Study of Bacterial Response to Antibiotics in Low Magnetic Fields
NASA Astrophysics Data System (ADS)
Abdul-Moqueet, Mohammad; Albalawi, Abdullah; Masood, Samina
Effect of low magnetic fields on bacterial growth has been well established. Current study shows how different magnetic fields effect the bacterial response to antibiotics shows that the bacterial infections treatment and disease cure is changed in the presence of weak fields. This study has focused on understanding how different types of low magnetic fields change the response the bacterium to antibiotics in a liquid medium. This low magnetic field coupled with the introduction of antibiotics to the growth medium shows a drop in the growth curve. The most significant effect of low magnetic fields was seen with the uniform electromagnetic field as compared to the similar strength of constant static magnetic field produced by a bar magnets.
NASA Technical Reports Server (NTRS)
Lyatsky, Wladislaw; Pollock, Craig; Goldstein, Melvyn L.; Lyatskaya, Sonya Inna; Avanov, Levon Albert
2016-01-01
In this paper, we examined plasma structures (filaments), observed in the dayside magnetosphere but containing magnetosheath plasma. These filaments show the stable antisunward motion (while the ambient magnetospheric plasma moved in the opposite direction) and the existence of a strip of magnetospheric plasma, separating these filaments from the magnetosheath. These results, however, contradict both theoretical studies and simulations by Schindler (1979), Ma et al. (1991), Dai and Woodward (1994, 1998), and other researchers, who reported that the motion of such filaments through the magnetosphere is possible only when their magnetic field is directed very close to the ambient magnetic field, which is not the situation that is observed. In this study, we show that this seeming contradiction may be related to different events as the theoretical studies and simulations are related to the case when the filament magnetic field is about aligned with filament orientation, whereas the observations show that the magnetic field in these filaments may be rotating. In this case, the rotating magnetic field, changing incessantly its direction, drastically affects the penetration of plasma filaments into the magnetosphere. In this case, the filaments with rotating magnetic field, even if in each moment it is significantly inclined to the ambient magnetic field, may propagate through the magnetosphere, if their average (for the rotation period) magnetic field is aligned with the ambient magnetic field. This shows that neglecting the rotation of magnetic field in these filaments may lead to wrong results.
A magneto-resistance and magnetisation study of TaAs2 semimetal
NASA Astrophysics Data System (ADS)
Harimohan, V.; Bharathi, A.; Rajaraman, R.; Sundar, C. S.
2018-04-01
Here we report on the magneto-transport and magnetization studies on single crystalline samples of TaAs2. The resistivity versus temperature of the single crystalline sample shows a metallic behavior with a large residual resistivity ratio. The TaAs2 crystal shows large magneto resistance at low temperature, reaching 91000% at 2.5K in a field of 15 T and the resistivity versus temperature shows an upturn at low temperature, when measured with increase in magnetic field. Resistivity and magnetization measurements as a function of magnetic field show characteristic Shubnikov de Haas and de Hass van Alphen oscillations, displaying anisotropy with respect to the crystalline direction. The effective mass and Dingle temperature were estimated from the analysis of the oscillation amplitude as a function of temperature and magnetic field. Negative magneto-resistance was not observed with current parallel to the magnetic field direction, suggesting that TaAs2 is not an archetypical Weyl metal.
ERIC Educational Resources Information Center
Kraaykamp, Gerbert; Tolsma, Jochem; Wolbers, Maarten H. J.
2013-01-01
In this paper we study to what extent parental field of study affects a person's educational level and field of study. We employ information on 8800 respondents from the Family Survey Dutch Population (1992-2009). Our results first of all show that, over the last five decades, economic fields of study have become more fashionable among men. In…
Plasma-assisted synthesis and study of structural and magnetic properties of Fe/C core shell
NASA Astrophysics Data System (ADS)
Shinde, K. P.; Ranot, M.; Choi, C. J.; Kim, H. S.; Chung, K. C.
2017-07-01
Pure and carbon-encapsulated iron nanoparticles with an average diameter of 25 nm were synthesized by using the DC plasma arc discharge method. Fe core nanoparticles were encapsulated with carbon layer, which is acting as protection layer against both oxidation and chemical reaction. The morphology and the Fe/C core/shell structure of the nanoparticles were studied by using field emission scanning electron microscopy and transmission electron microscopy. The x-ray diffraction study showed that the α-Fe phase exists with γ-Fe as an impurity. The studied samples have been interrelated with the variation of saturation magnetization, remanent magnetization and coercive field with the amount of carbon coating. The pure α-Fe sample shows saturation magnetization = 172 emu/g, and coercive field = 150 Oe, on the other hand few layer carbon coated α-Fe sample shows saturation magnetization =169 emu/g with higher coercive field 398 Oe.
Influence of magnetic field configuration on magnetohydrodynamic waves in Earth's core
NASA Astrophysics Data System (ADS)
Knezek, Nicholas; Buffett, Bruce
2018-04-01
We develop a numerical model to study magnetohydrodynamic waves in a thin layer of stratified fluid near the surface of Earth's core. Past studies have been limited to using simple background magnetic field configurations. However, the choice of field distribution can dramatically affect the structure and frequency of the waves. To permit a more general treatment of background magnetic field and layer stratification, we combine finite volume and Fourier methods to describe the wave motions. We validate our model by comparisons to previous studies and examine the influence of background magnetic field configuration on two types of magnetohydrodynamic waves. We show that the structure of zonal Magnetic-Archimedes-Coriolis (MAC) waves for a dipole background field is unstable to small perturbations of the field strength in the equatorial region. Modifications to the wave structures are computed for a range of field configurations. In addition, we show that non-zonal MAC waves are trapped near the equator for realistic magnetic field distributions, and that their latitudinal extent depends upon the distribution of magnetic field strength at the CMB.
Saminathan, Sathiyan; Chandraraj, Varatharaj; Sridhar, C H; Manickam, Ravikumar
2012-01-01
To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.
Fritsch, Michael H; Gutt, Jason J
2005-03-01
A 3-T magnetic resonance field may cause motion or displacement of middle ear implants not seen in studies with 1.5-T magnets. Previous publications have described the safety limitations of some otologic implants in 1.5-T magnetic resonance fields. Several company-wide recalls of implants were issued. No studies to date have been reported for otologic implants within a 3-T magnetic resonance field, nor have there been comparisons with a 1.5-T field strength. Eighteen commonly used middle ear implants and prostheses were selected. In Part 1, the prostheses were placed in Petri dishes and exposed to a 3-T magnetic resonance field. In Part 2, the particular prostheses that showed movement in Part 1 were placed into their intended use positions within temporal bone laboratory specimens and exposed to a 3-T field. Both parts were repeated in a 1.5-T field. In Part 1, three prostheses moved dramatically from their start positions when exposed to the 3-T magnetic resonance field. In Part 2, the three particular prostheses that showed movement in Part 1 showed no gross displacement or movement from their start positions within the temporal bone laboratory specimens. No implants moved in the 1.5-T field in either Part 1 or Part 2. Certain stapes prostheses move dramatically in Petri dishes in 3-T fields. When placed into temporal bone laboratory specimens, the same prostheses show no signs of movement from the surgical site in a 3-T field, and it appears that the surgical position holds the implants firmly in place. Results of published 1.5-T field studies should not be used directly for safety recommendations in a 3-T magnetic resonance. Heat, voltage induction, and vibration during exposure to the magnetic resonance fields should be considered as additional possible safety issues. Preference should be given to platinum and titanium implants in manufacturing processes and surgical selection.
Galiñanes, Gregorio L.; Braz, Barbara Y.; Murer, Mario Gustavo
2011-01-01
Evoked striatal field potentials are seldom used to study corticostriatal communication in vivo because little is known about their origin and significance. Here we show that striatal field responses evoked by stimulating the prelimbic cortex in mice are reduced by more than 90% after infusing the AMPA receptor antagonist CNQX close to the recording electrode. Moreover, the amplitude of local field responses and dPSPs recorded in striatal medium spiny neurons increase in parallel with increasing stimulating current intensity. Finally, the evoked striatal fields show several of the basic known properties of corticostriatal transmission, including paired pulse facilitation and topographical organization. As a case study, we characterized the effect of local GABAA receptor blockade on striatal field and multiunitary action potential responses to prelimbic cortex stimulation. Striatal activity was recorded through a 24 channel silicon probe at about 600 µm from a microdialysis probe. Intrastriatal administration of the GABAA receptor antagonist bicuculline increased by 65±7% the duration of the evoked field responses. Moreover, the associated action potential responses were markedly enhanced during bicuculline infusion. Bicuculline enhancement took place at all the striatal sites that showed a response to cortical stimulation before drug infusion, but sites showing no field response before bicuculline remained unresponsive during GABAA receptor blockade. Thus, the data demonstrate that fast inhibitory connections exert a marked temporal regulation of input-output transformations within spatially delimited striatal networks responding to a cortical input. Overall, we propose that evoked striatal fields may be a useful tool to study corticostriatal synaptic connectivity in relation to behavior. PMID:22163020
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
Study of Nonclassical Fields in Phase-Sensitive Reservoirs
NASA Technical Reports Server (NTRS)
Kim, Myung Shik; Imoto, Nobuyuki
1996-01-01
We show that the reservoir influence can be modeled by an infinite array of beam splitters. The superposition of the input fields in the beam splitter is discussed with the convolution laws for their quasiprobabilities. We derive the Fokker-Planck equation for the cavity field coupled with a phase-sensitive reservoir using the convolution law. We also analyze the amplification in the phase-sensitive reservoir with use of the modified beam splitter model. We show the similarities and differences between the dissipation and amplification models. We show that a super-Poissonian input field cannot become sub-Poissonian by the phase-sensitive amplification.
NASA Astrophysics Data System (ADS)
Rezania, H.
2018-07-01
We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.
Effect of external magnetic field on locking range of spintronic feedback nano oscillator
NASA Astrophysics Data System (ADS)
Singh, Hanuman; Konishi, K.; Bose, A.; Bhuktare, S.; Miwa, S.; Fukushima, A.; Yakushiji, K.; Yuasa, S.; Kubota, H.; Suzuki, Y.; Tulapurkar, A. A.
2018-05-01
In this work we have studied the effect of external applied magnetic field on the locking range of spintronic feedback nano oscillator. Injection locking of spintronic feedback nano oscillator at integer and fractional multiple of its auto oscillation frequency was demonstrated recently. Here we show that the locking range increases with increasing external magnetic field. We also show synchronization of spintronic feedback nano oscillator at integer (n=1,2,3) multiples of auto oscillation frequency and side band peaks at higher external magnetic field values. We have verified experimental results with macro-spin simulation using similar conditions as used for the experimental study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavet, R.; Tell, R.A.
As the use of video display terminals (VDTs) has expanded, questions have been raised as to whether working at a VDT affects the risk of adverse pregnancy outcome. A particular focus for these questions has been the very low frequency (VLF) magnetic field produced by a VDT's horizontal deflection coil. VDTs also produce VLF electric fields, extremely low frequency (ELF) electric and magnetic fields, and static electric fields, Ten studies of pregnancy outcome in VDT operators have been conducted in six countries, and with one exception, none has concluded that magnetic fields from VDTs may predispose pregnant operators to spontaneousmore » abortion or congenital malformation. The epidemiologic studies conducted thus far do not provide a basis for concluding that VDT work and adverse pregnancy outcome are associated. Studies of fetal resorptions and malformations in rodents exposed to VLF magnetic fields have produced inconsistent findings. Two laboratories in Sweden that studied mice have reported positive results, one laboratory showing field-related malformations (but not resorptions) and the other showing field-related resorptions (but not malformations). Two Canadian laboratories have reported negative results in rats and mice. Studies of avian embryos have also yielded inconsistent results, but lacking a maternal-fetal placental interface, avian embryos are a questionable model for evaluating human reproductive risks. Finally, VLF electric and magnetic fields measured at the operator position are in compliance with field strength standards and guidelines that have been established around the world. 55 refs.« less
Domain wall dynamics driven by spin transfer torque and the spin-orbit field.
Hayashi, Masamitsu; Nakatani, Yoshinobu; Fukami, Shunsuke; Yamanouchi, Michihiko; Mitani, Seiji; Ohno, Hideo
2012-01-18
We have studied current-driven dynamics of domain walls when an in-plane magnetic field is present in perpendicularly magnetized nanowires using an analytical model and micromagnetic simulations. We model an experimentally studied system, ultrathin magnetic nanowires with perpendicular anisotropy, where an effective in-plane magnetic field is developed when current is passed along the nanowire due to the Rashba-like spin-orbit coupling. Using a one-dimensional model of a domain wall together with micromagnetic simulations, we show that the existence of such in-plane magnetic fields can either lower or raise the threshold current needed to cause domain wall motion. In the presence of the in-plane field, the threshold current differs for positive and negative currents for a given wall chirality, and the wall motion becomes sensitive to out-of-plane magnetic fields. We show that large non-adiabatic spin torque can counteract the effect of the in-plane field.
Visual Field Asymmetries in Attention Vary with Self-Reported Attention Deficits
ERIC Educational Resources Information Center
Poynter, William; Ingram, Paul; Minor, Scott
2010-01-01
The purpose of this study was to determine whether an index of self-reported attention deficits predicts the pattern of visual field asymmetries observed in behavioral measures of attention. Studies of "normal" subjects do not present a consistent pattern of asymmetry in attention functions, with some studies showing better left visual field (LVF)…
O'Connell, Caitlin; Ho, Leon C; Murphy, Matthew C; Conner, Ian P; Wollstein, Gadi; Cham, Rakie; Chan, Kevin C
2016-11-09
Human visual performance has been observed to show superiority in localized regions of the visual field across many classes of stimuli. However, the underlying neural mechanisms remain unclear. This study aims to determine whether the visual information processing in the human brain is dependent on the location of stimuli in the visual field and the corresponding neuroarchitecture using blood-oxygenation-level-dependent functional MRI (fMRI) and diffusion kurtosis MRI, respectively, in 15 healthy individuals at 3 T. In fMRI, visual stimulation to the lower hemifield showed stronger brain responses and larger brain activation volumes than the upper hemifield, indicative of the differential sensitivity of the human brain across the visual field. In diffusion kurtosis MRI, the brain regions mapping to the lower visual field showed higher mean kurtosis, but not fractional anisotropy or mean diffusivity compared with the upper visual field. These results suggested the different distributions of microstructural organization across visual field brain representations. There was also a strong positive relationship between diffusion kurtosis and fMRI responses in the lower field brain representations. In summary, this study suggested the structural and functional brain involvements in the asymmetry of visual field responses in humans, and is important to the neurophysiological and psychological understanding of human visual information processing.
Persistence of undergraduate women in STEM fields
NASA Astrophysics Data System (ADS)
Pedone, Maggie Helene
The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in STEM. This study also examined and compared the characteristics of undergraduate women who entered STEM fields and non-STEM fields in 2003-2004. The nationally representative Beginning Postsecondary Students Longitudinal Study (BPS:04/09) data set was used for analysis. BPS:04/09 study respondents were surveyed three times (NPSAS:04, BPS:04/06, BPS:04/09) over a six-year period, which enabled me to explore factors related to long-term persistence. Astin's Input-Environment-Output (I-E-O) model was used as the framework to examine student inputs and college environmental factors that predict female student persistence (output) in STEM. Chi-square tests revealed significant differences between undergraduate women who entered STEM and non-STEM fields in 2003-2004. Differences in student demographics, prior academic achievement, high school course-taking patterns, and student involvement in college such as participation in study groups and school clubs were found. Notably, inferential statistics showed that a significantly higher proportion of female minority students entered STEM fields than non-STEM fields. These findings challenge the myth that underrepresented female minorities are less inclined to enter STEM fields. Logistic regression analyses revealed thirteen significant predictors of persistence for undergraduate women in STEM. Findings showed that undergraduate women who were younger, more academically prepared, and academically and socially involved in college (e.g., lived on campus, interacted with faculty, participated in study groups, fine arts activities, and school sports) were more likely to persist in STEM fields. This longitudinal study showed that both pre-college and college level factors influenced undergraduate women's persistence in STEM. The research findings offer important implications for policy and practice initiatives in higher education that focus on the recruitment and retention of women in postsecondary STEM fields.
Gendered transitions to adulthood by college field of study in the United States.
Han, Siqi; Tumin, Dmitry; Qian, Zhenchao
2016-01-01
Field of study may influence the timing of transitions to the labor market, marriage, and parenthood among college graduates. Research to date has yet to study how field of study is associated with the interweaving of these transitions in the USA. The current study examines gendered influences of college field of study on transitions to a series of adult roles, including full-time work, marriage, and parenthood. We use Cox proportional hazards models and multinomial logistic regression to examine gendered associations between field of study and the three transitions among college graduates of the NLSY97 (National Longitudinal Survey of Youth) cohort. Men majoring in STEM achieve early transitions to full-time work, marriage, and parenthood; women majoring in STEM show no significant advantage in finding full-time work and delayed marriage and childbearing; women in business have earlier transitions to full-time work and marriage than women in other fields, demonstrating an advantage similar to that of men in STEM. The contrast between men and women in STEM shows that transition to adulthood remains gendered; the contrast between women in STEM and women in business illustrates that a prestigious career may not necessarily delay family formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, R. H.; Gao, J.; Wang, G.
2016-02-01
The crystal structure of the CoMnSi compound during zero-field cooling and field cooling from room temperature down to 200 K was studied using the synchrotron radiation X-ray diffraction technique. The results show that the lattice parameters and thermal expansion behavior of the sample are changed by the applied magnetic fields. The lattice contracts along the a axis, but expands along the b and c axes. Due to enlarged and anisotropic changes under a magnetic field of 6 T, the lattice shows an invar-like behavior along all three axes. Critical interatomic distances and bond angles also show large changes under themore » influence of such a high magnetic field. These magnetic field-induced changes of the lattice are discussed with respect to their contributions to the large magnetocaloric effect of the CoMnSi compound.« less
High-field instability of a field-induced triplon Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Rakhimov, Abdulla; Sherman, E. Ya.; Kim, Chul Koo
2010-01-01
We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of temperature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has a strong influence on the phase diagram.
ERIC Educational Resources Information Center
Liu, Yuanlong; Paul, Stanley; Fu, Frank H.
2012-01-01
The conductors of this study reviewed prediction research and studied the accomplishments and compromises in predicting world records and best performances in track and field and swimming. The results of the study showed that prediction research only promises to describe the historical trends in track and field and swimming performances, to study…
Follow-up field investigation of the effectiveness of antistripping additives in Virginia.
DOT National Transportation Integrated Search
1997-01-01
A previous field study of 12 pavements revealed considerable stripping in the surface layers of mixtures placed in 1991-92. Most of the mixes containing chemical additives showed visual stripping, but the ones containing hydrated lime did not show si...
Engaging the Borders: Empathy, Religious Studies, and Pre-Professional Fields
ERIC Educational Resources Information Center
Trothen, Tracy J.
2016-01-01
This article proposes that religious studies instructors can gain pedagogical insights regarding the value and teaching of empathy from pre-professional health care and counseling fields. I present research findings from these fields to support claims that empathic skills are teachable. I then show that empathy has been established within the…
Jung, Kyung-Won; Hwang, Min-Jin; Yun, Yeo-Myeong; Cha, Min-Jung; Ahn, Kyu-Hong
2014-09-01
In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0±2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use. Copyright © 2014 Elsevier B.V. All rights reserved.
MHODE: a local-homogeneity theory for improved source-parameter estimation of potential fields
NASA Astrophysics Data System (ADS)
Fedi, Maurizio; Florio, Giovanni; Paoletti, Valeria
2015-08-01
We describe a multihomogeneity theory for source-parameter estimation of potential fields. Similar to what happens for random source models, where the monofractal scaling-law has been generalized into a multifractal law, we propose to generalize the homogeneity law into a multihomogeneity law. This allows a theoretically correct approach to study real-world potential fields, which are inhomogeneous and so do not show scale invariance, except in the asymptotic regions (very near to or very far from their sources). Since the scaling properties of inhomogeneous fields change with the scale of observation, we show that they may be better studied at a set of scales than at a single scale and that a multihomogeneous model is needed to explain its complex scaling behaviour. In order to perform this task, we first introduce fractional-degree homogeneous fields, to show that: (i) homogeneous potential fields may have fractional or integer degree; (ii) the source-distributions for a fractional-degree are not confined in a bounded region, similarly to some integer-degree models, such as the infinite line mass and (iii) differently from the integer-degree case, the fractional-degree source distributions are no longer uniform density functions. Using this enlarged set of homogeneous fields, real-world anomaly fields are studied at different scales, by a simple search, at any local window W, for the best homogeneous field of either integer or fractional-degree, this yielding a multiscale set of local homogeneity-degrees and depth estimations which we call multihomogeneous model. It is so defined a new technique of source parameter estimation (Multi-HOmogeneity Depth Estimation, MHODE), permitting retrieval of the source parameters of complex sources. We test the method with inhomogeneous fields of finite sources, such as faults or cylinders, and show its effectiveness also in a real-case example. These applications show the usefulness of the new concepts, multihomogeneity and fractional homogeneity-degree, to obtain valid estimates of the source parameters in a consistent theoretical framework, so overcoming the limitations imposed by global-homogeneity to widespread methods, such as Euler deconvolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekaran, Suryanarayanan; Aghtar, Mortaza; Valleau, Stéphanie
2015-08-06
Studies on light-harvesting (LH) systems have attracted much attention after the finding of long-lived quantum coherences in the exciton dynamics of the Fenna–Matthews–Olson (FMO) complex. In this complex, excitation energy transfer occurs between the bacteriochlorophyll a (BChl a) pigments. Two quantum mechanics/molecular mechanics (QM/MM) studies, each with a different force-field and quantum chemistry approach, reported different excitation energy distributions for the FMO complex. To understand the reasons for these differences in the predicted excitation energies, we have carried out a comparative study between the simulations using the CHARMM and AMBER force field and the Zerner intermediate neglect of differential orbitalmore » (ZINDO)/S and time-dependent density functional theory (TDDFT) quantum chemistry methods. The calculations using the CHARMM force field together with ZINDO/S or TDDFT always show a wider spread in the energy distribution compared to those using the AMBER force field. High- or low-energy tails in these energy distributions result in larger values for the spectral density at low frequencies. A detailed study on individual BChl a molecules in solution shows that without the environment, the density of states is the same for both force field sets. Including the environmental point charges, however, the excitation energy distribution gets broader and, depending on the applied methods, also asymmetric. The excitation energy distribution predicted using TDDFT together with the AMBER force field shows a symmetric, Gaussian-like distribution.« less
NASA Technical Reports Server (NTRS)
Patel, V. L.
1975-01-01
Twenty-one geomagnetic storm events during 1966 and 1970 were studied by using simultaneous interplanetary magnetic field and plasma parameters. Explorer 33 and 35 field and plasma data were analyzed on large-scale (hourly) and small-scale (3 min.) during the time interval coincident with initial phase of the geomagnetic storms. The solar-ecliptic Bz component turns southward at the end of the initial phase, thus triggering the main phase decrease in Dst geomagnetic field. When the Bz is already negative, its value becomes further negative. The By component also shows large fluctuations along with Bz. When there are no clear changes in the Bz component, the By shows abrupt changes at the main phase onet. On the small-scale behavior of the magnetic field and electric field (E=-VxB) studied in details for the three events, it is found that the field fluctuations in By, Bz and Ey and Ez are present in the initial phase. These fluctuations become larger just before the main phase of the storm begins. In the largescale behavior field remains quiet because the small scale variations are averaged out.
A preliminary characterization of applied-field MPD thruster plumes
NASA Technical Reports Server (NTRS)
Myers, Roger M.; Wehrle, David; Vernyi, Mark; Biaglow, James; Reese, Shawn
1991-01-01
Electric probes, quantitative imaging, and emission spectroscopy were used to study the plume characteristics of applied field magnetohydrodynamic thrusters. The measurements showed that the applied magnetic field plays the dominant role in establishing the plume structure, followed in importance by the cathode geometry and propellant. The anode radius had no measurable impact on the plume characteristics. For all cases studied the plume was highly ionized, though spectral lines of neutral species were always present. Centerline electron densities and temperatures ranged from 2 times 10 (exp 18) to 8 times 10 (exp 18) m(exp -3) and from 7500 to 20,000 K, respectively. The plume was strongly confined by the magnetic field, with radial density gradients increasing monotonically with applied field strength. Plasma potential measurements show a strong effect of the magnetic field on the electrical conductivity and indicate the presence of radial current conduction in the plume.
Simulation study on combination of GRACE monthly gravity field solutions
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2016-04-01
The GRACE monthly gravity fields from different processing centers are combined in the frame of the project EGSIEM. This combination is done on solution level first to define weights which will be used for a combination on normal equation level. The applied weights are based on the deviation of the individual gravity fields from the arithmetic mean of all involved gravity fields. This kind of weighting scheme relies on the assumption that the true gravity field is close to the arithmetic mean of the involved individual gravity fields. However, the arithmetic mean can be affected by systematic errors in individual gravity fields, which consequently results in inappropriate weights. For the future operational scientific combination service of GRACE monthly gravity fields, it is necessary to examine the validity of the weighting scheme also in possible extreme cases. To investigate this, we make a simulation study on the combination of gravity fields. Firstly, we show how a deviated gravity field can affect the combined solution in terms of signal and noise in the spatial domain. We also show the impact of systematic errors in individual gravity fields on the resulting combined solution. Then, we investigate whether the weighting scheme still works in the presence of outliers. The result of this simulation study will be useful to understand and validate the weighting scheme applied to the combination of the monthly gravity fields.
Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong
2014-08-01
The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.
de Melo, Roger Duarte; Acosta-Avalos, Daniel
2017-02-01
'Candidatus Magnetoglobus multicellularis' is the most studied multicellular magnetotactic prokaryote. It presents a light-dependent photokinesis: green light decreases the translation velocity whereas red light increases it, in comparison to blue and white light. The present article shows that radio-frequency electromagnetic fields cancel the light effect on photokinesis. The frequency to cancel the light effect corresponds to the Zeeman resonance frequency (DC magnetic field of 4 Oe and radio-frequency of 11.5 MHz), indicating the involvement of a radical pair mechanism. An analysis of the orientation angle relative to the magnetic field direction shows that radio-frequency electromagnetic fields disturb the swimming orientation when the microorganisms are illuminated with red light. The analysis also shows that at low magnetic fields (1.6 Oe) the swimming orientation angles are well scattered around the magnetic field direction, showing that magnetotaxis is not efficiently in the swimming orientation to the geomagnetic field. The results do not support cryptochrome as being the responsible chromophore for the radical pair mechanism and perhaps two different chromophores are necessary to explain the radio-frequency effects.
Electron transport in some transition metal di-chalcogenides: MoS2 and WS2
NASA Astrophysics Data System (ADS)
Ferry, D. K.
2017-08-01
The transition metal di-chalcogenides are promising single monolayer materials that hold promise for applications in several fields, including nanoelectronics. Here, I study the transport of electrons in two of these materials, MoS2 and WS2. While the low-field behavior shows very low mobility, due mostly to impurity scattering, the high-field behavior shows a relatively high saturated velocity and a high breakdown field. Complications arise due to the relative narrowness of the conduction band, and the effect of this on the transport is discussed.
Stability of field emission current from porous n-GaAs(110)
NASA Astrophysics Data System (ADS)
Tondare, V. N.; Naddaf, M.; Bhise, A. B.; Bhoraskar, S. V.; Joag, D. S.; Mandale, A. B.; Sainkar, S. R.
2002-02-01
Field electron emission from porous GaAs has been investigated. The emitter was prepared by anodic etching of n-GaAs (110) in 0.1 M HCl solution. The as-etched porous GaAs shows nonlinear Fowler-Nordheim (FN) characteristics, with a low onset voltage. The emitter, after operating for 6 h at the residual gas pressure of 1×10-8 mbar, shows a linear FN characteristics with a relatively high onset voltage and poor field emission current stability as compared to the as-etched emitter. The change in the behavior was attributed to the residual gas ion bombardment during field electron emission. X-ray photoelectron spectroscopic investigations were carried out on as-etched sample and the one which was studied for field emission. The studies indicate that the as-etched surface contains As2O3 and the surface after field electron emission for about 6 h becomes gallium rich. The presence of As2O3 seems to be a desirable feature for the stable field emission current.
Gendered transitions to adulthood by college field of study in the United States
Han, Siqi; Tumin, Dmitry; Qian, Zhenchao
2017-01-01
BACKGROUND Field of study may influence the timing of transitions to the labor market, marriage, and parenthood among college graduates. Research to date has yet to study how field of study is associated with the interweaving of these transitions in the USA. OBJECTIVE The current study examines gendered influences of college field of study on transitions to a series of adult roles, including full-time work, marriage, and parenthood. METHODS We use Cox proportional hazards models and multinomial logistic regression to examine gendered associations between field of study and the three transitions among college graduates of the NLSY97 (National Longitudinal Survey of Youth) cohort. RESULTS Men majoring in STEM achieve early transitions to full-time work, marriage, and parenthood; women majoring in STEM show no significant advantage in finding full-time work and delayed marriage and childbearing; women in business have earlier transitions to full-time work and marriage than women in other fields, demonstrating an advantage similar to that of men in STEM. CONCLUSIONS The contrast between men and women in STEM shows that transition to adulthood remains gendered; the contrast between women in STEM and women in business illustrates that a prestigious career may not necessarily delay family formation. PMID:29075146
Wage Differentials by Field of Study--The Case of German University Graduates
ERIC Educational Resources Information Center
Grave, Barbara S.; Goerlitz, Katja
2012-01-01
Using data on German university graduates, this paper analyzes wage differentials by field of study at labor market entry and five to six years later. At both points of time, graduates from arts/humanities have lower average monthly wages compared to other fields. Blinder-Oaxaca decompositions show that these wage differentials can be explained…
The enhancement mechanism of thin plasma layer on antenna radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Jiang, Binhao; Li, Xueai
A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.
Evaluation of use of EM38-MK2 as a tool to understand field scale changes in soil properties
NASA Astrophysics Data System (ADS)
Gangrade, Sudershan
Sustainable water resources management requires tools to help farmers identify variations in soil hydraulic characteristics so that precision irrigation schemes can be developed to optimize water use. In this study we use electromagnetic induction (EMI) to evaluate whether changes in the apparent electrical conductivity (sigmaalpha) of agricultural fields can be related to hydrologic processes. Field work for this study was completed at three different sites - 1) in different agricultural fields located in a watershed near Salri, Madhya Pradesh, India, 2) over an agricultural field located near Clemson University, SC, and 3) at a flood plain wetland restoration site near Madison, Wisconsin. The spatio-temporal study of sigmaalpha for fields in India revealed that sigmaalpha were related with the overall wetting and drying cycles at both seasonal and short term (daily) time scale. It was also found that there was a dependence of sigmaalpha patterns associated with the location of the field within the watershed. The short term EMI mappings revealed that sigmaalpha and changes in sigmaalpha both showed a similar spatial pattern for one of the fields. However, in contrast another field showed emergence of different patterns for both the sigmaalpha and changes in sigma alpha. Infiltrometer tests were performed to further investigate the field and a better relation, was observed with the measured hydraulic conductivity estimated using mini disk infiltrometer measurements and the changes in sigma alpha as against the absolute conductivity values.The cluster analysis performed for the fields in India showed that clustering performed using spatial data was able to capture the two different soil textures qualitatively observed in the field. A Monte Carlo analysis showed that the two clusters always had significantly different means showing that they belong to different clusters statistically as well. The purpose of the study performed in an agricultural field near Clemson University was to evaluate the relationships between sigmaalpha and soil hydraulic properties. At this site, repeated sigmaalpha measurements were made using Geonics EM-38 MK2 over two rain events. The range of sigmaalpha changed over time as a result of wetting and drying of the field to some extent but the within field spatial patterns of sigmaalpha were relatively consistent. The conductivity values correlated with the water content and finer particles obtained from the soil properties analysis with significant correlation values ranging from R = 0.36 - 0.78 for water content and R = 0.44-0.81 for % fines. The changes in sigmaalpha, however, were not found to show any linear relationship with changes in water content, water retention curves or basic infiltration rate obtained using infiltration tests. The exact reason behind such behavior are unknown and other parameters like fluid conductivity and temperature might be take into account for future studies to investigate it further. The last part of the study investigated application of EMI to capture the water content and soil variability at a restored wetland location near Madison, Wisconsin. The soil moisture was recorded at the field site using various soil moisture methods including a fiber optic distributed temperature sensor (DTS). The sigmaalpha weakly correlated with the soil moisture however spatial patterns in sigmaalpha and changes in sigmaalpha illustrated the overall wetting and drying of the field. Persistent wet and dry zones were observed along the DTS transect and indicate variations in soil hydrology. The sigmaalpha was able to qualitatively capture a similar trend. From all the studies performed at different field site, it can be concluded that Electromagnetic Induction can capture the variation in water content, soil texture and could also be related to the spatial patterns present in these soil properties The transient electromagnetic induction surveys however were not very efficient in capturing the changes especially for Clemson field site using the analysis technique adopted in this study. The future work can involve exploring the reasons why this relationship between the change in conductivity and changes in soil properties were not being captured by taking into account the effect of fluid conductivity, porosity and temperature as well.
Development of the CSNS Lambertson magnet with very low stray field
NASA Astrophysics Data System (ADS)
Wu, Yuwen; Kang, Wen; Chen, Yuan; Wu, Xi; Li, Shuai; Wang, Lei; Deng, Changdong; Li, Li; Zhou, Jianxin; Liu, Yiqin
2018-02-01
In this paper, the magnetic and mechanical design of Lambertson are studied, and then magnetic field measurements are introduced. The results show that the integral field uniformity and effective length meet the physical requirements. The shielding measures shield the stray field effectively and the stray field along the circulating beam orbit is at a very low level.
Daniels, Stijn; Vanrie, Jan; Dreesen, An; Brijs, Tom
2010-05-01
Although speed limits are indicated by road signs, road users are not always aware, while driving, of the actual speed limit on a given road segment. The Roads and Traffic Agency developed additional road markings in order to support driver decisions on speed on 70 km/h roads in Flanders-Belgium. In this paper the results are presented of two evaluation studies, both a field study and a simulator study, on the effects of the additional road markings on speed behaviour. The results of the field study showed no substantial effect of the markings on speed behaviour. Neither did the simulator study, with slightly different stimuli. Nevertheless an effect on lateral position was noticed in the simulator study, showing at least some effect of the markings. The role of conspicuity of design elements and expectations towards traffic environments is discussed. Both studies illustrate well some strengths and weaknesses of observational field studies compared to experimental simulator studies. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Interacting tachyon: Cosmological evolution for a tachyon and a scalar field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macorra, A. de la; Filobello, U.
2008-01-15
We study the cosmological evolution of a tachyon scalar field T with a Dirac-Born-Infeld type Lagrangian and potential V(T) coupled to a canonically normalized scalar field {phi} with an interaction term B(T,{phi}) in the presence of a barotropic fluid {rho}{sub b}, which can be matter or radiation. The force between the barotropic fluid and the scalar fields is only gravitational. We show that the dynamics is completely determined by only three parameters {lambda}{sub 1}=-V{sub T}/V{sup 3/2}, {lambda}{sub 2}=-B{sub T}/B{sup 3/2}, and {lambda}{sub 3}=-B{sub {phi}}/B. We determine analytically the conditions for {lambda}{sub i} under which the energy density of T, {phi},more » and {rho}{sub b} have the same redshift. We study the behavior of T and {phi} in the asymptotic limits for {lambda} and we show the numerical solution for different interesting cases. The effective equation of state for the tachyon field changes due to the interaction with the scalar field and we show that it is possible for a tachyon field to redshift as matter in the absence of an interaction term B and as radiation when B is turned on. This result solves then the tachyonic matter problem.« less
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
Studies on probe measurements in presence of magnetic field in dust containing hydrogen plasma
NASA Astrophysics Data System (ADS)
Kalita, Deiji; Kakati, Bharat; Kausik, Siddhartha Sankar; Saikia, Bipul Kumar; Bandyopadhyay, Mainak
2018-04-01
The accuracy of plasma parameters measured by Langmuir probe in presence of magnetic field is studied in our present work. It is observed that the ratio of electron to ion saturation current shows almost identical behavior with that of unmagnetized hydrogen plasma when r L > 10 r p (here r L : Larmor radius and r p : probe radius). At magnetic field strength, B = 594 gauss, the electron temperature ( T e ) shows an overestimated value up to 35-40%, whereas at B ≤ 37 gauss, T e shows around ≤10% overestimated value w.r.t. unmagnetized case. A bi-Maxwellian electron energy probability function is observed for entire magnetic field range for both pristine and dust containing hydrogen plasma. The bulk (cold) electron collection by the Langmuir probe is strongly suppressed whereas the higher energetic electron collection remains unaffected in presence of magnetic field. In presence of dust grains, it is found that the low energy electron population decreases even more than the magnetized plasma and the high-energy tail slightly increases compared to the pristine plasma.
Ellipsoidal Brownian self-driven particles in a magnetic field
NASA Astrophysics Data System (ADS)
Fan, Wai-Tong Louis; Pak, On Shun; Sandoval, Mario
2017-03-01
We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at a low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement, showing the effect of a particles's shape, activity, and magnetic field on the microswimmer's diffusion, is analytically obtained. Comparison between analytical and computational results shows good agreement. In addition, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is investigated.
ERIC Educational Resources Information Center
Iaccino, James F.
A study examined laterality effects observed in previous studies in which men as well as right-handers show a right-visual field (RVF) advantage for letter recall and a left-visual field (LVF) advantage for letter position recall, suggesting asymmetrical brain organization for these groups. Subjects, 96 undergraduates equally divided by sex and…
Microfabricated sensors for the measurement of electromagnetic fields in biological tissues
NASA Astrophysics Data System (ADS)
Monberg, James; Henning, Albert K.
1995-09-01
Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.
Clausell, Mathis; Fang, Zhihui; Chen, Wei
2014-07-01
Synchronization modulation (SM) electric field has been shown to effectively activate function of Na(+)/K(+) pumps in various cells and tissues, including skeletal muscle cells, cardiomyocyte, monolayer of cultured cell line, and peripheral blood vessels. We are now reporting the in vivo studies in application of the SM electric field to kidney of living rats. The field-induced changes in the transepithelial potential difference (TEPD) or the lumen potential from the proximal convoluted tubules were monitored. The results showed that a short time (20 s) application of the SM electric field can significantly increase the magnitude of TEPD from 1-2 mV to about 20 mV. The TEPD is an active potential representing the transport current of the Na/K pumps in epithelial wall of renal tubules. This study showed that SM electric field can increase TEPD by activation of the pump molecules. Considering renal tubules, many active transporters are driven by the Na(+) concentration gradient built by the Na(+)/K(+) pumps, activation of the pump functions and increase in the magnitude of TEPD imply that the SM electric field may improve reabsorption functions of the renal tubules.
Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian
2017-01-01
To meet the World’s food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a “banker plant system” for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) – the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system. PMID:28367978
Zheng, Xusong; Lu, Yanhui; Zhu, Pingyang; Zhang, Facheng; Tian, Junce; Xu, Hongxing; Chen, Guihua; Nansen, Christian; Lu, Zhongxian
2017-04-03
To meet the World's food demand, there is a growing need for sustainable pest management practices. This study describes the results from complementary laboratory and field studies of a "banker plant system" for sustainable management of the rice brown planthopper (BPH) (Nilaparvata lugens Stål) - the economically most important rice pest in Asian rice growing areas. The banker plant system consisted of planting a grass species, Leersia sayanuka, adjacent to rice fields. L. sayanuka is the host plant of a planthopper, Nilaparvata muiri. An egg parasitoid, Anagrus nilaparvatae, parasitizes eggs of both BPH and N. muiri, and its establishment and persistence are improved through plantings of L. sayanuka and thereby attraction of N. muiri. Laboratory results showed that BPH was unable to complete its life cycle on L. sayanuka, and N. muiri could not complete its life cycle on rice. Thus, planting L. sayanuka did not increase the risk of planthopper damage to rice fields. Field studies showed that BPH densities were significantly lower in rice fields with banker plant system compared to control rice fields without banker plant system.
Study of magnetoresistance in the supercooled state of Dy-Y alloys
NASA Astrophysics Data System (ADS)
Jena, Rudra Prasad; Lakhani, Archana
2018-02-01
We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.
NASA Astrophysics Data System (ADS)
Kaown, Dugin; Kim, Heejung; Mayer, Bernard; Hyun, Yunjung; Lee, Jin-Yong; Lee, Kang-Kun
2013-04-01
The Haean basin shows a bowl-shaped topographic feature and the drainage system shows a dendritic pattern. The study area is consisted of forests (58.0%), vegetable fields (27.6%), rice paddy fields (11.4%) and fruit fields (0.5%). Most of residents in the study area practice agriculture and paddy rice and vegetables (Chinese radish) are the typical crops grown. The concentration of nitrate in groundwater showed 0.8 ~ 67.3 mg/L in June, 2012 and 2.0 ~ 65.7 mg/L in September, 2012. Hydrogeochemical values and stable isotope ratios of dissolved nitrate and sulfate in groundwater were used to identify contamination sources and transformation processes in shallow groundwater. The δ15N-NO3- values in the study area ranged between +5.2 and +16.9‰ in June and between +4.4 and +13.0‰ in September. The sulfate concentration in groundwater samples obtained from the study area varied from 0.8 to 16.5 mg/L in June and 0 to 19.7 mg/L in September. δ34S-SO42- values ranged from +2.9 to +11.7‰ in June and +1.6 to +8.2‰ in September. The values of δ15N-NO3- and δ34S-SO42- in September were slightly decreased than those of values in June. The chemical composition of groundwater in vegetable and fruit fields showed slightly lower values of δ34S-SO42- and δ15N-NO3- indicated that a mixture of synthetic and organic fertilizers is responsible for groundwater contamination with agro-chemicals. Most groundwater from forests and paddy fields showed slightly higher values of δ15N-NO3- suggested that organic fertilizer is introduced into subsurface.
Effect of the presence of oil on foam performance; A field simulation study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, D.H.S.; Yang, Z.M.; Stone, T.W.
1992-05-01
This paper describes a field-scale sensitivity study of the effect of the presence of oil on foam performance in a steam-foam-drive process. The 2D field-scale simulation was based on a field pilot in the Karamay formation in Zin-Jiang, China. Numerical results showed that the detrimental effect of oil on the foam performance in field operations is significant. The success of a steam-foam process depended mainly on the ability of the foam to divert steam from the depleted zone.
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Y. L.; Zhang, M., E-mail: ylsong@bao.ac.cn
Many previous studies have shown that magnetic fields and sunspot structures present rapid and irreversible changes associated with solar flares. In this paper, we first use five X-class flares observed by Solar Dynamics Observatory /Helioseismic and Magnetic Imager to show that not only do magnetic fields and sunspot structures show rapid, irreversible changes, but also that these changes are closely related both spatially and temporally. The magnitudes of the correlation coefficients between the temporal variations of the horizontal magnetic field and sunspot intensity are all larger than 0.90, with a maximum value of 0.99 and an average value of 0.96.more » Then, using four active regions during quiescent periods, three observed and one simulated, we show that in sunspot penumbra regions there also exists a close correlation between sunspot intensity and horizontal magnetic field strength in addition to the well-known correlation between sunspot intensity and the normal magnetic field strength. By connecting these two observational phenomena, we show that the sunspot structure change and magnetic field change are two facets of the same phenomena of solar flares; one change might be induced by the change of the other due to a linear correlation between sunspot intensity and magnetic field strength out of a local force balance.« less
Conical twist fields and null polygonal Wilson loops
NASA Astrophysics Data System (ADS)
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
Near-field spatial mapping of strongly interacting multiple plasmonic infrared antennas.
Grefe, Sarah E; Leiva, Daan; Mastel, Stefan; Dhuey, Scott D; Cabrini, Stefano; Schuck, P James; Abate, Yohannes
2013-11-21
Near-field dipolar plasmon interactions of multiple infrared antenna structures in the strong coupling limit are studied using scattering-type scanning near-field optical microscope (s-SNOM) and theoretical finite-difference time-domain (FDTD) calculations. We monitor in real-space the evolution of plasmon dipolar mode of a stationary antenna structure as multiple resonantly matched dipolar plasmon particles are closely approaching it. Interparticle separation, length and polarization dependent studies show that the cross geometry structure favors strong interparticle charge-charge, dipole-dipole and charge-dipole Coulomb interactions in the nanometer scale gap region, which results in strong field enhancement in cross-bowties and further allows these structures to be used as polarization filters. The nanoscale local field amplitude and phase maps show that due to strong interparticle Coulomb coupling, cross-bowtie structures redistribute and highly enhance the out-of-plane (perpendicular to the plane of the sample) plasmon near-field component at the gap region relative to ordinary bowties.
Magnetic field effects on the crust structure of neutron stars
NASA Astrophysics Data System (ADS)
Franzon, B.; Negreiros, R.; Schramm, S.
2017-12-01
We study the effects of high magnetic fields on the structure and on the geometry of the crust in neutron stars. We find that the crust geometry is substantially modified by the magnetic field inside the star. We build stationary and axis-symmetric magnetized stellar models by using well-known equations of state to describe the neutron star crust, namely, the Skyrme model for the inner crust and the Baym-Pethick-Sutherland equation of state for the outer crust. We show that the magnetic field has a dual role, contributing to the crust deformation via the electromagnetic interaction (manifested in this case as the Lorentz force) and by contributing to curvature due to the energy stored in it. We also study a direct consequence of the crust deformation due to the magnetic field: the thermal relaxation time. This quantity, which is of great importance to the thermal evolution of neutron stars, is sensitive to the crust properties, and, as such, we show that it may be strongly affected by the magnetic field.
Opening mechanism of adenylate kinase can vary according to selected molecular dynamics force field
NASA Astrophysics Data System (ADS)
Unan, Hulya; Yildirim, Ahmet; Tekpinar, Mustafa
2015-07-01
Adenylate kinase is a widely used test case for many conformational transition studies. It performs a large conformational transition between closed and open conformations while performing its catalytic function. To understand conformational transition mechanism and impact of force field choice on E. Coli adenylate kinase, we performed all-atom explicit solvent classical molecular dynamics simulations starting from the closed conformation with four commonly used force fields, namely, Amber99, Charmm27, Gromos53a6, Opls-aa. We carried out 40 simulations, each one 200 ns. We analyzed completely 12 of them that show full conformational transition from the closed state to the open one. Our study shows that different force fields can have a bias toward different transition pathways. Transition time scales, frequency of conformational transitions, order of domain motions and free energy landscapes of each force field may also vary. In general, Amber99 and Charmm27 behave similarly while Gromos53a6 results have a resemblance to the Opls-aa force field results.
Being outside learning about science is amazing: A mixed methods study
NASA Astrophysics Data System (ADS)
Weibel, Michelle L.
This study used a convergent parallel mixed methods design to examine teachers' environmental attitudes and concerns about an outdoor educational field trip. Converging both quantitative data (Environmental Attitudes Scale and teacher demographics) and qualitative data (Open-Ended Statements of Concern and interviews) facilitated interpretation. Research has shown that adults' attitudes toward the environment strongly influence children's attitudes regarding the environment. Science teachers' attitudes toward nature and attitudes toward children's field experiences influence the number and types of field trips teachers take. Measuring teacher attitudes is a way to assess teacher beliefs. The one day outdoor field trip had significant outcomes for teachers. Quantitative results showed that practicing teachers' environmental attitudes changed following the Forever Earth outdoor field trip intervention. Teacher demographics showed no significance. Interviews provided a more in-depth understanding of teachers' perspectives relating to the field trip and environmental education. Four major themes emerged from the interviews: 1) environmental attitudes, 2) field trip program, 3) integrating environmental education, and 4) concerns. Teachers' major concern, addressed prior to the field trip through the Open-Ended Statements of Concern, was focused on students (i.e., behavior, safety, content knowledge) and was alleviated following the field trip. Interpretation of the results from integrating the quantitative and qualitative results shows that teachers' personal and professional attitudes toward the environment influence their decision to integrate environmental education in classroom instruction. Since the Forever Earth field trip had a positive influence on teachers' environmental attitudes, further research is suggested to observe if teachers integrate environmental education in the classroom to reach the overall goal of increasing environmental literacy.
Cosmological evolution and Solar System consistency of massive scalar-tensor gravity
NASA Astrophysics Data System (ADS)
de Pirey Saint Alby, Thibaut Arnoulx; Yunes, Nicolás
2017-09-01
The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest because of its ability to suppress modifications to general relativity in the weak field, while introducing large corrections in the strong field of compact objects through a process called scalarization. A large sector of this theory that allows for scalarization, however, has been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study an extension of this theory by endowing the scalar field with a mass to determine whether this allows the theory to pass Solar System constraints upon cosmological evolution for a larger sector of coupling parameter space. We show that the cosmological scalar field goes first through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show that after the field enters the oscillatory phase, its effective energy density and pressure are approximately those of dust, as expected from previous cosmological studies. Due to these oscillations, we show that the scalar field cannot be treated as static today on astrophysical scales, and so we use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar System observables. We find that these modifications are suppressed when the mass of the scalar field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar System constraints, while in principle possibly still allowing for scalarization.
Electrostatic Field Invisibility Cloak
NASA Astrophysics Data System (ADS)
Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji
2015-11-01
The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.
New types of high field pinning centers and pinning centers for the peak effect
NASA Astrophysics Data System (ADS)
Gajda, Daniel; Zaleski, Andrzej; Morawski, Andrzej; Hossain, Md Shahriar A.
2017-08-01
In this article, we report the results of a study that shows the existence of pinning centers inside grains and between grains in NbTi wires. We accurately show the ranges of magnetic fields in which the individual pinning centers operate. The pinning centers inside grains are activated in high magnetic fields above 6 T. We show the range of magnetic fields in which individual defects, dislocations, precipitates inside grains and substitutions in the crystal lattice can operate. We show the existence of a new kind of high field pinning center, which operates in high magnetic fields from 8 to ˜9.5 T. We indicate that dislocations create pinning centers in the range of magnetic fields from 6 to 8 T. In addition, our measurements suggest that the peak effect (increased critical current density (J c) near the upper critical field (B c2)) could be attributed to martensitic (needle-shaped) α‧-Ti inclusions inside grains. These centers are very important because they work very effectively in magnetic fields above 9.5-10 T. We also show that the α-Ti precipitates (between grains) with a thickness similar to the coherence length create pinning centers which work very effectively in magnetic fields from 3 to 6 T. In magnetic fields below 3 T, they act very efficiently in grain boundaries. The measurements indicate that the pinning centers created by dislocations only can be tested by transport measurements. This indicates that dislocations do not increase the magnetic critical current density (J cm). Cold drawing improves pinning centers at grain boundaries and increases the dislocation density, and cold-drawing pinning centers are responsible for the peak effect.
Geometrical optics in the near field: local plane-interface approach with evanescent waves.
Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari
2015-01-12
We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.
CSEM-Steel hybrid wiggler/undulator magnetic field studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halbach, K.; Hoyer, E.; Marks, S.
1985-06-01
Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in placemore » of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.« less
Topside ionosphere of Mars: Variability, transient layers, and the role of crustal magnetic fields
NASA Astrophysics Data System (ADS)
Gopika, P. G.; Venkateswara Rao, N.
2018-04-01
The topside ionosphere of Mars is known to show variability and transient topside layers. In this study, we analyzed the electron density profiles measured by the radio occultation technique aboard the Mars Global Surveyor spacecraft to study the topside ionosphere of Mars. The electron density profiles that we used in the present study span between 1998 and 2005. All the measurements are done from the northern high latitudes, except 220 profiles which were measured in the southern hemisphere, where strong crustal magnetic fields are present. We binned the observations into six measurement periods: 1998, 1999-north, 1999-south, 2000-2001, 2002-2003, and 2004-2005. We found that the topside ionosphere in the southern high latitudes is more variable than that from the northern hemisphere. This feature is clearly seen with fluctuations of wavelengths less than 20 km. Some of the electron density profiles show a transient topside layer with a local maximum in electron density between 160 km and 210 km. The topside layer is more prone to occur in the southern hemispheric crustal magnetic field regions than in the other regions. In addition, the peak density of the topside layer is greater in regions of strong crustal magnetic fields than in other regions. The variability of the topside ionosphere and the peak density of the topside layer, however, do not show one-to-one correlation with the strength of the crustal magnetic fields and magnetic field inclination. The results of the present study are discussed in the light of current understanding on the topside ionosphere, transient topside layers, and the role of crustal magnetic fields on plasma motions.
Mean field study of a propagation-turnover lattice model for the dynamics of histone marking
NASA Astrophysics Data System (ADS)
Yao, Fan; Li, FangTing; Li, TieJun
2017-02-01
We present a mean field study of a propagation-turnover lattice model, which was proposed by Hodges and Crabtree [Proc. Nat. Acad. Sci. 109, 13296 (2012)] for understanding how posttranslational histone marks modulate gene expression in mammalian cells. The kinetics of the lattice model consists of nucleation, propagation and turnover mechanisms, and exhibits second-order phase transition for the histone marking domain. We showed rigorously that the dynamics essentially depends on a non-dimensional parameter κ = k +/ k -, the ratio between the propagation and turnover rates, which has been observed in the simulations. We then studied the lowest order mean field approximation, and observed the phase transition with an analytically obtained critical parameter. The boundary layer analysis was utilized to investigate the structure of the decay profile of the mark density. We also studied the higher order mean field approximation to achieve sharper estimate of the critical transition parameter and more detailed features. The comparison between the simulation and theoretical results shows the validity of our theory.
Monte Carlo simulation study of positron generation in ultra-intense laser-solid interactions
NASA Astrophysics Data System (ADS)
Yan, Yonghong; Wu, Yuchi; Zhao, Zongqing; Teng, Jian; Yu, Jinqing; Liu, Dongxiao; Dong, Kegong; Wei, Lai; Fan, Wei; Cao, Leifeng; Yao, Zeen; Gu, Yuqiu
2012-02-01
The Monte Carlo transport code Geant4 has been used to study positron production in the transport of laser-produced hot electrons in solid targets. The dependence of the positron yield on target parameters and the hot-electron temperature has been investigated in thick targets (mm-scale), where only the Bethe-Heitler process is considered. The results show that Au is the best target material, and an optimal target thickness exists for generating abundant positrons at a given hot-electron temperature. The positron angular distributions and energy spectra for different hot electron temperatures were studied without considering the sheath field on the back of the target. The effect of the target rear sheath field for positron acceleration was studied by numerical simulation while including an electrostatic field in the Monte Carlo model. It shows that the positron energy can be enhanced and quasi-monoenergetic positrons are observed owing to the effect of the sheath field.
Conductivity of molten sodium chloride in an arbitrarily weak dc electric field.
Delhommelle, Jerome; Cummings, Peter T; Petravic, Janka
2005-09-15
We use nonequilibrium molecular-dynamics (NEMD) simulations to characterize the response of a fluid subjected to an electric field. We focus on the response for very weak fields. Fields accessible by conventional NEMD methods are typically of the order of 10(9) V m(-1), i.e., several orders of magnitude larger than those typically used in experiments. Using the transient time-correlation function, we show how NEMD simulations can be extended to study systems subjected to a realistic dc electric field. We then apply this approach to study the response of molten sodium chloride for a wide range of dc electric fields.
Understanding the Impact of Affirmative Action Bans in Different Graduate Fields of Study
ERIC Educational Resources Information Center
Garces, Liliana M.
2013-01-01
This study examines the effects of affirmative action bans in four states (California, Florida, Texas, and Washington) on the enrollment of underrepresented students of color within six different graduate fields of study: the natural sciences, engineering, social sciences, business, education, and humanities. Findings show that affirmative action…
NASA Astrophysics Data System (ADS)
Valiallah Mousavi, S.; Barzegar Gerdroodbary, M.; Sheikholeslami, Mohsen; Ganji, D. D.
2016-09-01
In this study, two dimensional numerical simulations are performed to investigate the influence of the magnetic field on the nanofluid flow inside a sinusoidal channel. This work reveals the influence of variable magnetic field in the heat transfer of heat exchanger while the mixture is in a single phase. In this heat exchanger, the inner tube is sinusoidal and the outer tube is considered smooth. The magnetic field is applied orthogonal to the axis of the sinusoidal tube. In our study, the ferrofluid (water with 4 vol% nanoparticles (Fe3O4)) flows in a channel with sinusoidal bottom. The finite volume method with the SIMPLEC algorithm is used for handling the pressure-velocity coupling. The numerical results present validated data with experimentally measured data and show good agreement with measurement. The influence of different parameters, like the intensity of magnetic field and Reynolds number, on the heat transfer is investigated. According to the obtained results, the sinusoidal formation of the internal tube significantly increases the Nusselt number inside the channel. Our findings show that the magnetic field increases the probability of eddy formation inside the cavities and consequently enhances the heat transfer (more than 200%) in the vicinity of the magnetic field at low Reynolds number ( Re=50). In addition, the variation of the skin friction shows that the magnetic field increases the skin friction (more than 600%) inside the sinusoidal channel.
NASA Astrophysics Data System (ADS)
Tiotsop, M.; Fotue, A. J.; Fotsin, H. B.; Fai, L. C.
2017-08-01
Bound polaron in RbCl delta quantum dot under electric field and Coulombic impurity were considered. The ground and first excited state energy were derived by employing Pekar variational and unitary transformation methods. Applying Fermi golden rule, the expression of temperature and polaron lifetime were derived. The decoherence was studied trough the Tsallis entropy. Results shows that decreasing (or increasing) the lifetime increases (or decreases) the temperature and delta parameter (electric field strength and hydrogenic impurity). This suggests that to accelerate quantum transition in nanostructure, temperature and delta have to be enhanced. The improvement of electric field and coulomb parameter, increases the lifetime of the delta quantum dot qubit. Energy spectrum of polaron increases with increase in temperature, electric field strength, Coulomb parameter, delta parameter, and polaronic radius. The control of the delta quantum dot energies can be done via the electric field, coulomb impurity, and delta parameter. Results also show that the non-extensive entropy is an oscillatory function of time. With the enhancement of delta parameter, non-extensive parameter, Coulombic parameter, and electric field strength, the entropy has a sinusoidal increase behavior with time. With the study of decoherence through the Tsallis entropy, it may be advised that to have a quantum system with efficient transmission of information, the non-extensive and delta parameters need to be significant. The study of the probability density showed an increase from the boundary to the center of the dot where it has its maximum value and oscillates with period T0 = ℏ / ΔE with the tunneling of the delta parameter, electric field strength, and Coulombic parameter. The results may be very helpful in the transmission of information in nanostructures and control of decoherence
NASA Astrophysics Data System (ADS)
Wang, Hanyang; Slater, Gary; Haan, Hendrick
We examine the electrophoresis of spherical particles in microfluidic devices made of alternating wells and narrow channels a type of system previously used to separate DNA molecules. Using computer simulations, we first show why it should be possible to separate particles having the same free-solution mobility using these systems in DC fields. Interestingly, in some of the systems we studied, the mobility shows an inversion as the field intensity is increased: while small particles have higher mobilities at low fields, the situation is reversed at high fields with the larger particles then moving faster. The resulting nonlinearity allows us to use asymmetric AC electric fields to build a ratchet in which particles have a net size-dependent velocity in the presence of an unbiased (zero-mean) AC field. Exploiting the inversion mentioned above, we show how to build pulsed field sequences that make particles move against the net field (an example of negative mobility). Finally, we demonstrate that it is possible to use these pulsed fields to make particles of different sizes move in opposite directions even though their charge have the same sign. Potential uses of these idea are discussed. Gary is my supervisor in my Master program.
Strain engineering of graphene nanoribbons: pseudomagnetic versus external magnetic fields
NASA Astrophysics Data System (ADS)
Prabhakar, Sanjay; Melnik, Roderick; Bonilla, Luis
2017-05-01
Bandgap opening due to strain engineering is a key architect for making graphene's optoelectronic, straintronic, and spintronic devices. We study the bandgap opening due to strain induced ripple waves and investigate the interplay between pseudomagnetic fields and externally applied magnetic fields on the band structures and spin relaxation in graphene nanoribbons (GNRs). We show that electron-hole bands of GNRs are highly influenced (i.e. level crossing of the bands are possible) by coupling two combined effects: pseudomagnetic fields (PMF) originating from strain tensor and external magnetic fields. In particular, we show that the tuning of the spin-splitting band extends to large externally applied magnetic fields with increasing values of pseudomagnetic fields. Level crossings of the bands in strained GNRs can also be observed due to the interplay between pseudomagnetic fields and externally applied magnetic fields. We also investigate the influence of this interplay on the electromagnetic field mediated spin relaxation mechanism in GNRs. In particular, we show that the spin hot spot can be observed at approximately B = 65 T (the externally applied magnetic field) and B0 = 53 T (the magnitude of induced pseudomagnetic field due to ripple waves) which may not be considered as an ideal location for the design of straintronic devices. Our analysis might be used for tuning the bandgaps in strained GNRs and utilized to design the optoelectronic devices for straintronic applications.
Does deficit irrigation of field crops increase water use efficiency
USDA-ARS?s Scientific Manuscript database
Deficit irrigation is often proposed as a method to stretch limited irrigation water supply and increase water use efficiency. A field study of field crops in the high plains shows that water use efficiency, in terms of irrigation water applied, often increases with deficit irrigation. However, in t...
Is fertility reduced among men exposed to radiofrequency fields in the Norwegian Navy?
Møllerløkken, Ole J; Moen, Bente E
2008-07-01
The effects of radiofrequency fields on human health are not well understood, and public concern about negative health effects has been rising. The aim of this study was to examine the relationship between workers exposed to electromagnetic fields and their reproductive health. We obtained data using a questionnaire in a cross-sectional study of naval military men, response rate 63% (n = 1487). We asked the respondents about exposure, lifestyle, reproductive health, previous diseases, work and education. An expert group categorized the work categories related to electromagnetic field exposure. We categorized the work categories "tele/communication," "electronics" and "radar/sonar" as being exposed to electromagnetic fields. Logistic regression adjusted for age, ever smoked, military education, and physical exercise at work showed increased risk of infertility among tele/communication odds ratio (OR = 1.72, 95% confidence interval 1.04-2.85), and radar/sonar odds ratio (OR = 2.28, 95% confidence interval 1.27-4.09). The electronics group had no increased risk. This study shows a possible relationship between exposure to radiofrequency fields during work with radiofrequency equipment and radar and reduced fertility. However, the results must be interpreted with caution.
Negative Magnetoresistance in Amorphous Indium Oxide Wires
Mitra, Sreemanta; Tewari, Girish C; Mahalu, Diana; Shahar, Dan
2016-01-01
We study magneto-transport properties of several amorphous Indium oxide nanowires of different widths. The wires show superconducting transition at zero magnetic field, but, there exist a finite resistance at the lowest temperature. The R(T) broadening was explained by available phase slip models. At low field, and far below the superconducting critical temperature, the wires with diameter equal to or less than 100 nm, show negative magnetoresistance (nMR). The magnitude of nMR and the crossover field are found to be dependent on both temperature and the cross-sectional area. We find that this intriguing behavior originates from the interplay between two field dependent contributions. PMID:27876859
Zhao, Hongyu; Zhang, Xiaohui
2017-01-01
The current study used mixed methods to research pre-service teachers’ professional identity. Ninety-eight pre-service teachers were investigated and twelve teachers were interviewed in China. The results were as follows: (1) The results of quantitative data showed that compared with before the field teaching practice, pre-service teachers’ professional identity increased after the field teaching practice—specifically, intrinsic value identity increased, and extrinsic value identity did not significantly change; (2) The results of qualitative data validated and elaborated the results of quantitative data in more detail with regard to changes in professional identity. Specifically, compared with before the field teaching practice, intrinsic value identity including work content, work pattern, etc., increased and extrinsic value identity including work environment, income, and social status, etc., did not significantly change after experiencing teaching practice; (3) The results of qualitative data also showed that mentor support at field school promoted the development of pre-service teachers’ professional identity. Moreover, the development of pre-service teachers’ professional identity during field teaching practice further promoted their professional commitment; that is, it promoted their emotional evaluation and belief in the teaching profession. The study discussed these results and proposed solutions and suggestions for future studies. PMID:28790956
Zhao, Hongyu; Zhang, Xiaohui
2017-01-01
The current study used mixed methods to research pre-service teachers' professional identity. Ninety-eight pre-service teachers were investigated and twelve teachers were interviewed in China. The results were as follows: (1) The results of quantitative data showed that compared with before the field teaching practice, pre-service teachers' professional identity increased after the field teaching practice-specifically, intrinsic value identity increased, and extrinsic value identity did not significantly change; (2) The results of qualitative data validated and elaborated the results of quantitative data in more detail with regard to changes in professional identity. Specifically, compared with before the field teaching practice, intrinsic value identity including work content, work pattern, etc., increased and extrinsic value identity including work environment, income, and social status, etc., did not significantly change after experiencing teaching practice; (3) The results of qualitative data also showed that mentor support at field school promoted the development of pre-service teachers' professional identity. Moreover, the development of pre-service teachers' professional identity during field teaching practice further promoted their professional commitment; that is, it promoted their emotional evaluation and belief in the teaching profession. The study discussed these results and proposed solutions and suggestions for future studies.
NASA Astrophysics Data System (ADS)
Mohammed, R. A.; Khatibi, S.
2017-12-01
One of the major concerns in producing from oil and gas reservoirs in North American Basins is the disposal of high salinity salt water. It is a misconception that Hydro frack triggers Earthquakes, but due to the high salinity and density of water being pumped to the formation that has pore space of the rock already filled, which is not the case in Hydro-frack or Enhanced Oil Recovery in which fracturing fluid is pumped into empty pore space of rocks in depleted reservoirs. A review on the Bakken history showed that the concerns related to induce seismicity has increased over time due to variations in Pore pressure and In-situ stress that have shown steep changes in the region over the time. In this study, we focused on Pore pressure and field Stress variations in lower Cretaceous Inyan Kara and Mississippian Devonian Bakken, Inyan Kara is the major source for class-II salt-water disposal in the basin. Salt-water disposal is the major cause for induced seismicity. A full field study was done on Beaver Lodge Field, which has many salt-water disposal wells Adjacent to Oil and Gas Wells. We analyzed formation properties, stresses, pore-pressure, and fracture gradient profile in the field and. The constructed Mechanical Earth Model (MEM) revealed changes in pore pressure and stresses over time due to saltwater injection. Well drilled in the past were compared to recently drilled wells, which showed much stress variations. Safe mud weight Window of wells near proximity of injection wells was examined which showed many cases of wellbore instabilities. Results of this study will have tremendous impact in studying environmental issues and the future drilling and Fracking operations.
On the generation of double layers from ion- and electron-acoustic instabilities
Fu, Xiangrong; Cowee, Misa M.; Gary, Stephen Peter; ...
2016-03-17
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric fields traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs – electron acoustic DLs – generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e.more » the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. We find that linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric fields that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
On the generation of double layers from ion- and electron-acoustic instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Xiangrong, E-mail: xrfu@lanl.gov; Cowee, Misa M.; Winske, Dan
2016-03-15
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electronmore » acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.« less
Magnetic field effects on charge structure factors of gapped graphene structure
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Tawoose, Nasrin
2018-02-01
We present the behaviors of dynamical and static charge susceptibilities of undoped gapped graphene using the Green's function approach in the context of tight binding model Hamiltonian. Specially, the effects of magnetic field on the plasmon modes of gapped graphene structure are investigated via calculating correlation function of charge density operators. Our results show the increase of magnetic field leads to disappear high frequency plasmon mode for gapped case. We also show that low frequency plasmon mode has not affected by increase of magnetic field and chemical potential. Finally the temperature dependence of static charge structure factor of gapp graphene structure is studied. The effects of both magnetic field and gap parameter on the static structure factor are discusses in details.
Shape and fission instabilities of ferrofluids in non-uniform magnetic fields
NASA Astrophysics Data System (ADS)
Vieu, Thibault; Walter, Clément
2018-04-01
We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.
Ising versus XY anisotropy in frustrated R(2)Ti(2)O(7) compounds as "Seen" by Polarized Neutrons.
Cao, H; Gukasov, A; Mirebeau, I; Bonville, P; Decorse, C; Dhalenne, G
2009-07-31
We studied the field induced magnetic order in R(2)Ti(2)O(7) pyrochlore compounds with either uniaxial (R=Ho, Tb) or planar (R=Er, Yb) anisotropy, by polarized neutron diffraction. The determination of the local susceptibility tensor {chi(parallel to),chi(perpendicular)} provides a universal description of the field induced structures in the paramagnetic phase (2-270 K), whatever the field value (1-7 T) and direction. Comparison of the thermal variations of chi(parallel to) and chi(perpendicular) with calculations using the rare earth crystal field shows that exchange and dipolar interactions must be taken into account. We determine the molecular field tensor in each case and show that it can be strongly anisotropic.
Axial dipolar dynamo action in the Taylor-Green vortex.
Krstulovic, Giorgio; Thorner, Gentien; Vest, Julien-Piera; Fauve, Stephan; Brachet, Marc
2011-12-01
We present a numerical study of the magnetic field generated by the Taylor-Green vortex. We show that periodic boundary conditions can be used to mimic realistic boundary conditions by prescribing the symmetries of the velocity and magnetic fields. This gives insight into some problems of central interest for dynamos: the possible effect of velocity fluctuations on the dynamo threshold, and the role of boundary conditions on the threshold and on the geometry of the magnetic field generated by dynamo action. In particular, we show that an axial dipolar dynamo similar to the one observed in a recent experiment can be obtained with an appropriate choice of the symmetries of the magnetic field. The nonlinear saturation is studied and a simple model explaining the magnetic Prandtl number dependence of the super- and subcritical nature of the dynamo transition is given.
Yin, Sow Ai; Ismail, Ahmad; Zulkifli, Syaizwan Zahmir
2012-01-01
Swamp eel, Monopterus albus is one of the common fish in paddy fields, thus it is suitable to be a bio-monitor for heavy metals pollution studies in paddy fields. This study was conducted to assess heavy metals levels in swamp eels collected from paddy fields in Kelantan, Malaysia. The results showed zinc [Zn (86.40 μg/g dry weight)] was the highest accumulated metal in the kidney, liver, bone, gill, muscle and skin. Among the selected organs, gill had the highest concentrations of lead (Pb), cadmium (Cd) and nickel (Ni) whereas muscle showed the lowest total metal accumulation of Zn, Pb, copper (Cu), Cd and Ni. Based on the Malaysian Food Regulation, the levels of Zn and Cu in edible parts (muscle and skin) were within the safety limits. However, Cd, Pb and Ni exceeded the permissible limits. By comparing with the maximum level intake (MLI), Pb, Ni and Cd in edible parts can still be consumed. This investigation indicated that M. albus from paddy fields of Kelantan are safe for human consumption with little precaution. PMID:24575231
Mondal, Lakshmikanta; Baidya, Krishnapada; Choudhury, Himadri; Roy, Rupam
2013-06-01
The purpose of the study was to evaluate the progression of glaucomatous field damage in patients with stable primary open angle glaucoma after an attack of myocardial infarction. In this case control study, 62 open angle glaucoma patients were selected and regularly followed up. Among 62 patients, 9 had an attack of myocardial infarction. The intra-ocular pressure and visual field progression of both the groups (myocardial infarction versus no myocardial infarction) were analysed. Three (33.3%) out of 9 patients who had suffered from myocardial infarction showed progressive visual field loss whereas only 9 (16.9%) out of 53 patients who did not suffer from myocardial infarction, showed progressive field changes. Both the groups had stable target intra-ocular pressure between 14 and 16 mm Hg. Myocardial infarction may adversely influence the progression of primary open angle glaucoma which is suspected to result from ischaemia induced neuronal loss and only control of intraocular pressure is not the only solution. We have to look for other drugs that prevents ischaemia induced neuronal damage.
Spatial encoding using the nonlinear field perturbations from magnetic materials.
Karimi, Hirad; Dominguez-Viqueira, William; Cunningham, Charles H
2014-08-01
A proof-of-concept study was performed to assess the technical feasibility of using magnetic materials to generate spatial encoding fields. Spatially varying magnetic fields were generated by the placement of markers with different volume susceptibilities within the imaging volume. No linear gradients were used for spatial encoding during the signal acquisition. A signal-encoding model is described for reconstructing the images encoded with these field perturbations. Simulation and proof-of-concept experimental results are presented. Experiments were performed using field perturbations from a cylindrical marker as an example of the new encoding fields. Based on this experimental setup, annular rings were reconstructed from signals encoded with the new fields. Simulation results were presented for different acquisition parameters. Proof-of-concept was supported by the correspondence of regions in an image reconstructed from experimental data compared to those in a conventional gradient-echo image. Experimental results showed that inclusions of dimensions 1.5 mm in size could be resolved with the experimental setup. This study shows the technical feasibility of using magnetic markers to produce encoding fields. Magnetic materials will allow generating spatial encoding fields, which can be tailored to an imaging application with less complexity and at lower cost compared to the use of gradient inserts. Copyright © 2013 Wiley Periodicals, Inc.
Hui, Debrup; Chakrabarty, D.; Sekar, R.; ...
2017-05-08
This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm ismore » found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hui, Debrup; Chakrabarty, D.; Sekar, R.
This study tries to bring out the fact that storm time substorms can compete and at times significantly contribute to the geomagnetically disturbed time prompt penetration electric field effects on low and equatorial latitudes. Observations of unusual equatorial plasma drift data from Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere during two space weather events show that substorms can induce both eastward and westward penetration electric fields under steady southward interplanetary magnetic field (IMF B z) conditions. During the first event on 2 January 2005, the enhancement of the daytime eastward electric field over Jicamarca due to substorm ismore » found to be comparable with the Sq and interplanetary electric field (IEFy) generated electric fields combined. During the second event on 19 August 2006, the substorm is seen to weaken the daytime eastward field thereby inducing a westward field in spite of the absence of northward turning of IMF B z (overshielding). The westward electric field perturbation in the absence of any overshielding events is observationally sparse and contrary to the earlier results. Further, the substorm-induced field is found to be strong enough to compete or almost nullify the effects of storm time IEFy fields. This study also shows quantitatively that at times substorm contribution to the disturbed time prompt electric fields can be significant and thus should be taken into consideration in evaluating penetration events over low latitudes.« less
Beatty, Perrin H.; Anbessa, Yadeta; Juskiw, Patricia; Carroll, Rebecka T.; Wang, Juan; Good, Allen G.
2010-01-01
Background and Aims Nitrogen-use efficiency (NUE) of cereals needs to be improved by nitrogen (N) management, traditional plant breeding methods and/or biotechnology, while maintaining or, optimally, increasing crop yields. The aims of this study were to compare spring-barley genotypes grown on different nitrogen levels in field and growth-chamber conditions to determine the effects on N uptake (NUpE) and N utilization efficiency (NUtE) and ultimately, NUE. Methods Morphological characteristics, seed yield and metabolite levels of 12 spring barley (Hordeum vulgare) genotypes were compared when grown at high and low nitrogen levels in field conditions during the 2007 and 2008 Canadian growing seasons, and in potted and hydroponic growth-chamber conditions. Genotypic NUpE, NUtE and NUE were calculated and compared between field and growth-chamber environments. Key Results Growth chamber and field tests generally showed consistent NUE characteristics. In the field, Vivar, Excel and Ponoka, showed high NUE phenotypes across years and N levels. Vivar also had high NUE in growth-chamber trials, showing NUE across complex to simplistic growth environments. With the high NUE genotypes grown at low N in the field, NUtE predominates over NUpE. N metabolism-associated amino acid levels were different between roots (elevated glutamine) and shoots (elevated glutamate and alanine) of hydroponically grown genotypes. In field trials, metabolite levels were different between Kasota grown at high N (elevated glutamine) and Kasota at low N plus Vivar at either N condition. Conclusions Determining which trait(s) or gene(s) to target to improve barley NUE is important and can be facilitated using simplified growth approaches to help determine the NUE phenotype of various genotypes. The genotypes studied showed similar growth and NUE characteristics across field and growth-chamber tests demonstrating that simplified, low-variable growth environments can help pinpoint genetic targets for improving spring barley NUE. PMID:20308048
Entanglement of a quantum field with a dispersive medium.
Klich, Israel
2012-08-10
In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.
Concerns of Teacher Candidates in an Early Field Experience
ERIC Educational Resources Information Center
Chang, Sau Hou
2009-01-01
The present study examined the concerns of teacher candidates in an early field experience. Thirty-five teacher candidates completed the Teacher Concerns Checklist (TCC, Fuller & Borich, 2000) at the beginning, middle and end of their early field experiences. Results showed that teacher candidates ranked impact as the highest concern, self as…
A Question of Autonomy: Bourdieu's Field Approach and Higher Education Policy
ERIC Educational Resources Information Center
Maton, Karl
2005-01-01
The concept of field forms the centre of Pierre Bourdieu's relational sociology and the notion of "autonomy" is its keystone. This article explores the usefulness of these underexamined concepts for studying policy in higher education. It begins by showing how Bourdieu's "field" approach enables higher education to be examined…
Changing Struggles for Relevance in Eight Fields of Natural Science
ERIC Educational Resources Information Center
Hessels, Laurens K.; van Lente, Harro; Grin, John; Smits, Ruud E. H. M.
2011-01-01
This paper investigates the consequences of institutional changes on academic research practices in eight fields of natural science in the Netherlands. The authors analyse the similarities and differences among the dynamics of these different fields and reflect on possible explanations for the changes observed. The study shows that the increasing…
Visual Field Asymmetry in Attentional Capture
ERIC Educational Resources Information Center
Du, Feng; Abrams, Richard A.
2010-01-01
The present study examined the spatial distribution of involuntary attentional capture over the two visual hemi-fields. A new experiment, and an analysis of three previous experiments showed that distractors in the left visual field that matched a sought-for target in color produced a much larger capture effect than identical distractors in the…
Far-Ultraviolet Number Counts of Field Galaxies
NASA Technical Reports Server (NTRS)
Voyer, Elysse N.; Gardner, Jonathan P.; Teplitz, Harry I.; Siana, Brian D.; deMello, Duilia F.
2010-01-01
The Number counts of far-ultraviolet (FUV) galaxies as a function of magnitude provide a direct statistical measure of the density and evolution of star-forming galaxies. We report on the results of measurements of the rest-frame FUV number counts computed from data of several fields including the Hubble Ultra Deep Field, the Hubble Deep Field North, and the GOODS-North and -South fields. These data were obtained from the Hubble Space Telescope Solar Blind Channel of the Advance Camera for Surveys. The number counts cover an AB magnitude range from 20-29 magnitudes, covering a total area of 15.9 arcmin'. We show that the number counts are lower than those in previous studies using smaller areas. The differences in the counts are likely the result of cosmic variance; our new data cover more area and more lines of sight than the previous studies. The slope of our number counts connects well with local FUV counts and they show good agreement with recent semi-analytical models based on dark matter "merger trees".
A study of the kinematic dynamo equation with time-dependent coefficients
NASA Technical Reports Server (NTRS)
Ko, Chung-Ming
1990-01-01
During an active star formation epoch the interstellar medium of a galaxy is in a hyperactive state, and the average turbulent velocity is higher than in the long periods between star formation epochs. The galactic magnetic field generated by dynamo action depends strongly on the turbulent velocity, so that generation of magnetic field should vary with star formation activity. This paper is a preliminary study of the kinematic dynamo equation with time-dependent coefficients simulating the time dependence of the star formation activities. Ko and Parker argued in a simple model that the thickness of the dynamo region is the most sensitive dynamo parameter. The present work shows that the effect of inflating the galactic disk suddenly is to transform a stationary magnetic field into a growing field while keeping the profile more or less intact. Plane wave solutions for a dynamo with power-law time-dependent parameters show that the field may decay first and then grow, and vice versa, which is quite different from a constant parameter dynamo.
When fragments link: a bibliometric perspective on the development of fragment-based drug discovery.
Romasanta, Angelo K S; van der Sijde, Peter; Hellsten, Iina; Hubbard, Roderick E; Keseru, Gyorgy M; van Muijlwijk-Koezen, Jacqueline; de Esch, Iwan J P
2018-05-05
Fragment-based drug discovery (FBDD) is a highly interdisciplinary field, rich in ideas integrated from pharmaceutical sciences, chemistry, biology, and physics, among others. To enrich our understanding of the development of the field, we used bibliometric techniques to analyze 3642 publications in FBDD, complementing accounts by key practitioners. Mapping its core papers, we found the transfer of knowledge from academia to industry. Co-authorship analysis showed that university-industry collaboration has grown over time. Moreover, we show how ideas from other scientific disciplines have been integrated into the FBDD paradigm. Keyword analysis showed that the field is organized into four interconnected practices: library design, fragment screening, computational methods, and optimization. This study highlights the importance of interactions among various individuals and institutions from diverse disciplines in newly emerging scientific fields. Copyright © 2018. Published by Elsevier Ltd.
Subwavelenght Light Localization in Nanostructured Surfaces
NASA Astrophysics Data System (ADS)
Coello, V.; Wang, S.; Siqueiros, J.; Bozhevolnyi, S. I.
Using a photon scanning tunneling microscope, we studied near field optical images obtained with a surface plasmon polariton (SPP) being resonantly excited along a surface with a random introduced roughness. The SPP intensity field distributions showed an optical enhancement in the form of round bright spots up to 5 times larger than the background signal. We also show an artificially fabricated SPP curved micromirror along with the corresponding near-field optical image. The recorded optical signal exhibited an enhancement up to 10 times larger than the background, which has been generated for the first time in a controlled form. A numerical simulation of a parabolic micromirror based on isotropic pointlike scatterers is analyzed and compared with experimental results. The potential of creating microstructures able to control SPP optical field enhancement is showed in a novel numerically simulated microcavity for SPP's.
Optical solitons in nematic liquid crystals: model with saturation effects
NASA Astrophysics Data System (ADS)
Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.
2018-04-01
We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuda, Jan, E-mail: jan.cuda@upol.cz; Tucek, Jiri; Filip, Jan
2014-10-27
Powdered troilite (FeS), extracted from the Cape York IIIA octahedrite meteorite, was investigated employing in-field {sup 57}Fe Mössbauer spectroscopy. The study identified a typical behavior of polycrystalline antiferromagnetic material under external magnetic fields. The in-field evolution of the {sup 57}Fe Mössbauer spectra showed that the spin-flop transition in the FeS system occurs at a field higher than 5 T.
Ideal relaxation of the Hopf fibration
NASA Astrophysics Data System (ADS)
Smiet, Christopher Berg; Candelaresi, Simon; Bouwmeester, Dirk
2017-07-01
Ideal magnetohydrodynamics relaxation is the topology-conserving reconfiguration of a magnetic field into a lower energy state where the net force is zero. This is achieved by modeling the plasma as perfectly conducting viscous fluid. It is an important tool for investigating plasma equilibria and is often used to study the magnetic configurations in fusion devices and astrophysical plasmas. We study the equilibrium reached by a localized magnetic field through the topology conserving relaxation of a magnetic field based on the Hopf fibration in which magnetic field lines are closed circles that are all linked with one another. Magnetic fields with this topology have recently been shown to occur in non-ideal numerical simulations. Our results show that any localized field can only attain equilibrium if there is a finite external pressure, and that for such a field a Taylor state is unattainable. We find an equilibrium plasma configuration that is characterized by a lowered pressure in a toroidal region, with field lines lying on surfaces of constant pressure. Therefore, the field is in a Grad-Shafranov equilibrium. Localized helical magnetic fields are found when plasma is ejected from astrophysical bodies and subsequently relaxes against the background plasma, as well as on earth in plasmoids generated by, e.g., a Marshall gun. This work shows under which conditions an equilibrium can be reached and identifies a toroidal depression as the characteristic feature of such a configuration.
Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andy Wu, Song Jin, Robert Rimmer, Xiang Yang Lu, K. Zhao, Laura MacIntyre, Robert Ike
Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flatmore » samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.« less
NASA Astrophysics Data System (ADS)
Moosavi, S. Amin; Montakhab, Afshin
2015-11-01
Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014), 10.1103/PhysRevE.89.052139] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise. We investigate the role of high-average connectivity, random long-range connections, as well as synaptic noise in achieving mean-field behavior. We employ finite-size scaling in order to extract critical exponents with good accuracy. We conclude that relevant structural mechanisms responsible for mean-field behavior cannot be justified in realistic models of the cortex. However, strong dynamical noise, which can have realistic justifications, always leads to mean-field behavior regardless of the underlying structure. Our work provides a different (dynamical) origin than the conventionally accepted (structural) mechanisms for mean-field behavior in neuronal avalanches.
Field emission from ZnS nanorods synthesized by radio frequency magnetron sputtering technique
NASA Astrophysics Data System (ADS)
Ghosh, P. K.; Maiti, U. N.; Jana, S.; Chattopadhyay, K. K.
2006-11-01
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10 -1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ˜600 nm.
NASA Technical Reports Server (NTRS)
Jacob, Jamey D.; Carrell, Cynthia
1993-01-01
We present preliminary results of a study of upstream magnetic field and plasma conditions measured by IRM during flux transfer events observed at the Earth's magnetopause by CCE. This study was designed to determine the importance of various upstream factors in the formation of bipolar magnetic field signatures called flux transfer events (FTEs). Six FTE encounters were examined. In three cases, the two satellites were on similar magnetic field lines. Preliminary investigation showed that fluctuations occurred in the Bz component of the interplanetary magnetic field (IMF) resulting in a southward field preceding the FTE in all three of these cases. In two of these cases, the changes were characterized by a distinct rotation from a strong southward to a strong northward field. There were also accompanying changes in the dynamic and thermal pressure in the solar wind immediately before the FTE was encountered. Examination of the 3D plasma distributions showed that these pulses were due to the addition of energetic upstreaming foreshock particles. There were no consistent changes in either Bz or the plasma pressure at IRM for the three events when the satellites were not connected by the IMF.
Free flow cell electrophoresis using zwitterionic buffer
NASA Technical Reports Server (NTRS)
Rodkey, R. Scott
1990-01-01
Studies of a zwitterionic buffer formulated for cell electrophoresis were done using the McDonnell-Douglas Continuous Flow Electrophoresis System. Standard buffers were analyzed for their stability in the electrical field and the results showed that both buffers tested were inherently unstable. Further, titration studies showed that the standards buffers buffered poorly at the pH employed for electrophoresis. The zwitterionic buffer buffered well at its nominal pH and was shown to be stable in the electrical field. Comparative studies of the buffer with standard cell separation buffers using formalin fixed rabbit and goose red blood cells showed that the zwitterionic buffer gave better resolution of the fixed cells. Studies with viable hybridoma cells showed that buffer Q supported cell viability equal to Hank's Balanced Salt Solution and that hybridoma cells in different stages of the growth cycle demonstrated reproducible differences in electrophoretic mobility.
NASA Astrophysics Data System (ADS)
Nieves-Chinchilla, T.; Vourlidas, A.; Raymond, J. C.; Linton, M. G.; Al-haddad, N.; Savani, N. P.; Szabo, A.; Hidalgo, M. A.
2018-02-01
The magnetic topology, structure, and geometry of the magnetic obstacles embedded within interplanetary coronal mass ejections (ICMEs) are not yet fully and consistently described by in situ models and reconstruction techniques. The main goal of this work is to better understand the status of the internal magnetic field of ICMEs and to explore in situ signatures to identify clues to develop a more accurate and reliable in situ analytical models. We take advantage of more than 20 years of Wind observations of transients at 1 AU to compile a comprehensive database of ICMEs through three solar cycles, from 1995 to 2015. The catalog is publicly available at wind.gsfc.nasa.gov and is fully described in this article. We identify and collect the properties of 337 ICMEs, of which 298 show organized magnetic field signatures. To allow for departures from idealized magnetic configurations, we introduce the term "magnetic obstacle" (MO) to signify the possibility of more complex configurations. To quantify the asymmetry of the magnetic field strength profile within these events, we introduce the distortion parameter (DiP) and calculate the expansion velocity within the magnetic obstacle. Circular-cylindrical geometry is assumed when the magnetic field strength displays a symmetric profile. We perform a statistical study of these two parameters and find that only 35% of the events show symmetric magnetic profiles and a low enough expansion velocity to be compatible with the assumption of an idealized cylindrical static flux rope, and that 41% of the events do not show the expected relationship between expansion and magnetic field compression in the front, with the maximum magnetic field closer to the first encounter of the spacecraft with the magnetic obstacle; 18% show contractions ( i.e. apparent negative expansion velocity), and 30% show magnetic field compression in the back. We derive an empirical relation between DiP and expansion velocity that is the first step toward improving reconstructions with possible applications to space weather studies. In summary, our main results demonstrate that the assumed correlation between expanding structure and asymmetric magnetic field is not always valid. Although 59% of the cases could be described by circular-cylindrical geometry, with or without expansion, the remaining cases show significant in situ signatures of departures from circular-cylindrical geometry. These results will aid in the development of more accurate in situ models to reconcile image.
Communication: Polarizable polymer chain under external electric field in a dilute polymer solution.
Budkov, Yu A; Kolesnikov, A L; Kiselev, M G
2015-11-28
We study the conformational behavior of polarizable polymer chain under an external homogeneous electric field within the Flory type self-consistent field theory. We consider the influence of electric field on the polymer coil as well as on the polymer globule. We show that when the polymer chain conformation is a coil, application of external electric field leads to its additional swelling. However, when the polymer conformation is a globule, a sufficiently strong field can induce a globule-coil transition. We show that such "field-induced" globule-coil transition at the sufficiently small monomer polarizabilities goes quite smoothly. On the contrary, when the monomer polarizability exceeds a certain threshold value, the globule-coil transition occurs as a dramatic expansion in the regime of first-order phase transition. The developed theoretical model can be applied to predicting polymer globule density change under external electric field in order to provide more efficient processes of polymer functionalization, such as sorption, dyeing, and chemical modification.
A study of surface dosimetry for breast cancer radiotherapy treatments using Gafchromic EBT2 film
Hill, Robin F.; Whitaker, May; Kim, Jung‐Ha; Kuncic, Zdenka
2012-01-01
The present study quantified surface doses on several rectangular phantom setups and on curved surface phantoms for a 6 MV photon field using the Attix parallel‐plate chamber and Gafchromic EBT2 film. For the rectangular phantom setups, the surface doses on a homogenous water equivalent phantom and a water equivalent phantom with 60 mm thick lung equivalent material were measured. The measurement on the homogenous phantom setup showed consistency in surface and near‐surface doses between an open field and enhanced dynamic wedge (EDW) fields, whereas physical wedged fields showed small differences. Surface dose measurements made using the EBT2 film showed good agreement with results of the Attix chamber and results obtained in previous studies which used other dosimeters within the measurement uncertainty of 3.3%. The surface dose measurements on the phantom setup with lung equivalent material showed a small increase without bolus and up to 6.9% increase with bolus simulating the increase of chest wall thickness. Surface doses on the cylindrical CT phantom and customized Perspex chest phantom were measured using the EBT2 film with and without bolus. The results indicate the important role of the presence of bolus if the clinical target volume (CTV) is quite close to the surface. Measurements on the cylindrical phantom suggest that surface doses at the oblique positions of 60° and 90° are mainly caused by the lateral scatter from the material inside the phantom. In the case of a single tangential irradiation onto Perspex chest phantom, the distribution of the surface dose with and without bolus materials showed opposing inclination patterns, whereas the dose distribution for two opposed tangential fields gave symmetric dose distribution. This study also demonstrates the suitability of Gafchromic EBT2 film for surface dose measurements in megavoltage photon beams. PACS number: 87.53.Bn PMID:22584169
The Biermann Catastrophe in Numerical Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Graziani, Carlo; Tzeferacos, Petros; Lee, Dongwook; Lamb, Donald Q.; Weide, Klaus; Fatenejad, Milad; Miller, Joshua
2015-03-01
The Biermann battery effect is frequently invoked in cosmic magnetogenesis and studied in high-energy density laboratory physics experiments. Generation of magnetic fields by the Biermann effect due to misaligned density and temperature gradients in smooth flow behind shocks is well known. We show that a Biermann-effect magnetic field is also generated within shocks. Direct implementation of the Biermann effect in MHD codes does not capture this physical process, and worse, it produces unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note two novel physical effects: a resistive magnetic precursor, in which a Biermann-generated field in the shock “leaks” resistively upstream, and a thermal magnetic precursor, in which a field is generated by the Biermann effect ahead of the shock front owing to gradients created by the shock’s electron thermal conduction precursor. Both effects appear to be potentially observable in experiments at laser facilities. We reexamine published studies of magnetogenesis in galaxy cluster formation and conclude that the simulations in question had inadequate resolution to reliably estimate the field generation rate. Corrected estimates suggest primordial field values in the range B˜ {{10}-22}-10-19 G by z = 3.
NASA Astrophysics Data System (ADS)
Sianturi, Riswan; Jetten, V. G.; Sartohadi, Junun
2018-04-01
Information on the vulnerability to flooding is vital to understand the potential damages from flood events. A method to determine the vulnerability to flooding in irrigated rice fields using the Enhanced Vegetation Index (EVI) was proposed in this study. In doing so, the time-series EVI derived from time-series 8 day 500 m spatial resolution MODIS imageries (MOD09A1) was used to generate cropping patterns in irrigated rice fields in West Java. Cropping patterns were derived from the spatial distribution and phenology metrics so that it is possible to show the variation of vulnerability in space and time. Vulnerability curves and cropping patterns were used to determine the vulnerability to flooding in irrigated rice fields. Cropping patterns capture the shift in the vulnerability, which may lead to either an increase or decrease of the degree of damage in rice fields of origin and other rice fields. The comparison of rice field areas between MOD09A1 and ALOS PALSAR and MOD09A1 and Agricultural Statistics showed consistent results with R2 = 0.81 and R2 = 0.93, respectively. The estimated and observed DOYs showed RMSEs = 9.21, 9.29, and 9.69 days for the Start of Season (SOS), heading stage, and End of Season (EOS), respectively. Using the method, one can estimate the relative damage provided available information on the flood depth and velocity. The results of the study may support the efforts to reduce the potential damages from flooding in irrigated rice fields.
NASA Astrophysics Data System (ADS)
Dagan, Yuval; Ghoniem, Ahmed
2017-11-01
Recent experimental observations show that the dynamic response of a reactive flow is strongly impacted by the fuel chemistry. In order to gain insight into some of the underlying mechanisms we formulate a new linear stability model that incorporates the impact of finite rate chemistry on the hydrodynamic stability of shear flows. Contrary to previous studies which typically assume that the velocity field is independent of the kinetic rates, the velocity field in our study is coupled with the temperature field. Using this formulation, we reproduce previous results, e.g., most unstable global modes, obtained for non-reacting shear flow. Moreover, we show that these modes are significantly altered in frequency and gain by the presence of a reaction region within the shear layer. This qualitatively agrees with results of our recent experimental and numerical studies, which show that the flame surface location relative to the shear layer influences the stability characteristics in combustion tunnels. This study suggests a physical explanation for the observed impact of finite rate chemistry on shear flow stability.
[Investigation of sleep disorders in the vicinity of high frequency transmitters].
Leitgeb, N; Schröttner, J; Cech, R; Kerbl, R
2004-08-01
To investigate the potential impact of RF electromagnetic fields of transmitters on the sleep quality of nearby residents, a new study design is presented. In a double-blind crossover field study the effect of on-site shielding, rather than of additional exposure, is investigated. For improved sleep quality differentiation the polysomnographic parameters are expanded by additional parameters. The feasibility study showed that checking the raw data and correcting the software-generated results by visual reading of the polysomnographic recordings is essential. Long-term RF measurement showed that exposure may vary considerably throughout the night, as well as from one night to the next. This variation may be greater than the GSM contribution itself. Mostly, the contributions of USW radio frequency fields dominated over GSM. Thus, continuous broadband RF recording is required for reliable interpretation of the results, in particular with regard to the potential role of mobile telephony emissions. Results show that simple sleep monitoring systems based on single-channel EEG analysis without acces to original biosignals are not adequate for sleep studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L.; Zhu, Y.; Zhong, H.
2009-08-01
The fine magnetic stray field from a vortex structure of micron-sized permalloy (Ni{sub 80}Fe{sub 20}) elements has been studied by high-resolution magnetic force microscopy. By systematically studying the width of the stray field gradient distribution at different tip-to-sample distances, we show that the half-width at half-maximum (HWHM) of the signal from vortex core can be as narrow as {approx}21 nm at a closest tip-to-sample distance of 23 nm, even including the convolution effect of the finite size of the magnetic tip. A weak circular reverse component is found around the center of the magnetic vortex in the measured magnetic forcemore » microscope (MFM) signals, which can be attributed to the reverse magnetization around the vortex core. Successive micromagnetic and MFM imaging simulations show good agreements with our experimental results on the width of the stray field distribution.« less
Modification of the coil-stretch transition by confinement
NASA Astrophysics Data System (ADS)
Doyle, Patick; Tang, Jing; Jones, Jeremy
2010-03-01
Large double stranded DNA are both a powerful system to study polymer dynamics at the single molecule level and also important molecules for genomic applications. While homogenous electric fields are routinely used to separate DNA in gels, DNA deformation in more complex fields has been less widely studied. We will demonstrate how micro/nanofluidic devices allow for the generation of electric fields with well-defined kinematics for trapping, stretching and then watching DNA relax back to equilibrium. The dimensions of the devices highly confine DNA and subsequently change both their conformation and dynamics. We will show how these confinements effects change the coil-stretch transition of a DNA being electrophoretically stretched in a purely elongational electrical field. We experimentally show that a two-stage coil stretch transition occurs and develop a simple dumbbell model which captures most of the relevant physics. We trace the origin of this phenomena to the modification of the effective spring law due to confinement.
Zhang, Lan; Seagren, Eric A; Davis, Allen P; Karns, Jeffrey S
2012-06-01
Microbial activities are significantly influenced by temperature. This study investigated the effects of temperature on the capture and destruction of bacteria from urban stormwater runoff in bioretention media using 2-year field evaluations coupled with controlled laboratory column studies. Field data from two bioretention cells show that the concentration of indicator bacteria (fecal coliforms and Escherichia coli) was reduced during most storm events, and that the probability of meeting specific water quality criteria in the discharge was increased. Indicator bacteria concentration in the input flow typically increased with higher daily temperature. Although bacterial removal efficiency was independent of temperature in the field and laboratory, column tests showed that bacterial decay coefficients in conventional bioretention media (CBM) increase exponentially with elevated temperature. Increases in levels of protozoa and heterotrophic bacteria associated with increasing temperature appear to contribute to faster die-off of trapped E. coli in CBM via predation and competition.
Subaperture correlation based digital adaptive optics for full field optical coherence tomography.
Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A
2013-05-06
This paper proposes a sub-aperture correlation based numerical phase correction method for interferometric full field imaging systems provided the complex object field information can be extracted. This method corrects for the wavefront aberration at the pupil/ Fourier transform plane without the need of any adaptive optics, spatial light modulators (SLM) and additional cameras. We show that this method does not require the knowledge of any system parameters. In the simulation study, we consider a full field swept source OCT (FF SSOCT) system to show the working principle of the algorithm. Experimental results are presented for a technical and biological sample to demonstrate the proof of the principle.
The gravity field and crustal structure of the northwestern Arabian Platform in Jordan
NASA Astrophysics Data System (ADS)
Batayneh, A. T.; Al-Zoubi, A. S.
2001-01-01
The Bouguer gravity field over the northwestern Arabian Platform in Jordan is dominated by large variations, ranging from -132 to +4 mGal. A study of the Bouguer anomaly map shows that the gravity field maintains a general north-northeasterly trend in the Wadi Araba-Dead Sea-Jordan Riff, Northern Highlands and Northeast Jordanian Limestone Area, while the remainder of the area shows north-northwesterly-trending gravity anomalies. Results of 2-D gravity modeling of the Bouguer gravity field indicate that the crustal thickness in Jordan is ˜ 38 km, which is similar to crustal thicknesses obtained from refraction data in northern Jordan and Saudi Arabia, and from gravity data in Syria.
Magnetoexcitons and Faraday rotation in single-walled carbon nanotubes and graphene nanoribbons
NASA Astrophysics Data System (ADS)
Have, Jonas; Pedersen, Thomas G.
2018-03-01
The magneto-optical response of single-walled carbon nanotubes (CNTs) and graphene nanoribbons (GNRs) is studied theoretically, including excitonic effects. Both diagonal and nondiagonal response functions are obtained and employed to compute Faraday rotation spectra. For single-walled CNTs in a parallel field, the results show field-dependent splitting of the exciton absorption peaks caused by brightening a dark exciton state. Similarly, for GNRs in a perpendicular magnetic field, we observe a field-dependent shift of the exciton peaks and the emergence of an absorption peak above the energy gap. Results show that excitonic effects play a significant role in the optical response of both materials, particularly for the off-diagonal tensor elements.
Field-induced exciton condensation in LaCoO3
Sotnikov, A.; Kuneš, J.
2016-01-01
Motivated by recent observation of magnetic field induced transition in LaCoO3 we study the effect of external field in systems close to instabilities towards spin-state ordering and exciton condensation. We show that, while in both cases the transition can be induced by an external field, temperature dependencies of the critical field have opposite slopes. Based on this result we argue that the experimental observations select the exciton condensation scenario. We show that such condensation is possible due to high mobility of the intermediate spin excitations. The estimated width of the corresponding dispersion is large enough to overrule the order of atomic multiplets and to make the intermediate spin excitation propagating with a specific wave vector the lowest excitation of the system. PMID:27461512
Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry
NASA Astrophysics Data System (ADS)
Szymański, K.; Satuła, D.; Dobrzyński, L.
2004-12-01
Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.
Sirmatel, O; Sert, C; Sirmatel, F; Selek, S; Yokus, B
2007-06-01
The aim of this study was to investigate the effects of a high-strength magnetic field produced by a magnetic resonance imaging (MRI) apparatus on oxidative stress. The effects of a 1.5 T static magnetic field on the total antioxidant capacity (TAC), total oxidant status (TOS) and oxidative stress index (OSI) in male subjects were investigated. In this study, 33 male volunteers were exposed to a 1.5 T static magnetic field for a short time and the TAC, TOS and OSI of each subject were determined. Magnetic field exposure was provided using a magnetic resonance apparatus; radiofrequency was not applied. Blood samples were taken from subjects and TAC, TOS and OSI values were measured using the methods of Erel. TAC showed a significant increase in post-exposures compared to pre-exposures to the magnetic field (p < 0.05). OSI and TOS showed a significant decrease in post-exposures compared to pre-exposures to a 1.5 T magnetic field (for each of two, p < 0.01). The 1.5 T static magnetic field used in the MRI apparatus did not yield a negative effect; on the contrary, it produced the positive effect of decreasing oxidative stress in men following short-term exposure.
Magnetic Doppler imaging of the chemically peculiar star HD 125248
NASA Astrophysics Data System (ADS)
Rusomarov, N.; Kochukhov, O.; Ryabchikova, T.; Ilyin, I.
2016-04-01
Context. Intermediate-mass, chemically peculiar stars with strong magnetic fields provide an excellent opportunity to study the topology of their surface magnetic fields and the interplay between magnetic geometries and abundance inhomogeneities in the atmospheres of these stars. Aims: We reconstruct detailed maps of the surface magnetic field and abundance distributions for the magnetic Ap star HD 125248. Methods: We performed the analysis based on phase-resolved, four Stokes parameter spectropolarimetric observations obtained with the HARPSpol instrument. These data were interpreted with the help of magnetic Doppler imaging techniques and model atmospheres taking the effects of strong magnetic fields and nonsolar chemical composition into account. Results: We improved the atmospheric parameters of the star, Teff = 9850 ± 250 K and log g = 4.05 ± 0.10. We performed detailed abundance analysis, which confirmed that HD 125248 has abundances typical of other Ap stars, and discovered significant vertical stratification effects for the Fe II and Cr II ions. We computed LSD Stokes profiles using several line masks corresponding to Fe-peak and rare earth elements, and studied their behavior with rotational phase. Combining previous longitudinal field measurements with our own observations, we improved the rotational period of the star Prot = 9.29558 ± 0.00006 d. Magnetic Doppler imaging of HD 125248 showed that its magnetic field is mostly poloidal and quasi-dipolar with two large spots of different polarity and field strength. The chemical maps of Fe, Cr, Ce, Nd, Gd, and Ti show abundance contrasts of 0.9-3.5 dex. Among these elements, the Fe abundance map does not show high-contrast features. Cr is overabundant around the negative magnetic pole and has 3.5 dex abundance range. The rare earth elements and Ti are overabundant near the positive magnetic pole. Conclusions: The magnetic field of HD 125248 has strong deviations from the classical oblique dipole field geometry. A comparison of the magnetic field topology of HD 125248 with the results derived for other stars using four Stokes magnetic Doppler imaging suggests evidence that the field topology becomes simpler with increasing age. The abundance maps show weak correlation with magnetic field geometry, but they do not agree with the theoretical atomic diffusion calculations, which predict element accumulation in the horizontal field regions. Based on observations collected at the European Southern Observatory, Chile (ESO programs 088.D-0066, 090.D-0256).
The Development and Positioning of Business Related University Tourism Education: A UK Perspective.
ERIC Educational Resources Information Center
Evans, Nigel
2001-01-01
Categorization and analysis of articles on tourism research provided evidence that tourism is not a discipline but a field. A case study of a travel and tourism management program at a British university shows how business studies are emphasized in preparing for the field. (Contains 50 references.) (SK)
Economic Development Threatens Groundwater in Puerto Rico: Results of a Field Study.
ERIC Educational Resources Information Center
Arbona, Sonia I.; Hunter, John M.
1995-01-01
Presents the results of a field study done on 7 wells providing 37% of the total aquifer production for 4 municipalities in Puerto Rico. Each sampled well showed signs of contamination by heavy metals, nitrate, and semivolatile organic compounds. Although found in low concentrations, current development threatens groundwater quality. (MJP)
Study on statistical breakdown delay time in argon gas using a W-band millimeter-wave gyrotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Dongsung; Yu, Dongho; Choe, MunSeok
2016-04-15
In this study, we investigated plasma initiation delay times for argon volume breakdown at the W-band frequency regime. The threshold electric field is defined as the minimum electric field amplitude needed for plasma breakdown at various pressures. The measured statistical delay time showed an excellent agreement with the theoretical Gaussian distribution and the theoretically estimated formative delay time. Also, we demonstrated that the normalized effective electric field as a function of the product of pressure and formative time shows an outstanding agreement to that of 1D particle-in-cell simulation coupled with a Monte Carlo collision model [H. C. Kim and J.more » P. Verboncoeur, Phys. Plasmas 13, 123506 (2006)].« less
Study of the Vertical Magnetic Field in Face-on Galaxies Using Faraday Tomography
NASA Astrophysics Data System (ADS)
Ideguchi, Shinsuke; Tashiro, Yuichi; Akahori, Takuya; Takahashi, Keitaro; Ryu, Dongsu
2017-07-01
Faraday tomography allows astronomers to probe the distribution of the magnetic field along the line of sight (LOS), but that can be achieved only after the Faraday spectrum is interpreted. However, the interpretation is not straightforward, mainly because the Faraday spectrum is complicated due to a turbulent magnetic field; it ruins the one-to-one relation between the Faraday depth and the physical depth, and appears as many small-scale features in the Faraday spectrum. In this paper, by employing “simple toy models” for the magnetic field, we describe numerically as well as analytically the characteristic properties of the Faraday spectrum. We show that the Faraday spectrum along “multiple LOSs” can be used to extract the global properties of the magnetic field. Specifically, considering face-on spiral galaxies and modeling turbulent magnetic field as a random field with a single coherence length, we numerically calculate the Faraday spectrum along a number of LOSs and its shape-characterizing parameters, that is, the moments. When multiple LOSs cover a region of ≳(10 coherence length)2, the shape of the Faraday spectrum becomes smooth and the shape-characterizing parameters are well specified. With the Faraday spectrum constructed as a sum of Gaussian functions with different means and variances, we analytically show that the parameters are expressed in terms of the regular and turbulent components of the LOS magnetic field and the coherence length. We also consider the turbulent magnetic field modeled with a power-law spectrum, and study how the magnetic field is revealed in the Faraday spectrum. Our work suggests a way to obtain information on the magnetic field from a Faraday tomography study.
NASA Astrophysics Data System (ADS)
Bhowmik, R. N.; Vijayasri, G.
2015-06-01
We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
Liang, Po-Chin; Chen, Yung-Chu; Chiang, Chi-Feng; Mo, Lein-Ray; Wei, Shwu-Yuan; Hsieh, Wen-Yuan; Lin, Win-Li
2016-01-01
In this study, we developed functionalized superparamagnetic iron oxide (SPIO) nanoparticles consisting of a magnetic Fe3O4 core and a shell of aqueous stable polyethylene glycol (PEG) conjugated with doxorubicin (Dox) (SPIO-PEG-D) for tumor magnetic resonance imaging (MRI) enhancement and chemotherapy. The size of SPIO nanoparticles was ~10 nm, which was visualized by transmission electron microscope. The hysteresis curve, generated with vibrating-sample magnetometer, showed that SPIO-PEG-D was superparamagnetic with an insignificant hysteresis. The transverse relaxivity (r 2) for SPIO-PEG-D was significantly higher than the longitudinal relaxivity (r 1) (r 2/r 1 >10). The half-life of Dox in blood circulation was prolonged by conjugating Dox on the surface of SPIO with PEG to reduce its degradation. The in vitro experiment showed that SPIO-PEG-D could cause DNA crosslink more serious, resulting in a lower DNA expression and a higher cell apoptosis for HT-29 cancer cells. The Prussian blue staining study showed that the tumors treated with SPIO-PEG-D under a magnetic field had a much higher intratumoral iron density than the tumors treated with SPIO-PEG-D alone. The in vivo MRI study showed that the T2-weighted signal enhancement was stronger for the group under a magnetic field, indicating that it had a better accumulation of SPIO-PEG-D in tumor tissues. In the anticancer efficiency study for SPIO-PEG-D, the results showed that there was a significantly smaller tumor size for the group with a magnetic field than the group without. The in vivo experiments also showed that this drug delivery system combined with a local magnetic field could reduce the side effects of cardiotoxicity and hepatotoxicity. The results showed that the developed SPIO-PEG-D nanoparticles own a great potential for MRI-monitoring magnet-enhancing tumor chemotherapy.
NASA Astrophysics Data System (ADS)
Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang
2018-05-01
The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.
Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field
NASA Astrophysics Data System (ADS)
Borelli, M. E. S.; Carneiro, C. E. I.
1996-02-01
We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.
Tunneling decay of false domain walls: The silence of the lambs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haberichter, Mareike, E-mail: M.Haberichter@kent.ac.uk; School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2 7NF; MacKenzie, Richard, E-mail: richard.mackenzie@umontreal.ca
We study the decay of “false” domain walls, that is, metastable states of the quantum theory where the true vacuum is trapped inside the wall with the false vacuum outside. We consider a theory with two scalar fields, a shepherd field and a field of sheep. The shepherd field serves to herd the solitons of the sheep field so that they are nicely bunched together. However, quantum tunnelling of the shepherd field releases the sheep to spread out uncontrollably. We show how to calculate the tunnelling amplitude for such a disintegration.
NASA Astrophysics Data System (ADS)
Hackett, S. L.; van Asselen, B.; Wolthaus, J. W. H.; Bluemink, J. J.; Ishakoglu, K.; Kok, J.; Lagendijk, J. J. W.; Raaymakers, B. W.
2018-05-01
The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.
Effect of high magnetic fields on the charge density wave properties of KMo 6O 17
NASA Astrophysics Data System (ADS)
Rötger, A.; Dumas, J.; Marcus, J.; Schlenker, C.; Ulmet, J. P.; Audouard, A.; Askenazy, S.
1992-03-01
The electrical resistivity of the purple bronze KMo 6O 17 has been studied between 2 and 88 K with pulsed magnetic fields up to 35 T. Several anomalies are found on the curves Δρ/ρ(B) at different temperatures. The low field results are compared with previous measurements of susceptibility and magnetization. A phase diagram which may show a field displaced charge density wave instability and field induced transitions is proposed.
On the late-time cosmology of a condensed scalar field
NASA Astrophysics Data System (ADS)
Ghalee, Amir
2016-04-01
We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.
NASA Astrophysics Data System (ADS)
Lee, Joanne Haeun; Shah, Rhythm R.; Brazel, Christopher S.
2014-11-01
Targeted drug delivery and localized hyperthermia are being studied as alternatives to conventional cancer treatments, which can affect the whole body and indiscriminately kill healthy cells. Magnetic nanoparticles (MNPs) have potential as drug carriers that can be captured and trigger hyperthermia at the site of the tumor by applying an external magnetic field. This study focuses on comparing the capture efficiency of the magnetic field applied by a static magnet to an alternating current coil. The effect of particle size, degree of dispersion, and the frequency of the AC field on capture and heating were studied using 3 different dispersions: 16 nm maghemite in water, 50 nm maghemite in dopamine, and 20--30 nm magnetite in dimercaptosuccinic acid. A 480G static field captured more MNPs than a similar 480G AC field at either 194 or 428 kHz; however, the AC field also allowed heating. The MNPs in water had a lower capture and heating efficiency than the larger, dopamine-coated MNPs. This finding was supported by dynamic light scattering data showing the particle size distribution and vibrating sample magnetometry data showing that the larger MNPs in the dopamine solution have a higher field of coercivity, exhibit ferrimagnetism and allow for better capture while smaller (16 nm) MNPs exhibit superparamagnetism. The dispersions that captured the best also heated the best. NSF ECE Grant #1358991 supported the first author as an REU student.
Scanned-probe field-emission studies of vertically aligned carbon nanofibers
NASA Astrophysics Data System (ADS)
Merkulov, Vladimir I.; Lowndes, Douglas H.; Baylor, Larry R.
2001-02-01
Field emission properties of dense and sparse "forests" of randomly placed, vertically aligned carbon nanofibers (VACNFs) were studied using a scanned probe with a small tip diameter of ˜1 μm. The probe was scanned in directions perpendicular and parallel to the sample plane, which allowed for measuring not only the emission turn-on field at fixed locations but also the emission site density over large surface areas. The results show that dense forests of VACNFs are not good field emitters as they require high extracting (turn-on) fields. This is attributed to the screening of the local electric field by the neighboring VACNFs. In contrast, sparse forests of VACNFs exhibit moderate-to-low turn-on fields as well as high emission site and current densities, and long emission lifetime, which makes them very promising for various field emission applications.
Useful visual field in patients with schizophrenia: a choice reaction time study.
Matsuda, Yukihisa; Matsui, Mie; Tonoya, Yasuhiro; Ebihara, Naokuni; Kurachi, Masayoshi
2011-04-01
This study examined the size of the useful visual field in patients (9 men, 6 women) with schizophrenia. A choice reaction task was conducted, and performances at 2.5, 5, 7, 10, and 25 degrees in both visual fields were measured. Three key findings were shown. First, patients had slower choice reaction times (choice RTs) than normal controls. Second, patients had slower choice RTs in the right visual field than in the left visual field. Third, patients and normal controls showed the same U-shaped choice RT pattern. The first and second findings were consistent with those of other studies. The third finding was a clear indication of the patients' performance in peripheral vision, and a comparison with normal controls suggested that there was no difference in the size of the useful visual field, at least within
Correlated electron and nuclear dynamics in strong field photoionization of H(2)(+).
Silva, R E F; Catoire, F; Rivière, P; Bachau, H; Martín, F
2013-03-15
We present a theoretical study of H(2)(+) ionization under strong IR femtosecond pulses by using a method designed to extract correlated (2D) photoelectron and proton kinetic energy spectra. The results show two distinct ionization mechanisms-tunnel and multiphoton ionization-in which electrons and nuclei do not share the energy from the field in the same way. Electrons produced in multiphoton ionization share part of their energy with the nuclei, an effect that shows up in the 2D spectra in the form of energy-conservation fringes similar to those observed in weak-field ionization of diatomic molecules. In contrast, tunneling electrons lead to fringes whose position does not depend on the proton kinetic energy. At high intensity, the two processes coexist and the 2D plots show a very rich behavior, suggesting that the correlation between electron and nuclear dynamics in strong field ionization is more complex than one would have anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id
The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, aroundmore » 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.« less
Extrapolating non-target risk of Bt crops from laboratory to field.
Duan, Jian J; Lundgren, Jonathan G; Naranjo, Steve; Marvier, Michelle
2010-02-23
The tiered approach to assessing ecological risk of insect-resistant transgenic crops assumes that lower tier laboratory studies, which expose surrogate non-target organisms to high doses of insecticidal proteins, can detect harmful effects that might be manifested in the field. To test this assumption, we performed meta-analyses comparing results for non-target invertebrates exposed to Bacillus thuringiensis (Bt) Cry proteins in laboratory studies with results derived from independent field studies examining effects on the abundance of non-target invertebrates. For Lepidopteran-active Cry proteins, laboratory studies correctly predicted the reduced field abundance of non-target Lepidoptera. However, laboratory studies incorporating tri-trophic interactions of Bt plants, herbivores and parasitoids were better correlated with the decreased field abundance of parasitoids than were direct-exposure assays. For predators, laboratory tri-trophic studies predicted reduced abundances that were not realized in field studies and thus overestimated ecological risk. Exposure to Coleopteran-active Cry proteins did not significantly reduce the laboratory survival or field abundance of any functional group examined. Our findings support the assumption that laboratory studies of transgenic insecticidal crops show effects that are either consistent with, or more conservative than, those found in field studies, with the important caveat that laboratory studies should explore all ecologically relevant routes of exposure.
Orbital effect of the magnetic field in dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Acheche, S.; Arsenault, L.-F.; Tremblay, A.-M. S.
2017-12-01
The availability of large magnetic fields at international facilities and of simulated magnetic fields that can reach the flux-quantum-per-unit-area level in cold atoms calls for systematic studies of orbital effects of the magnetic field on the self-energy of interacting systems. Here we demonstrate theoretically that orbital effects of magnetic fields can be treated within single-site dynamical mean-field theory with a translationally invariant quantum impurity problem. As an example, we study the one-band Hubbard model on the square lattice using iterated perturbation theory as an impurity solver. We recover the expected quantum oscillations in the scattering rate, and we show that the magnetic fields allow the interaction-induced effective mass to be measured through the single-particle density of states accessible in tunneling experiments. The orbital effect of magnetic fields on scattering becomes particularly important in the Hofstadter butterfly regime.
Risk Assessment for Children Exposed to Arsenic on Baseball Fields with Contaminated Fill Material
Ferguson, Alesia C.; Black, Jennifer C.; Sims, Isaac B.; Welday, Jennifer N.; Elmir, Samir M.; Goff, Kendra F.; Higginbotham, J. Mark
2018-01-01
Children can be exposed to arsenic through play areas which may have contaminated fill material from historic land use. The objective of the current study was to evaluate the risk to children who play and/or spend time at baseball fields with soils shown to have arsenic above background levels. Arsenic in soils at the study sites located in Miami, FL, USA showed distinct distributions between infield, outfield, and areas adjacent to the fields. Using best estimates of exposure factors for children baseball scenarios, results show that non-cancer risks depend most heavily upon the age of the person and the arsenic exposure level. For extreme exposure scenarios evaluated in this study, children from 1 to 2 years were at highest risk for non-cancer effects (Hazard Quotient, HQ > 2.4), and risks were higher for children exhibiting pica (HQ > 9.7) which shows the importance of testing fill for land use where children may play. At the study sites, concentration levels of arsenic resulted in a range of computed cancer risks that differed by a factor of 10. In these sites, the child’s play position also affected risk. Outfield players, with a lifetime exposure to these arsenic levels, could have 10 times more increased chance of experiencing cancers associated with arsenic (i.e., lung, bladder, skin) in comparison to infielders. The distinct concentration distributions observed between these portions of the baseball fields emphasize the need to delineate contaminated areas in public property where citizens may spend more free time. This study also showed a need for more tools to improve the risk estimates for child play activities. For instance, more refined measurements of exposure factors for intake (e.g., inhalation rates under rigorous play activities, hand to mouth rates), exposure frequency (i.e., time spent in various activities) and other exposure factors (e.g., soil particulate emission rates at baseball play fields) can help pinpoint risk on baseball fields where arsenic levels may be a concern. PMID:29300352
Shape matters: Near-field fluid mechanics dominate the collective motions of ellipsoidal squirmers.
Kyoya, K; Matsunaga, D; Imai, Y; Omori, T; Ishikawa, T
2015-12-01
Microswimmers show a variety of collective motions. Despite extensive study, questions remain regarding the role of near-field fluid mechanics in collective motion. In this paper, we describe precisely the Stokes flow around hydrodynamically interacting ellipsoidal squirmers in a monolayer suspension. The results showed that various collective motions, such as ordering, aggregation, and whirls, are dominated by the swimming mode and the aspect ratio. The collective motions are mainly induced by near-field fluid mechanics, despite Stokes flow propagation over a long range. These results emphasize the importance of particle shape in collective motion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoop, L. de; Gatel, C.; Houdellier, F.
2015-06-29
A dedicated transmission electron microscope sample holder has been used to study in situ the cold-field emission process of carbon cone nanotips (CCnTs). We show that when using a CCnT instead of a Au plate-anode, the standard deviation of the emission current noise can be decreased from the 10 nA range to the 1 nA range under vacuum conditions of 10{sup −5 }Pa. This shows the strong influence of the anode on the cold-field emission current noise.
Biochar: from laboratory mechanisms through the greenhouse to field trials
NASA Astrophysics Data System (ADS)
Masiello, C. A.; Gao, X.; Dugan, B.; Silberg, J. J.; Zygourakis, K.; Alvarez, P. J. J.
2014-12-01
The biochar community is excellent at pointing to individual cases where biochar amendment has changed soil properties, with some studies showing significant improvements in crop yields, reduction in nutrient export, and remediation of pollutants. However, many studies exist which do not show improvements, and in some cases, studies clearly show detrimental outcomes. The next, crucial step in biochar science and engineering research will be to develop a process-based understanding of how biochar acts to improve soil properties. In particular, we need a better mechanistic understanding of how biochar sorbs and desorbs contaminants, how it interacts with soil water, and how it interacts with the soil microbial community. These mechanistic studies need to encompass processes that range from the nanometer to the kilometer scale. At the nanometer scale, we need a predictive model of how biochar will sorb and desorb hydrocarbons, nutrients, and toxic metals. At the micrometer scale we need models that explain biochar's effects on soil water, especially the plant-available fraction of soil water. The micrometer scale is also where mechanistic information is neeed about microbial processes. At the macroscale we need physical models to describe the landscape mobility of biochar, because biochar that washes away from fields can no longer provide crop benefits. To be most informative, biochar research should occur along a lab-greenhouse-field trial trajectory. Laboratory experiments should aim determine what mechanisms may act to control biochar-soil processes, and then greenhouse experiments can be used to test the significance of lab-derived mechanisms in short, highly replicated, controlled experiments. Once evidence of effect is determined from greenhouse experiments, field trials are merited. Field trials are the gold standard needed prior to full deployment, but results from field trials cannot be extrapolated to other field sites without the mechanistic backup provided by greenhouse and lab trials.
Vereecken, H; Vanderborght, J; Kasteel, R; Spiteller, M; Schäffer, A; Close, M
2011-01-01
In this study, we analyzed sorption parameters for pesticides that were derived from batch and column or batch and field experiments. The batch experiments analyzed in this study were run with the same pesticide and soil as in the column and field experiments. We analyzed the relationship between the pore water velocity of the column and field experiments, solute residence times, and sorption parameters, such as the organic carbon normalized distribution coefficient ( ) and the mass exchange coefficient in kinetic models, as well as the predictability of sorption parameters from basic soil properties. The batch/column analysis included 38 studies with a total of 139 observations. The batch/field analysis included five studies, resulting in a dataset of 24 observations. For the batch/column data, power law relationships between pore water velocity, residence time, and sorption constants were derived. The unexplained variability in these equations was reduced, taking into account the saturation status and the packing status (disturbed-undisturbed) of the soil sample. A new regression equation was derived that allows estimating the values derived from column experiments using organic matter and bulk density with an value of 0.56. Regression analysis of the batch/column data showed that the relationship between batch- and column-derived values depends on the saturation status and packing of the soil column. Analysis of the batch/field data showed that as the batch-derived value becomes larger, field-derived values tend to be lower than the corresponding batch-derived values, and vice versa. The present dataset also showed that the variability in the ratio of batch- to column-derived value increases with increasing pore water velocity, with a maximum value approaching 3.5. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Extremely low-frequency electromagnetic fields cause DNA strand breaks in normal cells
2014-01-01
Background Extremely low frequency electromagnetic fields aren’t considered as a real carcinogenic agent despite the fact that some studies have showed impairment of the DNA integrity in different cells lines. The aim of this study was evaluation of the late effects of a 100 Hz and 5.6 mT electromagnetic field, applied continuously or discontinuously, on the DNA integrity of Vero cells assessed by alkaline Comet assay and by cell cycle analysis. Normal Vero cells were exposed to extremely low frequency electromagnetic fields (100 Hz, 5.6 mT) for 45 minutes. The Comet assay and cell cycle analysis were performed 48 hours after the treatment. Results Exposed samples presented an increase of the number of cells with high damaged DNA as compared with non-exposed cells. Quantitative evaluation of the comet assay showed a significantly (<0.001) increase of the tail lengths, of the quantity of DNA in tail and of Olive tail moments, respectively. Cell cycle analysis showed an increase of the frequency of the cells in S phase, proving the occurrence of single strand breaks. The most probable mechanism of induction of the registered effects is the production of different types of reactive oxygen species. Conclusions The analysis of the registered comet indices and of cell cycle showed that extremely low frequency electromagnetic field of 100 Hz and 5.6 mT had a genotoxic impact on Vero cells. PMID:24401758
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
NASA Astrophysics Data System (ADS)
Lanctot, Matthew J.
2016-10-01
In several tokamaks, non-axisymmetric magnetic field studies show applied n=2 fields can lead to disruptive n=1 locked modes, suggesting nonlinear mode coupling. A multimode plasma response to n=2 fields can be observed in H-mode plasmas, in contrast to the single-mode response found in Ohmic plasmas. These effects highlight a role for n >1 error field correction in disruption avoidance, and identify additional degrees of freedom for 3D field optimization at high plasma pressure. In COMPASS, EAST, and DIII-D Ohmic plasmas, n=2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q 3 and low density. Similar to previous studies, the thresholds are correlated with the ``overlap'' field for the dominant linear ideal MHD plasma mode calculated with the IPEC code. The overlap field measures the plasma-mediated coupling of the external field to the resonant field. Remarkably, the critical overlap fields are similar for n=1 and 2 fields with m >nq fields dominating the drive for resonant fields. Complementary experiments in RFX-Mod show fields with m
The second peak effect and vortex pinning mechanisms in Ba(Fe,Ni)2As2 superconductors
NASA Astrophysics Data System (ADS)
Ghorbani, S. R.; Arabi, H.; Wang, X. L.
2017-09-01
Vortex pinning mechanisms have been studied systematically in BaFe1.9Ni0.1As2 single crystal as a function of temperature and magnetic field. The obtained shielding current density, Js, showed a second peak in the intermediate magnetic field range at high temperatures. The temperature dependence of the shielding current density, Js(T), was analysed within the collective pinning model at different magnetic fields. It was found that the second peak reflects the coexistence of both δl pinning, reflecting spatial variation in the mean free path (l), and δTc pinning, reflecting spatial variation in the superconducting critical temperature (Tc) at low temperature and low magnetic fields in BaFe1.9Ni0.1As2 single crystal. The results clearly show that pinning mechanism effects are strongly temperature and magnetic field dependent, and the second peak effect is more powerful at higher temperatures and magnetic fields. It was also found that the magnetic field mainly controls the pinning mechanism effect.
Mujagic, Samir; Sarkander, Jana; Erber, Barbara; Erber, Joachim
2010-01-01
The experiments analyze different forms of learning and 24-h retention in the field and in the laboratory in bees that accept sucrose with either low (=3%) or high (>/=30% or >/=50%) concentrations. In the field we studied color learning at a food site and at the hive entrance. In the laboratory olfactory conditioning of the proboscis extension response (PER) was examined. In the color learning protocol at a feeder, bees with low sucrose acceptance thresholds (=3%) show significantly faster and better acquisition than bees with high thresholds (>/=50%). Retention after 24 h is significantly different between the two groups of bees and the choice reactions converge. Bees with low and high acceptance thresholds in the field show no differences in the sucrose sensitivity PER tests in the laboratory. Acceptance thresholds in the field are thus a more sensitive behavioral measure than PER responsiveness in the laboratory. Bees with low acceptance thresholds show significantly better acquisition and 24-h retention in olfactory learning in the laboratory compared to bees with high thresholds. In the learning protocol at the hive entrance bees learn without sucrose reward that a color cue signals an open entrance. In this experiment, bees with high sucrose acceptance thresholds showed significantly better learning and reversal learning than bees with low thresholds. These results demonstrate that sucrose acceptance thresholds affect only those forms of learning in which sucrose serves as the reward. The results also show that foraging behavior in the field is a good predictor for learning behavior in the field and in the laboratory.
Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent?
Zhao, Xiaojun; Shi, Changxiu; You, Xuqun; Zong, Chenming
2017-01-01
A market research company (Nielsen) reported that consumers in the Asia-Pacific region have become the most active group in online shopping. Focusing on augmented reality (AR), which is one of three major techniques used to change the method of shopping in the future, this study used a mixed design to discuss the influences of the method of online shopping, user gender, cognitive style, product value, and sensory channel on mental workload in virtual reality (VR) and AR situations. The results showed that males' mental workloads were significantly higher than females'. For males, high-value products' mental workload was significantly higher than that of low-value products. In the VR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference was reduced under audio-visual conditions. In the AR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference increased under audio-visual conditions. This study provided a psychological study of online shopping with AR and VR technology with applications in the future. Based on the perspective of embodied cognition, AR online shopping may be potential focus of research and market application. For the future design of online shopping platforms and the updating of user experience, this study provides a reference.
Analysis of Mental Workload in Online Shopping: Are Augmented and Virtual Reality Consistent?
Zhao, Xiaojun; Shi, Changxiu; You, Xuqun; Zong, Chenming
2017-01-01
A market research company (Nielsen) reported that consumers in the Asia-Pacific region have become the most active group in online shopping. Focusing on augmented reality (AR), which is one of three major techniques used to change the method of shopping in the future, this study used a mixed design to discuss the influences of the method of online shopping, user gender, cognitive style, product value, and sensory channel on mental workload in virtual reality (VR) and AR situations. The results showed that males’ mental workloads were significantly higher than females’. For males, high-value products’ mental workload was significantly higher than that of low-value products. In the VR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference was reduced under audio–visual conditions. In the AR situation, the visual mental workload of field-independent and field-dependent consumers showed a significant difference, but the difference increased under audio–visual conditions. This study provided a psychological study of online shopping with AR and VR technology with applications in the future. Based on the perspective of embodied cognition, AR online shopping may be potential focus of research and market application. For the future design of online shopping platforms and the updating of user experience, this study provides a reference. PMID:28184207
Evolution and convergence of the patterns of international scientific collaboration.
Coccia, Mario; Wang, Lili
2016-02-23
International research collaboration plays an important role in the social construction and evolution of science. Studies of science increasingly analyze international collaboration across multiple organizations for its impetus in improving research quality, advancing efficiency of the scientific production, and fostering breakthroughs in a shorter time. However, long-run patterns of international research collaboration across scientific fields and their structural changes over time are hardly known. Here we show the convergence of international scientific collaboration across research fields over time. Our study uses a dataset by the National Science Foundation and computes the fraction of papers that have international institutional coauthorships for various fields of science. We compare our results with pioneering studies carried out in the 1970s and 1990s by applying a standardization method that transforms all fractions of internationally coauthored papers into a comparable framework. We find, over 1973-2012, that the evolution of collaboration patterns across scientific disciplines seems to generate a convergence between applied and basic sciences. We also show that the general architecture of international scientific collaboration, based on the ranking of fractions of international coauthorships for different scientific fields per year, has tended to be unchanged over time, at least until now. Overall, this study shows, to our knowledge for the first time, the evolution of the patterns of international scientific collaboration starting from initial results described by literature in the 1970s and 1990s. We find a convergence of these long-run collaboration patterns between the applied and basic sciences. This convergence might be one of contributing factors that supports the evolution of modern scientific fields.
Cracking mechanism of shale cracks during fracturing
NASA Astrophysics Data System (ADS)
Zhao, X. J.; Zhan, Q.; Fan, H.; Zhao, H. B.; An, F. J.
2018-06-01
In this paper, we set up a model for calculating the shale fracture pressure on the basis of Huang’s model by the theory of elastic-plastic mechanics, rock mechanics and the application of the maximum tensile stress criterion, which takes into account such factors as the crustal stress field, chemical field, temperature field, tectonic stress field, the porosity of shale and seepage of drilling fluid and so on. Combined with the experimental data of field fracturing and the experimental results of three axis compression of shale core with different water contents, the results show that the error between the present study and the measured value is 3.85%, so the present study can provide technical support for drilling engineering.
NASA Astrophysics Data System (ADS)
Zhu, Yuping; Chen, Tao; Teng, Yao; Liu, Bingfei; Xue, Lijun
2016-11-01
Directionally solidified, polycrystalline Ni-Mn-Ga is studied in this paper. The polycrystalline Ni-Mn-Ga samples were cut at different angles to solidification direction. The magnetic field induced strain under constant stress and the temperature-induced strain under constant magnetic field during the loading-unloading cycle were measured. The experimental results show that the mechanical behavior during the loading-unloading cycle of the material is nonlinear and anisotropic. Based on the experimental results, the effects of multi-field coupling factors, such as stress, magnetic field, temperature and cutting angle on the mechanical behaviors were analyzed. Some useful conclusions were obtained, which will provide guidance for practical applications.
Eye-rotation-induced spatial reorganization of horizontal connections in field 17 of the cat cortex.
Shkorbatova, P Yu; Alekseenko, S V
2006-06-01
Six cats with rotation of one or both eyes (strabismus) produced surgically in the early postnatal period demonstrated torsional deviation of the eyes by 10-20 degrees in addition to the rotation. The spatial distribution of retrograde labeled neurons in field 17 was studied by microiontophoretic administration of horseradish peroxidase into individual cortical columns in fields 17 and 18. These studies showed that rotation of the eyes increased the extent of horizontal neuronal connections in field 17 along the projection of the vertical meridian of the field of vision. It is suggested that this reorganization of neuronal connections may support functional changes compensating for eye rotation, as described in the literature.
Controlling turbulent drag across electrolytes using electric fields.
Ostilla-Mónico, Rodolfo; Lee, Alpha A
2017-07-01
Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier-Stokes Poisson-Nernst-Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson-Nernst-Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.
GPS Velocity and Strain Rate Fields in Southwest Anatolia from Repeated GPS Measurements
Erdoğan, Saffet; Şahin, Muhammed; Tiryakioğlu, İbrahim; Gülal, Engin; Telli, Ali Kazım
2009-01-01
Southwestern Turkey is a tectonically active area. To determine kinematics and strain distribution in this region, a GPS network of sixteen stations was established. We have used GPS velocity field data for southwest Anatolia from continuous measurements covering the period 2003 to 2006 to estimate current crustal deformation of this tectonically active region. GPS data were processed using GAMIT/GLOBK software and velocity and strain rate fields were estimated in the study area. The measurements showed velocities of 15–30 mm/yr toward the southwest and strain values up to 0.28–8.23×10−8. Results showed that extension has been determined in the Burdur-Isparta region. In this study, all of strain data reveal an extensional neotectonic regime through the northeast edge of the Isparta Angle despite the previously reported compressional neotectonic regime. Meanwhile, results showed some small differences relatively with the 2006 model of Reilinger et al. As a result, active tectonic movements, in agreement with earthquake fault plane solutions showed important activity. PMID:22573998
Out of Field Doses in Clinical Photon and Proton Beam
NASA Astrophysics Data System (ADS)
Kubančák, Ján
2010-01-01
Out-of-field doses in homogenous cubical polymethylmethacrylate (PMMA) phantom were studied in this work. Measurements were performed in clinical 171 MeV proton and megavoltae photon beam. As detectors, CaSO:Dy thermoluminescent detectors were used. According to expectancy, results showed that out-of-field doses are substantially lower for clinical proton beam in comparison with clinical proton beam.
NASA Astrophysics Data System (ADS)
Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song
2008-07-01
Lakatos [Phys. Rev. E 71, 011103 (2005)] have studied a totally asymmetric exclusion process that contains periodically varying movement rates. They have presented a cluster mean-field theory for the problem. We show that their cluster mean-field theory leads to redundant equations. We present a mean-field analysis in which there is no redundant equation.
Mancosu, Pietro; Pasquino, Massimo; Reggiori, Giacomo; Masi, Laura; Russo, Serenella; Stasi, Michele
2017-09-01
In modern radiation therapy accurate small fields dosimetry is a challenge and its standardization is fundamental to harmonize delivered dose in different institutions. This study presents a multicenter characterization of MLC-defined small field for Elekta and Varian linear accelerators. Measurements were performed using the Exradin W1 plastic scintillator detector. The project enrolled 24 Italian centers. Each center performed Tissue Phantom Ratio (TPR), in-plane and cross-plane dose profiles of 0.8×0.8cm 2 field, and Output Factor (OF) measurements for square field sizes ranging from 0.8 to 10cm. Set-up conditions were 10cm depth in water phantom at SSD 90cm. Measurements were performed using two twin Exradin W1 plastic scintillator detectors (PSD) correcting for the Cerenkov effect as proposed by the manufacturer. Data analysis from 12 Varian and 12 Elekta centers was performed. Measurements of 7 centers were not included due to cable problems. TPR measurements showed standard deviations (SD)<1%; SD<0.4mm for the profile penumbra was obtained, while FWHM measurements showed SD<0.5mm. OF measurements showed SD<1.5% for field size greater than 2×2cm 2 . Median OFs values were in agreement with the recent bibliography. High degree of consistency was registered for all the considered parameters. This work confirmed the importance of multicenter dosimetric intercomparison. W1 PSD could be considered as a good candidate for small field measurements. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Field of Study in College and Lifetime Earnings in the United States
Kim, ChangHwan; Tamborini, Christopher R.; Sakamoto, Arthur
2016-01-01
Our understanding about the relationship between education and lifetime earnings often neglects differences by field of study. Utilizing data that matches respondents in the Survey of Income and Program Participation to their longitudinal earnings records based on administrative tax information, we investigate the trajectories of annual earnings following the same individuals over 20 years and then estimate the long-term effects of field of study on earnings for U.S. men and women. Our results provide new evidence revealing large lifetime earnings gaps across field of study. We show important differences in individuals’ earnings trajectories across the different stages of the work-life by field of study. In addition, the gaps in 40-year (i.e., ages 20 to 59) median lifetime earnings among college graduates by field of study are larger, in many instances, than the median gap between high school graduates and college graduates overall. Significant variation is also found among graduate degree holders. Our results uncover important similarities and differences between men and women with regard to the long-term earnings differentials associated with field of study. In general, these findings underscore field of study as a critical dimension of horizontal stratification in educational attainment. Other implications of the empirical findings are also discussed. PMID:28042177
NASA Astrophysics Data System (ADS)
Cheruvalath, Reena
2018-01-01
It is proposed to examine the argument that females cannot perform better in engineering and science fields because of their poor mathematical or logical reasoning. The major reason for the reduced number of females in the above fields in India is the socio-cultural aversion towards females choosing the field and restriction in providing higher education for them by their parents. The present study shows that the females who get the opportunity to study engineering and science perform equal to or better than their male counterparts. An analysis of CGPA (Cumulative Grade Point Average) of 2631 students who have completed their engineering or science programme in one of the top engineering colleges in India for five years shows that female academic performance is equal to or better than that of males. Mathematical, logical, verbal and mechanical reasoning are tested while calculating CGPA.
Recent trends in the U.S. Behavioral and Social Sciences Research (BSSR) workforce
2017-01-01
While behavioral and social sciences occupations comprise one of the largest portions of the “STEM” workforce, most studies of diversity in STEM overlook this population, focusing instead on fields such as biomedical or physical sciences. This study evaluates major demographic trends and productivity in the behavioral and social sciences research (BSSR) workforce in the United States during the past decade. Our analysis shows that the demographic trends for different BSSR fields vary. In terms of gender balance, there is no single trend across all BSSR fields; rather, the problems are field-specific, and disciplines such as economics and political science continue to have more men than women. We also show that all BSSR fields suffer from a lack of racial and ethnic diversity. The BSSR workforce is, in fact, less representative of racial and ethnic minorities than are biomedical sciences or engineering. Moreover, in many BSSR subfields, minorities are less likely to receive funding. We point to various funding distribution patterns across different demographic groups of BSSR scientists, and discuss several policy implications. PMID:28166252
Recent trends in the U.S. Behavioral and Social Sciences Research (BSSR) workforce.
Hur, Hyungjo; Andalib, Maryam A; Maurer, Julie A; Hawley, Joshua D; Ghaffarzadegan, Navid
2017-01-01
While behavioral and social sciences occupations comprise one of the largest portions of the "STEM" workforce, most studies of diversity in STEM overlook this population, focusing instead on fields such as biomedical or physical sciences. This study evaluates major demographic trends and productivity in the behavioral and social sciences research (BSSR) workforce in the United States during the past decade. Our analysis shows that the demographic trends for different BSSR fields vary. In terms of gender balance, there is no single trend across all BSSR fields; rather, the problems are field-specific, and disciplines such as economics and political science continue to have more men than women. We also show that all BSSR fields suffer from a lack of racial and ethnic diversity. The BSSR workforce is, in fact, less representative of racial and ethnic minorities than are biomedical sciences or engineering. Moreover, in many BSSR subfields, minorities are less likely to receive funding. We point to various funding distribution patterns across different demographic groups of BSSR scientists, and discuss several policy implications.
Characterization of Soybean Genetically Modified for Drought Tolerance in Field Conditions
Fuganti-Pagliarini, Renata; Ferreira, Leonardo C.; Rodrigues, Fabiana A.; Molinari, Hugo B. C.; Marin, Silvana R. R.; Molinari, Mayla D. C.; Marcolino-Gomes, Juliana; Mertz-Henning, Liliane M.; Farias, José R. B.; de Oliveira, Maria C. N.; Neumaier, Norman; Kanamori, Norihito; Fujita, Yasunari; Mizoi, Junya; Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko; Nepomuceno, Alexandre L.
2017-01-01
Drought is one of the most stressful environmental factor causing yield and economic losses in many soybean-producing regions. In the last decades, transcription factors (TFs) are being used to develop genetically modified plants more tolerant to abiotic stresses. Dehydration responsive element binding (DREB) and ABA-responsive element-binding (AREB) TFs were introduced in soybean showing improved drought tolerance, under controlled conditions. However, these results may not be representative of the way in which plants behave over the entire season in the real field situation. Thus, the objectives of this study were to analyze agronomical traits and physiological parameters of AtDREB1A (1Ab58), AtDREB2CA (1Bb2193), and AtAREB1 (1Ea2939) GM lines under irrigated (IRR) and non-irrigated (NIRR) conditions in a field experiment, over two crop seasons and quantify transgene and drought-responsive genes expression. Results from season 2013/2014 revealed that line 1Ea2939 showed higher intrinsic water use and leaf area index. Lines 1Ab58 and 1Bb2193 showed a similar behavior to wild-type plants in relation to chlorophyll content. Oil and protein contents were not affected in transgenic lines in NIRR conditions. Lodging, due to plentiful rain, impaired yield from the 1Ea2939 line in IRR conditions. qPCR results confirmed the expression of the inserted TFs and drought-responsive endogenous genes. No differences were identified in the field experiment performed in crop season 2014/2015, probably due to the optimum rainfall volume during the cycle. These field screenings showed promising results for drought tolerance. However, additional studies are needed in further crop seasons and other sites to better characterize how these plants may outperform the WT under field water deficit. PMID:28443101
Effect of sample initial magnetic field on the metal magnetic memory NDT result
NASA Astrophysics Data System (ADS)
Moonesan, Mahdi; Kashefi, Mehrdad
2018-08-01
One of the major concerns regarding the use of Metal Magnetic Memory (MMM) technique is the complexity of residual magnetization effect on output signals. The present study investigates the influence of residual magnetic field on stress induced magnetization. To this end, various initial magnetic fields were induced on a low carbon steel sample, and for each level of residual magnetic field, the sample was subjected to a set of 4-point bending tests and, their corresponding MMM signals were collected from the surface of the bended sample using a tailored metal magnetic memory scanning device. Results showed a strong correlation between sample residual magnetic field and its corresponding level of stress induced magnetic field. It was observed that the sample magnetic field increases with applying the bending stress as long as the initial residual magnet field is low (i.e. <117 mG), but starts decreasing with higher levels of initial residual magnetic fields. Besides, effect of bending stress on the MMM output of a notched sample was investigated. The result, again, showed that MMM signals exhibit a drop at stress concentration zone when sample has high level of initial residual magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Anand Kumar; Boyd, Robert W.
2010-01-15
We study the spatial coherence properties of the entangled two-photon field produced by parametric down-conversion (PDC) when the pump field is, spatially, a partially coherent beam. By explicitly treating the case of a pump beam of the Gaussian Schell-model type, we show that in PDC the spatial coherence properties of the pump field get entirely transferred to the spatial coherence properties of the down-converted two-photon field. As one important consequence of this study, we find that, for two-qubit states based on the position correlations of the two-photon field, the maximum achievable entanglement, as quantified by concurrence, is bounded by themore » degree of spatial coherence of the pump field. These results could be important by providing a means of controlling the entanglement of down-converted photons by tailoring the degree of coherence of the pump field.« less
Thermodynamic Properties of a Double Ring-Shaped Quantum Dot at Low and High Temperatures
NASA Astrophysics Data System (ADS)
Khordad, R.; Sedehi, H. R. Rastegar
2018-02-01
In this work, we study thermodynamic properties of a GaAs double ring-shaped quantum dot under external magnetic and electric fields. To this end, we first solve the Schrödinger equation and obtain the energy levels and wave functions, analytically. Then, we calculate the entropy, heat capacity, average energy and magnetic susceptibility of the quantum dot in the presence of a magnetic field using the canonical ensemble approach. According to the results, it is found that the entropy is an increasing function of temperature. At low temperatures, the entropy increases monotonically with raising the temperature for all values of the magnetic fields and it is independent of the magnetic field. But, the entropy depends on the magnetic field at high temperatures. The entropy also decreases with increasing the magnetic field. The heat capacity and magnetic susceptibility show a peak structure. The heat capacity reduces with increasing the magnetic field at low temperatures. The magnetic susceptibility shows a transition between diamagnetic and paramagnetic below for T<4 K. The transition temperature depends on the magnetic field.
Panter, S; Chu, P G; Ludlow, E; Garrett, R; Kalla, R; Jahufer, M Z Z; de Lucas Arbiza, A; Rochfort, S; Mouradov, A; Smith, K F; Spangenberg, G
2012-06-01
Viral diseases, such as Alfalfa mosaic virus (AMV), cause significant reductions in the productivity and vegetative persistence of white clover plants in the field. Transgenic white clover plants ectopically expressing the viral coat protein gene encoded by the sub-genomic RNA4 of AMV were generated. Lines carrying a single copy of the transgene were analysed at the molecular, biochemical and phenotypic level under glasshouse and field conditions. Field resistance to AMV infection, as well as mitotic and meiotic stability of the transgene, were confirmed by phenotypic evaluation of the transgenic plants at two sites within Australia. The T(0) and T(1) generations of transgenic plants showed immunity to infection by AMV under glasshouse and field conditions, while the T(4) generation in an agronomically elite 'Grasslands Sustain' genetic background, showed a very high level of resistance to AMV in the field. An extensive biochemical study of the T(4) generation of transgenic plants, aiming to evaluate the level and composition of natural toxicants and key nutritional parameters, showed that the composition of the transgenic plants was within the range of variation seen in non-transgenic populations.
Intensive probing of a clear air convective field by radar and instrumental drone aircraft.
NASA Technical Reports Server (NTRS)
Rowland, J. R.
1973-01-01
An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.
Fractional Poisson Fields and Martingales
NASA Astrophysics Data System (ADS)
Aletti, Giacomo; Leonenko, Nikolai; Merzbach, Ely
2018-02-01
We present new properties for the Fractional Poisson process (FPP) and the Fractional Poisson field on the plane. A martingale characterization for FPPs is given. We extend this result to Fractional Poisson fields, obtaining some other characterizations. The fractional differential equations are studied. We consider a more general Mixed-Fractional Poisson process and show that this process is the stochastic solution of a system of fractional differential-difference equations. Finally, we give some simulations of the Fractional Poisson field on the plane.
NASA Astrophysics Data System (ADS)
Aurongzeb, Deeder
2010-11-01
Anomalous X-ray pulsars and soft gamma-ray repeaters reveal that existence of very strong magnetic field(> 10e15G) from neutron stars. It has been estimated that at the core the magnitude can be even higher at the center. Apart from dynamo mechanism it has been shown that color locked ferromagnetic phase [ Phys. Rev. D. 72,114003(2005)] can be a possible origin of magnetic field. In this study, we explore electric charge of strange quark matter and its effect on forming chirality in the quark-gluon plasma. We show that electromagnetic current induced by chiral magnetic effect [(Phys. Rev. D. 78.07033(2008)] can induce differential rotation in super fluid quark-gluon plasma giving additional boost to the magnetic field. The internal phase and current has no effect from external magnetic field originating from active galactic nuclei due to superconducting phase formation which screens the fields due to Meissner effect. We show that differential motion can create high radial electric field at the surface making all radiation highly polarized and directional including thermal radiation. As the electric field strength can be even stronger for a collapsing neutron star, the implication of this study to detect radiation from black holes will also be discussed. The work was partly completed at the University of Texas at austin
Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection.
Reimann, Sarah; Borgoo, Alex; Tellgren, Erik I; Teale, Andrew M; Helgaker, Trygve
2017-09-12
We study the effects of magnetic fields in the context of magnetic field density-functional theory (BDFT), where the energy is a functional of the electron density ρ and the magnetic field B. We show that this approach is a worthwhile alternative to current-density functional theory (CDFT) and may provide a viable route to the study of many magnetic phenomena using density-functional theory (DFT). The relationship between BDFT and CDFT is developed and clarified within the framework of the four-way correspondence of saddle functions and their convex and concave parents in convex analysis. By decomposing the energy into its Kohn-Sham components, we demonstrate that the magnetizability is mainly determined by those energy components that are related to the density. For existing density functional approximations, this implies that, for the magnetizability, improvements of the density will be more beneficial than introducing a magnetic-field dependence in the correlation functional. However, once a good charge density is achieved, we show that high accuracy is likely only obtainable by including magnetic-field dependence. We demonstrate that adiabatic-connection (AC) curves at different field strengths resemble one another closely provided each curve is calculated at the equilibrium geometry of that field strength. In contrast, if all AC curves are calculated at the equilibrium geometry of the field-free system, then the curves change strongly with increasing field strength due to the increasing importance of static correlation. This holds also for density functional approximations, for which we demonstrate that the main error encountered in the presence of a field is already present at zero field strength, indicating that density-functional approximations may be applied to systems in strong fields, without the need to treat additional static correlation.
NASA Astrophysics Data System (ADS)
Chen, Yue; Cunningham, Gregory; Henderson, Michael
2016-09-01
This study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Second, using a newly developed proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ˜ 2°, than those from the three empirical models with averaged errors > ˜ 5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. This study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.
Chen, Yue; Cunningham, Gregory; Henderson, Michael
2016-09-21
Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yue; Cunningham, Gregory; Henderson, Michael
Our study aims to statistically estimate the errors in local magnetic field directions that are derived from electron directional distributions measured by Los Alamos National Laboratory geosynchronous (LANL GEO) satellites. First, by comparing derived and measured magnetic field directions along the GEO orbit to those calculated from three selected empirical global magnetic field models (including a static Olson and Pfitzer 1977 quiet magnetic field model, a simple dynamic Tsyganenko 1989 model, and a sophisticated dynamic Tsyganenko 2001 storm model), it is shown that the errors in both derived and modeled directions are at least comparable. Furthermore, using a newly developedmore » proxy method as well as comparing results from empirical models, we are able to provide for the first time circumstantial evidence showing that derived magnetic field directions should statistically match the real magnetic directions better, with averaged errors < ~2°, than those from the three empirical models with averaged errors > ~5°. In addition, our results suggest that the errors in derived magnetic field directions do not depend much on magnetospheric activity, in contrast to the empirical field models. Finally, as applications of the above conclusions, we show examples of electron pitch angle distributions observed by LANL GEO and also take the derived magnetic field directions as the real ones so as to test the performance of empirical field models along the GEO orbits, with results suggesting dependence on solar cycles as well as satellite locations. Finally, this study demonstrates the validity and value of the method that infers local magnetic field directions from particle spin-resolved distributions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhowmik, R. N., E-mail: rnbhowmik.phy@pondiuni.edu.in; Vijayasri, G.
2015-06-15
We have studied current-voltage (I-V) characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3}, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling.more » The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔV{sub P}) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.« less
Ding, Jing; Fu, Liang; Ding, Zhao-Wei; Lu, Yong-Ze; Cheng, Shuk H; Zeng, Raymond J
2016-01-01
The nitrate-dependent denitrifying anaerobic methane oxidation (DAMO) process, which is metabolized together by anaerobic methanotrophic archaea and NC10 phylum bacteria, is expected to be important for the global carbon and nitrogen cycles. However, there are little studies about the existence of this process and the functional microbes in environments. Therefore, the coexistence of DAMO archaea and bacteria in a paddy field was evaluated in this study. Next-generation sequencing showed that the two orders, Methanosarcinales and Nitrospirales, to which DAMO archaea and DAMO bacteria belong, were detected in the four soil samples. Then the in vitro experiments demonstrated both of nitrite- and nitrate-dependent DAMO activities, which confirmed the coexistence of DAMO archaea and DAMO bacteria. It was the first report about the coexistence of DAMO archaea and bacteria in a paddy field. Furthermore, anammox bacteria were detected in two of the four samples. The in vitro experiments did not show anammox activity in the initial period but showed low anammox activity after 20 days' enrichment. These results implicated that anammox bacteria may coexist with DAMO microorganisms in this field, but at a very low percentage.
Detection of magnetic fields in chemically peculiar stars observed with the K2 space mission
NASA Astrophysics Data System (ADS)
Buysschaert, B.; Neiner, C.; Martin, A. J.; Aerts, C.; Bowman, D. M.; Oksala, M. E.; Van Reeth, T.
2018-05-01
We report the results of an observational study aimed at searching for magnetic pulsating hot stars suitable for magneto-asteroseismology. A sample of sixteen chemically peculiar stars was selected and analysed using both high-resolution spectropolarimetry with ESPaDOnS and K2 high-precision space photometry. For all stars, we derive the effective temperature, surface gravity, rotational and non-rotational line broadening from our spectropolarimetric data. High-quality K2 light curves were obtained for thirteen of the sixteen stars and revealed rotational modulation, providing accurate rotation periods. Two stars show evidence for roAp pulsations, and one star shows signatures of internal gravity waves or unresolved g-mode pulsations. We confirm the presence of a large-scale magnetic field for eleven of the studied stars, of which nine are first detections. Further, we report one marginal detection and four non-detections. Two of the stars with a non-detected magnetic field show rotational modulation due to surface abundance inhomogeneities in the K2 light curve, and we confirm that the other two are chemically peculiar. Thus, these five stars likely host a weak (undetected) large-scale magnetic field.
Effects of Resonant Helical Field on Toroidal Field Ripple in IR-T1 Tokamak
NASA Astrophysics Data System (ADS)
Mahdavipour, B.; Salar Elahi, A.; Ghoranneviss, M.
2018-02-01
The toroidal magnetic field which is created by toroidal coils has the ripple in torus space. This magnetic field ripple has an importance in plasma equilibrium and stability studies in tokamak. In this paper, we present the investigation of the interaction between the toroidal magnetic field ripple and resonant helical field (RHF). We have estimated the amplitude of toroidal field ripples without and with RHF (with different q = m/n) ( m = 2, m = 3, m = 4, m = 5, m = 2 & 3, n = 1) using “Comsol Multiphysics” software. The simulations show that RHF has effects on the toroidal ripples.
SU-E-P-32: Adapting An MMLC to a Conventional Linac to Perform Stereotactic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emam, I; Hosini, M
2015-06-15
Purpose: Micro-MLCs minimizes beam scalloping effects caused by conventional-MLCs and facilitates conformal dynamic treatment delivery. But their effect on dosimetric parameters require careful investigations. Physical and dosimetric parameters and Linac mechanical stability with mMLC (net weight 30 Kg) attached to the gantry are to be investigated. Moreover, output study along with recommended jaws offsets are studied. Adaptation of an mMLC to our 16-years old conventional Linac is investigated in this work Methods: BrainLab mMLC (m3) mounted in a detachable chassis to the Philips SL-15 Linac (30kg). Gantry and collimator spoke shots measurements are made using a calibrated film in amore » solid phantom and compared with pin-point measurements. Leaf penumbra, transmission, leakage between the leaves, percentage depth dose (PDD) are measured using IBA pin-point ion chamber at 6 and 10 MV. For output measurements (using brass build-up cap), jaws are modified continuously regarding to m3-fields while output factor are compared with fixed jaws situation, while the mMLC leaf configuration is modified for different m3-fields Results: Mean transmission through leaves is 1.9±0.1% and mean leakage between leaves is 2.8±0.15%. Between opposing leaves abutting along the central beam-axis mean transmission is 15±3%, but it is reduced to 4.5±0.6% by moving the abutment position 4.5cm off-axis. The penumbra was sharper for m3 -fields than jaws-fields (maximum difference is 1.51±0.2%). m3-fields PDD show ∼3% variation from those of jaws-fields. m3-fields output factors show large variations (<4%) from Jaws defined fields. Output for m3-rectangular fields show slight variation in case of leaf-end&leaf-side as well as X-jaw&Y-jaw exchange. Circular m3-fields output factors shows close agreement with their corresponding square jaws-defined fields using 2mm Jaws offsets, If jaws are retracted to m3 limits, differences become <5%. Conclusion: BrainLab m3 is successfully adapted to our 16 old Philips-SL-15 Linac. Dosimetric properties should be taken into account for treatment planning considerations.« less
Field evaporation of ZnO: A first-principles study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Yu, E-mail: yuxia@dal.ca; Karahka, Markus; Kreuzer, H. J.
2015-07-14
With recent advances in atom probe tomography of insulators and semiconductors, there is a need to understand high electrostatic field effects in these materials as well as the details of field evaporation. We use density functional theory to study field effects in ZnO clusters calculating the potential energy curves, the local field distribution, the polarizability, and the dielectric constant as a function of field strength. We confirm that, as in MgO, the HOMO-LUMO gap of a ZnO cluster closes at the evaporation field strength signaling field-induced metallization of the insulator. Following the structural changes in the cluster at the evaporationmore » field strength, we can identify the field evaporated species, in particular, we show that the most abundant ion, Zn{sup 2+}, is NOT post-ionized but leaves the surface as 2+ largely confirming the experimental observations. Our results also help to explain problems related to stoichiometry in the mass spectra measured in atom probe tomography.« less
NASA Astrophysics Data System (ADS)
Yesilgul, U.; Sari, H.; Ungan, F.; Martínez-Orozco, J. C.; Restrepo, R. L.; Mora-Ramos, M. E.; Duque, C. A.; Sökmen, I.
2017-03-01
In this study, the effects of electric and magnetic fields on the optical rectification and second and third harmonic generation in asymmetric double quantum well under the intense non-resonant laser field is theoretically investigated. We calculate the optical rectification and second and third harmonic generation within the compact density-matrix approach. The theoretical findings show that the influence of electric, magnetic, and intense laser fields leads to significant changes in the coefficients of nonlinear optical rectification, second and third harmonic generation.
Catalytic dimer nanomotors: continuum theory and microscopic dynamics.
Reigh, Shang Yik; Kapral, Raymond
2015-04-28
Synthetic chemically-powered motors with various geometries have potentially new applications involving dynamics on very small scales. Self-generated concentration and fluid flow fields, which depend on geometry, play essential roles in motor dynamics. Sphere-dimer motors, comprising linked catalytic and noncatalytic spheres, display more complex versions of such fields, compared to the often-studied spherical Janus motors. By making use of analytical continuum theory and particle-based simulations we determine the concentration fields, and both the complex structure of the near-field and point-force dipole nature of the far-field behavior of the solvent velocity field that are important for studies of collective motor motion. We derive the dependence of motor velocity on geometric factors such as sphere size and dimer bond length and, thus, show how to construct motors with specific characteristics.
New innovations for contrast enhancement in electron microscopy
NASA Astrophysics Data System (ADS)
Mohan, A.
In this study two techniques for producing and improving contrast in Electron Microscopy are discussed. The first technique deals with the production of secondary contrast in a Variable Pressure SEM under poor vacuum conditions using the specimen current signal. A review of the prior work in this field shows that the presence of the gas ions in the microscope column results in the amplification of the specimen current signal which is enriched in secondary content. The focus of this study is to establish practical conditions for imaging samples in the microscope using specimen current with gas amplification. This is done by understanding the different variables in the microscope which affect the image formation process and then finding out optimum conditions for obtaining the best possible image, i.e., the image most enhanced in secondary contrast. A few 'real life' samples analyzed using this technique show that the gas amplified specimen current images contain secondary information and, in some cases, provide clear advantages to imaging with conventional secondary and backscattered detectors. The second technique dealing with the production of phase contrast in the TEM for extremely thin, electron transparent samples, is analyzed. A review of the literature regarding prior work in the field shows that, while the theoretical aspects of production of phase contrast in the TEM using a phase plate are well understood, there have been problems in practically implementing this in the microscope. One major assumption with most of the studies is that a fiber, partially coated with gold, results in the formation of point charges which is an essential requirement for symmetrically shifting the phase of the electron beam. The focus of this portion of the dissertation is to image the type of fields associated with such a phase plate using the technique of electron holography. It is found that there are two types of fields associated with a phase plate of this sort. One is a cylindrical field which extends along the length of the fiber while the other is a localized spherically symmetric field. A series of simulations show that the spherical field can produce phase contrast in the TEM and also improve the contrast transfer properties of the microscope.
Intrinsically Disordered Protein Specific Force Field CHARMM36IDPSFF.
Liu, Hao; Song, Dong; Lu, Hui; Luo, Ray; Chen, Hai-Feng
2018-05-28
Intrinsically disordered proteins (IDPs) are closely related to various human diseases. Because IDPs lack certain tertiary structure, it is difficult to use X-ray and NMR methods to measure their structures. Therefore, molecular dynamics simulation is a useful tool to study the conformer distribution of IDPs. However, most generic protein force fields were found to be insufficient in simulations of IDPs. Here we report our development for the CHARMM community. Our residue-specific IDP force field (CHARMM36IDPSFF) was developed based on the base generic force field with CMAP corrections of for all 20 naturally occurring amino acids. Multiple tests show that the simulated chemical shifts with the newly developed force field are in quantitative agreement with NMR experiment and are more accurate than the base generic force field. Comparison of J-couplings with previous work shows that CHARMM36IDPSFF and its corresponding base generic force field have their own advantages. In addition, CHARMM36IDPSFF simulations also agree with experiment for SAXS profiles and radii of gyration of IDPs. Detailed analysis shows that CHARMM36IDPSFF can sample more diverse and disordered conformers. These findings confirm that the newly developed force field can improve the balance of accuracy and efficiency for the conformer sampling of IDPs. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Electric field dependent local structure of (KxNa1-x) 0.5B i0.5Ti O3
NASA Astrophysics Data System (ADS)
Goetzee-Barral, A. J.; Usher, T.-M.; Stevenson, T. J.; Jones, J. L.; Levin, I.; Brown, A. P.; Bell, A. J.
2017-07-01
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (KxNa1-x) 0.5B i0.5Ti O3 , as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x =0.15 , 0.18 and at the morphotropic phase boundary composition x =0.20 . X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks in the 3-4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from <110 > to <112 > -type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x . Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. The combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.; ...
2017-07-31
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Fertility patterns of college graduates by field of study, U.S. women born 1960--79
Michelmore, Katherine; Musick, Kelly
2013-01-01
Building on recent European studies, we used the Survey of Income and Program Participation to provide the first analysis of fertility differences between groups of U.S. college graduates by their undergraduate field of study. We used multilevel event-history models to investigate possible institutional and selection mechanisms linking field of study to delayed fertility and childlessness. The results are consistent with those found for Europe in showing an overall difference of 10 percentage points between levels of childlessness across fields, with the lowest levels occurring for women in health and education, intermediate levels for women in science and technology, and the highest levels for women in arts and social sciences. The mediating roles of the following field characteristics were assessed: motherhood employment penalties; percentage of men; family attitudes; and marriage patterns. Childlessness was higher among women in fields with a moderate representation of men, less traditional family attitudes, and late age at first marriage. PMID:24266547
Fertility patterns of college graduates by field of study, US women born 1960-79.
Michelmore, Katherine; Musick, Kelly
2014-01-01
Building on recent European studies, we used the Survey of Income and Program Participation to provide the first analysis of fertility differences between groups of US college graduates by their undergraduate field of study. We used multilevel event-history models to investigate possible institutional and selection mechanisms linking field of study to delayed fertility and childlessness. The results are consistent with those found for Europe in showing an overall difference of 10 percentage points between levels of childlessness across fields, with the lowest levels occurring for women in health and education, intermediate levels for women in science and technology, and the highest levels for women in arts and social sciences. The mediating roles of the following field characteristics were assessed: motherhood employment penalties; percentage of men; family attitudes; and marriage patterns. Childlessness was higher among women in fields with a moderate representation of men, less traditional family attitudes, and late age at first marriage.
One of the Boys: Constructions of Disengagement and Criteria for Being a Successful Student
ERIC Educational Resources Information Center
Grønborg, Lisbeth
2013-01-01
The article discusses how a peer group culture in the school setting, embedded in conflicting fields of work and education, co-constructs student disengagement. Disengagement is traditionally linked with dropout and engagement with completion, but the study shows that this relation is not so linear. The data are based on a field study, where the…
Anguera, M Teresa; Camerino, Oleguer; Castañer, Marta; Sánchez-Algarra, Pedro; Onwuegbuzie, Anthony J
2017-01-01
Mixed methods studies are been increasingly applied to a diversity of fields. In this paper, we discuss the growing use-and enormous potential-of mixed methods research in the field of sport and physical activity. A second aim is to contribute to strengthening the characteristics of mixed methods research by showing how systematic observation offers rigor within a flexible framework that can be applied to a wide range of situations. Observational methodology is characterized by high scientific rigor and flexibility throughout its different stages and allows the objective study of spontaneous behavior in natural settings, with no external influence. Mixed methods researchers need to take bold yet thoughtful decisions regarding both substantive and procedural issues. We present three fundamental and complementary ideas to guide researchers in this respect: we show why studies of sport and physical activity that use a mixed methods research approach should be included in the field of mixed methods research, we highlight the numerous possibilities offered by observational methodology in this field through the transformation of descriptive data into quantifiable code matrices, and we discuss possible solutions for achieving true integration of qualitative and quantitative findings.
Experimental study on infrared radiation temperature field of concrete under uniaxial compression
NASA Astrophysics Data System (ADS)
Lou, Quan; He, Xueqiu
2018-05-01
Infrared thermography, as a nondestructive, non-contact and real-time monitoring method, has great significance in assessing the stability of concrete structure and monitoring its failure. It is necessary to conduct in depth study on the mechanism and application of infrared radiation (IR) of concrete failure under loading. In this paper, the concrete specimens with size of 100 × 100 × 100 mm were adopted to carry out the uniaxial compressions for the IR tests. The distribution of IR temperatures (IRTs), surface topography of IRT field and the reconstructed IR images were studied. The results show that the IRT distribution follows the Gaussian distribution, and the R2 of Gaussian fitting changes along with the loading time. The abnormities of R2 and AE counts display the opposite variation trends. The surface topography of IRT field is similar to the hyperbolic paraboloid, which is related to the stress distribution in the sample. The R2 of hyperbolic paraboloid fitting presents an upward trend prior to the fracture which enables to change the IRT field significantly. This R2 has a sharp drop in response to this large destruction. The normalization images of IRT field, including the row and column normalization images, were proposed as auxiliary means to analyze the IRT field. The row and column normalization images respectively show the transverse and longitudinal distribution of the IRT field, and they have clear responses to the destruction occurring on the sample surface. In this paper, the new methods and quantitative index were proposed for the analysis of IRT field, which have some theoretical and instructive significance for the analysis of the characteristics of IRT field, as well as the monitoring of instability and failure for concrete structure.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
On the condensation of exciton polaritons in microcavities induced by a magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kochereshko, V. P., E-mail: Vladimir.Kochereshko@mail.ioffe.ru; Avdoshina, D. V.; Savvidis, P.
2016-11-15
The photoluminescence spectra of exciton polaritons in microcavities under conditions of three-dimensional quantization are studied as a factor of the density of the optical excitation and magnetic field. The behavior of the degree of circular polarization of the exciton luminescence in a magnetic field shows that, when the concentration of excitons increases, they condense at the lowest Zeeman sublevel.
New scramblers for precision radial velocity: square and octagonal fibers
NASA Astrophysics Data System (ADS)
Chazelas, Bruno; Pepe, Francesco; Wildi, François; Bouchy, Francois; Perruchot, Sandrine; Avila, Gerardo
2010-07-01
One of the remaining limitation of the precise radial velocity instruments is the imperfect scrambling produced by the circular fibers. We present here experimental studies on new optical fibers aiming at an improvement of the scrambling they provide. New fibers shapes were tested: square and octagonal. Measurements have been performed of the scrambling performances of these fibers in the near field as well FRD measurements. These fibers show extremely promising performances in the near field scrambling: an improvement of a factor 5 to 10 compared to the circular fiber. They however show some strange behavior in the far field that need to be understood.
Modulated phases in a three-dimensional Maier-Saupe model with competing interactions
NASA Astrophysics Data System (ADS)
Bienzobaz, P. F.; Xu, Na; Sandvik, Anders W.
2017-07-01
This work is dedicated to the study of the discrete version of the Maier-Saupe model in the presence of competing interactions. The competition between interactions favoring different orientational ordering produces a rich phase diagram including modulated phases. Using a mean-field approach and Monte Carlo simulations, we show that the proposed model exhibits isotropic and nematic phases and also a series of modulated phases that meet at a multicritical point, a Lifshitz point. Though the Monte Carlo and mean-field phase diagrams show some quantitative disagreements, the Monte Carlo simulations corroborate the general behavior found within the mean-field approximation.
Single-crystalline δ-Ni2Si nanowires with excellent physical properties
2013-01-01
In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl2·6H2O as a single-source precursor. Various morphologies of δ-Ni2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/μm), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation. PMID:23782805
Theoretical study of asymmetric super-rotors: Alignment and orientation
NASA Astrophysics Data System (ADS)
Omiste, Juan J.
2018-02-01
We report a theoretical study of the optical centrifuge acceleration of an asymmetric top molecule interacting with an electric static field by solving the time-dependent Schrödinger equation in the rigid rotor approximation. A detailed analysis of the mixing of the angular momentum in both the molecular and the laboratory fixed frames allows us to deepen the understanding of the main features of the acceleration process, for instance, the effective angular frequency of the molecule at the end of the pulse. For the case of the SO2 molecular super-rotor, we show numerically that it rotates around one internal axis and that its dynamics is confined to the plane defined by the polarization axis of the laser, in agreement with experimental findings. Furthermore, we consider the orientation patterns induced by the dc field, showing the characteristics of their structure as a function of the strength of the static field and the initial configuration of the fields.
Correlations of TOMS total ozone data (Nimbus-7 satellite) with tropopause height
NASA Technical Reports Server (NTRS)
Munteanu, Marie-Jeanne
1987-01-01
Two correlation studies of Total Ozone Mapping Spectrometer (TOMS) data with tropopause height from radiosondes performed over Europe showed a correlation coefficient of 0.94 and 0.96. As a result, the rms error in the prediction of tropopause height from total ozone was found to be 20 mb. Correlation between tropopause height and TOMS data was the highest of all the other correlations with variables directly derived from radiosondes or simulated thermal radiances over the location of radiosondes. Comparing the two dimensional fields of TOMS, tropopause height from radiosondes and tropopause height field from TIROS-N retrievals, we can say that the first field is much closer to the true field from radiosondes than the third. The correlation coefficient for a ten-day study between TOMS data and tropopause height from radiosondes is between 0.85 and 0.9 for 30-70N. Tropopause analysis provided by GLA model also shows a very high correlation with TOMS data.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator.
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Light intensity modulation by coccoliths of Emiliania huxleyi as a micro-photo-regulator
NASA Astrophysics Data System (ADS)
Mizukawa, Yuri; Miyashita, Yuito; Satoh, Manami; Shiraiwa, Yoshihiro; Iwasaka, Masakazu
2015-09-01
In this study, we present experimental evidence showing that coccoliths have light-scattering anisotropy that contributes to a possible control of solar light exposure in the ocean. Changing the angle between the incident light and an applied magnetic field causes differences in the light-scattering intensities of a suspension of coccoliths isolated from Emiliania huxleyi. The magnetic field effect is induced by the diamagnetic torque force directing the coccolith radial plane perpendicular to the applied magnetic fields at 400 to 500 mT. The developed technique reveals the light-scattering anisotropies in the 3-μm-diameter floating coccoliths by orienting themselves in response to the magnetic fields. The detached coccolith scatters radially the light incident to its radial plane. The experimental results on magnetically oriented coccoliths show that an individual coccolith has a specific direction of light scattering, although the possible physiological effect of the coccolith remains for further study, focusing on the light-scattering anisotropies of coccoliths on living cells.
Electrostatic properties of graphene edges for electron emission under an external electric field
NASA Astrophysics Data System (ADS)
Gao, Yanlin; Okada, Susumu
2018-04-01
Electronic properties of graphene edges under a lateral electric field were theoretically studied in regard to their edge shapes and terminations to provide a theoretical insight into their field emission properties. The work function and potential barrier for the electron emission from the graphene edges are sensitive to their shape and termination. We also found that the hydrogenated armchair edge shows the largest emission current among all edges studied here. The electric field outside the chiral edges is spatially modulated along the edge because of the inhomogeneous charge density at the atomic sites of the edge arising from the bond alternation.
Skyrmion states in thin confined polygonal nanostructures
NASA Astrophysics Data System (ADS)
Pepper, Ryan Alexander; Beg, Marijan; Cortés-Ortuño, David; Kluyver, Thomas; Bisotti, Marc-Antonio; Carey, Rebecca; Vousden, Mark; Albert, Maximilian; Wang, Weiwei; Hovorka, Ondrej; Fangohr, Hans
2018-03-01
Recent studies have demonstrated that skyrmionic states can be the ground state in thin-film FeGe disk nanostructures in the absence of a stabilising applied magnetic field. In this work, we advance this understanding by investigating to what extent this stabilisation of skyrmionic structures through confinement exists in geometries that do not match the cylindrical symmetry of the skyrmion—such as squares and triangles. Using simulation, we show that skyrmionic states can form the ground state for a range of system sizes in both triangular and square-shaped FeGe nanostructures of 10 nm thickness in the absence of an applied field. We further provide data to assist in the experimental verification of our prediction; to imitate an experiment where the system is saturated with a strong applied field before the field is removed, we compute the time evolution and show the final equilibrium configuration of magnetization fields, starting from a uniform alignment.
Infinite coherence time of edge spins in finite-length chains
NASA Astrophysics Data System (ADS)
Maceira, Ivo A.; Mila, Frédéric
2018-02-01
Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.
Magnetic droplet soliton nucleation in oblique fields
NASA Astrophysics Data System (ADS)
Mohseni, Morteza; Hamdi, M.; Yazdi, H. F.; Banuazizi, S. A. H.; Chung, S.; Sani, S. R.; Åkerman, Johan; Mohseni, Majid
2018-05-01
We study the auto-oscillating magnetodynamics in orthogonal spin-torque nano-oscillators (STNOs) as a function of the out-of-plane (OOP) magnetic-field angle. In perpendicular fields and at OOP field angles down to approximately 50°, we observe the nucleation of a droplet. However, for field angles below 50°, experiments indicate that the droplet gives way to propagating spin waves, in agreement with our micromagnetic simulations. Theoretical calculations show that the physical mechanism behind these observations is the sign changing of spin-wave nonlinearity (SWN) by angle. In addition, we show that the presence of a strong perpendicular magnetic anisotropy free layer in the system reverses the angular dependence of the SWN and dynamics in STNOs with respect to the known behavior determined for the in-plane magnetic anisotropy free layer. Our results are of fundamental interest in understanding the rich dynamics of nanoscale solitons and spin-wave dynamics in STNOs.
Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films
NASA Astrophysics Data System (ADS)
Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco
2018-06-01
We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.
Huang, Ying; Xiao, Xu; Huang, Hongying; Jing, Jinquan; Zhao, Hejuan; Wang, Lin; Long, Xi-En
2018-04-27
Soil weakness across consecutive cropping fields can be partially explained by the changes in microbial community diversity and structure. Succession patterns and co-occurrence mechanisms of bacteria and fungi, especially beneficial or pathogenic memberships in continuous cropping strawberry fields and their response to edaphic factors remained unclear. In this study, Illumina sequencing of bacterial 16S ribosomal RNA and fungal internal transcribed spacer genes was applied in three time-course (1, 5, and 10 years) fields across spring and winter. Results showed that the richness and diversity of bacterial and fungal communities increased significantly (p < 0.05) in 1-year field and decreased afterwards across two seasons. Network analysis revealed beneficial bacterial and fungal genus (Bacillus and Trichoderma) dominated under 1-year field whereas Fusarium accumulated under 10-year field at either season. Moreover, Trichoderma harzianum and Bacillus subtilis that have been reported to effectively control Fusarium wilt in strawberries accumulated significantly under 1-year field. Canonical correspondence analysis showed that beneficial bacterial Rhodospirillales and Rhizobiales and fungal Glomerales accumulated in 1-year field and their distributions were significantly affected by soil pH, microbial biomass C (MBC), and moisture. On the contrary, fungal pathogenic species Fusarium oxysporum strongly increased under 10-year field at the winter sample and the abundance was positively (p < 0.01) correlated with soil moisture. Our study suggested that the potential of microcosm under 1-year field stimulates the whole microbial diversity and favors different beneficial taxa across two seasons. Soil pH, moisture, and MBC were the most important edaphic factors leading to contrasting beneficial and pathogenic memberships across consecutive strawberry cropping fields.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.
2018-05-01
Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.
Diagnostics of Coronal Magnetic Fields Through the Hanle Effect in UV and IR Lines
NASA Astrophysics Data System (ADS)
Raouafi, Nour E.; Riley, Pete; Gibson, Sarah; Fineschi, Silvano; Solanki, Sami K.
2016-06-01
The plasma thermodynamics in the solar upper atmosphere, particularly in the corona, are dominated by the magnetic field, which controls the flow and dissipation of energy. The relative lack of knowledge of the coronal vector magnetic field is a major handicap for progress in coronal physics. This makes the development of measurement methods of coronal magnetic fields a high priority in solar physics. The Hanle effect in the UV and IR spectral lines is a largely unexplored diagnostic. We use magnetohydrodynamic (MHD) simulations to study the magnitude of the signal to be expected for typical coronal magnetic fields for selected spectral lines in the UV and IR wavelength ranges, namely the HI Ly-α and the He I 10830 Å lines. We show that the selected lines are useful for reliable diagnosis of coronal magnetic fields. The results show that the combination of polarization measurements of spectral lines with different sensitivities to the Hanle effect may be most appropriate for deducing coronal magnetic properties from future observations.
Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Bremner, Paul
2014-01-01
This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities.
Coupled field induced conversion between destructive and constructive quantum interference
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiangqian, E-mail: xqjiang@hit.edu.cn; Sun, Xiudong
2016-12-15
We study the control of quantum interference in a four-level atom driven by three coherent fields forming a closed loop. The spontaneous emission spectrum shows two sets of peaks which are dramatically influenced by the fields. Due to destructive quantum interference, a dark line can be observed in the emission spectrum, and the condition of the dark line is given. We found that the conversion between destructive and constructive quantum interference can be achieved through controlling the Rabi frequency of the external fields.
The students' intentions and satisfaction with the field of study and university
NOORAFSHAN, ALI; POURAHMAD, SAEEDEH; SAGHEB, MOHAMMAD MAHDI; DEHGHANI NAZHVANI, ALI; DEHSHAHRI, ALI; ABDOLLAHI, MANIJEH; MOHEBBI, ZEYNAB; KESHTKARAN, ZAHRA; AHMADI, AFSANEH; KAVOUSIPOUR, SOMAYEH; FARAHMAND, FARIBA; KHORRAMI, HAMID REZA; SOLTANI, ROBABEH; KARBALAY DOUST, SAIED
2014-01-01
Introduction: The present study aimed to find an appropriate method to inform senior high school students to correctly select their academic field of study and their intentions. Methods: This is a descriptive-analytic and cross-sectional study. A verified questionnaire was given to a total of 2600 students selected by stratified random sampling method (ten different colleges and entrance year from the 1st to 4th are considered as the strata). The position of the present field of study (major) among the list of the fields in the entrance exam was asked. The students’ methods of familiarity with different fields of study in Shiraz University of Medical Sciences (SUMS), the reasons for their selection, the students’ motivation and insistence on studying in the same field and university were asked in the questionnaire. Data were analyzed using independent two samples t-test, Analysis of Variance (ANOVA) and Chi-Square test. Results: The most significant references for university field selection were high school teachers, the students' parents and the adjacency of university to one's living place. Also, the results revealed the good reputation of SUMS in the first year and its downward trend during the following years. 59.4% of the 1st year students were satisfied with their field of study and SUMS. 31.8% were satisfied with the university but not with their fields of study. 6.4% were dissatisfied with the university but not with their fields of study. 2% of the students were dissatisfied with both their fields of study and university. Dissatisfaction with SUMS and field of study increased little by little so that the results obtained among the students who had entered the university earlier (in the 4th year of their study) showed nearly 16.3% dissatisfaction with both the university and the study fields. Conclusion: The methods for introducing the university are recommended to be revised. PMID:25512943
NASA Astrophysics Data System (ADS)
Gasparov, V. A.; Audouard, A.; Drigo, L.; He, Xi; Bozovic, I.
2017-10-01
We have synthesized heterostructures that consist of a layer of a cuprate insulator, La2CuO4, and a layer of a nonsuperconducting cuprate metal, La1.55Sr0.45CuO4. Such bilayers show high-Tc interface superconductivity confined within a single CuO2 plane. Here, we explore the behavior of interface superconductivity at high frequencies (up to 50 MHz) under high magnetic fields (up to 56 T). We find that interface superconductivity persists up to very high perpendicular fields (exceeding 40 T). The critical magnetic field Hm(T) shows an upward divergence with decreasing temperature suggestive of vortex-lattice melting, similar to what is observed in bulk superconducting cuprates.
Teaching mathematics remotely: changed practices in distance education
NASA Astrophysics Data System (ADS)
Lowrie, Tom; Jorgensen, Robyn
2012-09-01
This investigation explored the challenges of creating meaningful mathematics practices for a community engaged in Distance Education (DE). Specifically, the study maps the influence of new technologies on the practices of a learning community where mathematics was taught remotely. The theoretical framework of this study utilised Bourdieu's work on practice to consider the changed nature of the field, in this case, remote education provision, over time. By using Bourdieu's notion of field, we are better able to understand the ways in which practices and discourses shape particular ways of working in rural education provision. The results of the study show that Field 1 was innovative and beyond the non-school world, while Field 2 lagged behind the technological resources of the non-school world.
Chen, Aixi
2014-11-03
In triple coupled semiconductor quantum well structures (SQWs) interacting with a coherent driving filed, a coherent coupling field and a weak probe field, spontaneous emission spectra are investigated. Our studies show emission spectra can easily be manipulated through changing the intensity of the driving and coupling field, detuning of the driving field. Some interesting physical phenomena such as spectral-line enhancement/suppression, spectral-line narrowing and spontaneous emission quenching may be obtained in our system. The theoretical studies of spontaneous emission spectra in SQWS have potential application in high-precision spectroscopy. Our studies are based on the real physical system [Appl. Phys. Lett.86(20), 201112 (2005)], and this scheme might be realizable with presently available techniques.
NASA Astrophysics Data System (ADS)
Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran
2016-03-01
Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.
El Shahat, Khaled; El Saeid, Aziza; Attalla, Ehab; Yassin, Adel
2014-01-01
To achieve tumor control for radiotherapy, a dose distribution is planned which has a good chance of sterilizing all cancer cells without causing unacceptable normal tissue complications. The aim of the present study was to achieve an accurate calculation of dose for small field dimensions and perform this by evaluating the accuracy of planning system calculation. This will be compared with real measurement of dose for the same small field dimensions using different detectors. Practical work was performed in two steps: (i) determination of the physical factors required for dose estimation measured by three ionization chambers and calculated by treatment planning system (TPS) based on the latest technical report series (IAEATRS-398) and (ii) comparison of the calculated and measured data. Our data analysis for small field is irradiated by photon energy matched with the data obtained from the ionization chambers and the treatment planning system. Radiographic films were used as an additional detector for the obtained data and showed matching with TPS calculation. It can be concluded that studied small field dimensions were averaged 6% and 4% for 6 MV and 15 MV, respectively. Radiographic film measurements showed a variation in results within ±2% than TPS calculation.
Topological properties of microwave magnetoelectric fields.
Berezin, M; Kamenetskii, E O; Shavit, R
2014-02-01
Collective excitations of electron spins in a ferromagnetic sample dominated by the magnetic dipole-dipole interaction strongly influence the field structure of microwave radiation. A small quasi-two-dimensional ferrite disk with magnetic-dipolar-mode (MDM) oscillation spectra can behave as a source of specific fields in vacuum, termed magnetoelectric (ME) fields. A coupling between the time-varying electric and magnetic fields in the ME-field structures is different from such a coupling in regular electromagnetic fields. The ME fields are characterized by strong energy confinement at a subwavelength region of microwave radiation, topologically distinctive power-flow vortices, and helicity parameters [E. O. Kamenetskii, R. Joffe, and R. Shavit, Phys. Rev. E 87, 023201 (2013)]. We study topological properties of microwave ME fields by loading a MDM ferrite particle with different dielectric samples. We establish a close connection between the permittivity parameters of dielectric environment and the topology of ME fields. We show that the topology of ME fields is strongly correlated with the Fano-resonance spectra observed at terminals of a microwave structure. We reveal specific thresholds in the Fano-resonance spectra appearing at certain permittivity parameters of dielectric samples. We show that ME fields originated from MDM ferrite disks can be distinguished by topological portraits of the helicity parameters and can have a torsion degree of freedom. Importantly, the ME-field phenomena can be viewed as implementations of space-time coordinate transformations on waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Hiroshi; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8245
2015-12-31
Electronic polarization effects of a medium can have a significant impact on a chemical reaction in condensed phases. We discuss the effects on the charge transfer excitation of a chromophore, N,N-dimethyl-4-nitroaniline, in various solvents using the mean-field QM/MM method with a polarizable force field. The results show that the explicit consideration of the solvent electronic polarization effects is important especially for a solvent with a low dielectric constant when we study the solvatochromism of the chromophore.
Li, Shao-Peng; Cadotte, Marc W; Meiners, Scott J; Pu, Zhichao; Fukami, Tadashi; Jiang, Lin
2016-09-01
Whether plant communities in a given region converge towards a particular stable state during succession has long been debated, but rarely tested at a sufficiently long time scale. By analysing a 50-year continuous study of post-agricultural secondary succession in New Jersey, USA, we show that the extent of community convergence varies with the spatial scale and species abundance classes. At the larger field scale, abundance-based dissimilarities among communities decreased over time, indicating convergence of dominant species, whereas incidence-based dissimilarities showed little temporal tend, indicating no sign of convergence. In contrast, plots within each field diverged in both species composition and abundance. Abundance-based successional rates decreased over time, whereas rare species and herbaceous plants showed little change in temporal turnover rates. Initial abandonment conditions only influenced community structure early in succession. Overall, our findings provide strong evidence for scale and abundance dependence of stochastic and deterministic processes over old-field succession. © 2016 John Wiley & Sons Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Prabakaran, R.; Subramanian, P.
2018-04-01
Single crystals of L-histidine-4-nitrophenolate 4-nitrophenol[LHFNP] complex doped with Mn2+ were grown by the slow evaporation method at room temperature. The EPR spectrum reveals the entry of one Mn2+ ion in the lattice. The angular variation plot was drawn between the angles and the magnetic field position. The spin Hamiltonian parameters were obtained by EPR-NMR program. The D and E values show the rhombic field around the ion and is an interstitial one. The g value obtained here suggests that the Mn2+ ion experiences a strong field and there is a transfer of electron from the metal ion to the ligand atom. The optical absorption study shows various bands and are assigned to the transition from the ground state 6A1g(S). The Racah and crystal field parameters have also been evaluated and fitted to the experimental values. The Racah parameter shows the covalent bonding between the metal ion to the ligand.
Rhizosphere microbial communities of canola and wheat at six paired field sites
USDA-ARS?s Scientific Manuscript database
Plant physical and chemical characteristics are known to alter rhizosphere microbial communities, but the effect of introducing canola (Brassica napus L.) into monoculture wheat (Triticum aestivum L.) rotations is not clear. Results from a field study in eastern Washington showed that winter canola ...
Field Studies of Wasmannia auropunctata Alkylpyrazines: Towards Management Applications
USDA-ARS?s Scientific Manuscript database
Field bioassays with Wasmannia auropunctata (Roger) show that the alarm pheromone components 2,5-dimethyl-3-(2-methylbutyl)pyrazine and 3-methyl-2-(2-methylbutyl)pyrazine both attract and arrest ants in a natural environment. Comparisons between lures containing 2,5-dimethyl- 3-(2-methylbutyl)pyrazi...
ERIC Educational Resources Information Center
Bellocchi, Alberto; King, Donna T.; Ritchie, Stephen M.
2016-01-01
There is on-going international interest in the relationships between assessment instruments, students' understanding of science concepts and context-based curriculum approaches. This study extends earlier research showing that students can develop connections between contexts and concepts--called "fluid transitions"--when studying…
NASA Astrophysics Data System (ADS)
Carl, Janet E.
Researchers have shown that women remain underrepresented in the sciences particularly in doctorate degree attainment. This investigator aimed to extend previous research by examining possible causes of gender disparity in science graduate education using data from the Baccalaureate and Beyond Longitudinal Study, B&B.:93/03. Variables in categories of demographics, academic achievement, financial resources, degree expectations and attitudes toward educational experiences, future study and employment were analyzed by t tests and hierarchical regression to determine gender differences in graduate degree expectations and attainment by male and female science majors. Findings supported gender disparity in undergraduate and graduate fields of study. Women dominated health areas and earned terminal master's degrees, whereas men dominated the physical science field and attained a higher proportion of doctorate degrees. Results also showed no gender differences in master's degree attainment in other fields thus confirming that these graduates did not persist in science fields. Graduate degree expectation was a strong predictor for master's and doctorate degree attainment. Parent education had a significant effect on degree expectations but not on graduate degree attainment. Women tended to have lower degree expectations and earned fewer science and math credits than men. Results showed that unemployment and loans predicted doctorate degree attainment by men and women showed higher levels of employment in graduate school.
Response of ionospheric electric fields at mid-low latitudes during geomagnetic sudden commencements
NASA Astrophysics Data System (ADS)
Takahashi, N.; Kasaba, Y.; Shinbori, A.; Nishimura, Y.; Kikuchi, T.; Ebihara, Y.; Nagatsuma, T.
2014-12-01
Geomagnetic sudden commencements (SCs) are known as one of the distinct magnetospheric disturbance phenomena triggered by solar wind disturbances. Many previous studies have focused on the generation mechanism of SCs by using in-situ observations and simulations. However, the global evolution of ionospheric electric fields has primarily been estimated from the ionospheric current. Although a few studies utilized electric field data from radar observations, the coverage is limited in time, and limited component of the electric field is obtained. In this study, we investigated the response and local time dependence of the ionospheric electric field at mid-low latitudes associated with 203 SCs occurred from 1999 to 2004 by the in-situ observation of the ROCSAT-1 spacecraft. We found that the ionospheric electric field associated with SCs instantaneously responds to geomagnetic fields regardless of spacecraft local time. Our statistical analysis also showed the instantaneous response of the electric field, which indicates the global instant transmission of the electric field from polar region. In contrast, peak times in the preliminary impulse (PI) and main impulse (MI) phases were different between the ionospheric electric field and equatorial geomagnetic field (20 sec in the PI phase). Based on a comparison to the ground-ionosphere waveguide model by Kikuchi [2014], this time lag is suggested to be due to the latitudinal difference of the ionospheric conductivity. After constructing the local time distribution of the SC amplitude, we found that the dayside feature was seen at 18-22 h even the ionospheric conductivity is lower than that at dayside. We performed a magnetohydrodynamic (MHD) simulation for an ideal SC. The result of the simulation showed that the electric potential distribution is asymmetric with respect to the noon-midnight meridian, which is similar to our observational result. It appears to result from the divergence of the Hall current under the non-uniform ionospheric conductivity near the terminator as well as the auroral region.
An investigation into the induced electric fields from transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration
Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.
Assowe, O; Politano, O; Vignal, V; Arnoux, P; Diawara, B; Verners, O; van Duin, A C T
2012-12-06
Corrosion processes occurring in aqueous solutions are critically dependent upon the interaction between the metal electrode and the solvent. In this work, the interaction of a nickel substrate with water molecules has been investigated using reactive force field (ReaxFF) molecular dynamics simulations. This approach was originally developed by van Duin and co-workers to study hydrocarbon chemistry and the catalytic properties of organic compounds. To our knowledge, this method has not previously been used to study the corrosion of nickel. In this work, we studied the interaction of 480 molecules of water (ρ = 0.99 g·cm(-3)) with Ni(111) surfaces at 300 K. The results showed that a water "bilayer" was adsorbed on the nickel surface. In the absence of an applied electric field, no dissociation of water was observed. However, the nickel atoms at the surface were charged positively, whereas the first water layer was charged negatively, indicating the formation of an electric double layer. To study the corrosion of nickel in pure water, we introduced an external electric field between the metal and the solution. The electric field intensity varied between 10 and 20 MeV/cm. The presence of this electric field led to oxidation of the metal surface. The structural and morphological differences associated with the growth of this oxide film in the presence of the electric field were evaluated. The simulated atomic trajectories were used to analyze the atomic displacement during the reactive process. The growth of the oxide scale on the nickel surface was primarily due to the movement of anions toward the interior of the metal substrate and the migration of nickel toward the free surface. We found that increasing the electric field intensity sped up the corrosion of nickel. The results also showed that the oxide film thickness increased linearly with increasing electric field intensity.
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Liang, Cui
2007-01-01
The industry standard for pricing an interest-rate caplet is Black's formula. Another distinct price of the same caplet can be derived using a quantum field theory model of the forward interest rates. An empirical study is carried out to compare the two caplet pricing formulae. Historical volatility and correlation of forward interest rates are used to generate the field theory caplet price; another approach is to fit a parametric formula for the effective volatility using market caplet price. The study shows that the field theory model generates the price of a caplet and cap fairly accurately. Black's formula for a caplet is compared with field theory pricing formula. It is seen that the field theory formula for caplet price has many advantages over Black's formula.
Itinerant fermions on a triangular lattice: Unconventional magnetism and other ordered states
NASA Astrophysics Data System (ADS)
Ye, Mengxing; Chubukov, Andrey V.
2018-06-01
We consider a system of 2D fermions on a triangular lattice with well separated electron and hole pockets of similar sizes, centered at certain high-symmetry points in the Brillouin zone. We first analyze Stoner-type spin-density-wave (SDW) magnetism. We show that SDW order is degenerate at the mean-field level. Beyond mean-field, the degeneracy is lifted and is either 120∘ "triangular" order (same as for localized spins), or a collinear order with antiferromagnetic spin arrangement on two-thirds of sites, and nonmagnetic on the rest of sites. We also study a time-reversal symmetric directional spin bond order, which emerges when some interactions are repulsive and some are attractive. We show that this order is also degenerate at a mean-field level, but beyond mean-field the degeneracy is again lifted. We next consider the evolution of a magnetic order in a magnetic field starting from an SDW state in zero field. We show that a field gives rise to a canting of an SDW spin configuration. In addition, it necessarily triggers the directional bond order, which, we argue, is linearly coupled to the SDW order in a finite field. We derive the corresponding term in the free energy. Finally, we consider the interplay between an SDW order and superconductivity and charge order. For this, we analyze the flow of the couplings within parquet renormalization group (pRG) scheme. We show that magnetism wins if all interactions are repulsive and there is little energy space for pRG to develop. However, if system parameters are such that pRG runs over a wide range of energies, the system may develop either superconductivity or an unconventional charge order, which breaks time-reversal symmetry.
Failure Analysis to Identify Thermal Runaway of Bypass Diodes in Fielded Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Chuanxiao, Uchida, Yasunori; Johnston, Steve; Hacke, Peter
We studied a bypass diode recuperated from fielded modules in a rooftop installation to determine the failure mechanism. The field-failed diode showed similar characteristics to thermal runaway, specifically X-ray tomography evidence of migrated metal. We also observed burn marks on the silicon surface like those lab-stressed for thermal runaway. Reaction products are more soluble than silicon and the surface is oxygen rich.
Scalar field coupling to Einstein tensor in regular black hole spacetime
NASA Astrophysics Data System (ADS)
Zhang, Chi; Wu, Chen
2018-02-01
In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.
Interhemispheric differences in ionospheric convection: Cluster EDI observations revisited
NASA Astrophysics Data System (ADS)
Förster, M.; Haaland, S.
2015-07-01
The interaction between the interplanetary magnetic field and the geomagnetic field sets up a large-scale circulation in the magnetosphere. This circulation is also reflected in the magnetically connected ionosphere. In this paper, we present a study of ionospheric convection based on Cluster Electron Drift Instrument (EDI) satellite measurements covering both hemispheres and obtained over a full solar cycle. The results from this study show that average flow patterns and polar cap potentials for a given orientation of the interplanetary magnetic field can be very different in the two hemispheres. In particular during southward directed interplanetary magnetic field conditions, and thus enhanced energy input from the solar wind, the measurements show that the southern polar cap has a higher cross polar cap potential. There are persistent north-south asymmetries, which cannot easily be explained by the influence of external drivers. These persistent asymmetries are primarily a result of the significant differences in the strength and configuration of the geomagnetic field between the Northern and Southern Hemispheres. Since the ionosphere is magnetically connected to the magnetosphere, this difference will also be reflected in the magnetosphere in the form of different feedback from the two hemispheres. Consequently, local ionospheric conditions and the geomagnetic field configuration are important for north-south asymmetries in large regions of geospace.
Quasistationary solutions of scalar fields around accreting black holes
NASA Astrophysics Data System (ADS)
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Izquierdo, Paula; Font, José A.; Montero, Pedro J.
2016-08-01
Massive scalar fields can form long-lived configurations around black holes. These configurations, dubbed quasibound states, have been studied both in the linear and nonlinear regimes. In this paper, we show that quasibound states can form in a dynamical scenario in which the mass of the black hole grows significantly due to the capture of infalling matter. We solve the Klein-Gordon equation numerically in spherical symmetry, mimicking the evolution of the spacetime through a sequence of analytic Schwarzschild black hole solutions of increasing mass. It is found that the frequency of oscillation of the quasibound states decreases as the mass of the black hole increases. In addition, accretion leads to an increase of the exponential decay of the scalar field energy. We compare the black hole mass growth rates used in our study with estimates from observational surveys and extrapolate our results to values of the scalar field masses consistent with models that propose scalar fields as dark matter in the universe. We show that, even for unrealistically large mass accretion rates, quasibound states around accreting black holes can survive for cosmological time scales. Our results provide further support to the intriguing possibility of the existence of dark matter halos based on (ultralight) scalar fields surrounding supermassive black holes in galactic centers.
Batra, Saurabh; Cakmak, Miko
2015-12-28
In this study, the chaining and preferential alignment of barium titanate nanoparticles (100 nm) through the thickness direction of a polymer matrix in the presence of an electric field is shown. Application of an AC electric field in a well-dispersed solution leads to the formation of chains of nanoparticles in discrete rows oriented with their primary axis in the E-field direction due to dielectrophoresis. The change in the orientation of these chains was quantified through statistical analysis of SEM images and was found to be dependent on E-field, frequency and viscosity. When a DC field is applied a distinct layer consisting of dense particles was observed with micro-computed tomography. These studies show that the increase in DC voltage leads to increase in the thickness of the particle rich layer along with the packing density also increasing. Increasing the mutual interactions between particles due to the formation of particle chains in the "Z"-direction decreases the critical percolation concentration above which substantial enhancement of properties occurs. This manufacturing method therefore shows promise to lower the cost of the products for a range of applications including capacitors by either enhancing the dielectric properties for a given concentration or reduces the concentration of nanoparticles needed for a given property.
NASA Astrophysics Data System (ADS)
Lino-Zapata, F. M.; Yan, H. L.; Ríos-Jara, D.; Sánchez Llamazares, J. L.; Zhang, Y. D.; Zhao, X.; Zuo, L.
2018-01-01
The kinetic arrest (KA) of martensitic transformation (MT) observed in Ni45Co5Mn36.8In13.2 melt-spun ribbons has been studied. These alloy ribbons show an ordered columnar-like grain microstructure with the longer grain axis growing perpendicular to ribbon plane and transform martensitically from a single austenitic (AST) parent phase with the L21-type crystal structure to a monoclinic incommensurate 6 M modulated martensite (MST). Results show that the volume fraction of austenite frozen into the martensitic matrix is proportional to the applied magnetic field. A fully arrest of the structural transition is found for a magnetic field of 7 T. The metastable character of the non-equilibrium field-cooled glassy state was characterized by introducing thermal and magnetic field fluctuations or measuring the relaxation of magnetization. The relaxation of magnetization from a field-cooled kinetically arrested state at 5 and 7 T follows the Kohlrausch-Williams-Watts (KWW) stretched exponential function with a β exponent around 0.95 indicating the weak metastable nature of the system under the strong magnetic fields. The relationship between the occurrence of exchange bias and the frozen fraction of AST into the MST matrix was studied.
Magnetic Control of Convection in Electrically Nonconducting Fluids
NASA Technical Reports Server (NTRS)
Huang, Jie; Gray, Donald D.; Edwards, Boyd F.
1999-01-01
Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.
Effect of strong electric field on the conformational integrity of insulin.
Wang, Xianwei; Li, Yongxiu; He, Xiao; Chen, Shude; Zhang, John Z H
2014-10-02
A series of molecular dynamics (MD) simulations up to 1 μs for bovine insulin monomer in different external electric fields were carried out to study the effect of external electric field on conformational integrity of insulin. Our results show that the secondary structure of insulin is kept intact under the external electric field strength below 0.15 V/nm, but disruption of secondary structure is observed at 0.25 V/nm or higher electric field strength. Although the starting time of secondary structure disruption of insulin is not clearly correlated with the strength of the external electric field ranging between 0.15 and 0.60 V/nm, long time MD simulations demonstrate that the cumulative effect of exposure time under the electric field is a major cause for the damage of insulin's secondary structure. In addition, the strength of the external electric field has a significant impact on the lifetime of hydrogen bonds when it is higher than 0.60 V/nm. The fast evolution of some hydrogen bonds of bovine insulin in the presence of the 1.0 V/nm electric field shows that different microwaves could either speed up protein folding or destroy the secondary structure of globular proteins deponding on the intensity of the external electric field.
Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system
NASA Astrophysics Data System (ADS)
Si, Liu-Gang; Xiong, Hao; Zubairy, M. Suhail; Wu, Ying
2017-03-01
We analyze theoretically the features of the output field of a quadratically coupled optomechanical system, which is driven by a strong coupling field and a weak signal field, and in which the membrane (treated as a mechanical resonator) is excited by a weak coherent driving field with two-phonon resonance. We show that the system exhibits complex quantum coherent and interference effects resulting in transmission of the signal field from opacity to remarkable amplification. We also find that the total phase of the applied fields can significantly adjust the signal field's transmission spectrum. The study of the propagation of the signal field in such a quadratically coupled optomechanical system proves that the proposed device can operate as an optical transistor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowal, Grzegorz; Lazarian, A., E-mail: kowal@astro.wisc.ed, E-mail: lazarian@astro.wisc.ed
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field referencemore » frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.« less
He, Juan; Cao, Zhu; Yang, Jie; Zhao, Hui-Yan; Pan, Wei-Dong
2016-01-01
Insects show a variety of responses to electric fields and most of them are associated with immediate effects. To investigate the long-term effects of static electric field on the wheat aphid Sitbion avenae, the insert was exposed to 4 min of a static electric field at intensities of 0, 2, 4, or 6 kV/cm. Development effects over 30 consecutive generations of the insect were studied. The results showed that the electric field could exert adverse effects on the developmental duration and total longevity of S. avenae nymphs regardless of exposure intensities or generations. The effects appeared to be more intense and fluctuated at higher electric field intensities and more insect generations. The most favorable exposure for development was 6 kV/cm for 4 min while the most detrimental electric fields were 2 kV/cm for 4 min and 4 kV/cm for 4 min. Among the treatments, the first instar duration was significantly prolonged while the adult longevities were significantly shortened in the sixth generation. The intrinsic rate of increase and net reproductive rate in the sixth generation were also the lowest among the 30 consecutive generations studied. Based on the results, the adverse effects of electric fields on insects may be used in the bio-control of pest insects in terms of pest management.
Dynamics of hippocampal spatial representation in echolocating bats
Ulanovsky, Nachum; Moss, Cynthia F.
2009-01-01
The ‘place fields‘ of hippocampal pyramidal neurons are not static. For example, upon a contextual change in the environment, place-fields may ‘remap‘ within typical timescales of ~1 minute. A few studies have shown more rapid dynamics in hippocampal activity, linked to internal processes, such as switches between spatial reference frames or changes within the theta cycle. However, little is known about rapid hippocampal place-field dynamics in response to external, sensory stimuli. Here, we studied this question in big brown bats, echolocating mammals in which we can readily measure rapid changes in sensory dynamics (sonar signals), as well as rapid behavioral switches between distal and proximal exploratory modes. First, we show that place-field size was modulated by the availability of sensory information, on a timescale of ~300-milliseconds: Bat hippocampal place-fields were smallest immediately after an echolocation call, but place-fields ‘diffused’ with the passage of time after the call, when echo information was no longer arriving. Second, we show rapid modulation of hippocampal place-fields as the animal switched between two exploratory modes. Third, we compared place fields and spatial-view fields of individual neurons and found that place tuning was much more pronounced than spatial-view tuning. In addition, dynamic fluctuations in spatial-view tuning were stronger than fluctuations in place tuning. Taken together, these results suggest that spatial representation in mammalian hippocampus can be very rapidly modulated by external sensory and behavioral events. PMID:20014379
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laitinen, T.; Dalla, S., E-mail: tlmlaitinen@uclan.ac.uk
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. Wemore » show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1–10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.« less
Constructive tensorial group field theory I: The {U(1)} -{T^4_3} model
NASA Astrophysics Data System (ADS)
Lahoche, Vincent
2018-05-01
The loop vertex expansion (LVE) is a constructive technique using canonical combinatorial tools. It works well for quantum field theories without renormalization, which is the case of the field theory studied in this paper. Tensorial group field theories (TGFTs) are a new class of field theories proposed to quantize gravity. This paper is devoted to a very simple TGFT for rank three tensors with U(1) group and quartic interactions, hence nicknamed -. It has no ultraviolet divergence, and we show, with the LVE, that it is Borel summable in its coupling constant.
Quench field sensitivity of two-particle correlation in a Hubbard model
Zhang, X. Z.; Lin, S.; Song, Z.
2016-01-01
Short-range interaction can give rise to particle pairing with a short-range correlation, which may be destroyed in the presence of an external field. We study the transition between correlated and uncorrelated particle states in the framework of one- dimensional Hubbard model driven by a field. We show that the long time-scale transfer rate from an initial correlated state to final uncorrelated particle states is sensitive to the quench field strength and exhibits a periodic behavior. This process involves an irreversible energy transfer from the field to particles, leading to a quantum electrothermal effect. PMID:27250080
Mille, Matthew M; Jung, Jae Won; Lee, Choonik; Kuzmin, Gleb A; Lee, Choonsik
2018-06-01
Radiation dosimetry is an essential input for epidemiological studies of radiotherapy patients aimed at quantifying the dose-response relationship of late-term morbidity and mortality. Individualised organ dose must be estimated for all tissues of interest located in-field, near-field, or out-of-field. Whereas conventional measurement approaches are limited to points in water or anthropomorphic phantoms, computational approaches using patient images or human phantoms offer greater flexibility and can provide more detailed three-dimensional dose information. In the current study, we systematically compared four different dose calculation algorithms so that dosimetrists and epidemiologists can better understand the advantages and limitations of the various approaches at their disposal. The four dose calculations algorithms considered were as follows: the (1) Analytical Anisotropic Algorithm (AAA) and (2) Acuros XB algorithm (Acuros XB), as implemented in the Eclipse treatment planning system (TPS); (3) a Monte Carlo radiation transport code, EGSnrc; and (4) an accelerated Monte Carlo code, the x-ray Voxel Monte Carlo (XVMC). The four algorithms were compared in terms of their accuracy and appropriateness in the context of dose reconstruction for epidemiological investigations. Accuracy in peripheral dose was evaluated first by benchmarking the calculated dose profiles against measurements in a homogeneous water phantom. Additional simulations in a heterogeneous cylinder phantom evaluated the performance of the algorithms in the presence of tissue heterogeneity. In general, we found that the algorithms contained within the commercial TPS (AAA and Acuros XB) were fast and accurate in-field or near-field, but not acceptable out-of-field. Therefore, the TPS is best suited for epidemiological studies involving large cohorts and where the organs of interest are located in-field or partially in-field. The EGSnrc and XVMC codes showed excellent agreement with measurements both in-field and out-of-field. The EGSnrc code was the most accurate dosimetry approach, but was too slow to be used for large-scale epidemiological cohorts. The XVMC code showed similar accuracy to EGSnrc, but was significantly faster, and thus epidemiological applications seem feasible, especially when the organs of interest reside far away from the field edge.
Collegiate Grading Practices and the Gender Pay Gap.
ERIC Educational Resources Information Center
Dowd, Alicia C.
2000-01-01
Presents a theoretical analysis showing that relatively low grading quantitative fields and high grading verbal fields create a disincentive for college women to invest in quantitative study. Extends research by R. Sabot and J. Wakeman-Linn. Models pressures on grading practices using higher education production functions. (Author/SLD)
Wormhole solutions with a complex ghost scalar field and their instability
NASA Astrophysics Data System (ADS)
Dzhunushaliev, Vladimir; Folomeev, Vladimir; Kleihaus, Burkhard; Kunz, Jutta
2018-01-01
We study compact configurations with a nontrivial wormholelike spacetime topology supported by a complex ghost scalar field with a quartic self-interaction. For this case, we obtain regular asymptotically flat equilibrium solutions possessing reflection symmetry. We then show their instability with respect to linear radial perturbations.
Racial and Marital Status Differences in Faculty Pay.
ERIC Educational Resources Information Center
Toutkoushian, Robert K.
1998-01-01
Study estimated how pay disparity varied by race, marital status, gender, and field. Results show considerable differences overall, with unexplained wage gaps for racial/ethnic group, dramatic variations between men and women, and further by field. Earnings differences among racial/ethnic categories are not uniform. The return on marriage for men…
NASA Astrophysics Data System (ADS)
Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude
2017-07-01
We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.
2016-10-14
We introduce new Monte Carlo methods to quantify errors in our inversions arising from Gaussian time-dependent changes in the external field and the...all study areas; Appendix A shows de- ails of magnetic inversions for all these areas (see Sections 2.3 and .4 ). Supplementary Appendix B shows maps...of the total field for ll available days that were considered, but not used. .3. Inversion algorithm 1: defined dipoles, constant magnetization DD
Noel, Martin; Fortin, Karine; Bouyer, Laurent J
2009-01-01
Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases. PMID:19493356
Noel, Martin; Fortin, Karine; Bouyer, Laurent J
2009-06-03
Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.
Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)
NASA Astrophysics Data System (ADS)
Lal, Surender; Mukherjee, K.; Yadav, C. S.
2018-02-01
Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.
Huang, Bin; Li, Jun; Fang, Wensheng; Liu, Pengfei; Guo, Meixia; Yan, Dongdong; Wang, Qiuxia; Cao, Aocheng
2016-11-23
Herbicides are usually applied to agricultural fields following soil fumigation to provide effective weed control in high-value cash crops. However, phytotoxicity has been observed in ginger seedlings following the application of herbicides in fumigated fields. This study tested a mixture of herbicides (pendimethalin and oxyfluorfen) and several fumigant treatments in laboratory and field studies to determine their effect on the growth of ginger. The results showed that soil fumigation significantly (P < 0.05) extended the degradation period of these herbicides in the field and in laboratory studies. The half-life of pendimethalin was extended by an average of approximately 1.29 times in the field and 1.74 times in the laboratory. The half-life of oxyfluorfen was extended by an average of about 1.19 times in the field and 1.32 times in the laboratory. Moreover, the extended period of herbicide degradation in the fumigant and nonfumigant treatments significantly reduced ginger plant height, leaf number, stem diameter, and the chlorophyll content. The study concluded that applying a dose below the recommended rate of these herbicides in chloropicrin (CP) or CP + 1,3-dichloropropene fumigated ginger fields is appropriate, as application of the recommended herbicide dose in fumigated soil may be phytotoxic to ginger.
Robustness of inflation to inhomogeneous initial conditions
NASA Astrophysics Data System (ADS)
Clough, Katy; Lim, Eugene A.; DiNunno, Brandon S.; Fischler, Willy; Flauger, Raphael; Paban, Sonia
2017-09-01
We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out in the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K, such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.
Zebrafish cardiac development requires a conserved secondary heart field
Hami, Danyal; Grimes, Adrian C.; Tsai, Huai-Jen; Kirby, Margaret L.
2011-01-01
The secondary heart field is a conserved developmental domain in avian and mammalian embryos that contributes myocardium and smooth muscle to the definitive cardiac arterial pole. This field is part of the overall heart field and its myocardial component has been fate mapped from the epiblast to the heart in both mammals and birds. In this study we show that the population that gives rise to the arterial pole of the zebrafish can be traced from the epiblast, is a discrete part of the mesodermal heart field, and contributes myocardium after initial heart tube formation, giving rise to both smooth muscle and myocardium. We also show that Isl1, a transcription factor associated with undifferentiated cells in the secondary heart field in other species, is active in this field. Furthermore, Bmp signaling promotes myocardial differentiation from the arterial pole progenitor population, whereas inhibiting Smad1/5/8 phosphorylation leads to reduced myocardial differentiation with subsequent increased smooth muscle differentiation. Molecular pathways required for secondary heart field development are conserved in teleosts, as we demonstrate that the transcription factor Tbx1 and the Sonic hedgehog pathway are necessary for normal development of the zebrafish arterial pole. PMID:21558385
NASA Astrophysics Data System (ADS)
Basel, Tek Prasad
We studied optical, electrical, and magnetic field responses of films and devices based on organic semiconductors that are used for organic light emitting diodes (OLEDs) and photovoltaic (OPV) solar cell applications. Our studies show that the hyperfine interaction (HFI)-mediated spin mixing is the key process underlying various magnetic field effects (MFE) and spin transport in aluminum tris(8-hydroxyquinoline)[Alq3]-based OLEDs and organic spin-valve (OSV). Conductivity-detected magnetic resonance in OLEDs and magneto-resistance (MR) in OSVs show substantial isotope dependence. In contrast, isotope-insensitive behavior in the magneto-conductance (MC) of same devices is explained by the collision of spin ½ carriers with triplet polaron pairs. We used steady state optical spectroscopy for studying the energy transfer dynamics in films and OLEDs based on host-guest blends of the fluorescent polymer and phosphorescent molecule. We have also studied the magnetic-field controlled color manipulation in these devices, which provide a strong proof for the `polaron-pair' mechanism underlying the MFE in organic devices. The critical issue that hampers organic spintronics device applications is significant magneto-electroluminescence (MEL) at room temperature (RT). Whereas inorganic spin valves (ISVs) show RT magneto-resistance, MR>80%, however, the devices do not exhibit electroluminescence (EL). In contrast, OLEDs show substantive EL emission, and are particularly attractive because of their flexibility, low cost, and potential for multicolor display. We report a conceptual novel hybrid organic/inorganic spintronics device (h-OLED), where we employ both ISV with large MR at RT, and OLED that has efficient EL emission. We investigated the charge transfer process in an OPV solar cell through optical, electrical, and magnetic field measurements of thin films and devices based on a low bandgap polymer, PTB7 (fluorinated poly-thienothiophene-benzodithiophene). We found that one of the major losses that limit the power conversion efficiency of OPV devices is the formation of triplet excitons in the polymer through recombination of charge-transfer (CT) excitons at the interface, and presented a method to suppress the dissociation of CT states by incorporating the spin ½ additive, galvinoxyl in the bulk heterojunction architecture of the active organic blend layer.
Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?
Erdmann, Weronika; Idzikowski, Bogdan; Kowalski, Wojciech; Szymański, Bogdan; Kosicki, Jakub Z.; Kaczmarek, Łukasz
2017-01-01
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth’s organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field. PMID:28886031
Can the tardigrade Hypsibius dujardini survive in the absence of the geomagnetic field?
Erdmann, Weronika; Idzikowski, Bogdan; Kowalski, Wojciech; Szymański, Bogdan; Kosicki, Jakub Z; Kaczmarek, Łukasz
2017-01-01
Earth's geomagnetic field has undergone critical changes in the past. Studies on the influence of the magnetic field on Earth's organisms are crucial for the understanding of evolution of life on Earth and astrobiological considerations. Numerous studies conducted both on plants and animals confirmed the significant influence of the geomagnetic field on the metabolism of living organisms. Water bears (Tardigrada), which are a mong the most resistant animals due to their cryptobiotic abilities, show significant resistance to a number of environmental stressors, but the influence of the geomagnetic field on their fitness has not been addressed before. In our studies, we used eutardigrade Hypsibius dujardini to analyse whether isolation from the geomagnetic field had an effect on mortality. We found that Hypsibius dujardini specimens demonstrated relatively high mortality during anhydrobiosis, also in control groups exposed to the normal geomagnetic field. Moreover, similar mortality was observed in anhydrobiotic specimens isolated from the geomagnetic field. However, a significant difference was noted between tardigrade survival and the moment of their isolation from the geomagnetic field. In particular, tardigrade mortality substantially increased in absence of a magnetic field during the process of entering anhydrobiosis and returning to active life. Our results suggest that these processes rely on complex metabolic processes that are critically influenced by the geomagnetic field.
Zebrafish respond to the geomagnetic field by bimodal and group-dependent orientation.
Takebe, Akira; Furutani, Toshiki; Wada, Tatsunori; Koinuma, Masami; Kubo, Yoko; Okano, Keiko; Okano, Toshiyuki
2012-01-01
A variety of animals use Earth's magnetic field as a reference for their orientation behaviour. Although distinctive magnetoreception mechanisms have been postulated for many migrating or homing animals, the molecular mechanisms are still undefined. In this study, we found that zebrafish, a model organism suitable for genetic manipulation, responded to a magnetic field as weak as the geomagnetic field. Without any training, zebrafish were individually released into a circular arena that was placed in an artificial geomagnetic field, and their preferred magnetic directions were recorded. Individuals from five out of the seven zebrafish groups studied, groups mostly comprised of the offspring of predetermined pairs, showed bidirectional orientation with group-specific preferences regardless of close kinships. The preferred directions did not seem to depend on gender, age or surrounding environmental factors, implying that directional preference was genetically defined. The present findings may facilitate future study on the molecular mechanisms underlying magnetoreception.
A new method for indirectly estimating infiltration of paddy fields in situ
NASA Astrophysics Data System (ADS)
Xu, Yunqiang; Su, Baolin; Wang, Hongqi; He, Jingyi
2018-06-01
Infiltration is one of the major procedures in water balance research and pollution load estimation in paddy fields. In this study, a new method for indirectly estimating infiltration of paddy fields in situ was proposed and implemented in Taihu Lake basin. Since when there were no rainfall, irrigation and artificial drainage, the water depth variation process of a paddy field is only influenced by evapotranspiration and infiltration (E + F). Firstly, (E + F) was estimated by deciding the steady decreasing rate of water depth; then the evapotranspiration (ET) of the paddy field was calculated by using the crop coefficient method with the recommended FAO-56 Penman-Monteith equation; finally, the infiltration of the paddy field was obtained by subtracting ET from (E + F). Results show that the mean infiltration of the studied paddy field during rice jointing-booting period was 7.41 mm day-1, and the mean vertical infiltration and lateral seepage of the paddy field were 5.46 and 1.95 mm day-1 respectively.
NASA Astrophysics Data System (ADS)
Raouafi, N.-E.; Solanki, S. K.; Wiegelmann, T.
2009-06-01
Our understanding of coronal phenomena, such as coronal plasma thermodynamics, faces a major handicap caused by missing coronal magnetic field measurements. Several lines in the UV wavelength range present suitable sensitivity to determine the coronal magnetic field via the Hanle effect. The latter is a largely unexplored diagnostic of coronal magnetic fields with a very high potential. Here we study the magnitude of the Hanle-effect signal to be expected outside the solar limb due to the Hanle effect in polarized radiation from the H I Lyα and β lines, which are among the brightest lines in the off-limb coronal FUV spectrum. For this purpose we use a magnetic field structure obtained by extrapolating the magnetic field starting from photospheric magnetograms. The diagnostic potential of these lines for determining the coronal magnetic field, as well as their limitations are studied. We show that these lines, in particular H I Lyβ, are useful for such measurements.
Jochim, Bethany; Siemering, R; Zohrabi, M; Voznyuk, O; Mahowald, J B; Schmitz, D G; Betsch, K J; Berry, Ben; Severt, T; Kling, Nora G; Burwitz, T G; Carnes, K D; Kling, M F; Ben-Itzhak, I; Wells, E; de Vivie-Riedle, R
2017-06-30
Much of our intuition about strong-field processes is built upon studies of diatomic molecules, which typically have electronic states that are relatively well separated in energy. In polyatomic molecules, however, the electronic states are closer together, leading to more complex interactions. A combined experimental and theoretical investigation of strong-field ionization followed by hydrogen elimination in the hydrocarbon series C 2 D 2 , C 2 D 4 and C 2 D 6 reveals that the photofragment angular distributions can only be understood when the field-dressed orbitals rather than the field-free orbitals are considered. Our measured angular distributions and intensity dependence show that these field-dressed orbitals can have strong Rydberg character for certain orientations of the molecule relative to the laser polarization and that they may contribute significantly to the hydrogen elimination dissociative ionization yield. These findings suggest that Rydberg contributions to field-dressed orbitals should be routinely considered when studying polyatomic molecules in intense laser fields.
Stressing biological samples with pulsed magnetic fields: physical aspects and experimental results
NASA Astrophysics Data System (ADS)
Delle Side, D.; Specchia, V.; D'Attis, S.; Giuffreda, E.; Quarta, G.; Calcagnile, L.; Bozzetti, M. P.; Nassisi, V.
2016-05-01
Magnetic field effects are diffused among living organisms. They are mainly studied with static or extremely low frequency fields, while scarce information is available for pulsed fields. This work is devoted to the study of the interaction between Drosophila melanogaster, both adults and larvae, and pulsed magnetic fields. We exposed the organisms to a peak field of 0.4 T, lasting for about 2 μ s, within an ad hoc designed copper coil. Adult individuals didn't present any deregulation of repetitive sequences in the germ line of Drosophila. Instead, we noticed a marked magnetic field effect in larvae. Polytene chromosomes coming from treated individuals showed the presence of heat shock puffs; the same organisms revealed also an upregulation of the genes encoding for the Hsp70 protein. These observations suggest that the larvae underwent an oxidative stress caused by the modulation of free radicals' yield induced by the magnetic field through a radical pair mechanism.
Nonlinear whistler wave model for lion roars in the Earth's magnetosheath
NASA Astrophysics Data System (ADS)
Dwivedi, N. K.; Singh, S.
2017-09-01
In the present study, we construct a nonlinear whistler wave model to explain the magnetic field spectra observed for lion roars in the Earth's magnetosheath region. We use two-fluid theory and semi-analytical approach to derive the dynamical equation of whistler wave propagating along the ambient magnetic field. We examine the magnetic field localization of parallel propagating whistler wave in the intermediate beta plasma applicable to the Earth's magnetosheath. In addition, we investigate spectral features of the magnetic field fluctuations and the spectral slope value. The magnetic field spectrum obtained by semi-analytical approach shows a spectral break point and becomes steeper at higher wave numbers. The observations of IMP 6 plasma waves and magnetometer experiment reveal the existence of short period magnetic field fluctuations in the magnetosheath. The observation shows the broadband spectrum with a spectral slope of -4.5 superimposed with a narrow band peak. The broadband fluctuations appear due to the energy cascades attributed by low-frequency magnetohydrodynamic modes, whereas, a narrow band peak is observed due to the short period lion roars bursts. The energy spectrum predicted by the present theoretical model shows a similar broadband spectrum in the wave number domain with a spectral slope of -3.2, however, it does not show any narrow band peak. Further, we present a comparison between theoretical energy spectrum and the observed spectral slope in the frequency domain. The present semi-analytical model provides exposure to the whistler wave turbulence in the Earth's magnetosheath.
NASA Astrophysics Data System (ADS)
Corrêa, E. L.; Silva, J. O.; Vivolo, V.; Potiens, M. P. A.; Daros, K. A. C.; Medeiros, R. B.
2014-02-01
This study presents the results of the intensity variation of the radiation field in a mammographic system using the thermoluminescent dosimeter TLD-900 (CaSO4:Dy). These TLDs were calibrated and characterized in an industrial X-ray system used for instruments calibration, in the energy range used in mammography. They were distributed in a matrix of 19 lines and five columns, covering an area of 18 cm×8 cm in the center of the radiation field on the clinical equipment. The results showed a variation of the intensity probably explained by the non-uniformity of the field due to the heel effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasrija, Kanika, E-mail: kanikapasrija@iisermohali.ac.in; Kumar, Sanjeev, E-mail: sanjeev@iisermohali.ac.in
We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlightsmore » a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.« less
On the classification of elliptic foliations induced by real quadratic fields with center
NASA Astrophysics Data System (ADS)
Puchuri, Liliana; Bueno, Orestes
2016-12-01
Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto.
Continuum modes of nonlocal field theories
NASA Astrophysics Data System (ADS)
Saravani, Mehdi
2018-04-01
We study a class of nonlocal Lorentzian quantum field theories, where the d’Alembertian operator \\Box is replaced by a non-analytic function of the d’Alembertian, f(\\Box) . This is inspired by the causal set program where such an evolution arises as the continuum limit of a wave equation on causal sets. The spectrum of these theories contains a continuum of massive excitations. This is perhaps the most important feature which leads to distinct/interesting phenomenology. In this paper, we study properties of the continuum massive modes in depth. We derive the path integral formulation of these theories. Meanwhile, this derivation introduces a dual picture in terms of local fields which clearly shows how continuum massive modes of the nonlocal field interact. As an example, we calculate the leading order modification to the Casimir force of a pair of parallel planes. The dual picture formulation opens the way for future developments in the study of nonlocal field theories using tools already available in local quantum field theories.
ON THE MISALIGNMENT BETWEEN CHROMOSPHERIC FEATURES AND THE MAGNETIC FIELD ON THE SUN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-Sykora, Juan; Pontieu, Bart De; Hansteen, Viggo
2016-11-01
Observations of the upper chromosphere show an enormous amount of intricate fine structure. Much of this comes in the form of linear features, which are most often assumed to be well aligned with the direction of the magnetic field in the low plasma β regime that is thought to dominate the upper chromosphere. We use advanced radiative magnetohydrodynamic simulations, including the effects of ion-neutral interactions (using the generalized Ohm’s law) in the partially ionized chromosphere, to show that the magnetic field is often not well aligned with chromospheric features. This occurs where the ambipolar diffusion is large, i.e., ions andmore » neutral populations decouple as the ion-neutral collision frequency drops, allowing the field to slip through the neutral population; where currents perpendicular to the field are strong; and where thermodynamic timescales are longer than or similar to those of ambipolar diffusion. We find this often happens in dynamic spicule or fibril-like features at the top of the chromosphere. This has important consequences for field extrapolation methods, which increasingly use such upper chromospheric features to help constrain the chromospheric magnetic field: our results invalidate the underlying assumption that these features are aligned with the field. In addition, our results cast doubt on results from 1D hydrodynamic models, which assume that plasma remains on the same field lines. Finally, our simulations show that ambipolar diffusion significantly alters the amount of free energy available in the coronal part of our simulated volume, which is likely to have consequences for studies of flare initiation.« less
Okamoto, Yoshikazu; Maehara, Kiyoshi; Kanahori, Tetsuya; Hiyama, Takashi; Kawamura, Takashi; Minami, Manabu
2016-04-01
The aim of this preliminary study was to examine the capability of screening for elbow injuries induced by baseball using a low field small joint MRI system. Sixty-two players in the 4th-6th elementary school grades, with ages ranging from 9 to 12 years, participated in this study. Screening for elbow injuries was performed using a low-magnetic-field (0.2-T) magnetic resonance imaging (MRI) system designed for examinations of small joints of the extremities. Gradient-echo coronal, sagittal, and short-tau inversion recovery (STIR) coronal images of the dominant arm used for pitching were obtained to identify medial collateral ligament (MCL) injuries with or without avulsion fracture and osteochondritis dissecans. All 62 examinations were performed successfully, with 26 players (41.9 %) showing positive findings, all being confined to the MCL. No child showed bone damage. All criteria in the MRI evaluation of injuries showed high agreement rates and kappa values between two radiologists. Screening for early detection of elbow injuries in junior Japanese baseball players can be successfully performed using a low-field MRI system specialized for small joints. The percentage of MCL injury without avulsion fracture was unexpectedly high (41.9 %).
A novel platform to study magnetized high-velocity collisionless shocks
Higginson, D. P.; Korneev, Ph; Béard, J.; ...
2014-12-13
An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less
A novel platform to study magnetized high-velocity collisionless shocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginson, D. P.; Korneev, Ph; Béard, J.
An experimental platform to study the interaction of two colliding high-velocity (0.01–0.2c; 0.05–20 MeV) proton plasmas in a high strength (20 T) magnetic field is introduced. This platform aims to study the collision of magnetized plasmas accelerated via the Target-Normal-Sheath-Acceleration mechanism and initially separated by distances of a few hundred microns. The plasmas are accelerated from solid targets positioned inside a few cubic millimeter cavity located within a Helmholtz coil that provides up to 20 T magnetic fields. Various parameters of the plasmas at their interaction location are estimated. These show an interaction that is highly non-collisional, and that becomesmore » more and more dominated by the magnetic fields as time progresses (from 5 to 60 ps). Particle-in-cell simulations are used to reproduce the initial acceleration of the plasma both via simulations including the laser interaction and via simulations that start with preheated electrons (to save dramatically on computational expense). The benchmarking of such simulations with the experiment and with each other will be used to understand the physical interaction when a magnetic field is applied. In conclusion, the experimental density profile of the interacting plasmas is shown in the case without an applied magnetic magnetic field, so to show that without an applied field that the development of high-velocity shocks, as a result of particle-to-particle collisions, is not achievable in the configuration considered.« less
Carbon dioxide field flooding: a retrospective study.
Frados, A
2001-05-01
The carbon dioxide surgical field flooding technique has long been tried with varying degrees of success. A recent revival of the technique that began over 40 years ago in cardiac surgery, has brought promise as well as improved results attributable to improved technology. Studies at JFK Medical Center have been very successful using the carbon dioxide surgical field-flooding technique. Establishing new guidelines will assist other institutions in attempting this "old" technique with renewed success. Modern, more efficient equipment make use of carbon dioxide to displace intracardiac gases a safe procedure. The carbon dioxide field-flooding technique is safer, easier, and more efficacious than traditional de-airing techniques. This study shows that a long-standing procedure is valuable by observing the results, and, retrospectively evaluating stroke rates among cardiac valve cases at the hospital.
The Electron Diffusion Region: Forces and Currents
NASA Technical Reports Server (NTRS)
Hesse, Michael
2008-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertia1 effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.
The Electron Diffusion Region: Forces and Currents
NASA Technical Reports Server (NTRS)
Hesse, Michael
2009-01-01
The dissipation mechanism of magnetic reconnection remains a subject of intense scientific interest. On one hand, one set of recent studies have shown that particle inertia-based processes, which include thermal and bulk inertial effects, provide the reconnection electric field in the diffusion region. On the other hand, a second set of studies emphasizes the role of wave-particle interactions in providing anomalous resistivity in the diffusion region. In this presentation, we present analytical theory results, as well as PIC simulations of guide-field magnetic reconnection. We will show that the thermal electron inertia-based dissipation mechanism, expressed through nongyrotropic electron pressure tensors, remains viable in three dimensions. We will demonstrate the thermal inertia effect through studies of electron distribution functions. Furthermore, we will show that the reconnection electric field provides a transient acceleration on particles traversing the inner reconnection region. This inertial effect can be described as a diffusion-like term of the current density, which matches key features of electron distribution functions.
Effective Lesson Planning: Field Trips in the Science Curriculum
NASA Astrophysics Data System (ADS)
Rieger, C. R.
2010-10-01
Science field trips can positively impact and motivate students. However, if a field trip is not executed properly, with appropriate preparation and follow-up reinforcement, it can result in a loss of valuable educational time and promote misconceptions in the students. This study was undertaken to determine if a classroom lesson before an out-of-the-classroom activity would affect learner gain more or less than a lesson after the activity. The study was based on the immersive theater movie ``Earth's Wild Ride'' coupled with a teacher-led Power Point lesson. The participants in the study were students in a sixth grade physical science class. The order of lessons showed no detectable effect on final learner outcomes. Based on pre- and post-testing, improvement in mean learning gain came from the teacher-led lesson independent of the movie. The visit to the immersive theater, however, had significant positive effects that did not show up in the quantitative results of the testing.
Effects of electric field on micro-scale flame properties of biobutanol fuel
Xu, Tao; Chen, Qinglin; Zhang, Bingjian; Lu, Shushen; Mo, Dongchuan; Zhang, Zhengguo; Gao, Xuenong
2016-01-01
With the increasing need of smaller power sources for satellites, energy systems and engine equipment, microcombustion pose a potential as alternative power source to conventional batteries. As the substitute fuel source for gasoline, biobutanol shows more promising characteristics than ethanol. In this study, the diffusion microflame of liquid biobutanol under electric field have been examined through in-lab experiment and numerical simulation. It is found that traditional gas jet diffusion flame theory shows significant inconsistency with the experimental results of micro scale flame in electric field. The results suggest that with the increase of electric field intensity, the quenching flow rate decrease first and increase after it reach its minimum, while the flame height and highest flame temperature increase first and drop after its peak value. In addition, it was also observed that the flame height and highest temperature for smaller tube can reach its maximum faster. Therefore, the interaction between microscale effect and electric field plays a significant role on understanding the microcombustion of liquid fuel. Therefore, FLUENT simulation was adopted to understand and measure the impacts of microflame characteristic parameters. The final numerical results are consistent with the experimental data and show a high reliability. PMID:27609428
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babarao, Ravichandar; Dai, Sheng; Jiang, Deen
2011-01-01
When all cages are assumed to be accessible, popular force fields such as universal force field (UFF) and DREIDING dramatically overpredicted gas adsorption capacity in two widely studied zeolitic-imidazolate frameworks (ZIFs), ZIF-68 and -69. Instead of adjusting the force-field parameters to match the experiments, herein we show that when the pore topology and accessibility are correctly taken into account, simulations with the standard force fields agree very well with the experiments. Careful inspection shows that ZIF-68 and -69 have two one-dimensional channels, which are not interaccessible to gases. The small channel consists of alternating small (HPR) and medium (GME) cages,more » while the large channel comprises the large (KNO) cages. Our analysis indicates that the small channel is not accessible to gases such as CO{sub 2}. So when the cages in the small channel are intentionally blocked in our simulation, the predicted adsorption capacities of CO{sub 2}, CH{sub 4} and N{sub 2} at room temperature from standard force-field parameters for the framework show excellent agreement with the experimental results. In the case of H{sub 2}, all cages are accessible, so simulation results without cage-blocking show excellent agreement with experiment. Due to the promising potential of ZIFs in gas storage and separation, our work here shows that pore topology and accessibility should be carefully examined to understand how gases adsorb in ZIFs.« less
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
Cao, Wenlong; Vaddella, Venkata; Biswas, Sagor; Perkins, Katherine; Clay, Cameron; Wu, Tong; Zheng, Yawen; Ndegwa, Pius; Pandey, Pramod
2016-11-01
Vermicomposting (VC) has proven to be a promising method for treating garden, household, and municipal wastes. Although the VC has been used extensively for converting wastes into fertilizers, pathogens such as Escherichia coli (E. coli) survival during this process is not well documented. In this study, both lab and field scale experiments were conducted assessing the impacts of earthworms in reducing E. coli concentration during VC of food waste. In addition, other pertinent parameters such as temperature, carbon and nitrogen content, moisture content, pH, volatile solids, micronutrients (P, K, Ca, Mg, and S), and heavy metals (Zn, Mn, Fe, and Cu) were monitored during the study. The lab and field scale experiments were conducted for 107 and 103 days, respectively. The carbon to nitrogen ratio (C/N) decreased by 54 % in the lab scale study and by 36 % in the field study. Results showed that VC was not significantly effective in reducing E. coli levels in food waste under both lab and field scale settings. The carbon to nitrogen ratio (C/N) decreased by 54 % in the lab scale study and by 36 % in the field study.
Cayol, V.; Cornet, F.H.
1998-01-01
We have investigated the effects of topography on the surface-deformation field of volcanoes. Our study provides limits to the use of classical half-space models. Considering axisymmetrical volcanoes, we show that interpreting ground-surface displacements with half-space models can lead to erroneous estimations of the shape of the deformation source. When the average slope of the flanks of a volcano exceeds 20??, tilting in the summit area is reversed to that expected for a flat surface. Thus, neglecting topography may lead to misinterpreting an inflation of the source as a deflation. Comparisons of Mogi's model with a three-dimensional model shows that ignoring topography may lead to an overestimate of the source-volume change by as much as 50% for a slope of 30??. This comparison also shows that the depths calculated by using Mogi's solution for prominent volcanoes should be considered as depths from the summit of the edifices. Finally, we illustrate these topographic effects by analyzing the deformation field measured by radar interferometry at Mount Etna during its 1991-1993 eruption. A three-dimensional modeling calculation shows that the flattening of the deflation field near the volcano's summit is probably a topographic effect.
Quantum chaos and breaking of all anti-unitary symmetries in Rydberg excitons.
Aßmann, Marc; Thewes, Johannes; Fröhlich, Dietmar; Bayer, Manfred
2016-07-01
Symmetries are the underlying principles of fundamental interactions in nature. Chaos in a quantum system may emerge from breaking these symmetries. Compared to vacuum, crystals are attractive for studying quantum chaos, as they not only break spatial isotropy, but also lead to novel quasiparticles with modified interactions. Here we study yellow Rydberg excitons in cuprous oxide which couple strongly to the vacuum light field and interact significantly with crystal phonons, leading to inversion symmetry breaking. In a magnetic field, time-reversal symmetry is also broken and the exciton states show a complex splitting pattern, resulting in quadratic level repulsion for small splittings. In contrast to atomic chaotic systems in a magnetic field, which show only a linear level repulsion, this is a signature of a system where all anti-unitary symmetries are broken simultaneously. This behaviour can otherwise be found only for the electro-weak interaction or engineered billiards.
NASA Technical Reports Server (NTRS)
Henize, K. G.; Wray, J. D.; Kondo, Y.; Ocallaghan, F. (Principal Investigator)
1975-01-01
The author has identified the following significant results. During all three Skylab missions, prism-on observations were obtained in 188 starfields and prism-off observations in 31 starfields. In general, the fields are concentrated in the Milky Way where the frequency of hot stars is highest. These fields cover an area approximately 3660 degrees and include roughly 24 percent of a band 30 deg wide centered on the plane of the Milky Way. A census of stars in the prism-on fields shows that nearly 6,000 stars have measurable flux data at a wavelength of 2600A, that 1,600 have measurable data at 2000A, and that 400 show useful data at 1500A. Obvious absorption or emission features shortward of 2000A are visible in approximately 120 stars. This represents a bonanza of data useful for statistical studies of stellar classification and of interstellar reddening as well as for studies of various types of peculiar stars.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
ERIC Educational Resources Information Center
Horn, Laura J.; Zahn, Lisa
2001-01-01
Investigated the relationship between undergraduate major and early employment outcomes of college graduates who did not pursue graduate education within 4 years after earning their bachelor's degree. Data from the Baccalaureate and Beyond Study (National Center for Education Statistics) show that graduates who enter applied fields of engineering,…
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
Measurements of lunar magnetic field interaction with the solar wind.
NASA Technical Reports Server (NTRS)
Dyal, P.; Parkin, C. W.; Snyder, C. W.; Clay, D. R.
1972-01-01
Study of the compression of the remanent lunar magnetic field by the solar wind, based on measurements of remanent magnetic fields at four Apollo landing sites and of the solar wind at two of these sites. Available data show that the remanent magnetic field at the lunar surface is compressed as much as 40% above its initial value by the solar wind, but the total remanent magnetic pressure is less than the stagnation pressure by a factor of six, implying that a local shock is not formed.
NASA Astrophysics Data System (ADS)
Ma, Qilin; Liu, Guangqiang; Chen, Yiqing; Zhao, Qian; Guo, Jing; Yang, Shaosong; Cai, Weiping
2018-03-01
Dimer nanoparticles in a sandwich structure exhibit a large electric-field intensity enhancement. The dispersion relation between the surface plasmon resonance (SPR) and particle size has not been reported yet, owing to the effects of the particle size, shape, materials, etc. A sandwich structure, which contains a nano-right-triangle dimer array, SiO2 spacer, and Au film, is proposed, with a significant electric-field intensity enhancement and polarization-changing properties. The dependence of the peak positions of the two localized surface plasmon resonance (LSPR) modes as a function of the triangle thicknesses is discussed; different trends are observed for the different LSPR modes. We introduce a concept on the rule for LSPR peak position change, which can contribute to a better understanding of the LSPR modes. In addition, centrosymmetric but not axisymmetric structures, which like in our study exhibit surface plasmon polaritons typically show different responses to a different polarization of the incident light. Here, we showed that our centrosymmetric but not axisymmetric structure can change the linearly polarized light into a circularly or elliptically polarized wave, by surface plasmon-induced polarization properties. Far-field distribution maps are used to study the properties of the surface plasmons-induced circular or elliptic polarization wave. These findings could be employed to better understand the surface plasmon-induced polarization properties showed in previous reports and near-field of surface plasmons. These findings could be employed to better understand the near-field of surface plasmons and polarization properties.
Remón, C; Lobbia, P; Zerba, E; Mougabure-Cueto, G
2017-12-01
The domiciliary presence of Triatoma infestans (Klug) (Hemiptera: Reduviidae) after control interventions was reported in recent years. Toxicological studies showed high levels of resistance to pyrethroids suggesting resistance as one of the main causes of deficient control. The aim of the present study was to develop a protocol to test resistance to deltamethrin in T. infestans collected from the field by discriminate concentration. To evaluate field insects, the effect of age (early vs. later) and nutritional state (starved vs. fed) on the deltamethrin susceptibility of each developmental stage was studied. Topical and insecticide impregnated paper bioassays were used. Using the impregnated paper, the susceptibility to deltamethrin was not affected by the age of the stadium and the nutritional states, and varied with the post-exposure time and with the different developmental stages. A discriminant concentration of deltamethrin (0.36% w/v) impregnated in filter paper was established for all developmental stages. Finally, the methodology and the discriminant concentration were evaluated in the laboratory showing high sensitivity in the discrimination of resistance. The present study developed a methodology of exposure to insecticide impregnated papers and proposes a protocol to test T. infestans in field populations with the aim to detect early evolution of resistance to deltamethrin. © 2017 The Royal Entomological Society.
Kainz, Sarah; Weitzer, Jacob; Zingale, Stefania; Köllner, Johanna; Albrecht, Cornelia; Gaidora, Angelika; Rudorfer, Marie-Theres; Nürnberger, Anna; Kirchengast, Sylvia
2018-06-11
Natural sciences are still considered as typical male fields, while humanities are interpreted as typical female topics. Economic, social but also biological factors are discussed to influence the choice of study field. In the present study, the impact of prenatal sex hormone exposure - estimated by 2D:4D ratio - on the choice of study field was analyzed. Two hundred Viennese students between the ages 18 and 28 years were enrolled. Lengths of the index finger and the ring finger were measured directly from the hand of the participants. 2D:4D ratios were calculated. Male and female students differed significantly in 2D:4D ratio. As expected, female students showed significantly higher 2D:4D ratios than their male counterparts ( p < 0.001). Male scientists and male humanists differed significantly in 2D:4D ratio. The 2D:4D of male humanists was significantly higher than that of scientists ( p = 0.037). Female scientists and female humanists however, did not differ significantly in 2D:4D ratio. Both showed a typical female 2D:4D ratio. This was also true of male humanists. Consequently low prenatal androgen exposure may be associated with the choice of humanities among male students.
Anguera, M. Teresa; Camerino, Oleguer; Castañer, Marta; Sánchez-Algarra, Pedro; Onwuegbuzie, Anthony J.
2017-01-01
Mixed methods studies are been increasingly applied to a diversity of fields. In this paper, we discuss the growing use—and enormous potential—of mixed methods research in the field of sport and physical activity. A second aim is to contribute to strengthening the characteristics of mixed methods research by showing how systematic observation offers rigor within a flexible framework that can be applied to a wide range of situations. Observational methodology is characterized by high scientific rigor and flexibility throughout its different stages and allows the objective study of spontaneous behavior in natural settings, with no external influence. Mixed methods researchers need to take bold yet thoughtful decisions regarding both substantive and procedural issues. We present three fundamental and complementary ideas to guide researchers in this respect: we show why studies of sport and physical activity that use a mixed methods research approach should be included in the field of mixed methods research, we highlight the numerous possibilities offered by observational methodology in this field through the transformation of descriptive data into quantifiable code matrices, and we discuss possible solutions for achieving true integration of qualitative and quantitative findings. PMID:29312061
Resolved magnetic dynamo action in the simulated intracluster medium
NASA Astrophysics Data System (ADS)
Vazza, F.; Brunetti, G.; Brüggen, M.; Bonafede, A.
2018-02-01
Faraday rotation and synchrotron emission from extragalactic radio sources give evidence for the presence of magnetic fields extending over ˜ Mpc scales. However, the origin of these fields remains elusive. With new high-resolution grid simulations, we studied the growth of magnetic fields in a massive galaxy cluster that in several aspects is similar to the Coma cluster. We investigated models in which magnetic fields originate from primordial seed fields with comoving strengths of 0.1 nG at redshift z = 30. The simulations show evidence of significant magnetic field amplification. At the best spatial resolution (3.95 kpc), we are able to resolve the scale where magnetic tension balances the bending of magnetic lines by turbulence. This allows us to observe the final growth stage of the small-scale dynamo. To our knowledge, this is the first time that this is seen in cosmological simulations of the intracluster medium. Our mock observations of Faraday rotation provide a good match to observations of the Coma cluster. However, the distribution of magnetic fields shows strong departures from a simple Maxwellian distribution, suggesting that the three-dimensional structure of magnetic fields in real clusters may be significantly different than what is usually assumed when inferring magnetic field values from rotation measure observations.
Report on in-situ studies of flash sintering of uranium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raftery, Alicia Marie
Flash sintering is a novel type of field assisted sintering that uses an electric field and current to provide densification of materials on very short time scales. The potential for field assisted sintering techniques to be used in producing nuclear fuel is gaining recognition due to the potential economic benefits and improvements in material properties. The flash sintering behavior has so far been linked to applied and material parameters, but the underlying mechanisms active during flash sintering have yet to be identified. This report summarizes the efforts to investigate flash sintering of uranium dioxide using dilatometer studies at Los Alamosmore » National Laboratory and two separate sets of in-situ studies at Brookhaven National Laboratory’s NSLS-II XPD-1 beamline. The purpose of the dilatometer studies was to understand individual parameter (applied and material) effects on the flash behavior and the purpose of the in-situ studies was to better understand the mechanisms active during flash sintering. As far as applied parameters, it was found that stoichiometry, or oxygen-to-metal ratio, has a significant effect on the flash behavior (time to flash and speed of flash). Composite systems were found to have degraded sintering behavior relative to pure UO 2. The critical field studies are complete for UO 2.00 and will be analyzed against an existing model for comparison. The in-situ studies showed that the strength of the field and current are directly related to the sample temperature, with temperature-driven phase changes occurring at high values. The existence of an ‘incubation time’ has been questioned, due to a continuous change in lattice parameter values from the moment that the field is applied. Some results from the in-situ experiments, which should provide evidence regarding ion migration, are still being analyzed. Some preliminary conclusions can be made from these results with regard to using field assisted sintering to fabricate nuclear fuel. First, the pure UO 2-based system shows promising behavior with flash sintering, but composite systems are likely to show better sintering behavior with spark plasma sintering. Efforts to develop these methods should therefore be tailored towards the likelihood of success. Additionally, modeling is a rapidly developing aspect of current flash sintering research and should be used in parallel with experiments. Ultimately, ongoing flash sintering studies on various materials, like those summarized in this report, are rapidly contributing to the feasibility of controlling this method for use in the future.« less
NASA Astrophysics Data System (ADS)
Yilmaz, Hulusi
A comprehensive density functional theory study of atomic and the electronic properties of wurtzite gallium nitride (GaN) nanostructures with different sizes and shapes is presented and the effect of external electric field on these properties is examined. We show that the atomic and electronic properties of [101¯0] facet single-crystal GaN nanotubes (quasi-1D), nanowires (1D) and nanolayers (2D) are mainly determined by the surface to volume ratio. The shape dependent quantum confinement and strain effects on the atomic and electronic properties of these GaN nanostructures are found to be negligible. Based on this similarity between the atomic and electronic properties of the small size GaN nanostructures, we calculated the atomic and electronic properties of the practical size (28.1 A wall thickness) single-crystal GaN nanotubes through computational much economical GaN nanoslabs (nanolayers). Our results show that, regardless of diameter, hydrogen saturated single-crystal GaN tubes with the wall thickness of 28.1 A are energetically stable and they have a noticeably larger band gap with respect to the band gap of bulk GaN. The band gap of unsaturated single-crystal GaN tubes, on the other hand, is always smaller than the band gap of the wurtzite bulk GaN. In a separate study, we show that a transverse electric field induces a homojunction across the diameter of initially semiconducting GaN single-crystal nanotubes and nanowires. The homojunction arises due to the decreased energy of the electronic states in the higher potential region with respect to the energy of those states in the lower potential region under the transverse electric field. Calculations on single-crystal GaN nanotubes and nanowires of different diameter and wall thickness show that the threshold electric field required for the semiconductor-homojunction induction increases with increasing wall thickness and decreases significantly with increasing diameter.
NASA Astrophysics Data System (ADS)
Herrero-Bervera, E.; Whattam, S. A.; Frederichs, T.
2016-12-01
We have studied the magnetic properties of 37 serpentinized samples recovered via drilling during IODP Expedition 357, Atlantis Massif. We have recovered various lithologies including ultamafic rocks (primarily extensively serpentinized), subordidate gabbros, dolerites (small-scale melt injections) and schists. We have conducted remanence and induced magnetic experiments on the samples to determine for instance the degree of serpentinization (S). Stepwise alternating field and thermal demagnetization experiments from 2.5 to 70 mT and from 28 to 700°C, respectively, yielded univectorial diagrams showing the removal of secondary components (e.g., VRM, IRM, CRM) by isolating a characteristic component (ChRM) at various fields and temperatures. The normalized intensity of demagnetization (J/Jo) shows that the decrease of the magnetization of the specimens where about 50% of the original magnetization and is lost at about 5 mT and 100°C (i.e., Median Destructive Field). The stereograms show magnetic stability of the specimens by determining the directional behavior after 4 demagnetization steps (from 7.5-10 mT fields and low temperatures). Induced magnetization such as SIRM's, hysteresis saturation loops, back-fields and FORC experiments were performed. Diagnostic values of Mrs/Ms and Brc/Bc determine the domain structure of a magnetic sample. The magnetic grain sizes were determined using the protocol of Dunlop [2000]. Most of the samples were distributed over the Single (SD), Pseudo-Single Domain (PSD) and a few over the Multi Domain (MD) ranges with a certain degree of clustering on the PSD range. Curie points were obtained by measuring their low-field susceptibility vs. temperature from 28°C up to 700°C in an Argon atmosphere showing a minimum of 1-4 magnetic mineral phases with temperatures ranging from 100°C up to 640°C. These phases are predominantly Ti-poor, Ti-rich magnetite, maghemite and magnetite as corroborated by microscopic analysis as well as the Verwey transition (Tv≈110-120K). Samples studied show appreciable variation in bulk susceptibility (77.8 x 10-3 to 0.31 x 10-3 SI units). The samples are characterized by low, intermediate and high degree of serpentinization based on the results of their magnetic properties (e,g, Kappa, density, magnetic stability and Mrs/Ms vs Bcr/Bc).
Rotation curves of LSBGs and dwarf galaxies in a nearly Newtonian solution
NASA Astrophysics Data System (ADS)
Capistrano, Abraão J. S.; Barrocas, Guilherme R. G.
2018-04-01
The observed motion of stars close to galaxy nuclei shows that the resulting velocities are small of the order of a few hundred of km s-1. In these regions of strong gravity, the Newtonian gravitational field or even a post-Newtonian approximation may not be adequate to describe the motion of stars. In this paper, we study the possibility that the rotation curves problem may be explained mostly in the realm of Einstein's general relativity in a nearly weak field regime. By using the geodesic equations to obtain a gravitational potential generated from a point-like source, we end up in the concept of a nearly Newtonian gravity, and we show that its resulting potential responds to the dark halo mostly attributed to dark matter. We show that it comes essentially from the propagation of the non-linear effects of the obtained effective velocity field. As a test, we study a sample of 27 low surface brightness galaxies (LSBGs) and nine dwarf galaxies obtaining rotation curve shapes in nearly agreement with observations.
Flare onset at sites of maximum magnetic shear
NASA Technical Reports Server (NTRS)
Hagyard, M. J.; Smith, J. B., Jr.
1988-01-01
Observations of the transverse component of the Sun's photospheric magnetic field obtained with the MSFC vector magnetograph show where the fields are nonpotential. The correlation was studied between locations of nonpotential fields and sites of flare onset for four different active regions. The details of the active region AR 4711 are outlined. Similar results are presented for three other regions: AR 2372 (April 1980), AR 2776 (November 1980), and AR 4474 (April 1984). For all four regions it is shown that flares initiate at sites on the magnetic neutral line where the local field deviates the most from the potential field. The results of this study suggest that flares are likely to erupt where the shear is equal to or greater than 85 degrees, the field is equal to or greater than 10000 G, and there is strong shear (equal to or greater then 80 degress) extending over a length equal to or greater than 8000 km.
NASA Astrophysics Data System (ADS)
Zhang, Xizhu; Wang, Jinshu; Wang, Yiman; Liu, Wei; Zhou, Meiling; Gao, Zhiyuan
2013-06-01
The microstructure of a fully activated scandia doped dispenser (SDD) cathode has been studied by scanning electron microscope (SEM). The observation results display that nanoparticles appear at the growth steps and the surface of tungsten grains of the fully activated SDD cathode. To study the influence of the nanoparticles on the emission, the local electric field strengths around the nanoparticles have been calculated by Maxwell 2D code and Comsol. The calculation results show that the local electric field strengths are enhanced by 1.1 to 3.8 times to average value based on different model conditions. The highest field strength is about 1.54 × 105 V/cm at an average field strength of 40 KV/cm, which is related to a space-charge limited (SCL) current density of 100 A/cm2 in the experimental configuration. This implies the field strength is not high enough to cause field emission.
FC and ZFC magnetic properties of ferro-spinels (MFe2O4) prepared by solution-combustion method
NASA Astrophysics Data System (ADS)
Aravind, G.; Kumar, R. Vijaya; Nathaniyal, V.; Rambabu, T.; Ravinder, D.
2017-07-01
Magnetic ferro-spinels MFe2O4 (M= Co and Ni) prepared by citrate-gel solution combustion method using metal nitrates with low sintering temperature (500°C). From the XRD and TEM studies confirm that a nano crystalline nature of the prepared samples. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetic studies of the prepared ferro-spinels are measured by using vibrating sample magnetometer (VSM). The resultant magnetization of the prepared samples as a function of an applied magnetic field 10 T was measured at two different temperatures 5 K and 310 K. Field Cooled (FC) and Zero Field Cooled (ZFC) magnetization measurements under an applied field of 100 Oe and 1000 Oe in the temperature range of 5-375 K were carried out, which shows the blocking temperature of these two samples at around 350 K.
Morphological and electro optic studies of polymer dispersed liquid crystal in reverse mode
NASA Astrophysics Data System (ADS)
Sharma, Vandna; Kumar, Pankaj; Chinky, Malik, Praveen; Raina, K. K.
2018-05-01
Present work deals with reverse mode polymer dispersed liquid crystals (PDLCs) sensitive to electric field. Contrary to the conventional PDLCs operate from opaque (OFF state) to transparent state (ON state) with the application of field, reverse mode PDLCs work in transparent to opaque state. Reverse mode PDLC composed of nematic LC and UV curable optical adhesive polymer were prepared by the polymerization induced phase separation. The polarizing optical microscope study shows the vertical alignment of LCs within droplets with initial dark state under cross polarizers and confirms preliminary natural transparent state. The electro optic (EO) results show that the reverse mode PDLC lowered the threshold and operating voltages significantly compared with reported values. The contrast ratio of the film was also studied.
Electron scale magnetic reconnection in the turbulent magnetosheath: Kinetic PIC simulation study
NASA Astrophysics Data System (ADS)
Sharma, P.; Shay, M. A.; Drake, J. F.; Phan, T.; Haggerty, C. C.; TenBarge, J. M.; Cassak, P.; Swisdak, M.
2017-12-01
Recent MMS observations have revealed electron scale reconnection in the turbulent magnetosheath. Surprisingly, although one of the reconnection events is associated with a very strong guide field, the ions show no coupling to the reconnection dynamics. We first review the MMS observations. Then, using kinetic PIC simulations with similar plasma conditions, we study reconnection at electron scales and show that the reconnection exhibits whistler-like dynamics similar to the case of anti-parallel reconnection rather than the kinetic Alfven wave dynamics that is often associated with reconnection with a strong guide field. We study the factors controlling this behavior and discuss the implications for reconnection and turbulence at electron scales in both the magnetosheath and solar wind.
Highly Variable Cycle Exhaust Model Test (HVC10)
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick
2010-01-01
Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.
Radosinski, Lukasz; Labus, Karolina
2017-10-05
Polyvinyl alcohol (PVA) is a material with a variety of applications in separation, biotechnology, and biomedicine. Using combined Monte Carlo and molecular dynamics techniques, we present an extensive comparative study of second- and third-generation force fields Universal, COMPASS, COMPASS II, PCFF, and the newly developed INTERFACE, as applied to this system. In particular, we show that an INTERFACE force field provides a possibility of composing a reliable atomistic model to reproduce density change of PVA matrix in a narrow temperature range (298-348 K) and calculate a thermal expansion coefficient with reasonable accuracy. Thus, the INTERFACE force field may be used to predict mechanical properties of the PVA system, being a scaffold for hydrogels, with much greater accuracy than latter approaches. Graphical abstract Molecular Dynamics and Monte Carlo studies indicate that it is possible to predict properties of the PVA in narrow temperature range by using the INTERFACE force field.
Sundt, Rolf C; Pampanin, Daniela M; Grung, Merete; Baršienė, Janina; Ruus, Anders
2011-07-01
In order to study the impact of produced water (PW) from a North Sea oil field on blue mussels (Mytilus edulis), chemical and biological markers were selected. A laboratory exposure (0.125%, 0.25% and 0.5% of PW) and a field study (6 stations 0.2-2 km from a PW discharge point) were conducted. In the laboratory study, PAH bioaccumulation increased in mussel soft tissue even at the lowest exposure dose. Micronuclei frequency demonstrated a dose-response pattern, whereas lysosomal membrane stability showed tendency towards a dose-response pattern. The same markers were assessed in the field study, biomarker analyses were consistent with the contamination level, as evaluated by mussel polycyclic aromatic hydrocarbons body burden. Overall, obtained results confirmed the value of an ecotoxicological approach for a scientifically sound characterisation of biological effects induced by offshore oilfield operational discharges. Copyright © 2011 Elsevier Ltd. All rights reserved.
Energetic Particle Transport across the Mean Magnetic Field: Before Diffusion
NASA Astrophysics Data System (ADS)
Laitinen, T.; Dalla, S.
2017-01-01
Current particle transport models describe the propagation of charged particles across the mean field direction in turbulent plasmas as diffusion. However, recent studies suggest that at short timescales, such as soon after solar energetic particle (SEP) injection, particles remain on turbulently meandering field lines, which results in nondiffusive initial propagation across the mean magnetic field. In this work, we use a new technique to investigate how the particles are displaced from their original field lines, and we quantify the parameters of the transition from field-aligned particle propagation along meandering field lines to particle diffusion across the mean magnetic field. We show that the initial decoupling of the particles from the field lines is slow, and particles remain within a Larmor radius from their initial meandering field lines for tens to hundreds of Larmor periods, for 0.1-10 MeV protons in turbulence conditions typical of the solar wind at 1 au. Subsequently, particles decouple from their initial field lines and after hundreds to thousands of Larmor periods reach time-asymptotic diffusive behavior consistent with particle diffusion across the mean field caused by the meandering of the field lines. We show that the typical duration of the prediffusive phase, hours to tens of hours for 10 MeV protons in 1 au solar wind turbulence conditions, is significant for SEP propagation to 1 au and must be taken into account when modeling SEP propagation in the interplanetary space.
Aggarwal, Kanika; Agarwal, Aniruddha; Deokar, Ankit; Singh, Ramandeep; Bansal, Reema; Sharma, Aman; Sharma, Kusum; Dogra, Mangat R; Gupta, Vishali
2017-10-11
To evaluate role of ultra-wide field (UWF) versus conventional imaging in the follow-up and paradoxical worsening (PW) of tubercular (TB) multifocal serpiginoid choroiditis (MSC). Prospective observational study of patients with TB MSC undergoing UWF imaging, autofluorescence and fluorescein angiography was performed. A circle simulating central 75° field representing conventional imaging was drawn on UWF images. The information yielded by the two modalities, progression of choroiditis lesions and PW was compared. 44 eyes (29 patients, mean age: 30.7 ± 9 years; 23 males) were included. UWF imaging showed additional lesions in 39/44 eyes (88.6%). Overall, 16/44 eyes (36.4%) showed PW; 3/16 eyes (18.7%) showed only peripheral PW, while 10/16 eyes showed both central and peripheral PW. Management was altered in 11 patients (37.93%) based on UWF imaging. UWF is more useful than conventional imaging in identifying additional choroiditis lesions, PW and altering the course of therapy in TB MSC.
Electric field control of the skyrmion lattice in Cu2OSeO3
NASA Astrophysics Data System (ADS)
White, J. S.; Levatić, I.; Omrani, A. A.; Egetenmeyer, N.; Prša, K.; Živković, I.; Gavilano, J. L.; Kohlbrecher, J.; Bartkowiak, M.; Berger, H.; Rønnow, H. M.
2012-10-01
Small-angle neutron scattering has been employed to study the influence of applied electric (E-)fields on the skyrmion lattice in the chiral lattice magnetoelectric Cu2OSeO3. Using an experimental geometry with the E-field parallel to the [111] axis, and the magnetic field parallel to the [1\\bar {1}0] axis, we demonstrate that the effect of applying an E-field is to controllably rotate the skyrmion lattice around the magnetic field axis. Our results are an important first demonstration for a microscopic coupling between applied E-fields and the skyrmions in an insulator, and show that the general emergent properties of skyrmions may be tailored according to the properties of the host system.
Neutron scattering investigations of frustated magnets
NASA Astrophysics Data System (ADS)
Fennell, Tom
This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated into two populations of spin chains, one set ordered and the other only partly so. Cycling the field induced dynamics in these chains, again via spin-spin interactions, as the field acted on the ordered si)in chains. These field regulated dynamics were particularly noted in Ho2Ti207 where a full field cycle was executed. Raising the temperature in an applied field also activated the dynamics of the partially ordered spin chains. The continued evolution of the spin system toward a more ordered state, when dynamics can be induced, suggested that a spin ice does indeed have an energetic groundstate.The remaining two directions probed in Ho2Ti20y both have two populations of spins with different Zeeman energies. The competition of the field and the spin- spin interactions was used to investigate the onset of the ice rules regime (field on [hh2h] and the breaking of the ice rules by a strong field (field on [hhh]). It was shown that the behavior of Ho2Ti207 with field on [hhh] was consistent with the "kagome ice" hypothesis.
Static electric fields modify the locomotory behaviour of cockroaches.
Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L
2011-06-15
Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.
Cosmological evolution of a tachyon-quintom model of dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Shang-Gang; Piao, Yun-Song; Qiao, Cong-Feng, E-mail: shishanggang06@mails.gucas.ac.cn, E-mail: yspiao@gucas.ac.cn, E-mail: qiaocf@gucas.ac.cn
2009-04-15
In this work we study the cosmological evolution of a dark energy model with two scalar fields, i.e. the tachyon and the phantom tachyon. This model enables the equation of state w to change from w > -1 to w < -1 in the evolution of the universe. The phase-space analysis for such a system with inverse square potentials shows that there exists a unique stable critical point, which has power-law solution. In this paper, we also study another form of tachyon-quintom model with two fields, which involves the interactions between both fields.
NOTE Effects of skeletal muscle anisotropy on induced currents from low-frequency magnetic fields
NASA Astrophysics Data System (ADS)
Tachas, Nikolaos J.; Samaras, Theodoros; Baskourelos, Konstantinos; Sahalos, John N.
2009-12-01
Studies which take into account the anisotropy of tissue dielectric properties for the numerical assessment of induced currents from low-frequency magnetic fields are scarce. In the present study, we compare the induced currents in two anatomical models, using the impedance method. In the first model, we assume that all tissues have isotropic conductivity, whereas in the second one, we assume anisotropic conductivity for the skeletal muscle. Results show that tissue anisotropy should be taken into account when investigating the exposure to low-frequency magnetic fields, because it leads to higher induced current values.
Studying internal and external magnetic fields in Japan using MAGSAT data
NASA Technical Reports Server (NTRS)
Fukushima, N. (Principal Investigator); Maeda, H.; Yukutake, T.; Tanaka, M.; Oshima, S.; Ogawa, K.; Kawamura, M.; Miyazaki, Y.; Uyeda, S.; Kobayashi, K.
1980-01-01
Examination of the total intensity data of CHRONIT on a few paths over Japan and its neighboring sea shows MAGSAT is extremely useful for studying the local magnetic anomaly. In high latitudes, the signatures of field aligned currents are clearly recognized. These include (1) the persistent basic pattern of current flow; (2) the more intense currents in the summer hemisphere than in the winter hemisphere; (3) more fluctuations in current intensities in summer dawn hours; and (4) apparent dawn-dusk asymmetry in the field-aligned current intensity between the north and south polar regions.
Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films
NASA Astrophysics Data System (ADS)
Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.
2018-05-01
Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.
Thoss, Franz; Bartsch, Bengt
2017-12-01
In experimental studies, we could show that the visual threshold of man is influenced by the geomagnetic field. One of the results was that the threshold shows periodic fluctuations when the vertical component of the field is reversed periodically. The maximum of these oscillations occurred at a period duration of 110 s. To explain this phenomenon, we chose the process that likely underlies the navigation of birds in the geomagnetic field: the light reaction of the FAD component of cryptochrome in the retina. The human retina contains cryptpochrome like the bird retina. Based on the investigations of Müller and Ahmad (J Biol Chem 286:21033-21040, 2011) and Solov'yov and Schulten (J Phys Chem B 116:1089-1099, 2012), we designed a model of the light-induced reduction and subsequent reoxidation of FAD. This model contains a radical pair, whose interconversion dynamics are affected by the geomagnetic field. The parameters of the model were partly calculated from the data of our experimental investigation and partly taken from the results of other authors. These parameters were then optimized by adjusting the model behaviour to the experimental results. The simulation of the finished model shows that the concentrations of all substances included show really oscillations with the frequency of the modelled magnetic field. After optimization of the parameters, the oscillations of FAD and FADH* show maximal amplitude at a period duration of 110 s, as was observed in the experiment. This makes it most likely that the signal, which influences the visual system, originates from FADH* (signalling state).
ERIC Educational Resources Information Center
Hui, W.; Hu, P. J.-H.; Clark, T. H. K.; Tam, K. Y.; Milton, J.
2008-01-01
A field experiment compares the effectiveness and satisfaction associated with technology-assisted learning with that of face-to-face learning. The empirical evidence suggests that technology-assisted learning effectiveness depends on the target knowledge category. Building on Kolb's experiential learning model, we show that technology-assisted…
ERIC Educational Resources Information Center
Keltikangas, K.; Wallen, H.
2010-01-01
This paper investigates electrical engineers' perceptions on their education in Finland, with particular emphasis on the basic electromagnetic field theory courses and their applicability in working life, using two online surveys (n = 99 and n = 120). The answers show a reasonably good satisfaction with the electrical engineering studies in…
Laboratory and field studies of guayule modified to overexpress HMGR
USDA-ARS?s Scientific Manuscript database
We report the genetic modification of guayule to overexpress the isoprenoid pathway enzyme HMGR. The rubber content of two-month old in vitro transformed plantlets showed a 65% increase in rubber over the control for one line (HMGR6), and lower resin for another (HMGR2). In field evaluations HMGR6...
ERIC Educational Resources Information Center
Piron, Claude
2002-01-01
Compares the four international systems of linguistic communication used in the field (systems used in the United Nations, multinationals, the European Union, and Esperanto organizations) on select criteria (e.g., previous government investment). Discusses research that shows unilingual systems (English used alone, Esperanto) are those that…
Random phase approximation and cluster mean field studies of hard core Bose Hubbard model
NASA Astrophysics Data System (ADS)
Alavani, Bhargav K.; Gaude, Pallavi P.; Pai, Ramesh V.
2018-04-01
We investigate zero temperature and finite temperature properties of the Bose Hubbard Model in the hard core limit using Random Phase Approximation (RPA) and Cluster Mean Field Theory (CMFT). We show that our RPA calculations are able to capture quantum and thermal fluctuations significantly better than CMFT.
Control of Root Rot and Wilt Diseases of Roselle under Field Conditions
Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi
2014-01-01
Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010
Monitoring tropical cyclone intensity using wind fields derived from short-interval satellite images
NASA Technical Reports Server (NTRS)
Rodgers, E. B.; Gentry, R. C.
1981-01-01
Rapid scan visible images from the Visible Infrared Spin Scan Radiometer sensor on board SMS-2 and GOES-1 were used to derive high resolution upper and lower tropospheric environmental wind fields around three western Atlantic tropical cyclones (1975-78). These wind fields were used to derive upper and lower tropospheric areal mean relative vorticity and their differences, the net relative angular momentum balance and upper tropospheric mass outflow. These kinematic parameters were shown by studies using composite rawinsonde data to be strongly related to tropical cyclone formation and intensity changes. Also, the role of forced synoptic scale subsidence in tropical cyclone formation was examined. The studies showed that satellite-derived lower and upper tropospheric wind fields can be used to monitor and possibly predict tropical cyclone formation and intensity changes. These kinematic analyses showed that future changes in tropical cyclone intensity are mainly related to the "spin-up" of the storms by the net horizontal transport of relative angular momentum caused by convergence of cyclonic vorticity in the lower troposphere and to a lesser extent the divergence of anticyclone vorticity in the upper troposphere.
Cohen, Yafit; Roei, Itai; Blank, Lior; Goldshtein, Eitan; Eizenberg, Hanan
2017-01-01
Egyptian broomrape ( Phelipanche aegyptiaca ) is one of the main threats to tomato production in Israel. The seed bank of P. aegyptiaca rapidly develops and spreads in the field. Knowledge about the spatio-temporal distribution of such weeds is required in advance of emergence, as they emerge late in their life cycle when they have already caused major crop damage. The aim of this study is to reveal the effects of two major internal infestation sources: crop rotation and infestation history; and one external source: proximity to infested tomato fields; on infestation of P. aegyptiaca in processing tomatoes. Ecoinformatics, spatial analysis and geostatistics were used to examine these effects. A regional survey was conducted to collect data on field history from 238 tomato fields between 2000 and 2012, in a major tomato-growing region in Israel. Multivariate logistic regression in the framework of generalized linear models (GLM) has demonstrated the importance of all three variables in predicting infestation in tomato fields. The parameters of the overall model indicated a high specificity between tomatoes and P. aegyptiaca , which is potentially responsible for aggravating infestation. In addition, P. aegyptiaca infestation levels were intensively mapped in 43 of the 238 tomato fields in the years 2010-2012. Geostatistical measures showed that 40% of the fields had clustered infestation spatial patterns with infestation clusters located along the fields' borders. Strong linear and negative relationships were found between infestation level and distance from a neighboring infested field, strengthening the role of infested tomato fields in P. aegyptiaca spread. An experiment specifically designed for this study showed that during harvest, P. aegyptiaca seeds are blown from an infested field to a distance of at least 90 m, and may initiate infestation in neighboring fields. Integrating current knowledge about the role of agricultural practices on the spread of P. aegyptiaca with the results of this study enabled us to propose a mechanism for the spread of P. aegyptiaca . Given the major effect of agricultural practices on infestation levels, it is assumed that the spread of this weed can be suppressed by implementing sanitation and using decision support tools for herbicide application.
Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J
2010-04-22
Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.
Improved detection following Neuro-Eye Therapy in patients with post-geniculate brain damage.
Sahraie, Arash; Macleod, Mary-Joan; Trevethan, Ceri T; Robson, Siân E; Olson, John A; Callaghan, Paula; Yip, Brigitte
2010-09-01
Damage to the optic radiation or the occipital cortex results in loss of vision in the contralateral visual field, termed partial cortical blindness or hemianopia. Previously, we have demonstrated that stimulation in the field defect using visual stimuli with optimal properties for blindsight detection can lead to increases in visual sensitivity within the blind field of a group of patients. The present study was aimed to extend the previous work by investigating the effect of positive feedback on recovery of visual sensitivity. Patients' abilities for detection of a range of spatial frequencies within their field defect were determined using a temporal two-alternative forced-choice technique, before and after a period of visual training (n = 4). Patients underwent Neuro-Eye Therapy which involved detection of temporally modulated spatial grating patches at specific retinal locations within their field defect. Three patients showed improved detection ability following visual training. Based on our previous studies, we had hypothesised that should the occipital brain lesion extend anteriorly to the thalamus, little recovery would be expected. Here, we describe one such case who showed no improvements after extensive training. The present study provides further evidence that recovery (a) can be gradual and may require a large number of training sessions (b) can be accelerated using positive feedback and (c) may be less likely to take place if the occipital damage extends anteriorly to the thalamus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Takafumi; Yokoyama, Takaaki, E-mail: kaneko@eps.s.u-tokyo.ac.jp
2014-11-20
We investigate the triggering mechanisms of plasma eruptions in the solar atmosphere due to interactions between emerging flux and coronal arcade fields by using two-dimensional MHD simulations. We perform parameter surveys with respect to arcade field height, magnetic field strength, and emerging flux location. Our results show that two possible mechanisms exist, and which mechanism is dominant depends mostly on emerging flux location. One mechanism appears when the location of emerging flux is close to the polarity inversion line (PIL) of an arcade field. This mechanism requires reconnection between the emerging flux and the arcade field, as pointed out bymore » previous studies. The other mechanism appears when the location of emerging flux is around the edge of an arcade field. This mechanism does not require reconnection between the emerging flux and the arcade field but does demand reconnection in the arcade field above the PIL. Furthermore, we found that the eruptive condition for this mechanism can be represented by a simple formula.« less
μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field
NASA Astrophysics Data System (ADS)
Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme
Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkattraman, Ayyaswamy
2013-11-15
The post-breakdown characteristics of field emission driven microplasma are studied theoretically and numerically. A cathode fall model assuming a linearly varying electric field is used to obtain equations governing the operation of steady state field emission driven microplasmas. The results obtained from the model by solving these equations are compared with particle-in-cell with Monte Carlo collisions simulation results for parameters including the plasma potential, cathode fall thickness, ion number density in the cathode fall, and current density vs voltage curves. The model shows good overall agreement with the simulations but results in slightly overpredicted values for the plasma potential andmore » the cathode fall thickness attributed to the assumed electric field profile. The current density vs voltage curves obtained show an arc region characterized by negative slope as well as an abnormal glow discharge characterized by a positive slope in gaps as small as 10 μm operating at atmospheric pressure. The model also retrieves the traditional macroscale current vs voltage theory in the absence of field emission.« less
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Geraedts, Scott D.; Bhatt, R. N.
2017-07-01
We investigate the relation between the Fermi sea (FS) of zero-field carriers in two-dimensional systems and the FS of the corresponding composite fermions which emerge in a high magnetic field at filling ν =1/2 , as the kinetic energy dispersion is varied. We study cases both with and without rotational symmetry and find that there is generally no straightforward relation between the geometric shapes and topologies of the two FSs. In particular, we show analytically that the composite Fermi liquid (CFL) is completely insensitive to a wide range of changes to the zero-field dispersion which preserve rotational symmetry, including ones that break the zero-field FS into multiple disconnected pieces. In the absence of rotational symmetry, we show that the notion of "valley pseudospin" in many-valley systems is generically not transferred to the CFL, in agreement with experimental observations. We also discuss how a rotationally symmetric band structure can induce a reordering of the Landau levels, opening interesting possibilities of observing higher-Landau-level physics in the high-field regime.
Comprehensive Understanding for Vegetated Scene Radiance Relationships
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Deering, D. W.
1984-01-01
The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.
Magnetoresistance behavior in nanobulk assembled Bi2Se3 topological insulator
NASA Astrophysics Data System (ADS)
Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, Manju Mishra; Singh, Durgesh; Venkatesh, R.; Phase, D. M.; Ganesan, V.
2018-05-01
Temperature and magnetic field dependent magnetoresistance (MR) including structural, morphological studies of Bi2Se3 nanoflower like structure synthesized by microwave assisted solvothermal method has been investigated. Powder X-ray diffraction (XRD) has confirmed the formation of single phase. Morphology of the material shows nanoflower kind of structures with edge to edge size of around 4 µm and such occurrences are quite high. The temperature dependent resistance invokes a metallic behavior up to a certain lower temperature, below which it follows -ln(T) behavior that has been elucidated in literature using electron-electron interaction and weak anti-localization effects. High temperature magnetoresistance is consistent with parabolic field dependence indicating a classical magnetoresistance in metals as a result of Lorenz force. In low temperature regime magnetoresistance as a function of magnetic field at different temperatures obeys power law near low field which indicates a three dimensional weak-antilocalization. A linear magnetoresistance at low temperature and high magnetic field shows the domination of surface state conduction.
Universality of multi-field α-attractors
NASA Astrophysics Data System (ADS)
Achúcarro, Ana; Kallosh, Renata; Linde, Andrei; Wang, Dong-Gang; Welling, Yvette
2018-04-01
We study a particular version of the theory of cosmological α-attractors with α=1/3, in which both the dilaton (inflaton) field and the axion field are light during inflation. The kinetic terms in this theory originate from maximal Script N=4 superconformal symmetry and from maximal Script N=8 supergravity. We show that because of the underlying hyperbolic geometry of the moduli space in this theory, it exhibits double attractor behavior: their cosmological predictions are stable not only with respect to significant modifications of the dilaton potential, but also with respect to significant modifications of the axion potential: nssimeq1‑2/N, rsimeq4/N2. We also show that the universality of predictions extends to other values of α lesssim Script O(1) with general two-field potentials that may or may not have an embedding in supergravity. Our results support the idea that inflation involving multiple, not stabilized, light fields on a hyperbolic manifold may be compatible with current observational constraints for a broad class of potentials.
NASA Astrophysics Data System (ADS)
Adedokun, Omolola A.; Liu, Jia; Parker, Loran Carleton; Burgess, Wilella
2015-02-01
Although virtual field trips are becoming popular, there are few empirical studies of their impacts on student outcomes. This study reports on a meta-analytic evaluation of the impact of a virtual field trip on student perceptions of scientists. Specifically, the study examined the summary effect of zipTrips broadcasts on evaluation participants' perceptions of scientists, as well as the moderating effect of program type on program impact. The results showed statistically significant effect of each broadcast, as well as statistically significant summary (combined) effect of zipTrips on evaluation participants' perceptions of scientists. Results of the moderation analysis showed that the effect was greater for the students that participated in the evaluation of the 8th grade broadcasts, providing additional insight into the role of program variation in predicting differential program impact. This study illustrates how meta-analysis, a methodology that should be of interest to STEM education researchers and evaluation practitioners, can be used to summarize the effects of multiple offerings of the same program. Other implications for STEM educators are discussed.
[Bibliometric map of Spain 1996-2004: biomedicine and health sciences].
Méndez-Vásquez, Raúl Isaac; Suñén-Pinyol, Eduard; Cervelló, Rosa; Camí, Jordi
2008-03-01
The study presents the bibliometric analysis of the Spanish scientific output in biomedicine during 1996-2004. This is the last edition of a series of bibliometric studies aimed to characterize the Spanish scientific performance in biomedicine. The analysis was restricted to citable documents for which simple and composite bibliometric indicators were obtained at different aggregation levels: fields, autonomous regions, institutional sectors and research centres. The documents were selected according to the Journal Citation Reports, and were assigned to affiliation centres following an integer counting scheme after an exhaustive normalization of the affiliation addresses. Compared to the period 1994-2002, research activity in biomedicine grew as much as Spain: 8.9% in the number of documents; 22.5% citations; 12.5% citation per document average and 27.2% international cooperation. Besides, biomedicine showed the highest citation per document average compared to other major fields. International cooperation in biomedicine (27.2%) reached the European average. The documents published in international cooperation account for the half of citations to documents in biomedicine. The number of documents and citations belonging to the clinic medicine subfield and to the health sector showed the highest growth. In general, these results reproduce the tendencies described in prior studies. The documents in biomedicine showed a highly asymmetric distribution among institutional sectors, autonomous regions, scientific fields and research centres. The remarkably increase in the output of clinical medicine field and in the health sector could be the consequence of important science policy actions undertaken in these areas in the last years.
Quantitative Assessment of Fat Levels in Caenorhabditis elegans Using Dark Field Microscopy
Fouad, Anthony D.; Pu, Shelley H.; Teng, Shelly; Mark, Julian R.; Fu, Moyu; Zhang, Kevin; Huang, Jonathan; Raizen, David M.; Fang-Yen, Christopher
2017-01-01
The roundworm Caenorhabditis elegans is widely used as a model for studying conserved pathways for fat storage, aging, and metabolism. The most broadly used methods for imaging fat in C. elegans require fixing and staining the animal. Here, we show that dark field images acquired through an ordinary light microscope can be used to estimate fat levels in worms. We define a metric based on the amount of light scattered per area, and show that this light scattering metric is strongly correlated with worm fat levels as measured by Oil Red O (ORO) staining across a wide variety of genetic backgrounds and feeding conditions. Dark field imaging requires no exogenous agents or chemical fixation, making it compatible with live worm imaging. Using our method, we track fat storage with high temporal resolution in developing larvae, and show that fat storage in the intestine increases in at least one burst during development. PMID:28404661
Numerical simulation of offset-drain amorphous oxide-based thin-film transistors
NASA Astrophysics Data System (ADS)
Jeong, Jaewook
2016-11-01
In this study, we analyzed the electrical characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO) thin-film transistors (TFTs) with an offset-drain structure by technology computer aided design (TCAD) simulation. When operating in a linear region, an enhancement-type TFT shows poor field-effect mobility because most conduction electrons are trapped in acceptor-like defects in an offset region when the offset length (L off) exceeds 0.5 µm, whereas a depletion-type TFT shows superior field-effect mobility owing to the high free electron density in the offset region compared with the trapped electron density. When operating in the saturation region, both types of TFTs show good field-effect mobility comparable to that of a reference TFT with a large gate overlap. The underlying physics of the depletion and enhancement types of offset-drain TFTs are systematically analyzed.
Deconfinement phase transition in a magnetic field in 2 + 1 dimensions from holographic models
NASA Astrophysics Data System (ADS)
M. Rodrigues, Diego; Capossoli, Eduardo Folco; Boschi-Filho, Henrique
2018-05-01
Using two different models from holographic quantum chromodynamics (QCD) we study the deconfinement phase transition in 2 + 1 dimensions in the presence of a magnetic field. Working in 2 + 1 dimensions lead us to exact solutions on the magnetic field, in contrast with the case of 3 + 1 dimensions where the solutions on the magnetic field are perturbative. As our main result we predict a critical magnetic field Bc where the deconfinement critical temperature vanishes. For weak fields meaning B
NASA Astrophysics Data System (ADS)
Carr, Gemma; Loucks, Daniel Pete; Blaschke, Alfred Paul; Bucher, Christian; Farnleitner, Andreas; Fürnkranz-Prskawetz, Alexia; Parajka, Juraj; Pfeifer, Norbert; Rechberger, Helmut; Wagner, Wolfgang; Zessner, Matthias; Blöschl, Günter
2015-04-01
The interdisciplinary postgraduate research and education programme - the Vienna Doctoral Programme on Water Resource Systems - was initiated in 2009. To date, 35 research students, three post-docs and ten faculty members have been engaged in the Programme, from ten research fields (aquatic microbiology, hydrology, hydro-climatology, hydro-geology, mathematical economics, photogrammetry, remote sensing, resource management, structural mechanics, and water quality). The Programme aims to develop research students with the capacity to work across the disciplines, to conduct cutting edge research and foster an international perspective. To do this, a variety of mechanisms are adopted that include research cluster groups, joint study sites, joint supervision, a basic study programme and a research semester abroad. The Programme offers a unique case study to explore if and how these mechanisms lead to research and education outcomes. Outcomes are grouped according to whether they are tangible (publications with co-authors from more than one research field, analysis of graduate profiles and career destinations) or non-tangible (interaction between researchers, networks and trust). A mixed methods approach that includes bibliometric analysis combined with interviews with students is applied. Bibliometric analysis shows that as the Programme has evolved the amount of multi-disciplinary work has increased (32% of the 203 full papers produced by the programme's researchers have authors from more than one research field). Network analysis to explore which research fields collaborate most frequently show that hydrology plays a significant role and has collaborated with seven of the ten research fields. Hydrology researchers seem to interact the most strongly with other research fields as they contribute understanding on water system processes. Network analysis to explore which individuals collaborate shows that much joint work takes place through the five research cluster groups (water resource management, land-surface processes, Hydrological Open Air Laboratory, water and health, modelling and risk). Student interviews highlight that trust between colleagues and supervisors, and the role of spaces for interaction (joint study sites, cluster group meetings, shared offices etc.) are important for joint work. Graduate analysis shows that students develop skills and confidence to work across disciplines through collaborating on their doctoral research. Working collaboratively during the doctorate appears to be strongly correlated with continuing to work in this way after graduation.
nZVI injection into variably saturated soils: Field and modeling study
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed I. A.; Krol, Magdalena M.; Kocur, Christopher M.; Boparai, Hardiljeet K.; Weber, Kela P.; Sleep, Brent E.; O'Carroll, Denis M.
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142 L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications.
Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan
2010-01-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10−3 s−1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. PMID:21134771
Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan
2011-02-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.
Franklin, D H; Butler, D M; Cabrera, M L; Calvert, V H; West, L T; Rema, J A
2011-01-01
Attenuation of rainfall within the solum may help to move contaminants and nutrients into the soil to be better sequestered or utilized by crops. Surface application of phosphorus (P) amendments to grasslands may lead to elevated concentrations of P in surface runoff and eutrophication of surface waters. Aeration of grasslands has been proposed as a treatment to reduce losses of applied P. Here, results from two small-plot aeration studies and two field-scale, paired-watershed studies are supplemented with previously unpublished soil P data and synthesized. The overall objective of these studies was to determine the impact of aeration on soil P, runoff volume, and runoff P losses from mixed tall fescue [Lolium arundinaceum (Schreb.) Darbysh.]-bermudagrass (Cynodon dactylon L.) grasslands fertilized with P. Small-scale rainfall simulations were conducted on two soil taxa using three types of aeration implements: spikes, disks, and cores. The-field scale study was conducted on four soil taxa with slit and knife aeration. Small-plot studies showed that core aeration reduced loads of total P and dissolved reactive P (DRP) in runoff from plots fertilized with broiler litter and that aeration was effective in reducing P export when it increased soil P in the upper 5 cm. In the field-scale study, slit aeration reduced DRP losses by 35% in fields with well-drained soils but not in poorly drained soils. Flow-weighted concentrations of DRP in aerated fields were related to water-soluble P applied in amendments and soil test P in the upper 5 cm. These studies show that the overall effectiveness of mechanical soil aeration on runoff volume and P losses is controlled by the interaction of soil characteristics such as internal drainage and compaction, soil P, type of surface-applied manure, and type of aeration implement.
Spatial Distribution of Phase Singularities in Optical Random Vector Waves.
De Angelis, L; Alpeggiani, F; Di Falco, A; Kuipers, L
2016-08-26
Phase singularities are dislocations widely studied in optical fields as well as in other areas of physics. With experiment and theory we show that the vectorial nature of light affects the spatial distribution of phase singularities in random light fields. While in scalar random waves phase singularities exhibit spatial distributions reminiscent of particles in isotropic liquids, in vector fields their distribution for the different vector components becomes anisotropic due to the direct relation between propagation and field direction. By incorporating this relation in the theory for scalar fields by Berry and Dennis [Proc. R. Soc. A 456, 2059 (2000)], we quantitatively describe our experiments.
Teachers as Secondary Players: Involvement in Field Trips to Natural Environments
NASA Astrophysics Data System (ADS)
Alon, Nirit Lavie; Tal, Tali
2017-08-01
This study focused on field trips to natural environments where the teacher plays a secondary role alongside a professional guide. We investigated teachers' and field trip guides' views of the teacher's role, the teacher's actual function on the field trip, and the relationship between them. We observed field trips, interviewed teachers and guides, and administered questionnaires. We found different levels of teacher involvement, ranging from mainly supervising and giving technical help, to high involvement especially in the cognitive domain and sometimes in the social domain. Analysis of students' self-reported outcomes showed that the more students believe their teachers are involved, the higher the self-reported learning outcomes.
Mitigating stimulated scattering processes in gas-filled Hohlraums via external magnetic fields
NASA Astrophysics Data System (ADS)
Gong, Tao; Zheng, Jian; Li, Zhichao; Ding, Yongkun; Yang, Dong; Hu, Guangyue; Zhao, Bin
2015-09-01
A simple model, based on energy and pressure equilibrium, is proposed to deal with the effect of external magnetic fields on the plasma parameters inside the laser path, which shows that the electron temperature can be significantly enhanced as the intensity of the external magnetic fields increases. With the combination of this model and a 1D three-wave coupling code, the effect of external magnetic fields on the reflectivities of stimulated scattering processes is studied. The results indicate that a magnetic field with an intensity of tens of Tesla can decrease the reflectivities of stimulated scattering processes by several orders of magnitude.
[Research advances of anti-tumor immune response induced by pulse electric field ablation].
Cui, Guang-ying; Diao, Hong-yan
2015-11-01
As a novel tumor therapy, pulse electric field has shown a clinical perspective. This paper reviews the characteristics of tumor ablation by microsecond pulse and nanosecond pulse electric field, and the research advances of anti-tumor immune response induced by pulse electric field ablation. Recent researches indicate that the pulse electric field not only leads to a complete ablation of local tumor, but also stimulates a protective immune response, thereby inhibiting tumor recurrence and metastasis. These unique advantages will show an extensive clinical application in the future. However, the mechanism of anti-tumor immune response and the development of related tumor vaccine need further studies.
Anosognosia for obvious visual field defects in stroke patients.
Baier, Bernhard; Geber, Christian; Müller-Forell, Wiebke; Müller, Notger; Dieterich, Marianne; Karnath, Hans-Otto
2015-01-01
Patients with anosognosia for visual field defect (AVFD) fail to recognize consciously their visual field defect. There is still unclarity whether specific neural correlates are associated with AVFD. We studied AVFD in 54 patients with acute stroke and a visual field defect. Nineteen percent of this unselected sample showed AVFD. By using modern voxelwise lesion-behaviour mapping techniques we found an association between AVFD and parts of the lingual gyrus, the cuneus as well as the posterior cingulate and corpus callosum. Damage to these regions appears to induce unawareness of visual field defects and thus may play a significant role for conscious visual perception.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meinke, Rainer B.; Goodzeit, Carl L.; Ball, Millicent J.
This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive methodmore » that involves use of iron shielding.« less
Methane production and consumption in grassland and boreal ecosystems
NASA Technical Reports Server (NTRS)
Schimel, David S.; Burke, Ingrid C.; Johnston, Carol; Pastor, John
1994-01-01
The objectives of the this project were to develop a mechanistic understanding of methane production and oxidation suitable for incorporation into spatially explicit models for spatial extrapolation. Field studies were undertaken in Minnesota, Canada, and Colorado to explore the process controls over the two microbial mediated methane transformations in a range of environments. Field measurements were done in conjunction with ongoing studies in Canada (the Canadian Northern Wetlands Projects: NOWES) and in Colorado (The Shortgrass Steppe Long Term Ecological Research Project: LTER). One of the central hypotheses of the proposal was that methane production should be substrate limited, as well as being controlled by physical variables influencing microbial activity (temperature, oxidation status, and pH). Laboratory studies of peats from Canada and Minnesota (Northern and Southern Boreal) were conducted with amendments of a methanogenic substrate at multiple temperatures and at multiple pHs (the latter by titrating samples). The studies showed control by substrate, pH, and temperature in order in anaerobic samples. Field and laboratory manipulations of natural plant litter, rather than an acetogenic substrate, showed similarly large effects. The studies concluded that substrate is an important control over methanogenesis, that substrate availability in the field is closely coupled to the chemistry of the dominant vegetation influencing its decomposition rate, that most methane is produced from recent plant litter, and that landscape changes in pH are an important control, highly correlated with vegetation.
Knowledge evolution in physics research: An analysis of bibliographic coupling networks.
Liu, Wenyuan; Nanetti, Andrea; Cheong, Siew Ann
2017-01-01
Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the American Physical Society (APS) publications data sets, we ask in this paper how new knowledge is built upon old knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on Bose-Einstein condensation (BEC), quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events.
Identifying the Tunneling Site in Strong-Field Ionization of H_{2}^{+}.
Liu, Kunlong; Barth, Ingo
2017-12-15
The tunneling site of the electron in a molecule exposed to a strong laser field determines the initial position of the ionizing electron and, as a result, has a large impact on the subsequent ultrafast electron dynamics on the polyatomic Coulomb potential. Here, the tunneling site of the electron of H_{2}^{+} ionized by a strong circularly polarized (CP) laser pulse is studied by numerically solving the time-dependent Schrödinger equation. We show that the electron removed from the down-field site is directly driven away by the CP field and the lateral photoelectron momentum distribution (LPMD) exhibits a Gaussian-like distribution, whereas the corresponding LPMD of the electron removed from the up-field site differs from the Gaussian shape due to the Coulomb focusing and scattering by the down-field core. Our current study presents the direct evidence clarifying a long-standing controversy over the tunneling site in H_{2}^{+} and raises the important role of the tunneling site in strong-field molecular ionization.
Characteristics of Extreme Geoelectric Fields and Their Possible Causes: Localized Peak Enhancements
NASA Astrophysics Data System (ADS)
Pulkkinen, A. A.; Ngwira, C. M.; Bernabeu, E.; Eichner, J.; Viljanen, A.; Crowley, G.
2015-12-01
One of the major challenges pertaining to extreme geomagnetic storms is to understand the basic processes associated with the development of dynamic magnetosphere-ionosphere currents, which generate large induced surface geoelectric fields. Previous studies point out the existence of localized peak geoelectric field enhancements during extreme storms. We examined induced global geoelectric fields derived from ground-based magnetometer recordings for 12 extreme geomagnetic storms between the years 1982--2005. However for the present study, an in-depth analysis was performed for two important extreme storms, October 29, 2003 and March 13, 1989. The primary purpose of this paper is to provide further evidence on the existence of localized peak geoelectric field enhancements, and to show that the structure of the geoelectric field during these localized extremes at single sites can differ greatly from globally and regionally averaged fields. Although the physical processes that govern the development of these localized extremes are still not clear, we discuss some possible causes.
Gim, Y.; Sethi, A.; Zhao, Q.; ...
2016-01-11
A major focus of experimental interest in Sr 2IrO 4 has been to clarify how the magnetic excitations of this strongly spin-orbit coupled system differ from the predictions of an isotropic 2D spin-1/2 Heisenberg model and to explore the extent to which strong spin-orbit coupling affects the magnetic properties of iridates. Here, we present a high-resolution inelastic light (Raman) scattering study of the low energy magnetic excitation spectrum of Sr 2IrO 4 and doped Eu-doped Sr 2IrO 4 as functions of both temperature and applied magnetic field. We show that the high-field (H > 1.5 T) in-plane spin dynamics ofmore » Sr 2IrO 4 are isotropic and governed by the interplay between the applied field and the small in-plane ferromagnetic spin components induced by the Dzyaloshinskii-Moriya interaction. However, the spin dynamics of Sr 2IrO 4 at lower fields (H < 1.5 T) exhibit important effects associated with interlayer coupling and in-plane anisotropy, including a spin-flop transition at Hc in Sr 2IrO 4 that occurs either discontinuously or via a continuous rotation of the spins, depending upon the in-plane orientation of the applied field. Furthermore, these results show that in-plane anisotropy and interlayer coupling effects play important roles in the low-field magnetic and dynamical properties of Sr 2IrO 4.« less
Surface field theories of point group symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Huang, Sheng-Jie; Hermele, Michael
2018-02-01
We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.
NASA Astrophysics Data System (ADS)
Baker, M. M.; Lapotre, M. G. A.; Bridges, N. T.; Minitti, M. E.; Newman, C. E.; Ehlmann, B. L.; Vasavada, A. R.; Edgett, K. S.; Lewis, K. W.
2017-12-01
Since its landing at Gale crater five years ago, the Curiosity rover has provided us with unparalleled data to study active surface processes on Mars. Repeat imaging campaigns (i.e. "change-detection campaigns") conducted with the rover's cameras have allowed us to study Martian atmosphere-surface interactions and characterize wind-driven sediment transport from ground-truth observations. Utilizing the rover's periodic stops to image identical patches of ground over multiple sols, these change-detection campaigns have revealed sediment motion over a wide range of grain sizes. These results have been corroborated in images taken by the rover's hand lens imager (MAHLI), which have captured sand transport occurring on the scale of minutes. Of particular interest are images collected during Curiosity's traverse across the Bagnold Dune Field, the first dune field observed to be active in situ on another planet. Curiosity carried out the first phase of the Bagnold Dunes campaign (between Ls 72º and 109º) along the northern edge of the dune field at the base of Aeolis Mons, where change-detection images showed very limited sediment motion. More recently, a second phase of the campaign was conducted along the southern edge of the dune field between Ls 312º to 345º; here, images captured extensive wind-driven sand motion. Observations from multiple cameras show ripples migrating to the southwest, in agreement with predicted net transport within the dune field. Together with change-detection observations conducted outside of the dune field, the data show that ubiquitous Martian landscapes are seasonally active within Gale crater, with the bulk of the sediment flux occurring during southern summer.
The Incorporation and Initialization of Cloud Water/ice in AN Operational Forecast Model
NASA Astrophysics Data System (ADS)
Zhao, Qingyun
Quantitative precipitation forecasts have been one of the weakest aspects of numerical weather prediction models. Theoretical studies show that the errors in precipitation calculation can arise from three sources: errors in the large-scale forecasts of primary variables, errors in the crude treatment of condensation/evaporation and precipitation processes, and errors in the model initial conditions. A new precipitation parameterization scheme has been developed to investigate the forecast value of improved precipitation physics via the introduction of cloud water and cloud ice into a numerical prediction model. The main feature of this scheme is the explicit calculation of cloud water and cloud ice in both the convective and stratiform precipitation parameterization. This scheme has been applied to the eta model at the National Meteorological Center. Four extensive tests have been performed. The statistical results showed a significant improvement in the model precipitation forecasts. Diagnostic studies suggest that the inclusion of cloud ice is important in transferring water vapor to precipitation and in the enhancement of latent heat release; the latter subsequently affects the vertical motion field significantly. Since three-dimensional cloud data is absent from the analysis/assimilation system for most numerical models, a method has been proposed to incorporate observed precipitation and nephanalysis data into the data assimilation system to obtain the initial cloud field for the eta model. In this scheme, the initial moisture and vertical motion fields are also improved at the same time as cloud initialization. The physical initialization is performed in a dynamical initialization framework that uses the Newtonian dynamical relaxation method to nudge the model's wind and mass fields toward analyses during a 12-hour data assimilation period. Results from a case study showed that a realistic cloud field was produced by this method at the end of the data assimilation period. Precipitation forecasts have been significantly improved as a result of the improved initial cloud, moisture and vertical motion fields.
Pooled analysis of recent studies on magnetic fields and childhood leukaemia
Kheifets, L; Ahlbom, A; Crespi, C M; Draper, G; Hagihara, J; Lowenthal, R M; Mezei, G; Oksuzyan, S; Schüz, J; Swanson, J; Tittarelli, A; Vinceti, M; Wunsch Filho, V
2010-01-01
Background: Previous pooled analyses have reported an association between magnetic fields and childhood leukaemia. We present a pooled analysis based on primary data from studies on residential magnetic fields and childhood leukaemia published after 2000. Methods: Seven studies with a total of 10 865 cases and 12 853 controls were included. The main analysis focused on 24-h magnetic field measurements or calculated fields in residences. Results: In the combined results, risk increased with increase in exposure, but the estimates were imprecise. The odds ratios for exposure categories of 0.1–0.2 μT, 0.2–0.3 μT and ⩾0.3 μT, compared with <0.1 μT, were 1.07 (95% CI 0.81–1.41), 1.16 (0.69–1.93) and 1.44 (0.88–2.36), respectively. Without the most influential study from Brazil, the odds ratios increased somewhat. An increasing trend was also suggested by a nonparametric analysis conducted using a generalised additive model. Conclusions: Our results are in line with previous pooled analyses showing an association between magnetic fields and childhood leukaemia. Overall, the association is weaker in the most recently conducted studies, but these studies are small and lack methodological improvements needed to resolve the apparent association. We conclude that recent studies on magnetic fields and childhood leukaemia do not alter the previous assessment that magnetic fields are possibly carcinogenic. PMID:20877339
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vedeneev, S. I., E-mail: vedeneev@sci.lebedev.ru; Knyazev, D. A.; Prudkoglyad, V. A.
2015-07-15
Two-dimensional (2D) Shubnikov–de Haas oscillations and 2D Hall oscillations are observed in 3D copper-doped Bi{sub 2}Se{sub 3} single crystals in magnetic fields up to 19.5 T at temperatures down to 0.3 K. Three samples with a high bulk carrier concentration (n ≈ 10{sup 19}–10{sup 20} cm{sup –3}) are studied. The rotation of the samples in a magnetic field shows that these oscillations are related to numerous parallel 2D conducting channels 1–5 nm thick. Their basic kinetic parameters are found. Quantized Hall resistance R{sub xy} is detected in 1-nm-thick 2D conducting channels at high fields. The distance Δ(1/R{sub xy}) between themore » steps in the field dependence of 1/R{sub xy} is found to be constant for different Landau levels, 1.3e{sup 2}/h per 1-nm-thick layer. The constructed fan diagrams of 2D Landau levels for various angles of sample inclination with respect to the magnetic field direction allowed us to conclude that the Berry phase in the 2D conducting channels is γ ≈ π and independent of the magnetic field direction. When studying the angular dependence of upper resistive critical magnetic field H{sub c2} in one of the superconducting samples, we showed that it can be considered as a bulk superconductor consisting of superconducting layers with an effective thickness of about 50 nm.« less
Elgohary, Hany M; Tantawy, Sayed A
2017-01-01
[Purpose] To investigate the effect of pulsed electromagnetic field with or without exercise therapy in the treatment of benign prostatic hyperplasia. [Subjects and Methods] Sixty male patients aged 55–65 years with benign prostatic hyperplasia were invited to participate in this study. Patients were randomly assigned to Group A (n=20; patients who received pulsed electromagnetic field in addition to pelvic floor and aerobic exercises), Group B (n=20; patients who received pulsed electromagnetic field), and Group C (n=20; patients who received placebo electromagnetic field). The assessments included post-void residual urine, urine flow rate, prostate specific antigen, white blood cells count, and International Prostate Symptom Score were weighed, before and after a 4-week intervention. [Results] There were significant differences in Group A and B in all parameters. Group C showed non-significant differences in all measured variables except for International Prostate Symptom Score. Among groups, all parameters showed highly significant differences in favor of Group A. There were non-significant differences between Group A and B and significant difference between Groups A and C and between Groups B and C. [Conclusion] The present study demonstrated that electromagnetic field had a significant impact on the treatment of benign prostatic hyperplasia. Accordingly, electromagnetic field can be utilized alone or in combination with other physiotherapy modalities. Moreover, clinicians should have the capacity to perceive the advantages accomplished using extra treatment alternatives. Electromagnetic field is a safe, noninvasive method and can be used for the treatment of benign prostatic hyperplasia. PMID:28878453
Study of Two Successive Three-ribbon Solar Flares Using BBSO/NST Observations
NASA Astrophysics Data System (ADS)
Wang, Haimin; Liu, Chang; Deng, Na; Zeng, Zhicheng; Xu, Yan; Jing, Ju; Cao, Wenda
2014-06-01
We studied two rarely observed three-ribbon flares (M1.9 and C9.2) on 2012 July 6 in NOAA AR 11515, which we found using Hα observations of 0.1 arcsec resolution from the New Solar Telescope and Ca II H images from Hinode. The flaring site is characterized by an intriguing "fish-bone-like" morphology evidenced by both Halpha images and a nonlinear force-free field (NLFFF) extrapolation, where two semi-parallel rows of low-lying, sheared loops connect an elongated, parasitic negative field with the sandwiching positive fields. The NLFFF model also shows that the two rows of loops are asymmetric in height and have opposite twists, and are enveloped by large-scale field lines including open fields. The two flares occurred in succession within half an hour and are located at the two ends of the flaring region. The three ribbons of each flare run parallel to the magnetic polarity inversion line, with the outer two lying in the positive field and the central one in the negative field. Both flares show surge-like flows in Halpha apparently toward the remote region, while the C9.2 flare is also accompanied by EUV jets possibly along the open field lines. Interestingly, the 12-25 keV hard X-ray sources of the C9.2 flare first line up with the central ribbon then shift to concentrate on the top of the higher branch of loops. These results are discussed in favor of reconnection along the coronal null line, producing the three flare ribbons and the associated ejections.
Spatial Studies of Ion Beams in an Expanding Plasma
NASA Astrophysics Data System (ADS)
Aguirre, Evan; Good, Timothy; Scime, Earl; Thompson, Derek
2017-10-01
We report spatially resolved perpendicular and parallel ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v 8 km/s flowing downstream that is confined to the center of the discharge. The ion beam is confined to within a few centimeters radially and is measurable for tens of centimeters axially before the LIF signal fades, likely a result of metastable quenching of the beam ions. The axial ion beam velocity slows in agreement with collisional processes. The perpendicular IVDFs show an ion population with a radially outward flow that increases with radial location. The DC electric field, electron temperature, and the plasma density in the double layer plume are all consistent with magnetic field aligned structures. The upstream and downstream electric field measurements show clear evidence of an ion hole that maps along the magnetic field at the edge of the plasma. Current theories and simulations of double layers, which are one-dimensional, completely miss these critically important two-dimensional features.
Ordering dynamics of self-propelled particles in an inhomogeneous medium
NASA Astrophysics Data System (ADS)
Das, Rakesh; Mishra, Shradha; Puri, Sanjay
2018-02-01
Ordering dynamics of self-propelled particles in an inhomogeneous medium in two dimensions is studied. We write coarse-grained hydrodynamic equations of motion for density and polarisation fields in the presence of an external random disorder field, which is quenched in time. The strength of inhomogeneity is tuned from zero disorder (clean system) to large disorder. In the clean system, the polarisation field grows algebraically as LP ∼ t0.5 . The density field does not show clean power-law growth; however, it follows Lρ ∼ t0.8 approximately. In the inhomogeneous system, we find a disorder-dependent growth. For both the density and the polarisation, growth slows down with increasing strength of disorder. The polarisation shows a disorder-dependent power-law growth LP(t,Δ) ∼ t1/\\bar zP(Δ) for intermediate times. At late times, there is a crossover to logarithmic growth LP(t,Δ) ∼ (\\ln t)1/\\varphi , where φ is a disorder-independent exponent. Two-point correlation functions for the polarisation show dynamical scaling, but the density does not.
Electric fields in micro-gravity can replace gravity
NASA Astrophysics Data System (ADS)
Gorgolewski, S.
The influence of the world-wide atmospheric electric field on the growth of plants seems to have been neglected. The confirmation of the existence of electrotropism shows effects on some plants similar to gravity. I propose space ex eriments withp plants that grow in microgravity but are exposed to different electric field configurations with various field strengths and polarity. The electric field in terrestrial environment shows strong effects on some plants that can be regarded as due to phototropism. In microgravity we have full control of light and electric field, and thus we can practically eliminate the effects of gravity and we can study to what degree the electric field can replace the gravitational effects on plants. In this way we can create a new habitat for some plants and study its role in the rate of growth as well as in the sensing of free space for growth of plants in absence of gravity. By varying the strength and direction of illumination of plants we can also study the relative role of phototropism and electrotropism on different plants. This should enable us to select the most suitable plants for Advanced Life Support systems (ALS) for long-duration missions in microgravity environment. Some simple space experiments for verification of these assumptions are described that should answer the basic questions how should we design the ALS for the future high performance space stations and long duration manned space flights. The selection of the suitable plants for such ALS may go along two approaches: the self supporting electrotropic plants using the optimal electric field strength and its range of variation, non electrotropic plants that creep along the "ground" or other supporting plants or special structures. Ground based fitotron experiments have shown that several kV/m electric fields overwhelm the gravity better than clinostats can do. It happens in case of electrotropic plants but also after several days for non-electrotropic plants
Surface magnetic field mapping on high albedo marking areas of the moon
NASA Astrophysics Data System (ADS)
Shibuya, H.; Aikawa, K.; Tsunakawa, H.; Takahashi, F.; Shimizu, H.; Matsushima, M.
2009-12-01
The correlation between high albedo markings (HAM) on the surface of the moon and strong magnetic anomalies has been claimed since the early time of the lunar magnetic field study (Hood and Schubert, 1980). Hood et al. (1989) mapped the smoothed magnetic field over the Reiner Gamma region using Lunar Prospector magnetometer (LP-MAG) data, and showed that the position of them matches well. We have developed a method to recover the 3-d magnetic field from satellite field observations (EPR method which stands for Equivalent Pole Reduction; Toyoshima et al. 2008). Applying EPR to the several areas of strong magnetic anomalies, we calculated the magnetic anomaly maps of near surface regions, to see how the anomaly and the HAM correlate each other. The data used is of the Lunar Prospector magnetometer (LP-MAG). They are selected from low altitude observations performed in 1998 to 1999. The areas studied are Reiner Gamma, Airy, Descartes, Abel, and Crisium Antipode regions. The EPR determines a set of magnetic monopoles at the moon surface which produce the magnetic field of the observation. In each studied area, we put poles in 0.1° intervals of both latitude and longitude, then the magnetic field at 5km in altitude is calculated. The field distribution is superimposed with the albedo map made from Clementine data. The total force (Bf) maps indicate that the HMA occurs at the strong anomaly regions, but their shape does not quite overlie. However, taking horizontal component (Bh), not only position but the shape and size of the anomalies coincide with HMA regions. It is particularly true for the Reiner Gamma, and Descartes regions. The shape of HMA fits in a Bh contour. The HMA is argued to be formed by the reduction of solar wind particles which are shielded by the magnetic field. Since the deflection of the charged particle becomes large at large horizontal component, the Bh distribution showed here support the argument.
Mode structure of planar optical antennas on dielectric substrates
Word, Robert C.; Konenkamp, Rolf
2016-08-08
Here, we report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.
Johnson, Cordell; Swarzenski, Peter W.; Richardson, Christina M.; Smith, Christopher G.; Kroeger, Kevin D.; Ganguli, Priya M.
2015-01-01
Rigorous ground-truthing at each field site showed that multi-channel electrcial resistivity techniques can reproduce the scales and dynamics of a seepage field when such data are correctly collected, and when the model inversions are tuned to field site characteristics. Such information can provide a unique perspective on the scales and dynamics of exchange processes within a coastal aquifer—information essential to scientists and resource managers alike.
Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields
NASA Astrophysics Data System (ADS)
Arias, Rodrigo
2015-03-01
Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.
Thermal denaturing of mutant lysozyme with both the OPLSAA and the CHARMM force fields.
Eleftheriou, Maria; Germain, Robert S; Royyuru, Ajay K; Zhou, Ruhong
2006-10-18
Biomolecular simulations enabled by massively parallel supercomputers such as BlueGene/L promise to bridge the gap between the currently accessible simulation time scale and the experimental time scale for many important protein folding processes. In this study, molecular dynamics simulations were carried out for both the wild-type and the mutant hen lysozyme (TRP62GLY) to study the single mutation effect on lysozyme stability and misfolding. Our thermal denaturing simulations at 400-500 K with both the OPLSAA and the CHARMM force fields show that the mutant structure is indeed much less stable than the wild-type, which is consistent with the recent urea denaturing experiment (Dobson et al. Science 2002, 295, 1719-1722; Nature 2003, 424, 783-788). Detailed results also reveal that the single mutation TRP62GLY first induces the loss of native contacts in the beta-domain region of the lysozyme protein at high temperatures, and then the unfolding process spreads into the alpha-domain region through Helix C. Even though the OPLSAA force field in general shows a more stable protein structure than does the CHARMM force field at high temperatures, the two force fields examined here display qualitatively similar results for the misfolding process, indicating that the thermal denaturing of the single mutation is robust and reproducible with various modern force fields.
NASA Astrophysics Data System (ADS)
Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri
2017-05-01
Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.
Worldwide nanotechnology development: a comparative study of USPTO, EPO, and JPO patents (1976-2004)
NASA Astrophysics Data System (ADS)
Li, Xin; Lin, Yiling; Chen, Hsinchun; Roco, Mihail C.
2007-12-01
To assess worldwide development of nanotechnology, this paper compares the numbers and contents of nanotechnology patents in the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO). It uses the patent databases as indicators of nanotechnology trends via bibliographic analysis, content map analysis, and citation network analysis on nanotechnology patents per country, institution, and technology field. The numbers of nanotechnology patents published in USPTO and EPO have continued to increase quasi-exponentially since 1980, while those published in JPO stabilized after 1993. Institutions and individuals located in the same region as a repository's patent office have a higher contribution to the nanotechnology patent publication in that repository ("home advantage" effect). The USPTO and EPO databases had similar high-productivity contributing countries and technology fields with large number of patents, but quite different high-impact countries and technology fields after the average number of received cites. Bibliographic analysis on USPTO and EPO patents shows that researchers in the United States and Japan published larger numbers of patents than other countries, and that their patents were more frequently cited by other patents. Nanotechnology patents covered physics research topics in all three repositories. In addition, USPTO showed the broadest representation in coverage in biomedical and electronics areas. The analysis of citations by technology field indicates that USPTO had a clear pattern of knowledge diffusion from highly cited fields to less cited fields, while EPO showed knowledge exchange mainly occurred among highly cited fields.
Chen, Shih-Wei; Lai, Jr-Jie; Chiang, Chen-Li; Chen, Cheng-Lung
2012-06-01
Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.
NASA Astrophysics Data System (ADS)
Chen, Shih-Wei; Lai-Jie, Jr.; Chiang, Chen-Li; Chen, Cheng-Lung
2012-06-01
Magnetic hyperthermia using magnetic nanoparticles (MNPs) has attracted considerable attention as one of the promising tumor therapy. The study has been developed under single magnetic field. Recently, we found that the immobile MNP may generate more heat under two synchronous ac magnetic fields than traditional single and circular polarized fields based on model simulation result. According to this finding we constructed an orthogonal synchronized bi-directional field (OSB field). The system contained two LC resonant inverters (L: inductor, C: capacitor) and both vertical and transverse ac magnetic fields were generated by two Helmholtz coils. To reduce the interference, the axis directional of two coils were arranged orthogonally. The experiments showed that the heating ability of aggregated MNPs is greatly enhanced under this newly designed OSB field without increasing the strength of magnetic field. The OSB field system provides a promising way for future clinical hyperthermia.
Kosevich, Yuriy A; Gann, Vladimir V
2013-06-19
We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.
Plasma coating of nanoparticles in the presence of an external electric field
NASA Astrophysics Data System (ADS)
Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein
2018-04-01
Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.
Random electric field instabilities of relaxor ferroelectrics
NASA Astrophysics Data System (ADS)
Arce-Gamboa, José R.; Guzmán-Verri, Gian G.
2017-06-01
Relaxor ferroelectrics are complex oxide materials which are rather unique to study the effects of compositional disorder on phase transitions. Here, we study the effects of quenched cubic random electric fields on the lattice instabilities that lead to a ferroelectric transition and show that, within a microscopic model and a statistical mechanical solution, even weak compositional disorder can prohibit the development of long-range order and that a random field state with anisotropic and power-law correlations of polarization emerges from the combined effect of their characteristic dipole forces and their inherent charge disorder. We compare and reproduce several key experimental observations in the well-studied relaxor PbMg1/3Nb2/3O3-PbTiO3.
NASA Astrophysics Data System (ADS)
Chegel, Raad; Behzad, Somayeh
2014-02-01
We have studied the electronic structure and dipole matrix element, D, of carbon nanotubes (CNTs) under magnetic field, using the third nearest neighbor tight binding model. It is shown that the 1NN and 3NN-TB band structures show differences such as the spacing and mixing of neighbor subbands. Applying the magnetic field leads to breaking the degeneracy behavior in the D transitions and creates new allowed transitions corresponding to the band modifications. It is found that |D| is proportional to the inverse tube radius and chiral angle. Our numerical results show that amount of filed induced splitting for the first optical peak is proportional to the magnetic field by the splitting rate ν11. It is shown that ν11 changes linearly and parabolicly with the chiral angle and radius, respectively.
Current conduction in junction gate field effect transistors. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kim, C.
1970-01-01
The internal physical mechanism that governs the current conduction in junction-gate field effect transistors is studied. A numerical method of analyzing the devices with different length-to-width ratios and doping profiles is developed. This method takes into account the two dimensional character of the electric field and the field dependent mobility. Application of the method to various device models shows that the channel width and the carrier concentration in the conductive channel decrease with increasing drain-to-source voltage for conventional devices. It also shows larger differential drain conductances for shorter devices when the drift velocity is not saturated. The interaction of the source and the drain gives the carrier accumulation in the channel which leads to the space-charge-limited current flow. The important parameters for the space-charge-limited current flow are found to be the L/L sub DE ratio and the crossover voltage.
Field gamma-ray spectrometer GS256: measurements stability
NASA Astrophysics Data System (ADS)
Mojzeš, Andrej
2009-01-01
The stability of in situ readings of the portable gamma-ray spectrometer GS256 during the field season of 2006 was studied. The instrument is an impulse detector of gamma rays based on NaI(Tl) 3" × 3" scintillation unit and 256-channel spectral analyzer which allows simultaneous assessment of up to 8 radioisotopes in rocks. It is commonly used in surface geophysical survey for the measurement of natural 40K, 238U and 232Th but also artificial 137Cs quantities. The statistical evaluation is given of both repeated measurements - in the laboratory and at several field control points in different survey areas. The variability of values shows both the instrument stability and also the relative influence of some meteorological factors, mainly rainfalls. The analysis shows an acceptable level of instrument measurements stability, the necessity to avoid measurement under unfavourable meteorological conditions and to keep detailed field book information about time, position and work conditions.
Vorticity and divergence in the solar photosphere
NASA Technical Reports Server (NTRS)
Wang, YI; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.
1995-01-01
We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.
Driving a Superconductor to Insulator Transition with Random Gauge Fields.
Nguyen, H Q; Hollen, S M; Shainline, J; Xu, J M; Valles, J M
2016-11-30
Typically the disorder that alters the interference of particle waves to produce Anderson localization is potential scattering from randomly placed impurities. Here we show that disorder in the form of random gauge fields that act directly on particle phases can also drive localization. We present evidence of a superfluid bose glass to insulator transition at a critical level of this gauge field disorder in a nano-patterned array of amorphous Bi islands. This transition shows signs of metallic transport near the critical point characterized by a resistance , indicative of a quantum phase transition. The critical disorder depends on interisland coupling in agreement with recent Quantum Monte Carlo simulations. We discuss how this disorder tuned SIT differs from the common frustration tuned SIT that also occurs in magnetic fields. Its discovery enables new high fidelity comparisons between theoretical and experimental studies of disorder effects on quantum critical systems.
Analytical methods for dating modern writing instrument inks on paper.
Ezcurra, Magdalena; Góngora, Juan M G; Maguregui, Itxaso; Alonso, Rosa
2010-04-15
This work reviews the different analytical methods that have been proposed in the field of forensic dating of inks from different modern writing instruments. The reported works have been classified according to the writing instrument studied and the ink component analyzed in relation to aging. The study, done chronologically, shows the advances experienced in the ink dating field in the last decades. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Brillouin light scattering study of spin waves in NiFe/Co exchange spring bilayer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haldar, Arabinda; Banerjee, Chandrima; Laha, Pinaki
2014-04-07
Spin waves are investigated in Permalloy(Ni{sub 80}Fe{sub 20})/Cobalt(Co) exchange spring bilayer thin films using Brillouin light scattering (BLS) experiment. The magnetic hysteresis loops measured by magneto-optical Kerr effect show a monotonic decrease in coercivity of the bilayer films with increasing Py thickness. BLS study shows two distinct modes, which are modelled as Damon-Eshbach and perpendicular standing wave modes. Linewidths of the frequency peaks are found to increase significantly with decreasing Py layer thickness. Interfacial roughness causes to fluctuate exchange coupling at the nanoscale regimes and the effect is stronger for thinner Py films. A quantitative analysis of the magnon linewidthsmore » shows the presence of strong local exchange coupling field which is much larger compared to macroscopic exchange field.« less
Geomagnetic field model for the last 5 My: time-averaged field and secular variation
NASA Astrophysics Data System (ADS)
Hatakeyama, Tadahiro; Kono, Masaru
2002-11-01
Structure of the geomagnetic field has bee studied by using the paleomagetic direction data of the last 5 million years obtained from lava flows. The method we used is the nonlinear version, similar to the works of Gubbins and Kelly [Nature 365 (1993) 829], Johnson and Constable [Geophys. J. Int. 122 (1995) 488; Geophys. J. Int. 131 (1997) 643], and Kelly and Gubbins [Geophys. J. Int. 128 (1997) 315], but we determined the time-averaged field (TAF) and the paleosecular variation (PSV) simultaneously. As pointed out in our previous work [Earth Planet. Space 53 (2001) 31], the observed mean field directions are affected by the fluctuation of the field, as described by the PSV model. This effect is not excessively large, but cannot be neglected while considering the mean field. We propose that the new TAF+PSV model is a better representation of the ancient magnetic field, since both the average and fluctuation of the field are consistently explained. In the inversion procedure, we used direction cosines instead of inclinations and declinations, as the latter quantities show singularity or unstable behavior at the high latitudes. The obtained model gives reasonably good fit to the observed means and variances of direction cosines. In the TAF model, the geocentric axial dipole term ( g10) is the dominant component; it is much more pronounced than that in the present magnetic field. The equatorial dipole component is quite small, after averaging over time. The model shows a very smooth spatial variation; the nondipole components also seem to be averaged out quite effectively over time. Among the other coefficients, the geocentric axial quadrupole term ( g20) is significantly larger than the other components. On the other hand, the axial octupole term ( g30) is much smaller than that in a TAF model excluding the PSV effect. It is likely that the effect of PSV is most clearly seen in this term, which is consistent with the conclusion reached in our previous work. The PSV model shows large variance of the (2,1) component, which is in good agreement with the previous PSV models obtained by forward approaches. It is also indicated that the variance of the axial dipole term is very small. This is in conflict with the studies based on paleointensity data, but we show that this conclusion is not inconsistent with the paleointensity data because a substantial part of the apparent scatter in paleointensities may be attributable to effects other than the fluctuations in g10 itself.
A Single Polyaniline Nanofiber Field Effect Transistor and Its Gas Sensing Mechanisms
Chen, Dajing; Lei, Sheng; Chen, Yuquan
2011-01-01
A single polyaniline nanofiber field effect transistor (FET) gas sensor fabricated by means of electrospinning was investigated to understand its sensing mechanisms and optimize its performance. We studied the morphology, field effect characteristics and gas sensitivity of conductive nanofibers. The fibers showed Schottky and Ohmic contacts based on different electrode materials. Higher applied gate voltage contributes to an increase in gas sensitivity. The nanofiber transistor showed a 7% reversible resistance change to 1 ppm NH3 with 10 V gate voltage. The FET characteristics of the sensor when exposed to different gas concentrations indicate that adsorption of NH3 molecules reduces the carrier mobility in the polyaniline nanofiber. As such, nanofiber-based sensors could be promising for environmental and industrial applications. PMID:22163969
(2 + 1)-dimensional interacting model of two massless spin-2 fields as a bi-gravity model
NASA Astrophysics Data System (ADS)
Hoseinzadeh, S.; Rezaei-Aghdam, A.
2018-06-01
We propose a new group-theoretical (Chern-Simons) formulation for the bi-metric theory of gravity in (2 + 1)-dimensional spacetime which describe two interacting massless spin-2 fields. Our model has been formulated in terms of two dreibeins rather than two metrics. We obtain our Chern-Simons gravity model by gauging mixed AdS-AdS Lie algebra and show that it has a two dimensional conformal field theory (CFT) at the boundary of the anti de Sitter (AdS) solution. We show that the central charge of the dual CFT is proportional to the mass of the AdS solution. We also study cosmological implications of our massless bi-gravity model.
Klein-Gordon oscillator with position-dependent mass in the rotating cosmic string spacetime
NASA Astrophysics Data System (ADS)
Wang, Bing-Qian; Long, Zheng-Wen; Long, Chao-Yun; Wu, Shu-Rui
2018-02-01
A spinless particle coupled covariantly to a uniform magnetic field parallel to the string in the background of the rotating cosmic string is studied. The energy levels of the electrically charged particle subject to the Klein-Gordon oscillator are analyzed. Afterwards, we consider the case of the position-dependent mass and show how these energy levels depend on the parameters in the problem. Remarkably, it shows that for the special case, the Klein-Gordon oscillator coupled covariantly to a homogeneous magnetic field with the position-dependent mass in the rotating cosmic string background has the similar behaviors to the Klein-Gordon equation with a Coulomb-type configuration in a rotating cosmic string background in the presence of an external magnetic field.
Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots
NASA Astrophysics Data System (ADS)
Tomasello, R.; Guslienko, K. Y.; Ricci, M.; Giordano, A.; Barker, J.; Carpentieri, M.; Chubykalo-Fesenko, O.; Finocchio, G.
2018-02-01
Understanding the physical properties of magnetic skyrmions is important for fundamental research with the aim to develop new spintronic device paradigms where both logic and memory can be integrated at the same level. Here, we show a universal model based on the micromagnetic formalism that can be used to study skyrmion stability as a function of magnetic field and temperature. We consider ultrathin, circular ferromagnetic magnetic dots. Our results show that magnetic skyrmions with a small radius—compared to the dot radius—are always metastable, while large radius skyrmions form a stable ground state. The change of energy profile determines the weak (strong) size dependence of the metastable (stable) skyrmion as a function of temperature and/or field.
Dense Velocity Field of Turkey
NASA Astrophysics Data System (ADS)
Ozener, H.; Aktug, B.; Dogru, A.; Tasci, L.
2017-12-01
While the GNSS-based crustal deformation studies in Turkey date back to early 1990s, a homogenous velocity field utilizing all the available data is still missing. Regional studies employing different site distributions, observation plans, processing software and methodology not only create reference frame variations but also heterogeneous stochastic models. While the reference frame effect between different velocity fields could easily be removed by estimating a set of rotations, the homogenization of the stochastic models of the individual velocity fields requires a more detailed analysis. Using a rigorous Variance Component Estimation (VCE) methodology, we estimated the variance factors for each of the contributing velocity fields and combined them into a single homogenous velocity field covering whole Turkey. Results show that variance factors between velocity fields including the survey mode and continuous observations can vary a few orders of magnitude. In this study, we present the most complete velocity field in Turkey rigorously combined from 20 individual velocity fields including the 146 station CORS network and totally 1072 stations. In addition, three GPS campaigns were performed along the North Anatolian Fault and Aegean Region to fill the gap between existing velocity fields. The homogenously combined new velocity field is nearly complete in terms of geographic coverage, and will serve as the basis for further analyses such as the estimation of the deformation rates and the determination of the slip rates across main fault zones.
Vortex shaking study of REBCO tape with consideration of anisotropic characteristics
NASA Astrophysics Data System (ADS)
Liang, Fei; Qu, Timing; Zhang, Zhenyu; Sheng, Jie; Yuan, Weijia; Iwasa, Yukikazu; Zhang, Min
2017-09-01
The second generation high temperature superconductor, specifically REBCO, has become a new research focus in the development of a new generation of high-field (>25 T) magnets. One of the main challenges in the application of the magnets is the current screening problem. Previous research shows that for magnetized superconducting stacks and bulks the application of an AC field in plane with the circulating current will lead to demagnetization due to vortex shaking, which provides a possible solution to remove the shielding current. This paper provides an in-depth study, both experimentally and numerically, to unveil the vortex shaking mechanism of REBCO stacks. A new experiment was carried out to measure the demagnetization rate of REBCO stacks exposed to an in-plane AC magnetic field. Meanwhile, 2D finite element models, based on the E-J power law, are developed for simulating the vortex shaking effect of the AC magnetic field. Qualitative agreement was obtained between the experimental and the simulation results. Our results show that the applied in-plane magnetic field leads to a sudden decay of trapped magnetic field in the first half shaking cycle, which is caused by the magnetic field dependence of critical current. Furthermore, the decline of demagnetization rate with the increase of tape number is mainly due to the cross-magnetic field being screened by the top and bottom stacks during the shaking process, which leads to lower demagnetization rate of inner layers. We also demonstrate that the frequency of the applied AC magnetic field has little impact on the demagnetization process. Our modeling tool and findings perfect the vortex shaking theory and provide helpful guidance for eliminating screening current in the new generation REBCO magnets.
An analysis of the flow field near the fuel injection location in a gas core reactor.
NASA Technical Reports Server (NTRS)
Weinstein, H.; Murty, B. G. K.; Porter, R. W.
1971-01-01
An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.
NASA Astrophysics Data System (ADS)
Rietveld, M. T.; Kosch, M. J.; Blagoveshchenskaya, N. F.; Kornienko, V. A.; Leyser, T. B.; Yeoman, T. K.
2003-04-01
In recent years, large electron temperature increases of 300% (3000 K above background) caused by powerful HF-radio wave injection have been observed during nighttime using the EISCAT incoherent scatter radar near Tromsø in northern Norway. In a case study we examine the spatial structure of the modified region. The electron heating is accompanied by ion heating of about 100 degrees and magnetic field-aligned measurements show ion outflows increasing with height up to 300 m s-1 at 582 km. The electron density decreases by up to 20%. When the radar antenna was scanned between three elevations from near field-aligned to vertical, the strongest heating effects were always obtained in the field-aligned position. When the HF-pump beam was scanned between the same three positions, the heating was still almost always strongest in the field-aligned direction. Simultaneous images of the 630 nm O(1D) line in the radio-induced aurora showed that the enhancement caused by the HF radio waves also remained localized near the field-aligned position. Coherent HF radar backscatter also appeared strongest when the pump beam was pointed field-aligned. These results are similar to some Langmuir turbulence phenomena which also show a strong preference for excitation by HF rays launched in the field-aligned direction. The correlation of the position of largest temperature enhancement with the position of the radio-induced aurora suggests that a common mechanism, upper-hybrid wave turbulence, is responsible for both effects. Why the strongest heating effects occur for HF rays directed along the magnetic field is still unclear, but self-focusing on field-aligned striations is a candidate mechanism, and possibly ionospheric tilts may be important.
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less
Impact of toroidal and poloidal mode spectra on the control of non-axisymmetric fields in tokamaks
Lanctot, Matthew J.; Park, J. -K.; Piovesan, Paolo; ...
2017-05-18
In several tokamaks, non-axisymmetric magnetic field studies show that applied magnetic fields with a toroidal harmonic n = 2 can lead to disruptive n = 1 locked modes. In Ohmic plasmas, n = 2 magnetic reconnection thresholds in otherwise stable discharges are readily accessed at edge safety factors q ~ 3, low density, and low rotation. Similar to previous studies with n = 1 fields, the thresholds are correlated with the “overlap” field computed with the IPEC code. The overlap field quantifies the plasma-mediated coupling of the external field to the resonant field. Remarkably, the “critical overlap fields” at whichmore » magnetic islands form are similar for applied n =1 and 2 fields. The critical overlap field increases with plasma density and edge safety factor but is independent of the toroidal field. Poloidal harmonics m > nq dominate the drive for resonant fields while m < nq harmonics have a negligible impact. This contrasts with previous results in H-mode discharges at high plasma pressure in which the toroidal angular momentum is sensitive to low poloidal harmonics. Altogether, these results highlight unique requirements for n > 1 field control including the need for multiple rows of coils to control selected plasma parameters for specific functions (e.g., rotation control or ELM suppression).« less
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.
2017-09-01
Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that predominantly quadrupolar magnetic field topologies, invoked to be present in a significant number of stars, probably do not exist in real stars. This finding agrees with an outcome of the MHD simulations of fossil field evolution in stably stratified stellar interiors. Based on observations collected at the European Southern Observatory, Chile (ESO programs 085.D-0296, 089.D-0383, 095.D-0194) and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
NASA Astrophysics Data System (ADS)
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-09-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2-3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100-250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Robustness of inflation to inhomogeneous initial conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clough, Katy; Lim, Eugene A.; DiNunno, Brandon S.
We consider the effects of inhomogeneous initial conditions in both the scalar field profile and the extrinsic curvature on different inflationary models. In particular, we compare the robustness of small field inflation to that of large field inflation, using numerical simulations with Einstein gravity in 3+1 dimensions. We find that small field inflation can fail in the presence of subdominant gradient energies, suggesting that it is much less robust to inhomogeneities than large field inflation, which withstands dominant gradient energies. However, we also show that small field inflation can be successful even if some regions of spacetime start out inmore » the region of the potential that does not support inflation. In the large field case, we confirm previous results that inflation is robust if the inflaton occupies the inflationary part of the potential. Furthermore, we show that increasing initial scalar gradients will not form sufficiently massive inflation-ending black holes if the initial hypersurface is approximately flat. Finally, we consider the large field case with a varying extrinsic curvature K , such that some regions are initially collapsing. We find that this may again lead to local black holes, but overall the spacetime remains inflationary if the spacetime is open, which confirms previous theoretical studies.« less
Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study
Novickij, Vitalij; Grainys, Audrius; Lastauskienė, Eglė; Kananavičiūtė, Rūta; Pamedytytė, Dovilė; Kalėdienė, Lilija; Novickij, Jurij; Miklavčič, Damijan
2016-01-01
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation. PMID:27634482
On the local well-posedness of Lovelock and Horndeski theories
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
Nonlinear electrostrictive lattice response of EuTiO3
NASA Astrophysics Data System (ADS)
Pappas, P.; Calamiotou, M.; Köhler, J.; Bussmann-Holder, A.; Liarokapis, E.
2017-07-01
An epitaxial EuTiO3 (ETO) film grown on the SrTiO3 substrate was studied at room temperature with synchrotron XRD and in situ application of an electric field (nominally up to 7.8 kV/cm) in near grazing incidence geometry, in order to monitor the response of the lattice to the field. 2D diffraction images show that apparently misoriented coherently diffracting domains are present close to the surface whereas the film diffracts more as a single crystal towards the interface. Diffraction intensity profiles recorded from the near surface region of the EuTiO3 film showed systematic modifications upon the application of the electric field, indicating that at a critical electric field (nominally above 3.1 kV/cm), there is a clear change in the lattice response to the field, which was much stronger when the field was almost parallel to the diffraction vector. The data suggest that the ETO film, nominally paraelectric at room temperature, transforms under the application of a critical electric field to piezoelectric in agreement with a theoretical analysis based on a double-well potential. In order to exclude effects arising from the substrate, this has been investigated separately and shown not to be affected by the field.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn
2017-06-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.
Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo
2017-01-01
Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields. PMID:28747984
Observational Study of Particle Acceleration in the 2006 December 13 Flare
NASA Astrophysics Data System (ADS)
Minoshima, T.; Morimoto, T.; Kawate, T.; Imada, S.; Koshiishi, H.; Masuda, S.; Kubo, M.; Inoue, S.; Isobe, H.; Krucker, S.; Yokoyama, T.
2008-12-01
We study the particle acceleration in a flare on 2006 December 13, by using the Hinode, RHESSI, Nobeyama Radio Polarimeters (NoRP) and Nobeyama Radioheliograph (NoRH) observations. For technical reasons, both RHESSI and NoRH have a problem in imaging in this flare. Since we have succeeded in solving the problem, it is now possible to discuss the particle acceleration mechanism from an image analysis. This flare shows very long-lasting (1 hour) non-thermal emissions, consisting of many spikes. We focus on the second major spike at 02:29 UT, because the RHESSI image is available only in this period. The RHESSI 35-100 keV HXR image shows double sources located at the footpoints of the western soft X-ray (SXR) loop seen by the Hinode/XRT. The non-linear force-free (NLFF) modeling based on a magnetogram data by Inoue et al. shows the NLFF to potential magnetic transition of the loop, which would induce the electric field and then accelerate particles. Overlaying the HXR image on the photospheric three-dimensional magnetic field map taken by the Hinode Spectro-Polarimeter, we find that the HXR sources are located at the region where the horizontal magnetic fields invert. The NoRH 34 GHz microwave images show the loop structure connecting the HXR sources. The microwave peaks do not located at the top of the loop but between the loop top and the footpoints. The NoRP microwave spectrum shows the soft-hard-soft pattern in the period, same as the HXR spectrum (Ning 2008). From these observational results we suggest that the electrons were accelerated parallel to the magnetic field line near the magnetic separatrix.
Cohen, Yafit; Roei, Itai; Blank, Lior; Goldshtein, Eitan; Eizenberg, Hanan
2017-01-01
Egyptian broomrape (Phelipanche aegyptiaca) is one of the main threats to tomato production in Israel. The seed bank of P. aegyptiaca rapidly develops and spreads in the field. Knowledge about the spatio-temporal distribution of such weeds is required in advance of emergence, as they emerge late in their life cycle when they have already caused major crop damage. The aim of this study is to reveal the effects of two major internal infestation sources: crop rotation and infestation history; and one external source: proximity to infested tomato fields; on infestation of P. aegyptiaca in processing tomatoes. Ecoinformatics, spatial analysis and geostatistics were used to examine these effects. A regional survey was conducted to collect data on field history from 238 tomato fields between 2000 and 2012, in a major tomato-growing region in Israel. Multivariate logistic regression in the framework of generalized linear models (GLM) has demonstrated the importance of all three variables in predicting infestation in tomato fields. The parameters of the overall model indicated a high specificity between tomatoes and P. aegyptiaca, which is potentially responsible for aggravating infestation. In addition, P. aegyptiaca infestation levels were intensively mapped in 43 of the 238 tomato fields in the years 2010–2012. Geostatistical measures showed that 40% of the fields had clustered infestation spatial patterns with infestation clusters located along the fields’ borders. Strong linear and negative relationships were found between infestation level and distance from a neighboring infested field, strengthening the role of infested tomato fields in P. aegyptiaca spread. An experiment specifically designed for this study showed that during harvest, P. aegyptiaca seeds are blown from an infested field to a distance of at least 90 m, and may initiate infestation in neighboring fields. Integrating current knowledge about the role of agricultural practices on the spread of P. aegyptiaca with the results of this study enabled us to propose a mechanism for the spread of P. aegyptiaca. Given the major effect of agricultural practices on infestation levels, it is assumed that the spread of this weed can be suppressed by implementing sanitation and using decision support tools for herbicide application. PMID:28676803
NASA Astrophysics Data System (ADS)
March Syahadat, Ray; Trie Putra, Priambudi; Nuraini; Nailufar, Balqis; Fatmala Makhmud, Desy
2017-10-01
Lodok Rice Field or usually known as spiderweb rice field is a system of land division. It cultural rice field only found on Manggarai, Province of East Nusa Tenggara, Indonesia. The landscape of Lodok Rice Field was aesthetic and it has big potential for tourism development. The aim of this study was to know the perception of natural elements of Lodok Rice Field landscape that could influence international tourist to visited Lodok Rice Field. If we know the elements that could influenced the international tourist, we could used the landscape image for tourism media promotion. The methods of this study used scenic beauty estimation (SBE) by 85 respondents from 34 countries and Kruskal Wallis H test. The countries grouped by five continents (Asia, America, Europe, Africa, and Oceania). The result showed that the Asian respondents liked the elements of sky, mountain, and the rice field. Then, the other respondent from another continent liked the elements of sunshine, mountain, and the rice field. Although the Asian had different perception about landscape elements of rice field’s good view, it’s not differ significantly by Kruskal Wallis H test.
Recent Advance in Organic Spintronics and Magnetic Field Effect
NASA Astrophysics Data System (ADS)
Valy Vardeny, Z.
2013-03-01
In this talk several important advances in the field of Organic Spintronics and magnetic field effect (MFE) of organic films and optoelectronic devices that have occurred during the past two years from the Utah group will be surveyed and discussed. (i) Organic Spintronics: We demonstrated spin organic light emitting diode (spin-OLED) using two FM injecting electrodes, where the electroluminescence depends on the mutual orientation of the electrode magnetization directions. This development has opened up research studies into organic spin-valves (OSV) in the space-charge limited current regime. (ii) Magnetic field effect: We demonstrated that the photoinduced absorption spectrum in organic films (where current is not involved) show pronounced MFE. This unravels the underlying mechanism of the MFE in organic devices, to be more in agreement with the field of MFE in Biochemistry. (iii) Spin effects in organic optoelectronic devices: We demonstrated that certain spin 1/2 radical additives to donor-acceptor blends substantially enhance the power conversion efficiency of organic photovoltaic (OPV) solar cells. This effect shows that studies of spin response and MFE in OPV devices are promising. In collaboration with T. Nguyen, E. Ehrenfreund, B. Gautam, Y. Zhang and T. Basel. Supported by the DOE grant 04ER46109
NASA Astrophysics Data System (ADS)
Enciso, Alberto; Poyato, David; Soler, Juan
2018-05-01
Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness properties for these sequences of approximate solutions. Some of the parts of the proof are of independent interest.
On mini-superspace limit of boundary three-point function in Liouville field theory
NASA Astrophysics Data System (ADS)
Apresyan, Elena; Sarkissian, Gor
2017-12-01
We study the mini-superspace semiclassical limit of the boundary three-point function in the Liouville field theory. We compute also matrix elements for the Morse potential quantum mechanics. An exact agreement between the former and the latter is found. We show that both of them are given by the generalized hypergeometric functions.
Is the Supply of Mathematics and Science Teachers Sufficient?
ERIC Educational Resources Information Center
Ingersoll, Richard M.; Perda, David
2010-01-01
This study seeks to empirically ground the debate over mathematics and science teacher shortages and evaluate the extent to which there is, or is not, sufficient supply of teachers in these fields. The authors' analyses of nationally representative data from multiple sources show that math and science are the fields most difficult to staff, but…
Urban Farming as a Civic Virtue Development in the Environmental Field
ERIC Educational Resources Information Center
Prasetiyo, Wibowo Heru; Budimansyah, Dasim; Roslidah, Navila
2016-01-01
This research aims to describe the impact of urban farming carried out by Bandung Berkebun community as an attempt to develop the civic virtue in the environmental field. Research method used is a case study with qualitative approach. The results show that this program has educational, economic, social, and ecological impact to the society. This…
D. Yap
1977-01-01
Information about the nocturnal temperature structure over Edmonton, Alberta. Observations of the temperature fields, including two- and three-dimensional forms of the nocturnal heat island, were obtained from minisonde ascents, an instrumented helicopter, and towers during a 3-week urban air-pollution field study. Results show that urban-induced temperature...
Nonsequential double ionization with mid-infrared laser fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Nonsequential double ionization with mid-infrared laser fields
Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...
2016-11-18
Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less
Wavepacket revivals in monolayer and bilayer graphene rings.
García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira
2013-06-12
We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.
The Role of Fluid Compression in Particle Energization during Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Li, X.; Guo, F.; Li, H.; Li, S.
2017-12-01
Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle energization. However, the role of compression in particle energization during magnetic reconnection is unclear. We present a cluster of studies to clarify and show the effect of fluid compression in accelerating particles to high energies during magnetic reconnection. Using fully kinetic reconnection simulations, we show that fluid compression is the leading mechanism for high-energy particle energization. We find that the compressional energization is more important in a low-beta plasma or in a reconnection layer with a weak guide field (the magnetic field component perpendicular to the reconnecting magnetic field), which are relevant to solar flares. Our analysis on 3D kinetic simulations shows that the self-generated turbulence scatters particles and enhances the particle diffusion processes in the acceleration regions. Based on these results, we then study large-scale reconnection acceleration by solving the particle transport equation in a large-scale reconnection layer evolved with MHD simulations. Due to the compressional effect, particles are accelerated to high energies and develop power-law energy distributions. This study clarifies the nature of particle acceleration in reconnection layer and is important to understand particle energization during large-scale acceleration such as solar flares.
Field-induced metastability of the modulation wave vector in a magnetic soliton lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, M.; Peng, J.; Hong, T.
We present magnetic-field-induced metastability of the magnetic soliton lattice in a bilayer ruthenate Ca 3(Ru 1–xFe x) 2O 7(x=0.05) through single-crystal neutron diffraction study. We show that the incommensurability of the modulation wave vector at zero field strongly depends on the history of magnetic field at low temperature, and that the equilibrium ground state can be achieved by warming above a characteristic temperature T g~37K. Lastly, we suggest that such metastability might be associated with the domain wall pinning by the magnetic Fe dopants.
Numerical analysis of exhaust jet secondary combustion in hypersonic flow field
NASA Astrophysics Data System (ADS)
Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han
2018-05-01
The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.
Field-induced metastability of the modulation wave vector in a magnetic soliton lattice
Zhu, M.; Peng, J.; Hong, T.; ...
2017-04-19
We present magnetic-field-induced metastability of the magnetic soliton lattice in a bilayer ruthenate Ca 3(Ru 1–xFe x) 2O 7(x=0.05) through single-crystal neutron diffraction study. We show that the incommensurability of the modulation wave vector at zero field strongly depends on the history of magnetic field at low temperature, and that the equilibrium ground state can be achieved by warming above a characteristic temperature T g~37K. Lastly, we suggest that such metastability might be associated with the domain wall pinning by the magnetic Fe dopants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Liu, Hui; Jiang, Binhao
A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.
NASA Astrophysics Data System (ADS)
Kim, Holak; Choe, Wonho; Lim, Youbong; Lee, Seunghun; Park, Sanghoo
2017-03-01
Magnetic field configuration is critical in Hall thrusters for achieving high performance, particularly in thrust, specific impulse, efficiency, etc. Ion beam features are also significantly influenced by magnetic field configurations. In two typical magnetic field configurations (i.e., co-current and counter-current configurations) of a cylindrical Hall thruster, ion beam characteristics are compared in relation to multiply charged ions. Our study shows that the co-current configuration brings about high ion current (or low electron current), high ionization rate, and small plume angle that lead to high thruster performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zúñiga-Segundo, Arturo; Juárez-Amaro, Raúl; Aguilar-Loreto, Omar
We study the atom–field interaction when the field is in a mixture of coherent states. We show that in this case it is possible to calculate analytically the field entropy for times of the order of twice the collapse time. Such analytical results are done with the help of numerical analysis. We also give an expression in terms of Chebyshev polynomials for power of density matrices. - Highlights: • We calculate the field entropy for times of the order of twice the collapse time. • We give a relation between powers of the density matrices of the subsystems. • Entropymore » operators for both subsystems are obtained.« less
Effect of reheating on predictions following multiple-field inflation
NASA Astrophysics Data System (ADS)
Hotinli, Selim C.; Frazer, Jonathan; Jaffe, Andrew H.; Meyers, Joel; Price, Layne C.; Tarrant, Ewan R. M.
2018-01-01
We study the sensitivity of cosmological observables to the reheating phase following inflation driven by many scalar fields. We describe a method which allows semianalytic treatment of the impact of perturbative reheating on cosmological perturbations using the sudden decay approximation. Focusing on N -quadratic inflation, we show how the scalar spectral index and tensor-to-scalar ratio are affected by the rates at which the scalar fields decay into radiation. We find that for certain choices of decay rates, reheating following multiple-field inflation can have a significant impact on the prediction of cosmological observables.
Study on transport properties of silicene monolayer under external field using NEGF method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syaputra, Marhamni, E-mail: marhamni@students.itb.ac.id; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana
2015-09-30
We investigate the current-voltage (I-V) characteristics of a pristine monolayer silicene using non-equilibrium Green function (NEGF) method combining with density functional theory (DFT). This method succeeded in showing the relationship of I and V on silicene corresponding to the electronic characteristics such as density of states. The external field perpendicular to the silicene monolayer affects in increasing of the current. Under 0.2 eV external field, the current reaches the maximum peak at Vb = 0.3 eV with the increase is about 60% from what it is in zero external field.
Born in weak fields: below-threshold photoelectron dynamics
NASA Astrophysics Data System (ADS)
Williams, J. B.; Saalmann, U.; Trinter, F.; Schöffler, M. S.; Weller, M.; Burzynski, P.; Goihl, C.; Henrichs, K.; Janke, C.; Griffin, B.; Kastirke, G.; Neff, J.; Pitzer, M.; Waitz, M.; Yang, Y.; Schiwietz, G.; Zeller, S.; Jahnke, T.; Dörner, R.
2017-02-01
We investigate the dynamics of ultra-low kinetic energy photoelectrons. Many experimental techniques employed for the detection of photoelectrons require the presence of (more or less) weak electric extraction fields in order to perform the measurement. Our studies show that ultra-low energy photoelectrons exhibit a characteristic shift in their apparent measured momentum when the target system is exposed to such static electric fields. Already fields as weak as 1 V cm-1 have an observable influence on the detected electron momentum. This apparent shift is demonstrated by an experiment on zero energy photoelectrons emitted from He and explained through theoretical model calculations.
Probing stochastic inter-galactic magnetic fields using blazar-induced gamma ray halo morphology
NASA Astrophysics Data System (ADS)
Duplessis, Francis; Vachaspati, Tanmay
2017-05-01
Inter-galactic magnetic fields can imprint their structure on the morphology of blazar-induced gamma ray halos. We show that the halo morphology arises through the interplay of the source's jet and a two-dimensional surface dictated by the magnetic field. Through extensive numerical simulations, we generate mock halos created by stochastic magnetic fields with and without helicity, and study the dependence of the halo features on the properties of the magnetic field. We propose a sharper version of the Q-statistics and demonstrate its sensitivity to the magnetic field strength, the coherence scale, and the handedness of the helicity. We also identify and explain a new feature of the Q-statistics that can further enhance its power.
Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.
Liu, Zheng-Xin; Normand, B
2018-05-04
Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.
Exposure to electromagnetic fields aboard high-speed electric multiple unit trains.
Niu, D; Zhu, F; Qiu, R; Niu, Q
2016-01-01
High-speed electric multiple unit (EMU) trains generate high-frequency electric fields, low-frequency magnetic fields, and high-frequency wideband electromagnetic emissions when running. Potential human health concerns arise because the electromagnetic disturbances are transmitted mainly into the car body from windows, and from there to passengers and train staff. The transmission amount and amplitude distribution characteristics that dominate electromagnetic field emission need to be studied, and the exposure level of electromagnetic field emission to humans should be measured. We conducted a series of tests of the on board electromagnetic field distribution on several high-speed railway lines. While results showed that exposure was within permitted levels, the possibility of long-term health effects should be investigated.
Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field
NASA Astrophysics Data System (ADS)
Liu, Zheng-Xin; Normand, B.
2018-05-01
Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Field-induced reentrant magnetoelectric phase in LiNiPO 4
Toft-Petersen, Rasmus; Fogh, Ellen; Kihara, Takumi; ...
2017-02-21
Using pulsed magnetic fields up to 30 T we have measured the bulk magnetization and electrical polarization of LiNiPO 4 and have studied its magnetic structure by time-of-flight neutron Laue diffraction. Our data establish the existence of a reentrant magnetoelectric phase between 19 T and 21 T. We show that a magnetized version of the zero field commensurate structure explains the magnetoelectric response quantitatively. The stability of this structure suggests a field-dependent spin anisotropy. Above 21 T , a magnetoelectrically inactive, short-wavelength incommensurate structure is identified. Lastly, our results demonstrate the combination of pulsed fields with epithermal neutron Laue diffractionmore » as a powerful method to probe even complex phase diagrams in strong magnetic fields.« less
Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements
NASA Technical Reports Server (NTRS)
Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter
2009-01-01
In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.
Alternative auxiliary fields for chiral multiplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishino, Hitoshi; Rajpoot, Subhash
We study 3-form auxiliary field formulation for chiral multiplets in the Wess-Zumino model. The conventional auxiliary fields F and G are replaced by their Hodge duals K{sub {mu}}{sub {nu}}{sub {rho}}{sub {sigma}} and H{sub {mu}}{sub {nu}}{sub {rho}}{sub {sigma}} which are the field strengths of the 3-form potential auxiliary fields G{sub {mu}}{sub {nu}}{sub {rho}} and F{sub {mu}}{sub {nu}}{sub {rho}}. Even though duality transformations connect these two formulations, there exist certain differences from the conventional formulation. When boundary conditions are taken into account, the field equations in the 3-form formulation are equivalent to the conventional ones, while our Lagrangian is not. We alsomore » show that the new field strengths acquire generalized Chern-Simons terms. The O'Raifeartaigh mechanism works for spontaneous supersymmetry breaking also in the 3-form auxiliary field formulation via the boundary conditions on the 3-form auxiliary fields.« less
Arvidsson, Tommy; Bergström, Lars; Kreuger, Jenny
2011-06-01
In this study, the collecting efficiency of different samplers of airborne drift was compared both in wind tunnel and in field experiments. The aim was to select an appropriate sampler for collecting airborne spray drift under field conditions. The wind tunnel study examined three static samplers and one dynamic sampler. The dynamic sampler had the highest overall collecting efficiency. Among the static samplers, the pipe cleaner collector had the highest efficiency. These two samplers were selected for evaluation in the subsequent field study. Results from 29 individual field experiments showed that the pipe cleaner collector on average had a 10% lower collecting efficiency than the dynamic sampler. However, the deposits on the pipe cleaners generally were highest at the 0.5 m level, and for the dynamic sampler at the 1 m level. It was concluded from the wind tunnel part of the study that the amount of drift collected on the static collectors had a more strongly positive correlation with increasing wind speed compared with the dynamic sampler. In the field study, the difference in efficiency between the two types of collector was fairly small. As the difference in collecting efficiency between the different types of sampler was small, the dynamic sampler was selected for further measurements of airborne drift under field conditions owing to its more well-defined collecting area. This study of collecting efficiency of airborne spray drift of static and dynamic samplers under field conditions contributes to increasing knowledge in this field of research. Copyright © 2011 Society of Chemical Industry.
Compressive light field imaging
NASA Astrophysics Data System (ADS)
Ashok, Amit; Neifeld, Mark A.
2010-04-01
Light field imagers such as the plenoptic and the integral imagers inherently measure projections of the four dimensional (4D) light field scalar function onto a two dimensional sensor and therefore, suffer from a spatial vs. angular resolution trade-off. Programmable light field imagers, proposed recently, overcome this spatioangular resolution trade-off and allow high-resolution capture of the (4D) light field function with multiple measurements at the cost of a longer exposure time. However, these light field imagers do not exploit the spatio-angular correlations inherent in the light fields of natural scenes and thus result in photon-inefficient measurements. Here, we describe two architectures for compressive light field imaging that require relatively few photon-efficient measurements to obtain a high-resolution estimate of the light field while reducing the overall exposure time. Our simulation study shows that, compressive light field imagers using the principal component (PC) measurement basis require four times fewer measurements and three times shorter exposure time compared to a conventional light field imager in order to achieve an equivalent light field reconstruction quality.
Skvortsova, V I; Burenchev, D V; Tvorogova, T V; Guseva, O I; Prokhorov, A V; Smirnov, A M; Kupriianov, D A; Pirogov, Iu A
2009-01-01
An objective of the study was to compare sensitivity of low- and extra high-field frequency magnetic resonance (MR) tomography of acutest intracerebral hematomas (ICH) and to assess differences between symptoms in obtained images. A study was conducted using experimental ICH in rats (n=6). Hematomas were formed by two injections of autologic blood into the brain. MR-devices "Bio Spec 70/30" with magnetic field strength of 7 T and "Ellipse-150" with magnetic field strength of 0,15 T were used in the study. MR-tomography was carried out 3-5 h after the injections. Both MR-devices revealed the presence of pathological lesion in all animals. Extra highfield frequency MR-tomography showed the specific signs of ICH caused by the paramagnetic effect of deoxyhemoglobin in T2 and T2*-weighted images (WI) and low frequency MR-tomography - in T2*-WI only. The comparable sensitivity of low- and extra high-field frequency MR-devices in acutest ICH was established.
NASA Astrophysics Data System (ADS)
Robertson, Brant E.; Ellis, Richard S.; Dunlop, James S.; McLure, Ross J.; Stark, Dan P.; McLeod, Derek
2014-12-01
Strong gravitational lensing provides a powerful means for studying faint galaxies in the distant universe. By magnifying the apparent brightness of background sources, massive clusters enable the detection of galaxies fainter than the usual sensitivity limit for blank fields. However, this gain in effective sensitivity comes at the cost of a reduced survey volume and, in this Letter, we demonstrate that there is an associated increase in the cosmic variance uncertainty. As an example, we show that the cosmic variance uncertainty of the high-redshift population viewed through the Hubble Space Telescope Frontier Field cluster Abell 2744 increases from ~35% at redshift z ~ 7 to >~ 65% at z ~ 10. Previous studies of high-redshift galaxies identified in the Frontier Fields have underestimated the cosmic variance uncertainty that will affect the ultimate constraints on both the faint-end slope of the high-redshift luminosity function and the cosmic star formation rate density, key goals of the Frontier Field program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, B.J.; Bird, M.D.; Eyssa, Y.M.
1994-07-01
The new National High Magnetic Field Laboratory (NHMFL), equipped with a 40 MW DC power supply, will design and construct the next generation of high field resistive magnets and hybrid inserts generating DC fields up to 50 T. The authors present a study on the required materials and the necessary cooling characteristics, these magnets need. The configuration selected for this study consists of a combination of thin poly-Bitter and thick Bitter coils optimized in dimensions and power under constraint of maximum design stress and heat removal to obtain maximum field. The study shows that each design requires a different optimummore » ratio of conductor strength to electrical conductivity and that efficient cooling is only advantageous if strong copper alloys are used. For efficient use of the available power the development of new high strength, high conductivity materials will be necessary. Equally important are improvements in the heat transfer characteristics of these high power density magnets.« less
Calculation of the electric field resulting from human body rotation in a magnetic field
NASA Astrophysics Data System (ADS)
Cobos Sánchez, Clemente; Glover, Paul; Power, Henry; Bowtell, Richard
2012-08-01
A number of recent studies have shown that the electric field and current density induced in the human body by movement in and around magnetic resonance imaging installations can exceed regulatory levels. Although it is possible to measure the induced electric fields at the surface of the body, it is usually more convenient to use numerical models to predict likely exposure under well-defined movement conditions. Whilst the accuracy of these models is not in doubt, this paper shows that modelling of particular rotational movements should be treated with care. In particular, we show that v × B rather than -(v · ∇)A should be used as the driving term in potential-based modelling of induced fields. Although for translational motion the two driving terms are equivalent, specific examples of rotational rigid-body motion are given where incorrect results are obtained when -(v · ∇)A is employed. In addition, we show that it is important to take into account the space charge which can be generated by rotations and we also consider particular cases where neglecting the space charge generates erroneous results. Along with analytic calculations based on simple models, boundary-element-based numerical calculations are used to illustrate these findings.
NASA Astrophysics Data System (ADS)
Sun, Wanshuo; Cheng, Junsheng; Li, Lankai; Chen, Shunzhong; Chang, Kun
2017-01-01
Nickel nanowires have successfully been fabricated through a simple liquid reduction in ethylene glycol medium with a 0.3T magnetic field applied. The effect of uniform magnetic field and solvent on the morphology and the crystal structure of magnetic nickel were studied. Scanning electron microscope images and transmission electron scope images s how that the effect of the external magnetic field on the morphology of nickel nanowires. X-ray diffraction shows the crystal structure of as-prepared products. And a energy disperse spectroscopy and a vibrating sample magnetometer are used to analyze the composition and static magnetic properties. The results show that the straight wires with an average diameter of about 100 nm and a length of several microns were obtained and mainly composed by fcc structure in the solvent of ethylene glycol. Magnetic measurements show that the saturation magnetization of the as-obtained products in a 0.3 T external magnetic field is 36 emu/g, less than that of bulk nickel crystal, and the coercivity of them is 186 emu/g, larger than that of bulk crystal with the mole ratio of sodium borohydride to nickel sulfate is 1:1000. This kind of nanowires array has potential applications with the special one-dimensional structures.
Bracken, M B; Belanger, K; Hellenbrand, K; Dlugosz, L; Holford, T R; McSharry, J E; Addesso, K; Leaderer, B
1995-05-01
Several animal and human studies indicate that fetal growth may be retarded following exposure to electromagnetic fields (EMF). We conducted a prospective study (N = 2,967) to evaluate the relation of birthweight and fetal growth retardation with use of electrically heated beds (electric blankets and heated water beds) during pregnancy. A "nested" study design allowed monitoring of exposure at different stages of pregnancy using both direct and indirect methods. We assessed EMF exposure using personal monitors, home measurement, video display terminal use, and wire code. Exposure to EMF during pregnancy, either at conception, at < or = 16 weeks, or in the third trimester, showed no important relation to risk of low birth-weight or fetal growth retardation. This result was the same whether we used subjective measures of exposure or direct measurement. Use of video display terminals at home or work, exposure to > or = 2.0-milligauss fields as measured by home or personal monitors, and home wire code were unrelated to the reproductive outcomes studied. A time-weighted analysis of electric bed use, which accounted for strength of EMF exposure and hours of use, also showed evidence of no meaningful increase in risk. None of the exposure measures showed a dose response relation to risk. We conclude that risk of low birth-weight and intrauterine growth retardation is not increased after electrically heated bed use during pregnancy.
Fold-change detection and scalar symmetry of sensory input fields.
Shoval, Oren; Goentoro, Lea; Hart, Yuval; Mayo, Avi; Sontag, Eduardo; Alon, Uri
2010-09-07
Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Weber's law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields.
Parent, Boris; Shahinnia, Fahimeh; Maphosa, Lance; Berger, Bettina; Rabie, Huwaida; Chalmers, Ken; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine
2015-01-01
Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to phenotype recombinant lines for positional cloning. PMID:26179580
Theoretical Investigation of Dual Tuning of Solitonic Processes in Multiferroic Structures
NASA Astrophysics Data System (ADS)
Cherkasskii, M. A.; Nikitin, A. A.; Ustinov, A. B.; Stashkevich, A.; Kalinikos, B. A.
2016-11-01
. The solitonic wave processes in a multiferroic structure based on ferroelectric and ferrite layers are studied. The influence of external electric and magnetic fields on frequency and wave-number ranges, where bright and dark solitons can exist, are analysed. The investigation was carried out with the nonlinear Schrodinger equation. Results show that an increase of the electric field shifts the boundary between bright and dark solitons to long-wave region. An increase in magnetic field results in the opposite effect.
Ellipsoidal Brownian self-driven particles in a magnetic field
NASA Astrophysics Data System (ADS)
Sandoval, Mario; Wai-Tong, Fan; Shun Pak, On
We study the two-dimensional Brownian dynamics of an ellipsoidal paramagnetic microswimmer moving at low Reynolds number and subject to a magnetic field. Its corresponding mean-square displacement showing the effect of particles's shape, activity, and magnetic field on the microswimmer's diffusion is analytically obtained. A comparison among analytical and computational results is also made and we obtain good agreement. Additionally, the effect of self-propulsion on the transition time from anisotropic to isotropic diffusion of the ellipse is also elucidated. CONACYT GRANT: CB 2014/237848.
Planar Nernst effect and Mott relation in (In,Fe)Sb ferromagnetic semiconductor
NASA Astrophysics Data System (ADS)
Bui, Cong Tinh; Garcia, Christina A. C.; Tu, Nguyen Thanh; Tanaka, Masaaki; Hai, Pham Nam
2018-05-01
Transverse magneto-thermoelectric effects were studied in an (In,Fe)Sb ferromagnetic semiconductor thin film under an in-plane magnetic field. We find that the thermal voltage is governed by the planar Nernst effect. We show that the magnetic field intensity dependence, magnetic field direction dependence, and temperature dependence of the transverse Seebeck coefficient can be explained by assuming a Mott relation between the in-plane magneto-transport and magneto-thermoelectric phenomena in (In,Fe)Sb.
Magnetic braking in young late-type stars. The effect of polar spots
NASA Astrophysics Data System (ADS)
Aibéo, A.; Ferreira, J. M.; Lima, J. J. G.
2007-10-01
Context: The existence of rapidly rotating cool stars in young clusters implies a reduction of angular momentum loss rate for a certain period of the star's early life. Recently, the concentration of magnetic flux near the poles of these stars has been proposed as an alternative mechanism to dynamo saturation in order to explain the saturation of angular momentum loss. Aims: In this work we study the effect of magnetic surface flux distribution on the coronal field topology and angular momentum loss rate. We investigate if magnetic flux concentration towards the pole is a reasonable alternative to dynamo saturation. Methods: We construct a 1D wind model and also apply a 2-D self-similar analytical model, to evaluate how the surface field distribution affects the angular momentum loss of the rotating star. Results: From the 1D model we find that, in a magnetically dominated low corona, the concentrated polar surface field rapidly expands to regions of low magnetic pressure resulting in a coronal field with small latitudinal variation. We also find that the angular momentum loss rate due to a uniform field or a concentrated field with equal total magnetic flux is very similar. From the 2D wind model we show that there are several relevant factors to take into account when studying the angular momentum loss from a star. In particular, we show that the inclusion of force balance across the field in a wind model is fundamental if realistic conclusions are to be drawn from the effect of non-uniform surface field distribution on magnetic braking. This model predicts that a magnetic field concentrated at high latitudes leads to larger Alfvén radii and larger braking rates than a smoother field distribution. Conclusions: From the results obtained, we argue that the magnetic surface field distribution towards the pole does not directly limit the braking efficiency of the wind.
Estimating plant area index for monitoring crop growth dynamics using Landsat-8 and RapidEye images
NASA Astrophysics Data System (ADS)
Shang, Jiali; Liu, Jiangui; Huffman, Ted; Qian, Budong; Pattey, Elizabeth; Wang, Jinfei; Zhao, Ting; Geng, Xiaoyuan; Kroetsch, David; Dong, Taifeng; Lantz, Nicholas
2014-01-01
This study investigates the use of two different optical sensors, the multispectral imager (MSI) onboard the RapidEye satellites and the operational land imager (OLI) onboard the Landsat-8 for mapping within-field variability of crop growth conditions and tracking the seasonal growth dynamics. The study was carried out in southern Ontario, Canada, during the 2013 growing season for three annual crops, corn, soybeans, and winter wheat. Plant area index (PAI) was measured at different growth stages using digital hemispherical photography at two corn fields, two winter wheat fields, and two soybean fields. Comparison between several conventional vegetation indices derived from concurrently acquired image data by the two sensors showed a good agreement. The two-band enhanced vegetation index (EVI2) and the normalized difference vegetation index (NDVI) were derived from the surface reflectance of the two sensors. The study showed that EVI2 was more resistant to saturation at high biomass range than NDVI. A linear relationship could be used for crop green effective PAI estimation from EVI2, with a coefficient of determination (R2) of 0.85 and root-mean-square error of 0.53. The estimated multitemporal product of green PAI was found to be able to capture the seasonal dynamics of the three crops.
Relational evolution of effectively interacting group field theory quantum gravity condensates
NASA Astrophysics Data System (ADS)
Pithis, Andreas G. A.; Sakellariadou, Mairi
2017-03-01
We study the impact of effective interactions onto relationally evolving group field theory (GFT) condensates based on real-valued fields. In a first step we show that a free condensate configuration in an isotropic restriction settles dynamically into a low-spin configuration of the quantum geometry. This goes hand in hand with the accelerated and exponential expansion of its volume, as well as the vanishing of its relative uncertainty which suggests the classicalization of the quantum geometry. The dynamics of the emergent space can then be given in terms of the classical Friedmann equations. In contrast to models based on complex-valued fields, solutions avoiding the singularity problem can only be found if the initial conditions are appropriately chosen. We then turn to the analysis of the influence of effective interactions on the dynamics by studying in particular the Thomas-Fermi regime. In this context, at the cost of fine-tuning, an epoch of inflationary expansion of quantum geometric origin can be implemented. Finally, and for the first time, we study anisotropic GFT condensate configurations and show that such systems tend to isotropize quickly as the value of the relational clock grows. This paves the way to a more systematic investigation of anisotropies in the context of GFT condensate cosmology.
Bambini, F; Santarelli, A; Putignano, A; Procaccini, M; Orsini, G; Memè, L; Sartini, D; Emanuelli, M; Lo Muzio, L
2017-01-01
Since 1979, Pulsed electromagnetic fields (PEMFs) have been approved by the Food and Drug Administration as an effective method in the treatment of non-unions. As well as PEMFs, also static magnetic fields (SMFs) have been widely investigated in orthopaedic studies. Even if the exact mechanism of action is not well understood, a large number of studies showed specific effects both at cellular and tissue levels. As bone fracture healing and osseointegration share the same biological events, the application of magnetic field stimulation in order to facilitate the osseointegration process has been suggested. In this study we investigated the proliferation rate and gene expression profile of MG63 osteoblastic-like cells after a 24, 48 and 72-hour SMF stimulation, generated by a small, customized cover screw-shaped neodymium-iron-bore magnet placed in the inner cavity of a dental implant. As a result, we found that the application of a SMF to osteoblastic-like cells does slightly decrease cell proliferation rate while enhancing the expression of those genes correlated to differentiation and mineralization. Our findings represent, to our knowledge, the first clinical ready technique for dental implants showing the ability of SMF to promote the osteogenesis process in vitro.
The Study of Spherical Cores with a Toroidal Magnetic Field Configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gholipour, Mahmoud
Observational studies of the magnetic fields in molecular clouds have significantly improved the theoretical models developed for the structure and evolution of dense clouds and for the star formation process as well. The recent observational analyses on some cores indicate that there is a power-law relationship between magnetic field and density in the molecular clouds. In this study, we consider the stability of spherical cores with a toroidal magnetic field configuration in the molecular clouds. For this purpose, we model a spherical core that is in magnetostatic equilibrium. Herein, we propose an equation of density structure, which is a modifiedmore » form of the isothermal Lane–Emden equation in the presence of the toroidal magnetic field. The proposed equation describes the effect of the toroidal magnetic field on the cloud structure and the mass cloud. Furthermore, we found an upper limit for this configuration of magnetic field in the molecular clouds. Then, the virial theorem is used to consider the cloud evolution leading to an equation in order to obtain the lower limit of the field strength in the molecular cloud. However, the results show that the field strength of the toroidal configuration has an important effect on the cloud structure, whose upper limit is related to the central density and field gradient. The obtained results address some regions of clouds where the cloud decomposition or star formation can be seen.« less
Quantum confined stark effect on the binding energy of exciton in type II quantum heterostructure
NASA Astrophysics Data System (ADS)
Suseel, Rahul K.; Mathew, Vincent
2018-05-01
In this work, we have investigated the effect of external electric field on the strongly confined excitonic properties of CdTe/CdSe/CdTe/CdSe type-II quantum dot heterostructures. Within the effective mass approximation, we solved the Poisson-Schrodinger equations of the exciton in nanostructure using relaxation method in a self-consistent iterative manner. We changed both the external electric field and core radius of the quantum dot, to study the behavior of binding energy of exciton. Our studies show that the external electric field destroys the positional flipped state of exciton by modifying the confining potentials of electron and hole.
A G van Bergeijk, Peter; Lazzaroni, Sara
2015-06-01
We use the case of the macroeconomic impact of natural disasters to analyze strengths and weaknesses of meta-analysis in an emerging research field. Macroeconomists have published on this issue since 2002 (we identified 60 studies to date). The results of the studies are contradictory and therefore the need to synthesize the available research is evident. Meta-analysis is a useful method in this field. An important aim of our article is to show how one can use the identified methodological characteristics to better understand the robustness and importance of new findings. To provide a comparative perspective, we contrast our meta-analysis and its findings with the major influential research synthesis in the field: the IPCC's 2012 special report Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. We show that the IPCC could have been more confident about the negative economic impact of disasters and more transparent on inclusion and qualification of studies, if it had been complemented by a meta-analysis. Our meta-analysis shows that, controlling for modeling strategies and data set, the impact of disasters is significantly negative. The evidence is strongest for direct costs studies where we see no difference between our larger sample and the studies included in the IPCC report. Direct cost studies and indirect cost studies differ significantly, both in terms of the confidence that can be attached to a negative impact of natural disasters and in terms of the sources of heterogeneity of the findings reported in the primary studies. © 2015 Society for Risk Analysis.
Modeling of electric field distribution in tissues during electroporation
2013-01-01
Background Electroporation based therapies and treatments (e.g. electrochemotherapy, gene electrotransfer for gene therapy and DNA vaccination, tissue ablation with irreversible electroporation and transdermal drug delivery) require a precise prediction of the therapy or treatment outcome by a personalized treatment planning procedure. Numerical modeling of local electric field distribution within electroporated tissues has become an important tool in treatment planning procedure in both clinical and experimental settings. Recent studies have reported that the uncertainties in electrical properties (i.e. electric conductivity of the treated tissues and the rate of increase in electric conductivity due to electroporation) predefined in numerical models have large effect on electroporation based therapy and treatment effectiveness. The aim of our study was to investigate whether the increase in electric conductivity of tissues needs to be taken into account when modeling tissue response to the electroporation pulses and how it affects the local electric distribution within electroporated tissues. Methods We built 3D numerical models for single tissue (one type of tissue, e.g. liver) and composite tissue (several types of tissues, e.g. subcutaneous tumor). Our computer simulations were performed by using three different modeling approaches that are based on finite element method: inverse analysis, nonlinear parametric and sequential analysis. We compared linear (i.e. tissue conductivity is constant) model and non-linear (i.e. tissue conductivity is electric field dependent) model. By calculating goodness of fit measure we compared the results of our numerical simulations to the results of in vivo measurements. Results The results of our study show that the nonlinear models (i.e. tissue conductivity is electric field dependent: σ(E)) fit experimental data better than linear models (i.e. tissue conductivity is constant). This was found for both single tissue and composite tissue. Our results of electric field distribution modeling in linear model of composite tissue (i.e. in the subcutaneous tumor model that do not take into account the relationship σ(E)) showed that a very high electric field (above irreversible threshold value) was concentrated only in the stratum corneum while the target tumor tissue was not successfully treated. Furthermore, the calculated volume of the target tumor tissue exposed to the electric field above reversible threshold in the subcutaneous model was zero assuming constant conductivities of each tissue. Our results also show that the inverse analysis allows for identification of both baseline tissue conductivity (i.e. conductivity of non-electroporated tissue) and tissue conductivity vs. electric field (σ(E)) of electroporated tissue. Conclusion Our results of modeling of electric field distribution in tissues during electroporation show that the changes in electrical conductivity due to electroporation need to be taken into account when an electroporation based treatment is planned or investigated. We concluded that the model of electric field distribution that takes into account the increase in electric conductivity due to electroporation yields more precise prediction of successfully electroporated target tissue volume. The findings of our study can significantly contribute to the current development of individualized patient-specific electroporation based treatment planning. PMID:23433433
On the accuracy of palaeopole estimations from magnetic field measurements
NASA Astrophysics Data System (ADS)
Vervelidou, F.; Lesur, V.; Morschhauser, A.; Grott, M.; Thomas, P.
2017-12-01
Various techniques have been proposed for palaeopole position estimation based on magnetic field measurements. Such estimates can offer insights into the rotational dynamics and the dynamo history of moons and terrestrial planets carrying a crustal magnetic field. Motivated by discrepancies in the estimated palaeopole positions among various studies regarding the Moon and Mars, we examine the limitations of magnetic field measurements as source of information for palaeopole position studies. It is already known that magnetic field measurements cannot constrain the null space of the magnetization nor its full spectral content. However, the extent to which these limitations affect palaeopole estimates has not been previously investigated in a systematic way. In this study, by means of the vector Spherical Harmonics formalism, we show that inferring palaeopole positions from magnetic field measurements necessarily introduces, explicitly or implicitly, assumptions about both the null space and the full spectral content of the magnetization. Moreover, we demonstrate through synthetic tests that if these assumptions are inaccurate, then the resulting palaeopole position estimates are wrong. Based on this finding, we make suggestions that can allow future palaeopole studies to be conducted in a more constructive way.
Uniform refraction in negative refractive index materials.
Gutiérrez, Cristian E; Stachura, Eric
2015-11-01
We study the problem of constructing an optical surface separating two homogeneous, isotropic media, one of which has a negative refractive index. In doing so, we develop a vector form of Snell's law, which is used to study surfaces possessing a certain uniform refraction property, in both the near- and far-field cases. In the near-field problem, unlike the case when both materials have positive refractive indices, we show that the resulting surfaces can be neither convex nor concave.
Robidoux, Pierre Yves; Dubois, Charles; Hawari, Jalal; Sunahara, Geoffrey I
2004-08-01
Earthworm mesocosms studies were carried out on a explosives-contaminated site at an antitank firing range. Survival of earthworms and the lysosomal neutral red retention time (NRRT), a biomarker of lysosomal membrane stability, were used in these studies to assess the effect of explosives-contaminated soils on the earthworms Lumbricus terrestris and Eisenia andrei under field conditions. Toxicity of the soils samples for E. andrei was also assessed under laboratory conditions using the earthworms reproduction test and the NRRT. Results indicate that the survival was reduced up to 40% in certain explosive-contaminated soil mesocosms following 10 days of exposure under field conditions, whereas survival was reduced up to 100% following 28 days of exposure under laboratory conditions. Reproduction parameters such as number of cocoons and number of juveniles were reduced in many of the selected contaminated soils. Compared to the reference, NRRT was significantly reduced for E. andrei exposed to explosive-contaminated soils under both field and laboratory conditions, whereas for L. terrestris NRRT was similar compared to the reference mesocosm. Analyses showed that HMX was the major polynitro-organic compound in soils. HMX was also the only explosive detected in earthworm tissues. Thus, results from both field mesocosms and laboratory studies, showed lethal and sub-lethal effects associated to soil from the contaminated area of the antitank firing range.
The Primordial Origin Model of Magnetic Fields in Spiral Galaxies
NASA Astrophysics Data System (ADS)
Sofue, Yoshiaki; Machida, Mami; Kudoh, Takahiro
2010-10-01
We propose a primordial-origin model for composite configurations of global magnetic fields in spiral galaxies. We show that a uniform tilted magnetic field wound up into a rotating disk galaxy can evolve into composite magnetic configurations comprising bisymmetric spiral (S = BSS), axisymmetric spiral (A = ASS), plane-reversed spiral (PR), and/or ring (R) fields in the disk, and vertical (V) fields in the center. By MHD simulations we show that these composite galactic fields are indeed created from a weak primordial uniform field, and that different configurations can co-exist in the same galaxy. We show that spiral fields trigger the growth of two-armed gaseous arms. The centrally accumulated vertical fields are twisted and produce a jet toward the halo. We found that the more vertical was the initial uniform field, the stronger was the formed magnetic field in the galactic disk.
NASA Astrophysics Data System (ADS)
Bauer, Rita A.; Kelemen, Lóránd; Nakano, Masami; Totsuka, Atsushi; Zrínyi, Miklós
2015-10-01
We have presented the first direct observation of electric field induced rotation of epoxy based polymer rotors. Polymer disks, hollow cylinders and gears were prepared in few micrometer dimensions as rotors. Electrorotation of these sub-millimeter sized tools was studied under uniform dc electric field. The effects of shape, size and thickness were investigated. The novel epoxy based micro devices show intensive spinning in a uniform dc electric field. The rotational speed of micron-sized polymer rotors can be conveniently tuned in a wide range (between 300 and 3000 rpm) by the electric field intensity, opening new perspectives for their use in several MEMS applications.
Invariants for correcting field polarisation effect in MT-VLF resistivity mapping
NASA Astrophysics Data System (ADS)
Guérin, Roger; Tabbagh, Alain; Benderitter, Yves; Andrieux, Pierre
1994-12-01
MT-VLF resistivity mapping is well suited to perform hydrology and environment studies. However, the apparent anistropy generated by the polarisation of the primary field requires the use of two transmitters at a right angle to each other in order to prevent errors in interpretation. We propose a processing technique that uses approximate invariants derived from classical developments in tensor magnetotellurics. They consist of the calculation at each station of ?. Both synthetic and field cases show that they give identical results and correct perfectly for the apparent anisotropy generated by the polarisation of the transmitted field. They should be preferred to verticalization of the electric field which remains of interest when only transmitter data are available.
NASA Astrophysics Data System (ADS)
Rezania, Hamed; Azizi, Farshad
2018-02-01
We study the effects of a transverse magnetic field and electron doping on the thermoelectric properties of monolayer graphene in the context of Hubbard model at the antiferromagnetic sector. In particular, the temperature dependence of thermal conductivity and Seebeck coefficient has been investigated. Mean field approximation has been employed in order to obtain the electronic spectrum of the system in the presence of local electron-electron interaction. Our results show the peak in thermal conductivity moves to higher temperatures with increase of both chemical potential and Hubbard parameter. Moreover the increase of magnetic field leads to shift of peak in temperature dependence of thermal conductivity to higher temperatures. Finally the behavior of Seebeck coefficient in terms of temperature has been studied and the effects of magnetic field and Hubbard parameter on this coefficient have been investigated in details.
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
Models of volcanic eruption hazards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohletz, K.H.
1992-01-01
Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluidmore » flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.« less
Bubble Formation and Detachment in Reduced Gravity Under the Influence of Electric Fields
NASA Technical Reports Server (NTRS)
Herman, Cila; Iacona, Estelle; Chang, Shinan
2002-01-01
The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Both uniform and nonuniform electric field configurations were considered. Bubble formation and detachment were recorded and visualized in reduced gravity (corresponding to gravity levels on Mars, on the Moon as well as microgravity) using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.
Random-anisotropy model: Monotonic dependence of the coercive field on D/J
NASA Astrophysics Data System (ADS)
Saslow, W. M.; Koon, N. C.
1994-02-01
We present the results of a numerical study of the zero-temperature remanence and coercivity for the random anisotropy model (RAM), showing that, contrary to early calculations for this model, the coercive field increases monotonically with increases in the strength D of the random anisotropy relative to the strength J at the exchange field. Local-field adjustments with and without spin flips are considered. Convergence is difficult to obtain for small values of the anisotropy, suggesting that this is the likely source of the nonmonotonic behavior found in earlier studies. For both large and small anisotropy, each spin undergoes about one flip per hysteresis cycle, and about half of the spin flips occur in the vicinity of the coercive field. When only non-spin-flip adjustments are considered, at large anisotropy the coercivity is proportional to the anisotropy. At small anisotropy, the rate of convergence is comparable to that when spin flips are included.
Models of volcanic eruption hazards
NASA Astrophysics Data System (ADS)
Wohletz, K. H.
Volcanic eruptions pose an ever present but poorly constrained hazard to life and property for geothermal installations in volcanic areas. Because eruptions occur sporadically and may limit field access, quantitative and systematic field studies of eruptions are difficult to complete. Circumventing this difficulty, laboratory models and numerical simulations are pivotal in building our understanding of eruptions. For example, the results of fuel-coolant interaction experiments show that magma-water interaction controls many eruption styles. Applying these results, increasing numbers of field studies now document and interpret the role of external water eruptions. Similarly, numerical simulations solve the fundamental physics of high-speed fluid flow and give quantitative predictions that elucidate the complexities of pyroclastic flows and surges. A primary goal of these models is to guide geologists in searching for critical field relationships and making their interpretations. Coupled with field work, modeling is beginning to allow more quantitative and predictive volcanic hazard assessments.
Seldal, Tarald; Hegland, Stein Joar; Rydgren, Knut; Rodriguez-Saona, Cesar; Töpper, Joachim Paul
2017-03-01
Inducible plant defense is a beneficial strategy for plants, which imply that plants should allocate resources from growth and reproduction to defense when herbivores attack. Plant ecologist has often studied defense responses in wild populations by biomass clipping experiments, whereas laboratory and greenhouse experiments in addition apply chemical elicitors to induce defense responses. To investigate whether field ecologists could benefit from methods used in laboratory and greenhouse studies, we established a randomized block-design in a pine-bilberry forest in Western Norway. We tested whether we could activate defense responses in bilberry ( Vaccinium myrtillus ) by nine different treatments using clipping (leaf tissue or branch removal) with or without chemical treatment by methyljasmonate (MeJA). We subsequently measured consequences of induced defenses through vegetative growth and insect herbivory during one growing season. Our results showed that only MeJA-treated plants showed consistent defense responses through suppressed vegetative growth and reduced herbivory by leaf-chewing insects, suggesting an allocation of resources from growth to defense. Leaf tissue removal reduced insect herbivory equal to the effect of the MeJa treatments, but had no negative impact on growth. Branch removal did not reduce insect herbivory or vegetative growth. MeJa treatment and clipping combined did not give an additional defense response. In this study, we investigated how to induce defense responses in wild plant populations under natural field conditions. Our results show that using the chemical elicitor MeJA, with or without biomass clipping, may be a better method to induce defense response in field experiments than clipping of leaves or branches that often has been used in ecological field studies.
Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model
Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.; ...
2015-10-30
We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less
Magnetic nanoparticles formed in glasses co-doped with iron and larger radius elements
NASA Astrophysics Data System (ADS)
Edelman, I.; Ivanova, O.; Ivantsov, R.; Velikanov, D.; Zabluda, V.; Zubavichus, Y.; Veligzhanin, A.; Zaikovskiy, V.; Stepanov, S.; Artemenko, A.; Curély, J.; Kliava, J.
2012-10-01
A new type of nanoparticle-containing glasses based on borate glasses co-doped with low contents of iron and larger radius elements, Dy, Tb, Gd, Ho, Er, Y, and Bi, is studied. Heat treatment of these glasses results in formation of magnetic nanoparticles, radically changing their physical properties. Transmission electron microscopy and synchrotron radiation-based techniques: x-ray diffraction, extended x-ray absorption fine structure, x-ray absorption near-edge structure, and small-angle x-ray scattering, show a broad distribution of nanoparticle sizes with characteristics depending on the treatment regime; a crystalline structure of these nanoparticles is detected in heat treated samples. Magnetic circular dichroism (MCD) studies of samples subjected to heat treatment as well as of maghemite, magnetite, and iron garnet allow to unambiguously assign the nanoparticle structure to maghemite, independently of co-dopant nature and of heat treatment regime used. Different features observed in the MCD spectra are related to different electron transitions in Fe3+ ions gathered in the nanoparticles. The static magnetization in heat treated samples has non-linear dependence on the magnetizing field with hysteresis. Zero-field cooled magnetization curves show that at higher temperatures the nanoparticles occur in superparamagnetic state with blocking temperatures above 100 K. Below ca. 20 K, a considerable contribution to both zero field-cooled and field-cooled magnetizations occurs from diluted paramagnetic ions. Variable-temperature electron magnetic resonance (EMR) studies unambiguously show that in as-prepared glasses paramagnetic ions are in diluted state and confirm the formation of magnetic nanoparticles already at earlier stages of heat treatment. Computer simulations of the EMR spectra corroborate the broad distribution of nanoparticle sizes found by "direct" techniques as well as superparamagnetic nanoparticle behaviour demonstrated in the magnetization studies.
Self-Consistent Chaotic Transport in a High-Dimensional Mean-Field Hamiltonian Map Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-del-Río, D.; del-Castillo-Negrete, D.; Olvera, A.
We studied the self-consistent chaotic transport in a Hamiltonian mean-field model. This model provides a simplified description of transport in marginally stable systems including vorticity mixing in strong shear flows and electron dynamics in plasmas. Self-consistency is incorporated through a mean-field that couples all the degrees-of-freedom. The model is formulated as a large set of N coupled standard-like area-preserving twist maps in which the amplitude and phase of the perturbation, rather than being constant like in the standard map, are dynamical variables. Of particular interest is the study of the impact of periodic orbits on the chaotic transport and coherentmore » structures. Furthermore, numerical simulations show that self-consistency leads to the formation of a coherent macro-particle trapped around the elliptic fixed point of the system that appears together with an asymptotic periodic behavior of the mean field. To model this asymptotic state, we introduced a non-autonomous map that allows a detailed study of the onset of global transport. A turnstile-type transport mechanism that allows transport across instantaneous KAM invariant circles in non-autonomous systems is discussed. As a first step to understand transport, we study a special type of orbits referred to as sequential periodic orbits. Using symmetry properties we show that, through replication, high-dimensional sequential periodic orbits can be generated starting from low-dimensional periodic orbits. We show that sequential periodic orbits in the self-consistent map can be continued from trivial (uncoupled) periodic orbits of standard-like maps using numerical and asymptotic methods. Normal forms are used to describe these orbits and to find the values of the map parameters that guarantee their existence. Numerical simulations are used to verify the prediction from the asymptotic methods.« less
McLeod, K A; Scascitelli, M; Vellend, M
2012-08-01
Studies of genotype × environment interactions (G × E) and local adaptation provide critical tests of natural selection's ability to counter opposing forces such as gene flow. Such studies may be greatly facilitated in asexual species, given the possibility for experimental replication at the level of true genotypes (rather than populations) and the possibility of using molecular markers to assess genotype-environment associations in the field (neither of which is possible for most sexual species). Here, we tested for G × E in asexual dandelions (Taraxacum officinale) by subjecting six genotypes to experimental drought, mown and benign (control) conditions and subsequently using microsatellites to assess genotype-environment associations in the field. We found strong G × E, with genotypes that performed poorly under benign conditions showing the highest performance under stressful conditions (drought or mown). Our six focal genotypes comprise > 80% of plants in local populations. The most common genotype in the field showed its highest relative performance under mown conditions (the most common habitat in our study area), and almost all plants of this genotype in the field were found growing in mowed lawns. Genotypes performing best under benign experimental conditions were found most frequently in unmown conditions in the field. These results are strongly indicative of local adaptation at a very small scale, with unmown microsites of only a few square metres typically embedded within larger mown lawns. By studying an asexual species, we were able to map genotypes with known ecological characteristics to environments with high spatial precision. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
Evangelista, Dennis J.; Ray, Dylan D.; Hedrick, Tyson L.
2016-01-01
ABSTRACT Ecological, behavioral and biomechanical studies often need to quantify animal movement and behavior in three dimensions. In laboratory studies, a common tool to accomplish these measurements is the use of multiple, calibrated high-speed cameras. Until very recently, the complexity, weight and cost of such cameras have made their deployment in field situations risky; furthermore, such cameras are not affordable to many researchers. Here, we show how inexpensive, consumer-grade cameras can adequately accomplish these measurements both within the laboratory and in the field. Combined with our methods and open source software, the availability of inexpensive, portable and rugged cameras will open up new areas of biological study by providing precise 3D tracking and quantification of animal and human movement to researchers in a wide variety of field and laboratory contexts. PMID:27444791
Observation and analysis of abrupt changes in the interplanetary plasma velocity and magnetic field.
NASA Technical Reports Server (NTRS)
Martin, R. N.; Belcher, J. W.; Lazarus, A. J.
1973-01-01
This paper presents a limited study of the physical nature of abrupt changes in the interplanetary plasma velocity and magnetic field based on 19 day's data from the Pioneer 6 spacecraft. The period was chosen to include a high-velocity solar wind stream and low-velocity wind. Abrupt events were accepted for study if the sum of the energy density in the magnetic field and velocity changes was above a specified minimum. A statistical analysis of the events in the high-velocity solar wind stream shows that Alfvenic changes predominate. This conclusion is independent of whether steady state requirements are imposed on conditions before and after the event. Alfvenic changes do not dominate in the lower-speed wind. This study extends the plasma field evidence for outwardly propagating Alfvenic changes to time scales as small as 1 min (scale lengths on the order of 20,000 km).
Joosten, S; Pammler, K; Silny, J
2009-02-07
The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.
NASA Astrophysics Data System (ADS)
Tanatar, M. A.; Ishiguro, T.; Toita, T.; Yamada, J.
2005-01-01
Thermal conductivity κ of the organic superconductor β-(BDA-TTP)2SbF6 was studied down to 0.3 K in magnetic fields H of varying orientation with respect to the superconducting plane. Anomalous plateau shape of the field dependence, κ vs H , is found for orientation of magnetic fields precisely parallel to the plane, in contrast to usual behavior observed in the perpendicular fields. We show that the lack of magnetic-field effect on the heat conduction results from coreless structure of vortices, causing both negligible scattering of phonons and constant in field electronic conduction up to the fields close to the upper critical field Hc2 . Usual behavior is recovered on approaching Hc2 and on slight field inclination from parallel direction, when normal cores are restored. This behavior points to the lack of bulk quasiparticle excitations induced by magnetic field, consistent with the conventional superconducting state.
Propagation of propeller tone noise through a fuselage boundary layer
NASA Technical Reports Server (NTRS)
Hanson, D. B.; Magliozzi, B.
1984-01-01
In earlier experimental and analytical studies, it was found that the boundary layer on an aircraft could provide significant shielding from propeller noise at typical transport airplane cruise Mach numbers. In this paper a new three-dimensional theory is described that treats the combined effects of refraction and scattering by the fuselage and boundary layer. The complete wave field is solved by matching analytical expressions for the incident and scattered waves in the outer flow to a numerical solution in the boundary layer flow. The model for the incident waves is a near-field frequency-domain propeller source theory developed previously for free field studies. Calculations for an advanced turboprop (Prop-Fan) model flight test at 0.8 Mach number show a much smaller than expected pressure amplification at the noise directivity peak, strong boundary layer shielding in the forward quadrant, and shadowing around the fuselage. Results are presented showing the difference between fuselage surface and free-space noise predictions as a function of frequency and Mach number. Comparison of calculated and measured effects obtained in a Prop-Fan model flight test show good agreement, particularly near and aft of the plane of rotation at high cruise Mach number.
Gravitational tension, spacetime pressure and black hole volume
NASA Astrophysics Data System (ADS)
Armas, Jay; Obers, Niels A.; Sanchioni, Marco
2016-09-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.
NASA Astrophysics Data System (ADS)
Tateiwa, Naoyuki; Haga, Yoshinori; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Ōnuki, Yoshichika; Fisk, Zachary
2013-08-01
We have studied the high-pressure magnetic property in UGe2 where ferromagnetic superconductivity appears under high pressure. In this study, we focus on the magnetic property at pressures above the ferromagnetic critical pressure P c =1.6 GPa. The temperature and magnetic field dependences of the dc-magnetization have been measured under high pressures up to 5.1 GPa by using a ceramic anvil high pressure cell. At pressures above P c , the magnetic susceptibility x shows a broad maximum around T χmax and the magnetization at 2.0 K shows an abrupt increase (metamagnetic transition) at H c . With increasing pressure, the peak structure in x becomes broader, and the peak position T χmax moves to the higher temperature region. The metamagnetic field H c increases rapidly with increasing pressure. At pressures above 4.1 GPa, x shows a simple temperature dependence, and the magnetization increases linearly with increasing field. These phenomena in UGe2 resemble to those in the intermetallic compounds of 3 d transition metals such as Co(S1- x Se x ) and YCo2. We discuss the experimental results by using the phenomenological spin-fluctuation theory.
The interaction of two spheres in a simple-shear flow of complex fluids
NASA Astrophysics Data System (ADS)
Firouznia, Mohammadhossein; Metzger, Bloen; Ovarlez, Guillaume; Hormozi, Sarah
2017-11-01
We study the interaction of two small freely-moving spheres in a linear flow field of Newtonian, shear thinning and yield stress fluids. We perform a series of experiments over a range of shear rates as well as different shear histories using an original apparatus and with the aid of conventional rheometry, Particle Image Velocimetry and Particle Tracking Velocimetry. Showing that the non-Newtonian nature of the suspending fluid strongly affects the shape of particle trajectories and the irreversibility. An important point is that non-Newtonian effects can be varied and unusual. Depending on the shear rate, nonideal shear thinning and yield stress suspending fluids might show elasticity that needs to be taken into account. The flow field around one particle is studied in different fluids when subjected to shear. Then using these results to explain the two particle interactions in a simple-shear flow we show how particle-particle contact and non-Newtonian behaviors result in relative trajectories with fore-aft asymmetry. Well-resolved velocity and stress fields around the particles are presented here. Finally, we discuss how the relative particle trajectories may affect the microstructure of complex suspensions and consequently the bulk rheology. NSF (Grant No. CBET-1554044-CAREER).
Song, Pengfei; Manduca, Armando; Zhao, Heng; Urban, Matthew W.; Greenleaf, James F.; Chen, Shigao
2014-01-01
A fast shear compounding method was developed in this study using only one shear wave push-detect cycle, such that the shear wave imaging frame rate is preserved and motion artifacts are minimized. The proposed method is composed of the following steps: 1. applying a comb-push to produce multiple differently angled shear waves at different spatial locations simultaneously; 2. decomposing the complex shear wave field into individual shear wave fields with differently oriented shear waves using a multi-directional filter; 3. using a robust two-dimensional (2D) shear wave speed calculation to reconstruct 2D shear elasticity maps from each filter direction; 4. compounding these 2D maps from different directions into a final map. An inclusion phantom study showed that the fast shear compounding method could achieve comparable performance to conventional shear compounding without sacrificing the imaging frame rate. A multi-inclusion phantom experiment showed that the fast shear compounding method could provide a full field-of-view (FOV), 2D, and compounded shear elasticity map with three types of inclusions clearly resolved and stiffness measurements showing excellent agreement to the nominal values. PMID:24613636
Kinks in higher derivative scalar field theory
NASA Astrophysics Data System (ADS)
Zhong, Yuan; Guo, Rong-Zhen; Fu, Chun-E.; Liu, Yu-Xiao
2018-07-01
We study static kink configurations in a type of two-dimensional higher derivative scalar field theory whose Lagrangian contains second-order derivative terms of the field. The linear fluctuation around arbitrary static kink solutions is analyzed. We find that, the linear spectrum can be described by a supersymmetric quantum mechanics problem, and the criteria for stable static solutions can be given analytically. We also construct a superpotential formalism for finding analytical static kink solutions. Using this formalism we first reproduce some existed solutions and then offer a new solution. The properties of our solution is studied and compared with those preexisted. We also show the possibility in constructing twinlike model in the higher derivative theory, and give the consistency conditions for twinlike models corresponding to the canonical scalar field theory.
Fano resonances in heterogeneous dimers of silicon and gold nanospheres
NASA Astrophysics Data System (ADS)
Zhao, Qian; Yang, Zhong-Jian; He, Jun
2018-06-01
We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van den Berg, R.; Brandino, G. P.; El Araby, O.
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Competing interactions in semiconductor quantum dots
van den Berg, R.; Brandino, G. P.; El Araby, O.; ...
2014-10-14
In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less
Spirituality, religion, and health: over the last 15 years of field research (1999-2013).
Lucchetti, Giancarlo; Lucchetti, Alessandra Lamas Granero
2014-01-01
Although several studies have examined the contribution of specific countries, journals, and authors in different scientific disciplines, little is known about the contribution of different world countries, journals, and authors to scientific research in the field of "Spirituality, religion, and health" (S/R). The present study aims to analyze the last 15 years of research in the field of spirituality and religiousness (S/R) through a bibliometric analysis. Using the Pubmed database, we retrieved all articles related to S/R field for the period 1999-2013. We then estimated the total number of publications, number of articles published per year, articles published per country, journals with most publications in S/R field, most productive authors, and most used keywords. We found a growth of publications in the last years, most from the United States and the United Kingdom and published in the English language. Noteworthy, some developing countries such as India, Brazil, Israel, and Iran are at higher positions in this list. The S/R articles were published in journals embracing all fields of research, including high impact journals. In the present study, we took a closer look at the field of "Spirituality, religion, and health," showing that this field of research has been constantly growing and consolidating in the scientific community.
Iwasaki, Yuichi; Schmidt, Travis S.; Clements, William H.
2018-01-01
Characterizing macroinvertebrate taxa as either sensitive or tolerant is of critical importance for investigating impacts of anthropogenic stressors in aquatic ecosystems and for inferring causality. However, our understanding of relative sensitivity of aquatic insects to metals in the field and under controlled conditions in the laboratory or mesocosm experiments is limited. In this study, we compared the response of 16 lotic macroinvertebrate families to metals in short-term (10-day) stream mesocosm experiments and in a spatially extensive field study of 154 Colorado streams. Comparisons of field and mesocosm-derived EC20 (effect concentration of 20%) values showed that aquatic insects were generally more sensitive to metals in the field. Although the ranked sensitivity to metals was similar for many families, we observed large differences between field and mesocosm responses for some groups (e.g., Baetidae and Heptageniidae). These differences most likely resulted from the inability of short-term experiments to account for factors such as dietary exposure to metals, rapid recolonization in the field, and effects of metals on sensitive life stages. Understanding mechanisms responsible for differences among field, mesocosm, and laboratory approaches would improve our ability to predict contaminant effects and establish ecologically meaningful water-quality criteria.
Disruption of coronal magnetic field arcades
NASA Technical Reports Server (NTRS)
Mikic, Zoran; Linker, Jon A.
1994-01-01
The ideal and resistive properties of isolated large-scale coronal magnetic arcades are studied using axisymmetric solutions of the time-dependent magnetohydrodynamic (MHD) equations in spherical geometry. We examine how flares and coronal mass ejections may be initiated by sudden disruptions of the magnetic field. The evolution of coronal arcades in response to applied shearing photospheric flows indicates that disruptive behavior can occur beyond a critical shear. The disruption can be traced to ideal MHD magnetic nonequilibrium. The magnetic field expands outward in a process that opens the field lines and produces a tangential discontinuity in the magnetic field. In the presence of plasma resistivity, the resulting current sheet is the site of rapid reconnection, leading to an impulsive release of magnetic energy, fast flows, and the ejection of a plasmoid. We relate these results to previous studies of force-free fields and to the properties of the open-field configuration. We show that the field lines in an arcade are forced open when the magnetic energy approaches (but is still below) the open-field energy, creating a partially open field in which most of the field lines extend away from the solar surface. Preliminary application of this model to helmet streamers indicates that it is relevant to the initiation of coronal mass ejections.
Local electronic and optical behaviors of a-plane GaN grown via epitaxial lateral overgrowth
NASA Astrophysics Data System (ADS)
Moore, J. C.; Kasliwal, V.; Baski, A. A.; Ni, X.; Özgür, Ü.; Morkoç, H.
2007-01-01
Conductive atomic force microscopy and near-field optical microscopy (NSOM) were used to study the morphology, conduction, and optical properties of a-plane GaN films grown via epitaxial lateral overgrowth (ELO) by metal organic chemical vapor deposition. The AFM images for the coalesced ELO films show undulations, where the window regions appear as depressions with a high density of surface pits. At reverse bias below 12V, very low uniform conduction (2pA) is seen in the window regions. Above 20V, a lower-quality sample shows localized sites inside the window regions with significant leakage, indicating a correlation between the presence of surface pits and leakage sites. Room temperature NSOM studies explicitly showed enhanced optical quality in the wing regions of the overgrown GaN due to a reduced density of dislocations, with the wings and the windows clearly discernible from near-field photoluminescence mapping.
Collective Surfing of Chemically Active Particles
NASA Astrophysics Data System (ADS)
Masoud, Hassan; Shelley, Michael J.
2014-03-01
We study theoretically the collective dynamics of immotile particles bound to a 2D surface atop a 3D fluid layer. These particles are chemically active and produce a chemical concentration field that creates surface-tension gradients along the surface. The resultant Marangoni stresses create flows that carry the particles, possibly concentrating them. For a 3D diffusion-dominated concentration field and Stokesian fluid we show that the surface dynamics of active particle density can be determined using nonlocal 2D surface operators. Remarkably, we also show that for both deep or shallow fluid layers this surface dynamics reduces to the 2D Keller-Segel model for the collective chemotactic aggregation of slime mold colonies. Mathematical analysis has established that the Keller-Segel model can yield finite-time, finite-mass concentration singularities. We show that such singular behavior occurs in our finite-depth system, and study the associated 3D flow structures.
Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan
2014-01-01
Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems.
Li, Guangsheng; Wang, Yongmo; Liu, Biao; Zhang, Guoan
2014-01-01
Rice lines genetically modified with the crystal toxin genes from Bacillus thuringiensis (Bt) have experienced rapid development, with biosafety certificates for two Bt rice lines issued in 2009. There has still been no commercial release of these lines yet due to public concerns about human health and environmental risks. Some studies confirmed that Bt rice was as safe as conventional rice to non-target organisms when pesticides were not applied, however, pesticides are still required in Bt rice to control non-lepidopteran pests. In this study, we assessed the environmental effects of two Bt rice lines expressing either the cry1Ab/1Ac or cry2A genes, respectively, by using zooplanktons as indicator species under normal field management practices using pesticides when required. In the whole rice growing season, non-Bt rice was sprayed 5 times while Bt rice was sprayed 2 times, which ensured both rice achieved a normal yield. Field investigations showed that rice type (Bt and non-Bt) significantly influenced zooplankton abundance and diversity, which were up to 95% and 80% lower in non-Bt rice fields than Bt rice fields. Laboratory rearing showed that water from non-Bt rice fields was significantly less suitable for the survival and reproduction of Daphnia magna and Paramecium caudatum in comparison with water from Bt rice fields. Higher pesticide residues were detected in the water from non-Bt than Bt rice fields, accounting for the bad performance of zooplankton in non-Bt field water. Our results demonstrate that Bt rice is safer to aquatic ecosystems than non-Bt rice, and its commercialization will be beneficial for biodiversity restoration in rice-based ecosystems. PMID:25105299
Built-in-polarization field effect on lattice thermal conductivity of AlxGa1-xN/GaN heterostructure
NASA Astrophysics Data System (ADS)
Pansari, Anju; Gedam, Vikas; Kumar Sahoo, Bijaya
2015-12-01
The built-in-polarization field at the interface of AlxGa1-xN/GaN heterostructure enhances elastic constant, phonon velocity, Debye temperature and their bowing constants of barrier material AlxGa1-xN. The combined phonon relaxation time of acoustics phonons has been computed for with and without built-in-polarization field at room temperature for different aluminum (Al) content (x). Our result shows that the built-in-polarization field suppresses the scattering mechanisms and enhances the combined relaxation time. The thermal conductivity of AlxGa1-xN has been estimated as a function of temperature for x=0, 0.1, 0.5 and 1 for with and without polarization field. Minimum thermal conductivity has been observed for x=0.1 and 0.5. Analysis shows that up to a certain temperature (different for different x) the polarization field acts as negative effect and reduces the thermal conductivity and after this temperature thermal conductivity is significantly contributed by polarization field. This signifies pyroelectric character of AlxGa1-xN. The pyroelectric transition temperature of AlxGa1-xN alloy has been predicted for different x. Our study reports that room temperature thermal conductivity of AlxGa1-xN/GaN heterostructure is enhanced by built-in-polarization field. The temperature dependence of thermal conductivity for x=0.1 and 0.5 are in line with prior experimental studies. The method we have developed can be used for the simulation of heat transport in nitride devices to minimize the self heating processes and in polarization engineering strategies to optimize the thermoelectric performance of AlxGa1-xN/GaN heterostructures.
Photon-Fluence-Weighted let for Radiation Fields Subjected to Epidemiological Studies.
Sasaki, Michiya
2017-08-01
In order to estimate the uncertainty of the radiation risk associated with the photon energy in epidemiological studies, photon-fluence-weighted LET values were quantified for photon radiation fields with the target organs and irradiation conditions taken into consideration. The photon fluences giving a unit absorbed dose to the target organ were estimated by using photon energy spectra together with the dose conversion coefficients given in ICRP Publication 116 for the target organs of the colon, bone marrow, stomach, lung, skin and breast with three irradiation geometries. As a result, it was demonstrated that the weighted LET values did not show a clear difference among the photon radiation fields subjected to epidemiological studies, regardless of the target organ and the irradiation geometry.
[Effect of pulse magnetic field on distribution of neuronal action potential].
Zheng, Yu; Cai, Di; Wang, Jin-Hai; Li, Gang; Lin, Ling
2014-08-25
The biological effect on the organism generated by magnetic field is widely studied. The present study was aimed to observe the change of sodium channel under magnetic field in neurons. Cortical neurons of Kunming mice were isolated, subjected to 15 Hz, 1 mT pulse magnetic stimulation, and then the currents of neurons were recorded by whole-cell patch clamp. The results showed that, under magnetic stimulation, the activation process of Na(+) channel was delayed, and the inactivation process was accelerated. Given the classic three-layer model, the polarization diagram of cell membrane potential distribution under pulse magnetic field was simulated, and it was found that the membrane potential induced was associated with the frequency and intensity of magnetic field. Also the effect of magnetic field-induced current on action potential was simulated by Hodgkin-Huxley (H-H) model. The result showed that the generation of action potential was delayed, and frequency and the amplitudes were decreased when working current was between -1.32 μA and 0 μA. When the working current was higher than 0 μA, the generation frequency of action potential was increased, and the change of amplitudes was not obvious, and when the working current was lower than -1.32 μA, the time of rising edge and amplitudes of action potential were decreased drastically, and the action potential was unable to generate. These results suggest that the magnetic field simulation can affect the distribution frequency and amplitude of action potential of neuron via sodium channel mediation.