Processing to Enhance Steel Toughness.

    PubMed

    Judge, V K; Speer, J G; Clarke, K D; Findley, K O; Clarke, A J

    2018-01-11

    Quenching and Tempering (Q&T) has been utilized for decades to alter steel mechanical properties, particularly strength and toughness. While tempering typically increases toughness, a well-established phenomenon called tempered martensite embrittlement (TME) is known to occur during conventional Q&T. Here we show that short-time, rapid tempering can overcome TME to produce unprecedented property combinations that cannot be attained by conventional Q&T. Toughness is enhanced over 43% at a strength level of 1.7 GPa and strength is improved over 0.5 GPa at an impact toughness of 30 J. We also show that hardness and the tempering parameter (TP), developed by Holloman and Jaffe in 1945 and ubiquitous within the field, is insufficient for characterizing measured strengths, toughnesses, and microstructural conditions after rapid processing. Rapid tempering by energy-saving manufacturing processes like induction heating creates the opportunity for new Q&T steels for energy, defense, and transportation applications.

  1. New high-strength, high-conductivity Cu-Ag alloy sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Y.; Inoue, K.; Maeda, H.

    1995-04-01

    A sheet-conductor fabrication method has been developed for Cu-Ag alloys containing 6--24 wt% Ag in which high-strength and high-conductivity are obtained by coldworking combined with intermediate heat treatments. The intermediate heat treatments were repeated three times at 400--450 C for 1--2 h at appropriate stages of cold-rolling. The optimized Cu-24 wt% Ag alloy sheet with a 96% reduction ratio shows an ultimate tensile strength of 1,050 MPa and an electrical conductivity of 75% IACS at room temperature. Anisotropy in the strength with respect to the rolling direction is less than 10%, and no anisotropy in the electrical conductivity occurs. Themore » authors demonstrated the ability to manufacture the Cu-Ag sheets for Bitter magnet on a commercial basis. The sheets fabricated by this method are promising as conductors for high-field Bitter magnet coils.« less

  2. Rating the strength of coal mine roof rocks. Information circular/1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molinda, G.M.; Mark, C.

    1996-05-01

    The Ferm pictoral classification of coal measure rocks is widely utilized in coalfield exploration. Although extremely useful as an alternative to conventional geologic description, no material properties are provided that would be suitable for engineering solutions. To remedy this problem, the USBM has tested over 30 common coal measure roof rock types for axial and bedding strength. More than 1,300 individual point load tests have been conducted on core from 8 different coal mines representing the full range of common coal measure rocks. The USBM core and roof exposure properties database has been merged with the picture classification to provide,more » for the first time, a simple, clear guide from field identification of core to the associated mechanical strength of the rock. For 33 of the most common roof rocks, the axial and diametral point load strength, as well as the ultimate unit rating, is overprinted onto the photograph.« less

  3. Dynamic weight evolution network with preferential attachment

    NASA Astrophysics Data System (ADS)

    Dai, Meifeng; Xie, Qi; Li, Lei

    2014-12-01

    A dynamic weight evolution network with preferential attachment is introduced. The network includes two significant characteristics. (i) Topological growth: triggered by newly added node with M links at each time step, each new edge carries an initial weight growing nonlinearly with time. (ii) Weight dynamics: the weight between two existing nodes experiences increasing or decreasing in a nonlinear way. By using continuum theory and mean-field method, we study the strength, the degree, the weight and their distributions. We find that the distributions exhibit a power-law feature. In particular, the relationship between the degree and the strength is nonlinear, and the power-law exponents of the three are the same. All the theoretical predictions are successfully contrasted with numerical simulations.

  4. Magnetic suppression of turbulence and the star formation activity of molecular clouds

    NASA Astrophysics Data System (ADS)

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique; Körtgen, Bastian; Banerjee, Robi; Hartmann, Lee

    2018-03-01

    We present magnetohydrodynamic simulations aimed at studying the effect of the magnetic suppression of turbulence (generated through various instabilities during the formation of molecular clouds by converging) on the subsequent star formation (SF) activity. We study four magnetically supercritical models with magnetic field strengths B = 0, 1, 2, and 3 μG (corresponding to mass-to-flux ratios of ∞, 4.76, 2.38, and 1.59 times the critical value), with the magnetic field, initially being aligned with the flows. We find that, for increasing magnetic field strength, the clouds formed tend to be more massive, denser, less turbulent, and with higher SF activity. This causes the onset of SF activity in the non-magnetic or more weakly magnetized cases to be delayed by a few Myr in comparison to the more strongly magnetized cases. We attribute this behaviour to the suppression of the non-linear thin shell instability (NTSI) by the magnetic field, previously found by Heitsch and coworkers. This result is contrary to the standard notion that the magnetic field provides support to the clouds, thus reducing their star formation rate. However, our result is a completely non-linear one, and could not be foreseen from simple linear considerations.

  5. Effects of Zeeman splitting on spin transportation in a three-terminal Rashba ring under a weak magnetic field

    NASA Astrophysics Data System (ADS)

    Zhai, Li-Xue; Wang, Yan; An, Zhong

    2018-05-01

    Spin-dependent transport in one-dimensional (1D) three-terminal Rashba rings is investigated under a weak magnetic field, and we focus on the Zeeman splitting (ZS) effect. For this purpose, the interaction between the electron spin and the weak magnetic field has been treated by perturbation theory. ZS removes the spin degeneracy, and breaks both the time reversal symmetry and the spin reversal symmetry of the ring system. Consequently, all conductance zeros are lifted and turned into conductance dips. Aharonov-Bohm (AB) oscillations can be found in both branch conductances and the total conductance as a function of the magnetic field. In a relatively high magnetic field, the decoherence caused by ZS decreases the amplitude of the branch conductance and increases that of the total conductance. The results have been compared with those reported in the published literature, and a reasonable agreement is obtained. The conductance as a function of the Rashba spin-orbit coupling (RSOC) strength has also been investigated. As the RSOC strength increases, the role of ZS becomes weaker and weaker; ZS can even be neglected when B ≤ 0.1 T.

  6. The structure and statistics of interstellar turbulence

    NASA Astrophysics Data System (ADS)

    Kritsuk, A. G.; Ustyugov, S. D.; Norman, M. L.

    2017-06-01

    We explore the structure and statistics of multiphase, magnetized ISM turbulence in the local Milky Way by means of driven periodic box numerical MHD simulations. Using the higher order-accurate piecewise-parabolic method on a local stencil (PPML), we carry out a small parameter survey varying the mean magnetic field strength and density while fixing the rms velocity to observed values. We quantify numerous characteristics of the transient and steady-state turbulence, including its thermodynamics and phase structure, kinetic and magnetic energy power spectra, structure functions, and distribution functions of density, column density, pressure, and magnetic field strength. The simulations reproduce many observables of the local ISM, including molecular clouds, such as the ratio of turbulent to mean magnetic field at 100 pc scale, the mass and volume fractions of thermally stable Hi, the lognormal distribution of column densities, the mass-weighted distribution of thermal pressure, and the linewidth-size relationship for molecular clouds. Our models predict the shape of magnetic field probability density functions (PDFs), which are strongly non-Gaussian, and the relative alignment of magnetic field and density structures. Finally, our models show how the observed low rates of star formation per free-fall time are controlled by the multiphase thermodynamics and large-scale turbulence.

  7. Solar Activity Studies using Microwave Imaging Observations

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2016-01-01

    We report on the status of solar cycle 24 based on polar prominence eruptions (PEs) and microwave brightness enhancement (MBE) information obtained by the Nobeyama radioheliograph. The north polar region of the Sun had near-zero field strength for more than three years (2012-2015) and ended only in September 2015 as indicated by the presence of polar PEs and the lack of MBE. The zero-polar-field condition in the south started only around 2013, but it ended by June 2014. Thus the asymmetry in the times of polarity reversal switched between cycle 23 and 24. The polar MBE is a good proxy for the polar magnetic field strength as indicated by the high degree of correlation between the two. The cross-correlation between the high- and low-latitude MBEs is significant for a lag of approximately 5.5 to 7.3 years, suggesting that the polar field of one cycle indicates the sunspot number of the next cycle in agreement with the Babcock-Leighton mechanism of solar cycles. The extended period of near-zero field in the north-polar region should result in a weak and delayed sunspot activity in the northern hemisphere in cycle 25.

  8. Design of a Soil Cutting Resistance Sensor for Application in Site-Specific Tillage

    PubMed Central

    Agüera, Juan; Carballido, Jacob; Gil, Jesús; Gliever, Chris J.; Perez-Ruiz, Manuel

    2013-01-01

    One objective of precision agriculture is to provide accurate information about soil and crop properties to optimize the management of agricultural inputs to meet site-specific needs. This paper describes the development of a sensor equipped with RTK-GPS technology that continuously and efficiently measures soil cutting resistance at various depths while traversing the field. Laboratory and preliminary field tests verified the accuracy of this prototype soil strength sensor. The data obtained using a hand-operated soil cone penetrometer was used to evaluate this field soil compaction depth profile sensor. To date, this sensor has only been tested in one field under one gravimetric water content condition. This field test revealed that the relationships between the soil strength profile sensor (SSPS) cutting force and soil cone index values are assumed to be quadratic for the various depths considered: 0–10, 10–20 and 20–30 cm (r2 = 0.58, 0.45 and 0.54, respectively). Soil resistance contour maps illustrated its practical value. The developed sensor provides accurate, timely and affordable information on soil properties to optimize resources and improve agricultural economy. PMID:23666127

  9. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  10. A new RF window designed for high-power operation in an S-band LINAC RF system

    NASA Astrophysics Data System (ADS)

    Joo, Youngdo; Kim, Seung-Hwan; Hwang, Woonha; Ryu, Jiwan; Roh, Sungjoo

    2016-09-01

    A new RF window is designed for high-power operation at the Pohang Light Source-II (PLSII) S-band linear accelerator (LINAC) RF system. In order to reduce the strength of the electric field component perpendicular to the ceramic disk, which is commonly known as the main cause of most discharge breakdowns in ceramic disk, we replace the pill-box type cavity in the conventional RF window with an overmoded cavity. The overmoded cavity is coupled with input and output waveguides through dual side-wall coupling irises to reduce the electric field strength at the iris and the number of possible mode competitions. The finite-difference time-domain (FDTD) simulation, CST MWS, was used in the design process. The simulated maximum electric field component perpendicular to the ceramic for the new RF window is reduced by an order of magnitude compared with taht for the conventional RF window, which holds promise for stable high-power operation.

  11. National surveys of radiofrequency field strengths from radio base stations in Africa

    PubMed Central

    Joyner, Ken H.; Van Wyk, Marthinus J.; Rowley, Jack T.

    2014-01-01

    The authors analysed almost 260 000 measurement points from surveys of radiofrequency (RF) field strengths near radio base stations in seven African countries over two time frames from 2001 to 2003 and 2006 to 2012. The results of the national surveys were compared, chronological trends investigated and potential exposures compared by technology and with frequency modulation (FM) radio. The key findings from thes data are that irrespective of country, the year and mobile technology, RF fields at a ground level were only a small fraction of the international human RF exposure recommendations. Importantly, there has been no significant increase in typical measured levels since the introduction of 3G services. The mean levels in these African countries are similar to the reported levels for countries of Asia, Europe and North America using similar mobile technologies. The median level for the FM services in South Africa was comparable to the individual but generally lower than the combined mobile services. PMID:24044904

  12. Collective almost synchronisation in complex networks.

    PubMed

    Baptista, Murilo S; Ren, Hai-Peng; Swarts, Johen C M; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso

    2012-01-01

    This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it.

  13. Collective Almost Synchronisation in Complex Networks

    PubMed Central

    Baptista, Murilo S.; Ren, Hai-Peng; Swarts, Johen C. M.; Carareto, Rodrigo; Nijmeijer, Henk; Grebogi, Celso

    2012-01-01

    This work introduces the phenomenon of Collective Almost Synchronisation (CAS), which describes a universal way of how patterns can appear in complex networks for small coupling strengths. The CAS phenomenon appears due to the existence of an approximately constant local mean field and is characterised by having nodes with trajectories evolving around periodic stable orbits. Common notion based on statistical knowledge would lead one to interpret the appearance of a local constant mean field as a consequence of the fact that the behaviour of each node is not correlated to the behaviours of the others. Contrary to this common notion, we show that various well known weaker forms of synchronisation (almost, time-lag, phase synchronisation, and generalised synchronisation) appear as a result of the onset of an almost constant local mean field. If the memory is formed in a brain by minimising the coupling strength among neurons and maximising the number of possible patterns, then the CAS phenomenon is a plausible explanation for it. PMID:23144851

  14. Semiconductor Nonlinear Dynamics Study by Broadband Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ho, I.-Chen

    Semiconductor nonlinearity in the terahertz (THz) frequency range has been attracting considerable attention due to the recent development of high-power semiconductor-based nanodevices. However, the underlying physics concerning carrier dynamics in the presence of high-field THz transients is still obscure. This thesis introduces an ultrafast, time-resolved THz pump/THz probe approach to the study of semiconductor properties in the nonlinear regime. The carrier dynamics regarding two mechanisms, intervalley scattering and impact ionization, is observed for doped InAs on a sub-picosecond time scale. In addition, polaron modulation driven by intense THz pulses is experimentally and theoretically investigated. The observed polaron dynamics verifies the interaction between energetic electrons and a phonon field. In contrast to previous work which reports optical phonon responses, acoustic phonon modulations are addressed in this study. A further understanding of the intense field interacting with solid materials will accelerate the development of semiconductor devices. This thesis starts with the design and performance of a table-top THz spectrometer which has the advantages of ultra-broad bandwidth (one order higher bandwidth compared to a conventional ZnTe sensor) and high electric field strength (>100 kV/cm). Unlike the conventional THz time-domain spectroscopy, the spectrometer integrates a novel THz air-biased-coherent-detection (THz-ABCD) technique and utilizes selected gases as THz emitters and sensors. In comparison with commonly used electro-optic (EO) crystals or photoconductive (PC) dipole antennas, the gases have the benefits of no phonon absorption as existing in EO crystals and no carrier life time limitation as observed in PC dipole antennas. The newly development THz-ABCD spectrometer with a strong THz field strength capability provides a platform for various research topics especially on the nonlinear carrier dynamics of semiconductors. Two mechanisms, electron intervalley scattering and impact ionization of InAs crystals, are observed under the excitation of intense THz field on a sub-picosecond time scale. These two competing mechanisms are demonstrated by changing the impurity doping type of the semiconductors and varying the strength of the THz field. Another investigation of nonlinear carrier dynamics is the observation of coherent polaron oscillation in n-doped semiconductors excited by intense THz pulses. Through modulations of surface reflection with a THz pump/THz probe technique, this work experimentally verifies the interaction between energetic electrons and a phonon field, which has been theoretically predicted by previous publications, and shows that this interaction applies for the acoustic phonon modes. Usually, two transverse acoustic (2TA) phonon responses are inactive in infrared measurement, while they are detectable in second-order Raman spectroscopy. The study of polaron dynamics, with nonlinear THz spectroscopy (in the far-infrared range), provides a unique method to diagnose the overtones of 2TA phonon responses of semiconductors, and therefore incorporates the abilities of both infrared and Raman spectroscopy. This work presents a new milestone in wave-matter interaction and seeks to benefit the industrial applications in high power, small scale devices.

  15. Computed versus measured ion velocity distribution functions in a Hall effect thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrigues, L.; CNRS, LAPLACE, F-31062 Toulouse; Mazouffre, S.

    2012-06-01

    We compare time-averaged and time-varying measured and computed ion velocity distribution functions in a Hall effect thruster for typical operating conditions. The ion properties are measured by means of laser induced fluorescence spectroscopy. Simulations of the plasma properties are performed with a two-dimensional hybrid model. In the electron fluid description of the hybrid model, the anomalous transport responsible for the electron diffusion across the magnetic field barrier is deduced from the experimental profile of the time-averaged electric field. The use of a steady state anomalous mobility profile allows the hybrid model to capture some properties like the time-averaged ion meanmore » velocity. Yet, the model fails at reproducing the time evolution of the ion velocity. This fact reveals a complex underlying physics that necessitates to account for the electron dynamics over a short time-scale. This study also shows the necessity for electron temperature measurements. Moreover, the strength of the self-magnetic field due to the rotating Hall current is found negligible.« less

  16. Lower-extremity strength ratios of professional soccer players according to field position.

    PubMed

    Ruas, Cassio V; Minozzo, Felipe; Pinto, Matheus D; Brown, Lee E; Pinto, Ronei S

    2015-05-01

    Previous investigators have proposed that knee strength, hamstrings to quadriceps, and side-to-side asymmetries may vary according to soccer field positions. However, different results have been found in these variables, and a generalization of this topic could lead to data misinterpretation by coaches and soccer clubs. Thus, the aim of this study was to measure knee strength and asymmetry in soccer players across different field positions. One hundred and two male professional soccer players performed maximal concentric and eccentric isokinetic knee actions on the preferred and nonpreferred legs at a velocity of 60° · s. Players were divided into their field positions for analysis: goalkeepers, side backs, central backs, central defender midfielders, central attacking midfielders, and forwards. Results demonstrated that only goalkeepers (GK) differed from most other field positions on players' characteristics, and concentric peak torque across muscles. Although all players presented functional ratios of the preferred (0.79 ± 0.14) and nonpreferred (0.75 ± 0.13) legs below accepted normative values, there were no differences between positions for conventional or functional strength ratios or side-to-side asymmetry. The same comparisons were made only between field players, without inclusion of the GK, and no differences were found between positions. Therefore, the hamstrings to quadriceps and side-to-side asymmetries found here may reflect knee strength functional balance required for soccer skills performance and game demands across field positions. These results also suggest that isokinetic strength profiles should be considered differently in GK compared with other field positions due to their specific physiological and training characteristics.

  17. Anomaly-Induced Dynamical Refringence in Strong-Field QED

    NASA Astrophysics Data System (ADS)

    Mueller, N.; Hebenstreit, F.; Berges, J.

    2016-08-01

    We investigate the impact of the Adler-Bell-Jackiw anomaly on the nonequilibrium evolution of strong-field quantum electrodynamics (QED) using real-time lattice gauge theory techniques. For field strengths exceeding the Schwinger limit for pair production, we encounter a highly absorptive medium with anomaly induced dynamical refractive properties. In contrast to earlier expectations based on equilibrium properties, where net anomalous effects vanish because of the trivial vacuum structure, we find that out-of-equilibrium conditions can have dramatic consequences for the presence of quantum currents with distinctive macroscopic signatures. We observe an intriguing tracking behavior, where the system spends longest times near collinear field configurations with maximum anomalous current. Apart from the potential relevance of our findings for future laser experiments, similar phenomena related to the chiral magnetic effect are expected to play an important role for strong QED fields during initial stages of heavy-ion collision experiments.

  18. Microstickies agglomeration by electric field.

    PubMed

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  19. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  20. Unconventional Superconductivity in La(7)Ir(3) Revealed by Muon Spin Relaxation: Introducing a New Family of Noncentrosymmetric Superconductor That Breaks Time-Reversal Symmetry.

    PubMed

    Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P

    2015-12-31

    The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25  K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.

  1. Robustness of radiomic breast features of benign lesions and luminal A cancers across MR magnet strengths

    NASA Astrophysics Data System (ADS)

    Whitney, Heather M.; Drukker, Karen; Edwards, Alexandra; Papaioannou, John; Giger, Maryellen L.

    2018-02-01

    Radiomics features extracted from breast lesion images have shown potential in diagnosis and prognosis of breast cancer. As clinical institutions transition from 1.5 T to 3.0 T magnetic resonance imaging (MRI), it is helpful to identify robust features across these field strengths. In this study, dynamic contrast-enhanced MR images were acquired retrospectively under IRB/HIPAA compliance, yielding 738 cases: 241 and 124 benign lesions imaged at 1.5 T and 3.0 T and 231 and 142 luminal A cancers imaged at 1.5 T and 3.0 T, respectively. Lesions were segmented using a fuzzy C-means method. Extracted radiomic values for each group of lesions by cancer status and field strength of acquisition were compared using a Kolmogorov-Smirnov test for the null hypothesis that two groups being compared came from the same distribution, with p-values being corrected for multiple comparisons by the Holm-Bonferroni method. Two shape features, one texture feature, and three enhancement variance kinetics features were found to be potentially robust. All potentially robust features had areas under the receiver operating characteristic curve (AUC) statistically greater than 0.5 in the task of distinguishing between lesion types (range of means 0.57-0.78). The significant difference in voxel size between field strength of acquisition limits the ability to affirm more features as robust or not robust according to field strength alone, and inhomogeneities in static field strength and radiofrequency field could also have affected the assessment of kinetic curve features as robust or not. Vendor-specific image scaling could have also been a factor. These findings will contribute to the development of radiomic signatures that use features identified as robust across field strength.

  2. Dipole interaction of the Quincke rotating particles.

    PubMed

    Dolinsky, Yu; Elperin, T

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  3. Dipole interaction of the Quincke rotating particles

    NASA Astrophysics Data System (ADS)

    Dolinsky, Yu.; Elperin, T.

    2012-02-01

    We study the behavior of particles having a finite electric permittivity and conductivity in a weakly conducting fluid under the action of the external electric field. We consider the case when the strength of the external electric field is above the threshold, and particles rotate due to the Quincke effect. We determine the magnitude of the dipole interaction of the Quincke rotating particles and the shift of frequency of the Quincke rotation caused by the dipole interaction between the particles. It is demonstrated that depending on the mutual orientation of the vectors of angular velocities of particles, vector-directed along the straight line between the centers of the particles and the external electric field strength vector, particles can attract or repel each other. In contrast to the case of nonrotating particles when the magnitude of the dipole interaction increases with the increase of the strength of the external electric field, the magnitude of the dipole interaction of the Quincke rotating particles either does not change or decreases with the increase of the strength of the external electric field depending on the strength of the external electric field and electrodynamic parameters of the particles.

  4. C. elegans Demonstrates Distinct Behaviors within a Fixed and Uniform Electric Field

    PubMed Central

    Chrisman, Steven D.; Waite, Christopher B.; Scoville, Alison G.; Carnell, Lucinda

    2016-01-01

    C. elegans will orient and travel in a straight uninterrupted path directly towards the negative pole of a DC electric field. We have sought to understand the strategy worms use to navigate to the negative pole in a uniform electric field that is fixed in both direction and magnitude. We examined this behavior by quantifying three aspects of electrotaxis behavior in response to different applied field strengths: the mean approach trajectory angles of the animals’ tracks, turning behavior (pirouettes) and average population speeds. We determined that C. elegans align directly to the negative pole of an electric field at sub-preferred field strength and alter approach trajectories at higher field strengths to maintain taxis within a preferred range we have calculated to be ~ 5V/cm. We sought to identify the sensory neurons responsible for the animals’ tracking to a preferred field strength. eat-4 mutant animals defective in glutamatergic signaling of the amphid sensory neurons are severely electrotaxis defective and ceh-36 mutant animals, which are defective in the terminal differentiation of two types of sensory neurons, AWC and ASE, are partially defective in electrotaxis. To further elucidate the role of the AWC neurons, we examined the role of each of the pair of AWC neurons (AWCOFF and AWCON), which are functionally asymmetric and express different genes. nsy-5/inx-19 mutant animals, which express both neurons as AWCOFF, are severely impaired in electrotaxis behavior while nsy-1 mutants, which express both neurons as AWCON, are able to differentiate field strengths required for navigation to a specific field strength within an electric field. We also tested a strain with targeted genetic ablation of AWC neurons and found that these animals showed only slight disruption of directionality and turning behavior. These results suggest a role for AWC neurons in which complete loss of function is less disruptive than loss of functional asymmetry in electrotaxis behavior within a uniform fixed field. PMID:26998749

  5. Influence of the Location of Attractive Polymer-Pore Interactions on Translocation Dynamics.

    PubMed

    Ghosh, Bappa; Chaudhury, Srabanti

    2018-01-11

    We probe the influence of polymer-pore interactions on the translocation dynamics using Langevin dynamics simulations. We investigate the effect of the strength and location of the polymer-pore interaction using nanopores that are partially charged either at the entry or the exit or on both sides of the pore. We study the change in the translocation time as a function of the strength of the polymer-pore interaction for a given chain length and under the effect of an externally applied field. Under a moderate driving force and a chain length longer than the length of the pore, the translocation time shows a nonmonotonic increase with an increase in the attractive interaction. Also, an interaction on the cis side of the pore can increase the translocation probability. In the presence of an external field and a strong attractive force, the translocation time for shorter chains is independent of the polymer-pore interaction at the entry side of the pore, whereas an interaction on the trans side dominates the translocation process. Our simulation results are rationalized by a qualitative analysis of the free energy landscape for polymer translocation.

  6. Ionospheric Longitude Storm Dependence Upon the Magnitude of the Earth's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sojka, J. J.; David, M.; Schunk, R. W.

    2007-12-01

    The Earth's magnetic field in the ionosphere is understood to be non-dipolar with significant deviations in magnitude and orientation across the globe. This study models the mid-latitude ionospheric response to a geomagnetic storm for different idealizations of the Earth's magnetic field strength. In so doing the study addresses the question whether or not a longitude dependence in ionospheric storm responses could exist due to the longitude dependence of the magnetic field [ Huang et al., 2005], and if so, how significant is the effect? The mechanism by which the magnetic field magnitude has a first order effect is through the E x B plasma drift that has a vertical components, i.e., usually described as a meridional plasma drift caused by the zonal electric field. This vertical drift is inversely proportional to the magnitude of the magnetic field. A vertical drift raises or lowers the F-region into regions of lesser or greater recombination rates respectively, hence, directly affecting the plasma density. The Utah State University (USU) Time Dependent Ionospheric Model (TDIM) uses a tilted dipole magnetic field model to represent the Earth's field. The magnitude of magnetic field is specified by the dipole moment, in fact, the magnetic field strength on the surface of the Earth at the magnetic equator. Changing this one parameter enables studies to be made under identical storm conditions of the effect of different magnetic field magnitudes. For this study the normal 0.31 Gauss surface magnetic field is replaced by 0.24 Gauss and 0.41 Gauss. These two numbers represent the magnitude of the minimum and maximum observed field strength around the Earth equatorial region. The TDIM results are shown for a storm simulation that occurred on 5-6 November 2001. For otherwise identical model conditions and drivers, the difference in magnetic field strength results in a factor of 2 difference in TEC, NmF2, etc. Since the magnetic field magnitude is weakest in the Atlantic (South Atlantic specifically) and largest over the central Asian continent, these simulations predict that the Atlantic storm densities would be many 10's of percent larger than those in Asia for identical electric fields. The simulated mechanism will contribute to a longitude dependence that produces larger ionospheric densities over the Atlantic sector provided an eastward electric field is present. This is very likely to be the case during major geomagnetic storms as the high-latitude convection pattern extends to mid- and low-latitudes. Huang, C.-S., J. C. Foster, L. P. Goncharenko, P. J. Erickson, W. Rideout, and A. J. Coster, (2005), A strong positive phase of ionospheric storms observed by the Millstone Hill incoherent scatter radar and global GPS network, J. Geophys. Res., 110, A06303, doi:10.1029/2004JA010865.

  7. Mechanical properties of Ti-6Al-4V specimens produced by shaped metal deposition

    PubMed Central

    Baufeld, Bernd; van der Biest, Omer

    2009-01-01

    Shaped metal deposition is a novel technique to build near net-shape components layer by layer by tungsten inert gas welding. Especially for complex shapes and small quantities, this technique can significantly lower the production cost of components by reducing the buy-to-fly ratio and lead time for production, diminishing final machining and preventing scrap. Tensile testing of Ti-6Al-4V components fabricated by shaped metal deposition shows that the mechanical properties are competitive to material fabricated by conventional techniques. The ultimate tensile strength is between 936 and 1014 MPa, depending on the orientation and location. Tensile testing vertical to the deposition layers reveals ductility between 14 and 21%, whereas testing parallel to the layers gives a ductility between 6 and 11%. Ultimate tensile strength and ductility are inversely related. Heat treatment within the α+β phase field does not change the mechanical properties, but heat treatment within the β phase field increases the ultimate tensile strength and decreases the ductility. The differences in ultimate tensile strength and ductility can be related to the α lath size and orientation of the elongated, prior β grains. The micro-hardness and Young’s modulus are similar to conventional Ti-6Al-4V with low oxygen content. PMID:27877271

  8. Comparison of flow cytometry, fluorescence microscopy and spectrofluorometry for analysis of gene electrotransfer efficiency.

    PubMed

    Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca

    2014-12-01

    In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.

  9. An extrapolation method for compressive strength prediction of hydraulic cement products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siqueira Tango, C.E. de

    1998-07-01

    The basis for the AMEBA Method is presented. A strength-time function is used to extrapolate the predicted cementitious material strength for a late (ALTA) age, based on two earlier age strengths--medium (MEDIA) and low (BAIXA) ages. The experimental basis for the method is data from the IPT-Brazil laboratory and the field, including a long-term study on concrete, research on limestone, slag, and fly-ash additions, and quality control data from a cement factory, a shotcrete tunnel lining, and a grout for structural repair. The method applicability was also verified for high-performance concrete with silica fume. The formula for predicting late agemore » (e.g., 28 days) strength, for a given set of involved ages (e.g., 28,7, and 2 days) is normally a function only of the two earlier ages` (e.g., 7 and 2 days) strengths. This equation has been shown to be independent on materials variations, including cement brand, and is easy to use also graphically. Using the AMEBA method, and only needing to know the type of cement used, it has been possible to predict strengths satisfactorily, even without the preliminary tests which are required in other methods.« less

  10. The effects of magnetic field in plume region on the performance of multi-cusped field thruster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Peng, E-mail: hupengemail@126.com; Liu, Hui, E-mail: thruster@126.com; Yu, Daren

    2015-10-15

    The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field in the plume region were investigated. Five magnetic field shielding rings were separately mounted near the exit of discharge channel to decrease the strength of magnetic field in the plume region in different levels, while the magnetic field in the upstream was well maintained. The test results show that the electron current increases with the decrease of magnetic field strength in the plume region, which gives rise to higher propellant utilization and lower current utilization. On the other hand, the stronger magnetic field in the plume regionmore » improves the performance at low voltages (high current mode) while lower magnetic field improves the performance at high voltages (low current mode). This work can provide some optimal design ideas of the magnetic strength in the plume region to improve the performance of thruster.« less

  11. Models of magnetic field generation in partly stable planetary cores: Applications to Mercury and Saturn

    NASA Astrophysics Data System (ADS)

    Christensen, Ulrich R.; Wicht, Johannes

    2008-07-01

    A substantial part of Mercury's iron core may be stably stratified because the temperature gradient is subadiabatic. A dynamo would operate only in a deep sublayer. We show that such a situation arises for a wide range of values for the heat flow and the sulfur content in the core. In Saturn the upper part of the metallic hydrogen core could be stably stratified because of helium depletion. The magnetic field is unusually weak in the case of Mercury and unusually axisymmetric at Saturn. We study numerical dynamo models in rotating spherical shells with a stable outer region. The control parameters are chosen such that the magnetic Reynolds number is in the range of expected Mercury values. Because of its slow rotation, Mercury may be in a regime where the dipole contribution to the internal magnetic field is weak. Most of our models are in this regime, where the dynamo field consists mainly of rapidly varying higher multipole components. They can hardly pass the stable conducting layer because of the skin effect. The weak low-degree components vary more slowly and control the structure of the field outside the core, whose strength matches the observed field strength at Mercury. In some models the axial dipole dominates at the planet's surface and in others the axial quadrupole is dominant. Differential rotation in the stable layer, representing a thermal wind, is important for attenuating non-axisymmetric components in the exterior field. In some models that we relate to Saturn the axial dipole is intrinsically strong inside the dynamo. The surface field strength is much larger than in the other cases, but the stable layer eliminates non-axisymmetric modes. The Messenger and Bepi Colombo space missions can test our predictions that Mercury's field is large-scaled, fairly axisymmetric, and shows no secular variations on the decadal time scale.

  12. Channel waveguides in glass via silver-sodium field-assisted ion exchange

    NASA Technical Reports Server (NTRS)

    Forrest, K.; Pagano, S. J.; Viehmann, W.

    1986-01-01

    Multimode channel waveguides have been formed in sodium aluminosilicate glass by field-assisted diffusion of Ag(+) ions from vacuum-evaporated Ag films. The two-dimensional refractive index profiles of the waveguides were controlled by varying the diffusion time, the diffusion temperature, and the electric field strength. Estimates of the diffusion rate through a strip aperture were obtained, assuming the electric field was strong 120-240 V/mm. The maximum change in refractive index in the sodium aluminosilicate glasses was estimated near 65 percent of the change in soda-lime silicate glass. The physical properties of the glasses are given in a table.

  13. Enhancement of the thermoelectric figure of merit in a ferromagnet-quantum dot-superconductor device due to intradot spin-flip scattering and ac field

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Ping; Zhang, Yu-Ying; Li, Zhi-Jian; Nie, Yi-Hang

    2017-08-01

    We investigate the thermoelectric properties of a ferromagnet-quantum dot-superconductor hybrid system with the intradot spin-flip scattering and the external microwave field. The results indicate that the increase of figure of merit in the gap is very slight when the spin-flip scattering strength increases, but outside the gap it significantly increases with enhancing spin-flip scattering strength. The presence of microwave field results in photon-assisted Andreev reflection and induces the satellite peaks in conductance spectrum. The appropriate match of spin-flip scattering strength, microwave field strength and frequency can significantly enhances the figure of merit of thermoelectric conversion of the device, which can be used as a scheme improving thermoelectric efficiency using microwave frequency.

  14. Magnetic field in IRC+10216 and other C-rich evolved stars

    NASA Astrophysics Data System (ADS)

    Duthu, A.; Herpin, F.; Wiesemeyer, H.; Baudry, A.; Lèbre, A.; Paubert, G.

    2017-07-01

    Context. During the transition from the asymptotic giant branch (AGB) to planetary nebulae (PN), the circumstellar geometry and morphology change dramatically. Another characteristic of this transition is the high mass-loss rate, that can be partially explained by radiation pressure and a combination of various factors, such as the stellar pulsation, the dust grain condensation, and opacity in the upper atmosphere. The magnetic field can also be one of the main ingredients that shapes the stellar upper atmosphere and envelope. Aims: Our main goal is to investigate for the first time the spatial distribution of the magnetic field in the envelope of IRC+10216. More generally we intend to determine the magnetic field strength in the circumstellar envelope (CSE) of C-rich evolved stars, compare this field with previous studies for O-rich stars, and constrain the variation of the magnetic field with r the distance to the star's centre. Methods: We use spectropolarimetric observations of the Stokes V parameter, collected with Xpol on the IRAM-30 m radiotelescope, observing the Zeeman effect in seven hyperfine components of the CN J = 1-0 line. We use the Crutcher et al. (1996, ApJ, 456, 217) method to estimate the magnetic field. For the first time, the instrumental contamination is investigated, through dedicated studies of the power patterns in Stokes V and I in detail. Results: For C-rich evolved stars, we derive a magnetic field strength (B) between 1.6 and 14.2 mG while B is estimated to be 6 mG for the proto-PN (PPN) AFGL618, and an upper value of 8 mG is found for the PN NGC 7027. These results are consistent with a decrease of B as 1/r in the environment of AGB objects, that is, with the presence of a toroidal field. But this is not the case for PPN and PN stars. Our map of IRC+10216 suggests that the magnetic field is not homogeneously strong throughout or aligned with the envelope and that the morphology of the CN emission might have changed with time.

  15. Mitigation of Electromagnetic Pulse (EMP) Effects from Short-Pulse Lasers and Fusion Neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, D C; Throop, A; Brown, Jr., C G

    2009-03-06

    Our research focused on obtaining a fundamental understanding of the source and properties of EMP at the Titan PW(petawatt)-class laser facility. The project was motivated by data loss and damage to components due to EMP, which can limit diagnostic techniques that can be used reliably at short-pulse PW-class laser facilities. Our measurements of the electromagnetic fields, using a variety of probes, provide information on the strength, time duration, and frequency dependence of the EMP. We measure electric field strengths in the 100's of kV/m range, durations up to 100 ns, and very broad frequency response extending out to 5 GHzmore » and possibly beyond. This information is being used to design shielding to mitigate the effects of EMP on components at various laser facilities. We showed the need for well-shielded cables and oscilloscopes to obtain high quality data. Significant work was invested in data analysis techniques to process this data. This work is now being transferred to data analysis procedures for the EMP diagnostics being fielded on the National Ignition Facility (NIF). In addition to electromagnetic field measurements, we measured the spatial and energy distribution of electrons escaping from targets. This information is used as input into the 3D electromagnetic code, EMSolve, which calculates time dependent electromagnetic fields. The simulation results compare reasonably well with data for both the strength and broad frequency bandwidth of the EMP. This modeling work required significant improvements in EMSolve to model the fields in the Titan chamber generated by electrons escaping the target. During dedicated Titan shots, we studied the effects of varying laser energy, target size, and pulse duration on EMP properties. We also studied the effect of surrounding the target with a thick conducting sphere and cube as a potential mitigation approach. System generated EMP (SGEMP) in coaxial cables does not appear to be a significant at Titan. Our results are directly relevant to planned short-pulse ARC (advanced radiographic capability) operation on NIF.« less

  16. Initiation of vacuum breakdown and failure mechanism of the carbon nanotube during thermal field emission

    NASA Astrophysics Data System (ADS)

    Dan, Cai; Lie, Liu; Jin-Chuan, Ju; Xue-Long, Zhao; Hong-Yu, Zhou; Xiao, Wang

    2016-04-01

    The carbon nanotube (CNT)-based materials can be used as vacuum device cathodes. Owing to the excellent field emission properties of CNT, it has great potentials in the applications of an explosive field emission cathode. The falling off of CNT from the substrate, which frequently appears in experiments, restricts its application. In addition, the onset time of vacuum breakdown limits the performance of the high-power explosive-emission-cathode-based diode. In this paper, the characteristics of the CNT, electric field strength, contact resistance and the kind of substrate material are varied to study the parameter effects on the onset time of vacuum breakdown and failure mechanism of the CNT by using the finite element method. Project supported by the National Natural Science Foundation of China (Grant Nos. 11305263 and 61401484).

  17. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field.

    PubMed

    Forbes, Thomas P; Degertekin, F Levent; Fedorov, Andrei G

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing.

  18. Droplet charging regimes for ultrasonic atomization of a liquid electrolyte in an external electric field

    PubMed Central

    Forbes, Thomas P.; Degertekin, F. Levent; Fedorov, Andrei G.

    2011-01-01

    Distinct regimes of droplet charging, determined by the dominant charge transport process, are identified for an ultrasonic droplet ejector using electrohydrodynamic computational simulations, a fundamental scale analysis, and experimental measurements. The regimes of droplet charging are determined by the relative magnitudes of the dimensionless Strouhal and electric Reynolds numbers, which are a function of the process (pressure forcing), advection, and charge relaxation time scales for charge transport. Optimal (net maximum) droplet charging has been identified to exist for conditions in which the electric Reynolds number is of the order of the inverse Strouhal number, i.e., the charge relaxation time is on the order of the pressure forcing (droplet formation) time scale. The conditions necessary for optimal droplet charging have been identified as a function of the dimensionless Debye number (i.e., liquid conductivity), external electric field (magnitude and duration), and atomization drive signal (frequency and amplitude). The specific regime of droplet charging also determines the functional relationship between droplet charge and charging electric field strength. The commonly expected linear relationship between droplet charge and external electric field strength is only found when either the inverse of the Strouhal number is less than the electric Reynolds number, i.e., the charge relaxation is slower than both the advection and external pressure forcing, or in the electrostatic limit, i.e., when charge relaxation is much faster than all other processes. The analysis provides a basic understanding of the dominant physics of droplet charging with implications to many important applications, such as electrospray mass spectrometry, ink jet printing, and drop-on-demand manufacturing. PMID:21301636

  19. The effect of turbulence strength on meandering field lines and Solar Energetic Particle event extents

    NASA Astrophysics Data System (ADS)

    Laitinen, Timo; Effenberger, Frederic; Kopp, Andreas; Dalla, Silvia

    2018-02-01

    Insights into the processes of Solar Energetic Particle (SEP) propagation are essential for understanding how solar eruptions affect the radiation environment of near-Earth space. SEP propagation is influenced by turbulent magnetic fields in the solar wind, resulting in stochastic transport of the particles from their acceleration site to Earth. While the conventional approach for SEP modelling focuses mainly on the transport of particles along the mean Parker spiral magnetic field, multi-spacecraft observations suggest that the cross-field propagation shapes the SEP fluxes at Earth strongly. However, adding cross-field transport of SEPs as spatial diffusion has been shown to be insufficient in modelling the SEP events without use of unrealistically large cross-field diffusion coefficients. Recently, Laitinen et al. [ApJL 773 (2013b); A&A 591 (2016)] demonstrated that the early-time propagation of energetic particles across the mean field direction in turbulent fields is not diffusive, with the particles propagating along meandering field lines. This early-time transport mode results in fast access of the particles across the mean field direction, in agreement with the SEP observations. In this work, we study the propagation of SEPs within the new transport paradigm, and demonstrate the significance of turbulence strength on the evolution of the SEP radiation environment near Earth. We calculate the transport parameters consistently using a turbulence transport model, parametrised by the SEP parallel scattering mean free path at 1 AU, λ∥*, and show that the parallel and cross-field transport are connected, with conditions resulting in slow parallel transport corresponding to wider events. We find a scaling σφ,max∝(1/λ∥*)1/4 for the Gaussian fitting of the longitudinal distribution of maximum intensities. The longitudes with highest intensities are shifted towards the west for strong scattering conditions. Our results emphasise the importance of understanding both the SEP transport and the interplanetary turbulence conditions for modelling and predicting the SEP radiation environment at Earth.

  20. Strong Magnetic Field Induced Changes of Gene Expression in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Paul, A.-L.; Ferl, R. J.; Klingenberg, B.; Brooks, J. S.; Morgan, A. N.; Yowtak, J.; Meisel, M. W.

    2005-07-01

    We review our studies of the biological impact of magnetic field strengths of up to 30 T on transgenic arabidopsis plants engineered with a stress response gene consisting of the alcohol dehydrogenase (Adh) gene promoter driving the β-glucuronidase (GUS) gene reporter. Field strengths in excess of 15 T induce expression of the Adh/GUS transgene in the roots and leaves. Microarray analyses indicate that such field strengths have a far reaching effect on the genome. Wide spread induction of stress-related genes and transcription factors, and a depression of genes associated with cell wall metabolism are prominent examples.

  1. Deconstructing field-induced ketene isomerization through Lagrangian descriptors.

    PubMed

    Craven, Galen T; Hernandez, Rigoberto

    2016-02-07

    The time-dependent geometrical separatrices governing state transitions in field-induced ketene isomerization are constructed using the method of Lagrangian descriptors. We obtain the stable and unstable manifolds of time-varying transition states as dynamic phase space objects governing configurational changes when the ketene molecule is subjected to an oscillating electric field. The dynamics of the isomerization reaction are modeled through classical trajectory studies on the Gezelter-Miller potential energy surface and an approximate dipole moment model which is coupled to a time-dependent electric field. We obtain a representation of the reaction geometry, over varying field strengths and oscillation frequencies, by partitioning an initial phase space into basins labeled according to which product state is reached at a given time. The borders between these basins are in agreement with those obtained using Lagrangian descriptors, even in regimes exhibiting chaotic dynamics. Major outcomes of this work are: validation and extension of a transition state theory framework built from Lagrangian descriptors, elaboration of the applicability for this theory to periodically- and aperiodically-driven molecular systems, and prediction of regimes in which isomerization of ketene and its derivatives may be controlled using an external field.

  2. Combining Linear Polarization Measurements of both Forbidden/Permitted Coronal Emission Lines for measuring the Vector Magnetic Field in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Dima, G. I.; Kuhn, J. R.; Mickey, D.

    2014-12-01

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (~4 G at a height of 0.1 Rsun above an active region) and the large thermal broadening of coronal emission lines. Current methods deduce either the direction of the magnetic field or the magnetic flux density. We propose using concurrent linear polarization measurements in the near IR of forbidden and permitted lines to calculate the coronal vector magnetic field. The effect of the magnetic field on the polarization properties of emitted light is encapsulated in the Hanle effect. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while for saturated Hanle the polarization is insensitive to the strength of the field. Coronal forbidden lines are always in the saturated Hanle regime so the linear polarization holds no information on the strength of the field. By pairing measurements of both forbidden and permitted lines we would be able to obtain both the direction and strength of the field. The near-IR region of the spectrum offers the opportunity to study this problem from the ground. The FeXIII 1.075 um and SiX 1.431 um forbidden lines are strongly polarizable and are sufficiently bright over a large field of view (out to 1.5 Rsun). Measurements of both these lines can be paired up with the recently observed coronal HeI 1.083 um permitted line. The first data set used to test this technique was taken during the March 29, 2006 total solar eclipse and consisted of near-IR spectra covering the spectral region 0.9-1.8 um, with a field of view of 3 x 3 Rsun. The data revealed unexpectedly strong SiX emission compared to FeXIII. Using the HAO FORWARD suite of codes we produced simulated emission maps from a global HMD model for the day of the eclipse. Comparing the intensity variation of the measurements and the model we predict that SiX emission is more extended for this day that the model would suggest, further supporting the possible usefulness of SiX polarimetry. The development of this method and associated tools will be critical in interpreting the high spectral, spatial and temporal IR measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in a few years time.

  3. Visualizing the optical field strengths in Au/dielectric nanostructures and its correlation to SERS enhancements

    NASA Astrophysics Data System (ADS)

    Rajesh, Y.; Sangani, L. D. Varma; Shaik, Ummar Pasha; Gaur, Anshu; Mohiddon, Md Ahamad; Krishna, M. Ghanashyam

    2017-05-01

    The role of dielectric surrounding over the Au nanostructure for surface plasmon resonance (SPR) behavior is investigated by scanning near field optical microscopy (SNOM). The observed optical field strengths are correlated with the surface enhanced Raman scattering (SERS) enhancement recorded for R6G molecule. Discontinuous nanostructured Au thin films are deposited by RF magnatron sputtering at very low rate on to three different dielectric substrates, ZnO, TiO2 and SiO2. These three Au/dielectric nanostructures are investigated using SNOM by illuminating it in near field and collecting in transmission far field configuration. The observed optical near field images of the three different nanostructures are discussed by taking their dielectric constant into the account. The SERS enhancements are correlated with the optical field strengths derived from the near field optical imaging.

  4. Dielectric response properties of parabolically-confined nanostructures in a quantizing magnetic field

    NASA Astrophysics Data System (ADS)

    Sabeeh, Kashif

    This thesis presents theoretical studies of dielectric response properties of parabolically-confined nanostructures in a magnetic field. We have determined the retarded Schrodinger Green's function for an electron in such a parabolically confined system in the presence of a time dependent electric field and an ambient magnetic field. Following an operator equation of motion approach developed by Schwinger, we calculate the result in closed form in terms of elementary functions in direct-time representation. From the retarded Schrodinger Green's function we construct the closed-form thermodynamic Green's function for a parabolically confined quantum-dot in a magnetic field to determine its plasmon spectrum. Due to confinement and Landau quantization this system is fully quantized, with an infinite number of collective modes. The RPA integral equation for the inverse dielectric function is solved using Fredholm theory in the nondegenerate and quantum limit to determine the frequencies with which the plasmons participate in response to excitation by an external potential. We exhibit results for the variation of plasmon frequency as a function of magnetic field strength and of confinement frequency. A calculation of the van der Waals interaction energy between two harmonically confined quantum dots is discussed in terms of the dipole-dipole correlation function. The results are presented as a function of confinement strength and distance between the dots. We also rederive a result of Fertig & Halperin [32] for the tunneling-scattering of an electron through a saddle potential which is also known as a quantum point contact (QPC), in the presence of a magnetic field. Using the retarded Green's function we confirm the result for the transmission coefficient and analyze it.

  5. Globally optimal, minimum stored energy, double-doughnut superconducting magnets.

    PubMed

    Tieng, Quang M; Vegh, Viktor; Brereton, Ian M

    2010-01-01

    The use of the minimum stored energy current density map-based methodology of designing closed-bore symmetric superconducting magnets was described recently. The technique is further developed to cater for the design of interventional-type MRI systems, and in particular open symmetric magnets of the double-doughnut configuration. This extends the work to multiple magnet domain configurations. The use of double-doughnut magnets in MRI scanners has previously been hindered by the ability to deliver strong magnetic fields over a sufficiently large volume appropriate for imaging, essentially limiting spatial resolution, signal-to-noise ratio, and field of view. The requirement of dedicated interventional space restricts the manner in which the coils can be arranged and placed. The minimum stored energy optimal coil arrangement ensures that the field strength is maximized over a specific region of imaging. The design method yields open, dual-domain magnets capable of delivering greater field strengths than those used prior to this work, and at the same time it provides an increase in the field-of-view volume. Simulation results are provided for 1-T double-doughnut magnets with at least a 50-cm 1-ppm (parts per million) field of view and 0.7-m gap between the two doughnuts. Copyright (c) 2009 Wiley-Liss, Inc.

  6. Electron acceleration from rest to GeV energy by chirped axicon Gaussian laser pulse in vacuum in the presence of wiggler magnetic field

    NASA Astrophysics Data System (ADS)

    Kant, Niti; Rajput, Jyoti; Singh, Arvinder

    2018-03-01

    This paper presents a scheme of electron energy enhancement by employing frequency - chirped lowest order axicon focussed radially polarised (RP) laser pulse in vacuum under the influence of wiggler magnetic field. Terawatt RP laser can be focussed down to ∼5μm by an axicon optical element, which produces an intense longitudinal electric field. This unique property of axicon focused Gaussian RP laser pulse is employed for direct electron acceleration in vacuum. A linear frequency chirp increases the time duration of laser-electron interaction, whereas, the applied magnetic wiggler helps in improving the strength of ponderomotive force v→ ×B→ and periodically deflects electron in order to keep it traversing in the accelerating phase up to longer distance. Numerical simulations have been carried out to investigate the influence of laser, frequency chirp and magnetic field parameters on electron energy enhancement. It is noticed that an electron from rest can be accelerated up to GeV energy under optimized laser and magnetic field parameters. Significant enhancement in the electron energy gain of the order of 11.2 GeV is observed with intense chirped laser pulse in the presence of wiggler magnetic field of strength 96.2 kG.

  7. Magnetic field effect on spoke behaviour

    NASA Astrophysics Data System (ADS)

    Hnilica, Jaroslav; Slapanska, Marta; Klein, Peter; Vasina, Petr

    2016-09-01

    The investigations of the non-reactive high power impulse magnetron sputtering (HiPIMS) discharge using high-speed camera imaging, optical emission spectroscopy and electrical probes showed that plasma is not homogeneously distributed over the target surface, but it is concentrated in regions of higher local plasma density called spokes rotating above the erosion racetrack. Magnetic field effect on spoke behaviour was studied by high-speed camera imaging in HiPIMS discharge using 3 inch titanium target. An employed camera enabled us to record two successive images in the same pulse with time delay of 3 μs between them, which allowed us to determine the number of spokes, spoke rotation velocity and spoke rotation frequency. The experimental conditions covered pressure range from 0.15 to 5 Pa, discharge current up to 350 A and magnetic fields of 37, 72 and 91 mT. Increase of the magnetic field influenced the number of spokes observed at the same pressure and at the same discharge current. Moreover, the investigation revealed different characteristic spoke shapes depending on the magnetic field strength - both diffusive and triangular shapes were observed for the same target material. The spoke rotation velocity was independent on the magnetic field strength. This research has been financially supported by the Czech Science Foundation in frame of the project 15-00863S.

  8. Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6.

    PubMed

    Flickinger, Bianca; Berghöfer, Thomas; Hohenberger, Petra; Eing, Christian; Frey, Wolfgang

    2010-11-01

    The charging of the plasma membrane is a necessary condition for the generation of an electric-field-induced permeability increase of the plasmalemma, which is usually explained by the creation and the growth of aqueous pores. For cells suspended in physiological buffers, the time domain of membrane charging is in the submicrosecond range. Systematic measurements using Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) protoplasts stained with the fast voltage-sensitive fluorescence dye ANNINE-6 have been performed using a pulsed laser fluorescence microscopy setup with a time resolution of 5 ns. A clear saturation of the membrane voltage could be measured, caused by a strong membrane permeability increase, commonly explained by enhanced pore formation, which prevents further membrane charging by external electric field exposure. The field strength dependence of the protoplast's transmembrane potential V (M) shows strong asymmetric saturation characteristics due to the high resting potential of the plants plasmalemma. At the pole of the hyperpolarized hemisphere of the cell, saturation starts at an external field strength of 0.3 kV/cm, resulting in a measured transmembrane voltage shift of ∆V(M) = -150 mV, while on the cathodic (depolarized) cell pole, the threshold for enhanced pore formation is reached at a field strength of approximately 1.0 kV/cm and ∆V(M) = 450 mV, respectively. From this asymmetry of the measured maximum membrane voltage shifts, the resting potential of BY-2 protoplasts at the given experimental conditions can be determined to V(R) = -150 mV. Consequently, a strong membrane permeability increase occurs when the membrane voltage diverges |V(M)| = 300 mV from the resting potential of the protoplast. The largest membrane voltage change at a given external electric field occurs at the cell poles. The azimuthal dependence of the transmembrane potential, measured in angular intervals of 10° along the circumference of the cell, shows a flattening and a slight decrease at higher fields at the pole region due to enhanced pore formation. Additionally, at the hyperpolarized cell pole, a polarization reversal could be observed at an external field range around 1.0 kV/cm. This behavior might be attributed to a fast charge transfer through the membrane at the hyperpolarized pole, e.g., by voltage-gated channels.

  9. Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays.

    PubMed

    Pohmann, Rolf; Speck, Oliver; Scheffler, Klaus

    2016-02-01

    Relaxation times, transmit homogeneity, signal-to-noise ratio (SNR) and parallel imaging g-factor were determined in the human brain at 3T, 7T, and 9.4T, using standard, tight-fitting coil arrays. The same human subjects were scanned at all three field strengths, using identical sequence parameters and similar 31- or 32-channel receive coil arrays. The SNR of three-dimensional (3D) gradient echo images was determined using a multiple replica approach and corrected with measured flip angle and T2 (*) distributions and the T1 of white matter to obtain the intrinsic SNR. The g-factor maps were derived from 3D gradient echo images with several GRAPPA accelerations. As expected, T1 values increased, T2 (*) decreased and the B1 -homogeneity deteriorated with increasing field. The SNR showed a distinctly supralinear increase with field strength by a factor of 3.10 ± 0.20 from 3T to 7T, and 1.76 ± 0.13 from 7T to 9.4T over the entire cerebrum. The g-factors did not show the expected decrease, indicating a dominating role of coil design. In standard experimental conditions, SNR increased supralinearly with field strength (SNR ∼ B0 (1.65) ). To take full advantage of this gain, the deteriorating B1 -homogeneity and the decreasing T2 (*) have to be overcome. © 2015 Wiley Periodicals, Inc.

  10. High and ultra-high resolution metabolite mapping of the human brain using 1H FID MRSI at 9.4T.

    PubMed

    Nassirpour, Sahar; Chang, Paul; Henning, Anke

    2018-03-01

    Magnetic resonance spectroscopic imaging (MRSI) is a promising technique for mapping the spatial distribution of multiple metabolites in the human brain. These metabolite maps can be used as a diagnostic tool to gain insight into several biochemical processes and diseases in the brain. In comparison to lower field strengths, MRSI at ultra-high field strengths benefits from a higher signal to noise ratio (SNR) as well as higher chemical shift dispersion, and hence spectral resolution. This study combines the benefits of an ultra-high field magnet with the advantages of an ultra-short TE and TR single-slice FID-MRSI sequence (such as negligible J-evolution and loss of SNR due to T 2 relaxation effects) and presents the first metabolite maps acquired at 9.4T in the healthy human brain at both high (voxel size of 97.6µL) and ultra-high (voxel size of 24.4µL) spatial resolutions in a scan time of 11 and 46min respectively. In comparison to lower field strengths, more anatomically-detailed maps with higher SNR from a larger number of metabolites are shown. A total of 12 metabolites including glutamate (Glu), glutamine (Gln), N-acetyl-aspartyl-glutamate (NAAG), Gamma-aminobutyric acid (GABA) and glutathione (GSH) are reliably mapped. Comprehensive description of the methodology behind these maps is provided. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Forecast of geomagnetic storms using CME parameters and the WSA-ENLIL model

    NASA Astrophysics Data System (ADS)

    Moon, Y.; Lee, J.; Jang, S.; Na, H.; Lee, J.

    2013-12-01

    Intense geomagnetic storms are caused by coronal mass ejections (CMEs) from the Sun and their forecast is quite important in protecting space- and ground-based technological systems. The onset and strength of geomagnetic storms depend on the kinematic and magnetic properties of CMEs. Current forecast techniques mostly use solar wind in-situ measurements that provide only a short lead time. On the other hand, techniques using CME observations near the Sun have the potential to provide 1-3 days of lead time before the storm occurs. Therefore, one of the challenging issues is to forecast interplanetary magnetic field (IMF) southward components and hence geomagnetic storm strength with a lead-time on the order of 1-3 days. We are going to answer the following three questions: (1) when does a CME arrive at the Earth? (2) what is the probability that a CME can induce a geomagnetic storm? and (3) how strong is the storm? To address the first question, we forecast the arrival time and other physical parameters of CMEs at the Earth using the WSA-ENLIL model with three CME cone types. The second question is answered by examining the geoeffective and non-geoeffective CMEs depending on CME observations (speed, source location, earthward direction, magnetic field orientation, and cone-model output). The third question is addressed by examining the relationship between CME parameters and geomagnetic indices (or IMF southward component). The forecast method will be developed with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the physics-based models.

  12. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, J.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I (sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  13. Geometric effects in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, R. M.; Mantenieks, M.; Sovey, James S.

    1990-01-01

    Three applied-field magnetoplasmadynamic (MPD) thruster geometries were tested with argon propellant to establish the influence of electrode geometry on thruster performance. The thrust increased approximately linearly with anode radius, while the discharge and electrode fall voltages increased quadratically with anode radius. All these parameters increased linearly with applied-field strength. Thrust efficiency, on the other hand, was not significantly influenced by changes in geometry over the operating range studied, though both thrust and thermal efficiencies increased monotonically with applied field strength. The best performance, 1820 sec I(sub sp) at 20 percent efficiency, was obtained with the largest radius anode at the highest discharge current (1500 amps) and applied field strength (0.4 Tesla).

  14. Sunspot rotation. II. Effects of varying the field strength and twist of an emerging flux tube

    NASA Astrophysics Data System (ADS)

    Sturrock, Z.; Hood, A. W.

    2016-09-01

    Context. Observations of flux emergence indicate that rotational velocities may develop within sunspots. However, the dependence of this rotation on sub-photospheric field strength and twist remains largely unknown. Aims: We investigate the effects of varying the initial field strength and twist of an emerging sub-photospheric magnetic flux tube on the rotation of the sunspots at the photosphere. Methods: We consider a simple model of a stratified domain with a sub-photospheric interior layer and three overlying atmospheric layers. A twisted arched flux tube is inserted in the interior and is allowed to rise into the atmosphere. To achieve this, the magnetohydrodynamic equations are solved using the Lagrangian-remap code, Lare3d. We perform a parameter study by independently varying the sub-photospheric magnetic field strength and twist. Results: Altering the initial magnetic field strength and twist of the flux tube significantly affects the tube's evolution and the rotational motions that develop at the photosphere. The rotation angle, vorticity, and current show a direct dependence on the initial field strength. We find that an increase in field strength increases the angle through which the fieldlines rotate, the length of the fieldlines extending into the atmosphere, and the magnetic energy transported to the atmosphere. This also affects the amount of residual twist in the interior. The length of the fieldlines is crucial as we predict the twist per unit length equilibrates to a lower value on longer fieldlines. No such direct dependence is found when we modify the twist of the magnetic field owing to the complex effect this has on the tension force acting on the tube. However, there is still a clear ordering in quantities such as the rotation angle, helicity, and free energy with higher initial twist cases being related to sunspots that rotate more rapidly, transporting more helicity and magnetic energy to the atmosphere.

  15. A crater and its ejecta: An interpretation of Deep Impact

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.; Housen, Kevin R.

    2007-03-01

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  16. A crater and its ejecta: An interpretation of Deep Impact

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.; Housen, Kevin R.

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  17. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    NASA Astrophysics Data System (ADS)

    Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.

    2005-07-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.

  18. Researching Up: Triangulating Qualitative Research to Influence the Public Debate of "On-Time" College Graduation

    ERIC Educational Resources Information Center

    McCormack, Tim; Schnee, Emily; VanOra, Jason

    2014-01-01

    Background: The field of higher education abounds with qualitative research aimed at highlighting the needs, struggles, strengths, and motivations of academically struggling students. However, because of the small-scale nature of these studies, they rarely enter the public debate or impact institutional policy concerning access, remediation,…

  19. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    USDA-ARS?s Scientific Manuscript database

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  20. Analysis of FORTE data to extract ionospheric parameters

    NASA Astrophysics Data System (ADS)

    Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.

    2001-01-01

    The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.

  1. Synthetic clock states generated in a Bose-Einstein condensate via continuous dynamical decoupling

    NASA Astrophysics Data System (ADS)

    Lundblad, Nathan; Trypogeorgos, Dimitrios; Valdes-Curiel, Ana; Marshall, Erin; Spielman, Ian

    2017-04-01

    Radiofrequency- or microwave-dressed states have been used in NV center and ion-trap experiments to extend coherence times, shielding qubits from magnetic field noise through a process known as continuous dynamical decoupling. Such field-insensitive dressed states, as applied in the context of ultracold neutral atoms, have applications related to the creation of novel phases of spin-orbit-coupled quantum matter. We present observations of such a protected dressed-state system in a Bose-Einstein condensate, including measurements of the dependence of the protection on rf coupling strength, and estimates of residual field sensitivities.

  2. Could Magnetic Fields Affect the Circadian Clock Function of Cryptochromes? Testing the Basic Premise of the Cryptochrome Hypothesis (ELF Magnetic Fields).

    PubMed

    Vanderstraeten, Jacques; Burda, Hynek; Verschaeve, Luc; De Brouwer, Christophe

    2015-07-01

    It has been suggested that weak 50/60 Hz [extremely low frequency (ELF)] magnetic fields (MF) could affect circadian biorhythms by disrupting the clock function of cryptochromes (the "cryptochrome hypothesis," currently under study). That hypothesis is based on the premise that weak (Earth strength) static magnetic fields affect the redox balance of cryptochromes, thus possibly their signaling state as well. An appropriate method for testing this postulate could be real time or short-term study of the circadian clock function of retinal cryptochromes under exposure to the static field intensities that elicit the largest redox changes (maximal "low field" and "high field" effects, respectively) compared to zero field. Positive results might encourage further study of the cryptochrome hypothesis itself. However, they would indicate the need for performing a similar study, this time comparing the effects of only slight intensity changes (low field range) in order to explore the possible role of the proximity of metal structures and furniture as a confounder under the cryptochrome hypothesis.

  3. Improvement of Early Strength of Cement Mortar Containing Granulated Blast Furnace Slag Using Industrial Byproducts.

    PubMed

    Kim, Jin-Hyoung; Lee, Han-Seung

    2017-09-07

    In the field of construction, securing the early strength of concrete (on the first and third days of aging) has been an important problem in deciding the mold release time (i.e., shortening the construction time period). Therefore, the problem of reduced compressive strength in the early aging stage caused by mixing granulated blast furnace slag (GBFS) with concrete must certainly be resolved. In this study, we conduct experiments to explore methods for generating a concrete that develops an early strength equivalent to that of 100% OPC. The objective of this study is the development of an early-strength accelerator (ESA) made from an industrial by-product, for a GBFS-mixed cement mortar. This study also analyzes the mechanism of the early-strength generation in the concrete to evaluate the influence of the burning temperature of ESA on the optimal compressive strength of the concrete. According to the results of the experiment, GBFS, whose ESA is burnt at 800 °C, shows an activation factor of 102.6-104.7% in comparison with 100% OPC on the first and third days during early aging, thereby meeting the target compressive strength. The results of the micro-analytic experiment are as follows: ESA showed a pH of strongly alkaline. In addition, it was found that the content of SO₃ was high in the chemical components, thus activating the hydration reaction of GBFS in the early age. This initial hydration reaction was thought to be due to the increase in the filling effect of the hydrate and the generation of C-S-H of the early age by the mass production of Ettringite.

  4. Improvement of Early Strength of Cement Mortar Containing Granulated Blast Furnace Slag Using Industrial Byproducts

    PubMed Central

    Kim, Jin-Hyoung; Lee, Han-Seung

    2017-01-01

    In the field of construction, securing the early strength of concrete (on the first and third days of aging) has been an important problem in deciding the mold release time (i.e., shortening the construction time period). Therefore, the problem of reduced compressive strength in the early aging stage caused by mixing granulated blast furnace slag (GBFS) with concrete must certainly be resolved. In this study, we conduct experiments to explore methods for generating a concrete that develops an early strength equivalent to that of 100% OPC. The objective of this study is the development of an early-strength accelerator (ESA) made from an industrial by-product, for a GBFS-mixed cement mortar. This study also analyzes the mechanism of the early-strength generation in the concrete to evaluate the influence of the burning temperature of ESA on the optimal compressive strength of the concrete. According to the results of the experiment, GBFS, whose ESA is burnt at 800 °C, shows an activation factor of 102.6–104.7% in comparison with 100% OPC on the first and third days during early aging, thereby meeting the target compressive strength. The results of the micro-analytic experiment are as follows: ESA showed a pH of strongly alkaline. In addition, it was found that the content of SO3 was high in the chemical components, thus activating the hydration reaction of GBFS in the early age. This initial hydration reaction was thought to be due to the increase in the filling effect of the hydrate and the generation of C-S-H of the early age by the mass production of Ettringite. PMID:28880256

  5. 3.0-T functional brain imaging: a 5-year experience.

    PubMed

    Scarabino, T; Giannatempo, G M; Popolizio, T; Tosetti, M; d'Alesio, V; Esposito, F; Di Salle, F; Di Costanzo, A; Bertolino, A; Maggialetti, A; Salvolini, U

    2007-02-01

    The aim of this paper is to illustrate the technical, methodological and diagnostic features of functional imaging (comprising spectroscopy, diffusion, perfusion and cortical activation techniques) and its principal neuroradiological applications on the basis of the experience gained by the authors in the 5 years since the installation of a high-field magnetic resonance (MR) magnet. These MR techniques are particularly effective at 3.0 Tesla (T) owing to their high signal, resolution and sensitivity, reduced scanning times and overall improved diagnostic ability. In particular, the high-field strength enhances spectroscopic analysis due to a greater signal-to-noise ratio (SNR) and improved spectral, space and time resolution, resulting in the ability to obtain high-resolution spectroscopic studies not only of the more common metabolites, but also--and especially--of those which, due to their smaller concentrations, are difficult to detect using 1.5-T systems. All of these advantages can be obtained with reduced acquisition times. In diffusion studies, the high-field strength results in greater SNR, because 3.0-T magnets enable increased spatial resolution, which enhances accuracy. They also allow exploration in greater detail of more complex phenomena (such as diffusion tensor and tractography), which are not clearly depicted on 1.5-T systems. The most common perfusion study (with intravenous injection of a contrast agent) benefits from the greater SNR and higher magnetic susceptibility by achieving dramatically improved signal changes, and thus greater reliability, using smaller doses of contrast agent. Functional MR imaging (fMRI) is without doubt the modality in which high-field strength has had the greatest impact. Images acquired with the blood-oxygen-level-dependent (BOLD) technique benefit from the greater SNR afforded by 3.0-T magnets and from their stronger magnetic susceptibility effects, providing higher signal and spatial resolution. This enhances reliability of the localisation of brain functions, making it possible to map additional areas, even in the millimetre and submillimetre scale. The data presented and results obtained to date show that 3.0-T morphofunctional imaging can become the standard for high-resolution investigation of brain disease.

  6. WE-G-17A-08: Electron Gun Operation for in Line MRI-Linac Configurations: An Assessment of Beam Fidelity and Recovery Techniques for Different SIDs and Magnetic Field Strengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, B; Keall, P; Ingham Institute, Liverpool, Aus

    Purpose: To test the functionality of medical electron guns within the fringe field of a purpose built superconducting MRI magnet, and to test different recovery techniques for a variety of imaging field strengths and SIDs. Methods: Three different electron guns were simulated using Finite Element Modelling; a standard diode gun, a standard triode gun, and a novel diode gun designed to operate within parallel magnetic fields. The approximate working regime of each gun was established by assessing exit current in constant magnetic fields of varying strength and defining ‘working’ as less than 10% change in injection current. Next, the 1.0Tmore » MRI magnet was simulated within Comsol Multiphysics. The coil currents in this model were also scaled to produce field strengths of .5, 1, 1.5 and 3T. Various magnetic shield configurations were simulated, varying the SID from 800 to 1300mm. The average magnetic field within the gun region was assessed together with the distortion in the imaging volume - greater than 150uT distortion was considered unacceptable. Results: The conventional guns functioned in fields of less than 7.5mT. Conversely, the redesigned diode required fields greater than .1T to function correctly. Magnetic shielding was feasible for SIDS of greater than 1000mm for field strengths of .5T and 1T, and 1100mm for 1.5 and 3.0T. Beyond these limits shielding resulted in unacceptable MRI distortion. In contrast, the redesigned diode could perform acceptably for SIDs of less than 812, 896, 931, and 974mm for imaging strengths of 0.5, 1.0, 1.5, 3.0T. Conclusions: For in-line MRIlinac configurations where the electron gun is operating in low field regions, shielding is a straight forward option. However, as magnetic field strength increases and the SID is reduced, shielding results in too great a distortion in the MRI and redesigning the electron optics is the preferable solution. The authors would like to acknowledge funding from the National Health and Research Council (AUS), National Institute of Health (NIH), and Cancer Institute NSW.« less

  7. Experimental Examination of Intraspecific Density-Dependent Competition during the Breeding Period in Monarch Butterflies (Danaus plexippus)

    PubMed Central

    Flockhart, D. T. Tyler; Martin, Tara G.; Norris, D. Ryan

    2012-01-01

    A central goal of population ecology is to identify the factors that regulate population growth. Monarch butterflies (Danaus plexippus) in eastern North America re-colonize the breeding range over several generations that result in population densities that vary across space and time during the breeding season. We used laboratory experiments to measure the strength of density-dependent intraspecific competition on egg laying rate and larval survival and then applied our results to density estimates of wild monarch populations to model the strength of density dependence during the breeding season. Egg laying rates did not change with density but larvae at high densities were smaller, had lower survival, and weighed less as adults compared to lower densities. Using mean larval densities from field surveys resulted in conservative estimates of density-dependent population reduction that varied between breeding regions and different phases of the breeding season. Our results suggest the highest levels of population reduction due to density-dependent intraspecific competition occur early in the breeding season in the southern portion of the breeding range. However, we also found that the strength of density dependence could be almost five times higher depending on how many life-stages were used as part of field estimates. Our study is the first to link experimental results of a density-dependent reduction in vital rates to observed monarch densities in the wild and show that the effects of density dependent competition in monarchs varies across space and time, providing valuable information for developing robust, year-round population models in this migratory organism. PMID:22984614

  8. Concrete probe-strength study : final report.

    DOT National Transportation Integrated Search

    1969-12-01

    The Windsor probe - test system was evaluated for determining compressive strength of concrete by comparing probe strengths against cylinder and core strengths from both laboratory and field-poured concrete. Advantages and disadvantages of this syste...

  9. Strong Magnetic Field Characterisation

    DTIC Science & Technology

    2012-04-01

    an advertised surface field of approximately 0.5 T were used to supply the static magnetic field source. The disc magnet had a diameter of 50 mm and... colour bar indicates the magnetic field strength set to an arbitrary 0.25 T. The white area has a field >0.25 T. The size of the arrow is proportional...9 shows the magnetic field strength along a slice in the XZ plane. The colours represent the total UNCLASSIFIED 10 UNCLASSIFIED DSTO-TR-2699

  10. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  11. MMS Multipoint Electric Field Observations of Small-Scale Magnetic Holes

    NASA Technical Reports Server (NTRS)

    Goodrich, Katherine A.; Ergun, Robert E.; Wilder, Frederick; Burch, James; Torbert, Roy; Khotyaintsev, Yuri; Lindqvist, Per-Arne; Russell, Christopher; Strangeway, Robert; Magnus, Werner

    2016-01-01

    Small-scale magnetic holes (MHs), local depletions in magnetic field strength, have been observed multiple times in the Earths magnetosphere in the bursty bulk flow (BBF) braking region. This particular subset of MHs has observed scale sizes perpendicular to the background magnetic field (B) less than the ambient ion Larmor radius (p(sib i)). Previous observations by Time History of Events and Macroscale Interactions during Substorms (THEMIS) indicate that this subset of MHs can be supported by a current driven by the E x B drift of electrons. Ions do not participate in the E x B drift due to the small-scale size of the electric field. While in the BBF braking region, during its commissioning phase, the Magnetospheric Multiscale (MMS) spacecraft observed a small-scale MH. The electric field observations taken during this event suggest the presence of electron currents perpendicular to the magnetic field. These observations also suggest that these currents can evolve to smaller spatial scales.

  12. Utilizing the dynamic stark shift as a probe for dielectric relaxation in photosynthetic reaction centers during charge separation.

    PubMed

    Guo, Zhi; Lin, Su; Woodbury, Neal W

    2013-09-26

    In photosynthetic reaction centers, the electric field generated by light-induced charge separation produces electrochromic shifts in the transitions of reaction center pigments. The extent of this Stark shift indirectly reflects the effective field strength at a particular cofactor in the complex. The dynamics of the effective field strength near the two monomeric bacteriochlorophylls (BA and BB) in purple photosynthetic bacterial reaction centers has been explored near physiological temperature by monitoring the time-dependent Stark shift during charge separation (dynamic Stark shift). This dynamic Stark shift was determined through analysis of femtosecond time-resolved absorbance change spectra recorded in wild type reaction centers and in four mutants at position M210. In both wild type and the mutants, the kinetics of the dynamic Stark shift differ from those of electron transfer, though not in the same way. In wild type, the initial electron transfer and the increase in the effective field strength near the active-side monomer bacteriochlorophyll (BA) occur in synchrony, but the two signals diverge on the time scale of electron transfer to the quinone. In contrast, when tyrosine is replaced by aspartic acid at M210, the kinetics of the BA Stark shift and the initial electron transfer differ, but transfer to the quinone coincides with the decay of the Stark shift. This is interpreted in terms of differences in the dynamics of the local dielectric environment between the mutants and the wild type. In wild type, comparison of the Stark shifts associated with BA and BB on the two quasi-symmetric halves of the reaction center structure confirm that the effective dielectric constants near these cofactors are quite different when the reaction center is in the state P(+)QA(-), as previously determined by Steffen et al. at 1.5 K (Steffen, M. A.; et al. Science 1994, 264, 810-816). However, it is not possible to determine from static, low-temperature measurments if the difference in the effective dielectric constant between the two sides of the reaction center is manifest on the time scale of initial electron transfer. By comparing directly the Stark shift dynamics of the ground-state spectra of the two monomer bacteriochlorophylls, it is evident that there is, in fact, a large dielectric difference between protein environments of the two quasi-symmetric electron-transfer branches on the time scale of initial electron transfer and that the effective dielectric constant in the region continues to evolve on a time scale of hundreds of picoseconds.

  13. Magnetic field in expanding quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Stewart, Evan; Tuchin, Kirill

    2018-04-01

    Intense electromagnetic fields are created in the quark-gluon plasma by the external ultrarelativistic valence charges. The time evolution and the strength of this field are strongly affected by the electrical conductivity of the plasma. Yet, it has recently been observed that the effect of the magnetic field on the plasma flow is small. We compute the effect of plasma flow on magnetic field and demonstrate that it is less than 10%. These observations indicate that the plasma hydrodynamics and the dynamics of electromagnetic field decouple. Thus, it is a very good approximation, on the one hand, to study QGP in the background electromagnetic field generated by external sources and, on the other hand, to investigate the dynamics of magnetic field in the background plasma. We also argue that the wake induced by the magnetic field in plasma is negligible.

  14. Simulation of field-induced molecular dissociation in atom-probe tomography: Identification of a neutral emission channel

    NASA Astrophysics Data System (ADS)

    Zanuttini, David; Blum, Ivan; Rigutti, Lorenzo; Vurpillot, François; Douady, Julie; Jacquet, Emmanuelle; Anglade, Pierre-Matthieu; Gervais, Benoit

    2017-06-01

    We investigate the dynamics of dicationic metal-oxide molecules under large electric-field conditions, on the basis of ab initio calculations coupled to molecular dynamics. Applied to the case of ZnO2 + in the field of atom probe tomography (APT), our simulation reveals the dissociation into three distinct exit channels. The proportions of these channels depend critically on the field strength and on the initial molecular orientation with respect to the field. For typical field strength used in APT experiments, an efficient dissociation channel leads to emission of neutral oxygen atoms, which escape detection. The calculated composition biases and their dependence on the field strength show remarkable consistency with recent APT experiments on ZnO crystals. Our work shows that bond breaking in strong static fields may lead to significant neutral atom production, and therefore to severe elemental composition biases in measurements.

  15. Solar magnetic field studies using the 12 micron emission lines. I - Quiet sun time series and sunspot slices

    NASA Technical Reports Server (NTRS)

    Deming, Drake; Boyle, Robert J.; Jennings, Donald E.; Wiedemann, Gunter

    1988-01-01

    The use of the extremely Zeeman-sensitive IR emission line Mg I, at 12.32 microns, to study solar magnetic fields. Time series observations of the line in the quiet sun were obtained in order to determine the response time of the line to the five-minute oscillations. Based upon the velocity amplitude and average period measured in the line, it is concluded that it is formed in the temperature minimum region. The magnetic structure of sunspots is investigated by stepping a small field of view in linear 'slices' through the spots. The region of penumbral line formation does not show the Evershed outflow common in photospheric lines. The line intensity is a factor of two greater in sunspot penumbrae than in the photosphere, and at the limb the penumbral emission begins to depart from optical thinness, the line source function increasing with height. For a spot near disk center, the radial decrease in absolute magnetic field strength is steeper than the generally accepted dependence.

  16. Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall

    NASA Astrophysics Data System (ADS)

    Medan, Ilija; Andersson, B.-G.

    2018-01-01

    Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.

  17. Experiments on H2-O2MHD power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1980-01-01

    Magnetohydrodynamic power generation experiments utilizing a cesium-seeded H2-O2 working fluid were carried out using a diverging area Hall duct having an entrance Mach number of 2. The experiments were conducted in a high-field strength cryomagnet facility at field strengths up to 5 tesla. The effects of power takeoff location, axial duct location within the magnetic field, generator loading, B-field strength, and electrode breakdown voltage were investigated. For the operating conditions of these experiments, it is found that the power output increases with the square of the B-field and can be limited by choking of the channel or interelectrode voltage breakdown which occurs at Hall fields greater than 50 volts/insulator. Peak power densities of greater than 100 MW/cu M were achieved.

  18. New measurements of photospheric magnetic fields in late-type stars and emerging trends

    NASA Technical Reports Server (NTRS)

    Saar, S. H.; Linsky, J. L.

    1986-01-01

    The magnetic fields of late-type stars are measured using the method of Saar et al. (1986). The method includes radiative transfer effects and compensation for line blending; the photospheric magnetic field parameters are derived by comparing observed and theoretical line profiles using an LTE code that includes line saturation and full Zeeman pattern. The preliminary mean active region magnetic field strengths (B) and surface area coverages for 20 stars are discussed. It is observed that there is a trend of increasing B towards the cooler dwarfs stars, and the linear correlation between B and the equipartition value of the magnetic field strength suggests that the photospheric gas pressure determines the photospheric magnetic field strengths. A tendency toward larger filling factors at larger stellar angular velocities is also detected.

  19. Specific features of electric field in the atmosphere and Radon emanations in Tunkin Basin of Baikal rift zone

    NASA Astrophysics Data System (ADS)

    Soloviev, S.; Loktev, D.

    2013-05-01

    Development of methods for diagnosing local crust encourages finding new ways for preventing hazardous geologic phenomena. Using measurements of several geophysical fields in addition to seismic methods enables to improve the existing methods and increase their reliability. In summer of 2009 and 2010, complex geophysical acquisition company was organized in the Tunkin Basin of the Baikal rift zone in South-Eastern Siberia, that runs 200 km to East-West from the southern tip of Baikal. Stationary observations were carried out in the central part of the Tunkin Basin, at the Geophysical observatory "I" of Institute of Solar-Terrestrial Physics of Siberian Branch of RAS and "II" near the Arshan settlement. Along with observations of microseismic noise and electric field variations in soil, there were performed measurements of electric field strength (Ez) in lowest atmosphere and volumetric activity of natural Radon in subsoil. Meteorological parameters were monitored with the use of DavisVantagePro meteorological stations. The analysis of observations showed that characteristic features of electric field in near-surface atmosphere are majorly defined by complex orography of the place and, consequently, by quickly changing meteorological conditions: thunderstorm activity and other mesometeorological events (with characteristic scale of tens of km and few hours long) in nearby rocks. The results of Ez(t) measurements performed under "good" weather conditions showed that the character of field variations depended on the local time with their maximum in daylight hours and minimum in the night. The analysis of Radon volumetric activity evidenced that its variations are influenced by atmospheric pressure and tides, and such influence is different at points "I" and "II". In particular, the tidal and atmospheric influence on Radon variations is more pronounced at "II" if compared to "I", which can be explained by locations of the registration points. Registration Point "II" is located close to tectonic faults, while "I" is in the center of the basin with its quite thick layer of sediments. Axial section observations of spatial inhomogeneities of electric field and Radon emanation were set along and across the Tunkin Basin. Observation points were set 3 to 10 km apart depending on the local relief. Each point was registering for 60 min under the conditions of "good" weather. There were analysed changes in mean strength of electric field and Radon volumetric activity as a function of distance along the axial section. It was found out that volumetric activity and electric field strength change in phase opposition - radon volumetric activity increase results in more intense ionization in near-surface atmosphere and consequently to decrease in the electric field strength. The concentration of Radon in subsoil atmosphere increases, and electric field strength decreases when approaching to rift zones rimming the Tunkin Basin from North and South. The results of axial section observations can be successfully used when mapping geological inhomogeneities in the Earth's crust. The research was done with financial support of RFBR, project# 12-05-00578

  20. Synergistic Effects of Temperature and Oxidation on Matrix Cracking in Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2017-06-01

    In this paper, the synergistic effects of temperatrue and oxidation on matrix cracking in fiber-reinforced ceramic-matrix composites (CMCs) has been investigated using energy balance approach. The shear-lag model cooperated with damage models, i.e., the interface oxidation model, interface debonding model, fiber strength degradation model and fiber failure model, has been adopted to analyze microstress field in the composite. The relationships between matrix cracking stress, interface debonding and slipping, fiber fracture, oxidation temperatures and time have been established. The effects of fiber volume fraction, interface properties, fiber strength and oxidation temperatures on the evolution of matrix cracking stress versus oxidation time have been analyzed. The matrix cracking stresses of C/SiC composite with strong and weak interface bonding after unstressed oxidation at an elevated temperature of 700 °C in air condition have been predicted for different oxidation time.

  1. The Physics of g-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Don

    At any time in history, a few scientific measurements disagreed with the best theoretical predictions of the time. Currently, one such discrepancy involves the measurement of the strength of the magnetic field of a subatomic particle called a muon. In this video, Fermilab’s Dr. Don Lincoln explains this mystery and sketches ongoing efforts to determine if this disagreement signifies a discovery. If it does, this measurement will mean that we will have to rewrite the textbooks.

  2. Electric fields and current densities under small Florida thunderstorms

    NASA Technical Reports Server (NTRS)

    Deaver, Lance E.; Krider, E. P.

    1991-01-01

    Results are presented of measurements of the electric field E and Maxwell current density that were performed simultaneously under and near small Florida thunderstorms. It is shown that the amplitude of JM is of the order of 1 nA/sq cm or less in the absence of precipitation and that there are regular time variations in JM during the intervals between lightning discharges that tend to have the same shapes after different discharges in different storms. It is argued that the major causes of time variations in JM between lightning discharges are currents that flow in the finitely conducting atmosphere in response to the field changes rather than rapid time variations in the strength of cloud current sources. The displacement current densities that are computed from the E records dominate JM except when there is precipitation, when E is large and steady, or when E is unusually noisy.

  3. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: a pilot study

    PubMed Central

    Pineda, F D; Medved, M; Fan, X; Ivancevic, M K; Abe, H; Shimauchi, A; Newstead, G M

    2015-01-01

    Objective: To compare dynamic contrast-enhanced (DCE) MRI parameters from scans of breast lesions at 1.5 and 3.0 T. Methods: 11 patients underwent paired MRI examinations in both Philips 1.5 and 3.0 T systems (Best, Netherlands) using a standard clinical fat-suppressed, T1 weighted DCE-MRI protocol, with 70–76 s temporal resolution. Signal intensity vs time curves were fit with an empirical mathematical model to obtain semi-quantitative measures of uptake and washout rates as well as time-to-peak enhancement (TTP). Maximum percent enhancement and signal enhancement ratio (SER) were also measured for each lesion. Percent differences between parameters measured at the two field strengths were compared. Results: TTP and SER parameters measured at 1.5 and 3.0 T were similar; with mean absolute differences of 19% and 22%, respectively. Maximum percent signal enhancement was significantly higher at 3 T than at 1.5 T (p = 0.006). Qualitative assessment showed that image quality was significantly higher at 3 T (p = 0.005). Conclusion: Our results suggest that TTP and SER are more robust to field strength change than other measured kinetic parameters, and therefore measurements of these parameters can be more easily standardized than measurements of other parameters derived from DCE-MRI. Semi-quantitative measures of overall kinetic curve shape showed higher reproducibility than do discrete classification of kinetic curve early and delayed phases in a majority of the cases studied. Advances in knowledge: Qualitative measures of curve shape are not consistent across field strength even when acquisition parameters are standardized. Quantitative measures of overall kinetic curve shape, by contrast, have higher reproducibility. PMID:25785918

  4. Scale-dependent Normalized Amplitude and Weak Spectral Anisotropy of Magnetic Field Fluctuations in the Solar Wind Turbulence

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Tu, Chuanyi; Marsch, Eckart; He, Jiansen; Wang, Linghua

    2016-01-01

    Turbulence in the solar wind was recently reported to be anisotropic, with the average power spectral index close to -2 when sampling parallel to the local mean magnetic field B0 and close to -5/3 when sampling perpendicular to the local B0. This result was widely considered to be observational evidence for the critical balance theory (CBT), which is derived by making the assumption that the turbulence strength is close to one. However, this basic assumption has not yet been checked carefully with observational data. Here we present for the first time the scale-dependent magnetic-field fluctuation amplitude, which is normalized by the local B0 and evaluated for both parallel and perpendicular sampling directions, using two 30-day intervals of Ulysses data. From our results, the turbulence strength is evaluated as much less than one at small scales in the parallel direction. An even stricter criterion is imposed when selecting the wavelet coefficients for a given sampling direction, so that the time stationarity of the local B0 is better ensured during the local sampling interval. The spectral index for the parallel direction is then found to be -1.75, whereas the spectral index in the perpendicular direction remains close to -1.65. These two new results, namely that the value of the turbulence strength is much less than one in the parallel direction and that the angle dependence of the spectral index is weak, cannot be explained by existing turbulence theories, like CBT, and thus will require new theoretical considerations and promote further observations of solar-wind turbulence.

  5. Transient electrohydrodynamics of a liquid drop.

    PubMed

    Esmaeeli, Asghar; Sharifi, Payam

    2011-09-01

    The transient behavior of a leaky dielectric liquid drop under a uniform electric field of small strength is investigated. It is shown that for small distortion from a spherical shape, the drop deforms to an ellipsoid, and the deformation time history is represented by D=D(∞)[1-exp(-t/τ)], where D(∞) is the steady-state deformation and τ=(aμ(o)/γ)(19μ+16)(2μ+3)/(40μ+40)is the characteristic time, a, γ, μ(o) and μ being the drop radius, the surface tension, the viscosity of ambient fluid, and ratio of the drop viscosity to that of the ambient fluid, respectively. The contributions of the net normal and tangential electrical stresses in the degree of deformation and fluid flow strength are also determined.

  6. Bats Can Use Magnetic Compass in Foraging Behavior

    NASA Astrophysics Data System (ADS)

    Tian, L.; Zhang, B.; Pan, Y.; Zhu, R.

    2016-12-01

    Foraging plays an important role in an animal's ability to survive and reproduce. It is widely recognized that many animals and microorganisms can use geomagnetic compass in migration or homing orientation. Among them, bats, the only flying mammals, can use the magnetic compass in migrating orientations. For instance, we found the migratory microbat, Nyctalus plancyi, could use the magnetic polarity compass in roosting orientation under the strength range at least from a much weaker magnetic field than the present-day geomagnetic field (as low as 10 μT) to up to stronger magnetic field (100 μT). This high sensitivity to magnetic fields intensity may explain how magnetic orientation could have long-term evolved in bats even as the Earth's magnetic field strength varied as the polarity reversed many times in the past. Recently, we carried out foraging behavioral experiments on N. plancyi under various magnetic field conditions. Interestingly, it has shown that, although the auditory including echolocation, or olfactory sense may be the primary methods for seeking food under totally dark circumstance, the bats showed preferred foraging orientations at the magnetic north-south directions when any other sensory cues are insufficient for location of the food. It confirmed that bats could optimally use multiple directional cues including the geomagnetic field in their foraging in field. When bats foraging, they would navigate along the magnetic field direction if there were no direct sensory cues. As it gets close, the direct cues from food would guide them to the food.

  7. Evolution of the baryon asymmetry through the electroweak crossover in the presence of a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei; Long, Andrew J.

    2016-12-01

    We elaborate upon the model of baryogenesis from decaying magnetic helicity by focusing on the evolution of the baryon number and magnetic field through the Standard Model electroweak crossover. The baryon asymmetry is determined by a competition between the helical hypermagnetic field, which sources baryon number, and the electroweak sphaleron, which tends to wash out baryon number. At the electroweak crossover, both of these processes become inactive; the hypermagnetic field is converted into an electromagnetic field, which does not source baryon number, and the weak gauge boson masses grow, suppressing the electroweak sphaleron reaction. An accurate prediction of the relic baryon asymmetry requires a careful treatment of the crossover. We extend our previous study [K. Kamada and A. J. Long, Phys. Rev. D 94, 063501 (2016)], taking into account the gradual conversion of the hypermagnetic into the electromagnetic field. If the conversion is not completed by the time of sphaleron freeze-out, as both analytic and numerical studies suggest, the relic baryon asymmetry is enhanced compared to previous calculations. The observed baryon asymmetry of the Universe can be obtained for a primordial magnetic field that has a present-day field strength and coherence length of B0˜10-17 G and λ0˜10-3 pc and a positive helicity. For larger B0 the baryon asymmetry is overproduced, which may be in conflict with blazar observations that provide evidence for an intergalactic magnetic field of strength B0≳10-14 - 16 G .

  8. Field-Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Halekas, J. S.; Fillingim, M. O.; Poppe, A. R.; Collinson, G.; Brain, David A.; Mitchell, D. L.

    2018-01-01

    Field-aligned electrostatic potentials in the Martian ionosphere play potentially important roles in maintaining current systems, driving atmospheric escape and producing aurora. The strength and polarity of the potential difference between the observation altitude and the exobase ( 180 km) determine the energy dependence of electron pitch angle distributions (PADs) measured on open magnetic field lines (i.e. those connected both to the collisional atmosphere and to the interplanetary magnetic field). Here we derive and examine a data set of 3.6 million measurements of the potential between 185 km and 400 km altitude from PADs measured by the Mars Global Surveyor Magnetometer/Electron Reflectometer experiment at 2 A.M./2 P.M. local time from May 1999 to November 2006. Potentials display significant variability, consistent with expected variable positive and negative divergences of the convection electric field in the highly variable and dynamic Martian plasma environment. However, superimposed on this variability are persistent patterns whereby potential magnitudes depend positively on crustal magnetic field strength, being close to zero where crustal fields are weak or nonexistent. Average potentials are typically positive near the center of topologically open crustal field regions where field lines are steeper, and negative near the edges of such regions where fields are shallower, near the boundaries with closed fields. This structure is less pronounced for higher solar wind pressures and (on the dayside) higher solar EUV irradiance. Its causes are uncertain at present but may be due to differential motion of electrons and ions in Mars's substantial but (compared to Earth) weak magnetic fields.

  9. Investigation of measurement method of saturation magnetization of iron core material using electromagnet

    NASA Astrophysics Data System (ADS)

    Shibataki, Takuya; Takahashi, Yasuhito; Fujiwara, Koji

    2018-04-01

    This paper discusses a measurement method for saturation magnetizations of iron core materials using an electromagnet, which can apply an extremely large magnetic field strength to a specimen. It is said that electrical steel sheets are completely saturated at such a large magnetic field strength over about 100 kA/m. The saturation magnetization can be obtained by assuming that the completely saturated specimen shows a linear change of the flux density with the magnetic field strength because the saturation magnetization is constant. In order to accurately evaluate the flux density in the specimen, an air flux between the specimen and a winding of B-coil for detecting the flux density is compensated by utilizing an ideal condition that the incremental permeability of saturated specimen is equal to the permeability of vacuum. An error of magnetic field strength caused by setting a sensor does not affect the measurement accuracy of saturation magnetization. The error is conveniently cancelled because the saturation magnetization is a function of a ratio of the magnetic field strength to its increment. It may be concluded that the saturation magnetization can be easily measured with high accuracy by using the proposed method.

  10. Magnetic resonance imaging with an optical atomic magnetometer

    PubMed Central

    Xu, Shoujun; Yashchuk, Valeriy V.; Donaldson, Marcus H.; Rochester, Simon M.; Budker, Dmitry; Pines, Alexander

    2006-01-01

    We report an approach for the detection of magnetic resonance imaging without superconducting magnets and cryogenics: optical atomic magnetometry. This technique possesses a high sensitivity independent of the strength of the static magnetic field, extending the applicability of magnetic resonance imaging to low magnetic fields and eliminating imaging artifacts associated with high fields. By coupling with a remote-detection scheme, thereby improving the filling factor of the sample, we obtained time-resolved flow images of water with a temporal resolution of 0.1 s and spatial resolutions of 1.6 mm perpendicular to the flow and 4.5 mm along the flow. Potentially inexpensive, compact, and mobile, our technique provides a viable alternative for MRI detection with substantially enhanced sensitivity and time resolution for various situations where traditional MRI is not optimal. PMID:16885210

  11. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.

    The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm{sup 2} required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due tomore » time delay in the development of the breakdown phenomena.« less

  12. Field evaporation of ZnO: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J.

    2015-07-14

    With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporationmore » field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.« less

  13. Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    2003-01-01

    It has frequently been suggested that only the geomagnetic dipole, rather than higher order poles, reverse during a geomagnetic field reversal. Under this assumption the geomagnetic field strength has been calculated for the surface of the Earth for various steps of the reversal process. Even without an eminent a reversal of the field, extrapolation of the present secular change (although problematic) shows that the field strength may become zero in some geographic areas within a few hundred years.

  14. The Theory of Quantized Fields. II

    DOE R&D Accomplishments Database

    Schwinger, J.

    1951-01-01

    The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.

  15. Static electric fields modify the locomotory behaviour of cockroaches.

    PubMed

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  16. Dynamical Evolution of an Effective Two-Level System with {\\mathscr{P}}{\\mathscr{T}} Symmetry

    NASA Astrophysics Data System (ADS)

    Du, Lei; Xu, Zhihao; Yin, Chuanhao; Guo, Liping

    2018-05-01

    We investigate the dynamics of parity- and time-reversal (PT ) symmetric two-energy-level atoms in the presence of two optical and a radio-frequency (rf) fields. The strength and relative phase of fields can drive the system from unbroken to broken PT symmetric regions. Compared with the Hermitian model, Rabi-type oscillation is still observed, and the oscillation characteristics are also adjusted by the strength and relative phase in the region of unbroken PT symmetry. At exception point (EP), the oscillation breaks down. To better understand the underlying properties we study the effective Bloch dynamics and find the emergence of the z components of the fixed points is the feature of the PT symmetry breaking and the projections in x-y plane can be controlled with high flexibility compared with the standard two-level system with PT symmetry. It helps to study the dynamic behavior of the complex PT symmetric model.

  17. Statistical analysis of electromagnetic radiation measurements in the vicinity of indoor microcell GSM/UMTS base stations in Serbia.

    PubMed

    Koprivica, Mladen; Petrić, Majda; Nešković, Nataša; Nešković, Aleksandar

    2016-01-01

    To determine the level of radiofrequency radiation generated by base stations of Global System for Mobile Communications and Universal Mobile Telecommunication System, extensive electromagnetic field strength measurements were carried out in the vicinity of 664 base station locations. These were classified into three categories: indoor, masts, and locations with installations on buildings. Although microcell base stations with antennas installed indoors typically emit less power than outdoor macrocell base stations, the fact that people can be found close to antennas requires exposure originating from these base stations to be carefully considered. Measurement results showed that maximum recorded value of electric field strength exceeded International Commission on Non-Ionizing Radiation Protection reference levels at 7% of indoor base station locations. At the same time, this percentage was much lower in the case of masts and installations on buildings (0% and 2.5%, respectively). © 2015 Wiley Periodicals, Inc.

  18. Influence of catalyst packing configuration on the discharge characteristics of dielectric barrier discharge reactors: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Gadkari, Siddharth; Gu, Sai

    2018-06-01

    A two-dimensional numerical fluid model is developed for studying the influence of packing configurations on dielectric barrier discharge (DBD) characteristics. Discharge current profiles and time averaged electric field strength, electron number density, and electron temperature distributions are compared for the three DBD configurations, plain DBD with no packing, partially packed DBD, and fully packed DBD. The results show that a strong change in discharge behaviour occurs when a DBD is fully packed as compared to partial packing or no packing. While the average electric field strength and electron temperature of a fully packed DBD are higher relative to the other DBD configurations, the average electron density is substantially lower and may impede the DBD reactor performance under certain operating conditions. Possible scenarios of the synergistic effect of the combination of plasma with catalysis are also discussed.

  19. Key characteristics of the Fe-snow regime in Ganymede's core

    NASA Astrophysics Data System (ADS)

    Rückriemen, Tina; Breuer, Doris; Spohn, Tilman

    2014-05-01

    Ganymede shows signs of an internally produced dipolar magnetic field (|Bdip|≡719 nT) [1]. For small planetary bodies such as Ganymede the Fe-snow regime, i.e. the top-down solidification of iron, has been suggested to play an important role in the core cooling history [2,3]. In that regime, iron crystals form first at the core-mantle boundary (CMB) due to shallow or negative slopes of the melting temperature [2,3]. The solid iron particles are heavier than the surrounding Fe-FeS fluid, i.e. a snow zone forms, settle to deeper core regions, where the core temperature is higher than the melting temperature, and remelt again. As a consequence, a stable chemical gradient in the Fe-FeS fluid arises within the snow zone. We speculate this style of convection via sedimentation to be small scale, therefore it lacks an important criterion necessary for dynamo action [4]. Below this zone, whose thickness increases with time, the process of remelting of iron creates a gravitationally unstable situation. We propose that this could be the driving mechanism for a potential dynamo. However, dynamo action would be restricted to the time period the snow zone needs to grow across the core. With a 1D thermo-chemical evolution model, we investigate key characteristics of the Fe-snow regime within Ganymede's core: the compositional density gradient of the fluid Fe-FeS within the snow zone and the time period necessary to grow the snow zone across the core. Additionally, we determine the dipolar magnetic field strength associated with a dynamo in Ganymede's deeper fluid core. We vary important input paramters such as the initial sulfur concentration (7-19 wt.%), the core heat flux (2-6 mW/m2) and the thermal conductivity (20-60 W/mK) with the nominal model being: xs=10 wt.%, qcmb=4 mW/m2, kc=32 W/mK. We find, that heat fluxes higher than 6 or 22 mW/m2 are required for double-diffusive or overturning convection to overcome the compositional density gradient within the snow zone, respectively. Since Ganymede's core heat flux does not exceed values of 4 mW/m2 [2], we consider the snow zone to be stable against thermal convection. The time necessary to grow the snow zone across the core is between 230-1900 Myr. For representative models we calculate the temporal evolution of the surface dipolar magnetic field strength according to [5]. All models show surface dipolar magnetic field strengths during the evolution of the snow zone that match the observed value of |Bdip|≡719 nT. In conclusion, we find that the Fe-snow regime produces a stably-stratified liquid layer in the snow zone below which a magnetic field of observed strength can be generated. Such a chemical dynamo is restricted in time and stops as soon as an inner solid core starts to grow suggesting the absence of such an inner core in Ganymede. The present model further suggests a core with high initial sulfur concentration, because this leads to a late start and a long duration of the dynamo necessary to explain the present magnetic field. References [1] Kivelson, M et al. (1996), Nature, 384(6609), [2] Hauck II, S. et al. (2006), JGR, 111(E9), [3] Williams, Q. (2009), EPSL, 284(3), [4] Christensen, U. and J. Wicht (2007), Treatise of Geophysics, Elsevier, [5] Christensen, U., and J. Aubert (2006), GJI, 166(1)

  20. On the Occurrence of Afternoon Counter Electrojet Over Indian Longitudes During June Solstice in Solar Minimum

    NASA Astrophysics Data System (ADS)

    Pandey, Kuldeep; Sekar, R.; Anandarao, B. G.; Gupta, S. P.; Chakrabarty, D.

    2018-03-01

    Studies made earlier using ground-based observations of geomagnetic field over the Indian longitudes revealed that the occurrence of equatorial counter electrojet (CEJ) events in afternoon hours is more frequent during June solstice (May-June-July-August) in solar minimum than in other periods. In general, the June solstice solar minimum CEJ events occur between 1500 local time (LT) and 1800 LT with peak strength of about -10 nT at around 1600 LT. In order to understand the frequent occurrence of these CEJ events, an investigation is carried out using an equatorial electrojet model (Anandarao, 1976, https://doi.org/10.1029/GL003i009p00545) and the empirical vertical drift model by Fejer et al. (2008, https://doi.org/10.1029/2007JA012801). The strength, duration, peak value, and the occurrence time of CEJ obtained using electrojet model match remarkably well with the corresponding observation of average geomagnetic field variations. The occurrence of CEJ is found to be due to solar quiet (Sq) electric field in the westward direction which is manifested as downward drift in Fejer et al. (2008, https://doi.org/10.1029/2007JA012801) model output during 1500-1800 LT. Further, the occurrence of afternoon reversal of Sq electric field in this season is shown to be consistent with earlier studies from Indian sector. Therefore, this investigation provides explicit evidence for the role of westward Sq electric field on the generation of afternoon CEJ during June solstice in solar minimum periods over the Indian sector indicating the global nature of these CEJ events.

  1. The effects of magnetic fields and protostellar feedback on low-mass cluster formation

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2018-05-01

    We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.

  2. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    PubMed

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  3. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.771 Field... transmit frequencies, of EA and Regional licensees may not exceed a predicted 38 dBu field strength at... required in paragraph (a) of this section if all affected, co-channel EA and Regional licensees agree to...

  4. 47 CFR 90.771 - Field strength limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Policies Governing the Licensing and Use of Phase II Ea, Regional and Nationwide Systems § 90.771 Field... transmit frequencies, of EA and Regional licensees may not exceed a predicted 38 dBu field strength at... required in paragraph (a) of this section if all affected, co-channel EA and Regional licensees agree to...

  5. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...

  6. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...

  7. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...

  8. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...

  9. 47 CFR 73.189 - Minimum antenna heights or field strength requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Minimum antenna heights or field strength... RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.189 Minimum antenna heights or field..., frequency, or transmitter location must also request authority to install a new antenna system or to make...

  10. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... function of groundwave conductivity and distance from the source of radiation. The groundwave field... Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere,” Part II, by Mr. K.A... relative values of groundwave field strength over a plane earth as a function of the numerical distance p...

  11. 47 CFR 15.245 - Operation within the bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz, 10500-10550 MHz, and 24075...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... limited to intentional radiators used as field disturbance sensors, excluding perimeter protection systems. (b) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following: Fundamental frequency (MHz) Field strength of fundamental (millivolts...

  12. [Using Molecular Simulations to Understand Complex Nanoscale Dynamic Phenomena in Polymer Solutions

    NASA Technical Reports Server (NTRS)

    Smith, Grant

    2004-01-01

    The first half of the project concentrated on molecular simulation studies of the translocation of model molecules for single-stranded DNA through a nanosized pore. This has resulted in the publication, Translocation of a polymer chain across a nanopore: A Brownian dynamics simulation study, by Pu Tian and Grant D. Smith, JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 21 1 DECEMBER 2003, which is attached to this report. In this work we carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient) designed to mimic an electrostatic field. The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient). We focused on the latter case in our studies. Calculation of radius of gyration of the translocating chain at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tube-like pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied. Attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  13. Quadratic Zeeman effect in hydrogen Rydberg states: Rigorous bound-state error estimates in the weak-field regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Falsaperla, P.; Fonte, G.

    1993-05-01

    Applying a method based on some results due to Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], we show that series of Rydberg eigenvalues and Rydberg eigenfunctions of hydrogen in a uniform magnetic field can be calculated with a rigorous error estimate. The efficiency of the method decreases as the eigenvalue density increases and as [gamma][ital n][sup 3][r arrow]1, where [gamma] is the magnetic-field strength in units of 2.35[times]10[sup 9] G and [ital n] is the principal quantum number of the unperturbed hydrogenic manifold from which the diamagnetic Rydberg states evolve. Fixing [gamma] at the laboratory value 2[times]10[sup [minus]5] andmore » confining our calculations to the region [gamma][ital n][sup 3][lt]1 (weak-field regime), we obtain extremely accurate results up to states corresponding to the [ital n]=32 manifold.« less

  14. Flux-pinning and inhomogeneity in MgB 2 /Fe wires

    NASA Astrophysics Data System (ADS)

    Husnjak, O.; Babić, E.; Kušević, I.; Wang, X. L.; Soltanian, S.; Dou, S. X.

    2007-08-01

    Transport critical current densities Jc and irreversibility fields B of undoped and nanoparticle doped (10 wt% SiC) Fe-sheathed MgB 2 wires were measured from 2 to 40 K in magnetic field B≤16 T. For the best segments of wires (≤1 cm) both the magnitude and field variations of Jc and the pinning force density Fp=JcB depend only on the magnitude of B, hence the strength of flux-pinning. B of doped wire for T≤30 K is ˜1.4 times larger than that of undoped and reaches that of NbTi (10 T at 4.2 K) already at 20 K. Accordingly, its high-field Jcs and Fps are large, typically three times larger than the best literature results, and are limited by the porosity and inhomogeneity of the superconducting cores in present-day MgB 2 wires.

  15. Real-time and quantitative isotropic spatial resolution susceptibility imaging for magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Pi, Shiqiang; Liu, Wenzhong; Jiang, Tao

    2018-03-01

    The magnetic transparency of biological tissue allows the magnetic nanoparticle (MNP) to be a promising functional sensor and contrast agent. The complex susceptibility of MNPs, strongly influenced by particle concentration, excitation magnetic field and their surrounding microenvironment, provides significant implications for biomedical applications. Therefore, magnetic susceptibility imaging of high spatial resolution will give more detailed information during the process of MNP-aided diagnosis and therapy. In this study, we present a novel spatial magnetic susceptibility extraction method for MNPs under a gradient magnetic field, a low-frequency drive magnetic field, and a weak strength high-frequency magnetic field. Based on this novel method, a magnetic particle susceptibility imaging (MPSI) of millimeter-level spatial resolution (<3 mm) was achieved using our homemade imaging system. Corroborated by the experimental results, the MPSI shows real-time (1 s per frame acquisition) and quantitative abilities, and isotropic high resolution.

  16. Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air

    NASA Astrophysics Data System (ADS)

    Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri

    2018-04-01

    C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.

  17. Characterization of high flux magnetized helium plasma in SCU-PSI linear device

    NASA Astrophysics Data System (ADS)

    Xiaochun, MA; Xiaogang, CAO; Lei, HAN; Zhiyan, ZHANG; Jianjun, WEI; Fujun, GOU

    2018-02-01

    A high-flux linear plasma device in Sichuan University plasma-surface interaction (SCU-PSI) based on a cascaded arc source has been established to simulate the interactions between helium and hydrogen plasma with the plasma-facing components in fusion reactors. In this paper, the helium plasma has been characterized by a double-pin Langmuir probe. The results show that the stable helium plasma beam with a diameter of 26 mm was constrained very well at a magnetic field strength of 0.3 T. The core density and ion flux of helium plasma have a strong dependence on the applied current, magnetic field strength and gas flow rate. It could reach an electron density of 1.2 × 1019 m-3 and helium ion flux of 3.2 × 1022 m-2 s-1, with a gas flow rate of 4 standard liter per minute, magnetic field strength of 0.2 T and input power of 11 kW. With the addition of -80 V applied to the target to increase the helium ion energy and the exposure time of 2 h, the flat top temperature reached about 530 °C. The different sizes of nanostructured fuzz on irradiated tungsten and molybdenum samples surfaces under the bombardment of helium ions were observed by scanning electron microscopy. These results measured in the SCU-PSI linear device provide a reference for International Thermonuclear Experimental Reactor related PSI research.

  18. Feasibility of maintaining in-plane polarization for a storage ring EDM search

    NASA Astrophysics Data System (ADS)

    Stephenson, Edward; Storage Ring EDM Collaboration

    2014-09-01

    A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. A search for an electric dipole moment (EDM) on charged particles using a storage ring requires beam polarization lifetimes approaching 1000 s for in-plane polarization. A feasibility study using beam bunching and sextupole field adjustment is underway with a 0.97-GeV/c vector-polarized deuteron beam at COSY. The polarimeter consists of a thick carbon target positioned at the edge of the beam and the EDDA scintillation detectors. The DAQ system assigns a clock time to each polarimeter event. Once calibrated against the RF-cavity, the clock time is used to select events associated with a maximal sideways polarization (precessing at 120 kHz). With this tool, the in-plane polarization magnitude is tracked versus time. Electron cooling reduces the depolarization from finite emittance and second-order momentum spread acting through synchrotron oscillations. Further lifetime improvement to the level of hundreds of seconds is achieved by adjusting sextupole fields located in the COSY ring arcs at places of large transverse beta functions and dispersion. The dependence of the reciprocal of the lifetime on sextupole field strength is nearly linear, permitting an easy location of the best field values. These typically occur near loci of zero chromaticity. Supported in part by the Forschungszentrum-Juelich and the European Union.

  19. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  20. Magnetic radiation shielding - An idea whose time has returned?

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    1991-01-01

    One solution to the problem of shielding crew from particulate radiation in space is to use active electromagnetic shielding. Practical types of shield include the magnetic shield, in which a strong magnetic field diverts charged particles from the crew region, and the magnetic/electrostatic plasma shield, in which an electrostatic field shields the crew from positively charged particles, while a magnetic field confines electrons from the space plasma to provide charge neutrality. Advances in technology include high-strength composite materials, high-temperature superconductors, numerical computational solutions to particle transport in electromagnetic fields, and a technology base for construction and operation of large superconducting magnets. These advances make electromagnetic shielding a practical alternative for near-term future missions.

  1. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  2. Signatures of moderate (M-class) and low (C and B class) intensity solar flares on the equatorial electrojet current: Case studies

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D.; Bagiya, Mala S.; Thampi, Smitha V.; Pathan, B. M.; Sekar, R.

    2013-12-01

    The present investigation brings out, in contrast to the earlier works, the changes in the equatorial electrojet (EEJ) current in response to a few moderate (M-class) and low (C and B class) intensity solar flares during 2005-2010. Special care is taken to pick these flare events in the absence of prompt electric field perturbations associated with geomagnetic storms and substorms that also affect the electrojet current. Interestingly, only the normalized (with respect to the pre-flare level) deviations of daytime EEJ (and not the deviations alone) change linearly with the increases in the EUV and X-ray fluxes. These linear relationships break down during local morning hours when the E-region electric field approaches zero before reversal of polarity. This elicits that the response of EEJ strength corresponding to less-intense flares can be appropriately gauged only when the local time variation of the quiet time E-region zonal electric field is taken into account. The flare events enhanced the EEJ strength irrespective of normal or counter electrojet (CEJ) conditions that shows that solar flares change the E-region ionization density and not the electric field. In addition, the enhancements in the X-ray and EUV fluxes, for these flares occurring during this solar minimum period, are found to be significantly correlated as opposed to the solar maximum period, indicating the differences in the solar processes in different solar epochs.

  3. Magnetic field induced optical gain in a dilute nitride quaternary semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo

    2016-10-01

    Effects of magnetic field strength on the electronic and optical properties are brought out in a Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot for the applications of desired wavelength in opto-electronic devices. The band alignment is obtained using band anticrossing model and the model solid theory. The magnetic field dependent electron-heavy hole transition energies with the dot radius in a GaInNAs/GaAs quantum dot are investigated. The magnetic field induced oscillator strength as a function of dot radius is studied. The resonant peak values of optical absorption coefficients and the changes of refractive index with the application of magnetic field strength in a GaInNAs/GaAs quantum dot are obtained. The magnetic field induced threshold current density and the maximum optical gain are found in a GaInNAs/GaAs quantum dot. The results show that the optimum wavelength for fibre optical communication networks can be obtained with the variation of applied magnetic field strength and the outcomes may be useful for the design of efficient lasers based on the group III-N-V semiconductors.

  4. Electrohydrodynamics in nanochannels coated by mixed polymer brushes: effects of electric field strength and solvent quality

    NASA Astrophysics Data System (ADS)

    Cao, Qianqian; Tian, Xiu; You, Hao

    2018-04-01

    We examine the electrohydrodynamics in mixed polymer brush-coated nanochannels and the conformational dynamics of grafted polymers using molecular dynamics simulations. Charged (A) and neutral polymers (B) are alternately grafted on the channel surfaces. The effects of the electric field strength and solvent quality are addressed in detail. The dependence of electroosmotic flow characteristics and polymer conformational behavior on the solvent quality is influenced due to the change of the electric field strength. The enhanced electric field induces a collapse of the neutral polymer chains which adopt a highly extended conformation along the flow direction. However, the thickness of the charged polymer layer is affected weakly by the electric field, and even a slight swelling is identified for the A-B attraction case, implying the conformational coupling between two polymer species. Furthermore, the charged polymer chains incline entirely towards the electric field direction oppositely to the flow direction. More importantly, unlike the neutral polymer chains, the shape factor of the charged polymer chains, which is used to describe the overall shape of polymer chains, is reduced significantly with increasing the electric field strength, corresponding to a more coiled structure.

  5. The effect of electric field geometry on the performance of electromembrane extraction systems: footprints of a third driving force along with migration and diffusion.

    PubMed

    Moazami, Hamid Reza; Hosseiny Davarani, Saied Saeed; Mohammadi, Jamil; Nojavan, Saeed; Abrari, Masoud

    2015-09-03

    The distribution of electric field vectors was first calculated for electromembrane extraction (EME) systems in classical and cylindrical electrode geometries. The results showed that supported liquid membrane (SLM) has a general field amplifying effect due to its lower dielectric constant in comparison with aqueous donor/acceptor solutions. The calculated norms of the electric field vector showed that a DC voltage of 50 V can create huge electric field strengths up to 64 kV m(-1) and 111 kV m(-1) in classical and cylindrical geometries respectively. In both cases, the electric field strength reached its peak value on the inner wall of the SLM. In the case of classical geometry, the field strength was a function of the polar position of the SLM whereas the field strength in cylindrical geometry was angularly uniform. In order to investigate the effect of the electrode geometry on the performance of real EME systems, the analysis was carried out in three different geometries including classical, helical and cylindrical arrangements using naproxen and sodium diclofenac as the model analytes. Despite higher field strength and extended cross sectional area, the helical and cylindrical geometries gave lower recoveries with respect to the classical EME. The observed decline of the signal was proved to be against the relations governing migration and diffusion processes, which means that a third driving force is involved in EME. The third driving force is the interaction between the radially inhomogeneous electric field and the analyte in its neutral form. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Potential Measurements of Coronal Magnetic Field Strengths Using Line Ratios in EUV and X-ray Spectra

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, Peter; Scofield, J. H.; Lepson, J. K.; Osten, R.; Smith, R. K.

    2006-09-01

    We will discuss a class of lines from highly charged ions that are sensitive to the strength of the ambient magnetic field. Calculations show that the magnitude of field strengths that can be measured ranges from a few hundred gauss to several tens of kilogauss depending on the particular ion emitting the line. These calculations have been verified in the laboratory by studying the spectra of S VII, Ar IX, and Fe XVII. As an example of the diagnostic utility, the possibility of using these lines to determine the coronal magnetic field strength of Prox Cen will be presented. This work was supported by NASA Astronomy and Physics Research and Analysis program work order NNH04AA751, and was performed under the auspices of the Department of Energy by the University of California Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48.

  7. Electrokinetic transport of aerobic microorganisms under low-strength electric fields.

    PubMed

    Maillacheruvu, Krishnanand Y; Chinchoud, Preethi R

    2011-01-01

    To investigate the feasibility of utilizing low strength electric fields to transport commonly available mixed cultures such as those from an activated sludge process, bench scale batch reactor studies were conducted in sand and sandy loam soils. A readily biodegradable substrate, dextrose, was used to test the activity of the transported microorganisms. Electric field strengths of 7V, 10.5V, and 14V were used. Results from this investigation showed that an electric field strength of 0.46 Volts per cm was sufficient to transport activated sludge microorganisms across a sandy loam soil across a distance of about 8 cm in 72 h. More importantly, the electrokinetically transported microbial culture remained active and viable after the transport process and was biodegrade 44% of the dextrose in the soil medium. Electrokinetic treatment without microorganisms resulted in removal of 37% and the absence of any treatment yielded a removal of about 15%.

  8. Hydrogen molecules and chains in a superstrong magnetic field

    NASA Technical Reports Server (NTRS)

    Lai, Dong; Salpeter, Edwin E.; Shapiro, Stuart L.

    1992-01-01

    The electronic structures of hydrogen polymolecules H(n) (n = 2,3,4,...) is studied in a superstrong magnetic field (B greater than about 10 exp 12 G) typically found on the surface of a neutron star. Simple analytical scaling relations for several limiting cases (e.g., large n, high B field) are derived. The binding energies of H(n) molecules are numerically calculated for various magnetic-field strengths. For a given magnetic-field strength, the binding energy per atom in the H(n) molecules is found to approach a constant value as n increases. For typical field strengths of interest, energy saturation is essentially achieved once n exceeds 3 to 4. Also considered is the structure of negative H ions in a high magnetic field. For B about 10 exp 12 G, the dissociation energy of an atom in a hydrogen chain and the ionization potential of H(-) are smaller than the ionization potential of neutral atomic hydrogen.

  9. Size and Shape of the Distant Magnetotail

    NASA Technical Reports Server (NTRS)

    Sibeck, D.G.; Lin, R.-Q.

    2014-01-01

    We employ a global magnetohydrodynamic model to study the effects of the interplanetary magnetic field (IMF) strength and direction upon the cross-section of the magnetotail at lunar distances. The anisotropic pressure of draped magnetosheath magnetic field lines and the inclusion of a reconnection-generated standing slow mode wave fan bounded by a rotational discontinuity within the definition of the magnetotail result in cross-sections elongated in the direction parallel to the component of the IMF in the plane perpendicular to the Sun-Earth line. Tilted cross-tail plasma sheets separate the northern and southern lobes within these cross-sections. Greater fast mode speeds perpendicular than parallel to the draped magnetos heath magnetic field lines result in greater distances to the bow shock in the direction perpendicular than parallel to the component of the IMF in the plane transverse to the Sun-Earth line. The magnetotail cross-section responds rapidly to reconnected magnetic field lines requires no more than the magnetosheath convection time to appear at any distance downstream, and further adjustments of the cross-section in response to the anisotropic pressures of the draped magnetic field lines require no more than 10-20 minutes. Consequently for typical ecliptic IMF orientations and strengths, the magnetotail cross-section is oblate while the bow shock is prolate.

  10. Collapse and revival of entanglement between qubits coupled to a spin coherent state

    NASA Astrophysics Data System (ADS)

    Bahari, Iskandar; Spiller, Timothy P.; Dooley, Shane; Hayes, Anthony; McCrossan, Francis

    We extend the study of the Jayne-Cummings (JC) model involving a pair of identical two-level atoms (or qubits) interacting with a single mode quantized field. We investigate the effects of replacing the radiation field mode with a composite spin, comprising N qubits, or spin-1/2 particles. This model is relevant for physical implementations in superconducting circuit QED, ion trap and molecular systems. For the case of the composite spin prepared in a spin coherent state, we demonstrate the similarities of this set-up to the qubits-field model in terms of the time evolution, attractor states and in particular the collapse and revival of the entanglement between the two qubits. We extend our analysis by taking into account an effect due to qubit imperfections. We consider a difference (or “mismatch”) in the dipole interaction strengths of the two qubits, for both the field mode and composite spin cases. To address decoherence due to this mismatch, we then average over this coupling strength difference with distributions of varying width. We demonstrate in both the field mode and the composite spin scenarios that increasing the width of the “error” distribution increases suppression of the coherent dynamics of the coupled system, including the collapse and revival of the entanglement between the qubits.

  11. Electrical Tuning of Exciton-Plasmon Polariton Coupling in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Lattice.

    PubMed

    Lee, Bumsu; Liu, Wenjing; Naylor, Carl H; Park, Joohee; Malek, Stephanie C; Berger, Jacob S; Johnson, A T Charlie; Agarwal, Ritesh

    2017-07-12

    Active control of light-matter interactions in semiconductors is critical for realizing next generation optoelectronic devices with real-time control of the system's optical properties and hence functionalities via external fields. The ability to dynamically manipulate optical interactions by applied fields in active materials coupled to cavities with fixed geometrical parameters opens up possibilities of controlling the lifetimes, oscillator strengths, effective mass, and relaxation properties of a coupled exciton-photon (or plasmon) system. Here, we demonstrate electrical control of exciton-plasmon coupling strengths between strong and weak coupling limits in a two-dimensional semiconductor integrated with plasmonic nanoresonators assembled in a field-effect transistor device by electrostatic doping. As a result, the energy-momentum dispersions of such an exciton-plasmon coupled system can be altered dynamically with applied electric field by modulating the excitonic properties of monolayer MoS 2 arising from many-body effects. In addition, evidence of enhanced coupling between charged excitons (trions) and plasmons was also observed upon increased carrier injection, which can be utilized for fabricating Fermionic polaritonic and magnetoplasmonic devices. The ability to dynamically control the optical properties of a coupled exciton-plasmonic system with electric fields demonstrates the versatility of the coupled system and offers a new platform for the design of optoelectronic devices with precisely tailored responses.

  12. Social contagions on time-varying community networks

    NASA Astrophysics Data System (ADS)

    Liu, Mian-Xin; Wang, Wei; Liu, Ying; Tang, Ming; Cai, Shi-Min; Zhang, Hai-Feng

    2017-05-01

    Time-varying community structures exist widely in real-world networks. However, previous studies on the dynamics of spreading seldom took this characteristic into account, especially those on social contagions. To study the effects of time-varying community structures on social contagions, we propose a non-Markovian social contagion model on time-varying community networks based on the activity-driven network model. A mean-field theory is developed to analyze the proposed model. Through theoretical analyses and numerical simulations, two hierarchical features of the behavior adoption processes are found. That is, when community strength is relatively large, the behavior can easily spread in one of the communities, while in the other community the spreading only occurs at higher behavioral information transmission rates. Meanwhile, in spatial-temporal evolution processes, hierarchical orders are observed for the behavior adoption. Moreover, under different information transmission rates, three distinctive patterns are demonstrated in the change of the whole network's final adoption proportion along with the growing community strength. Within a suitable range of transmission rate, an optimal community strength can be found that can maximize the final adoption proportion. Finally, compared with the average activity potential, the promoting or inhibiting of social contagions is much more influenced by the number of edges generated by active nodes.

  13. Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, F., E-mail: fw237@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Harrison, M. G.

    Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and themore » results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.« less

  14. Effect of axial magnetic field on a 2.45 GHz permanent magnet ECR ion source.

    PubMed

    Nakamura, T; Wada, H; Asaji, T; Furuse, M

    2016-02-01

    Herein, we conduct a fundamental study to improve the generation efficiency of a multi-charged ion source using argon. A magnetic field of our electron cyclotron resonance ion source is composed of a permanent magnet and a solenoid coil. Thereby, the axial magnetic field in the chamber can be tuned. Using the solenoid coil, we varied the magnetic field strength in the plasma chamber and measured the ion beam current extracted at the electrode. We observed an approximately three times increase in the Ar(4+) ion beam current when the magnetic field on the extractor-electrode side of the chamber was weakened. From our results, we can confirm that the multi-charged ion beam current changes depending on magnetic field intensity in the plasma chamber.

  15. Magnetic fields on asteroid 4 Vesta recorded by the Millbillillie eucrite

    NASA Astrophysics Data System (ADS)

    Weiss, B. P.; Fu, R.

    2011-12-01

    The detection of past dynamo activity on the asteroid 4 Vesta would confirm the existence of a metallic core, placing important constraints on its accretional and thermal history. Knowledge of the strength and duration of a dynamo on 4 Vesta also has important implications for the theoretical understanding of dynamo generation in small bodies. Magnetic fields from a putative core dynamo may have been recorded as remanent magnetization in achondritic meteorites of the howardite-eucrite-diogenite (HED) clan, which are thought to originate from the asteroid. To search for evidence for past dynamo activity, we performed a paleomagnetic study of nine mutually oriented samples of the Millbillillie eucrite. We found that the magnitude and direction of the magnetization change systematically for samples progressively farther away from the fusion crust, indicating that the samples were not remagnetized on Earth and that the interior samples carry an extraterrestrial magnetization. The fusion crust is ~1000 times more magnetic per unit mass than the interior, which was likely a source of contamination in earlier studies of bulk samples from this meteorite. Two interior samples were subjected to alternating field (AF) demagnetization up to 290 mT. We found a high coercivity (HC) component of magnetization carried by grains with coercivities between 70 and 180 mT. The HC magnetization is approximately unidirectional in the subsamples. The AF demagnetization profile of this component is similar to that of an anhysteretic remanent magnetization (ARM), suggesting that it may represent a thermoremanent magnetization (TRM). Under this assumption, our ARM paleointensity experiments yield field strengths of 2-3 μT while our IRM paleointensities are between 5 and 8 μT. Ongoing analysis of additional samples will further test this result. The HC magnetization may record 1) transient impact-generated fields, 2) remanent crustal fields, or 3) dynamo fields. Case 1) is unlikely if the sample has a thermoremanence because stable magnetization over the wide coercivity range observed for the HC component requires a magnetic field stable for the duration of the cooling process. Furthermore, the characteristic coercivities of the HC magnetization are very high compared to typical values for shock remanent magnetization. In case 2), the strength of putative impact-generated crustal fields on the moon suggests that impacts on Vesta would have caused remanent crustal fields of < 2 μT strength, which is below our observed paleointensities. Remanent crustal fields stronger than ~2 μT require a different magnetizing source, such as an earlier dynamo. Together, these facts suggest that the HC magnetization is unlikely to be a result of meteoroid bombardment and more probably record dynamo fields or remanent crustal fields due to an earlier dynamo. We therefore regard our results as tentative evidence of a past dynamo on 4 Vesta

  16. Magnetic field deformation due to electron drift in a Hall thruster

    NASA Astrophysics Data System (ADS)

    Liang, Han; Yongjie, Ding; Xu, Zhang; Liqiu, Wei; Daren, Yu

    2017-01-01

    The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC) method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM). The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  17. Negative ion formation and evolution in atmospheric pressure corona discharges between point-to-plane electrodes with arbitrary needle angle

    NASA Astrophysics Data System (ADS)

    Sekimoto, K.; Takayama, M.

    2010-12-01

    The change in the distribution pattern of negative ions HO-, NOx- and COx- observed on arbitrary point-to-plane electrode configuration has been investigated by varying the angle of needle to the plane electrode, under atmospheric pressure corona discharge conditions. The stationary inhomogeneous electric field distributions between the point-to-plane electrodes with arbitrary needle angle were calculated. The experimental and theoretical results obtained suggested that the negative ion evolutions progress along field lines established between the electrodes with arbitrary configurations and the resulting terminal ion formation on a given field line is attributable to the electric field strength on the needle tip surface where the field line arose. The NOx- and COx- ions were dominantly produced on the field lines arising from the needle tip apex region with the highest electric field strength, while the field lines emanating from the tip peripheral regions with lower field strength resulted in the formation of the HO- ion.

  18. Nonequilibrium transport of charge carriers and transient electroluminescence in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nikitenko, V. R.; von Seggern, H.

    2007-11-01

    An analytic theory of nonequilibrium hopping charge transport in disordered organic materials includes quasiequilibrium (normal) and extremely nonequilibrium (dispersive) regimes as limiting cases at long and short times, respectively. In the intermediate interval of time quasiequilibrium value of mobility is nearly established while the coefficient of field-assisted diffusion continues to increase (quasidispersive regime). Therefore, normalized time dependencies of transient current in time-of-flight (TOF) conditions are practically independent of field strength and sample thickness, in good agreement both with data of TOF experiments for molecularly doped polymers and results of numerical simulations of Gaussian disorder model. An analytic model of transient electroluminescence (TEL) is developed on the base of the mentioned theory. Strong asymmetry of mobilities is presumed. In analogy with TOF transients, dispersion parameter of normalized TEL intensity is anomalously large and almost field independent in the quasidispersive regime of transport. The method for determination of mobility from TEL data is proposed.

  19. Some Things Never Change: Gender Segregation in Higher Education across Eight Nations and Three Decades

    ERIC Educational Resources Information Center

    Barone, Carlo

    2011-01-01

    This article examines the overall strength, the qualitative pattern, and the evolution over time of gender segregation in higher education across eight European countries. Although previous studies have focused primarily on the divide between humanistic and scientific fields, this work indicates that this divide accounts for no more than half of…

  20. Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?

    ERIC Educational Resources Information Center

    Puri, Avinash

    2015-01-01

    According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…

  1. Synthesis and Characterization of Liquid Crystalline Epoxy Resins

    DTIC Science & Technology

    2014-01-01

    Temperature dependence of the four parameters in the Burgers model. ......... 81 Figure 4.7 Dependence of creep compliance on creep time at different...Kinetic parameters for LCERs. ......................................................................... 65 Table 3.4 Kinetic parameters for non-LCERs...curing in a high strength magnetic field. The orientation was quantified by an orientation parameter determined with two-dimensional X-ray diffraction

  2. Axisymmetric Flow Properties for Magnetic Elements of Differing Strength

    NASA Technical Reports Server (NTRS)

    Rightmire-Upton, Lisa; Hathaway, David H.

    2012-01-01

    Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.

  3. Measuring Magnetic Oscillations in the Solar Photosphere: Coordinated Observations with MDI, ASP and MWO

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Ulrich, R. K.

    2000-03-01

    A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.

  4. Electromagnetic navigation system for CT-guided biopsy of small lesions.

    PubMed

    Appelbaum, Liat; Sosna, Jacob; Nissenbaum, Yizhak; Benshtein, Alexander; Goldberg, S Nahum

    2011-05-01

    The purpose of this study was to evaluate an electromagnetic navigation system for CT-guided biopsy of small lesions. Standardized CT anthropomorphic phantoms were biopsied by two attending radiologists. CT scans of the phantom and surface electromagnetic fiducial markers were imported into the memory of the 3D electromagnetic navigation system. Each radiologist assessed the accuracy of biopsy using electromagnetic navigation alone by targeting sets of nine lesions (size range, 8-14 mm; skin to target distance, 5.7-12.8 cm) under eight different conditions of detector field strength and orientation (n = 117). As a control, each radiologist also biopsied two sets of five targets using conventional CT-guided technique. Biopsy accuracy, number of needle passes, procedure time, and radiation dose were compared. Under optimal conditions (phantom perpendicular to the electromagnetic receiver at highest possible field strength), phantom accuracy to the center of the lesion was 2.6 ± 1.1 mm. This translated into hitting 84.4% (38/45) of targets in a single pass (1.1 ± 0.4 CT confirmations), which was significantly fewer than the 3.6 ± 1.3 CT checks required for conventional technique (p < 0.001). The mean targeting time was 38.8 ± 18.2 seconds per lesion. Including procedural planning (∼5.5 minutes) and final CT confirmation of placement (∼3.5 minutes), the full electromagnetic tracking procedure required significantly less time (551.6 ± 87.4 seconds [∼9 minutes]) than conventional CT (833.3 ± 283.8 seconds [∼14 minutes]) for successful targeting (p < 0.001). Less favorable conditions, including nonperpendicular relation between the axis of the machine and weaker field strength, resulted in statistically significant lower accuracy (3.7 ± 1 mm, p < 0.001). Nevertheless, first-pass biopsy accuracy was 58.3% (21/36) and second-pass (35/36) accuracy was 97.2%. Lesions farther from the skin than 20-25 cm were out of range for successful electromagnetic tracking. Virtual electromagnetic tracking appears to have high accuracy in needle placement, potentially reducing time and radiation exposure compared with those of conventional CT techniques in the biopsy of small lesions.

  5. Short-term Periodization Models: Effects on Strength and Speed-strength Performance.

    PubMed

    Hartmann, Hagen; Wirth, Klaus; Keiner, Michael; Mickel, Christoph; Sander, Andre; Szilvas, Elena

    2015-10-01

    Dividing training objectives into consecutive phases to gain morphological adaptations (hypertrophy phase) and neural adaptations (strength and power phases) is called strength-power periodization (SPP). These phases differ in program variables (volume, intensity, and exercise choice or type) and use stepwise intensity progression and concomitant decreasing volume, converging to peak intensity (peaking phase). Undulating periodization strategies rotate these program variables in a bi-weekly, weekly, or daily fashion. The following review addresses the effects of different short-term periodization models on strength and speed-strength both with subjects of different performance levels and with competitive athletes from different sports who use a particular periodization model during off-season, pre-season, and in-season conditioning. In most periodization studies, it is obvious that the strength endurance sessions are characterized by repetition zones (12-15 repetitions) that induce muscle hypertrophy in persons with a low performance level. Strictly speaking, when examining subjects with a low training level, many periodization studies include mainly hypertrophy sessions interspersed with heavy strength/power sessions. Studies have demonstrated equal or statistically significant higher gains in maximal strength for daily undulating periodization compared with SPP in subjects with a low to moderate performance level. The relatively short intervention period and the lack of concomitant sports conditioning call into question the practical value of these findings for competitive athletes. Possibly owing to differences in mesocycle length, conditioning programs, and program variables, competitive athletes either maintained or improved strength and/or speed-strength performance by integrating daily undulating periodization and SPP during off-season, pre-season and in-season conditioning. In high-performance sports, high-repetition strength training (>15) should be avoided because it does not provide an adequate training stimulus for gains in muscle cross-sectional area and strength performance. High-volume circuit strength training performed over 2 years negatively affected the development of the power output and maximal strength of the upper extremities in professional rugby players. Indeed, meta-analyses and results with weightlifters, American Football players, and throwers confirm the necessity of the habitual use of ≥80% 1 RM: (1) to improve maximal strength during the off-season and in-season in American Football, (2) to reach peak performance in maximal strength and vertical jump power during tapering in track-and-field, and (3) to produce hypertrophy and strength improvements in advanced athletes. The integration and extent of hypertrophy strength training in in-season conditioning depend on the duration of the contest period, the frequency of the contests, and the proportion of the conditioning program. Based on the literature, 72 h between hypertrophy strength training and strength-power training should be provided to allow for adequate regeneration times and therefore maximal stimulus intensities in training. This conclusion is only valid if the muscle is not trained otherwise during this regeneration phase. Thus, rotating hypertrophy and strength-power sessions in a microcycle during the season is a viable option. Comparative studies in competitive athletes who integrated strength training during pre-season conditioning confirm a tendency for gains in explosive strength and statistically significant improvements in medicine ball throw through SPP but not through daily undulating periodization. These findings indicate that to maximize the speed-strength in the short term (peaking), elite athletes should perform strength-power training twice per week. It is possible to perform a single strength-power session with the method of maximum explosive strength actions moving high-weight loads (90% 1 repetition maximum [RM]) at least 1-2 days before competition because of the shorter regeneration times and potentiation effects. Compared with ballistic strength training (30% 1 RM), this method has been shown to provide statistically superior gains in maximal strength, peak power, impulse size, and explosive strength during tapering in track-and-field throwers. The speed-strength performance in drop jumps of strength-trained subjects showed potentiation effects 48-148 h after a single strength-power training session. Regarding neuromuscular performance, plyometric exercises can even be performed after strength-power training on the same day if a minimum rest period of 3 h is provided.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitao, J J

    The goal of the Event Reconstruction Project is to find the location and strength of atmospheric release points, both stationary and moving. Source inversion relies on observational data as input. The methodology is sufficiently general to allow various forms of data. In this report, the authors will focus primarily on concentration measurements obtained at point monitoring locations at various times. The algorithms being investigated in the Project are the MCMC (Markov Chain Monte Carlo), SMC (Sequential Monte Carlo) Methods, classical inversion methods, and hybrids of these. They refer the reader to the report by Johannesson et al. (2004) for explanationsmore » of these methods. These methods require computing the concentrations at all monitoring locations for a given ''proposed'' source characteristic (locations and strength history). It is anticipated that the largest portion of the CPU time will take place performing this computation. MCMC and SMC will require this computation to be done at least tens of thousands of times. Therefore, an efficient means of computing forward model predictions is important to making the inversion practical. In this report they show how Green's functions and reciprocal Green's functions can significantly accelerate forward model computations. First, instead of computing a plume for each possible source strength history, they can compute plumes from unit impulse sources only. By using linear superposition, they can obtain the response for any strength history. This response is given by the forward Green's function. Second, they may use the law of reciprocity. Suppose that they require the concentration at a single monitoring point x{sub m} due to a potential (unit impulse) source that is located at x{sub s}. instead of computing a plume with source location x{sub s}, they compute a ''reciprocal plume'' whose (unit impulse) source is at the monitoring locations x{sub m}. The reciprocal plume is computed using a reversed-direction wind field. The wind field and transport coefficients must also be appropriately time-reversed. Reciprocity says that the concentration of reciprocal plume at x{sub s} is related to the desired concentration at x{sub m}. Since there are many less monitoring points than potential source locations, the number of forward model computations is drastically reduced.« less

  7. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature

    NASA Astrophysics Data System (ADS)

    Larochelle, Kevin J.

    This study focused on moisture and intermediate temperature effects on the embrittlement phenomenon and stress rupture life of the ceramic matrix composite (CMC) made of Sylramic(TM) fibers with an in-situ layer of boron nitride (Syl-iBN), boron nitride interphase (BN), and SiC matrix (Syl-iBN/BN/SiC). Stress rupture tests were performed at 550°C or 750°C with moisture contents of 0.0, 0.2, or 0.6 atm partial pressure of water vapor, pH 2O. The CMC stress rupture strengths at 100 hrs at 550°C with 0.0, 0.2, or 0.6 atm pH2O were 75%, 65% and 51% of the monotonic room temperature tensile strength, respectively. At 750°C, the corresponding strengths were 67%, 51%, and 49%, respectively. Field Emission Scanning Electron Microscopy (FESEM) analysis showed that the amount of pesting by glass formations increased with time, temperature, and pH2O leading to embrittlement. Total embrittlement times for 550°C were estimated to be greater than 63 hrs for 0.0 atm pH2O greater than 38 hrs for 0.2 atm pH 2O and between 8 and 71 hrs for 0.6 atm pH2O. Corresponding estimated embrittlement times for the 750°C were greater than 83 hrs, between 13 and 71 hrs, and between 1 and 6 hrs. A time-dependent, phenomenological, Monte Carlo-type simulation of composite failure was developed. The simulated total embrittlement times for the 550°C cases were 300 hrs, 100 hrs, and 25 hrs for 0.0, 0.2, and 0.6 atm pH 2O, respectively. The corresponding embrittlement times for the 750°C cases were 300 hrs, 20 hrs, and 3 hrs. A detailed sensitivity analysis on the variables used in the model was conducted. The model was most sensitive to variation in the ultimate strength of the CMC at room temperature, the ultimate strength of the CMC at elevated temperature, and the reference strength of a fiber and it was least sensitive to variation in the modulus of elasticity of the matrix and fiber. The sensitivity analysis showed that the stress ruptures curves generated by variation in the total embrittlement time simulate the trends in the experimental data. This research showed that the degree of stress rupture strength degradation increases with temperature, moisture content level, and exposure time.

  8. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    NASA Astrophysics Data System (ADS)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  9. Further constraints for the Plio-Pleistocene geomagnetic field strength: New results from the Los Tuxtlas volcanic field (Mexico)

    NASA Astrophysics Data System (ADS)

    Alva-Valdivia, L. M.; Goguitchaichvili, A.; Urrutia-Fucugauchi, J.

    2001-09-01

    A rock-magnetic, paleomagnetic and paleointensity study was carried out on 13 Plio-Pleistocene volcanic flows from the Los Tuxtlas volcanic field (Trans Mexican Volcanic Belt) in order to obtain some decisive constraints for the geomagnetic field strength during the Plio-Pleistocene time. The age of the volcanic units, which yielded reliable paleointensity estimates, lies between 2.2 and 0.8 Ma according to the available K/Ar radiometric data. Thermomagnetic investigations reveal that remanence is carried in most cases by Ti-poor titanomagnetite, resulting from oxy-exsolution that probably occurred during the initial flow cooling. Unblocking temperature spectra and relatively high coercivity point to 'small' pseudo-single domain magnetic grains for these (titano)magnetites. Single-component, linear demagnetization plots were observed in most cases. Six flows yield reverse polarity magnetization, five flows are normally magnetized, and one flow shows intermediate polarity magnetization. Evidence of a strong lightning-produced magnetization overprint was detected for one site. The mean pole position obtained in this study is Plat = 83.7°, Plong = 178.1°, K = 36, A95 = 8.1°, N =10 and the corresponding mean paleodirection is I = 31.3°, D = 352°, k = 37, a95 = 8.2°, which is not significantly different from the expected direction estimated from the North American apparent polar wander path. Thirty-nine samples were pre-selected for Thellier palaeointensity experiments because of their stable remanent magnetization and relatively weak-within-site dispersion. Only 21 samples, coming from four individual basaltic lava flows, yielded reliable paleointensity estimates with the flow-mean virtual dipole moments (VDM) ranging from 6.4 to 9.1 × 1022 Am2. Combining the coeval Mexican data with the available comparable quality Pliocene paleointensity results yield a mean VDM of 6.4 × 1022 Am2, which is almost 80% of the present geomagnetic axial dipole. Reliable paleointensity results for the last 5~Ma are still scarce and are of dissimilar quality. Additional high-quality absolute intensity determinations are needed to better constraint the geomagnetic field strength during the Plio-Pleistocene time.

  10. Photospheric Current Spikes as Possible Predictors of Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Preliminary evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic and Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths approximately several hG, and vertical magnetic field strengths several orders of magnitude smaller. The spikes may be signatures of horizontal current sheets associated with emerging magnetic flux.

  11. Palaeomagnetic field intensity variations suggest Mesoproterozoic inner-core nucleation

    NASA Astrophysics Data System (ADS)

    Biggin, A. J.; Piispa, E. J.; Pesonen, L. J.; Holme, R.; Paterson, G. A.; Veikkolainen, T.; Tauxe, L.

    2015-10-01

    The Earth's inner core grows by the freezing of liquid iron at its surface. The point in history at which this process initiated marks a step-change in the thermal evolution of the planet. Recent computational and experimental studies have presented radically differing estimates of the thermal conductivity of the Earth's core, resulting in estimates of the timing of inner-core nucleation ranging from less than half a billion to nearly two billion years ago. Recent inner-core nucleation (high thermal conductivity) requires high outer-core temperatures in the early Earth that complicate models of thermal evolution. The nucleation of the core leads to a different convective regime and potentially different magnetic field structures that produce an observable signal in the palaeomagnetic record and allow the date of inner-core nucleation to be estimated directly. Previous studies searching for this signature have been hampered by the paucity of palaeomagnetic intensity measurements, by the lack of an effective means of assessing their reliability, and by shorter-timescale geomagnetic variations. Here we examine results from an expanded Precambrian database of palaeomagnetic intensity measurements selected using a new set of reliability criteria. Our analysis provides intensity-based support for the dominant dipolarity of the time-averaged Precambrian field, a crucial requirement for palaeomagnetic reconstructions of continents. We also present firm evidence for the existence of very long-term variations in geomagnetic strength. The most prominent and robust transition in the record is an increase in both average field strength and variability that is observed to occur between a billion and 1.5 billion years ago. This observation is most readily explained by the nucleation of the inner core occurring during this interval; the timing would tend to favour a modest value of core thermal conductivity and supports a simple thermal evolution model for the Earth.

  12. Photospheric Current Spikes as Possible Predictors of Flares

    NASA Technical Reports Server (NTRS)

    Goodman, Michael L.; Kwan, Chiman; Ayhan, Bulent; Shang, Eric L.

    2016-01-01

    Flares involve generation of the largest current densities in the solar atmosphere. This suggests the hypothesis that prior to a large (M,X) flare there are related time dependent changes in the photospheric current distribution, and hence in the resistive heating rate in neutral line regions (NLRs). If this is true, these changes might be useful predictors of flares. Evidence supporting this hypothesis is presented. Results from a data driven, near photospheric, 3D magnetohydrodynamic type model suggest the model might be useful for predicting M and X flares several hours to several days in advance. The model takes as input the photospheric magnetic field observed by the Helioseismic & Magnetic Imager (HMI) on the Solar Dynamics Observatory (SDO) satellite. The model computes quantities in every active region (AR) pixel for 14 ARs, with spurious Doppler periods due to SDO orbital motion filtered out of the time series of the magnetic field for each pixel. Spikes in the NLR resistive heating rate Q, appearing as increases by orders of magnitude above background values in the time series of Q are found to occur, and appear to be correlated with the occurrence of M or X flares a few hours to a few days later. The subset of spikes analyzed at the pixel level are found to occur on HMI and granulation scales of 1 arcsec and 12 minutes. Spikes are found in NLRs with and without M or X flares, and outside as well as inside NLRs, but the largest spikes are localized in the NLRs of ARs with M or X flares, and associated with horizontal magnetic field strengths several hG, and vertical magnetic field strengths several orders of magnitude smaller, suggesting that the spikes are associated with current sheets.

  13. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative estimates of tree root reinforcement for best management practice of protection forests.

  14. Modified look-locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners

    PubMed Central

    2013-01-01

    Background Cardiovascular magnetic resonance (CMR) T1 mapping indices, such as T1 time and partition coefficient (λ), have shown potential to assess diffuse myocardial fibrosis. The purpose of this study was to investigate how scanner and field strength variation affect the accuracy and precision/reproducibility of T1 mapping indices. Methods CMR studies were performed on two 1.5T and three 3T scanners. Eight phantoms were made to mimic the T1/T2 of pre- and post-contrast myocardium and blood at 1.5T and 3T. T1 mapping using MOLLI was performed with simulated heart rate of 40-100 bpm. Inversion recovery spin echo (IR-SE) was the reference standard for T1 determination. Accuracy was defined as the percent error between MOLLI and IR-SE, and scan/re-scan reproducibility was defined as the relative percent mean difference between repeat MOLLI scans. Partition coefficient was estimated by ΔR1myocardium phantom/ΔR1blood phantom. Generalized linear mixed model was used to compare the accuracy and precision/reproducibility of T1 and λ across field strength, scanners, and protocols. Results Field strength significantly affected MOLLI T1 accuracy (6.3% error for 1.5T vs. 10.8% error for 3T, p<0.001) but not λ accuracy (8.8% error for 1.5T vs. 8.0% error for 3T, p=0.11). Partition coefficients of MOLLI were not different between two 1.5T scanners (47.2% vs. 47.9%, p=0.13), and showed only slight variation across three 3T scanners (49.2% vs. 49.8% vs. 49.9%, p=0.016). Partition coefficient also had significantly lower percent error for precision (better scan/re-scan reproducibility) than measurement of individual T1 values (3.6% for λ vs. 4.3%-4.8% for T1 values, approximately, for pre/post blood and myocardium values). Conclusion Based on phantom studies, T1 errors using MOLLI ranged from 6-14% across various MR scanners while errors for partition coefficient were less (6-10%). Compared with absolute T1 times, partition coefficient showed less variability across platforms and field strengths as well as higher precision. PMID:23890156

  15. The effect of stimulus intensity on response time and accuracy in dynamic, temporally constrained environments.

    PubMed

    Causer, J; McRobert, A P; Williams, A M

    2013-10-01

    The ability to make accurate judgments and execute effective skilled movements under severe temporal constraints are fundamental to elite performance in a number of domains including sport, military combat, law enforcement, and medicine. In two experiments, we examine the effect of stimulus strength on response time and accuracy in a temporally constrained, real-world, decision-making task. Specifically, we examine the effect of low stimulus intensity (black) and high stimulus intensity (sequin) uniform designs, worn by teammates, to determine the effect of stimulus strength on the ability of soccer players to make rapid and accurate responses. In both field- and laboratory-based scenarios, professional soccer players viewed developing patterns of play and were required to make a penetrative pass to an attacking player. Significant differences in response accuracy between uniform designs were reported in laboratory- and field-based experiments. Response accuracy was significantly higher in the sequin compared with the black uniform condition. Response times only differed between uniform designs in the laboratory-based experiment. These findings extend the literature into a real-world environment and have significant implications for the design of clothing wear in a number of domains. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  17. Modeling Shocks Detected by Voyager 1 in the Local Interstellar Medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, T. K.; Pogorelov, N. V.; Burlaga, L. F.

    The magnetometer (MAG) on Voyager 1 ( V1 ) has been sampling the interstellar magnetic field (ISMF) since 2012 August. The V1 MAG observations have shown draped ISMF in the very local interstellar medium disturbed occasionally by significant enhancements in magnetic field strength. Using a three-dimensional, data-driven, multi-fluid model, we investigated these magnetic field enhancements beyond the heliopause that are supposedly associated with solar transients. To introduce time-dependent effects at the inner boundary at 1 au, we used daily averages of the solar wind parameters from the OMNI data set. The model ISMF strength, direction, and proton number density aremore » compared with V1 data beyond the heliopause. The model reproduced the large-scale fluctuations between 2012.652 and 2016.652, including major events around 2012.9 and 2014.6. The model also predicts shocks arriving at V1 around 2017.395 and 2019.502. Another model driven by OMNI data with interplanetary coronal mass ejections (ICMEs) removed at the inner boundary suggests that ICMEs may play a significant role in the propagation of shocks into the interstellar medium.« less

  18. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, D.P.; Bielecki, A.; Zax, D.B.; Zilm, K.W.; Pines, A.

    1987-12-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nuclei. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques. 5 figs.

  19. Method and apparatus for measuring nuclear magnetic properties

    DOEpatents

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  20. The Physics of g-2

    ScienceCinema

    Lincoln, Don

    2018-01-16

    At any time in history, a few scientific measurements disagreed with the best theoretical predictions of the time. Currently, one such discrepancy involves the measurement of the strength of the magnetic field of a subatomic particle called a muon. In this video, Fermilab’s Dr. Don Lincoln explains this mystery and sketches ongoing efforts to determine if this disagreement signifies a discovery. If it does, this measurement will mean that we will have to rewrite the textbooks.

  1. Electrically Guided Assembly of Colloidal Particles

    NASA Astrophysics Data System (ADS)

    Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.

    2002-11-01

    In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.

  2. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    NASA Astrophysics Data System (ADS)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  3. Dynamo generation of magnetic field in the white dwarf GD 358

    NASA Technical Reports Server (NTRS)

    Markiel, J. Andrew; Thomas, John H.; Van Horn, H. M.

    1994-01-01

    On the basis of Whole Earth Telescope observations of the g-mode oscillation spectrum of the white dwarf GD 358, Winget et al. find evidence for significant differential rotation and for a time-varying magnetic field concentrated in the surface layers of this star. Here we argue on theoretical grounds that this magnetic field is produced by an alpha omega dynamo operating in the lower part of a surface convection zone in GD 358. Our argument is based on numerical solutions of the nonlinear, local dynamo equations of Robinson & Durney, with specific parameters based on our detailed models of white-dwarf convective envelopes, and universal constants determined by a calibration with the the Sun's dynamo. The calculations suggest a dynamo cycle period of about 6 years for the fundamental mode, and periods as short as 1 year for the higher-order modes that are expected to dominate in view of the large dynamo number we estimate for GD 358. These dynamo periods are consistent with the changes in the magnetic field of GD 358 over the span of 1 month inferred by Winget et. al. from their observations. Our calculations also suggest a peak dynamo magnetic field strength at the base of the surface convection zone of about 1800 G, which is consistent with the field strength inferred from the observations.

  4. The Formation of Magnetic Depletions and Flux Annihilation Due to Reconnection in the Heliosheath

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drake, J. F.; Swisdak, M.; Opher, M.

    The misalignment of the solar rotation axis and the magnetic axis of the Sun produces a periodic reversal of the Parker spiral magnetic field and the sectored solar wind. The compression of the sectors is expected to lead to reconnection in the heliosheath (HS). We present particle-in-cell simulations of the sectored HS that reflect the plasma environment along the Voyager 1 and 2 trajectories, specifically including unequal positive and negative azimuthal magnetic flux as seen in the Voyager data. Reconnection proceeds on individual current sheets until islands on adjacent current layers merge. At late time, bands of the dominant fluxmore » survive, separated by bands of deep magnetic field depletion. The ambient plasma pressure supports the strong magnetic pressure variation so that pressure is anticorrelated with magnetic field strength. There is little variation in the magnetic field direction across the boundaries of the magnetic depressions. At irregular intervals within the magnetic depressions are long-lived pairs of magnetic islands where the magnetic field direction reverses so that spacecraft data would reveal sharp magnetic field depressions with only occasional crossings with jumps in magnetic field direction. This is typical of the magnetic field data from the Voyager spacecraft. Voyager 2 data reveal that fluctuations in the density and magnetic field strength are anticorrelated in the sector zone, as expected from reconnection, but not in unipolar regions. The consequence of the annihilation of subdominant flux is a sharp reduction in the number of sectors and a loss in magnetic flux, as documented from the Voyager 1 magnetic field and flow data.« less

  5. Remote magnetic actuation using a clinical scale system

    PubMed Central

    Stehning, Christian; Gleich, Bernhard

    2018-01-01

    Remote magnetic manipulation is a powerful technique for controlling devices inside the human body. It enables actuation and locomotion of tethered and untethered objects without the need for a local power supply. In clinical applications, it is used for active steering of catheters in medical interventions such as cardiac ablation for arrhythmia treatment and for steering of camera pills in the gastro-intestinal tract for diagnostic video acquisition. For these applications, specialized clinical-scale field applicators have been developed, which are rather limited in terms of field strength and flexibility of field application. For a general-purpose field applicator, flexible field generation is required at high field strengths as well as high field gradients to enable the generation of both torques and forces on magnetic devices. To date, this requirement has only been met by small-scale experimental systems. We have built a highly versatile clinical-scale field applicator that enables the generation of strong magnetic fields as well as strong field gradients over a large workspace. We demonstrate the capabilities of this coil-based system by remote steering of magnetic drills through gel and tissue samples with high torques on well-defined curved trajectories. We also give initial proof that, when equipped with high frequency transmit-receive coils, the machine is capable of real-time magnetic particle imaging while retaining a clinical-scale bore size. Our findings open the door for image-guided radiation-free remote magnetic control of devices at the clinical scale, which may be useful in minimally invasive diagnostic and therapeutic medical interventions. PMID:29494647

  6. Landau level splitting in Cd3As2 under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  7. Landau level splitting in Cd3As2 under high magnetic fields.

    PubMed

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-07-13

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry.

  8. Landau level splitting in Cd3As2 under high magnetic fields

    PubMed Central

    Cao, Junzhi; Liang, Sihang; Zhang, Cheng; Liu, Yanwen; Huang, Junwei; Jin, Zhao; Chen, Zhi-Gang; Wang, Zhijun; Wang, Qisi; Zhao, Jun; Li, Shiyan; Dai, Xi; Zou, Jin; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-01-01

    Three-dimensional topological Dirac semimetals (TDSs) are a new kind of Dirac materials that exhibit linear energy dispersion in the bulk and can be viewed as three-dimensional graphene. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport experiment on Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry. The detected Berry phase develops an evident angular dependence and possesses a crossover from non-trivial to trivial state under high magnetic fields, a strong hint for a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results unveil the important role of symmetry breaking in TDSs and further demonstrate a feasible path to generate a Weyl semimetal phase by breaking time reversal symmetry. PMID:26165390

  9. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Dermer, C. D.; Dhuga, K. S.

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less

  10. Relation of field-aligned currents measured by AMPERE project to solar wind and substorms

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.; Anderson, B. J.; Chu, X.

    2016-12-01

    Magnetic perturbations measured in the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) by the Iridium constellation of spacecraft have been processed to obtain the time history of field-aligned currents (FAC) connecting the magnetosphere to the ionosphere. We find that the strength of these currents is closely related to the strength of the solar wind driver defined as a running average of the previous three hours of the optimum AL (auroral lower) coupling function. The relation is well represented by a saturation model I = A*S*Ss/(S+Ss) with I the current strength in mega Amps, S the driver strength in mV/m, Ss the saturation value of 7.78 mV/m, and A = 2.55 scales the relation to units of current. We also find that in general the upward current on the nightside increases with each substorm expansion onset defined by a combination of the SuperMag SML (SuperMag AL) and midlatitude positive bay (MPB) onset lists. A superposed epoch analysis using 700 onsets in 2010 shows the following: solar wind coupling peaks at expansion onset; dayside outward current starts to increase one hour before onset while nightside outward current starts suddenly at onset; nightside outward current reaches a peak at 28 minutes as do SML and MPB indices; FAC, SML, and MPB respectively take 1, 2, and 3 hours to decay to background. The data indicate that the substorm current wedge is superposed on a pre-existing field-aligned current system and that the location and properties of the current wedge can be studied with the AMPERE data.

  11. Application peculiarities of magnetic materials for protection from magnetic fields

    NASA Astrophysics Data System (ADS)

    Wai, P.; Dmitrenko, V.; Grabchikov, S.; Vlasik, K.; Novikov, A.; Petrenko, D.; Trukhanov, V.; Ulin, S.; Uteshev, Z.; Chernysheva, V.; Shustov, A.

    2016-02-01

    In different materials for magnetic shields, the maximum permeability is achieved for different values of the magnetic field. This determines the choice of material. So for protection from magnetic fields strength of 10 - 150 A/m it is advisable to apply the amorphous ribbon 84KXCP. For stronger fields (more than 400 A/m) it is recommended to use MFS based on Ni20Fe80. Use of these materials allows creating an effective shield working in a wide range of magnetic field strengths.

  12. 47 CFR 73.686 - Field strength measurements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... earth radius, of the largest available scale. (c) Collection of field strength data to determine... measurements in inclement weather or when major weather fronts are moving through the measurement area. (iii....686 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO...

  13. Field strengths and dissipated powers in microwave-excited high-pressure sulphur discharges

    NASA Astrophysics Data System (ADS)

    van Dongen, Menno; Körber, Achim; van der Heijden, Harm; Jonkers, Jeroen; Scholl, Robert; van der Mullen, Joost

    1998-11-01

    A method which makes it is possible to measure the electric field strength in microwave discharges is presented. A condition for this method is that the plasma has such a low conductivity that the associated skin depth is larger than the discharge radius. It is found that the field strength in high-pressure sulphur lamps is around 400 V 0022-3727/31/21/015/img10. Furthermore, this method allows the determination of the power absorbed in the resonator's wall and in the plasma and the estimation of the effective electric conductivity in the discharge.

  14. The Neutron Star Zoo

    NASA Technical Reports Server (NTRS)

    Harding, Alice K.

    2014-01-01

    Neutron stars are a very diverse population, both in their observational and their physical properties. They prefer to radiate most of their energy at X-ray and gamma-ray wavelengths. But whether their emission is powered by rotation, accretion, heat, magnetic fields or nuclear reactions, they are all different species of the same animal whose magnetic field evolution and interior composition remain a mystery. This article will broadly review the properties of inhabitants of the neutron star zoo, with emphasis on their high-energy emission. XXX Neutron stars are found in a wide variety of sources, displaying an amazing array of behavior. They can be isolated or in binary systems, accreting, heating, cooling, spinning down, spinning up, pulsing, flaring and bursting. The one property that seems to determine their behavior most strongly is their magnetic field strength, structure and evolution. The hot polar caps, bursts and flares of magnetars are likely due to the rapid decay and twisting of their superstrong magnetic fields, whose very existence requires some kind of early dynamo activity. The intermediate-strength magnetic fields of RPPs determines their spin-down behavior and radiation properties. However, the overlap of the magnetar and RPP populations is not understood at present. Why don't high-field RPPs burst or flare? Why don't lower-field magnetars sometimes behave more like RPPs? INS may be old magnetars whose high fields have decayed, but they do not account for the existence of younger RPPs with magnetar-strength fields. Not only the strength of the magnetic field but also its configuration may be important in making a NS a magnetar or a RPP. Magnetic field decay is a critical link between other NS populations as well. "Decay" of the magnetic field is necessary for normal RPPs to evolve into MSPs through accretion and spin up in LMXBs. Some kind of accretion-driven field reduction is the most likely mechanism, but it is controversial since it is not clear how effective it is or on what timescale a buried field might re-emerge. One piece of evidence in favor of accretion-driven field reduction is the fact that NSs in LMXBs, which are older systems (> 108 yr), have mostly low fields and NSs in HMXBs, which are younger systems (107 - 108 yr), have higher fields. This may be an indication that accretion-driven field reduction or decay has not had enough time to operate in HMXBs but has in LMXBs. However, there does not seem to be any evidence of decaying fields in either the LMXB or HMXB populations; e.g. smaller magnetic fields in older systems. On the other hand, CCOs are very young so if they acquired their low fields through mass fallback accretion, the field submergence would have had to operate on much faster timescales than it apparently does in LMXBs. But as we continue to find new species in the NS zoo, one of these may someday be the "Rosetta Stone" that will give us the clues for solving these puzzles.

  15. Effect of toughened epoxy resin on partial discharge at solid-solid interface

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Zhang, Zhao; Cheng, Yonghong

    2017-02-01

    A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and real-time electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell’s theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches. Supported by China Academy of Engineering Physics (Project 2014B05005).

  16. How long does it take to become fit?

    PubMed Central

    Pearn, J

    1980-01-01

    To become fit an individual must generate optimal muscle strength and must develop cardiopulmonary reserve, or stamina. Physical fitness programmes require motivation, a graded series of appropriately designed exercises, and scientific surveillance. Motivation and efficiency in fitness programmes depends on early positive feedback to participants, confirming that stamina and strength are developing. A practical field experiment was performed to determine the minimum time that healthy young adults require to reach an initial plateau in objective measures of fitness. Fifty male university undergraduates were studied during an annual volunteer military training camp. Thirty had volunteered to take part in the fitness programme; the remaining 20 had initially rejected the offer but underwent the programme as part of their military training and acted as unmotivated controls. All the subjects became fit within 14 days of starting training, with objective improvement in both absolute strength and pulse recovery times. Non-motivated individuals, training with motivated individuals for 20 minutes each day, can therefore achieve levels of fitness indistinguishable from those of healthy highly motivated subjects. Fitness programmes must be carefully supervised, however, with medical examinations for those about to undergo vigorous exercise. PMID:7437862

  17. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites

    PubMed Central

    2009-01-01

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications.Mesua ferreaL. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 °C of melting point, and 111 °C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96–99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance. PMID:20596546

  18. Vegetable Oil-Based Hyperbranched Thermosetting Polyurethane/Clay Nanocomposites.

    PubMed

    Deka, Harekrishna; Karak, Niranjan

    2009-04-25

    The highly branched polyurethanes and vegetable oil-based polymer nanocomposites have been showing fruitful advantages across a spectrum of potential field of applications. Mesua ferrea L. seed oil-based hyperbranched polyurethane (HBPU)/clay nanocomposites were prepared at different dose levels by in situ polymerization technique. The performances of epoxy-cured thermosetting nanocomposites are reported for the first time. The partially exfoliated structure of clay layers was confirmed by XRD and TEM. FTIR spectra indicate the presence of H bonding between nanoclay and the polymer matrix. The present investigation outlines the significant improvement of tensile strength, scratch hardness, thermostability, water vapor permeability, and adhesive strength without much influencing impact resistance, bending, and elongation at break of the nanocomposites compared to pristine HBPU thermoset. An increment of two times the tensile strength, 6 degrees C of melting point, and 111 degrees C of thermo-stability were achieved by the formation of nanocomposites. An excellent shape recovery of about 96-99% was observed for the nanocomposites. Thus, the formation of partially exfoliated clay/vegetable oil-based hyperbranched polyurethane nanocomposites significantly improved the performance.

  19. Searching for primordial magnetic fields with CMB B-modes

    NASA Astrophysics Data System (ADS)

    Pogosian, Levon; Zucca, Alex

    2018-06-01

    Was the primordial universe magnetized? The answer to this question would help explain the origin of micro-Gauss strength magnetic fields observed in galaxies. It is also of fundamental importance in developing a complete theory of the early universe. While there can be other signatures of cosmological magnetic fields, a signature in the cosmic microwave background (CMB) would prove their primordial origin. The B-mode polarization of CMB is particularly promising in this regard because there are relatively few other sources of B-modes, and because the vortical modes sourced by the primordial magnetic field (PMF) survive diffusion damping up to a small fraction of the Silk length. At present, the Planck temperature and polarization spectra combined with the B-mode spectrum measured by the South Pole Telescope (SPT) constrain the PMF strength to be no more than  ∼1 nano-Gauss (nG). Because of the quartic scaling of the CMB anisotropy spectra with the PMF strength, this bound will not change by much even with the significantly better measurements of the B-mode spectrum by the Stage III and Stage IV CMB experiments. On the other hand, tightening the bound well below the 1 nG threshold would rule out the purely primordial origin (requiring no dynamo action) of galactic fields. Considering Faraday rotation, which converts some of the E-modes into B-modes and scales linearly with the field strength, will help to achieve this goal. As we demonstrate, the upcoming experiments, such as SPT-3G and the Simons Observatory, will be sensitive to fields of  ∼0.5 nG strength thanks to the mode-coupling signature induced by Faraday rotation. A future Stage IV ground based experiment or a space probe will be capable of probing fields below 0.1 nG, and would detect a scale-invariant PMF of 0.2 nG strength without de-lensing or subtracting the galactic rotation measure.

  20. Time variation in the reaction-zone structure of two-phase spray detonations.

    NASA Technical Reports Server (NTRS)

    Pierce, T. H.; Nicholls, J. A.

    1973-01-01

    A detailed theoretical analysis of the time-varying detonation structure in a monodisperse spray is presented. The theory identifies experimentally observed reaction-zone overpressures as deriving from blast waves formed therein by the explosive ignition of the spray droplets, and follows in time the motion, change in strength, and interactions of these blast waves with one another, and with the leading shock. The results are compared with experimental data by modeling the motion of a finite-size circular pressure transducer through the theoretical data field in an x-t space.

Top