1987-07-01
Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H
A field test of cut-off importance sampling for bole volume
Jeffrey H. Gove; Harry T. Valentine; Michael J. Holmes
2000-01-01
Cut-off importance sampling has recently been introduced as a technique for estimating bole volume to some point below the tree tip, termed the cut-off point. A field test of this technique was conducted on a small population of eastern white pine trees using dendrometry as the standard for volume estimation. Results showed that the differences in volume estimates...
Evaluation of the Field Test of Project Information Packages: Volume III--Resource Cost Analysis.
ERIC Educational Resources Information Center
Al-Salam, Nabeel; And Others
The third of three volumes evaluating the first year field test of the Project Information Packages (PIPs) provides a cost analysis study as a key element in the total evaluation. The resource approach to cost analysis is explained and the specific resource methodology used in the main cost analysis of the 19 PIP field-test projects detailed. The…
Field tests prove microscale NRU to upgrade low-btu gas
Bhattacharya, Saibal; Newell, K. David; Watney, W. Lynn; Sigel, Micael
2009-01-01
The Kansas Geological Survey (University of Kansas) and the American Energies Corp., Wichita, have conducted field tests of a scalable, microscale, N2-rejection unit (NRU) to demonstrate its effectiveness to upgrade low-pressure ((<100 psig) and low-volume (=100 Mcfd) low-btu gas to pipeline quality. The tests aim to develop inexpensive NRU technology, which is designed for low- volume, low-pressure gas wells, to significantly increase the contribution of marginal low-btu gas to the gas supply of the US. The NRU uses two towers and uses three stages, namely, adsorption under pressure, venting to 2 psig, and desorption under vacuum. The modular design allows additional sets of towers to be added or removed to handle increases or decreases in feed volumes. The field tests also reveal that a strong compressor, which is capable of evacuating the tower (volume) as quickly as possible, should be employed to reduce process cycle time and increase plant throughput.
Magnetic Field Monitoring in the SNS and LANL Neutron EDM Experiments
NASA Astrophysics Data System (ADS)
Aleksandrova, Alina; SNS nEDM Collaboration; LANL nEDM Collaboration
2017-09-01
The SNS neutron EDM experiment requires the ability to precisely control and monitor the magnetic field inside of the fiducial volume. However, it is not always practical (or even possible) to measure the field within the region of interest directly. To remedy this issue, we have designed a field monitoring system that will allow us to reconstruct the field inside of the fiducial volume using noninvasive measurements of the field components at discrete locations external to this volume. A prototype probe array (consisting of 12 single-axis fluxgate magnetometer sensors) was used to monitor the magnetic field within the fiducial volume of an in-house magnetic testing apparatus. In this talk, the design and results of this test will be presented, and the possible implementation of this field monitoring method may have in the room temperature LANL neutron EDM experiment will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-SC-0014622.
ERIC Educational Resources Information Center
Seaberg, James R.; And Others
The National Center on Child Abuse and Neglect funded a project to develop and field-test an evaluation procedure that could be used by interested states or communities to determine the extent of congruity between (1) their provisions for responding to the problems of child abuse and neglect, and (2) provisions prescribed in the Federal Standards…
DOT National Transportation Integrated Search
2001-06-01
Volume 2 documents laboratory and field testing that provides the evidence that microdamage healing is real and measurable and that it has a significant impact on pavement performance. Part of the laboratory experiments to evaluate the impact of rest...
Issues Related to Large Flight Hardware Acoustic Qualification Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.
2011-01-01
The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.
Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field
1994-01-07
Secondary 60D05, 52A22. Key words and phrases. Euler characteristic, integral geometry, image analysis , Gaussian fields, volume of tubes. SUMMARY We...words and phrases. Euler characteristic, integral geometry. image analysis . Gaussian fields. volume of tubes. 20. AMST RACT (Coith..o an revmreo ef* It
NASA Technical Reports Server (NTRS)
Stewart, V. R.
1987-01-01
A propulsive wind/canard model was tested at STOL operating conditions in the NASA Langley Research Center 4 x 7 meter wind tunnel. Longitudinal and lateral/directional aerodynamic characteristics were measured for various flap deflections, angles of attack and sideslip, and blowing coefficients. Testing was conducted for several model heights to determine ground proximity effects on the aerodynamic characteristics. Flow field surveys of local flow angles and velocities were performed behind both the canard and the wing. This is volume 2 of a 2 volume report. All of the test data in three appendices are presented. Appendix A presented tabulated six component force and moment data, Appendix B presents tabulated wing pressure coefficients, and Appendix C presents the flow field data.
NASA Astrophysics Data System (ADS)
Shepherd, O.; Bucknam, R. D.; Hurd, A. G.; Sheehan, W. H.
1991-06-01
This is Volume 3 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the Aug. 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks were successfully completed, and recommendations for further lidar measurements and data analysis were made.
NASA Astrophysics Data System (ADS)
Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Robertie, N. F.
1991-06-01
This is Volume 3 of a three volume final report on the design, development and test of balloonborne and groundbased lidar systems. Volume 1 describes the design and fabrication of a balloonborne CO2 coherent payload to measure the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Volume 2 describes the August 1987 flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2. In this volume we describe groundbased lidar development and measurements. A design was developed for installation of the ABLE lidar in the GL rooftop dome. A transportable shed was designed to house the ABLE lidar at the various remote measurement sites. Refurbishment and modification of the ABLE lidar were completed to permit groundbased lidar measurements of clouds and aerosols. Lidar field measurements were made at Ascension Island during SABLE 89. Lidar field measurements were made at Terciera, Azores during GABLE 90. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.
Total-dose radiation effects data for semiconductor devices: 1985 supplement, volume 1
NASA Technical Reports Server (NTRS)
Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.
1985-01-01
Steady-state, total-dose radiation test data are provided, in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 provides total-dose radiation test data on integrated circuits. Volume 1 of this 1985 Supplement contains new total-dose radiation test data generated since the August 1, 1981 release date of the original Volume 1. Publication of Volume 2 of the 1985 Supplement will follow that of Volume 1 by approximately three months.
Near-field Testing of the 15-meter Model of the Hoop Column Antenna
NASA Technical Reports Server (NTRS)
Hoover, J.; Kefauver, N.; Cencich, T.; Osborn, J.; Osmanski, J.
1986-01-01
The technical results from near-field testing of the 15-meter model of the hoop column antenna at the Martin Marietta Denver Aerospace facility are documented. The antenna consists of a deployable central column and a 15 meter hoop, stiffened by cables into a structure with a high tolerance repeatable surface and offset feed location. The surface has been configured to have four offset parabolic apertures, each about 6 meters in diameter, and is made of gold plated molybdenum wire mesh. Pattern measurements were made with feed systems radiating at frequencies of 7.73, 11.60, 2.27, 2.225, and 4.26 (all in GHz). This report (Volume 1) covers the testing from an overall viewpoint and contains information of generalized interest for testing large antennas. This volume discusses the deployment of the antenna in the Martin Facility and the measurements to determine mechanical stability and trueness of the reflector surface, gives the test program outline, and gives a synopsis of antenna electromagnetic performance. Three techniques for measuring surface mechanical tolerances were used (theodolites, metric cameras, and near-field phase), but only the near-field phase approach is included. The report also includes an error analysis. A detailed listing of the antenna patterns are provided for the 2.225 Ghz feed in Volume 3 of this report, and for all other feeds in Volume 2.
The report gives results of field tests conducted to determine the emission characteristics of a Babcock and Wilcox Circular burner and Dual Register burner (DRB). The field tests were performed at two utility boilers, generally comparable in design and size except for the burner...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-09-01
Field tests and studies were conducted to determine the production behavior of geopressured-geothermal reservoirs and their potential as future energy sources. Results are presented for Gladys McCall Site, Pleasant Bayou Site, and Hulin Site.
Pressure-volume characteristics of dielectric elastomer diaphragms
NASA Astrophysics Data System (ADS)
Tews, Alyson M.; Pope, Kimberly L.; Snyder, Alan J.
2003-07-01
With the ultimate goal of constructing diaphragm-type pumps, we have measured pressure-volume characteristics of single-layer dielectric elastomers diaphragms. Circular dielectric elastomer diaphragms were prepared by biaxial stretching of 3M VHB 4905 polyacrylate, or spin casting and modest or no biaxial stretching of silicone rubber films, followed by mounting to a sealed chamber having a 3.8 cm diameter opening. Pressure-volume characteristics were measured at voltages that provided field strengths up to 80 MV/m in un-deformed VHB films and 50-75 MV/m in silicone films. The most highly pre-strained VHB diaphragms were found to have linear pressure-volume characteristics whose slopes (diaphragm compliance) depended sensitively upon applied field at higher field strengths. Compliance of unstretched silicone diaphragms was nearly independent of field strength at the fields tested, but pressure-volume characteristics shifted markedly. For both kinds of dielectric elastomers, pressure-volume work loops of significant size can be obtained for certain operating pressures. Each type of diaphragm may have advantages in certain applications.
NASA Astrophysics Data System (ADS)
Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.
2017-12-01
The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.
This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO2 sorbent. The test data inc...
DOT National Transportation Integrated Search
1981-12-01
This report (Volume 2 of three volumes) provides detailed descriptions of all program materials employed with the recommended version of a child pedestrian safety program. Volume 1 of this report describes the conduct and results of the evaluation of...
DOT National Transportation Integrated Search
1981-12-01
This report (Volume 3 of three volumes) provides detailed descriptions of additional program materials suggested for use with the recommended version of a child pedestrian safety program. Volume 1 of this report describes the conduct and results of t...
NASA Astrophysics Data System (ADS)
Shepherd, O.; Aurilio, G.; Bucknam, R. D.; Hurd, A. G.; Rappaport, S. A.
1991-06-01
This is Volume 1 of a three volume final report on the design, development, and test of balloonborne and groundbased lidar systems. Volume 2 describes the flight test of Atmospheric Balloonborne Lidar Experiment, ABLE 2, which successfully made atmospheric density backscatter measurements during a flight over White Sands Missile Range. Volume 3 describes groundbased lidar development and measurements, including the design of a telescope dome lidar installation, the design of a transportable lidar shed for remote field sites, and field measurements of atmospheric and cloud backscatter from Ascension Island during SABLE 89 and Terciera, Azores during GABLE 90. In this volume, Volume 1, the design and fabrication of a balloonborne CO2 coherent lidar payload are described. The purpose of this payload is to measure, from altitudes greater than 20 km, the 10.6 micrometers backscatter from atmospheric aerosols as a function of altitude. Minor modifications to the lidar would provide for aerosol velocity measurements to be made. The lidar and payload system design was completed, and major components were fabricated and assembled. These tasks have been successfully completed, and recommendations for further lidar measurements and data analysis have been made.
Aircraft Electrical Systems Specialist (AFSC 42350), Volumes 1-3, and Change Supplement, Volume 3.
ERIC Educational Resources Information Center
Savage, Leslie R.
This three-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for aircraft electrical systems specialists. Covered in the individual volumes are career field fundamentals, electrical systems and test equipment, and aircraft control and warning systems. Each volume in the set contains a series…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caudell, R.B.; Bauder, M.E.; Boyer, W.B.
1993-09-01
Sandia National Laboratories (SNL) Instrumentation Development Department was tasked by the Defense Nuclear Agency (DNA) to record data on Tektronix RTD720 Digitizers on the HUNTERS TROPHY field test conducted at the Nevada Test Site (NTS) on September 18, 1992. This report contains a overview and description of the computer hardware and software that was used to acquire, reduce, and display the data. The document is divided into two volumes: an overview and operators manual (Volume 1) and a maintenance manual (Volume 2).
Experimental field test of proposed pedestrian safety messages. Volume 3
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) Messages. These messages were then produced and field tested. The objective...
Automated water monitor system field demonstration test report. Volume 2: Technical summary
NASA Technical Reports Server (NTRS)
Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.
1981-01-01
The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.
Finite-volume scheme for anisotropic diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Es, Bram van, E-mail: bramiozo@gmail.com; FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands"1; Koren, Barry
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
A Hydrostatic Bearing Test System for Measuring Bearing Load Using Magnetic-Fluid Lubricants.
Weng, Huei Chu; Chen, Lu-Yu
2016-05-01
This paper conducts a study on the design of a hydrostatic bearing test system. It involves the determination of viscous properties of magnetic-fluid lubricants. The load of a hydrostatic thrust bearing using a water-based magnetite nanofluid of varying volume flow rate is measured under an applied external induction field via the test system. Results reveal that the presence of nanoparticles in a carrier liquid would cause an enhanced bearing load. Such an effect could be further magnified by increasing the lubricant volume flow rate or the external induction field strength.
NASA Technical Reports Server (NTRS)
Lee, F. C.; Chen, D. Y.; Jovanic, M.; Hopkins, D. C.
1985-01-01
Test data of switching times characterization of bipolar transistors, of field effect transistor's switching times on-resistance and characterization, comparative data of field effect transistors, and test data of field effect transistor's parallel operation characterization are given. Data is given in the form of graphs.
Experimental field test of proposed pedestrian safety messages. Volume 2, Child messages
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) messages. These messages were then produced and field tested. The objective...
Intelligent cruise control field operational test. Volume I, Technical report
DOT National Transportation Integrated Search
1998-05-01
This document reports on a cooperative agreement between NHTSA and UMTRI entitled Intelligent Cruise Control (ICC) Field Operational Test (FOT). The main goal of the work is to characterize safety and comfort issues that are fundamental to human inte...
Photo stratification improves northwest timber volume estimates.
Colin D. MacLean
1972-01-01
Data from extensive timber inventories of 12 counties in western and central Washington were analyzed to test the relative efficiency of double sampling for stratification as a means of estimating total volume. Photo and field plots, when combined in a stratified sampling design, proved about twice as efficient as simple field sampling. Although some gains were made by...
A magnetic shield/dual purpose mission
NASA Technical Reports Server (NTRS)
Watkins, Seth; Albertelli, Jamil; Copeland, R. Braden; Correll, Eric; Dales, Chris; Davis, Dana; Davis, Nechole; Duck, Rob; Feaster, Sandi; Grant, Patrick
1994-01-01
The objective of this work is to design, build, and fly a dual-purpose payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field to protect manned spacecraft against particle radiation. An additional mission objective is to study the effect of this moving field on upper atmosphere plasmas. Both mission objectives appear to be capable of being tested using the same superconducting coil. The potential benefits of this magnetic shield concept apply directly to both earth-orbital and interplanetary missions. This payload would be a first step in assessing the true potential of large volume magnetic fields in the U.S. space program. Either converted launch systems or piggyback payload opportunities may be appropriate for this mission. The use of superconducting coils for magnetic shielding against solar flare radiation during manned interplanetary missions has long been contemplated and was considered in detail in the years preceding the Apollo mission. With the advent of new superconductors, it has now become realistic to reconsider this concept for a Mars mission. Even in near-earth orbits, large volume magnetic fields produced using conventional metallic superconductors allow novel plasma physics experiments to be contemplated. Both deployed field-coil and non-deployed field-coil shielding arrangements have been investigated, with the latter being most suitable for an initial test payload in a polar orbit.
DOT National Transportation Integrated Search
1983-11-01
Author's abstract: A detailed re-analysis of available pedestrian accident data was utilized to define three sets of pedestrian safety public information and education (PI&E) messages. These messages were then produced and field tested. The objective...
DOT National Transportation Integrated Search
2006-08-01
Field test sections were constructed during 1992 as part of the Strategic Highway Research Program (SHRP) investigation of the frost resistance of concrete. The first freeze-thaw-related deterioration expected for pavement concrete exposed to de-icin...
Performance characteristics of a low-volume PM10 sampler
USDA-ARS?s Scientific Manuscript database
Four identical PM10 pre-separators, along with four identical low-volume (1m3 hr-1) total suspended particulate (TSP) samplers were tested side-by-side in a controlled laboratory particulate matter (PM) chamber. The four PM10 and four TSP samplers were also tested in an oil pipe-cleaning field to ev...
DOT National Transportation Integrated Search
1999-03-01
The Mobile Surveillance and Wireless Communication Systems Field Operational Test (FOT) evaluated the performance of wireless traffic detection and communications systems in areas where permanent detectors, electrical power, and landline communicatio...
NASA Astrophysics Data System (ADS)
Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Patterson, J.; Johnson, C. D.
2016-12-01
Hydraulic tomography was performed in a 100 m2 by 20 m thick volume of contaminated fractured mudstones at the former Naval Air Warfare Center (NAWC) in the Newark Basin, New Jersey, with the objective of estimating the detailed distribution of hydraulic conductivity (K). Characterizing the fine-scale K variability is important for designing effective remediation strategies in complex geologic settings such as fractured rock. In the tomography experiment, packers isolated two to six intervals in each of seven boreholes in the volume of investigation, and fiber-optic pressure transducers enabled collection of high-resolution drawdown observations. A hydraulic tomography dataset was obtained by conducting multiple aquifer tests in which a given isolated well interval was pumped and drawdown was monitored in all other intervals. The collective data from all tests display a wide range of behavior indicative of highly heterogeneous K within the tested volume, such as: drawdown curves for different intervals crossing one another on drawdown-time plots; unique drawdown curve shapes for certain intervals; and intervals with negligible drawdown adjacent to intervals with large drawdown. Tomographic inversion of data from 15 tests conducted in the first field season focused on estimating the K distribution at a scale of 1 m3 over approximately 25% of the investigated volume, where observation density was greatest. The estimated K field is consistent with prior geologic, geophysical, and hydraulic information, including: highly variable K within bedding-plane-parting fractures that are the primary flow and transport paths at NAWC, connected high-K features perpendicular to bedding, and a spatially heterogeneous distribution of low-K rock matrix and closed fractures. Subsequent tomographic testing was conducted in the second field season, with the region of high observation density expanded to cover a greater volume of the wellfield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, S.C.
1993-08-01
This report discusses a field demonstration of a methodology for characterizing an aquifer's geohydrology in the detail required to design an optimum network of wells and/or infiltration galleries for bioreclamation systems. The project work was conducted on a 1-hectare test site at Columbus AFB, Mississippi. The technical report is divided into two volumes. Volume I describes the test site and the well network, the assumptions, and the application of equations that define groundwater flow to a well, the results of three large-scale aquifer tests, and the results of 160 single-pump tests. Volume II describes the bore hole flowmeter tests, themore » tracer tests, the geological investigations, the geostatistical analysis and the guidelines for using groundwater models to design bioreclamation systems. Site characterization, Hydraulic conductivity, Groundwater flow, Geostatistics, Geohydrology, Monitoring wells.« less
DOT National Transportation Integrated Search
2006-05-01
This research study, sponsored by the Federal Highway Administration, summarizes the field performance of eight high-early-strength (HES) : concrete patches between 1994 and 1998. The patches were constructed under the Strategic Highway Research Prog...
Mobile NMR: Measuring Pixels, Images, and Spectra
NASA Astrophysics Data System (ADS)
Bluemich, Bernhard
2007-03-01
The vision of bringing nuclear magnetic resonance out of the lab to the doctor's office, the chemical reactor, or the manufacturing site is becoming reality with the development of mobile NMR. Pioneered for well logging in the oil industry, the concept has been explored for materials testing in a more systematic way since the introduction of the NMR-MOUSE. This is a small, one-sided access NMR sensor which acquires the information of one pixel from a particular spot of a large object. As the sensor explores the stray-fields of a permanent magnet and an rf coil, the magnetic fields are inhomogeneous and the sensitive volume is limited to the region, where both fields are orthogonal and the Larmor frequency lies within the excitation bandwidth. By shaping the magnet and the coil geometries, the shape of the sensitive volume can be tailored to a thin slice or a larger volume a certain distance away from the sensor surface. In the first case, there is a strong field gradient in the depth direction, and in the second case, a homogeneous sweet spot of the field profile is desired. The first case is suitable for measuring high-resolution depth profiles, while the second case is suitable for chemical shift resolved spectroscopy and volume imaging. The basic concepts of open and closed mobile NMR sensors will be discussed along with applications from testing polymer products, cultural heritage, medical tissue, and rock cores.
Meteorological Sensor Array (MSA)-Phase I. Volume 3 (Pre-Field Campaign Sensor Calibration)
2015-07-01
turbulence impact of the WSMR solar array. 4) Designing , developing, testing , and evaluating integrated Data Acquisition System (DAS) hardware and...ARL-TR-7362 ● JULY 2015 US Army Research Laboratory Meteorological Sensor Array (MSA)–Phase I, Volume 3 (Pre-Field Campaign...NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by
NASA Astrophysics Data System (ADS)
Cathles, L. M.; Sanford, W. E.; Hawkins, A.; Li, Y. V.
2017-12-01
The nature of flow in fractured porous media is important to almost all subsurface processes including oil and gas recovery, contaminant transport and remediation, CO2 sequestration, and geothermal heat extraction. One would like to know, under flowing conditions, the flow volume, surface area, effective aperture, and rectilinear spacing of fractures in a representative volume of rock away from the well bore, but no methods currently allow acquisition of this data. It could, however, be collected by deploying inert tracers with a wide range of aqueous diffusion constants (e.g., rapidly diffusing heat to non-diffusing nanoparticle) in the following fashion: The flow volume is defined by the heated volume measured by resistivity surveys. The fracture volume within this flow volume is indicate by the nanoparticle transit time. The average fracture spacing is indicated by the evolving thermal profile in the monitor and the production wells (measured by fiber optic cable), and by the retention of absorbing tracers. The average fracture aperture is determined by permeability measurements and the average fracture separation. We have proposed a field test to redundantly measure these fracture parameters in the fractured Dakota Sandstone where it approaches the surface in Ft Collins, Colorado. Five 30 m deep wells (an injection, production, and 3 monitor wells) cased to 20 m are proposed. The experiments will involve at least 9 different tracers. The planned field test and its potential significance will be described.
DOT National Transportation Integrated Search
2006-08-01
This study consists of continued field evaluations of treatments to four pavements suffering from distress due to alkali-silica reaction (ASR). One set of treatments was evaluated on existing pavements in Delaware, California, and Nevada that already...
Total-dose radiation effects data for semiconductor devices, volume 3
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1982-01-01
Volume 3 of this three-volume set provides a detailed analysis of the data in Volumes 1 and 2, most of which was generated for the Galileo Orbiter Program in support of NASA space programs. Volume 1 includes total ionizing dose radiation test data on diodes, bipolar transistors, field effect transistors, and miscellaneous discrete solid-state devices. Volume 2 includes similar data on integrated circuits and a few large-scale integrated circuits. The data of Volumes 1 and 2 are combined in graphic format in Volume 3 to provide a comparison of radiation sensitivities of devices of a given type and different manufacturer, a comparison of multiple tests for a single data code, a comparison of multiple tests for a single lot, and a comparison of radiation sensitivities vs time (date codes). All data were generated using a steady-state 2.5-MeV electron source (Dynamitron) or a Cobalt-60 gamma ray source. The data that compose Volume 3 represent 26 different device types, 224 tests, and a total of 1040 devices. A comparison of the effects of steady-state electrons and Cobat-60 gamma rays is also presented.
Levick, Shaun R; Hessenmöller, Dominik; Schulze, E-Detlef
2016-12-01
Monitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany. Estimation of wood volume from airborne LiDAR was most robust (R 2 = 0.92, RMSE = 50.57 m 3 ha -1 ~14.13 Mg C ha -1 ) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R 2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha -1 ). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R 2 and RMSE variability of the LiDAR-predicted wood volume model. Our results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.
The sediment volume requirements of toxicity and bioaccumulation bioassays affect the cost of the assessment related to field collection, transportation, storage, disposal, and labor associated with organism recovery at bioassay termination. Our objective was to assess four redu...
USA Track & Field Coaching Manual. USA Track & Field.
ERIC Educational Resources Information Center
USA Track and Field, Inc., Indianapolis, IN.
This book presents comprehensive, ready-to-apply information from 33 world-class coaches and experts about major track and field events for high school and college coaches. The volume features proven predictive testing procedures; detailed event-specific technique instruction; carefully crafted training programs; and preparation and performance…
Field testing of hand-held infrared thermography, phase II TPF-5(247) : final report.
DOT National Transportation Integrated Search
2016-05-01
This report is the second of two volumes that document results from the pooled fund study TPF-5 (247), Development of : Handheld Infrared Thermography, Phase II. The interim report (volume I) studied the implementation of handheld thermography : by p...
NASA Astrophysics Data System (ADS)
Milani, Marco; Germán Rubino, J.; Müller, Tobias M.; Quintal, Beatriz; Holliger, Klaus
2014-05-01
Fractures are present in most geological formations and they tend to dominate not only their mechanical but also, and in particular, their hydraulic properties. For these reasons, the detection and characterization of fractures are of great interest in several fields of Earth sciences. Seismic attenuation has been recognized as a key attribute for this purpose, as both laboratory and field experiments indicate that the presence of fractures typically produces significant energy dissipation and that this attribute tends to increase with increasing fracture density. This energy loss is generally considered to be primarily due to wave-induced pressure diffusion between the fractures and the embedding porous matrix. That is, due to the strong compressibility contrast between these two domains, the propagation of seismic waves can generate a strong fluid pressure gradient and associated pressure diffusion, which leads to fluid flow and in turn results in frictional energy dissipation. Numerical simulations based on Biot's poroelastic wave equations are computationally very expensive. Alternative approaches consist in performing numerical relaxation or creep tests on representative elementary volumes (REV) of the considered medium. These tests are typically based on Biot's consolidation equations. Assuming that the heterogeneous poroelastic medium can be replaced by an effective, homogeneous viscoelastic solid, these numerical creep and relaxation tests allow for computing the equivalent seismic P-wave attenuation and phase velocity. From a practical point of view, an REV is typically characterized by the smallest volume for which rock physical properties are statistically stationary and representative of the probed medium in its entirety. A more general definition in the context of wavefield attributes is to consider an REV as the smallest volume over which the P-wave attenuation and phase velocity dispersion are independent of the applied boundary conditions. That is, the corresponding results obtained from creep and relaxation tests must be equivalent. For most analyses of media characterized by patchy saturation or double-porosity-type structures these two definitions are equivalent. It is, however, not clear whether this equivalence remains true in the presence of strong material contrasts as those prevailing in fractured rocks. In this work, we explore this question for periodically fractured media. To this end, we build a medium composed of infinite replicas of a unit volume containing one fracture. This unit volume coincides with the smallest possible volume that is statistically representative of the whole. Then, we perform several creep and relaxation tests on samples composed of an increasing number of these unit volumes. We find that the wave field signatures determined from relaxation tests are independent from the number of unit volumes. Conversely, the P-wave attenuation and phase velocity characteristics inferred from creep tests are different and vary with the number of unit volumes considered. Quite interestingly, the creep test results converge with those of the relaxation tests as the number of unit volumes increases. These findings are expected to have direct implications for corresponding laboratory measurements as well as for our understanding of seismic wave propagation in fractured media.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-09-17
The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.
Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming
2016-01-01
The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1976-01-01
A test was conducted in the Boeing Large Anechoic Chamber to determine static jet noise source locations of six baseline and suppressor nozzle models, and establish a technique for extrapolating near field data into the far field. The test covered nozzle pressure ratios from 1.44 to 2.25 and jet velocities from 412 to 594 m/s at a total temperature of 844 K.
Phase 2 Site Investigations Report. Volume 3 of 3: Appendices
1994-09-01
Phase II Site Investigations Ee Report Cn Volume III of III Appendices Fort Devens Sudbury Training Annex, Massachusetts September 1994 Contract No...laboratory quality control (QC) samples collected during field investigations at the Sudbury Training Annex of Fort Devens , Massachusetts. The QC...returned to its original condition. E & E performed this procedure for each monitoring well tested during the 1993 slug testing activities at Fort Devens
Automated objective characterization of visual field defects in 3D
NASA Technical Reports Server (NTRS)
Fink, Wolfgang (Inventor)
2006-01-01
A method and apparatus for electronically performing a visual field test for a patient. A visual field test pattern is displayed to the patient on an electronic display device and the patient's responses to the visual field test pattern are recorded. A visual field representation is generated from the patient's responses. The visual field representation is then used as an input into a variety of automated diagnostic processes. In one process, the visual field representation is used to generate a statistical description of the rapidity of change of a patient's visual field at the boundary of a visual field defect. In another process, the area of a visual field defect is calculated using the visual field representation. In another process, the visual field representation is used to generate a statistical description of the volume of a patient's visual field defect.
DOT National Transportation Integrated Search
2012-10-01
Microwave-based vehicle detection products from two manufacturers were selected for field testing and : evaluation: Wavetronix and Intersector. The two systems were installed by the manufacturer/distributor at a : signalized intersection. Initial eva...
ERIC Educational Resources Information Center
Gardner, David C.; Beatty, Grace Joely
Within the context of the major objectives of developing, field testing, and refining the curriculum materials described in volume 1 of this final report (CE 024 117), Volume 2 describes and critiques the management system used by Project HIRE in that development process. (See Note for availability of curriculum materials.) Chapter 1 introduces…
ERIC Educational Resources Information Center
Gardner, David C.; And Others
Volume 1 of the final report on Project HIRE reports the design, development, field-testing, and refining of self-instructional packages to teach entry level technical vocabulary to learning handicapped students mainstreamed in vocational programs. Volume 2, a management handbook, reports the methods and findings concerning development of…
ERIC Educational Resources Information Center
Pennsylvania State Univ., University Park. Div. of Occupational and Vocational Studies.
A project was undertaken to implement the employability, reading, and math skills of disadvantaged students in vocational education. Included in the project were the following activities: (1) field tests, evaluation, and dissemination of a mathematics skills curriculum guide for disadvantaged learners; (2) field tests and revision of guidelines…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, R.B.; Borling, D.C.; Powers, B.S.
1998-02-01
A multiphase flowmeter (MPFM) installed in offshore Egypt has accurately measured three-phase flow in extremely gassy flow conditions. The meter is completely nonintrusive, with no moving parts, requires no flow mixing before measurement, and has no bypass loop to remove gas before multiphase measurement. Flow regimes observed during the field test of this meter ranged from severe slugging to annular flow caused by the dynamics of gas-lift gas in the production stream. Average gas-volume fraction ranged from 93 to 98% during tests conducted on seven wells. The meter was installed in the Gulf of Suez on a well protector platformmore » in the Gulf of Suez Petroleum Co. (Gupco) October field, and was placed in series with a test separator located on a nearby production platform. Wells were individually tested with flow conditions ranging from 1,300 to 4,700 B/D fluid, 2.4 to 3.9 MMscf/D of gas, and water cuts from 1 to 52%. The meter is capable of measuring water cuts up to 100%. Production was routed through both the MPFM and the test separator simultaneously as wells flowed with the assistance of gas-lift gas. The MPFM measured gas and liquid rates to within {+-} 10% of test-separator reference measurement flow rates, and accomplished this at gas-volume fractions from 93 to 96%. At higher gas-volume fractions up to 98%, accuracy deteriorated but the meter continued to provide repeatable results.« less
Comprehensive Field Test and Evaluation of an Electronic Signpost AVM System. Volume I. Test Results
DOT National Transportation Integrated Search
1977-08-01
The report covers the activities of Phase I which involved the installation and test of a HI3 AVM System in Philadelphia, Pennsylvania, during the winter of 1976-1977. A summary report on all systems tested is Experiments on four different techniques...
QM-8 field joint protection system, volume 7
NASA Technical Reports Server (NTRS)
Hale, Elgie
1989-01-01
The pre-launch functioning data of the Field Joint Protection System (JPS) used on QM-8 are presented. Also included is the post fire condition of the JPS components following the test firing of the motor. The JPS components are: field joint heaters; field joint sensors; field joint moisture seal; moisture seal kevlar retaining straps; field joint external extruded cork insulation; vent valve; power cables; and igniter heater.
Visual field impairment captures disease burden in multiple sclerosis.
Ortiz-Perez, Santiago; Andorra, Magí; Sanchez-Dalmau, Bernardo; Torres-Torres, Rubén; Calbet, David; Lampert, Erika J; Alba-Arbalat, Salut; Guerrero-Zamora, Ana M; Zubizarreta, Irati; Sola-Valls, Nuria; Llufriu, Sara; Sepúlveda, María; Saiz, Albert; Villoslada, Pablo; Martinez-Lapiscina, Elena H
2016-04-01
Monitoring disease burden is an unmeet need in multiple sclerosis (MS). Identifying patients at high risk of disability progression will be useful for improving clinical-therapeutic decisions in clinical routine. To evaluate the role of visual field testing in non-optic neuritis eyes (non-ON eyes) as a biomarker of disability progression in MS. In 109 patients of the MS-VisualPath cohort, we evaluated the association between visual field abnormalities and global and cognitive disability markers and brain and retinal imaging markers of neuroaxonal injury using linear regression models adjusted for sex, age, disease duration and use of disease-modifying therapies. We evaluated the risk of disability progression associated to have baseline impaired visual field after 3 years of follow-up. Sixty-two percent of patients showed visual field defects in non-ON eyes. Visual field mean deviation was statistically associated with global disability; brain (normalized brain parenchymal, gray matter volume and lesion load) and retinal (peripapillary retinal nerve fiber layer thickness and macular ganglion cell complex thickness) markers of neuroaxonal damage. Patients with impaired visual field had statistically significative greater disability, lower normalized brain parenchymal volume and higher lesion volume than patients with normal visual field testing. MS patients with baseline impaired VF tripled the risk of disability progression during follow-up [OR = 3.35; 95 % CI (1.10-10.19); p = 0.033]. The association of visual field impairment with greater disability and neuroaxonal injury and higher risk of disability progression suggest that VF could be used to monitor MS disease burden.
Drunk driving warning system (DDWS). Volume 2, Field test evaluation
DOT National Transportation Integrated Search
1983-12-01
The Drunk Driving Warning System (DDWS) is a vehicle-mounted device for testing driver impairment and activating alarms. The driver must pass a steering competency test (the Critical Tracking Task or CTT) in order to drive the car in a normal manner....
Human Performance Review of the Retail Repair Parts Supply System. Volume II.
1980-02-01
transsexual adults were tested by LaTorre, Gossmann, and Piper (1976) on the Embedded-figures Test. It was found that the males were more field independent...than females, and that the transsexuals were as field dependent as the females. In this case the male trans- sexuals behaved like the female group in...1976. LaTorre, R. A., Gossmann, I., & Piper, W. E. Cognitive style, hemi- spheric specialization, and tested abilities of transsexuals and
Mechanics of Ballast Compaction. Volume 4 : Lab. Invest. the Effects of Field Compaction Mechanisms
DOT National Transportation Integrated Search
1982-03-01
This report describes a preliminary series of laboratory tests which attempt to simulate some of the effects of maintenance procedures and traffic on the physical state of ballast as measured by the ballast density test, plate load test, and lateral ...
A.D. Paul; G. Sam Foster; T. Caldwell; J. McRae
1997-01-01
Seedlings from 30 full-sib families (contained in 2,4 x 4 factorials) of loblollynine(Pinus taeda L.) were cloned and planted in three test sites in Georgia. Analyses were conducted on total height at ages 1 to 5 yr in the field, dbh at age 5, and individual tree volume at age 5. Four sources of genetic control were tested: male parent, female parent, male x female...
Haitian Creole Basic Course: Volume III, Lessons 21-30.
ERIC Educational Resources Information Center
Defense Language Inst., Washington, DC.
This volume, the third in a series comprising the field-test edition of the Defense Language Institute's "Haitian Creole Basic Course," is extracted primarily from the instructor's guide to materials contained in Albert Valdman's "Basic Course in Haitian Creole." Materials are arranged in the order of their use in the classroom. Content of each…
Haitian Creole Basic Course: Volume II, Lessons 11-20.
ERIC Educational Resources Information Center
Defense Language Inst., Washington, DC.
This volume, the second in a series comprising the field-test edition of the Defense Language Institute's "Haitian Creole Basic Course," is extracted primarily from the instructor's guide to materials contained in Albert Valdman's "Basic Course in Haitian Creole." Materials are arranged in the order of their use in the classroom. Content of each…
Three Dimensional Thermal Pollution Models. Volume 2; Rigid-Lid Models
NASA Technical Reports Server (NTRS)
Lee, S. S.; Sengupta, S.
1978-01-01
Three versions of rigid lid programs are presented: one for near field simulation; the second for far field unstratified situations; and the third for stratified basins, far field simulation. The near field simulates thermal plume areas, and the far field version simulates larger receiving aquatic ecosystems. Since these versions have many common subroutines, a unified testing is provided, with main programs for the three possible conditions listed.
Abercrombie, M L; Jewell, J S
1986-01-01
Results of EMIT, Abuscreen RIA, and GC/MS tests for THC metabolites in a high volume random urinalysis program are compared. Samples were field tested by non-laboratory personnel with an EMIT system using a 100 ng/mL cutoff. Samples were then sent to the Army Forensic Toxicology Drug Testing Laboratory (WRAMC) at Fort Meade, Maryland, where they were tested by RIA (Abuscreen) using a statistical 100 ng/mL cutoff. Confirmations of all RIA positives were accomplished using a GC/MS procedure. EMIT and RIA results agreed for 91% of samples. Data indicated a 4% false positive rate and a 10% false negative rate for EMIT field testing. In a related study, results for samples which tested positive by RIA for THC metabolites using a statistical 100 ng/mL cutoff were compared with results by GC/MS utilizing a 20 ng/mL cutoff for the THCA metabolite. Presence of THCA metabolite was detected in 99.7% of RIA positive samples. No relationship between quantitations determined by the two tests was found.
NASA Technical Reports Server (NTRS)
1990-01-01
Resistance measurements are given in graphical for when a simulated lightning discharge strikes on an exposed top hat cover simulator. The test sequence was to measure the electric and magnetic fields induced inside a redesigned solid rocket motor case.
DOT National Transportation Integrated Search
2008-05-23
This report presents the results of the ITS Standards Testing Program for the field testing, assessment, and evaluation of the three volumes comprising the Standards for Traffic Management Center to Center Communications (TMDD) version 2.1 and the NT...
A genuinely discontinuous approach for multiphase EHD problems
NASA Astrophysics Data System (ADS)
Natarajan, Mahesh; Desjardins, Olivier
2017-11-01
Electrohydrodynamics (EHD) involves solving the Poisson equation for the electric field potential. For multiphase flows, although the electric field potential is a continuous quantity, due to the discontinuity in the electric permittivity between the phases, additional jump conditions at the interface, for the normal and tangential components of the electric field need to be satisfied. All approaches till date either ignore the jump conditions, or involve simplifying assumptions, and hence yield unconvincing results even for simple test problems. In the present work, we develop a genuinely discontinuous approach for the Poisson equation for multiphase flows using a Finite Volume Unsplit Volume of Fluid method. The governing equation and the jump conditions without assumptions are used to develop the method, and its efficiency is demonstrated by comparison of the numerical results with canonical test problems having exact solutions. Postdoctoral Associate, Department of Mechanical and Aerospace Engineering.
Evaluation of the intelligent cruise control system : volume 1 : study results
DOT National Transportation Integrated Search
1999-10-01
The Intelligent Cruise Control (ICC) system evaluation was based on an ICC Field Operational Test (FOT) performed in Michigan. The FOT involved 108 volunteers recruited to drive ten ICC-equipped Chrysler Concordes. Testing was initiated in July 1996 ...
Air void analyzer for plastic concrete : technical summary report.
DOT National Transportation Integrated Search
2008-11-01
The best protection against freeze-thaw cycles in concrete is to have a good air void : system. Although microscopic, concrete is a porous material. Conventional field tests, : the volumetric or pressure tests, only provide the volume of air voids in...
Nolte, Guido
2003-11-21
The equation for the magnetic lead field for a given magnetoencephalography (MEG) channel is well known for arbitrary frequencies omega but is not directly applicable to MEG in the quasi-static approximation. In this paper we derive an equation for omega = 0 starting from the very definition of the lead field instead of using Helmholtz's reciprocity theorems. The results are (a) the transpose of the conductivity times the lead field is divergence-free, and (b) the lead field differs from the one in any other volume conductor by a gradient of a scalar function. Consequently, for a piecewise homogeneous and isotropic volume conductor, the lead field is always tangential at the outermost surface. Based on this theoretical result, we formulated a simple and fast method for the MEG forward calculation for one shell of arbitrary shape: we correct the corresponding lead field for a spherical volume conductor by a superposition of basis functions, gradients of harmonic functions constructed here from spherical harmonics, with coefficients fitted to the boundary conditions. The algorithm was tested for a prolate spheroid of realistic shape for which the analytical solution is known. For high order in the expansion, we found the solutions to be essentially exact and for reasonable accuracies much fewer multiplications are needed than in typical implementations of the boundary element methods. The generalization to more shells is straightforward.
NASA Technical Reports Server (NTRS)
Mitchell, Darryl R.
1997-01-01
Goddard Space Flight Center's (GSFC) Spacecraft Magnetic Test Facility (SMTF) is a historic test facility that has set the standard for all subsequent magnetic test facilities. The SMTF was constructed in the early 1960's for the purpose of simulating geomagnetic and interplanetary magnetic fields. Additionally, the facility provides the capability for measuring spacecraft generated magnetic fields as well as calibrating magnetic attitude control systems and science magnetometers. The SMTF was designed for large, spacecraft level tests and is currently the second largest spherical coil system in the world. The SMTF is a three-axis Braunbek system composed of four coils on each of three orthogonal axes. The largest coils are 12.7 meters (41.6 feet) in diameter. The three-axis Braunbek configuration provides a highly uniform cancellation of the geomagnetic field over the central 1.8 meter (6 foot) diameter primary test volume. Cancellation of the local geomagnetic field is to within +/-0.2 nanotesla with a uniformity of up to 0.001% within the 1.8 meter (6 foot) diameter primary test volume. Artificial magnetic field vectors from 0-60,000 nanotesla can be generated along any axis with a 0.1 nanotesla resolution. Oscillating or rotating field vectors can also be produced about any axis with a frequency of up to 100 radians/second. Since becoming fully operational in July of 1967, the SMTF has been the site of numerous spacecraft magnetics tests. Spacecraft tested at the SMTF include: the Solar Maximum Mission (SMM), Magsat, LANDSAT-D, the Fast Aurora] Snapshot (FAST) Explorer and the Sub-millimeter-Wave-Astronomy Satellite (SWAS) among others. This paper describes the methodology and sequencing used for the Global Geospace Science (GGS) initiative magnetic testing program in the Goddard Space Flight Center's SMTF. The GGS initiative provides an exemplary model of a strict and comprehensive magnetic control program.
DOT National Transportation Integrated Search
2013-10-01
The performance of a microwave radar system for vehicle detection at a railroad grade crossing in Hinsdale, : Illinois, was evaluated through field-testing in favorable (normal, good) weather conditions. The system was : installed at a crossing with ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-08-01
Volume IV contains the following attachments for Module IV: VOC monitoring plan for bin-room tests (Appendix D12); bin emission control and VOC monitoring system drawings; bin scale test room ventilation drawings; WIPP supplementary roof support system, underground storage area, room 1, panel 1, DOE/WIPP 91-057; and WIPP supplementary roof support system, room 1, panel 1, geotechnical field data analysis bi-annual report, DOE/WIPP 92-024.
This paper describes the development and field evaluation of a compact high-volume dichotomous sampler (HVDS) that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. In its primary configuration as tested, the sampler size-fractionates PM10 into...
ERIC Educational Resources Information Center
McPherson, Kenard; Weidman, James R.
This volume contains materials to supplement existing driver education programming offered by high schools to youthful (16- to 18-year old) drivers. Section I contains three drinking/driving modules: an information-only module, a self-image module, and a three-unit peer intervention module. An instructor's guide provided for each module includes…
Haitian Creole Basic Course: Student Text, Volume I, Lessons 1-10.
ERIC Educational Resources Information Center
Defense Language Inst., Washington, DC.
This volume, the first in a series comprising the field-test edition of the Defense Language Institute's "Haitian Creole Basic Course," is extracted primarily from the instructor's guide to materials contained in Albert Valdman's "Basic Course in Haitian Creole." Materials are arranged in the order of their use in the classroom. Content of each…
2000-06-01
ý 7/’ 2 /. j6 -0, -0 ý DATE OF TEST /___ ’__..__ TY’PE OF TEST Aede t4I HERMIT TYPE /SERIAL# )/,’ - _,__ _ TEST# 00- #v DATA COLLECTION RATE Zo...OF TEST " . (z) HERMIT TYPE /SERIAL# / C 7/k’- __ _ _ TEST# 2 -03 _0 DATA COLLEC17ION RATE ’ZO& 01 TRANSDUCER SERIAL # 66 3ý PSIG 30 ;S7r-: SCALE...INC. - ~FILE TYPE SITE TYPE JOB J94- 2 FIELD DATA RECORD - GROUNDWATER 4z=) NUMBER JECT [ USAEC-FT. DEVENS 7 WEATHER I v c_ LOCATION ISTART FIELD
NASA Astrophysics Data System (ADS)
Stewart, R. D.; Abou Najm, M. R.; Rupp, D. E.; Selker, J. S.
2010-12-01
Shrinking/swelling soils are characterized by transient crack networks which function as dominant controls on the partitioning of surface and subsurface flow, the rate and depth of percolation, and evaporation rates. For such soils, understanding the dynamics of cracks is critical to accurately quantify their influence on groundwater recharge, stream-flow generation, and solute transport, among other component of a site’s hydrology. We propose a low-cost method for measuring transient crack-volume using a sealed plastic bag connected by a hose to a PVC standpipe. The empty bag is placed into the crack, and then water is added via the standpipe, until the bag has expanded to the boundaries of the crack and some water remains in the standpipe. As the crack shrinks or swells, its volume changes, causing water displacement within the bag, which is measured as a corresponding change in water level in the standpipe. An automated level logger within the standpipe is used to record changes in water level, which are converted to volumetric changes from the known internal cross-sectional area of the standpipe. The volume of water filling the bag is accurately measured at the start and completion of the experiment (to check for leakage). Adding the startup volume to the cumulative temporal volumetric change in the standpipe provides a simple and accurate method for monitoring transient crack volume. Currently, the design is undergoing preliminary testing in a field site in Ninhue, Chile, and field and laboratory testing in Corvallis, Oregon. Initial results from the Chilean field site suggest that the crack-o-meters are responding to the closing of cracks, but further effort is needed to calibrate and validate the results. We hope that these low-cost “crack-o-meters” will become useful and simple tools for researchers to quantify temporal changes in crack volume with the objective of incorporating these results into hydrological modeling efforts.
Automobile driver on-road performance test. Volume 1, final report
DOT National Transportation Integrated Search
1981-09-30
The Automobile Driver On-Road Performance Test (ADOPT) was developed during a three-phase project. In Phase 1, 51 candidate behaviors were identified and selected with the help of experts in the fields of traffic safety, measurement of driver perform...
DOT National Transportation Integrated Search
1993-04-01
The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). The characterization of electric and magnetic fields (EMF...
Spatio-volumetric hazard estimation in the Auckland volcanic field
NASA Astrophysics Data System (ADS)
Bebbington, Mark S.
2015-05-01
The idea of a volcanic field `boundary' is prevalent in the literature, but ill-defined at best. We use the elliptically constrained vents in the Auckland Volcanic Field to examine how spatial intensity models can be tested to assess whether they are consistent with such features. A means of modifying the anisotropic Gaussian kernel density estimate to reflect the existence of a `hard' boundary is then suggested, and the result shown to reproduce the observed elliptical distribution. A new idea, that of a spatio-volumetric model, is introduced as being more relevant to hazard in a monogenetic volcanic field than the spatiotemporal hazard model due to the low temporal rates in volcanic fields. Significant dependencies between the locations and erupted volumes of the observed centres are deduced, and expressed in the form of a spatially-varying probability density. In the future, larger volumes are to be expected in the `gaps' between existing centres, with the location of the greatest forecast volume lying in the shipping channel between Rangitoto and Castor Bay. The results argue for tectonic control over location and magmatic control over erupted volume. The spatio-volumetric model is consistent with the hypothesis of a flat elliptical area in the mantle where tensional stresses, related to the local tectonics and geology, allow decompressional melting.
DOT National Transportation Integrated Search
2006-08-01
Two types of concrete overlays silica fume concrete (SFC) and latex-modified Type III portland cement concrete (LMC-III) were installed ant tested as part of the Strategic Highway Research Program (SHRP) Project C-206: Optimization of Highway Concret...
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results are presented of a wind tunnel test program to determine surface pressures and flow field properties on the space shuttle booster configuration. The tests were conducted in September 1971. Data were obtained at a nominal Mach number of 8 at angles of attack of 40 and 50 deg and at a free stream unit Reynolds number of 3.7 million per foot.
ERIC Educational Resources Information Center
Plake, Barbara S., Ed.; Witt, Joseph C., Ed.
An introduction by Barbara S. Plake and Joseph C. Witt defines the task of this book as presenting nine conference papers discussing probable directions for the field of measurement and testing. In an effort to contribute to the improvement of test construction and test usage, areas of present concern and potentially important areas for the future…
Sleeve Expansion of Bolt Holes in Railroad Rail : Volume II, Process Parameters and Procedures
DOT National Transportation Integrated Search
1980-02-01
The bolt-hole cold-expansion process has been applied to railroad rail in laboratory tests and has demonstrated a potential for the reduction of rail-bolt-hole-failure incidence. Limited field tests also have been conducted and are currently under lo...
NASA Technical Reports Server (NTRS)
1977-01-01
The joint U.S.-USSR experiments and the U.S. conducted unilateral experiments performed during the Apollo Soyuz Test Project are described. Scientific concepts and experiment design and operation are discussed along with scientific results of postflight analysis.
DOT National Transportation Integrated Search
2013-03-01
This project provides techniques to improve hot-mix asphalt (HMA) overlays specifically through the use of : special additives and innovative surfacing technologies with aggregates that are locally available in Illinois. The : ultimate goal is to imp...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
This report describes the test site, equipment, and procedures and presents the data obtained during field testing at G.P.U. Genco Homer City Station, August 19--24, 1997. This was the third of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 3, EPA`s test method for measuring flue gas volumetric flow in stacks. The report also includes a Data Distribution Package, the official, complete repository of the results obtained at the test site.
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu
2012-01-01
Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.
Experimental field test of proposed anti-dart-out training programs. Volume 1, Conduct and results
DOT National Transportation Integrated Search
1981-12-01
This report describes the conduct and results of an evaluation of a child pedestrian anti-dart-out training program. Two versions were tested: A film program and a film/simulator program. Before/after accident and street crossing behavior data were c...
Total-dose radiation effects data for semiconductor devices. 1985 Supplement. Volume 2, part B
NASA Technical Reports Server (NTRS)
Martin, K. E.; Gauthier, M. K.; Coss, J. R.; Dantas, A. R. V.; Price, W. E.
1986-01-01
Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. The data were generated by JPL for various NASA space programs. The document is in two volumes: Volume 1 provides data on diodes, bipolar transistors, field effect transistors, and miscellaneous semiconductor types, and Volume 2 (Parts A and B) provides data on integrated circuits. The data are presented in graphic, tabular, and/or narrative format, depending on the complexity of the integrated circuit. Most tests were done steady-state 2.5-MeV electron beam. However, some radiation exposures were made with a Cobalt-60 gamma ray source, the results of which should be regarded as only an approximate measure of the radiation damage that would be incurred by an equivalent electron dose. All data were generated in support of NASA space programs by the JPL Radiation Effects and Testing Group (514).
1992-03-01
I I 3 TABLE 15. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER PILOT SCALE TOXICITY TESTS - UNTREATED GROUNDWATER ( FRESHWATER ...SUBJECT TERMS (Coftinut on reverse of necessary and identity by block number) FIELD IGROUP SUB-GROUP Groundwater , aquatic , to*’teltyi- daphnia,--Daphnia...FATHEAD MINNOWS AND DAPHNIDS ........................................... 30 12. SUMMARY OF THE WATER QUALITY DURING THE OLD O-FIELD GROUNDWATER BENCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hackett, S; Asselen, B van; Wolthaus, J
2016-06-15
Purpose: Treatment plans for the MR-linac, calculated in Monaco v5.19, include direct simulation of the effects of the 1.5T B{sub 0}-field. We tested the feasibility of using a collapsed-cone (CC) algorithm in Oncentra, which does not account for effects of the B{sub 0}-field, as a fast online, independent 3D check of dose calculations. Methods: Treatment plans for six patients were generated in Monaco with a 6 MV FFF beam and the B{sub 0}-field. All plans were recalculated with a CC model of the same beam. Plans for the same patients were also generated in Monaco without the B{sub 0}-field. Themore » mean dose (Dmean) and doses to 10% (D10%) and 90% (D90%) of the volume were determined, as percentages of the prescribed dose, for target volumes and OARs in each calculated dose distribution. Student’s t-tests between paired parameters from Monaco plans and corresponding CC calculations were performed. Results: Figure 1 shows an example of the difference between dose distributions calculated in Monaco, with the B{sub 0}-field, and the CC algorithm. Figure 2 shows distributions of (absolute) difference between parameters for Monaco plans, with the B{sub 0}-field, and CC calculations. The Dmean and D90% values for the CTVs and PTVs were significantly different, but differences in dose distributions arose predominantly at the edges of the target volumes. Inclusion of the B{sub 0}-field had little effect on agreement of the Dmean values, as illustrated by Figure 3, nor on agreement of the D10% and D90% values. Conclusion: Dose distributions recalculated with a CC algorithm show good agreement with those calculated with Monaco, for plans both with and without the B{sub 0}-field, indicating that the CC algorithm could be used to check online treatment planning for the MRlinac. Agreement for a wider range of treatment sites, and the feasibility of using the γ-test as a simple pass/fail criterion, will be investigated.« less
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results are presented of a wind tunnel test program to determine surface pressures and flow field properties on the space shuttle orbiter configuration. The tests were conducted in September 1971. Data were obtained at a nominal Mach number of 8 and a free stream unit Reynolds number of 3.7 million per foot. Angle of attack was varied from 10 to 50 deg in 10-deg increments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopp, Robert W.; Duff, Michael, E-mail: mduff@cancercarewny.com; Catalfamo, Frank
2011-01-01
We compared normal tissue radiation dose for the treatment of prostate cancer using 2 different radiation therapy delivery methods: volumetric modulated arc therapy (VMAT) vs. fixed-field intensity-modulated radiation therapy (IMRT). Radiotherapy plans for 292 prostate cancer patients treated with VMAT to a total dose of 7740 cGy were analyzed retrospectively. Fixed-angle, 7-field IMRT plans were created using the same computed tomography datasets and contours. Radiation doses to the planning target volume (PTV) and organs at risk (bladder, rectum, penile bulb, and femoral heads) were measured, means were calculated for both treatment methods, and dose-volume comparisons were made with 2-tailed, pairedmore » t-tests. The mean dose to the bladder was lower with VMAT at all measured volumes: 5, 10, 15, 25, 35, and 50% (p < 0.05). The mean doses to 5 and 10% of the rectum, the high-dose regions, were lower with VMAT (p < 0.05). The mean dose to 15% of the rectal volume was not significantly different (p = 0.95). VMAT exposed larger rectal volumes (25, 35, and 50%) to more radiation than fixed-field IMRT (p < 0.05). Average mean dose to the penile bulb (p < 0.05) and mean dose to 10% of the femoral heads (p < 0.05) were lower with VMAT. VMAT therapy for prostate cancer has dosimetric advantages for critical structures, notably for high-dose regions compared with fixed-field IMRT, without compromising PTV coverage. This may translate into reduced acute and chronic toxicity.« less
Anaemia worsens early functional outcome after traumatic brain injury: a preliminary study.
Litofsky, N Scott; Miller, Douglas C; Chen, Zhenzhou; Simonyi, Agnes; Klakotskaia, Diana; Giritharan, Andrew; Feng, Qi; McConnell, Diane; Cui, Jiankun; Gu, Zezong
2018-01-01
To determine early effects on outcome from traumatic brain injury (TBI) induced by controlled cortical impact (CCI) associated with anaemia in mice. Outcome from TBI with concomitant anaemia would be worse than TBI without anaemia. CCI was induced with electromagnetic impaction in four groups of C57BL/6J mice: sham, sham+anaemia; TBI; and TBI+anaemia. Anaemia was created by withdrawal of 30% of calculated intravascular blood volume and saline replacement of equal volume. Functional outcome was assessed by beam-walking test and open field test (after pre-injury training) on post-injury days 3 and 7. After functional assessment, brains removed from sacrificed animals were pathological reviewed with haematoxylin and eosin, cresyl violet, Luxol Fast Blue, and IBA-1 immunostains. Beam-walking was similar between animals with TBI and TBI+anaemia (p = 0.9). In open field test, animals with TBI+anaemia walked less distance than TBI alone or sham animals on days 3 (p < 0.001) and 7 (p < 0.05), indicating less exploratory and locomotion behaviours. No specific pathologic differences could be identified. Anaemia associated with TBI from CCI is associated with worse outcome as measured by less distance travelled in the open field test at three days than if anaemia is not present.
Applied Linguistics and Measurement: A Dialogue
ERIC Educational Resources Information Center
McNamara, Tim
2011-01-01
The paper by Wilson and Moore (this volume), based on the Messick Lecture delivered in 2006 at the annual Language Testing Research Colloquium in Melbourne, may present a familiar challenge to some language testers: of reading outside one's comfort zone. The distinctive character of language testing lies in its combination of two primary fields of…
Low-volume and slow-burning vegetation for planting on clearings in California chaparral
Eamor C. Nord; Lisle R. Green
1977-01-01
Vegetation that is low-growing and either low in volume, slow burning, or both, is needed for reduction of fire hazard on fuelbreaks and other brush cleared areas in California. Of over 50 shrub species and many grass species that were test planted, about 20 shrubs and an equal number of grasses were chosen for plot and field trials. Creeping sage, a few saltbushes,...
Code of Federal Regulations, 2014 CFR
2014-01-01
... clothes washer design can achieve spin speeds in the 500g range. When this matrix is repeated 3 times, a...) or an equivalent extractor with same basket design (i.e. diameter, length, volume, and hole... materially inaccurate comparative data, field testing may be appropriate for establishing an acceptable test...
ERIC Educational Resources Information Center
Hale, James A.; And Others
One of a three-volume series concerning the development and testing of a model for determining the costs of vocational education programs and courses, this final report contains in its five chapters an introduction, a review of related literature and research, field tests, an added-cost model for vocational education, and a summary with…
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…
ERIC Educational Resources Information Center
California State Univ., Sacramento. Dept. of Civil Engineering.
The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…
PULSE COMBUSTOR DESIGN QUALIFICATION TEST AND CLEAN COAL FEEDSTOCK TEST - VOLUME I AND VOLUME II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unknown
For this Cooperative Agreement, the pulse heater module is the technology envelope for an indirectly heated steam reformer. The field of use of the steam reformer pursuant to this Cooperative Agreement with DOE is for the processing of sub-bituminous coals and lignite. The main focus is the mild gasification of such coals for the generation of both fuel gas and char--for the steel industry is the main focus. An alternate market application for the substitution of metallurgical coke is also presented. This project was devoted to qualification of a 253-tube pulse heater module. This module was designed, fabricated, installed, instrumentedmore » and tested in a fluidized bed test facility. Several test campaigns were conducted. This larger heater is a 3.5 times scale-up of the previous pulse heaters that had 72 tubes each. The smaller heater has been part of previous pilot field testing of the steam reformer at New Bern, North Carolina. The project also included collection and reduction of mild gasification process data from operation of the process development unit (PDU). The operation of the PDU was aimed at conditions required to produce char (and gas) for the Northshore Steel Operations. Northshore Steel supplied the coal for the process unit tests.« less
DOT National Transportation Integrated Search
2006-08-01
The objective of this study was to monitor and evaluate the performance of experimental full-depth repairs made with high-early-strength (HES) materials placed under Strategic Highway Research Program (SHRP) project C-206, Optimization of Highway Con...
Arrendondo-Jimenez, Juan I; Rivero, Norma E
2006-06-01
We studied the efficacy of space ultra-low volume treatments of 3 insecticides for the control of the dengue virus vector Aedes aegypti in southern Mexico. Insecticides tested were permethrin (Aqua-Reslin Super), d-phenothrin (Anvil), and cyfluthrin (Solfac), applied at rates of 10.87, 7.68, and 2 g/ha, respectively, by using London Fog, HP910-PHXL, or Micro-Gen pumps mounted on vehicles. Studies included 1) open field penetration tests and 2) house penetration tests. Open field tests indicated that Anvil and Solfac were more effective than Aqua-Reslin Super. In house tests, Anvil yielded the highest mosquito mortalities (>/=88%) of the three insecticides in the front porch, living room, bedroom, and backyard. Therefore, Anvil proved to be better than other insecticides evaluated to control Ae. aegypti in Chiapas, Mexico.
NASA Astrophysics Data System (ADS)
Melton, Casey; McCammon Lab at University of Wisconsin-Madison
2018-01-01
In Dr. Dan McCammon’s lab at the University of Wisconsin-Madison, a special class of x-ray microcalorimeter called a Transition-Edge Sensor, or TES, is being tested in order to identify the strengths and weaknesses of this device in detecting x-ray photons from astronomical sources. The TES is currently housed in a cryogenic refrigerator where it can be tested at superconducting temperatures. Although this refrigerator is equipped with magnetic field shielding to keep magnetic fields out during testing, latent magnetic fields are trapped inside the receptacle at the time of cool-down. To remedy this problem, I built a set of tri-axial Helmholtz coils, which have at their center a uniform volume of magnetic field. This uniform region can be tuned prior to cool-down and nulls the magnetic field that would typically be trapped inside the receptacle. The magnetic field will be monitored inside the receptacle with a tri-axial fluxgate magnetic field sensor, which I began designing in the latter half of the project. This project is still in progress, and will be implemented in the lab in the near future.
Code of Federal Regulations, 2011 CFR
2011-07-01
... approve relief We will not change your authorized field's royalty suspension volume determined under § 203... application We will not change your field's royalty suspension volume The assigned lease(s) may share in any... field while we are evaluating your application We will change your field's minimum suspension volume...
Performance oriented guidance for Mississippi chip seals - volume II.
DOT National Transportation Integrated Search
2013-12-01
A laboratory and field study was conducted related to long term chip seal performance. This reports primary : objective was to initiate development of a long term performance (LTP) test protocol for chip seals focused on : aggregate retention. Key...
Geosynthetic reinforced soil for low-volume bridge abutments.
DOT National Transportation Integrated Search
2012-01-01
This report presents a review of literature on geosynthetic reinforced soil (GRS) bridge abutments, and test results and analysis from two : field demonstration projects (Bridge 1 and Bridge 2) conducted in Buchanan County, Iowa, to evaluate the feas...
Evaluation of the intelligent cruise control system. Volume 2, Appendices
DOT National Transportation Integrated Search
1999-10-01
The Intelligent Cruise Control (ICC) system evaluation was sponsored by the National Highway Traffic Safety Administration (NHTSA) and based on an ICC Field Operational Test (FOT) conducted under a cooperative agreement between the NHTSA and the Univ...
Geotechnical Field Data and Analysis Report, July 1991--June 1992. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The Geotechnical Field Data and Analysis Report documents the geotechnical data from the underground excavations at the Waste Isolation Pilot Plant (WIPP) located near Carlsbad, New Mexico. The data are used to characterize conditions, confirm design assumptions, and understand and predict the performance of the underground excavations during operations. The data are obtained as part of a routine monitoring program and do not include data from tests performed by Sandia National Laboratories (SNL), the Scientific Advisor to the project, in support of performance assessment studies. The purpose of the geomechanical monitoring program is to provide in situ data to supportmore » continuing assessments of the design for the underground facilities. Specifically, the program provides: Early detection of conditions that could compromise operational safety; evaluation of room closure to ensure retrievability of waste; guidance for design modifications and remedial actions; and data for interpreting the actual behavior of underground openings, in comparison with established design criteria. This Geotechnical Field Data and Analysis Report covers the period July 1, 1991 to June 30, 1992. Volume 1 provides an interpretation of the field data while Volume 2 describes and presents the data itself.« less
Raghavan, Karthik; Feldman, Marc D; Porterfield, John E; Larson, Erik R; Jenkins, J Travis; Escobedo, Daniel; Pearce, John A; Valvano, Jonathan W
2011-06-01
This paper presents the design, construction and testing of a device to measure pressure-volume loops in the left ventricle of conscious, ambulatory rats. Pressure is measured with a standard sensor, but volume is derived from data collected from a tetrapolar electrode catheter using a novel admittance technique. There are two main advantages of the admittance technique to measure volume. First, the contribution from the adjacent muscle can be instantaneously removed. Second, the admittance technique incorporates the nonlinear relationship between the electric field generated by the catheter and the blood volume. A low power instrument weighing 27 g was designed, which takes pressure-volume loops every 2 min and runs for 24 h. Pressure-volume data are transmitted wirelessly to a base station. The device was first validated on 13 rats with an acute preparation with 2D echocardiography used to measure true volume. From an accuracy standpoint, the admittance technique is superior to both the conductance technique calibrated with hypertonic saline injections, and calibrated with cuvettes. The device was then tested on six rats with 24 h chronic preparation. Stability of animal preparation and careful calibration are important factors affecting the success of the device.
Raghavan, Karthik; Feldman, Marc D; Porterfield, John E; Larson, Erik R; Jenkins, J Travis; Escobedo, Daniel; Pearce, John A
2011-01-01
This paper presents the design, construction and testing of a device to measure pressure volume loops in the left ventricle of conscious, ambulatory rats. Pressure is measured with a standard sensor, but volume is derived from data collected from a tetrapolar electrode catheter using a novel admittance technique. There are two main advantages of the admittance technique to measure volume. First, the contribution from the adjacent muscle can be instantaneously removed. Second, the admittance technique incorporates the nonlinear relationship between the electric field generated by the catheter and the blood volume. A low power instrument weighing 27 g was designed, which takes pressure-volume loops every 2 minutes and runs for 24 hours. Pressure-volume data are transmitted wirelessly to a base station. The device was first validated in thirteen rats with an acute preparation with 2-D echocardiography used to measure true volume. From an accuracy standpoint, the admittance technique is superior to both the conductance technique calibrated with hypertonic saline injections, and calibrated with cuvettes. The device was then tested in six rats with a 24-hour chronic preparation. Stability of the animal preparation and careful calibration are important factors affecting the success of the device. PMID:21606560
Carlos Alberto Silva; Carine Klauberg; Andrew Thomas Hudak; Lee Alexander Vierling; Wan Shafrina Wan Mohd Jaafar; Midhun Mohan; Mariano Garcia; Antonio Ferraz; Adrian Cardil; Sassan Saatchi
2017-01-01
Improvements in the management of pine plantations result in multiple industrial and environmental benefits. Remote sensing techniques can dramatically increase the efficiency of plantation management by reducing or replacing time-consuming field sampling. We tested the utility and accuracy of combining field and airborne lidar data with Random Forest, a supervised...
Weightless Environment Training Facility (WETF) Materials Coating Evaluation, Volume 1
NASA Technical Reports Server (NTRS)
1995-01-01
The Weightless Environment Training Facility Material Coating Evaluation project has included preparing, coating, testing, and evaluating 800 test panels of three differing substrates. Ten selected coating systems were evaluated in six separate exposure environments and subject to three tests for physical properties. Substrate materials were identified, the manner of surface preparation described, and exposure environments defined. Exposure environments included immersion exposure, cyclic exposure, and field exposure. Cyclic exposures, specifically QUV-Weatherometer and the KTA Envirotest were found to be the most agressive of the environments included in the study when all three evaluation criteria are considered. This was found to result primarily from chalking of the coatings under ultraviolet (UV) light exposure. Volumes 2 and 3 hold the 5 appendices to this report.
Lin, Cherng-Yuan; Chen, Lih-Wei; Wang, Li-Ting
2006-05-01
Diesel vehicles are one of the major forms of transportation, especially in metropolitan regions. However, air pollution released from diesel vehicles causes serious damage to both human health and the environment, and as a result is of great public concern. Nitrogen oxides and black smoke are two significant emissions from diesel engines. Understanding the correlation between these two emissions is an important step toward developing the technology for an appropriate strategy to control or eliminate them. This study field-tested 185 diesel vehicles at an engine dynamometer station for their black smoke reflectivity and nitrogen oxides concentration to explore the correlation between these two pollutants. The test results revealed that most of the tested diesel vehicles emitted black smoke with low reflectivity and produced low nitrogen oxides concentration. The age of the tested vehicles has a significant influence on the NOx emission. The older the tested vehicles, the higher the NOx concentrations emitted, however, there was no obvious correlation between the age of the tested diesel vehicles and the black smoke reflectivity. In addition, if the make and engine displacement volume of the tested diesel vehicles are not taken into consideration, then the correlation between the black smoke reflectivity and nitrogen oxides emission weakens. However, when the tested vehicles were classified into various groups based on their makes and engine displacement volumes, then the make of a tested vehicle became a dominant factor for both the quantity and the trend of the black smoke reflectivity, as well as the NOx emission. Higher emission indices of black smoke reflectivity and nitrogen oxides were observed if the diesel vehicles were operated at low engine speed and full engine load conditions. Moreover, the larger the displacement volume of the engine of the tested vehicle, the lower the emission indices of both black smoke reflectivity and nitrogen oxides emitted. The emission indices of black smokes reflectivity and nitrogen oxides emission of the tested diesel vehicles were also influenced by the make of the vehicle. It was observed that the emission indices of black smoke reflectivity decreased nearly linearly with the increase of the emission indices of NOx for the tested vehicles belonging to the same group of make and engine displacement volume.
NASA Astrophysics Data System (ADS)
Dong, Shuai; Wang, Xiaojie
2018-03-01
Conductive polymer composites (CPCs) consist of multi-walled carbon nanotubes (MWCNTs), a few carbonyl iron particles (CIPs) and polydimethylsiloxane (PDMS) are fabricated under a moderate magnetic field. The alignment of CIPs will change the structure of MWCNT network, and consequently the electrical properties of CPCs. The volume fraction of CIPs is fixed at 0.08 vol% at which CIPs will not directly participate in electric conduction. The electrical resistivity of CPCs and the changes of resistance versus strain are evaluated at various MWCNT volume fractions. The testing results show that a percolation threshold as low as 0.19 vol% is obtained due to the effect of aligned CIPs, comparing with 0.39 vol% of isotropic MWCNT/CIP/PDMS (prepared without magnetic field). Meanwhile, the anisotropic structure reduces the electrical resistivity by more than 80% when the MWCNT volume fractions is over the percolation threshold.
NASA Technical Reports Server (NTRS)
Hurtado, Jose M., Jr.; Young, Kelsey; Bleacher, Jacob E.; Garry, W. Brent; Rice, James W., Jr.
2012-01-01
Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic field- work, the Desert RATS(Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crew members who participated in the 2010 field test.We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies relatedtoduplicationofsamplesandobservations;logisticalconstraintson the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to flexibly execute their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.
Magnetic shielding of interplanetary spacecraft against solar flare radiation
NASA Technical Reports Server (NTRS)
Cocks, Franklin H.; Watkins, Seth
1993-01-01
The ultimate objective of this work is to design, build, and fly a dual-purpose, piggyback payload whose function is to produce a large volume, low intensity magnetic field and to test the concept of using such a magnetic field (1) to protect spacecraft against solar flare protons, (2) to produce a thrust of sufficient magnitude to stabilize low satellite orbits against orbital decay from atmospheric drag, and (3) to test the magsail concept. These all appear to be capable of being tested using the same deployed high temperature superconducting coil. In certain orbits, high temperature superconducting wire, which has now been developed to the point where silver-sheathed high T sub c wires one mm in diameter are commercially available, can be used to produce the magnetic moments required for shielding without requiring any mechanical cooling system. The potential benefits of this concept apply directly to both earth-orbital and interplanetary missions. The usefulness of a protective shield for manned missions needs scarcely to be emphasized. Similarly, the usefulness of increasing orbit perigee without expenditure of propellant is obvious. This payload would be a first step in assessing the true potential of large volume magnetic fields in the US space program. The objective of this design research is to develop an innovative, prototype deployed high temperature superconducting coil (DHTSC) system.
Microwave scanning beam approach and landing system phased array antenna volume I
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
Microwave scanning beam approach and landing system phased array antenna : volume II
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
DOT National Transportation Integrated Search
1999-03-01
This study focused on assessing the application of traffic monitoring and management systems which use transportable surveillance and ramp meter trailers, video image processors, and wireless communications. The mobile surveillance and wireless commu...
RSRM top hat cover simulator lightning test, volume 1
NASA Technical Reports Server (NTRS)
1990-01-01
The test sequence was to measure electric and magnetic fields induced inside a redesigned solid rocket motor case when a simulated lightning discharge strikes an exposed top hat cover simulator. The test sequence was conducted between 21 June and 17 July 1990. Thirty-six high rate-of-rise Marx generator discharges and eight high current bank discharges were injected onto three different test article configurations. Attach points included three locations on the top hat cover simulator and two locations on the mounting bolts. Top hat cover simulator and mounting bolt damage and grain cover damage was observed. Overall electric field levels were well below 30 kilowatts/meter. Electric field levels ranged from 184.7 to 345.9 volts/meter and magnetic field levels were calculated from 6.921 to 39.73 amperes/meter. It is recommended that the redesigned solid rocket motor top hat cover be used in Configuration 1 or Configuration 2 as an interim lightning protection device until a lightweight cover can be designed.
Strategies for Success: New Pathways to Drug Abuse Prevention. Volume 1, Issue 1, Fall/Winter 2006
ERIC Educational Resources Information Center
Office of National Drug Control Policy, 2006
2006-01-01
Published twice a year and distributed nationwide, "Strategies for Success" keeps readers informed about events and developments in the field of drug testing. It reports the latest research findings on the effectiveness of drug testing as a tool for reducing substance abuse. Each issue also provides a wealth of guidance and resources on…
Methodology Investigation of AI(Artificial Intelligence) Test Officer Support Tool. Volume 1
1989-03-01
American Association for Artificial inteligence A! ............. Artificial inteliigence AMC ............ Unt:ed States Army Maeriel Comand ASL...block number) FIELD GROUP SUB-GROUP Artificial Intelligence, Expert Systems Automated Aids to Testing 9. ABSTRACT (Continue on reverse if necessary and...identify by block number) This report covers the application of Artificial Intelligence-Techniques to the problem of creating automated tools to
Offshore multiphase meter nears acceptable accuracy level
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaisford, S.; Amdal, J.; Berentsen, H.
1993-05-17
Companies worldwide are looking for new production methods for offshore oil fields. In many areas, undeveloped smaller fields cannot bear the cost of dedicated production facilities. Multiphase transportation to existing production facilities can extend the distance over which unseparated oil, water, and gas streams can be transported, from a limit of several kilometers today to perhaps 200 km in the future. An encouraging multiphase meter test was sponsored by Saga Petroleum AS and carried out by Den norske stats oljeselskap AS (Statoil) on the Gullfaks B platform, Norwegian sector of the North Sea. The complete multiphase meter has two separatemore » meters. One is the composition meter for measuring the instantaneous volume or mass fractions of oil, water, and gas in the sensor. The other is a velocity meter for determining the speed of the mixture through the sensor. An instantaneous volume or mass production rate for each component is calculated by combining the outputs from the two meters. The paper describes the multiphase meter; measurements; limitations; the test setup; calibration; test results for the composition meter, velocity meter, and production rates; and future plans.« less
NASA Astrophysics Data System (ADS)
Jacques, Alain
2016-12-01
The dislocation-based modeling of the high-temperature creep of two-phased single-crystal superalloys requires input data beyond strain vs time curves. This may be obtained by use of in situ experiments combining high-temperature creep tests with high-resolution synchrotron three-crystal diffractometry. Such tests give access to changes in phase volume fractions and to the average components of the stress tensor in each phase as well as the plastic strain of each phase. Further progress may be obtained by a new method making intensive use of the Fast Fourier Transform, and first modeling the behavior of a representative volume of material (stress fields, plastic strain, dislocation densities…), then simulating directly the corresponding diffraction peaks, taking into account the displacement field within the material, chemical variations, and beam coherence. Initial tests indicate that the simulated peak shapes are close to the experimental ones and are quite sensitive to the details of the microstructure and to dislocation densities at interfaces and within the soft γ phase.
Development testing of large volume water sprays for warm fog dispersal
NASA Technical Reports Server (NTRS)
Keller, V. W.; Anderson, B. J.; Burns, R. A.; Lala, G. G.; Meyer, M. B.; Beard, K. V.
1986-01-01
A new brute-force method of warm fog dispersal is described. The method uses large volume recycled water sprays to create curtains of falling drops through which the fog is processed by the ambient wind and spray induced air flow. Fog droplets are removed by coalescence/rainout. The efficiency of the technique depends upon the drop size spectra in the spray, the height to which the spray can be projected, the efficiency with which fog laden air is processed through the curtain of spray, and the rate at which new fog may be formed due to temperature differences between the air and spray water. Results of a field test program, implemented to develop the data base necessary to assess the proposed method, are presented. Analytical calculations based upon the field test results indicate that this proposed method of warm fog dispersal is feasible. Even more convincingly, the technique was successfully demonstrated in the one natural fog event which occurred during the test program. Energy requirements for this technique are an order of magnitude less than those to operate a thermokinetic system. An important side benefit is the considerable emergency fire extinguishing capability it provides along the runway.
QM-8 final performance evaluation report: SEALS, volume 4
NASA Technical Reports Server (NTRS)
Nelsen, L. V.
1989-01-01
The Space Shuttle Redesigned Solid Rocket Motor (RSRM) static test of Qualification Motor-8 (QM-8) was conducted. The QM-8 test article was the fifth full-scale, full-duration test, and the third qualification motor to incorporate the redesigned case field joint and nozzle-to-case joint. This was the second static test conducted in the T-97 test facility, which is equipped with actuators for inducing external side loads to a 360 degree external tank (ET) attach ring during test motor operation, and permits heating/cooling of an entire motor. The QM-8 motor was cooled to a temperature which ensured that the maximum propellant mean bulk temperature (PMBT) of 40 F was achieved at firing. All test results are not included, but rather, the performance of the metal case, field joints, and nozzle-to-case joint is addressed. The involvement is studied of the Structural Applications and Structural Design Groups with the QM-8 test which includes: assembly procedures of the field and nozzle-to-case joints, joint leak check results, structural test results, and post-test inspection evaluations.
NASA Astrophysics Data System (ADS)
Fleishman, G. D.; Anfinogentov, S.; Loukitcheva, M.; Mysh'yakov, I.; Stupishin, A.
2017-12-01
Measuring and modeling coronal magnetic field, especially above active regions (ARs), remains one of the central problems of solar physics given that the solar coronal magnetism is the key driver of all solar activity. Nowadays the coronal magnetic field is often modelled using methods of nonlinear force-free field reconstruction, whose accuracy has not yet been comprehensively assessed. Given that the coronal magnetic probing is routinely unavailable, only morphological tests have been applied to evaluate performance of the reconstruction methods and a few direct tests using available semi-analytical force-free field solution. Here we report a detailed casting of various tools used for the nonlinear force-free field reconstruction, such as disambiguation methods, photospheric field preprocessing methods, and volume reconstruction methods in a 3D domain using a 3D snapshot of the publicly available full-fledged radiative MHD model. We take advantage of the fact that from the realistic MHD model we know the magnetic field vector distribution in the entire 3D domain, which enables us to perform "voxel-by-voxel" comparison of the restored magnetic field and the true magnetic field in the 3D model volume. Our tests show that the available disambiguation methods often fail at the quiet sun areas, where the magnetic structure is dominated by small-scale magnetic elements, while they work really well at the AR photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although does produce a more force-free boundary condition, also results in some effective `elevation' of the magnetic field components. The effective `elevation' height turns out to be different for the longitudinal and transverse components of the magnetic field, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolation performed starting from actual AR photospheric magnetogram (i.e., without preprocessing) are free from this systematic error, while have other metrics either comparable or only marginally worse than those estimated for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, M.G.; Sauber, R.S.
Two models of a high-efficiency compressor were manufactured in a pilot production run. These compressors were for low back-pressure applications. While based on a production compressor, there were many changes that required production process changes. Some changes were performed within our company and others were made by outside vendors. The compressors were used in top mount refrigerator-freezers and sold in normal distribution channels. Forty units were placed in residences for a one-year field test. Additional compressors were built so that a life test program could be performed. The results of the field test reveal a 27.0% improvement in energy consumptionmore » for the 18 ft/sup 3/ high-efficiency model and a 15.6% improvement in the 21 ft/sup 3/ improvement in the 21 ft/sup 3/ high-efficiency model as compared to the standard production unit.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-07-01
This volume of the report gives emission results from field tests of a crude-oil process heater burning a combination of oil and refinery gas. The heater had been modified by adding a system for injecting secondary air to reduce NOx emissions. One test was conducted with the staged air system (low NOx), and the other, without (baseline). Tests included continuous monitoring of flue gas emissions and source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of the samples utilizing gas chromatography (GC), infrared spectrometry (IR), gas chromatography/mass spectroscopy (GC/MS), and low resolution mass spectrometry (SSMS)more » for trace metals. LRMS analysis suggested the presence of eight compound categories in the organic emissions during the baseline test and four in the low-NOx test.« less
NASA Technical Reports Server (NTRS)
Young, Kelsey; Hurtado, Jose M., Jr.; Bleacher, Jacob E.; Garry, W. Brent; Bleisath, Scott; Buffington, Jesse; Rice, James W., Jr.
2011-01-01
Observation is the primary role of all field geologists, and geologic observations put into an evolving conceptual context will be the most important data stream that will be relayed to Earth during a planetary exploration mission. Sample collection is also an important planetary field activity, and its success is closely tied to the quality of contextual observations. To test protocols for doing effective planetary geologic fieldwork, the Desert RATS (Research and Technology Studies) project deployed two prototype rovers for two weeks of simulated exploratory traverses in the San Francisco volcanic field of northern Arizona. The authors of this paper represent the geologist crewmembers who participated in the 2010 field test. We document the procedures adopted for Desert RATS 2010 and report on our experiences regarding these protocols. Careful consideration must be made of various issues that impact the interplay between field geologic observations and sample collection, including time management; strategies related to duplication of samples and observations; logistical constraints on the volume and mass of samples and the volume/transfer of data collected; and paradigms for evaluation of mission success. We find that the 2010 field protocols brought to light important aspects of each of these issues, and we recommend best practices and modifications to training and operational protocols to address them. Underlying our recommendations is the recognition that the capacity of the crew to "flexibly execute" their activities is paramount. Careful design of mission parameters, especially field geologic protocols, is critical for enabling the crews to successfully meet their science objectives.
Effect of stimuli presentation method on perception of room size using only acoustic cues
NASA Astrophysics Data System (ADS)
Hunt, Jeffrey Barnabas
People listen to music and speech in a large variety of rooms and many room parameters, including the size of the room, can drastically affect how well the speech is understood or the music enjoyed. While multi-modal (typically hearing and sight) tests may be more realistic, in order to isolate what acoustic cues listeners use to determine the size of a room, a listening-only tests is conducted here. Nearly all of the studies to-date on the perception of room volume using acoustic cues have presented the stimuli only over headphones and these studies have reported that, in most cases, the perceived room volume is more highly correlated with the perceived reverberation (reverberance) than with actual room volume. While reverberance may be a salient acoustic cue used for the determination or room size, the actual sound field in a room is not accurately reproduced when presented over headphones and it is thought that some of the complexities of the sound field that relate to perception of geometric volume, specifically directional information of reflections, may be lost. It is possible that the importance of reverberance may be overemphasized when using only headphones to present stimuli so a comparison of room-size perception is proposed where the sound field (from modeled and recorded impulse responses) is presented both over headphones and also over a surround system using higher order ambisonics to more accurately produce directional sound information. Major results are that, in this study, no difference could be seen between the two presentation methods and that reverberation time is highly correlated to room-size perception while real room size is not.
Noble, D J; Ajithkumar, T; Lambert, J; Gleeson, I; Williams, M V; Jefferies, S J
2017-07-01
Craniospinal irradiation (CSI) remains a crucial treatment for patients with medulloblastoma. There is uncertainty about how to manage meningeal surfaces and cerebrospinal fluid (CSF) that follows cranial nerves exiting skull base foramina. The purpose of this study was to assess plan quality and dose coverage of posterior cranial fossa foramina with both photon and proton therapy. We analysed the radiotherapy plans of seven patients treated with CSI for medulloblastoma and primitive neuro-ectodermal tumours and three with ependymoma (total n = 10). Four had been treated with a field-based technique and six with TomoTherapy™. The internal acoustic meatus (IAM), jugular foramen (JF) and hypoglossal canal (HC) were contoured and added to the original treatment clinical target volume (Plan_CTV) to create a Test_CTV. This was grown to a test planning target volume (Test_PTV) for comparison with a Plan_PTV. Using Plan_CTV and Plan_PTV, proton plans were generated for all 10 cases. The following dosimetry data were recorded: conformity (dice similarity coefficient) and homogeneity index (D 2 - D 98 /D 50 ) as well as median and maximum dose (D 2% ) to Plan_PTV, V 95% and minimum dose (D 99.9% ) to Plan_CTV and Test_CTV and Plan_PTV and Test_PTV, V 95% and minimum dose (D 98% ) to foramina PTVs. Proton and TomoTherapy™ plans were more conformal (0.87, 0.86) and homogeneous (0.07, 0.04) than field-photon plans (0.79, 0.17). However, field-photon plans covered the IAM, JF and HC PTVs better than proton plans (P = 0.002, 0.004, 0.003, respectively). TomoTherapy™ plans covered the IAM and JF better than proton plans (P = 0.000, 0.002, respectively) but the result for the HC was not significant. Adding foramen CTVs/PTVs made no difference for field plans. The mean D min dropped 3.4% from Plan_PTV to Test_PTV for TomoTherapy™ (not significant) and 14.8% for protons (P = 0.001). Highly conformal CSI techniques may underdose meninges and CSF in the dural reflections of posterior fossa cranial nerves unless these structures are specifically included in the CTV. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2004-11-11
The catastrophic events of September 11, 2001 and the ongoing war on terrorism have heightened the level of concern from Federal government officials and the transportation industry regarding the secure transport of hazardous materials (HAZMAT). Secu...
Pragmatics: Teaching Speech Acts
ERIC Educational Resources Information Center
Tatsuki, Donna H., Ed.; Houck, Noel R., Ed.
2010-01-01
Language teachers have long been aware of the devastating effect of learners' grammatically correct, yet situationally inappropriate spoken or written communication. This volume addresses how to raise learner awareness of pragmatic gaffs through research-based, field-tested activities such as composing e-mail requests, giving advice, making…
Optimizing hydraulic fracture design in the diatomite formation, Lost Hills Field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, D.G.; Klins, M.A.; Manrique, J.F.
1996-12-31
Since 1988, over 1.3 billion pounds of proppant have been placed in the Lost Hills Field of Kern County. California in over 2700 hydraulic fracture treatments involving investments of about $150 million. In 1995, systematic reevaluation of the standard, field trial-based fracture design began. Reservoir, geomechanical, and hydraulic fracture characterization; production and fracture modeling; sensitivity analysis; and field test results were integrated to optimize designs with regard to proppant volume, proppant ramps, and perforating strategy. The results support a reduction in proppant volume from 2500 to 1700 lb/ft which will save about $50,000 per well, totalling over $3 million permore » year. Vertical coverage was found to be a key component of fracture quality which could be optimized by eliminating perforations from lower stress intervals, reducing the total number of perforations, and reducing peak slurry loading from 16 to 12 ppa. A relationship between variations in lithology, pore pressure, and stress was observed. Point-source, perforating strategies were investigated and variable multiple fracture behavior was observed. The discussed approach has application in areas where stresses are variable; pay zones are thick; hydraulic fracture design is based primarily on empirical, trial-and-error field test results; and effective, robust predictive models involving real-data feedback have not been incorporated into the design improvement process.« less
Defense AT&L (Volume 37, Number 2, March-April 2008)
2008-04-01
environment. Operational suit- ability is the degree to which a system can be satisfactorily placed in field use, with consideration given to reliability...devise the most effective test-and-evaluation strategy. Whenever possible, the program should be developed and fielded in small increments and provided... ability to control access to design-related informa- tion and availability of technology, and it will raise grave security considerations. Do you develop
F/A-18 forebody vortex control. Volume 2: Rotary-balance tests
NASA Technical Reports Server (NTRS)
Kramer, Brian R.; Suarez, Carlos J.; Malcolm, Gerald N.; Ayers, Bert F.
1994-01-01
A rotary-balance wind tunnel test was conducted on a six percent model of the F/A-18 at the NASA Ames 7 X 10-Foot Low Speed Wind Tunnel. The data reduction was specially written for the test in National Instruments' LabVIEW. The data acquisition, reduction and analysis was performed with a Macintosh computer. The primary objective of the test was to evaluate the effectiveness of several forebody vortex control configurations in a rotary flow field. The devices that were found to be the most effective during the static tests (Volume 1) were investigated and included both mechanical and pneumatic configurations. The mechanical systems evaluated were small, single and dual, rotating nose tip strakes and a vertical nose strake. The jet blowing configuration used nozzles canted inboard 60 degrees. A two segment tangential slot was also evaluated. The different techniques were evaluated at angles of attack of 30 degrees, 45 degrees, 51 degrees, and 60 degrees. Sideslip and Reynolds number were varied for some of the configurations. All of the techniques proved to be effective in the rotating flow field. The vertical nose strake had the largest 'envelope' of effectiveness. Forebody vortex control provides large, robust yawing moments at medium to high angles of attack, even during combat maneuvers such as loaded roll.
The Human Volunteer in Military Biomedical Research (Military Medical Ethics. Volume 2, Chapter 19)
2002-10-01
was not de- classified until 1975. It applied only to human re- search in the fields of atomic, biological , and/or chemical warfare.11 In 1954 the Army...memo- randum applied to all human research, not only atomic, biological , or chemical testing.11 Even though this memorandum applied only to the Army...first peacetime nuclear weapons tests in the Bikini Atoll, until 1963, when atmospheric test- ing was halted by the Limited Test Ban Treaty, nu
Jankowska, Petra J; Kong, Christine; Burke, Kevin; Harrington, Kevin J; Nutting, Christopher
2007-10-01
High dose irradiation of the posterior cervical lymph nodes usually employs applied electron fields to treat the target volume and maintain the spinal cord dose within tolerance. In the light of recent advances in elective lymph node localisation we investigated optimization of field shape and electron energy to treat this target volume. In this study, three sequential hypotheses were tested. Firstly, that customization of the electron fields based on the nodal PTV outlined gives better PTV coverage than conventional field delineation. Using the consensus guidelines, customization of the electron field shape was compared to conventional fields based on bony landmarks. Secondly, that selection of electron energy using DVHs for spinal cord and PTV improves the minimum dose to PTV. Electron dose-volume histograms (DVHs) for the PTV, spinal cord and para-vertebral muscles, were generated using the Monte Carlo electron algorithm. These DVHs were used to compare standard vs optimized electron energy calculations. Finally, that combination of field customization and electron energy optimization improves both the minimum and mean doses to PTV compared with current standard practice. Customized electron beam shaping based on the consensus guidelines led to fewer geographical misses than standard field shaping. Customized electron energy calculation led to higher minimum doses to the PTV. Overall, the customization of field shape and energy resulted in an improved mean dose to the PTV (92% vs 83% p=0.02) and a 27% improvement in the minimum dose delivered to the PTV (45% vs 18% p=0.0009). Optimization of electron field shape and beam energy based on current consensus guidelines led to significant improvement in PTV coverage and may reduce recurrence rates.
Electroosmotic mixing in microchannels.
Glasgow, Ian; Batton, John; Aubry, Nadine
2004-12-01
Mixing is an essential, yet challenging, process step for many Lab on a Chip (LOC) applications. This paper presents a method of mixing for microfluidic devices that relies upon electroosmotic flow. In physical tests and in computer simulations, we periodically vary the electric field with time to mix two aqueous solutions. Good mixing is shown to occur when the electroosmotic flow at the two inlets pulse out of phase, the Strouhal number is on the order of 1, and the pulse volumes are on the order of the intersection volume.
Stanescu, T; Jaffray, D
2018-05-25
Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of sampling points exceeding 1 mm. A novel harmonic analysis approach relying on finite element methods was introduced and validated for multiple volumes with surface shape functions ranging from simple to highly complex. Since a boundary value problem is solved the method requires input data from only the surface of the desired domain of interest. It is believed that the harmonic method will facilitate (a) the design of new phantoms dedicated for the quantification of MR image distortions in large volumes and (b) an integrative approach of combining multiple imaging tests specific to radiotherapy into a single test object for routine imaging quality control. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Michelle M. Cram; Stephen W. Fraedrich
2009-01-01
The stunt nematode, Tylenchorhynchus claytoni, was found to cause a reduction in root volume (cm3) of loblolly pine at population densities equivalent of 125 nematodes/100 cm3 (6 in3) soil and greater. The results of a host range test conducted in containers under controlled conditions determined that buckwheat cultivar (Fagopryum esculentum...
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 2
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1981-08-01
Data from field tests and sieve analyses presented in support of an effort to develop guidelines for the installation of underground transmission primary cables. Anodic and cathodic polarization curves and the surface and cable potential gradients from 38 bellholes.
Development and field test of a responsible alcohol service program. Volume 3, Final results
DOT National Transportation Integrated Search
1988-08-01
A Program of Responsible Alcohol Service was developed to enable servers and managers in establishments selling alcoholic beverages to exercise responsibility in their service of alcohol in order to prevent injury to and by intoxicated patrons. The P...
Florida Journal of Communication Disorders, 1998.
ERIC Educational Resources Information Center
Victor, Shelley J., Ed.; Lundy, Donna S., Ed.
1998-01-01
This annual volume is a compilation of research, clinical, and professional articles addressing innovative technology, new diagnostic tests, physiological basis for treatment, and therapeutic ideas in the fields of speech-language pathology and audiology. Featured articles include: (1) "Development of Local Child Norms for the Dichotic Digits…
Development and field test of a responsible alcohol service program. Volume 1, Research findings
DOT National Transportation Integrated Search
1987-03-01
A program of responsible alcohol service was developed to enable servers and managers in establishments selling alcoholic beverages to exercise responsibility in their service of alcohol in order to prevent injury to and by intoxicated patrons. The P...
DOT National Transportation Integrated Search
1982-03-01
The important mechanical processes which influence the ballast physical state in track are tamping, crib and shoulder compaction and train traffic. Three methods of assessing physical state were used at four railroad sites to obtain needed data on th...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
A geotechnical study has been completed in H-Area for the In-Tank Precipitation Facility (ITP) and the balance of the H-Area Tank Farm (HTF) at the Savannah River Site (SRS) in South Carolina. The study consisted of subsurface field exploration, field and laboratory testing, and engineering analyses. The purpose of these investigations is to evaluate the overall stability of the H-Area tanks under static and dynamic conditions. The objectives of the study are to define the site-specific geological conditions at ITP and HTF, obtain engineering properties for the assessment of the stability of the native soils and embankment under static andmore » dynamic loads (i.e., slope stability, liquefaction potential, and potential settlements), and derive properties for soil-structure interaction studies. This document (Volume 5) contains the laboratory test results for the In-Tank Precipitation Facility (ITP) and H-Tank Farm (HTF) Geotechnical Report.« less
Avdievich, Nikolai I.; Oh, Suk-Hoon; Hetherington, Hoby P.; Collins, Christopher M.
2010-01-01
Purpose To improve the homogeneity of transmit volume coils at high magnetic fields (≥ 4 T). Due to RF field/ tissue interactions at high fields, 4–8 T, the transmit profile from head-sized volume coils shows a distinctive pattern with relatively strong RF magnetic field B1 in the center of the brain. Materials and Methods In contrast to conventional volume coils at high field strengths, surface coil phased arrays can provide increased RF field strength peripherally. In theory, simultaneous transmission from these two devices could produce a more homogeneous transmission field. To minimize interactions between the phased array and the volume coil, counter rotating current (CRC) surface coils consisting of two parallel rings carrying opposite currents were used for the phased array. Results Numerical simulations and experimental data demonstrate that substantial improvements in transmit field homogeneity can be obtained. Conclusion We have demonstrated the feasibility of using simultaneous transmission with human head-sized volume coils and CRC phased arrays to improve homogeneity of the transmit RF B1 field for high-field MRI systems. PMID:20677280
NASA Astrophysics Data System (ADS)
de Vieilleville, F.; Ristorcelli, T.; Delvit, J.-M.
2016-06-01
This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.
1992-04-01
contractor’s existing data collection, analysis and corrective action system shall be utilized, with modification only as necessary to meet the...either from test or from analysis of field data . The procedures of MIL-STD-756B assume that the reliability of a 18 DEFINE IDENTIFY SOFTWARE LIFE CYCLE...to generate sufficient data to report a statistically valid reliability figure for a class of software. Casual data gathering accumulates data more
Image-optimized Coronal Magnetic Field Models
NASA Astrophysics Data System (ADS)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-08-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.
Image-Optimized Coronal Magnetic Field Models
NASA Technical Reports Server (NTRS)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M.
2017-01-01
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work we presented early tests of the method which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outside of the assumed coronagraph image plane, and the effect on the outcome of the optimization of errors in localization of constraints. We find that substantial improvement in the model field can be achieved with this type of constraints, even when magnetic features in the images are located outside of the image plane.
CHARACTERIZATION OF POLED SINGLE-LAYER PZT FOR PIEZO STACK IN FUEL INJECTION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hong; Matsunaga, Tadashi; Lin, Hua-Tay
2010-01-01
Poled single-layer PZT has been characterized in as-extracted and as-received states. PZT plate specimens in the former were extracted from a stack. Flexure strength of PZT was evaluated by using ball-on-ring and 4-point bend tests. Fractography showed that intergranular fractures dominated the fracture surface and that volume pores were the primary strength-limiting flaws. The electric field effect was investigated by testing the PZT in open circuit and coercive field levels. An asymmetrical response on the biaxial flexure strength with respect to the electric field direction was observed. These experimental results will assist reliability design of the piezo stack that ismore » being considered in fuel injection system.« less
NASA Technical Reports Server (NTRS)
Robbins, M. D.; Kelley, J. A.; Elliott, L.
1972-01-01
NASA contributions to the advancement of major developments in twelve selected fields of technology are presented. The twelve fields of technology discussed are: (1) cryogenics, (2) electrochemical energy conversion and storage, (3) high-temperature ceramics, (4) high-temperature metals (5) integrated circuits, (6) internal gas dynamics (7) materials machining and forming, (8) materials joining, (9) microwave systems, (10) nondestructive testing, (11) simulation, and (12) telemetry. These field were selected on the basis of both NASA and nonaerospace interest and activity.
NASA Astrophysics Data System (ADS)
Valentine, G. A.; Cortes, J. A.; Widom, E.; Smith, E. I.
2011-12-01
Monogenetic intraplate volcanoes offer unique insights into the linkages between magma sources, crustal ascent, and eruption processes. We focus here on the northernmost part of the Lunar Crater Volcanic Field (LCVF), Nevada, with ~45 monogenetic volcanoes in a 10 km long, 5 km wide band. Within that band, many volcanoes occur in localized clusters with up to 5 volcanoes (of different ages) per square kilometer. Most of the clusters are elongated in a direction that parallels the trend of the LCVF as a whole. Currently it is uncertain whether such clusters are related to faults in the underlying rocks because of the thick, young cover of basaltic volcanic products. However, in other areas, especially along the periphery of the volcanic field, vents often correspond with pre-existing normal faults, and it seems likely that elongated clusters represent areas of repeated (over time scales of ~1-2 Ma) injection of feeder dikes into faults in the shallow crust. The edges of the volcanic field in the northernmost part are defined by sharp boundaries, where there is a sharp transition from high volcano concentration on one side, to no volcanoes on the other. A fundamental question is whether this transition reflects a similar spatial distribution in the mantle source area, or whether it is due entirely to shallow structural controls on magma ascent. The northernmost part of the LCVF provides an ideal case study for testing relationships between physical parameters (volume, fissure length, eruptive style) and geochemistry. We focus on three volcanoes, two of which are closely spaced (~500 m) but occurred at times separated by 100s ka (based upon surface morphology). The older of these two, informally called the OPB volcano (older, phenocryst bearing) is likely mid-Pleistocene in age; the younger is referred to as YMB (younger, megacrysts bearing). The third volcano, previously named Marcath/Black Rock, is the youngest in the volcanic field, located ~4 km southwest of OPB and YMB, with a surface exposure age of 38±10 ka (Shepard et al., 1995, Geology 23, 21-24). OPB has a volume of ~2.4x107 m3 (volumes include lavas and cones), with eruptions apparently from a small cone (~300 m basal diameter) with Strombolian facies recorded in the cone and a lava field averaging ~15 m thick and 2.8 km long. YMB has a volume of ~1.7x107 m3 and erupted from a 700 m long fissure, producing a spatter rampart and thin, ~5 km long, aa flow field. Marcath volcano produced ~1.4x108 m3 in extensive aa lavas (extending 3.3 km) from its ~500 m long fissure vent system, plus tephra fall deposit that has been traced, to date, to ~8 km from the cone, which suggests violent Strombolian processes. This information, combined with geochemical and petrologic data reported in a separate abstract (Cortés et al., this volume), enable us test the potential relationships of source heterogeneities, composition, and magma batch volume to eruptive processes.
Magnetic and electric field testing of the French train A Grande Vitesse (TGV). Volume 1 : analysis
DOT National Transportation Integrated Search
1993-05-01
The safety of magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is the responsibility of the Federal Railroad Administration (FRA). A franchise has been awarded to the Texas High Speed Rail...
Sleeve expansion of bolt holes in railroad rail. volume III - field experiment results
DOT National Transportation Integrated Search
1998-02-01
The bolt-hole cold-expansion process has been demonstrated by laboratory tests to significantly affect the initiation and propagation of fatigue cracks from rail bolt holes such that a reduction of the incidence of rail-bolt-holde failure in cold-exp...
DOT National Transportation Integrated Search
1976-09-01
Software used for the reduction and analysis of the multipath prober, modem evaluation (voice, digital data, and ranging), and antenna evaluation data acquired during the ATS-6 field test program is described. Multipath algorithms include reformattin...
Broadband Fan Noise Prediction System for Turbofan Engines. Volume 3; Validation and Test Cases
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the third volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by validation studies that were done on three fan rigs. It concludes with recommended improvements and additional studies for BFaNS.
Testing Accuracy of Long-Range Ultrasonic Sensors for Olive Tree Canopy Measurements
Gamarra-Diezma, Juan Luis; Miranda-Fuentes, Antonio; Llorens, Jordi; Cuenca, Andrés; Blanco-Roldán, Gregorio L.; Rodríguez-Lizana, Antonio
2015-01-01
Ultrasonic sensors are often used to adjust spray volume by allowing the calculation of the crown volume of tree crops. The special conditions of the olive tree require the use of long-range sensors, which are less accurate and faster than the most commonly used sensors. The main objectives of the study were to determine the suitability of the sensor in terms of sound cone determination, angle errors, crosstalk errors and field measurements. Different laboratory tests were performed to check the suitability of a commercial long-range ultrasonic sensor, as were the experimental determination of the sound cone diameter at several distances for several target materials, the determination of the influence of the angle of incidence of the sound wave on the target and distance on the accuracy of measurements for several materials and the determination of the importance of the errors due to interference between sensors for different sensor spacings and distances for two different materials. Furthermore, sensor accuracy was tested under real field conditions. The results show that the studied sensor is appropriate for olive trees because the sound cone is narrower for an olive tree than for the other studied materials, the olive tree canopy does not have a large influence on the sensor accuracy with respect to distance and angle, the interference errors are insignificant for high sensor spacings and the sensor's field distance measurements were deemed sufficiently accurate. PMID:25635414
Casting the Coronal Magnetic Field Reconstruction Tools in 3D Using the MHD Bifrost Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleishman, Gregory D.; Loukitcheva, Maria; Anfinogentov, Sergey
Quantifying the coronal magnetic field remains a central problem in solar physics. Nowadays, the coronal magnetic field is often modeled using nonlinear force-free field (NLFFF) reconstructions, whose accuracy has not yet been comprehensively assessed. Here we perform a detailed casting of the NLFFF reconstruction tools, such as π -disambiguation, photospheric field preprocessing, and volume reconstruction methods, using a 3D snapshot of the publicly available full-fledged radiative MHD model. Specifically, from the MHD model, we know the magnetic field vector in the entire 3D domain, which enables us to perform a “voxel-by-voxel” comparison of the restored and the true magnetic fieldsmore » in the 3D model volume. Our tests show that the available π -disambiguation methods often fail in the quiet-Sun areas dominated by small-scale magnetic elements, while they work well in the active region (AR) photosphere and (even better) chromosphere. The preprocessing of the photospheric magnetic field, although it does produce a more force-free boundary condition, also results in some effective “elevation” of the magnetic field components. This “elevation” height is different for the longitudinal and transverse components, which results in a systematic error in absolute heights in the reconstructed magnetic data cube. The extrapolations performed starting from the actual AR photospheric magnetogram are free from this systematic error, while other metrics are comparable with those for extrapolations from the preprocessed magnetograms. This finding favors the use of extrapolations from the original photospheric magnetogram without preprocessing. Our tests further suggest that extrapolations from a force-free chromospheric boundary produce measurably better results than those from a photospheric boundary.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, Jorge A.; Leroy, Matthieu; Bos, Wouter J.T.
A volume penalization approach to simulate magnetohydrodynamic (MHD) flows in confined domains is presented. Here the incompressible visco-resistive MHD equations are solved using parallel pseudo-spectral solvers in Cartesian geometries. The volume penalization technique is an immersed boundary method which is characterized by a high flexibility for the geometry of the considered flow. In the present case, it allows to use other than periodic boundary conditions in a Fourier pseudo-spectral approach. The numerical method is validated and its convergence is assessed for two- and three-dimensional hydrodynamic (HD) and MHD flows, by comparing the numerical results with results from literature and analyticalmore » solutions. The test cases considered are two-dimensional Taylor–Couette flow, the z-pinch configuration, three dimensional Orszag–Tang flow, Ohmic-decay in a periodic cylinder, three-dimensional Taylor–Couette flow with and without axial magnetic field and three-dimensional Hartmann-instabilities in a cylinder with an imposed helical magnetic field. Finally, we present a magnetohydrodynamic flow simulation in toroidal geometry with non-symmetric cross section and imposing a helical magnetic field to illustrate the potential of the method.« less
Color structured light system of chest wall motion measurement for respiratory volume evaluation
NASA Astrophysics Data System (ADS)
Chen, Huijun; Cheng, Yuan; Liu, Dongdong; Zhang, Xiaodong; Zhang, Jue; Que, Chengli; Wang, Guangfa; Fang, Jing
2010-03-01
We present a structured light system to dynamically measure human chest wall motion for respiratory volume estimation. Based on a projection of an encoded color pattern and a few active markers attached to the trunk, respiratory volumes are obtained by evaluating the 3-D topographic changes of the chest wall in an anatomically consistent measuring region during respiration. Three measuring setups are established: a single-sided illuminating-recording setup for standing posture, an inclined single-sided setup for supine posture, and a double-sided setup for standing posture. Results are compared with the pneumotachography and show good agreement in volume estimations [correlation coefficient: R>0.99 (P<0.001) for all setups]. The isovolume tests present small variations of the obtained volume during the isovolume maneuver (standard deviation<0.085 L for all setups). After validation by the isovolume test, an investigation of a patient with pleural effusion using the proposed method shows pulmonary functional differences between the diseased and the contralateral sides of the thorax, and subsequent improvement of this imbalance after drainage. These results demonstrate the proposed optical method is capable of not only whole respiratory volume evaluation with high accuracy, but also regional pulmonary function assessment in different chest wall behaviors, with the advantage of whole-field measurement.
[Normal lung volumes in patients with idiopathic pulmonary fibrosis and emphysema].
Casas, Juan Pablo; Abbona, Horacio; Robles, Adriana; López, Ana María
2008-01-01
Pulmonary function tests in idiopathic pulmonary fibrosis characteristically show a restrictive pattern, resulting from reduction of pulmonary compliance due to diffuse fibrosis. Conversely, an obstructive pattern with hyperinflation results in emphysema by loss of elastic recoil, expiratory collapse of the peripheral airways and air trapping. Previous reports suggest that when both diseases coexist, pulmonary volumes are compensated and a smaller than expected reduction or even normal lung volumes can be found. We report 4 male patients of 64, 60, 73 and 70 years, all with heavy cigarette smoking history and progressive breathlessness. Three of them had severe limitation in their quality of life. All four showed advanced lung interstitial involvement, at high resolution CT scan, fibrotic changes predominantly in the subpleural areas of lower lung fields and concomitant emphysema in the upper lobes. Emphysema and pulmonary fibrosis was confirmed by open lung biopsy in one patient. The four patients showed normal spirometry and lung volumes with severe compromise of gas exchange and poor exercise tolerance evaluated by 6 minute walk test. Severe pulmonary arterial hypertension was also confirmed in three patients. Normal lung volumes does not exclude diagnosis of idiopathic pulmonary fibrosis in patients with concomitant emphysema. The relatively preserved lung volumes may underestimate the severity of idiopathic pulmonary fibrosis and attenuate its effects on lung function parameters.
An analytical approach for the Propagation Saw Test
NASA Astrophysics Data System (ADS)
Benedetti, Lorenzo; Fischer, Jan-Thomas; Gaume, Johan
2016-04-01
The Propagation Saw Test (PST) [1, 2] is an experimental in-situ technique that has been introduced to assess crack propagation propensity in weak snowpack layers buried below cohesive snow slabs. This test attracted the interest of a large number of practitioners, being relatively easy to perform and providing useful insights for the evaluation of snow instability. The PST procedure requires isolating a snow column of 30 centimeters of width and -at least-1 meter in the downslope direction. Then, once the stratigraphy is known (e.g. from a manual snow profile), a saw is used to cut a weak layer which could fail, potentially leading to the release of a slab avalanche. If the length of the saw cut reaches the so-called critical crack length, the onset of crack propagation occurs. Furthermore, depending on snow properties, the crack in the weak layer can initiate the fracture and detachment of the overlying slab. Statistical studies over a large set of field data confirmed the relevance of the PST, highlighting the positive correlation between test results and the likelihood of avalanche release [3]. Recent works provided key information on the conditions for the onset of crack propagation [4] and on the evolution of slab displacement during the test [5]. In addition, experimental studies [6] and simplified models [7] focused on the qualitative description of snowpack properties leading to different failure types, namely full propagation or fracture arrest (with or without slab fracture). However, beside current numerical studies utilizing discrete elements methods [8], only little attention has been devoted to a detailed analytical description of the PST able to give a comprehensive mechanical framework of the sequence of processes involved in the test. Consequently, this work aims to give a quantitative tool for an exhaustive interpretation of the PST, stressing the attention on important parameters that influence the test outcomes. First, starting from a pure mechanical point of view, a broad phenomenology of the main failure types of the PST is outlined. Then, the Euler-Bernoulli beam theory is applied to the test setup, allowing an easy description of the snowpack stress state in the quasi-static regime. We assume an elastic-perfectly brittle model as constitutive law for the snow slab. Besides, considering the weak layer as a rigid bed of crystals with an a priori inclination, a local instability problem is formulated in order to take into account the combined effect of compressive and shear loading. As a result, the onset of slab and weak layer fracture is described in terms of cut length, slab dimensions and the main mechanical parameters. A condition on the possible propagation of the crack is proposed as well. References [1] C. Sigrist and J. Schweizer, "Critical energy release rates of weak snowpack layers determined in field experiments", Geophysical Research Letters, Volume 34, L03502, 2007. [2] D. Gauthier and B. Jamieson, "Evaluation of a prototype field test for fracture and failure propagation propensity in weak snowpack layers". Cold Regions Science and Technology, Volume 51, Issue 2, Pages 87-97, 2008. [3] R. Simenhois and K.W. Birkeland. "The extended column test: Test effectiveness, spatial variability, and comparison with the propagation saw test." Cold Regions Science and Technology, Volume 59, Issue 23, Pages 210-216, 2009. [4] J. Heierli, P. Gumbsch, M. Zaiser, "Anticrack Nucleation as Triggering Mecchanism for Snow Slab Avalanches", Science, Volume 321, Pages 240-243, 2008. [5] A. van Herwijnen, J. Schweizer, J. Heierli, "Measurement of the deformation field associated with fracture propagation in weak snowpack layers", Journal of Geophysical Research, Volume 115, F03042, 2010. [6] K. W. Birkeland, A. van Herwijnen, E. Knoff, M. Staples, E. Bair, R. Simenhois, "The role of slabs and weak layers in fracture arrest", Proceedings of the International Snow Science Workshop, Banff, 2014. [7] J. Schweizer, B. Reuter, A. van Herwijnen, B. Jamieson, "On how the tensile strength of the slab affects crack propagation propensity", Proceedings of the International Snow Science Workshop, Banff, 2014. [8] J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, J. Schweizer. "Modeling of crack propagation in weak snowpack layers using the discrete element method", The Cryosphere, Volume 9, Pages 1915-1932, 2015.
Michelle Cram; Stephen Fraedrich
2009-01-01
The stunt nematode, Tylenchorhynchus claytoni, was found to cause a reduction in root volume (cm3) of loblolly pine at population densities equivalent of 125 nematodes/100 cm3 (6 in3) soil and greater. The results of a host range test conducted in containers under controlled conditions determined that buckwheat cultivar (Fagopryum...
2012-01-01
Background In this paper a new non-invasive, operator-free, continuous ventricular stroke volume monitoring device (Hemodynamic Cardiac Profiler, HCP) is presented, that measures the average stroke volume (SV) for each period of 20 seconds, as well as ventricular volume-time curves for each cardiac cycle, using a new electric method (Ventricular Field Recognition) with six independent electrode pairs distributed over the frontal thoracic skin. In contrast to existing non-invasive electric methods, our method does not use the algorithms of impedance or bioreactance cardiography. Instead, our method is based on specific 2D spatial patterns on the thoracic skin, representing the distribution, over the thorax, of changes in the applied current field caused by cardiac volume changes during the cardiac cycle. Since total heart volume variation during the cardiac cycle is a poor indicator for ventricular stroke volume, our HCP separates atrial filling effects from ventricular filling effects, and retrieves the volume changes of only the ventricles. Methods ex-vivo experiments on a post-mortem human heart have been performed to measure the effects of increasing the blood volume inside the ventricles in isolation, leaving the atrial volume invariant (which can not be done in-vivo). These effects have been measured as a specific 2D pattern of voltage changes on the thoracic skin. Furthermore, a working prototype of the HCP has been developed that uses these ex-vivo results in an algorithm to decompose voltage changes, that were measured in-vivo by the HCP on the thoracic skin of a human volunteer, into an atrial component and a ventricular component, in almost real-time (with a delay of maximally 39 seconds). The HCP prototype has been tested in-vivo on 7 human volunteers, using G-suit inflation and deflation to provoke stroke volume changes, and LVot Doppler as a reference technique. Results The ex-vivo measurements showed that ventricular filling caused a pattern over the thorax quite distinct from that of atrial filling. The in-vivo tests of the HCP with LVot Doppler resulted in a Pearson’s correlation of R = 0.892, and Bland-Altman plotting of SV yielded a mean bias of -1.6 ml and 2SD =14.8 ml. Conclusions The results indicate that the HCP was able to track the changes in ventricular stroke volume reliably. Furthermore, the HCP produced ventricular volume-time curves that were consistent with the literature, and may be a diagnostic tool as well. PMID:22900831
Determination of partial molar volumes from free energy perturbation theory†
Vilseck, Jonah Z.; Tirado-Rives, Julian
2016-01-01
Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood–Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm3 mol−1. The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute–solvent interactions. PMID:25589343
Determination of partial molar volumes from free energy perturbation theory.
Vilseck, Jonah Z; Tirado-Rives, Julian; Jorgensen, William L
2015-04-07
Partial molar volume is an important thermodynamic property that gives insights into molecular size and intermolecular interactions in solution. Theoretical frameworks for determining the partial molar volume (V°) of a solvated molecule generally apply Scaled Particle Theory or Kirkwood-Buff theory. With the current abilities to perform long molecular dynamics and Monte Carlo simulations, more direct methods are gaining popularity, such as computing V° directly as the difference in computed volume from two simulations, one with a solute present and another without. Thermodynamically, V° can also be determined as the pressure derivative of the free energy of solvation in the limit of infinite dilution. Both approaches are considered herein with the use of free energy perturbation (FEP) calculations to compute the necessary free energies of solvation at elevated pressures. Absolute and relative partial molar volumes are computed for benzene and benzene derivatives using the OPLS-AA force field. The mean unsigned error for all molecules is 2.8 cm(3) mol(-1). The present methodology should find use in many contexts such as the development and testing of force fields for use in computer simulations of organic and biomolecular systems, as a complement to related experimental studies, and to develop a deeper understanding of solute-solvent interactions.
1991-11-27
the methylene chloride/methanol mix. All test train components will be composited and explosives will be analyzed and reported on a total test train...check ute volume metering system nicked. dented. or cored . they Shall be note the barometric preure. nd the ulibration values ax the field test site...antimony, arsenic, cadmium, lead, selenium, thallium hollow cathode lamps (HCLs) or electrodeless discharge lamps (EDLs). [Same as EPA SW-846 Methods 7041
NASA Technical Reports Server (NTRS)
Dorosz, Jennifer L.; Bolson, Edward L.; Waiss, Mary S.; Sheehan, Florence H.
2003-01-01
Three-dimensional guidance programs have been shown to increase the reproducibility of 2-dimensional (2D) left ventricular volume calculations, but these systems have not been tested in 2D measurements of the right ventricle. Using magnetic fields to identify the probe location, we developed a new 3-dimensional guidance system that displays the line of intersection, the plane of intersection, and the numeric angle of intersection between the current image plane and previously saved scout views. When used by both an experienced and an inexperienced sonographer, this guidance system increases the accuracy of the 2D right ventricular volume measurements using a monoplane pyramidal model. Furthermore, a reconstruction of the right ventricle, with a computed volume similar to the calculated 2D volume, can be displayed quickly by tracing a few anatomic structures on 2D scans.
A second-generation constrained reaction volume shock tube
NASA Astrophysics Data System (ADS)
Campbell, M. F.; Tulgestke, A. M.; Davidson, D. F.; Hanson, R. K.
2014-05-01
We have developed a shock tube that features a sliding gate valve in order to mechanically constrain the reactive test gas mixture to an area close to the shock tube endwall, separating it from a specially formulated non-reactive buffer gas mixture. This second-generation Constrained Reaction Volume (CRV) strategy enables near-constant-pressure shock tube test conditions for reactive experiments behind reflected shocks, thereby enabling improved modeling of the reactive flow field. Here we provide details of the design and operation of the new shock tube. In addition, we detail special buffer gas tailoring procedures, analyze the buffer/test gas interactions that occur on gate valve opening, and outline the size range of fuels that can be studied using the CRV technique in this facility. Finally, we present example low-temperature ignition delay time data to illustrate the CRV shock tube's performance.
DOT National Transportation Integrated Search
1992-04-01
The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...
Nondestructive Testing Magnetic Particle RQA/M1-5330.11.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.
As one in the series of programmed instruction handbooks, prepared by the U. S. space program, home study material is presented in this volume concerning familiarization and orientation on magnetic particle properties. The subject is presented under the following headings: Magnetism, Producing a Magnetic Field, Magnetizing Currents, Materials and…
Contemporary Intellectual Assessment: Theories, Tests, and Issues. Third Edition
ERIC Educational Resources Information Center
Flanagan, Dawn P., Ed.; Harrison, Patti L., Ed.
2012-01-01
In one volume, this authoritative reference presents a current, comprehensive overview of intellectual and cognitive assessment, with a focus on practical applications. Leaders in the field describe major theories of intelligence and provide the knowledge needed to use the latest measures of cognitive abilities with individuals of all ages, from…
The report gives results of a study in which NOx emissions and general combustion performance characteristics of four burners were evaluated under experimental furnace conditions. Of primary interest was the performance of a low NOx Distributed Mixing Burner (DMB), which was test...
DOT National Transportation Integrated Search
1987-05-01
This report describes a program of server education designed to foster the responsible service of alcohol in bars, restaurants, and other on-sale establishments. The program is administered in two phases. The first phase, three hours in length, is in...
DOT National Transportation Integrated Search
1992-04-01
The safety of various magnetically levitated (maglev) and high speed rail (HSR) trains proposed for application in the United States is of direct concern to the Federal Railroad Administration (FRA). This report catalogs and documents detailed magnet...
Learning to Verbally & Visually Communicate the Metalworking Way.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Div. of Vocational Education.
This curriculum guide, one of 15 volumes written for field test use with educationally disadvantaged industrial education students needing additional instruction in the basic skill areas, deals with helping students develop basic verbal and visual communication skills while studying metalworking. Addressed in the individual units of the guide are…
Learning to Read and Write the Woodworking Way.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Div. of Vocational Education.
This curriculum guide, one of 15 volumes written for field test use with educationally disadvantaged industrial education students needing additional instruction in the basic skill areas, deals with helping students to develop basic reading and writing skills while studying woodworking. Addressed in the individual units of the guide are the…
The effect of temperature on the average volume of Barkhausen jump on Q235 carbon steel
NASA Astrophysics Data System (ADS)
Guo, Lei; Shu, Di; Yin, Liang; Chen, Juan; Qi, Xin
2016-06-01
On the basis of the average volume of Barkhausen jump (AVBJ) vbar generated by irreversible displacement of magnetic domain wall under the effect of the incentive magnetic field on ferromagnetic materials, the functional relationship between saturation magnetization Ms and temperature T is employed in this paper to deduce the explicit mathematical expression among AVBJ vbar, stress σ, incentive magnetic field H and temperature T. Then the change law between AVBJ vbar and temperature T is researched according to the mathematical expression. Moreover, the tensile and compressive stress experiments are carried out on Q235 carbon steel specimens at different temperature to verify our theories. This paper offers a series of theoretical bases to solve the temperature compensation problem of Barkhausen testing method.
Hydrogen Field Test Standard: Laboratory and Field Performance
Pope, Jodie G.; Wright, John D.
2015-01-01
The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give equivalent answers if proper sensors without drift are used. PMID:26722192
Assessment of the Derivative-Moment Transformation method for unsteady-load estimation
NASA Astrophysics Data System (ADS)
Mohebbian, Ali; Rival, David
2011-11-01
It is often difficult, if not impossible, to measure the aerodynamic or hydrodynamic forces on a moving body. For this reason, a classical control-volume technique is typically applied to extract the unsteady forces instead. However, measuring the acceleration term within the volume of interest using PIV can be limited by optical access, reflections as well as shadows. Therefore in this study an alternative approach, termed the Derivative-Moment Transformation (DMT) method, is introduced and tested on a synthetic data set produced using numerical simulations. The test case involves the unsteady loading of a flat plate in a two-dimensional, laminar periodic gust. The results suggest that the DMT method can accurately predict the acceleration term so long as appropriate spatial and temporal resolutions are maintained. The major deficiency was found to be the determination of pressure in the wake. The effect of control-volume size was investigated suggesting that smaller domains work best by minimizing the associated error with the pressure field. When increasing the control-volume size, the number of calculations necessary for the pressure-gradient integration increases, in turn substantially increasing the error propagation.
1988-08-01
control data (lat tarK., lab spikes, and lab duplicates) in the report , as well as field quality control data. j. For those metiods which employ gas ...FORCE BASE, TEXAS 78235-5501 NOTICE This report has been prepared for the United States Air Force by Environmental Science and Engineering , Inc. (ESE...testing, field sampling, contamination assessment report preparation, and recommendations for remedial actions. U.S. Army Toxic and Hazardous Materials
1982-10-15
the two may interact. L1 *1 -35- REFERENCES [1] Arnold, Stephen J. (1979), "A Test for Clusters," Journal of Marketing Research , November, pp 545-551...of Marketing Research , August, pp 405-412. APPENDIX A RESULTS OF FACTOR ANALYSIS OF LIFE GOALS . . . . . -37- Ft-M AnSIS CF FEq. LIFE GOALS GM"L...Volume 5, Pre-intervention Recruiting Environ- ment, 1981. [9] Wind, Yoram (1978), "Issues and Advances in Segmentation Research," Journal of Marketing
Effects of pore volume-transmissivity correlation on transport phenomena.
Lunati, Ivan; Kinzelbach, Wolfgang; Sørensen, Ivan
2003-12-01
The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These differences make it important to discriminate in situ among different conceptual models in order to simulate correctly the transport phenomena. For this reason, we study the solute breakthrough and recovery curves at the extraction wells. Our numerical case studies show that discrimination on the basis of such data might be impossible except under very favourable conditions, i.e. the integral scale of the transmissivity field has to be known and small compared to the dipole size. If the latter conditions are satisfied, discrimination between the rough-walled fracture filled with a homogeneous material and the other two models becomes possible, whereas the parallel-plate fracture with a heterogeneous fault gouge and the empty fracture still show identifiability problems. The latter may be solved by inspection of aperture and pressure testing.
SFR test fixture for hemispherical and hyperhemispherical camera systems
NASA Astrophysics Data System (ADS)
Tamkin, John M.
2017-08-01
Optical testing of camera systems in volume production environments can often require expensive tooling and test fixturing. Wide field (fish-eye, hemispheric and hyperhemispheric) optical systems create unique challenges because of the inherent distortion, and difficulty in controlling reflections from front-lit high resolution test targets over the hemisphere. We present a unique design for a test fixture that uses low-cost manufacturing methods and equipment such as 3D printing and an Arduino processor to control back-lit multi-color (VIS/NIR) targets and sources. Special care with LED drive electronics is required to accommodate both global and rolling shutter sensors.
Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions
1974-10-01
apparatus underwent significant changes as the final engineering design evolved. Section Ill describes the tests which were conducted with the...2- I , U~ - - SECTION II EXPERIMENTAL APPARATUS As noted in the Introduction to this report, the conceptual design of the experimental laser Raman...overlap in the measurement volume of Interest, The details Wf thisl opýýlp &I engineering design trod@. off have been proviouuly replorted toy Munrio
Army Communicator. Volume 34, Number 1, Winter 2009
2009-01-01
First, I will double- tap Yingling’s asser- tion that during the 1990s the United States repeatedly failed to estimate the likelihood of success in...country terrain, WIN-T Increment Two and Three lead test engineer Kenneth Hutchin- son has said. The 30 node EFT held at Fort Huachuca, Ariz...Transmission Systems DoD – Department of Defense EFT – Engineering Field Tests ESB – Expeditionary Signal Battalion FEMA – Federal Emergency Management
Integrated Strike Avionics Study. Volume 1
1980-10-01
MMW Systems Targeting Studies Perf. Meas. o C02 Laser Radar Ses. St. Army Obstacle Detect Prog. Concept Demo Mobile System 20 ’ - I...Fabrication and Test o FLIR Field of View & Classification Study (FLIR FACS) Definition m Development & Test 4. Aplicability of Current Programs to...FY80 81 8283 84 85 o LANTIRN 1 n Imaoinn Sensor Autoprocessor • o Forward Looking Active Class a 4. Aplicability of Current Program Required The need
Trip Report-Produced-Water Field Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Enid J.
2012-05-25
Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well formore » removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Conner, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
Computation of Relative Magnetic Helicity in Spherical Coordinates
NASA Astrophysics Data System (ADS)
Moraitis, Kostas; Pariat, Étienne; Savcheva, Antonia; Valori, Gherardo
2018-06-01
Magnetic helicity is a quantity of great importance in solar studies because it is conserved in ideal magnetohydrodynamics. While many methods for computing magnetic helicity in Cartesian finite volumes exist, in spherical coordinates, the natural coordinate system for solar applications, helicity is only treated approximately. We present here a method for properly computing the relative magnetic helicity in spherical geometry. The volumes considered are finite, of shell or wedge shape, and the three-dimensional magnetic field is considered to be fully known throughout the studied domain. Testing of the method with well-known, semi-analytic, force-free magnetic-field models reveals that it has excellent accuracy. Further application to a set of nonlinear force-free reconstructions of the magnetic field of solar active regions and comparison with an approximate method used in the past indicates that the proposed method can be significantly more accurate, thus making our method a promising tool in helicity studies that employ spherical geometry. Additionally, we determine and discuss the applicability range of the approximate method.
Learning to Read and Write the Drafting Way. Field Test Copy.
ERIC Educational Resources Information Center
California State Dept. of Education, Sacramento. Div. of Vocational Education.
This volume comprises instructional techniques that are designed for use with drafting students who demonstrate a need for additional instruction in the areas of reading, writing, math, and verbal and visual communication. Included in the guide are the following teacher-developed instructional techniques: a drafting crossword puzzle, tool bingo, a…
DOT National Transportation Integrated Search
1993-06-01
The safety of magnetlcally levitated (maglev) and high speed rail (HSR) trains proposed for application in the : United States is the responsibility of the Federal Railroad Administratlon (FRA). Plans for near future US applications : include maglev ...
Design and testing of access-tube TDR soil water sensor
USDA-ARS?s Scientific Manuscript database
We developed the design of a waveguide on the exterior of an access tube for use in time-domain reflectometry (TDR) for in-situ soil water content sensing. In order to optimize the design with respect to sampling volume and losses, we derived the electromagnetic (EM) fields produced by a TDR sensor...
The report describes tests to evaluate the performance characteristics of three Second Generation Low-NOx burner designs: the Dual Register burner (DRB), the Babcock-Hitachi NOx Reducing (HNR) burner, and the XCL burner. The three represent a progression in development based on t...
Field Fortification Test Exercise Desert Rock VI. Project 8-12-75-001
1981-01-01
tively opxei were subjeosted to p•: essures .f approximatly the same magnitude, rise time, and duration as recorded oi the outside. Structures with...differences in these p- essure -time histories can be attributed to the combined effects of the blast door and the entrance area-shelter volume ratio. SThese
Guidelines to Data Processing Management.
ERIC Educational Resources Information Center
Data Processing Management Association, Park Ridge, IL.
This is a revised and updated version of an earlier published set of guidelines. As in the instance of the first edition, this volume contains contributions by some of the most capable consultants in the information processing field. Their comments are based on sound, proved judgment tested in day-to-day operations at installations throughout the…
Automated water monitor system field demonstration test report. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.
1981-01-01
A system that performs water quality monitoring on-line and in real time much as it would be done in a spacecraft, was developed and demonstrated. The system has the capability to determine conformance to high effluent quality standards and to increase the potential for reclamation and reuse of water.
Preparing Teachers to Teach English as an International Language
ERIC Educational Resources Information Center
Matsuda, Aya, Ed.
2017-01-01
This book explores ways to prepare teachers to teach English as an International Language (EIL) and provides theoretically-grounded models for EIL-informed teacher education. The volume includes two chapters that present a theoretical approach and principles in EIL teacher education, followed by a collection of descriptions of field-tested teacher…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Racine, W.C.; Campillo, C.J.
During the site-selection phase of the Onsite Fuel-Cell Field Test, nearly one hundred sites throughout the U.S. were each instrumented with a standard data-acquisition system (DAS) to collect hourly electrical and thermal data for one year. Seventy of those sites are included in the report. Each site's electrical and thermal systems were instrumented including ambient temperature, electrical demands, building gas usage, and other parameters necessary to calculate building thermal loads. Multifamily residential, commercial, and light industrial sites were instrumented. Approximately twenty market sectors were represented including restaurants, hospitals, hotels, apartments, health clubs, nursing homes, and food-processing plants. The primary usemore » of the data was to determine site compatibility for the installation of 40-kW fuel-cell power plants. However, the collected energy data and site-specific information summarized in this comprehensive report may also be useful for other applications such as market characterization and simulation of new or improved energy-utilization equipment in actual sites. This volume covers metal-plating facilities, nurseries, nursing homes, office buildings and other industrial applications.« less
Image-optimized Coronal Magnetic Field Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Shaela I.; Uritsky, Vadim; Davila, Joseph M., E-mail: shaela.i.jones-mecholsky@nasa.gov, E-mail: shaela.i.jonesmecholsky@nasa.gov
We have reported previously on a new method we are developing for using image-based information to improve global coronal magnetic field models. In that work, we presented early tests of the method, which proved its capability to improve global models based on flawed synoptic magnetograms, given excellent constraints on the field in the model volume. In this follow-up paper, we present the results of similar tests given field constraints of a nature that could realistically be obtained from quality white-light coronagraph images of the lower corona. We pay particular attention to difficulties associated with the line-of-sight projection of features outsidemore » of the assumed coronagraph image plane and the effect on the outcome of the optimization of errors in the localization of constraints. We find that substantial improvement in the model field can be achieved with these types of constraints, even when magnetic features in the images are located outside of the image plane.« less
Measuring the orthogonality error of coil systems
Heilig, B.; Csontos, A.; Pajunpää, K.; White, Tim; St. Louis, B.; Calp, D.
2012-01-01
Recently, a simple method was proposed for the determination of pitch angle between two coil axes by means of a total field magnetometer. The method is applicable when the homogeneous volume in the centre of the coil system is large enough to accommodate the total field sensor. Orthogonality of calibration coil systems used for calibrating vector magnetometers can be attained by this procedure. In addition, the method can be easily automated and applied to the calibration of delta inclination–delta declination (dIdD) magnetometers. The method was tested by several independent research groups, having a variety of test equipment, and located at differing geomagnetic observatories, including: Nurmijärvi, Finland; Hermanus, South Africa; Ottawa, Canada; Tihany, Hungary. This paper summarizes the test results, and discusses the advantages and limitations of the method.
NASA Astrophysics Data System (ADS)
Wall, Phillip D. H.; Carver, Robert L.; Fontenot, Jonas D.
2018-01-01
The overlap volume histogram (OVH) is an anatomical metric commonly used to quantify the geometric relationship between an organ at risk (OAR) and target volume when predicting expected dose-volumes in knowledge-based planning (KBP). This work investigated the influence of additional variables contributing to variations in the assumed linear DVH-OVH correlation for the bladder and rectum in VMAT plans of prostate patients, with the goal of increasing prediction accuracy and achievability of knowledge-based planning methods. VMAT plans were retrospectively generated for 124 prostate patients using multi-criteria optimization. DVHs quantified patient dosimetric data while OVHs quantified patient anatomical information. The DVH-OVH correlations were calculated for fractional bladder and rectum volumes of 30, 50, 65, and 80%. Correlations between potential influencing factors and dose were quantified using the Pearson product-moment correlation coefficient (R). Factors analyzed included the derivative of the OVH, prescribed dose, PTV volume, bladder volume, rectum volume, and in-field OAR volume. Out of the selected factors, only the in-field bladder volume (mean R = 0.86) showed a strong correlation with bladder doses. Similarly, only the in-field rectal volume (mean R = 0.76) showed a strong correlation with rectal doses. Therefore, an OVH formalism accounting for in-field OAR volumes was developed to determine the extent to which it improved the DVH-OVH correlation. Including the in-field factor improved the DVH-OVH correlation, with the mean R values over the fractional volumes studied improving from -0.79 to -0.85 and -0.82 to -0.86 for the bladder and rectum, respectively. A re-planning study was performed on 31 randomly selected database patients to verify the increased accuracy of KBP dose predictions by accounting for bladder and rectum volume within treatment fields. The in-field OVH led to significantly more precise and fewer unachievable KBP predictions, especially for lower bladder and rectum dose-volumes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oden, L.L.; O`Connor, W.K.; Turner, P.C.
1993-11-19
This report presents field results and raw data from the Buried Waste Integrated Demonstration (BWID) Arc Melter Vitrification Project Phase 1 baseline test series conducted by the Idaho National Engineering Laboratory (INEL) in cooperation with the U.S. Bureau of Mines (USBM). The baseline test series was conducted using the electric arc melter facility at the USBM Albany Research Center in Albany, Oregon. Five different surrogate waste feed mixtures were tested that simulated thermally-oxidized, buried, TRU-contaminated, mixed wastes and soils present at the INEL. The USBM Arc Furnace Integrated Waste Processing Test Facility includes a continuous feed system, the arc meltingmore » furnace, an offgas control system, and utilities. The melter is a sealed, 3-phase alternating current (ac) furnace approximately 2 m high and 1.3 m wide. The furnace has a capacity of 1 metric ton of steel and can process as much as 1,500 lb/h of soil-type waste materials. The surrogate feed materials included five mixtures designed to simulate incinerated TRU-contaminated buried waste materials mixed with INEL soil. Process samples, melter system operations data and offgas composition data were obtained during the baseline tests to evaluate the melter performance and meet test objectives. Samples and data gathered during this program included (a) automatically and manually logged melter systems operations data, (b) process samples of slag, metal and fume solids, and (c) offgas composition, temperature, velocity, flowrate, moisture content, particulate loading and metals content. This report consists of 2 volumes: Volume I summarizes the baseline test operations. It includes an executive summary, system and facility description, review of the surrogate waste mixtures, and a description of the baseline test activities, measurements, and sample collection. Volume II contains the raw test data and sample analyses from samples collected during the baseline tests.« less
Macdermid, Paul William; Fink, Philip W; Stannard, Stephen R
2015-01-01
This investigation sets out to assess the effect of five different models of mountain bike tyre on rolling performance over hard-pack mud. Independent characteristics included total weight, volume, tread surface area and tread depth. One male cyclist performed multiple (30) trials of a deceleration field test to assess reliability. Further tests performed on a separate occasion included multiple (15) trials of the deceleration test and six fixed power output hill climb tests for each tyre. The deceleration test proved to be reliable as a means of assessing rolling performance via differences in initial and final speed (coefficient of variation (CV) = 4.52%). Overall differences between tyre performance for both deceleration test (P = 0.014) and hill climb (P = 0.032) were found, enabling significant (P < 0.0001 and P = 0.049) models to be generated, allowing tyre performance prediction based on tyre characteristics. The ideal tyre for rolling and climbing performance on hard-pack surfaces would be to decrease tyre weight by way of reductions in tread surface area and tread depth while keeping volume high.
NASA Astrophysics Data System (ADS)
Mangal, S. K.; Sharma, Vivek
2018-02-01
Magneto rheological fluids belong to a class of smart materials whose rheological characteristics such as yield stress, viscosity etc. changes in the presence of applied magnetic field. In this paper, optimization of MR fluid constituents is obtained with on-state yield stress as response parameter. For this, 18 samples of MR fluids are prepared using L-18 Orthogonal Array. These samples are experimentally tested on a developed & fabricated electromagnet setup. It has been found that the yield stress of MR fluid mainly depends on the volume fraction of the iron particles and type of carrier fluid used in it. The optimal combination of the input parameters for the fluid are found to be as Mineral oil with a volume percentage of 67%, iron powder of 300 mesh size with a volume percentage of 32%, oleic acid with a volume percentage of 0.5% and tetra-methyl-ammonium-hydroxide with a volume percentage of 0.7%. This optimal combination of input parameters has given the on-state yield stress as 48.197 kPa numerically. An experimental confirmation test on the optimized MR fluid sample has been then carried out and the response parameter thus obtained has found matching quite well (less than 1% error) with the numerically obtained values.
Keyes, S D; Gillard, F; Soper, N; Mavrogordato, M N; Sinclair, I; Roose, T
2016-06-14
The mechanical impedance of soils inhibits the growth of plant roots, often being the most significant physical limitation to root system development. Non-invasive imaging techniques have recently been used to investigate the development of root system architecture over time, but the relationship with soil deformation is usually neglected. Correlative mapping approaches parameterised using 2D and 3D image data have recently gained prominence for quantifying physical deformation in composite materials including fibre-reinforced polymers and trabecular bone. Digital Image Correlation (DIC) and Digital Volume Correlation (DVC) are computational techniques which use the inherent material texture of surfaces and volumes, captured using imaging techniques, to map full-field deformation components in samples during physical loading. Here we develop an experimental assay and methodology for four-dimensional, in vivo X-ray Computed Tomography (XCT) and apply a Digital Volume Correlation (DVC) approach to the data to quantify deformation. The method is validated for a field-derived soil under conditions of uniaxial compression, and a calibration study is used to quantify thresholds of displacement and strain measurement. The validated and calibrated approach is then demonstrated for an in vivo test case in which an extending maize root in field-derived soil was imaged hourly using XCT over a growth period of 19h. This allowed full-field soil deformation data and 3D root tip dynamics to be quantified in parallel for the first time. This fusion of methods paves the way for comparative studies of contrasting soils and plant genotypes, improving our understanding of the fundamental mechanical processes which influence root system development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reserve growth of the world's giant oil fields
Klett, T.R.; Schmoker, J.W.
2005-01-01
Analysis of estimated total recoverable oil volume (field size) of 186 well-known giant oil fields of the world (>0.5 billion bbl of oil, discovered prior to 1981), exclusive of the United States and Canada, demonstrates general increases in field sizes through time. Field sizes were analyzed as a group and within subgroups of the Organization of Petroleum Exporting Countries (OPEC) and non-OPEC countries. From 1981 through 1996, the estimated volume of oil in the 186 fields for which adequate data were available increased from 617 billion to 777 billion bbl of oil (26%). Processes other than new field discoveries added an estimated 160 billion bbl of oil to known reserves in this subset of the world's oil fields. Although methods for estimating field sizes vary among countries, estimated sizes of the giant oil fields of the world increased, probably for many of the same reasons that estimated sizes of oil fields in the United States increased over the same time period. Estimated volumes in OPEC fields increased from a total of 550 billion to 668 billion bbl of oil and volumes in non-OPEC fields increased from 67 billion to 109 billion bbl of oil. In terms of percent change, non-OPEC field sizes increased more than OPEC field sizes (63% versus 22%). The changes in estimated total recoverable oil volumes that occurred within three 5-year increments between 1981 and 1996 were all positive. Between 1981 and 1986, the increase in estimated total recoverable oil volume within the 186 giant oil fields was 11 billion bbl of oil; between 1986 and 1991, the increase was 120 billion bbl of oil; and between 1991 and 1996, the increase was 29 billion bbl of oil. Fields in both OPEC and non-OPEC countries followed trends of substantial reserve growth.
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-07-17
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation.
MLS Multipath Studies. Phase 3. Volume II. Development and Valiadation of Model for MLS Techniques.
1980-02-07
2-40 2-32 Coherent interference phenomena encountered during TRSB field tests at JFK airport . 2-41 2-33 JFK airport environment near MLS elevation...24 4-8 Comparison of DMLS simulation and flight test on -380 radial at 2000 feet at JFK airport . 4-26 4-9 Comparison of DMLS simulation and flight...test on +380 radial at 2000 feet at JFK airport . 4-28 xv ( 4-10 Comparison of simulation with DMLS JFK centerline approach data. 4-29 4-11 DMLS "clean
1987-07-01
degradation of organic contaminants. In situ treatment affects contaminants sorbed to soil as well as dissolved in groundwater. It is potentially ...indigenous soil micro - organisms to multiply and degrade the waste material. Exxon’s Baytown refinery has been disposing of oily wastes by land farming...Group (ERG). Chemical analyses performed on soil samples included priority pollutant volatile and metal compounds, total hydrocarbons (alkanes), oil and
NASA Technical Reports Server (NTRS)
Warmbrod, J. D.; Martindale, M. R.; Matthews, R. K.
1972-01-01
The results of a wind tunnel test program to determine the surface pressures and flow distribution on the McDonnell Douglas Orbiter configuration are presented. Tests were conducted in hypersonic wind tunnel at Mach 8. The freestream unit Reynolds number was 3.7 time one million per foot. Angle of attack was varied from 10 degrees to 60 degrees in 10 degree increments.
Management of Electronic Test Equipment. Volume 3. Organizations, Policies, and Procedures.
1986-07-01
is not guaranteed. The best example, probably, is the UH - 60 Black Hawk program, where the specific tools used by organizational maintainers were nailed...tools. This innovative and highly effective approach was large!i, Successful. even though it became obvious once the UH - 60 was fielded, that a special...test set was necessary to cope with the electronic control unit assembly of the turbine engine. The UH - 60 example, however, does illustrate that support
Becker, M.W.; Reimus, P.W.; Vilks, P.
1999-01-01
Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.Understanding colloid transport in ground water is essential to assessing the migration of colloid-size contaminants, the facilitation of dissolved contaminant transport by colloids, in situ bioremediation, and the health risks of pathogen contamination in drinking water wells. Much has been learned through laboratory and field-scale colloid tracer tests, but progress has been hampered by a lack of consistent tracer testing methodology at different scales and fluid velocities. This paper presents laboratory and field tracer tests in fractured rock that use the same type of colloid tracer over an almost three orders-of-magnitude range in scale and fluid velocity. Fluorescently-dyed carboxylate-modified latex (CML) microspheres (0.19 to 0.98 ??m diameter) were used as tracers in (1) a naturally fractured tuff sample, (2) a large block of naturally fractured granite, (3) a fractured granite field site, and (4) another fractured granite/schist field site. In all cases, the mean transport time of the microspheres was shorter than the solutes, regardless of detection limit. In all but the smallest scale test, only a fraction of the injected microsphere mass was recovered, with the smaller microspheres being recovered to a greater extent than the larger microspheres. Using existing theory, we hypothesize that the observed microsphere early arrival was due to volume exclusion and attenuation was due to aggregation and/or settling during transport. In most tests, microspheres were detected using flow cytometry, which proved to be an excellent method of analysis. CML microspheres appear to be useful tracers for fractured rock in forced gradient and short-term natural gradient tests, but longer residence times may result in small microsphere recoveries.
ERIC Educational Resources Information Center
Schalock, H. Del, Ed.; Hale, James R., Ed.
This main volume (SP 002 155-SP 002 180 comprise the appendixes to this volume) explains the ComField (competency based, field centered) Model--a systems approach to the education of elementary school teachers which entails specifications (1) for instruction and (2) for management of the instructional program. In an overview, the ComField Model is…
Mass production of volume phase holographic gratings for the VIRUS spectrograph array
NASA Astrophysics Data System (ADS)
Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis
2014-07-01
The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 < λ (nm) < 550. Including witness samples, a suite of 170 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.
Effect of ischemic cerebral volume changes on behavior.
Lyden, P D; Lonzo, L M; Nunez, S Y; Dockstader, T; Mathieu-Costello, O; Zivin, J A
1997-08-01
Ischemia causes long-term effects on brain volume and neurologic function but the relationship between the two is poorly characterized. We studied the relationships between brain volume and three measures of rodent behavior after cerebral ischemia was induced by injecting several thousand microspheres into the internal carotid arteries of rats. Forty eight hours later, each subject was rated using a global neurologic rating scale. Several weeks later, the subjects were tested for open field activity and visual spatial learning. Post-mortem we measured the volume of the cerebral hemispheres and estimated the volume densities of cortex, white matter, hippocampus, basal ganglia, thalamus, ventricle, and visible infarction. Ischemia caused significant impairment, as measured by the global rating scale; the probability of an abnormal rating was correlated with the number of microspheres trapped in the brains. Visual spatial learning was significantly impaired by ischemia, but this deficit was independent of the count of microspheres, whether the subject was abnormal at 48 h, and whether the left or right hemisphere was embolized. Cerebral hemisphere volume was reduced from 430 mm3 to 376 mm3 (P < 0.05). The cortex was reduced from 22 to 19% of cerebrum (P < 0.05) and the white matter compartment was reduced to similar degree. The lesion volume was 6% of cerebrum, comparable to that seen with other ischemia methods. The global outcome rating was significantly related to total cerebral volume, but not to volume changes in any single compartment. On the other hand, visual spatial learning was significantly influenced by volume changes in the cortex and white matter, but not by the topography of the visible infarctions. Open field activity was not altered by infarction. Our data suggests that the total volume of brain tissue lost to infarction may partially determine global neurological rating independently of the topography of the volume loss. Integrative functions such as learning may depend more on the integrity of specific compartments and less on the total volume of intact brain. The volume of visible cystic infarction was not related to long term behavioral outcome. These results should be confirmed using another method of inducing ischemia.
NASA Technical Reports Server (NTRS)
1988-01-01
A flight program was completed in June of 1985 using the Boeing 757 flight research aircraft with an NLF glove installed on the right wing just outboard of the engine. The objectives of this program were to measure noise levels on the wing and to investigate the effect of engine noise on the extent of laminar flow on the glove. Details of the flight test program and results are contained in Volume 1 of this document. Tabulations and plots of the measured data are contained in Volume 2. The present volume contains the results of additional engineering analysis of the data. The latter includes analysis of the measured noise data, a comparison of predicted and measured noise data, a boundary layer stability analysis of 21 flight data cases, and an analysis of the effect of noise on boundary layer transition.
Modelling lidar volume-averaging and its significance to wind turbine wake measurements
NASA Astrophysics Data System (ADS)
Meyer Forsting, A. R.; Troldborg, N.; Borraccino, A.
2017-05-01
Lidar velocity measurements need to be interpreted differently than conventional in-situ readings. A commonly ignored factor is “volume-averaging”, which refers to lidars not sampling in a single, distinct point but along its entire beam length. However, especially in regions with large velocity gradients, like the rotor wake, can it be detrimental. Hence, an efficient algorithm mimicking lidar flow sampling is presented, which considers both pulsed and continous-wave lidar weighting functions. The flow-field around a 2.3 MW turbine is simulated using Detached Eddy Simulation in combination with an actuator line to test the algorithm and investigate the potential impact of volume-averaging. Even with very few points discretising the lidar beam is volume-averaging captured accurately. The difference in a lidar compared to a point measurement is greatest at the wake edges and increases from 30% one rotor diameter (D) downstream of the rotor to 60% at 3D.
[Modeling and analysis of volume conduction based on field-circuit coupling].
Tang, Zhide; Liu, Hailong; Xie, Xiaohui; Chen, Xiufa; Hou, Deming
2012-08-01
Numerical simulations of volume conduction can be used to analyze the process of energy transfer and explore the effects of some physical factors on energy transfer efficiency. We analyzed the 3D quasi-static electric field by the finite element method, and developed A 3D coupled field-circuit model of volume conduction basing on the coupling between the circuit and the electric field. The model includes a circuit simulation of the volume conduction to provide direct theoretical guidance for energy transfer optimization design. A field-circuit coupling model with circular cylinder electrodes was established on the platform of the software FEM3.5. Based on this, the effects of electrode cross section area, electrode distance and circuit parameters on the performance of volume conduction system were obtained, which provided a basis for optimized design of energy transfer efficiency.
DOT National Transportation Integrated Search
2011-09-01
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration : (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these r...
Greenhouse Crop Production; A Student Handbook, Teacher Education Series, Volume 10 Number 3s.
ERIC Educational Resources Information Center
1969
This study guide, developed by the Department of Agricultural Education of The Pennsylvania State University and field-tested by 54 teachers, is for student use in a unit on greenhouse crop production. Learning objectives, key questions, vocabulary terms, subject matter, and references are included for each of these problem areas: (1) Occupational…
ERIC Educational Resources Information Center
Pennsylvania State Univ., University Park. Pennsylvania Agricultural Experiment Station.
This student handbook is one of a series of instructional aids prepared and edited by the Department of Agricultural Education at the Pennsylvania State University. Its organization and content were field tested, evaluated, and improved by teachers attending summer institutes in ornamental horticulture in 1966 and 1967. The content includes…
Small Farm Grain Storage. Appropriate Technologies for Development. Manual M-2.
ERIC Educational Resources Information Center
Lindblad, Carl; Druben, Laurel
Designed as a working and teaching tool for development workers in their field activities, this manual combines in one volume the basic principles of grain storage and the practical solutions currently being used and tested around the world to combat grain storage problems. Each of six sections begins with informative material on the topic to be…
NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 9: Entry technology panel
NASA Technical Reports Server (NTRS)
1975-01-01
An advanced space transportation system heavy lift orbiter, hypersonic atmospheric entry missions, development of an emergency astronaut life boat, and basic research in boundary layer transition are among the topics discussed. Emphasis is placed on the need for space testing and for better mathematical models describing the flow fields around complex structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduce maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine. 11 refs.« less
Chou, Ching-Yu; Ferrage, Fabien; Aubert, Guy; Sakellariou, Dimitris
2015-01-01
Standard Magnetic Resonance magnets produce a single homogeneous field volume, where the analysis is performed. Nonetheless, several modern applications could benefit from the generation of multiple homogeneous field volumes along the axis and inside the bore of the magnet. In this communication, we propose a straightforward method using a combination of ring structures of permanent magnets in order to cancel the gradient of the stray field in a series of distinct volumes. These concepts were demonstrated numerically on an experimentally measured magnetic field profile. We discuss advantages and limitations of our method and present the key steps required for an experimental validation. PMID:26182891
Constant load and constant volume response of municipal solid waste in simple shear.
Zekkos, Dimitrios; Fei, Xunchang
2017-05-01
Constant load and constant volume simple shear testing was conducted on relatively fresh municipal solid waste (MSW) from two landfills in the United States, one in Michigan and a second in Texas, at respective natural moisture content below field capacity. The results were assessed in terms of two failure strain criteria, at 10% and 30% shear strain, and two interpretations of effective friction angle. Overall, friction angle obtained assuming that the failure plane is horizontal and at 10% shear strain resulted in a conservative estimation of shear strength of MSW. Comparisons between constant volume and constant load simple shear testing results indicated significant differences in the shear response of MSW with the shear resistance in constant volume being lower than the shear resistance in constant load. The majority of specimens were nearly uncompacted during specimen preparation to reproduce the state of MSW in bioreactor landfills or in uncontrolled waste dumps. The specimens had identical percentage of <20mm material but the type of <20mm material was different. The <20mm fraction from Texas was finer and of high plasticity. MSW from Texas was overall weaker in both constant load and constant volume conditions compared to Michigan waste. The results of these tests suggest the possibility of significantly lower shear strength of MSW in bioreactor landfills where waste is placed with low compaction effort and constant volume, i.e., "undrained", conditions may occur. Compacted MSW specimens resulted in shear strength parameters that are higher than uncompacted specimens and closer to values reported in the literature. However, the normalized undrained shear strength in simple shear for uncompacted and compacted MSW was still higher than the normalized undrained shear strength reported in the literature for clayey and silty soils. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ivanova, L A; Ronzhina, D A; Ivanov, L A; Stroukova, L V; Peuke, A D; Rennenberg, H
2009-07-01
Poplar mutants overexpressing the bacterial genes gsh1 or gsh2 encoding the enzymes of glutathione biosynthesis are among the best-characterised transgenic plants. However, this characterisation originates exclusively from laboratory studies, and the performance of these mutants under field conditions is largely unknown. Here, we report a field experiment in which the wild-type poplar hybrid Populus tremula x P. alba and a transgenic line overexpressing the bacterial gene gsh1 encoding gamma-glutamylcysteine synthetase in the cytosol were grown for 3 years at a relatively clean (control) field site and a field site contaminated with heavy metals. Aboveground biomass accumulation was slightly smaller in transgenic compared to wild-type plants; soil contamination significantly decreased biomass accumulation in both wild-type and transgenic plants by more than 40%. Chloroplasts parameters, i.e., maximal diameter, projection area and perimeter, surface area and volume, surface/volume ratio and a two-dimensional form coefficient, were found to depend on plant type, leaf tissue and soil contamination. The greatest differences between wild and transgenic poplars were observed at the control site. Under these conditions, chloroplast sizes in palisade tissue of transgenic poplar significantly exceeded those of the wild type. In contrast to the wild type, palisade chloroplast volume exceeded that of spongy chloroplasts in transgenic poplars at both field sites. Chlorophyll content per chloroplast was the same in wild and transgenic poplars. Apparently, the increase in chloroplast volume was not connected to changes in the photosynthetic centres. Chloroplasts of transgenic poplar at the control site were more elongated in palisade cells and close to spherical in spongy mesophyll chloroplasts. At the contaminated site, palisade and spongy cell chloroplasts of leaves from transgenic trees and the wild type were the same shape. Transgenic poplars also had a smaller chloroplast surface/volume ratio, both at the control and the contaminated site. Chloroplast number per cell did not differ between wild and transgenic poplars at the control site. Soil contamination led to suppression of chloroplast replication in wild-type plants. From these results, we assume that overexpressing the bacterial gsh1 gene in the cytosol interacts with processes in the chloroplast and that sequestration of heavy metal phytochelatin complexes into the vacuole may partially counteract this interaction in plants grown at heavy metal-contaminated field sites. Further experiments are required to test these assumptions.
Soil strength and macropore volume limit root elongation rates in many UK agricultural soils.
Valentine, Tracy A; Hallett, Paul D; Binnie, Kirsty; Young, Mark W; Squire, Geoffrey R; Hawes, Cathy; Bengough, A Glyn
2012-07-01
Simple indicators of crop and cultivar performance across a range of soil types and management are needed for designing and testing sustainable cropping practices. This paper determined the extent to which soil chemical and physical properties, particularly soil strength and pore-size distribution influences root elongation in a wide range of agricultural top soils, using a seedling-based indicator. Intact soil cores were sampled from the topsoil of 59 agricultural fields in Scotland, representing a wide geographic spread, range of textures and management practices. Water release characteristics, dry bulk density and needle penetrometer resistance were measured on three cores from each field. Soil samples from the same locations were sieved, analysed for chemical characteristics, and packed to dry bulk density of 1.0 g cm(-3) to minimize physical constraints. Root elongation rates were determined for barley seedlings planted in both intact field and packed soil cores at a water content close to field capacity (-20 kPa matric potential). Root elongation in field soil was typically less than half of that in packed soils. Penetrometer resistance was typically between 1 and 3 MPa for field soils, indicating the soils were relatively hard, despite their moderately wet condition (compared with <0.2 MPa for packed soil). Root elongation was strongly linked to differences in physical rather than chemical properties. In field soil root elongation was related most closely to the volume of soil pores between 60 µm and 300 µm equivalent diameter, as estimated from water-release characteristics, accounting for 65.7 % of the variation in the elongation rates. Root elongation rate in the majority of field soils was slower than half of the unimpeded (packed) rate. Such major reductions in root elongation rates will decrease rooting volumes and limit crop growth in soils where nutrients and water are scarce.
Automated longwall guidance and control vertical control subsystem, volume 1
NASA Technical Reports Server (NTRS)
Griffiths, W. R.; Smirlock, M.; Aplin, J.; Fish, R. B.; Fish, D.
1982-01-01
A design, fabrication, and implementation of a horizon control of a longwall shearer was performed. This equipment was tested and demonstrated aboveground. This hardware was also installed on a longwall face. The feasibility of providing horizon control for a shearer was demonstrated aboveground. The feasibility of retrofitting the necessary sensors in a survivable manner was demonstrated underground. Subsequent field tests of a specific component, the natural background sensor, at a western location demonstrated the particular usefulness of this device on a wider application basis.
Samplers for Evaluation and Quantification of Ultra-Low Volume Space Sprays
2009-01-01
Management Research Unit, 2771 F&B Road, College Station , TX 77845. Journal of the American Mosquito Control Association, 25(4):521–524, 2009 Copyright E...Traverse City, MI) at 3-m height and 25 m from the field halfway through the swath. Relative humidity was obtained from the Whitehouse airport weather ... station . The wind direction (Table 1) was from the northwest on Day 1 (1st 5 tests) and more westerly on Day 2 (last 4 tests). The sampling layout was
The Volume Field Model about Strong Interaction and Weak Interaction
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2016-03-01
For a long time researchers have believed that strong interaction and weak interaction are realized by exchanging intermediate particles. This article proposes a new mechanism as follows: Volume field is a form of material existence in plane space, it takes volume-changing motion in the form of non-continuous motion, volume fields have strong interaction or weak interaction between them by overlapping their volume fields. Based on these concepts, this article further proposes a ``bag model'' of volume field for atomic nucleus, which includes three sub-models of the complex structure of fundamental body (such as quark), the atom-like structure of hadron, and the molecule-like structure of atomic nucleus. This article also proposes a plane space model and formulates a physics model of volume field in the plane space, as well as a model of space-time conversion. The model of space-time conversion suggests that: Point space-time and plane space-time convert each other by means of merging and rupture respectively, the essence of space-time conversion is the mutual transformations of matter and energy respectively; the process of collision of high energy hadrons, the formation of black hole, and the Big Bang of universe are three kinds of space-time conversions.
NASA Technical Reports Server (NTRS)
Koenig, John C.; Billitti, Joseph W.; Tallon, John M.
1979-01-01
Guidelines are provided to the Field Centers for organization, scheduling, project and cost control, and performance in the areas of project management and operations planning for Photovoltaics Test and Applications. These guidelines may be used in organizing a T and A Project Team for system design/test, site construction and operation, and as the basis for evaluating T and A proposals. The attributes are described for project management and operations planning to be used by the Field Centers. Specifically, all project management and operational issues affecting costs, schedules and performance of photovoltaic systems are addressed. Photovoltaic tests and applications include residential, intermediate load center, central station, and stand-alone systems. The sub-categories of system maturity considered are: Initial System Evaluation Experiments (ISEE); System Readiness Experiments (SRE); and Commercial Readiness Demonstration Projects (CRDP).
NASA Technical Reports Server (NTRS)
Balch, D. T.; Lombardi, J.
1985-01-01
A model scale hover test was conducted in the Sikorsky Aircraft Model Rotor hover Facility to identify and quantify the impact of the tail rotor on the demonstrated advantages of advanced geometry tip configurations. The existence of mutual interference between hovering main rotor and a tail rotor was acknowledged in the test. The test was conducted using the Basic Model Test Rig and two scaled main rotor systems, one representing a 1/5.727 scale UH-60A BLACK HAWK and the others a 1/4.71 scale S-76. Eight alternate rotor tip configurations were tested, 3 on the BLACK HAWK rotor and 6 on the S-76 rotor. Four of these tips were then selected for testing in close proximity to an operating tail rotor (operating in both tractor and pusher modes) to determine if the performance advantages that could be obtained from the use of advanced geometry tips in a main rotor only environment would still exist in the more complex flow field involving a tail rotor. This volume contains the test run log and tabulated data.
Direct filtration for recovery of Schistosoma mansoni cercariae in the field.
Sandt, D G
1973-01-01
The recovery of schistosome cercariae from natural waters has been limited by variations in turbidity and in the accuracy of recovery with different techniques. A modification of the Rowan vacuum paper filtration method employing a battery-operated pumping system, a glass-silicone plate filter, and a specially designed filter holder is described and evaluated. Field tests on St Lucia indicate a mean filtration volume of 12.2 litres per filter at a mean turbidity of 20.3 Jackson turbidity units. Overall, 86% of the volumes filtered per filter were in excess of 6 litres. Particle size, rather than turbidity, was found to be the main factor influencing filter blockage, reading time, and accuracy. Recoveries of 0.01 cercaria (Schistosoma mansoni) per litre sampled were obtained, but the practical limit of the method is considered to be closer to 0.1 cercaria per litre sampled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-02-01
This report examines the potential for increasing the rate of production of natural gas from the East Cameron Block 271 Field in the Gulf of Mexico Outer Continental Shelf. Proved reserves are estimated using all available reservoir data, including well logs and pressure tests, and cost parameters typical in the area. Alternative schedules for future production are devised, and net present values calculated from which the maximum production rate that also maximizes net present value is determined.
Comparing two-zone models of dust exposure.
Jones, Rachael M; Simmons, Catherine E; Boelter, Fred W
2011-09-01
The selection and application of mathematical models to work tasks is challenging. Previously, we developed and evaluated a semi-empirical two-zone model that predicts time-weighted average (TWA) concentrations (Ctwa) of dust emitted during the sanding of drywall joint compound. Here, we fit the emission rate and random air speed variables of a mechanistic two-zone model to testing event data and apply and evaluate the model using data from two field studies. We found that the fitted random air speed values and emission rate were sensitive to (i) the size of the near-field and (ii) the objective function used for fitting, but this did not substantially impact predicted dust Ctwa. The mechanistic model predictions were lower than the semi-empirical model predictions and measured respirable dust Ctwa at Site A but were within an acceptable range. At Site B, a 10.5 m3 room, the mechanistic model did not capture the observed difference between PBZ and area Ctwa. The model predicted uniform mixing and predicted dust Ctwa up to an order of magnitude greater than was measured. We suggest that applications of the mechanistic model be limited to contexts where the near-field volume is very small relative to the far-field volume.
Desert Rats 2010 Operations Tests: Insights from the Geology Crew Members
NASA Technical Reports Server (NTRS)
Bleacher, J. E.; Hurtado, J. M., Jr.; Young, K. E.; Rice, J.; Garry, W. B.; Eppler, D.
2011-01-01
Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of NASA hardware and operations deployed in the high desert of Arizona. Conducted annually since 1997, these activities exercise planetary surface hardware and operations in relatively harsh conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems, they also stress communications and operations systems and enable testing of science operations approaches that advance human and robotic surface exploration capabilities. Desert RATS 2010 tested two crewed rovers designed as first-generation prototypes of small pressurized vehicles, consistent with exploration architecture designs. Each rover provided the internal volume necessary for crewmembers to live and work for periods up to 14 days, as well as allowing for extravehicular activities (EVAs) through the use of rear-mounted suit ports. The 2010 test was designed to simulate geologic science traverses over a 14-day period through a volcanic field that is analogous to volcanic terrains observed throughout the Solar System. The test was conducted between 31 August and 13 September 2010. Two crewmembers lived in and operated each rover for a week with a "shift change" on day 7, resulting in a total of eight test subjects for the two-week period. Each crew consisted of an engineer/commander and an experienced field geologist. Three of the engineer/commanders were experienced astronauts with at least one Space Shuttle flight. The field geologists were drawn from the scientific community, based on funded and published field expertise.
Barnard, P.L.; Rubin, D.M.; Harney, J.; Mustain, N.
2007-01-01
This extensive field test of an autocorrelation technique for determining grain size from digital images was conducted using a digital bed-sediment camera, or 'beachball' camera. Using 205 sediment samples and >1200 images from a variety of beaches on the west coast of the US, grain size ranging from sand to granules was measured from field samples using both the autocorrelation technique developed by Rubin [Rubin, D.M., 2004. A simple autocorrelation algorithm for determining grain size from digital images of sediment. Journal of Sedimentary Research, 74(1): 160-165.] and traditional methods (i.e. settling tube analysis, sieving, and point counts). To test the accuracy of the digital-image grain size algorithm, we compared results with manual point counts of an extensive image data set in the Santa Barbara littoral cell. Grain sizes calculated using the autocorrelation algorithm were highly correlated with the point counts of the same images (r2 = 0.93; n = 79) and had an error of only 1%. Comparisons of calculated grain sizes and grain sizes measured from grab samples demonstrated that the autocorrelation technique works well on high-energy dissipative beaches with well-sorted sediment such as in the Pacific Northwest (r2 ??? 0.92; n = 115). On less dissipative, more poorly sorted beaches such as Ocean Beach in San Francisco, results were not as good (r2 ??? 0.70; n = 67; within 3% accuracy). Because the algorithm works well compared with point counts of the same image, the poorer correlation with grab samples must be a result of actual spatial and vertical variability of sediment in the field; closer agreement between grain size in the images and grain size of grab samples can be achieved by increasing the sampling volume of the images (taking more images, distributed over a volume comparable to that of a grab sample). In all field tests the autocorrelation method was able to predict the mean and median grain size with ???96% accuracy, which is more than adequate for the majority of sedimentological applications, especially considering that the autocorrelation technique is estimated to be at least 100 times faster than traditional methods.
Empirical Assessment of the Mean Block Volume of Rock Masses Intersected by Four Joint Sets
NASA Astrophysics Data System (ADS)
Morelli, Gian Luca
2016-05-01
The estimation of a representative value for the rock block volume ( V b) is of huge interest in rock engineering in regards to rock mass characterization purposes. However, while mathematical relationships to precisely estimate this parameter from the spacing of joints can be found in literature for rock masses intersected by three dominant joint sets, corresponding relationships do not actually exist when more than three sets occur. In these cases, a consistent assessment of V b can only be achieved by directly measuring the dimensions of several representative natural rock blocks in the field or by means of more sophisticated 3D numerical modeling approaches. However, Palmström's empirical relationship based on the volumetric joint count J v and on a block shape factor β is commonly used in the practice, although strictly valid only for rock masses intersected by three joint sets. Starting from these considerations, the present paper is primarily intended to investigate the reliability of a set of empirical relationships linking the block volume with the indexes most commonly used to characterize the degree of jointing in a rock mass (i.e. the J v and the mean value of the joint set spacings) specifically applicable to rock masses intersected by four sets of persistent discontinuities. Based on the analysis of artificial 3D block assemblies generated using the software AutoCAD, the most accurate best-fit regression has been found between the mean block volume (V_{{{{b}}_{{m}} }}) of tested rock mass samples and the geometric mean value of the spacings of the joint sets delimiting blocks; thus, indicating this mean value as a promising parameter for the preliminary characterization of the block size. Tests on field outcrops have demonstrated that the proposed empirical methodology has the potential of predicting the mean block volume of multiple-set jointed rock masses with an acceptable accuracy for common uses in most practical rock engineering applications.
Hearing gain with a BAHA test-band in patients with single-sided deafness.
Kim, Do-Youn; Kim, Tae Su; Shim, Byoung Soo; Jin, In Suk; Ahn, Joong Ho; Chung, Jong Woo; Yoon, Tae Hyun; Park, Hong Ju
2014-01-01
It is assumed that preoperative use of a bone-anchored hearing aid (BAHA) test-band will give a patient lower gain compared to real post-operative gain because of the reduction of energy through the scalp when using a test-band. Hearing gains using a BAHA test-band were analyzed in patients with unilateral hearing loss. Nineteen patients with unilateral sensorineural hearing loss were enrolled. A test-band, which was connected to BAHA Intenso with full-on gain, was put on the mastoid. Conventional air-conduction (AC) pure-tone averages (PTAs) and sound-field PTAs and speech reception thresholds (SRTs) were obtained in conditions A (the better ear naked), B (the better ear plugged), and C (the better ear plugged with a test-band on the poorer mastoid). Air-conduction PTAs of the poorer and better ears were 91 ± 19 and 18 ± 8 dB HL. Sound-field PTAs in condition B were higher than those in condition A (54 vs. 26 dB HL), which means that earplugs can block the sound grossly up to 54 dB HL through the better ears. The aided PTAs (24 ± 6 dB HL) in condition C were similar to those of the better ears in condition A (26±9 dB HL), though condition C showed higher thresholds at 500 Hz and lower thresholds at 1 and 2kHz when compared to condition A. The hearing thresholds using a test-band were similar to the published results of BAHA users with the volume to most comfortable level (MCL). Our findings showed that a BAHA test-band on the poorer ear could transmit sound to the cochlea as much as the better ears can hear. The increased functional gain at 1 and 2kHz reflects the technical characteristics of BAHA processor. The reduction of energy through the scalp when using a test-band seems to be offset by the difference of output by setting the volume to full-on gain and using a high-powered speech processor. Preoperative hearing gains using a test-band with full-on gain seems to be similar to the post-operative gains of BAHA users with the volume to MCL. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth
2014-01-31
SPI gels are multi-component silicate based gels for improving (areal and vertical) conformance in oilfield enhanced recovery operations, including water-floods and carbon dioxide (CO{sub 2}) floods, as well as other applications. SPI mixtures are like-water when pumped, but form light up to very thick, paste-like gels in contact with CO{sub 2}. When formed they are 3 to 10 times stronger than any gelled polyacrylamide gel now available, however, they are not as strong as cement or epoxy, allowing them to be washed / jetted out of the wellbore without drilling. This DOE funded project allowed 8 SPI field treatments tomore » be performed in 6 wells (5 injection wells and 1 production well) in 2 different fields with different operators, in 2 different basins (Gulf Coast and Permian) and in 2 different rock types (sandstone and dolomite). Field A was in a central Mississippi sandstone that injected CO{sub 2} as an immiscible process. Field B was in the west Texas San Andres dolomite formation with a mature water-alternating-gas miscible CO{sub 2} flood. Field A treatments are now over 1 year old while Field B treatments have only 4 months data available under variable WAG conditions. Both fields had other operational events and well work occurring before/ during / after the treatments making definitive evaluation difficult. Laboratory static beaker and dynamic sand pack tests were performed with Ottawa sand and both fields’ core material, brines and crude oils to improve SPI chemistry, optimize SPI formulations, ensure SPI mix compatibility with field rocks and fluids, optimize SPI treatment field treatment volumes and methods, and ensure that strong gels set in the reservoir. Field quality control procedures were designed and utilized. Pre-treatment well (surface) injectivities ranged from 0.39 to 7.9 MMCF/psi. The SPI treatment volumes ranged from 20.7 cubic meters (m{sup 3}, 5460 gallons/ 130 bbls) to 691 m{sup 3} (182,658 gallons/ 4349 bbls). Various size and types of chemical/ water buffers before and after the SPI mix ensured that pre-gelled SPI mix got out into the formation before setting into a gel. SPI gels were found to be 3 to 10 times stronger than any commercially available cross-linked polyacrylamide gels based on Penetrometer and Bulk Gel Shear Testing. Because of SPI’s unique chemistry with CO{sub 2}, both laboratory and later field tests demonstrated that multiple, smaller volume SPI treatments maybe more effective than one single large SPI treatment. CO{sub 2} injectivities in injection well in both fields were reduced by 33 to 70% indicating that injected CO{sub 2} is now going into new zones. This reduction has lasted 1+ year in Field A. Oil production increased and CO{sub 2} production decreased in 5 Field A production wells, offsets to Well #1 injector, for a total of about 2,250 m{sup 3} (600,000 gallons/ 14,250 bbls) of incremental oil production- a $140 / SPI bbl return. Treated marginal production well, Field A Well #2, immediately began showing increased oil production totaling 238 m{sup 3} (63,000 gallons/ 1500 BBLs) over 1 year and an immediate 81% reduced gas-oil ratio.« less
Assessment of the derivative-moment transformation method for unsteady-load estimation
NASA Astrophysics Data System (ADS)
Mohebbian, Ali; Rival, David E.
2012-08-01
It is often difficult, if not impossible, to measure the aerodynamic or hydrodynamic forces on a moving body. For this reason, a classical control-volume technique is typically applied to extract the unsteady forces. However, measuring the acceleration term within the volume of interest using particle image velocimetry (PIV) can be limited by optical access, reflections, as well as shadows. Therefore, in this study, an alternative approach, termed the derivative-moment transformation (DMT) method, is introduced and tested on a synthetic data set produced using numerical simulations. The test case involves the unsteady loading of a flat plate in a two-dimensional, laminar periodic gust. The results suggest that the DMT method can accurately predict the acceleration term so long as appropriate spatial and temporal resolutions are maintained. The major deficiency, which is more dominant for the direction of drag, was found to be the determination of pressure and unsteady terms in the wake. The effect of control-volume size was investigated, suggesting that larger domains work best by minimizing the associated error in the determination of the pressure field. When decreasing the control-volume size, wake vortices, which produce high gradients across the control surfaces, are found to substantially increase the level of error. On the other hand, it was shown that for large control volumes, and with realistic spatial resolution, the accuracy of the DMT method would also suffer. Therefore, a delicate compromise is required when selecting control-volume size in future experiments.
Flight set 360T004 (STS-30) field joint protection system, volume 7
NASA Technical Reports Server (NTRS)
Hale, Elgie
1989-01-01
The Redesigned Solid Rocket Motors (RSRM) of the Space Transportation System have three field joints that are protected by the Joint Protection Systems (JPS). The igniter heater was mounted on the igniter flange. This report documents the performance of the JPS and igniter heaters on the pad and the post-flight condition of the JPS components. All observations that were written up as Squawks and/or Problem Reports are also discussed. The primary heaters performed satisfactorily and maintained the field joint temperatures within the required temperature range. A secondary heater failed Dielectric Withstanding Voltage (DWV) test during the joint closeout prior to launch. This heater was not used, however, since the primary heater functioned properly. Post-test inspection revealed that pin A of the heater power cable was shorted to the connector shell. Design changes have been implemented to resolve the heater power cable problem. All field joint assemblies met all of the performance requirements.
Geandier, G; Thiaudière, D; Randriamazaoro, R N; Chiron, R; Djaziri, S; Lamongie, B; Diot, Y; Le Bourhis, E; Renault, P O; Goudeau, P; Bouaffad, A; Castelnau, O; Faurie, D; Hild, F
2010-10-01
We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains using x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.
Revisiting lab-on-a-chip technology for drug discovery.
Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas
2012-08-01
The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.
NASA Technical Reports Server (NTRS)
Morin, Bruce L.
2010-01-01
Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
NASA Astrophysics Data System (ADS)
Watanabe, T.; Nagata, K.
2016-08-01
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting a value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES-LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.
Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, T., E-mail: watanabe.tomoaki@c.nagoya-u.jp; Nagata, K.
We report on the numerical study of the mixing volume model (MVM) for molecular diffusion in Lagrangian simulations of turbulent mixing problems. The MVM is based on the multi-particle interaction in a finite volume (mixing volume). A priori test of the MVM, based on the direct numerical simulations of planar jets, is conducted in the turbulent region and the interfacial layer between the turbulent and non-turbulent fluids. The results show that the MVM predicts well the mean effects of the molecular diffusion under various numerical and flow parameters. The number of the mixing particles should be large for predicting amore » value of the molecular diffusion term positively correlated to the exact value. The size of the mixing volume relative to the Kolmogorov scale η is important in the performance of the MVM. The scalar transfer across the turbulent/non-turbulent interface is well captured by the MVM especially with the small mixing volume. Furthermore, the MVM with multiple mixing particles is tested in the hybrid implicit large-eddy-simulation/Lagrangian-particle-simulation (LES–LPS) of the planar jet with the characteristic length of the mixing volume of O(100η). Despite the large mixing volume, the MVM works well and decays the scalar variance in a rate close to the reference LES. The statistics in the LPS are very robust to the number of the particles used in the simulations and the computational grid size of the LES. Both in the turbulent core region and the intermittent region, the LPS predicts a scalar field well correlated to the LES.« less
Influence of silica nanospheres on corrosion behavior of magnesium matrix syntactic foam
NASA Astrophysics Data System (ADS)
Qureshi, W.; Kannan, S.; Vincent, S.; Eddine, N. N.; Muhammed, A.; Gupta, M.; Karthikeyan, R.; Badari, V.
2018-04-01
Over the years, the development of Magnesium alloys as biodegradable implants has seen significant advancements. Magnesium based materials tend to provide numerous advantages in the field of biomedical implants over existing materials such as titanium or stainless steel. The present research focuses on corrosive behavior of Magnesium reinforced with different volume percentages of Hollow Silica Nano Spheres (HSNS). These behaviors were tested in two different simulated body fluids (SBF) namely, Hank’s Buffered Saline Solution (HBSS) and Phosphate Buffered Solution (PBS). This corrosion study was done using the method of electrochemical polarization with a three-electrode configuration. Comparative studies were established by testing pure Mg which provided critical information on the effects of the reinforcing material. The HSNS reinforced Mg displayed desirable characteristics after corrosion experiments; increased corrosion resistance was witnessed with higher volume percentage of HSNS.
NASA Technical Reports Server (NTRS)
Serke, David J.; Solheim, Frederick; Ware, Randolph; Politovich, Marcia K.; Brunkow, David; Bowie, Robert
2010-01-01
A narrow-beam (1 degree beamwidth), multi-channel (20 to 30 and 89 GHz), polarized (89 vertical and horizontal) radiometer with full azimuth and elevation scanning capabilities has been built with the purpose of improving the detection of in-flight icing hazards to aircraft in the near airport environment. This goal was achieved by co-locating the radiometer with Colorado State University's CHILL polarized Doppler radar and taking advantage of similar beamwidth and volume scan regiments. In this way, the liquid water path and water vapor measurements derived from the radiometer were merged with CHILL's moment fields to provide diagnoses of water phase and microphysics aloft. The radiometer was field tested at Colorado State University's CHILL radar site near Greeley, Colorado, during the summer of 2009. Instrument design, calibration and initial field testing results are discussed in this paper
High-Gain High-Field Fusion Plasma
Li, Ge
2015-01-01
A Faraday wheel (FW)—an electric generator of constant electrical polarity that produces huge currents—could be implemented in an existing tokamak to study high-gain high-field (HGHF) fusion plasma, such as the Experimental Advanced Superconducting Tokamak (EAST). HGHF plasma can be realized in EAST by updating its pulsed-power system to compress plasma in two steps by induction fields; high gains of the Lawson trinity parameter and fusion power are both predicted by formulating the HGHF plasma. Both gain rates are faster than the decrease rate of the plasma volume. The formulation is checked by earlier ATC tests. Good agreement between theory and tests indicates that scaling to over 10 T at EAST may be possible by two-step compressions with a compression ratio of the minor radius of up to 3. These results point to a quick new path of fusion plasma study, i.e., simulating the Sun by EAST. PMID:26507314
NASA Technical Reports Server (NTRS)
Chang, A. T. C.
1985-01-01
Microwave data collected by field experiments over Vermont and Hokkaido and Nimbus-7 SMMR over North Dakota and Hokkaido were studied. The measured 37 GHz brightness temperatures show considerable effect of volume scattering by snow grains. The 37 GHz brightness for a new snowpack with average grain radius of 0.25 mm is generally about 40 K higher than the naturally compacted pack with average grain radius of 0.4 mm. The scattering effect is much less distinct for the 6.6 GHz. However, the layering effect is much stronger at the longer wavelength. For 10.7 and 18 GHz, the effect of layering and scattering vary due to different combinations of internal snow grain distribution and layering structures. Over the Hokkaido test site, the SMMR data are too coarse for the snow field. A better spatial resolution is required to study these snow fields.
Patel, Kunal S.; Kazam, Jacob; Tsiouris, Apostolos J.; Anand, Vijay K.; Schwartz, Theodore H.
2014-01-01
Objective Controversy exists over the utility of early post-operative magnetic resonance imaging (MRI) after transsphenoidal pituitary surgery for macroadenomas. We investigate whether valuable information can be derived from current higher resolution scans. Methods Volumetric MRI scans were obtained in the early (<10 days) and late (>30 days) post-operative periods in a series of patients undergoing transsphenoidal pituitary surgery. The volume of the residual tumor, resection cavity, and corresponding visual field tests were recorded at each time point. Statistical analyses of changes in tumor volume and cavity size were calculated using the late MRI as the gold standard. Results 40 patients met the inclusion criteria. Pre-operative tumor volume averaged 8.8 cm3. Early postoperative assessment of average residual tumor volume (1.18 cm3) was quite accurate and did not differ statistically from late post-operative volume (1.23 cm3, p=.64), indicating the utility of early scans to measure residual tumor. Early scans were 100% sensitive and 91% specific for predicting ≥ 98% resection (p<.001, Fisher’s exact test). The average percent decrease in cavity volume from pre-operative MRI (tumor volume) to early post-operative imaging was 45% with decreases in all but 3 patients. There was no correlation between the size of the early cavity and the visual outcome. Conclusions Early high resolution volumetric MRI is valuable in determining the presence or absence of residual tumor. Cavity volume almost always decreases after surgery and a lack of decrease should alert the surgeon to possible persistent compression of the optic apparatus that may warrant re-operation. PMID:25045791
QuEST: Qualifying Environmentally Sustainable Technologies, Volume 5
NASA Technical Reports Server (NTRS)
Lewis, Pattie
2010-01-01
This edition of the QuEST newsletter contains brief articles that discuss the NASA Technology Evaluation for Environmental Risk Mitigation (TEERM) program, and the importance of collaboration, efforts in materials management and substitution for coatings for launch structures, Low volatile organic compound (VOC) Coatings Field Testing, Non-Chrome Coating Systems, Life Cycle Corrosion Testing, Lead-Free Electronics Testing and Corn Based Depainting and efforts in Pollution Control in the area of Hypergolic Propellant Destruction Evaluation, efforts in development of alternative energy in particular Hydrogen Sensors, Energy and Water Management, and efforts in remediation in the removal of Polychlorinated Biphenyl (PCB) contamination
Solid earth science in the 1990s. Volume 2: Panel reports
NASA Technical Reports Server (NTRS)
1991-01-01
This is the second volume of a three-volume report. Volume 2, Panel Reports, outlines a plan for solid Earth science research for the next decade. The science panels addressed the following fields: plate motion and deformation, lithospheric structure and evolution, volcanology, Earth structure and dynamics, Earth rotation and reference frames, and geopotential fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-01-01
Major accomplishments during the second quarter of 1984 were completion of the Diaphragm Separation Seal clear liquid testing, and initiation of Phase III Field Testing. Diaphragm operational testing was conducted on a clear water test loop. The test goals were to ensure; mechanical reliability of the Diaphragm Seal, safe operation with simulated component failure, and proper operation of the Diaphragm Buffer Volume Control System. This latter system is essential in controlling the phasing of the diaphragm with its driving plunger. These tests were completed successfully. All operational problems were solved. However, it must be emphasized that the Diaphragm Seal wouldmore » be damaged by allowing the pump to operate in a cavitating condition for an extended period of time. A change in the Field Test phase of the program was made regarding choice of field test site. There is no operating Syn-Fuel pilot plant capable of inexpensively producing the slurry stream required for the reciprocating pump testing. The Field Tests will now be conducted by first testing the prototype pump and separation seals in an ambient temperature sand water slurry. This will determine resistence to abrasive wear and determine any operation problems at pressure over a lengthy period of time. After successful conclusion of these tests the pump and seals will be operated with a high temperature oil, but without solids, to identify any problems associated with thermal gradients, thermal shock and differential growth. After successful completion of the high temperature clean oil tests the pump will be deemed ready for in-line installation at a designated Syn-Fuel pilot plant. The above approach avoids the expense and complications of a separate hot slurry test loop. It also reduces risk of operational problems while in-line at the pilot plant. 5 figs.« less
Airborne rotary air separator study
NASA Technical Reports Server (NTRS)
Acharya, A.; Gottzmann, C. F.; Nowobilski, J. J.
1990-01-01
Several air breathing propulsion concepts for future earth-to-orbit transport vehicles utilize air collection and enrichment, and subsequent storage of liquid oxygen for later use in the vehicle emission. Work performed during the 1960's established the feasibility of substantially reducing weight and volume of a distillation type air separator system by operating the distillation elements in high 'g' fields obtained by rotating the separator assembly. This contract studied the capability test and hydraulic behavior of a novel structured or ordered distillation packing in a rotating device using air and water. Pressure drop and flood points were measured for different air and water flow rates in gravitational fields of up to 700 g. Behavior of the packing follows the correlations previously derived from tests at normal gravity. The novel ordered packing can take the place of trays in a rotating air separation column with the promise of substantial reduction in pressure drop, volume, and system weight. The results obtained in the program are used to predict design and performance of rotary separators for air collection and enrichment systems of interest for past and present concepts of air breathing propulsion (single or two-stage to orbit) systems.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
NASA Technical Reports Server (NTRS)
Jaeck, C. L.
1976-01-01
A model scale flight effects test was conducted in the 40 by 80 foot wind tunnel to investigate the effect of aircraft forward speed on single flow jet noise characteristics. The models tested included a 15.24 cm baseline round convergent nozzle, a 20-lobe and annular nozzle with and without lined ejector shroud, and a 57-tube nozzle with a lined ejector shroud. Nozzle operating conditions covered jet velocities from 412 to 640 m/s at a total temperature of 844 K. Wind tunnel speeds were varied from near zero to 91.5 m/s. Measurements were analyzed to (1) determine apparent jet noise source location including effects of ambient velocity; (2) verify a technique for extrapolating near field jet noise measurements into the far field; (3) determine flight effects in the near and far field for baseline and suppressor nozzles; and (4) establish the wind tunnel as a means of accurately defining flight effects for model nozzles and full scale engines.
JT90 Ceramic Outer Air Seal System Refinement Program, Phase 2
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1982-01-01
The sprayed ceramic gas turbine outer air seal system was tested in two JT9D engines to substantiate the abradability and durability of the seals. Of particular significance was that one of the tests, a 150 hour 1000 cycle endurance program at nominal JT9D operating conditions, was completed with minimal effect on the seals and received Federal Aviation Administration cognizance with respect to potential field service use by the airlines. The other engine test completed 1825 endurance cycles at severe operating conditions and no burn through or other serious defects in the structural integrity of a seal segment was observed. These test results combined with other Pratt and Whitney Aircraft engine tests substantiate the potential of the ceramic outer air seal system to attain the durability goal of 50000 hour engine operating capability. Both engine tests subjected the seals to intentional blade rubs and demonstrated good abradability with volume wear ratios greater than 100, far exceeding the design goal of 10. The improved volume wear ratio will allow the turbine tip clearance to be reduced, thereby resulting in an estimated thrust specific fuel consumption improvement of 0.3 percent.
Field and laboratory comparison of PM10 instruments in high winds
NASA Astrophysics Data System (ADS)
Sharratt, Brenton; Pi, Huawei
2018-06-01
Instruments capable of measuring PM10 (particulate matter ≤10 μm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentrations above eroding soil surfaces was tested during high wind events at field sites in the Columbia Plateau and inside a wind tunnel. Comparisons among the Big Spring Number Eight (BSNE) sampler, DustTrak monitor, E-sampler, High-Volume sampler, and Tapered Element Oscillating Microbalance (TEOM) monitor were made at field sites during nine wind erosion events and inside a wind tunnel at two wind speeds (7 and 12 m s-1) and two ambient PM10 concentrations (2 and 50 mg m-3). PM10 concentrations were similar for the High-Volume sampler and TEOM monitor as well as for the BSNE samplers and DustTrak monitors but higher for the High-Volume sampler and TEOM monitor than the E-sampler during field erosion events. Based upon wind tunnel experiments, the TEOM monitor measured the highest PM10 concentration while the DustTrak monitor typically measured the lowest PM10 concentration as compared with other instruments. In addition, PM10 concentration appeared to lower for all instruments at a wind speed of 12 as compared with 7 m s-1 inside the wind tunnel. Differences in the performance of instruments in measuring PM10 concentration poses risks in comparing PM10 concentration among different instrument types or using multiple instrument types to jointly measure concentrations in the field or laboratory or even the same instrument type subject to different wind speeds.
Shrink-induced sorting using integrated nanoscale magnetic traps.
Nawarathna, Dharmakeerthi; Norouzi, Nazila; McLane, Jolie; Sharma, Himanshu; Sharac, Nicholas; Grant, Ted; Chen, Aaron; Strayer, Scott; Ragan, Regina; Khine, Michelle
2013-02-11
We present a plastic microfluidic device with integrated nanoscale magnetic traps (NSMTs) that separates magnetic from non-magnetic beads with high purity and throughput, and unprecedented enrichments. Numerical simulations indicate significantly higher localized magnetic field gradients than previously reported. We demonstrated >20 000-fold enrichment for 0.001% magnetic bead mixtures. Since we achieve high purity at all flow-rates tested, this is a robust, rapid, portable, and simple solution to sort target species from small volumes amenable for point-of-care applications. We used the NSMT in a 96 well format to extract DNA from small sample volumes for quantitative polymerase chain reaction (qPCR).
NASA Technical Reports Server (NTRS)
Falkowski, Paul G.; Behrenfeld, Michael J.; Esaias, Wayne E.; Balch, William; Campbell, Janet W.; Iverson, Richard L.; Kiefer, Dale A.; Morel, Andre; Yoder, James A.; Hooker, Stanford B. (Editor);
1998-01-01
Two issues regarding primary productivity, as it pertains to the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Program and the National Aeronautics and Space Administration (NASA) Mission to Planet Earth (MTPE) are presented in this volume. Chapter 1 describes the development of a science plan for deriving primary production for the world ocean using satellite measurements, by the Ocean Primary Productivity Working Group (OPPWG). Chapter 2 presents discussions by the same group, of algorithm classification, algorithm parameterization and data availability, algorithm testing and validation, and the benefits of a consensus primary productivity algorithm.
NASA Astrophysics Data System (ADS)
Otake, Y.; Murphy, R. J.; Grupp, R. B.; Sato, Y.; Taylor, R. H.; Armand, M.
2015-03-01
A robust atlas-to-subject registration using a statistical deformation model (SDM) is presented. The SDM uses statistics of voxel-wise displacement learned from pre-computed deformation vectors of a training dataset. This allows an atlas instance to be directly translated into an intensity volume and compared with a patient's intensity volume. Rigid and nonrigid transformation parameters were simultaneously optimized via the Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES), with image similarity used as the objective function. The algorithm was tested on CT volumes of the pelvis from 55 female subjects. A performance comparison of the CMA-ES and Nelder-Mead downhill simplex optimization algorithms with the mutual information and normalized cross correlation similarity metrics was conducted. Simulation studies using synthetic subjects were performed, as well as leave-one-out cross validation studies. Both studies suggested that mutual information and CMA-ES achieved the best performance. The leave-one-out test demonstrated 4.13 mm error with respect to the true displacement field, and 26,102 function evaluations in 180 seconds, on average.
Coherence Volume of an Optical Wave Field with Broad Frequency and Angular Spectra
NASA Astrophysics Data System (ADS)
Lyakin, D. V.; Mysina, N. Yu.; Ryabukho, V. P.
2018-03-01
We consider the sizes of a region in a three-dimensional space in which an optical wave field excites mutually coherent perturbations. We discuss the conditions under which the length of this region along the direction of propagation of the wave field and, correspondingly, its volume are determined either by the width of the frequency spectrum of the field or by the width of its angular spectrum, or by the parameters of these spectra simultaneously. We obtain expressions for estimating extremely small values of the coherence volume of the fields with a broad frequency spectrum and an extremely broad angular spectrum. Using the notion of instantaneous speckle-modulation of the wave field, we give a physical interpretation to the occurrence of a limited coherence volume of the field. The length of the spatiotemporal coherence region in which mutually coherent perturbations occur at different times is determined. The coherence volume of a wave field that illuminates an object in high-resolution microscopy with frequency broadband light is considered. The conditions for the dominant influence of the angular or frequency spectra on the longitudinal length of the coherence region are given, and the conditions for the influence of the frequency spectrum width on the transverse coherence of the wave field are examined. We show that, when using fields with broad and ultrabroad spectra in high-resolution microscopy, this influence should be taken into account.
nZVI injection into variably saturated soils: Field and modeling study
NASA Astrophysics Data System (ADS)
Chowdhury, Ahmed I. A.; Krol, Magdalena M.; Kocur, Christopher M.; Boparai, Hardiljeet K.; Weber, Kela P.; Sleep, Brent E.; O'Carroll, Denis M.
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142 L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications.
R&D Progress of HTS Magnet Project for Ultrahigh-field MRI
NASA Astrophysics Data System (ADS)
Tosaka, Taizo; Miyazaki, Hiroshi; Iwai, Sadanori; Otani, Yasumi; Takahashi, Masahiko; Tasaki, Kenji; Nomura, Shunji; Kurusu, Tsutomu; Ueda, Hiroshi; Noguchi, So; Ishiyama, Atsushi; Urayama, Shinichi; Fukuyama, Hidenao
An R&D project on high-temperature superconducting (HTS) magnets using rare-earth Ba2Cu3O7 (REBCO) wires was started in 2013. The project objective is to investigate the feasibility of adapting REBCO magnets to ultrahigh field (UHF) magnetic resonance imaging (MRI) systems. REBCO wires are promising components for UHF-MRI magnets because of their superior superconducting and mechanical properties, which make them smaller and lighter than conventional ones. Moreover, REBCO magnets can be cooled by the conduction-cooling method, making liquid helium unnecessary. In the past two years, some test coils and model magnets have been fabricated and tested. This year is the final year of the project. The goals of the project are: (1) to generate a 9.4 T magnetic field with a small test coil, (2) to generate a homogeneous magnetic field in a 200 mm diameter spherical volume with a 1.5 T model magnet, and (3) to perform imaging with the 1.5 T model magnet. In this paper, the progress of this R&D is described. The knowledge gained through these R&D results will be reflected in the design of 9.4 T MRI magnets for brain and whole body imaging.
Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott
2008-01-01
Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be produced through exploratory drilling programs; (2) the tools for gas hydrate detection and characterisation from remote sensing data; (3) the details of gas hydrate reservoir production behaviour through additional, well-monitored and longer duration field tests and (4) the understanding of the potential environmental impacts of gas hydrate resource development. The results of future production tests, in the context of varying market and energy supply conditions around the globe, will be the key to determine the ultimate timing and scale of the commercial production of natural gas from gas hydrates.
A novel simulation theory and model system for multi-field coupling pipe-flow system
NASA Astrophysics Data System (ADS)
Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu
2017-09-01
Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.
NASA Astrophysics Data System (ADS)
Wróżyński, Rafał; Pyszny, Krzysztof; Sojka, Mariusz; Przybyła, Czesław; Murat-Błażejewska, Sadżide
2017-06-01
The article describes how the Structure-from-Motion (SfM) method can be used to calculate the volume of anthropogenic microtopography. In the proposed workflow, data is obtained using mass-market devices such as a compact camera (Canon G9) and a smartphone (iPhone5). The volume is computed using free open source software (VisualSFMv0.5.23, CMPMVSv0.6.0., MeshLab) on a PCclass computer. The input data is acquired from video frames. To verify the method laboratory tests on the embankment of a known volume has been carried out. Models of the test embankment were built using two independent measurements made with those two devices. No significant differences were found between the models in a comparative analysis. The volumes of the models differed from the actual volume just by 0.7‰ and 2‰. After a successful laboratory verification, field measurements were carried out in the same way. While building the model from the data acquired with a smartphone, it was observed that a series of frames, approximately 14% of all the frames, was rejected. The missing frames caused the point cloud to be less dense in the place where they had been rejected. This affected the model's volume differed from the volume acquired with a camera by 7%. In order to improve the homogeneity, the frame extraction frequency was increased in the place where frames have been previously missing. A uniform model was thereby obtained with point cloud density evenly distributed. There was a 1.5% difference between the embankment's volume and the volume calculated from the camera-recorded video. The presented method permits the number of input frames to be increased and the model's accuracy to be enhanced without making an additional measurement, which may not be possible in the case of temporary features.
An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.
Jamshidi, Rashid; Brenner, Gunther
2014-01-01
Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.
Eich, Hans Theodor; Müller, Rolf-Peter; Engenhart-Cabillic, Rita; Lukas, Peter; Schmidberger, Heinz; Staar, Susanne; Willich, Normann
2008-08-01
Radiotherapy of Hodgkin's Lymphoma has evolved from extended-field to involved-field (IF) radiotherapy reducing toxicity whilst maintaining high cure rates. Recent publications recommend further reduction in the radiation field to involved-node (IN) radiotherapy; however, this concept has never been tested in a randomized trial. The German Hodgkin Study Group aims to compare it with standard IF radiotherapy in their future HD17 trial. ALL patients must be examined by the radiation oncologist before the start of chemotherapy. At that time, patients must have complete staging CT scans. For patients with IN radiotherapy, a radiation planning CT before and after chemotherapy with patients in the treatment position is recommended. Fusion techniques, allowing the overlapping of the pre- and postchemotherapy CT scans, should be used. Usage of PET-CT scans with patients in the treatment position is recommended, whenever possible. The clinical target volume encompasses the initial volume of the Lymph node(s) before chemotherapy and incorporates the initial Location and extent of the disease taking the displacement of the normal tissues into account. The margin of the planning target volume should be 2 cm in axial and 3 cm in craniocaudal direction. If necessary, it can be reduced to 1-1.5 cm. To minimize Lung and cardiac toxicity, the target definition in the mediastinum is different. The concept of IN radiotherapy has been proposed as a means to further improve the therapeutic ratio by reducing the risk of radiation-induced toxicity, including second malignancies. Field sizes wiLL further decrease compared to IF radiotherapy.
Calibration of Wide-Field Deconvolution Microscopy for Quantitative Fluorescence Imaging
Lee, Ji-Sook; Wee, Tse-Luen (Erika); Brown, Claire M.
2014-01-01
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure. PMID:24688321
Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.
2016-01-01
Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the ‘flasher’ and the ‘inverted-cone fold’, for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver’s side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes. PMID:27703707
NASA Astrophysics Data System (ADS)
Bruton, Jared T.; Nelson, Todd G.; Zimmerman, Trent K.; Fernelius, Janette D.; Magleby, Spencer P.; Howell, Larry L.
2016-09-01
Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the `flasher' and the `inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.
Bruton, Jared T; Nelson, Todd G; Zimmerman, Trent K; Fernelius, Janette D; Magleby, Spencer P; Howell, Larry L
2016-09-01
Packing soft-sheet materials of approximately zero bending stiffness using Soft Origami (origami patterns applied to soft-sheet materials) into cylindrical volumes and their deployment via mechanisms or internal pressure (inflation) is of interest in fields including automobile airbags, deployable heart stents, inflatable space habitats, and dirigible and parachute packing. This paper explores twofold patterns, the 'flasher' and the 'inverted-cone fold', for packing soft-sheet materials into cylindrical volumes. Two initial packing methods and mechanisms are examined for each of the flasher and inverted-cone fold patterns. An application to driver's side automobile airbags is performed, and deployment tests are completed to compare the influence of packing method and origami pattern on deployment performance. Following deployment tests, two additional packing methods for the inverted-cone fold pattern are explored and applied to automobile airbags. It is shown that modifying the packing method (using different methods to impose the same base pattern on the soft-sheet material) can lead to different deployment performance. In total, two origami patterns and six packing methods are examined, and the benefits of using Soft Origami patterns and packing methods are discussed. Soft Origami is presented as a viable method for efficiently packing soft-sheet materials into cylindrical volumes.
Growth history of oil reserves in major California oil fields during the twentieth century
Tennyson, Marilyn E.
2005-01-01
Oil reserves in 12 of California's 52 giant fields (fields with estimated recovery > 100 million barrels of oil) have continued to appreciate well past the age range at which most fields cease to show significant increases in ultimate recovery. Most of these fields were discovered between 1890 and 1920 and grew to volumes greater than 500 million barrels in their first two decades. Growth of reserves in these fields accelerated in th e1950s and 1960s and is mostly explained by application of secondary and tertiary recovery technicques, primarily waterflooding and thermal recovery. The remaining three-fourths of California's giant fields show a pattern of growth in which fields cease to grow significantly by 20-30 years following recovery. virtually all of these fields have estimated ultimate recoveries less than about 500 million barrels and most are in the 100-200 million barrel range. Three of six offshore giant fields, all discovered between 1966 and 1981, have shown decreases in their estimated ultimate sizes within about the first decade after production began, presumably because production volumes ailed to match initial projections. The data suggest that: 1. Only fields that attain an estimated ultimate size of several hundred million barrels shortly after discovery and have geologic characterisics that make them suceptible to advanced recovery techniques are likely to show substantial late growth. 2. Offshore fields are less likely to show significant growth, probably because projections based on modern seismic reflection and reservoir test data are unlikely to underestimate the volume of oil in the field. 3. Secondary and tertiary recovery programs rather than field extensions or new pool discoveries are responsible for most of the significant growth of reserves in California. 4. field size data collected ove rmany decades provide a more comprehensive context for inferring reasons for reserve appreciation than shorter data series such as the Oil and Gas Integrated Field file (OGIFF) from the U.S. Department of Energy's Energy Information Administration (EIA). 5. Efforts to project future growth in California fields, and perhaps fields in other regions, should focus on evaulating the potential for enhanced recovery in fields with current estimated ultimate recoveries of about 250-500 million barrels. 6. By analogy with oil, attempts to project growth in gas reservoirs, in California and perhaps elsewhere, should focus on larger fields with lower permeability reservoirs where advances in recovery technology, such as perhaps horizontal drilling, are more likely to add substantial reserves.
1996-03-01
NATIONAL GUARD GENERAL BILLY MITCHELL FIELD AIR NATIONAL GUARD BASE MILWAUKEE, WISCONSIN MARCH 1996 ______ 19960509 134 HQ ANG/CEVR ANDREWS AFB...Report for IRP Site No. 4, Wisconsin Air National Guard, 128th Air Refueling Wing, General Billy Mitchell Field, Milwaukee, Wisconsin - Volume III...Wisconsin Air National Guard, 128th Air Refueling Wing, General Billy Mitchell Field, Milwaukee, Wisconsin, Volume III - Appendices D-I. This is the
21 CFR 862.1130 - Blood volume test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood volume test system. 862.1130 Section 862....1130 Blood volume test system. (a) Identification. A blood volume test system is a device intended to measure the circulating blood volume. Blood volume measurements are used in the diagnosis and treatment of...
NASA Technical Reports Server (NTRS)
Clemons, A.; Hehmann, H.; Radecki, K.
1973-01-01
Acoustic treatment was developed for jet engine turbine noise suppression. Acoustic impedance and duct transmission loss measurements were made for various suppression systems. An environmental compatibility study on several material types having suppression characteristics is presented. Two sets of engine hardware were designed and are described along with engine test results which include probe, farfield, near field, and acoustic directional array data. Comparisons of the expected and the measured suppression levels are given as well as a discussion of test results and design techniques.
1982-03-01
2) after Marsland and Randolph (1977) represents the peak un- drained shear strength. Torvane tests were also run in the field on Shelby tube ...The laboratory test results were characterized in terms of: 4 a. stratigraphy; b. stress state; c. undrained, drained and residual shear strengths; d...in Figure 3 as P- 1. A Shelby tube could not be retrieved at 14-ft depth in Boring B-2. A new boring (Boring B-2A) was made 6 in. further away from
1951-02-01
they were ob- served at a given pressure drop in "cold" testing with water or unreacted propellants. heat-transfer considerations and the location of... water as a coolant in the main chamber. The Winkler injector was used.on a test unit developing a thrust of 220 lb and an exhaust ve- locity of 6370 ft... water . Provision was made for an igniter in the center of the injector. The relatively high performance reported for this unit does not seem to be
Army Logistician. Volume 40, Issue 4, July-August 2008
2008-08-01
has industrial-grade connectors. It has no additional electromagnetic interference ( EMI ) shielding and no tests for EMI , no internal relay for...Transit Visibility During Operations Desert Shield and Desert Storm, thousands of containers had to be opened, inventoried, resealed, and reinserted...900-gallon “Camel” water trailers and 5-gallon water jugs for resupplying company and platoon locations. Field feeding. Each FSC will require an
Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight
2016-01-01
After exposure in the field and laboratory soil block culture testing, the void content of woodâplastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)
Omega Hawaii Antenna System: Modification and Validation Tests. Volume 2. Data Sheets.
1979-10-19
a benchmark because of potential hotel construction . DS 5-1 DATA SHEET 5 (DS-5) RADIO FIELD INTENSITY MEASUREMENTS OMEGA STATION: HAWAII SITE NO. C 1A...27.5 1008 11.05 26.5 1007 Ft 11.80 28.1 COMMENT Not considered for a benchmark because of potential hotel construction . DS 5-5 DATA SHEET 5 (DS-5) RADIO
Perry Johnson Laboratory Accreditation, Inc. (PJLA)
2011-03-28
Accreditation Body, established in 1999, located in Troy, Michigan • Current Accreditation Programs– ISO / IEC 17025 :2005 and DoD ELAP, EPA NLLAP...Upcoming Accreditation Programs–Field Site Sampling & Measurement Organizations (FSMO)–TNI Volume 1 and 2, Reference Material Producers– ISO Guide...Testing/Calibration – 17025 -Testing–120 – 17025 -Calibration–191 – 17025 & DoD ELAP–14 (5 Pending) – 17025 and EPA NLLAP–1 – Pending
ERIC Educational Resources Information Center
Thompson, Barbara; Baumann, Paul
2011-01-01
Whether referred to as "pay-for-performance" (PFP) or "merit pay," attempting to tie educators' compensation to their performance in the classroom and students' performance on high-stakes tests has been a key component of many educator compensation reform efforts in the last five years. This issue looks at PFP systems broadly…
Second Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, volume 1
NASA Technical Reports Server (NTRS)
Giampapa, M. S. (Editor); Golub, L. (Editor)
1981-01-01
Solar and stellar atmospheric phenomena and their fundamental physical properties such as gravity, effective temperature and rotation rate, which provides the range in parameter space required to test various theoretical models were investigated. The similarity between solar activity and stellar activity is documented. Some of the topics discussed are: atmospheric structure, magnetic fields, solar and stellar activity, and evolution.
A Five-Year Study of the First Edition of the Core-Plus Mathematics Curriculum
ERIC Educational Resources Information Center
Schoen, Harold, Ed.; Ziebarth, Steven W., Ed.; Hirsch, Christian R., Ed.; BrckaLorenz, Allison, Ed.
2010-01-01
The study reported in this volume adds to the growing body of evaluation studies that focus on the use of NSF-funded Standards-based high school mathematics curricula. Most previous evaluations have studied the impact of field-test versions of a curriculum. Since these innovative curricula were so new at the time of many of these studies, students…
NASA Astrophysics Data System (ADS)
Altschul, Brett D.
2007-06-01
All the physics we observe in our world is underlain by special relativity, a theory that has survived for more than a hundred years, in many respects completely intact. Yet despite its status as the most stringently tested theory in all of physics, special relativity is still frequently questioned. In the last decade and a half, many scientists have come to believe that special relativity, as Einstein formulated it, will need to be modified to accommodate a quantum theory of gravity. {\\it Special Relativity: Will it Survive the Next 101 Years?} is a volume intended to introduce the reader to this new and still slightly controversial area of research. The book is divided into four parts. The first part is essentially historical. It consists of an essay discussing Einstein's work in the context of contemporary technological developments and a amusing note by R W P Drever on a precision Lorentz test that he performed literally in his backyard. These set the stage for the more modern material that follows. Part II discusses the theory of relativity and its mathematical foundations, from completely modern perspectives. There is much here that may be new even for experts on special relativity, and a significant level of mathematical sophistication on the part of the reader is assumed. A number of the lectures delve into the crucial question of how special relativity and its generalizations can be combined with quantum mechanics. The third part discusses theoretical models of Lorentz violation, and all the important paradigms that appear in the current literature are considered. These include the standard model extension (an effective field theory), modified dispersion relations and 'double special relativity', and noncommutative geometry. These lectures generally delve into less detail than those in part II; the focus is on helping the reader digest the new principles that must arise in theories without Lorentz symmetry. The final part of the volume covers current experimental tests of special relativity, especially state-of-the-art versions of 'classic' tests of rotation and boost invariance. These include Michelson-Morley experiments with high-finesse optical resonators, two-species atomic clock comparisons, and direct measurements of Doppler shifts in the radiation of moving atoms. If there is a weakness in the overall presentation, it lies in the selection of material covered. {\\it Special Relativity} is more of a volume of conference proceedings than a truly cohesive set of lecture notes. This is most evident in the section on experimental tests of Lorentz invariance, which includes contributions from three different experimental groups working on optical resonator measurements. Impressive as these experiments are, this repetitive coverage is not necessary. And at the same time, there is no detailed coverage of astrophysical tests of Lorentz invariance, even though the tightest absolute bounds on deviations from relativity come from astrophysical polarimetry. However, taken as a whole, the volume presents an excellent survey of current research on Lorentz symmetry. Most of the book should be accessible to graduate students and researchers who are interested in the field but with little previous exposure to it. However, the mathematical level does vary quite a bit from one article to the next; especially in part II, facility with a fair number of mathematical physics concepts may be required. The coverage is broad enough that even an active researcher working on special relativity and possible modifications thereto will almost certainly find new material in this volume, and most of the authors provide abundant references, which should be quite valuable in a field with as many counterintuitive features as Lorentz violation research.
Use of Digital Volume Correlation to Measure Deformation of Shale Using Natural Markers
NASA Astrophysics Data System (ADS)
Dewers, T. A.; Quintana, E.; Ingraham, M. D.; Jacques, C. L.
2016-12-01
We apply digital volume correlation (DVC) to interpreting deformation as influenced by shale heterogeneity. An extension of digital image correlation, DVC uses 3D images (CT Scans) of a sample before, during and after loading to determine deformation in terms of a 3D strain map. The technology tracks the deformation of high and low density regions within the sample to determine full field 3D strains within the sample. High pyrite shales (Woodford and Marcellus in this study) are being used as the high density pyrite serves as an excellent point to track in the volume correlation. Preliminary results indicate that this technology is promising for measuring true volume strains, strain localization, and strain portioning by microlithofacies within specimens during testing. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dorin, Thomas; Donnadieu, Patricia; Chaix, Jean-Marc; Lefebvre, Williams; Geuser, Frédéric De; Deschamps, Alexis
2015-11-01
Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.
2017-08-01
Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.
Digital 3D holographic display using scattering layers for enhanced viewing angle and image size
NASA Astrophysics Data System (ADS)
Yu, Hyeonseung; Lee, KyeoReh; Park, Jongchan; Park, YongKeun
2017-05-01
In digital 3D holographic displays, the generation of realistic 3D images has been hindered by limited viewing angle and image size. Here we demonstrate a digital 3D holographic display using volume speckle fields produced by scattering layers in which both the viewing angle and the image size are greatly enhanced. Although volume speckle fields exhibit random distributions, the transmitted speckle fields have a linear and deterministic relationship with the input field. By modulating the incident wavefront with a digital micro-mirror device, volume speckle patterns are controlled to generate 3D images of micrometer-size optical foci with 35° viewing angle in a volume of 2 cm × 2 cm × 2 cm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geandier, G.; Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, 91192 Gif sur Yvette; LPMTM, UPR 9001 CNRS, Universite Paris-Nord, 93430 Villetaneuse
2010-10-15
We have developed on the DIFFABS-SOLEIL beamline a biaxial tensile machine working in the synchrotron environment for in situ diffraction characterization of thin polycrystalline films mechanical response. The machine has been designed to test compliant substrates coated by the studied films under controlled, applied strain field. Technological challenges comprise the sample design including fixation of the substrate ends, the related generation of a uniform strain field in the studied (central) volume, and the operations from the beamline pilot. Preliminary tests on 150 nm thick W films deposited onto polyimide cruciform substrates are presented. The obtained results for applied strains usingmore » x-ray diffraction and digital image correlation methods clearly show the full potentialities of this new setup.« less
Environmental Validation of Legionella Control in a VHA Facility Water System.
Jinadatha, Chetan; Stock, Eileen M; Miller, Steve E; McCoy, William F
2018-03-01
OBJECTIVES We conducted this study to determine what sample volume, concentration, and limit of detection (LOD) are adequate for environmental validation of Legionella control. We also sought to determine whether time required to obtain culture results can be reduced compared to spread-plate culture method. We also assessed whether polymerase chain reaction (PCR) and in-field total heterotrophic aerobic bacteria (THAB) counts are reliable indicators of Legionella in water samples from buildings. DESIGN Comparative Legionella screening and diagnostics study for environmental validation of a healthcare building water system. SETTING Veterans Health Administration (VHA) facility water system in central Texas. METHODS We analyzed 50 water samples (26 hot, 24 cold) from 40 sinks and 10 showers using spread-plate cultures (International Standards Organization [ISO] 11731) on samples shipped overnight to the analytical lab. In-field, on-site cultures were obtained using the PVT (Phigenics Validation Test) culture dipslide-format sampler. A PCR assay for genus-level Legionella was performed on every sample. RESULTS No practical differences regardless of sample volume filtered were observed. Larger sample volumes yielded more detections of Legionella. No statistically significant differences at the 1 colony-forming unit (CFU)/mL or 10 CFU/mL LOD were observed. Approximately 75% less time was required when cultures were started in the field. The PCR results provided an early warning, which was confirmed by spread-plate cultures. The THAB results did not correlate with Legionella status. CONCLUSIONS For environmental validation at this facility, we confirmed that (1) 100 mL sample volumes were adequate, (2) 10× concentrations were adequate, (3) 10 CFU/mL LOD was adequate, (4) in-field cultures reliably reduced time to get results by 75%, (5) PCR provided a reliable early warning, and (6) THAB was not predictive of Legionella results. Infect Control Hosp Epidemiol 2018;39:259-266.
Theoretical Analysis of Pore Pressure Diffusion in Some Basic Rock Mechanics Experiments
NASA Astrophysics Data System (ADS)
Braun, Philipp; Ghabezloo, Siavash; Delage, Pierre; Sulem, Jean; Conil, Nathalie
2018-05-01
Non-homogeneity of the pore pressure field in a specimen is an issue for characterization of the thermo-poromechanical behaviour of low-permeability geomaterials, as in the case of the Callovo-Oxfordian claystone ( k < 10-20 m2), a possible host rock for deep radioactive waste disposal in France. In tests with drained boundary conditions, excess pore pressure can result in significant errors in the measurement of material parameters. Analytical solutions are presented for the change in time of the pore pressure field in a specimen submitted to various loading paths and different rates. The pore pressure field in mechanical and thermal undrained tests is simulated with a 1D finite difference model taking into account the dead volume of the drainage system of the triaxial cell connected to the specimen. These solutions provide a simple and efficient tool for the estimation of the conditions that must hold for reliable determination of material parameters and for optimization of various test conditions to minimize the experimental duration, while keeping the measurement errors at an acceptable level.
A reexamination of soil textural effects on microwave emission and backscattering
NASA Technical Reports Server (NTRS)
Dobson, M. C.; Kouyate, F.; Ulaby, F. T.
1984-01-01
Microwave frequency measurements of moist soil dielectric properties are noted to challenge the validity of percent-of-field-capacity as a moisture indicator that is independent of soil texture in terms of microwave sensitivity. In arriving at this view, gravimetric, volumetric, and percent-of-field-capacity were tested for their ability to reduce dielectric behavior divergence between soil textures at 1.4 and 5.0 GHz. The most congruent dielectric behavior between soil textures is found to occur when soil moisture is expressed on a volumetric basis that is proportional to the number of water dipoles/unit volume. An inadequate characterization of soil bulk density in the field, combined with the dependency of bulk density on water retention at field capacity, offers the most plausible explanation for the earlier conclusions.
NASA Astrophysics Data System (ADS)
Mo, Cheol Hoon; Lee, Gwang H.; Jeoung, Taek Ju; Ko, Kyung Nam; Kim, Ki Soo; Park, Kyung-sick; Shin, Chang Hoon
2018-04-01
Prospective shale plays require a combination of good reservoir and completion qualities. Total organic carbon (TOC) is an important reservoir quality and brittleness is the most critical condition for completion quality. We analyzed seismically-derived brittleness and TOC to investigate the prospectivity of the Horn River Group shale (the Muskwa, Otter Park, Evie shales) of a shale-gas field in the western Horn River Basin, British Columbia, Canada. We used the λρ-μρ brittleness template, constructed from the mineralogy-based brittleness index (MBI) and elastic logs from two wells, to convert the λρ and μρ volumes from prestack seismic inversion to the volume for the brittleness petrotypes (most brittle, intermediate, and least brittle). The probability maps of the most brittle petrotype for the three shales were generated from Bayesian classification, based on the λρ-μρ template. The relationship between TOC and P-wave and S-wave velocity ratio (VP/VS) at the wells allowed the conversion of the VP/VS volume from prestack inversion to the TOC volume, which in turn was used to construct the TOC maps for the three shales. Increased TOC is correlated with high brittleness, contrasting with the commonly-held understanding. Therefore, the prospectivity of the shales in the study area can be represented by high brittleness and increased TOC. We propose a shale prospectivity index (SPI), computed by the arithmetic average of the normalized probability of the most brittle petrotype and the normalized TOC. The higher SPI corresponds to higher production rates in the Muskwa and Evie shales. The areas of the highest SPI have not been fully tested. The future drilling should be focused on these areas to increase the economic viability of the field.
NASA Astrophysics Data System (ADS)
Rougier, Esteban; Patton, Howard J.
2015-05-01
Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.
NASA Astrophysics Data System (ADS)
Gotz, M.; Karsch, L.; Pawelke, J.
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 μs at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
Gotz, M; Karsch, L; Pawelke, J
2017-11-01
In order to describe the volume recombination in a pulsed radiation field of high dose-per-pulse this study presents a numerical solution of a 1D transport model of the liberated charges in a plane-parallel ionization chamber. In addition, measurements were performed on an Advanced Markus ionization chamber in a pulsed electron beam to obtain suitable data to test the calculation. The experiment used radiation pulses of 4 μs duration and variable dose-per-pulse values up to about 1 Gy, as well as pulses of variable duration up to 308 [Formula: see text] at constant dose-per-pulse values between 85 mGy and 400 mGy. Those experimental data were compared to the developed numerical model and existing descriptions of volume recombination. At low collection voltages the observed dose-per-pulse dependence of volume recombination can be approximated by the existing theory using effective parameters. However, at high collection voltages large discrepancies are observed. The developed numerical model shows much better agreement with the observations and is able to replicate the observed behavior over the entire range of dose-per-pulse values and collection voltages. Using the developed numerical model, the differences between observation and existing theory are shown to be the result of a large fraction of the charge being collected as free electrons and the resultant distortion of the electric field inside the chamber. Furthermore, the numerical solution is able to calculate recombination losses for arbitrary pulse durations in good agreement with the experimental data, an aspect not covered by current theory. Overall, the presented numerical solution of the charge transport model should provide a more flexible tool to describe volume recombination for high dose-per-pulse values as well as for arbitrary pulse durations and repetition rates.
NASA Astrophysics Data System (ADS)
Fotin, Sergei V.; Yin, Yin; Periaswamy, Senthil; Kunz, Justin; Haldankar, Hrishikesh; Muradyan, Naira; Cornud, François; Turkbey, Baris; Choyke, Peter L.
2012-02-01
Fully automated prostate segmentation helps to address several problems in prostate cancer diagnosis and treatment: it can assist in objective evaluation of multiparametric MR imagery, provides a prostate contour for MR-ultrasound (or CT) image fusion for computer-assisted image-guided biopsy or therapy planning, may facilitate reporting and enables direct prostate volume calculation. Among the challenges in automated analysis of MR images of the prostate are the variations of overall image intensities across scanners, the presence of nonuniform multiplicative bias field within scans and differences in acquisition setup. Furthermore, images acquired with the presence of an endorectal coil suffer from localized high-intensity artifacts at the posterior part of the prostate. In this work, a three-dimensional method for fast automated prostate detection based on normalized gradient fields cross-correlation, insensitive to intensity variations and coil-induced artifacts, is presented and evaluated. The components of the method, offline template learning and the localization algorithm, are described in detail. The method was validated on a dataset of 522 T2-weighted MR images acquired at the National Cancer Institute, USA that was split in two halves for development and testing. In addition, second dataset of 29 MR exams from Centre d'Imagerie Médicale Tourville, France were used to test the algorithm. The 95% confidence intervals for the mean Euclidean distance between automatically and manually identified prostate centroids were 4.06 +/- 0.33 mm and 3.10 +/- 0.43 mm for the first and second test datasets respectively. Moreover, the algorithm provided the centroid within the true prostate volume in 100% of images from both datasets. Obtained results demonstrate high utility of the detection method for a fully automated prostate segmentation.
Volumetric bioimaging based on light field microscopy with temporal focusing illumination
NASA Astrophysics Data System (ADS)
Hsu, Feng-Chun; Sie, Yong Da; Lai, Feng-Jie; Chen, Shean-Jen
2018-02-01
Light field technique at a single shot can get the whole volume image of observed sample. Therefore, the original frame rate of the optical system can be taken as the volumetric image rate. For dynamically imaging whole micron-scale biosample, a light field microscope with temporal focusing illumination has been developed. In the light field microscope, the f-number of the microlens array (MLA) is adopted to match that of the objective; hence, the subimages via adjacent lenslets do not overlay each other. A three-dimensional (3D) deconvolution algorithm is utilized to deblur the out-of-focusing part. Conventional light field microscopy (LFM) illuminates whole volume sample even noninteresting parts; nevertheless, whole volume excitation causes even more damage on bio-sample and also increase the background noise from the out of range. Therefore, temporal focusing is integrated into the light field microscope for selecting the illumination volume. Herein, a slit on the back focal plane of the objective is utilized to control the axial excitation confinement for selecting the illumination volume. As a result, the developed light field microscope with the temporal focusing multiphoton illumination (TFMPI) can reconstruct 3D images within the selected volume, and the lateral resolution approaches to the theoretical value. Furthermore, the 3D Brownian motion of two-micron fluorescent beads is observed as the criterion of dynamic sample. With superior signal-to-noise ratio and less damage to tissue, the microscope is potential to provide volumetric imaging for vivo sample.
Volumetric Acoustic Vector Intensity Probe
NASA Technical Reports Server (NTRS)
Klos, Jacob
2006-01-01
A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raktoe, Sawan A.S.; Dehnad, Homan, E-mail: h.dehnad@umcutrecht.nl; Raaijmakers, Cornelis P.J.
Purpose: To model locoregional recurrences of oropharyngeal squamous cell carcinomas (OSCC) treated with primary intensity modulated radiation therapy (IMRT) in order to find the origins from which recurrences grow and relate their location to original target volume borders. Methods and Materials: This was a retrospective analysis of OSCC treated with primary IMRT between January 2002 and December 2009. Locoregional recurrence volumes were delineated on diagnostic scans and coregistered rigidly with treatment planning computed tomography scans. Each recurrence was analyzed with two methods. First, overlapping volumes of a recurrence and original target were measured ('volumetric approach') and assessed as 'in-field', 'marginal',more » or 'out-field'. Then, the center of mass (COM) of a recurrence volume was assumed as the origin from where a recurrence expanded, the COM location was compared with original target volume borders and assessed as 'in-field', 'marginal', or 'out-field'. Results: One hundred thirty-one OSCC were assessed. For all patients alive at the end of follow-up, the mean follow-up time was 40 months (range, 12-83 months); 2 patients were lost to follow-up. The locoregional recurrence rate was 27%. Of all recurrences, 51% were local, 23% were regional, and 26% had both local and regional recurrences. Of all recurrences, 74% had imaging available for assessment. Regarding volumetric analysis of local recurrences, 15% were in-field gross tumor volume (GTV), and 65% were in-field clinical tumor volume (CTV). Using the COM approach, we found that 70% of local recurrences were in-field GTV and 90% were in-field CTV. Of the regional recurrences, 25% were volumetrically in-field GTV, and using the COM approach, we found 54% were in-field GTV. The COM of local out-field CTV recurrences were maximally 16 mm outside CTV borders, whereas for regional recurrences, this was 17 mm. Conclusions: The COM model is practical and specific for recurrence assessment. Most recurrences originated in the GTV. This suggests radioresistance in certain tumor parts.« less
Column Testing and 1D Reactive Transport Modeling to Evaluate Uranium Plume Persistence Processes
NASA Astrophysics Data System (ADS)
Johnson, R. H.; Morrison, S.; Morris, S.; Tigar, A.; Dam, W. L.; Dayvault, J.
2015-12-01
At many U.S. Department of Energy Office of Legacy Management sites, 100 year natural flushing was selected as a remedial option for groundwater uranium plumes. However, current data indicate that natural flushing is not occurring as quickly as expected and solid-phase and aqueous uranium concentrations are persistent. At the Grand Junction, Colorado office site, column testing was completed on core collected below an area where uranium mill tailings have been removed. The total uranium concentration in this core was 13.2 mg/kg and the column was flushed with laboratory-created water with no uranium and chemistry similar to the nearby Gunnison River. The core was flushed for a total of 91 pore volumes producing a maximum effluent uranium concentration of 6,110 μg/L at 2.1 pore volumes and a minimum uranium concentration of 36.2 μg/L at the final pore volume. These results indicate complex geochemical reactions at small pore volumes and a long tailing affect at greater pore volumes. Stop flow data indicate the occurrence of non-equilibrium processes that create uranium concentration rebound. These data confirm the potential for plume persistence, which is occurring at the field scale. 1D reactive transport modeling was completed using PHREEQC (geochemical model) and calibrated to the column test data manually and using PEST (inverse modeling calibration routine). Processes of sorption, dual porosity with diffusion, mineral dissolution, dispersion, and cation exchange were evaluated separately and in combination. The calibration results indicate that sorption and dual porosity are major processes in explaining the column test data. These processes are also supported by fission track photographs that show solid-phase uranium residing in less mobile pore spaces. These procedures provide valuable information on plume persistence and secondary source processes that may be used to better inform and evaluate remedial strategies, including natural flushing.
Short-Term Effects of Different Loading Schemes in Fitness-Related Resistance Training.
Eifler, Christoph
2016-07-01
Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880-1889, 2016-The purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes. The investigation was designed as a longitudinal field-test study. Two hundred healthy mature subjects with at least 12 months' experience in resistance training were randomized in 4 samples of 50 subjects each. Gender distribution was homogenous in all samples. Training effects were quantified by 10 repetition maximum (10RM) and 1 repetition maximum (1RM) testing (pre-post-test design). Over a period of 6 weeks, a standardized resistance training protocol with 3 training sessions per week was realized. Testing and training included 8 resistance training exercises in a standardized order. The following loading schemes were randomly matched to each sample: constant load (CL) with constant volume of repetitions, increasing load (IL) with decreasing volume of repetitions, decreasing load (DL) with increasing volume of repetitions, daily changing load (DCL), and volume of repetitions. For all loading schemes, significant strength gains (p < 0.001) could be noted for all resistance training exercises and both dependent variables (10RM, 1RM). In all cases, DCL obtained significantly higher strength gains (p < 0.001) than CL, IL, and DL. There were no significant differences in strength gains between CL, IL, and DL. The present data indicate that resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL. Considering that DCL is widely unknown in fitness-related resistance training, the present data indicate, there is potential for improving resistance training in commercial fitness clubs.
Volumetric particle image velocimetry with a single plenoptic camera
NASA Astrophysics Data System (ADS)
Fahringer, Timothy W.; Lynch, Kyle P.; Thurow, Brian S.
2015-11-01
A novel three-dimensional (3D), three-component (3C) particle image velocimetry (PIV) technique based on volume illumination and light field imaging with a single plenoptic camera is described. A plenoptic camera uses a densely packed microlens array mounted near a high resolution image sensor to sample the spatial and angular distribution of light collected by the camera. The multiplicative algebraic reconstruction technique (MART) computed tomography algorithm is used to reconstruct a volumetric intensity field from individual snapshots and a cross-correlation algorithm is used to estimate the velocity field from a pair of reconstructed particle volumes. This work provides an introduction to the basic concepts of light field imaging with a plenoptic camera and describes the unique implementation of MART in the context of plenoptic image data for 3D/3C PIV measurements. Simulations of a plenoptic camera using geometric optics are used to generate synthetic plenoptic particle images, which are subsequently used to estimate the quality of particle volume reconstructions at various particle number densities. 3D reconstructions using this method produce reconstructed particles that are elongated by a factor of approximately 4 along the optical axis of the camera. A simulated 3D Gaussian vortex is used to test the capability of single camera plenoptic PIV to produce a 3D/3C vector field, where it was found that lateral displacements could be measured to approximately 0.2 voxel accuracy in the lateral direction and 1 voxel in the depth direction over a 300× 200× 200 voxel volume. The feasibility of the technique is demonstrated experimentally using a home-built plenoptic camera based on a 16-megapixel interline CCD camera and a 289× 193 array of microlenses and a pulsed Nd:YAG laser. 3D/3C measurements were performed in the wake of a low Reynolds number circular cylinder and compared with measurements made using a conventional 2D/2C PIV system. Overall, single camera plenoptic PIV is shown to be a viable 3D/3C velocimetry technique.
Tsunoda, Masashi; Sugaya, Chiemi; Sugiura, Yumiko; Nagai, Yusuke; Sakanishi, Kotaro
2016-01-01
Self-assembling peptides have been developed as clinical materials, which could scaffold to regenerate nerve cells and hemostatic materials in vivo. However, there has not been enough information for their in vivo application. The safety of self-assembling peptides for the application on the brain was examined using behavioral tests for each rat in this study. Self-assembling peptide gel was administered to the surface of the brain at a volume of 20 µL at 1.5%. After 2 months, the open field test and the prepulse inhibition (PPI) test were performed. There were no significant differences between the peptide gel and the control groups in locomotor distances and in %PPIs in the PPI test. The mean values of the percentage of time the rats stayed in the central area of the open field during the first 5 min and instances of center rearing or face washing in the peptide gel group were significantly higher than those in the control. There were amorphous substance in the subarachnoid region, and infiltrations of mononuclear cells were also observed in the self-assembling peptide gel group. Although the meaning of the effects observed in this study was not fully elucidated, the self-assembling gel produced marginal but significant behavioral and histological effects.
75 FR 29605 - Clean Alternative Fuel Vehicle and Engine Conversions
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-26
... Small Volume Manufacturers and Small Volume Test Groups 1. Definition of Small Volume Manufacturers, Small Volume Test Groups, and Small Volume Engine Families a. Light-Duty and Heavy-Duty Complete... and Engines 2. Test Groups, Engine Families, and Evaporative Families a. Test Groups for Light-Duty...
Impact of field number and beam angle on functional image-guided lung cancer radiotherapy planning
NASA Astrophysics Data System (ADS)
Tahir, Bilal A.; Bragg, Chris M.; Wild, Jim M.; Swinscoe, James A.; Lawless, Sarah E.; Hart, Kerry A.; Hatton, Matthew Q.; Ireland, Rob H.
2017-09-01
To investigate the effect of beam angles and field number on functionally-guided intensity modulated radiotherapy (IMRT) normal lung avoidance treatment plans that incorporate hyperpolarised helium-3 magnetic resonance imaging (3He MRI) ventilation data. Eight non-small cell lung cancer patients had pre-treatment 3He MRI that was registered to inspiration breath-hold radiotherapy planning computed tomography. IMRT plans that minimised the volume of total lung receiving ⩾20 Gy (V20) were compared with plans that minimised 3He MRI defined functional lung receiving ⩾20 Gy (fV20). Coplanar IMRT plans using 5-field manually optimised beam angles and 9-field equidistant plans were also evaluated. For each pair of plans, the Wilcoxon signed ranks test was used to compare fV20 and the percentage of planning target volume (PTV) receiving 90% of the prescription dose (PTV90). Incorporation of 3He MRI led to median reductions in fV20 of 1.3% (range: 0.2-9.3% p = 0.04) and 0.2% (range: 0 to 4.1%; p = 0.012) for 5- and 9-field arrangements, respectively. There was no clinically significant difference in target coverage. Functionally-guided IMRT plans incorporating hyperpolarised 3He MRI information can reduce the dose received by ventilated lung without comprising PTV coverage. The effect was greater for optimised beam angles rather than uniformly spaced fields.
The Implementation of Cumulative Learning Theory in Calculating Triangular Prism and Tube Volumes
NASA Astrophysics Data System (ADS)
Muklis, M.; Abidin, C.; Pamungkas, M. D.; Masriyah
2018-01-01
This study aims at describing the application of cumulative learning theory in calculating the volume of a triangular prism and a tube as well as revealing the students’ responses toward the learning. The research method used was descriptive qualitative with elementary school students as the subjects of the research. Data obtained through observation, field notes, questionnaire, tests, and interviews. The results from the application of cumulative learning theory obtained positive students’ responses in following the learning and students’ learning outcomes was dominantly above the average. This showed that cumulative learning could be used as a reference to be implemented in learning, so as to improve the students’ achievement.
Prototype Engineered Barrier System Field Test (PEBSFT); Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A.L.; Buscheck, T.; Carlson, R.
1991-08-01
This final report represents a summary of data and interpretations obtained from the Prototype Engineered Barrier System Field Test (PEBSFT) performed in G-Tunnel within the Nevada Test Site. The PEBSFT was conducted to evaluate the applicability of measurement techniques, numerical models, and procedures developed for future field tests that will be conducted in the Exploratory Studies Facilities (ESF) at Yucca Mountain. The primary objective of the test was to provide a basis for determining whether tests planned for the ESF have the potential to be successful. Chapter 1 on high frequency electromagnetic tomography discusses the rock mass electromagnetic permittivity andmore » attenuation rate changes that were measured to characterize the water distribution in the near field of a simulated waste container. The data are used to obtain quantitative estimates of how the moisture content in the rock mass changes during heating and to infer properties of the spatial variability of water distribution, leading to conclusions about the role of fractures in the system. Chapter 2 discusses the changes in rock moisture content detected by the neutron logging probe. Chapter 3 permeability tests discusses the characterization of the in-situ permeability of the fractured tuff around the borehole. The air permeability testing apparatus, the testing procedures, and the data analysis are presented. Chapter 4 describes the moisture collection system installed in the heater borehole to trap and measure the moisture volumes. Chapter 5 describes relative humidity measurements made with the thermocouple psychrometer and capacitance sensors. Chapter 6 discusses gas pressure measurements in the G-Tunnel, addressing the calibration and installation of piezoresistive-gaged transducers. Chapter 7 describes the calibration and installation of thermocouples for temperature measurements. Chapter 8 discusses the results of the PEBSFT.« less
Hill, Kylie; Dolmage, Thomas E; Woon, Lynda; Coutts, Debbie; Goldstein, Roger; Brooks, Dina
2012-02-01
Field and laboratory-based tests are used to measure exercise capacity in people with COPD. A comparison of the cardiorespiratory responses to field tests, referenced to a laboratory test, is needed to appreciate the relative physiological demands. We sought to compare peak and submaximal cardiorespiratory responses to the 6-min walk test, incremental shuttle walk test and endurance shuttle walk test with a ramp cycle ergometer test (CET) in patients with COPD. Twenty-four participants (FEV(1) 50 ± 14%; 66.5 ± 7.7 years; 15 men) completed four sessions, separated by ≥24 h. During an individual session, participants completed either two 6-min walk tests, incremental shuttle walk tests, endurance shuttle walk tests using standardized protocols, or a single CET, wearing a portable gas analysis unit (Cosmed K4b(2)) which included measures of heart rate and arterial oxygen saturation (SpO(2)). Between tests, no difference was observed in the peak rate of oxygen uptake (F(3,69) = 1.2; P = 0.31), end-test heart rate (F(2,50) = 0.6; P = 0.58) or tidal volume (F(3,69) = 1.5; P = 0.21). Compared with all walking tests, the CET elicited a higher peak rate of carbon dioxide output (1173 ± 350 mL/min; F(3,62) = 4.8; P = 0.006), minute ventilation (48 ± 17 L/min; F(3,69) = 10.2; P < 0.001) and a higher end-test SpO(2) (95 ± 4%; F(3,63) = 24.9; P < 0.001). In patients with moderate COPD, field walking tests elicited a similar peak rate of oxygen uptake and heart rate as a CET, demonstrating that both self- and externally paced walking tests progress to high intensities. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.
Filtered refocusing: a volumetric reconstruction algorithm for plenoptic-PIV
NASA Astrophysics Data System (ADS)
Fahringer, Timothy W.; Thurow, Brian S.
2016-09-01
A new algorithm for reconstruction of 3D particle fields from plenoptic image data is presented. The algorithm is based on the technique of computational refocusing with the addition of a post reconstruction filter to remove the out of focus particles. This new algorithm is tested in terms of reconstruction quality on synthetic particle fields as well as a synthetically generated 3D Gaussian ring vortex. Preliminary results indicate that the new algorithm performs as well as the MART algorithm (used in previous work) in terms of the reconstructed particle position accuracy, but produces more elongated particles. The major advantage to the new algorithm is the dramatic reduction in the computational cost required to reconstruct a volume. It is shown that the new algorithm takes 1/9th the time to reconstruct the same volume as MART while using minimal resources. Experimental results are presented in the form of the wake behind a cylinder at a Reynolds number of 185.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
Directional solidification of eutectic composites in space environment
NASA Technical Reports Server (NTRS)
Yue, A. S.
1972-01-01
The Ni-Ni3Ta eutectic and a nickel-base alloy containing 30 wt pct Ta were solidified unidirectionally in an electron beam floating zone melting apparatus. It was found that the volume fraction of the Ni3Ta phase in the Ni-Ni3Ta eutectic mixture was increased from 7.6 to 36 volume pct in agreement with the theory as predicted. Tensile properties of the randomly solidified and unidirectionally solidified Ni-Ni3Ta eutectic were determined as function of solidification rate and temperature. It was found that the ultimate tensile strength decreased as both the test temperature and solidification rate increased. An elongation of 40 pct was obtained for a nickelbase alloy containing 30 wt at room temperature. This unusually large elongation was attributed to the superplastic behavior of the alloy. The critical currents versus the external fields at 2.5, 3.0, 3.5 and 4.2 deg for the unidirectionally solidified Pb-Sn eutectic were measured. The values of critical fields at zero critical currents were obtained by extrapolation.
NASA Astrophysics Data System (ADS)
Yan, Hui; Wang, K. G.; Jones, Jim E.
2016-06-01
A parallel algorithm for large-scale three-dimensional phase-field simulations of phase coarsening is developed and implemented on high-performance architectures. From the large-scale simulations, a new kinetics in phase coarsening in the region of ultrahigh volume fraction is found. The parallel implementation is capable of harnessing the greater computer power available from high-performance architectures. The parallelized code enables increase in three-dimensional simulation system size up to a 5123 grid cube. Through the parallelized code, practical runtime can be achieved for three-dimensional large-scale simulations, and the statistical significance of the results from these high resolution parallel simulations are greatly improved over those obtainable from serial simulations. A detailed performance analysis on speed-up and scalability is presented, showing good scalability which improves with increasing problem size. In addition, a model for prediction of runtime is developed, which shows a good agreement with actual run time from numerical tests.
Suwa, Masayori; Watarai, Hitoshi
2002-10-01
An experimental system for magnetophoretic velocimetry, which could determine the volume magnetic susceptibility of a single particle dispersed in a liquid phase from a magnetophoretic velocity, has been developed. A micrometer-sized high-gradient magnetic field could be generated in a capillary by a pair of iron pole pieces in a superconducting magnet (10 T). The magnetophoretic behavior of a single particle in a capillary flow system was investigated under the inhomogeneous magnetic field. From the magnetophoretic velocity of a polystyrene latex particle dispersed in a MnCl2 aqueous solution, the product of the magnetic flux density and the gradient, B(dB/dx), was determined as a function of the position along the capillary. The maximum value of B(dB/dx) was 4.7 x 10(4) T2 m(-1), which was approximately 100 times higher than that obtained by two Nd-Fe-B permanent magnets (0.4 T). Organic droplets extracting manganese(II) with 2-thenoyltrifluoroacetone and tri-n-octylphosphine oxide from MnCl2 solution were used as test samples. The difference of the volume magnetic susceptibility between the droplet and the medium could be determined from the magnetophoretic velocity. This method allowed us to continuously measure a volume magnetic susceptibility of 10-6 level for a picoliter droplet and to determine manganese(II) in the single droplet at the attomole level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, D.T.; Turley, S.D.
1992-03-01
The toxicity of contaminated Old O-Field (Edgewood Area of Aberdeen Proving Ground) groundwater and the reduction and/or elimination of toxicity by various treatment processes were evaluated. The study was divided into a bench scale and pilot scale study. The bench scale studies consisted of 48-h definitive acute toxicity tests run with daphnid neonates (Daphnia magna) and juvenile fathead minnows (Pimephales promelas) exposed to untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H 2O2 ), carbon adsorption, and carbon adsorption/biological sludge. The pilot scale studies consisted of several 96-h definitive acute toxicity tests run with two freshwatermore » and two saltwater invertebrates and fish and Ames mutagenicity assays. Acute toxicity tests were run on untreated Old O-Field groundwater and groundwater treated by metals precipitation, UV oxidation (H2O2), air stripping, and carbon adsorption during the pilot scale study. The freshwater invertebrate and fish used in the study were daphnid neonates and juvenile fathead minnows, respectively. The saltwater invertebrate and fish were juvenile mysids (Mysidopsis bahia) and juvenile sheepshead minnows (Cyprinodon variegatus). Ames tests were run on untreated groundwater, UV oxidation-treated groundwater, and carbon-treated groundwater.... Groundwater, Aquatic, Toxicity, Daphnia, Daphnia magna, Fathead minnow, Pimephales promelas, Mysid, Mysidopsis bahia, Sheepshead minnow, Cyprinodon variegatus.« less
2016-04-30
Each contractor completed a flight test and a Preliminary Design Review (PDR). The program’s four critical technologies were all approaching...School of Aeronautics and Astronautics at Purdue University specializing in the field of aerospace systems. His research interests center on design ...of Aeronautics and Astronautics, Purdue University, where he has been on the faculty since 1995. His research and teaching interests focus on design
History of the Coastal Engineering Research Center 1963-1983, Volume 1
1991-01-01
jn the groin and sand replenishment projects at Newport Beach, California; Presque Isle Peninsu la on Lake Erie at Erie , Pennsyl - varua; and...of Environmental Resources in dune building field tests at Ludington State Park, Michigan, and Presque Isle State Park. Pennsylvania . After the...Shelf." 3 . Dennis W. Berg ... J- actor’> Affecting Beach Nourishmem Requirements. Presque Isle Peninsula, Erie , Pennsy lvania,’’ Great Lakes
The Navy Enlistment Field Marketing Experiment. Volume 1. Executive Overview and Summary
1982-10-15
Congress to effect changes in advertising expenditure levels and recruiter presence in selected market areas. Finally, the support and par- ticipation...cause marketing efforts. Further, marketing variables themselves may not be allocated independently of one another. Recruiting and advertising may be...treatment markets to the level and type of advertising and recruiters to which they would be exposed under the alternative budget levels being tested
The report gives results a study of the use of precombustors for the simultaneous control of S02, NOx, and ash emissions from coal combustion. In Phase 1, exploratory testing was conducted on a small pilot scale--293 kW (million Btu/hr)-pulverized-coal-fired precombustor to ident...
ERIC Educational Resources Information Center
Terman, Lewis M., Ed.
The 35 years' followup of the Terman investigation on the gifted child is presented. In order to describe the gifted group of mid-life, a general information blank was mailed in 1950 (1,437 subjects) and in 1955 (1,424 subjects). The field study, completed in 1952, included personal interviews, the Concept Mastery Test, supplementary…
North Field Rapid Runway Repair Test Report. Volume 1.
1988-11-01
dynamic loads experienced by the mats during trafficking. 1 2. Upheaval Measurement Since 1985, AFESC has been investigating mehods of determining...method was faster and less labor-intensive. AFESC continued developing the polymer spall repair system; environmentally safe polymer resins manufactured...accordance with AFR 127-4, through AFESC/SEG and 437 MAW/SE. 267 SECTION IX RISKS Specific risks which may prevent the accomplishment of all or part of
NASA Technical Reports Server (NTRS)
1971-01-01
The results of a solid polymer electrolyte fuel cell development program are summarized. A base line design was defined, and materials and components of the base line configuration were fabricated and tested. Concepts representing base line capability extensions in the areas of life, power, specific weight and volume, versatility of operation, field maintenance, and thermal control were identified and evaluated. Liaison and coordination with space shuttle contractors resulted in the exchange of engineering data.
Loss of T cells influences sex differences in behavior and brain structure.
Rilett, Kelly C; Friedel, Miriam; Ellegood, Jacob; MacKenzie, Robyn N; Lerch, Jason P; Foster, Jane A
2015-05-01
Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior. Copyright © 2015 Elsevier Inc. All rights reserved.
Designing and Testing a UAV Mapping System for Agricultural Field Surveying
Skovsen, Søren
2017-01-01
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35–0.58 m are correlated to the applied nitrogen treatments of 0–300 kgNha. The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations. PMID:29168783
Dipolar interaction induced band gaps and flat modes in surface-modulated magnonic crystals
NASA Astrophysics Data System (ADS)
Gallardo, R. A.; Schneider, T.; Roldán-Molina, A.; Langer, M.; Fassbender, J.; Lenz, K.; Lindner, J.; Landeros, P.
2018-04-01
Theoretical results for the magnetization dynamics of a magnonic crystal formed by grooves on the surface of a ferromagnetic film, called a surface-modulated magnonic crystal, are presented. For such a system, the role of the periodic dipolar field induced by the geometrical modulation is addressed by using the plane-wave method. The results reveal that, under the increasing of the depth of the grooves, zones with magnetizing and demagnetizing fields act on the system in such a way that magnonic band gaps are observed in both Damon-Eshbach and backward volume geometries. Particularly, in the backward volume configuration, high-frequency band gaps and low-frequency flat modes are obtained. By taking into account the properties of the internal field induced by the grooves, the flattening of the modes and their shift towards low frequencies are discussed and explained. To test the validity of the model, the theoretical results of this work are confirmed by micromagnetic simulations, and good agreement between both methods is achieved. The theoretical model allows for a detailed understanding of the physics underlying these kinds of systems, thereby providing an outlook for potential applications on magnonic devices.
Designing and Testing a UAV Mapping System for Agricultural Field Surveying.
Christiansen, Martin Peter; Laursen, Morten Stigaard; Jørgensen, Rasmus Nyholm; Skovsen, Søren; Gislum, René
2017-11-23
A Light Detection and Ranging (LiDAR) sensor mounted on an Unmanned Aerial Vehicle (UAV) can map the overflown environment in point clouds. Mapped canopy heights allow for the estimation of crop biomass in agriculture. The work presented in this paper contributes to sensory UAV setup design for mapping and textual analysis of agricultural fields. LiDAR data are combined with data from Global Navigation Satellite System (GNSS) and Inertial Measurement Unit (IMU) sensors to conduct environment mapping for point clouds. The proposed method facilitates LiDAR recordings in an experimental winter wheat field. Crop height estimates ranging from 0.35-0.58 m are correlated to the applied nitrogen treatments of 0-300 kg N ha . The LiDAR point clouds are recorded, mapped, and analysed using the functionalities of the Robot Operating System (ROS) and the Point Cloud Library (PCL). Crop volume estimation is based on a voxel grid with a spatial resolution of 0.04 × 0.04 × 0.001 m. Two different flight patterns are evaluated at an altitude of 6 m to determine the impacts of the mapped LiDAR measurements on crop volume estimations.
Sun, Chengsan; Dayal, Arjun
2015-01-01
Brain-derived neurotrophic factor (BDNF) is expressed in gustatory epithelia and is required for gustatory neurons to locate and innervate their correct target during development. When BDNF is overexpressed throughout the lingual epithelium, beginning embryonically, chorda tympani fibers are misdirected and innervate inappropriate targets, leading to a loss of taste buds. The remaining taste buds are hyperinnervated, demonstrating a disruption of nerve/target matching in the tongue. We tested the hypothesis here that overexpression of BDNF peripherally leads to a disrupted terminal field organization of nerves that carry taste information to the brainstem. The chorda tympani, greater superficial petrosal, and glossopharyngeal nerves were labeled in adult wild-type (WT) mice and in adult mice in which BDNF was overexpressed (OE) to examine the volume and density of their central projections in the nucleus of the solitary tract. We found that the terminal fields of the chorda tympani and greater superficial petrosal nerves and overlapping fields that included these nerves in OE mice were at least 80% greater than the respective field volumes in WT mice. The shapes of terminal fields were similar between the two groups; however, the density and spread of labels were greater in OE mice. Unexpectedly, there were also group-related differences in chorda tympani nerve function, with OE mice showing a greater relative taste response to a concentration series of sucrose. Overall, our results show that disruption in peripheral innervation patterns of sensory neurons have significant effects on peripheral nerve function and central organization of their terminal fields. PMID:25568132
Avionics Instrument Systems Specialist (AFSC 32551).
ERIC Educational Resources Information Center
Miller, Lawrence B.; Crowcroft, Robert A.
This six-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for avionics instrument systems specialists. Covered in the individual volumes are career field familiarization (career field progression and training, security, occupational safety and health, and career field reference material);…
Space shuttle development Motor No. 9 (DM-9), volume 1
NASA Technical Reports Server (NTRS)
Garecht, Diane M.
1990-01-01
The results obtained during the December 23, 1987 static firing of the DM-9 test article are presented. The DM-9 full-scale static test article employed redesigned solid rocket motor (RSRM) field joint capture feature hardware with J-seal insulation configuration, and nozzle-to-case joint radial bolt design with bonded insulation configuration. The nozzle incorporated RSRM components, including a thicker cowl with involuted outer boot ring. The nozzle employed redundant and verifiable seals in all five joints, and room temperature vulcanization backfill in three joints. With very few exceptions, the DM-9 test article was flight configuration. The test was conducted under extreme weather conditions: temperature of 25 F and wind at 15 to 20 mph. Ballistics performance values were within specification requirements. The RSRM field joint (J-seal) insulation configuration functioned as predicted with no indication of hot gases reaching the capture feature O-rings. There was a blowhole in the polysulfide adhesive in the nozzle-to-case joint, but no evidence of hot gases past the wiper O-ring. Nozzle design changes appeared to perform nominally, with the exception of the outer boot ring, which suffered partial structural breakup late in the test. Field joint heaters maintained the controlling resistance temperature device temperature within the specified requirements during heater operation. The thrust vector control system operated properly. The redesigned water deluge system, temperature conditioning equipment, and other test support equipment performed as planned.
Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian
2016-11-06
The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a "tailgating effect" between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments.
Development of a bio-magnetic measurement system and sensor configuration analysis for rats
NASA Astrophysics Data System (ADS)
Kim, Ji-Eun; Kim, In-Seon; Kim, Kiwoong; Lim, Sanghyun; Kwon, Hyukchan; Kang, Chan Seok; Ahn, San; Yu, Kwon Kyu; Lee, Yong-Ho
2017-04-01
Magnetoencephalography (MEG) based on superconducting quantum interference devices enables the measurement of very weak magnetic fields (10-1000 fT) generated from the human or animal brain. In this article, we introduce a small MEG system that we developed specifically for use with rats. Our system has the following characteristics: (1) variable distance between the pick-up coil and outer Dewar bottom (˜5 mm), (2) small pick-up coil (4 mm) for high spatial resolution, (3) good field sensitivity (45 ˜ 80 fT /cm/√{Hz} ) , (4) the sensor interval satisfies the Nyquist spatial sampling theorem, and (5) small source localization error for the region to be investigated. To reduce source localization error, it is necessary to establish an optimal sensor layout. To this end, we simulated confidence volumes at each point on a grid on the surface of a virtual rat head. In this simulation, we used locally fitted spheres as model rat heads. This enabled us to consider more realistic volume currents. We constrained the model such that the dipoles could have only four possible orientations: the x- and y-axes from the original coordinates, and two tangentially layered dipoles (local x- and y-axes) in the locally fitted spheres. We considered the confidence volumes according to the sensor layout and dipole orientation and positions. We then conducted a preliminary test with a 4-channel MEG system prior to manufacturing the multi-channel system. Using the 4-channel MEG system, we measured rat magnetocardiograms. We obtained well defined P-, QRS-, and T-waves in rats with a maximum value of 15 pT/cm. Finally, we measured auditory evoked fields and steady state auditory evoked fields with maximum values 400 fT/cm and 250 fT/cm, respectively.
Bao, Xu; Li, Haijian; Xu, Dongwei; Jia, Limin; Ran, Bin; Rong, Jian
2016-01-01
The jam flow condition is one of the main traffic states in traffic flow theory and the most difficult state for sectional traffic information acquisition. Since traffic information acquisition is the basis for the application of an intelligent transportation system, research on traffic vehicle counting methods for the jam flow conditions has been worthwhile. A low-cost and energy-efficient type of multi-function wireless traffic magnetic sensor was designed and developed. Several advantages of the traffic magnetic sensor are that it is suitable for large-scale deployment and time-sustainable detection for traffic information acquisition. Based on the traffic magnetic sensor, a basic vehicle detection algorithm (DWVDA) with less computational complexity was introduced for vehicle counting in low traffic volume conditions. To improve the detection performance in jam flow conditions with a “tailgating effect” between front vehicles and rear vehicles, an improved vehicle detection algorithm (SA-DWVDA) was proposed and applied in field traffic environments. By deploying traffic magnetic sensor nodes in field traffic scenarios, two field experiments were conducted to test and verify the DWVDA and the SA-DWVDA algorithms. The experimental results have shown that both DWVDA and the SA-DWVDA algorithms yield a satisfactory performance in low traffic volume conditions (scenario I) and both of their mean absolute percent errors are less than 1% in this scenario. However, for jam flow conditions with heavy traffic volumes (scenario II), the SA-DWVDA was proven to achieve better results, and the mean absolute percent error of the SA-DWVDA is 2.54% with corresponding results of the DWVDA 7.07%. The results conclude that the proposed SA-DWVDA can implement efficient and accurate vehicle detection in jam flow conditions and can be employed in field traffic environments. PMID:27827974
Evaluation of the biocompatibility of a coating material for an implantable bladder volume sensor.
Kim, Su-Jin; Lee, Dong-Sup; Kim, In-Gul; Sohn, Dong-Wan; Park, Jung-Yul; Choi, Bum-Kyoo; Kim, Sae-Woong
2012-03-01
As the applications for implantable medical devices have increased, the need for biocompatible packaging materials has become important. Recently, we reported an implantable sensor for real-time monitoring of the changes in bladder volume, which necessitated finding a safe coating material for use in bladder tissue. At present, materials like polyethylene glycol (PEG), polydimethylsiloxane (PDMS) and parylene-C are used in biomedical devices or as coating materials, owing to their excellent safety in various medical fields. However, few studies have assessed their safety in bladder tissue, therefore, we evaluated the biocompatibility of PEG, PDMS and parylene-C in the bladder. All three materials turned out to be safe in in vitro tests of live/dead staining and cell viability. In vivo tests with hematoxylin and eosin and immunofluorescence staining with MAC387 showed no persistent inflammation. Therefore, we consider that the three materials are biocompatible in bladder tissue. Despite this safety, however, PEG has biodegradable characteristics and thus is not suitable for use as packaging. We suggest that PDMS and parylene-C can be used as safe coating materials for the implantable bladder volume sensor reported previously. Copyright © 2012. Published by Elsevier B.V.
The effect of filler loading and morphology on the mechanical properties of contemporary composites.
Kim, Kyo-Han; Ong, Joo L; Okuno, Osamu
2002-06-01
Little information exists regarding the filler morphology and loading of composites with respect to their effects on selected mechanical properties and fracture toughness. The objectives of this study were to: (1) classify commercial composites according to filler morphology, (2) evaluate the influence of filler morphology on filler loading, and (3) evaluate the effect of filler morphology and loading on the hardness, flexural strength, flexural modulus, and fracture toughness of contemporary composites. Field emission scanning electron microscopy/energy dispersive spectroscopy was used to classify 3 specimens from each of 14 commercial composites into 4 groups according to filler morphology. The specimens (each 5 x 2.5 x 15 mm) were derived from the fractured remnants after the fracture toughness test. Filler weight content was determined by the standard ash method, and the volume content was calculated using the weight percentage and density of the filler and matrix components. Microhardness was measured with a Vickers hardness tester, and flexural strength and modulus were measured with a universal testing machine. A 3-point bending test (ASTM E-399) was used to determine the fracture toughness of each composite. Data were compared with analysis of variance followed by Duncan's multiple range test, both at the P<.05 level of significance. The composites were classified into 4 categories according to filler morphology: prepolymerized, irregular-shaped, both prepolymerized and irregular-shaped, and round particles. Filler loading was influenced by filler morphology. Composites containing prepolymerized filler particles had the lowest filler content (25% to 51% of filler volume), whereas composites containing round particles had the highest filler content (59% to 60% of filler volume). The mechanical properties of the composites were related to their filler content. Composites with the highest filler by volume exhibited the highest flexural strength (120 to 129 MPa), flexural modulus (12 to 15 GPa), and hardness (101 to 117 VHN). Fracture toughness was also affected by filler volume, but maximum toughness was found at a threshold level of approximately 55% filler volume. Within the limitations of this study, the commercial composites tested could be classified by their filler morphology. This property influenced filler loading. Both filler morphology and filler loading influenced flexural strength, flexural modulus, hardness, and fracture toughness.
NASA Astrophysics Data System (ADS)
Kirkham, R.; Olsen, K.; Hayes, J. C.; Emer, D. F.
2013-12-01
Underground nuclear tests may be first detected by seismic or air samplers operated by the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization). After initial detection of a suspicious event, member nations may call for an On-Site Inspection (OSI) that in part, will sample for localized releases of radioactive noble gases and particles. Although much of the commercially available equipment and methods used for surface and subsurface environmental sampling of gases can be used for an OSI scenario, on-site sampling conditions, required sampling volumes and establishment of background concentrations of noble gases require development of specialized methodologies. To facilitate development of sampling equipment and methodologies that address OSI sampling volume and detection objectives, and to collect information required for model development, a field test site was created at a former underground nuclear explosion site located in welded volcanic tuff. A mixture of SF-6, Xe127 and Ar37 was metered into 4400 m3 of air as it was injected into the top region of the UNE cavity. These tracers were expected to move towards the surface primarily in response to barometric pumping or through delayed cavity pressurization (accelerated transport to minimize source decay time). Sampling approaches compared during the field exercise included sampling at the soil surface, inside surface fractures, and at soil vapor extraction points at depths down to 2 m. Effectiveness of various sampling approaches and the results of tracer gas measurements will be presented.
Trends in laboratory test volumes for Medicare Part B reimbursements, 2000-2010.
Shahangian, Shahram; Alspach, Todd D; Astles, J Rex; Yesupriya, Ajay; Dettwyler, William K
2014-02-01
Changes in reimbursements for clinical laboratory testing may help us assess the effect of various variables, such as testing recommendations, market forces, changes in testing technology, and changes in clinical or laboratory practices, and provide information that can influence health care and public health policy decisions. To date, however, there has been no report, to our knowledge, of longitudinal trends in national laboratory test use. To evaluate Medicare Part B-reimbursed volumes of selected laboratory tests per 10,000 enrollees from 2000 through 2010. Laboratory test reimbursement volumes per 10,000 enrollees in Medicare Part B were obtained from the Centers for Medicare & Medicaid Services (Baltimore, Maryland). The ratio of the most recent (2010) reimbursed test volume per 10,000 Medicare enrollees, divided by the oldest data (usually 2000) during this decade, called the volume ratio, was used to measure trends in test reimbursement. Laboratory tests with a reimbursement claim frequency of at least 10 per 10,000 Medicare enrollees in 2010 were selected, provided there was more than a 50% change in test reimbursement volume during the 2000-2010 decade. We combined the reimbursed test volumes for the few tests that were listed under more than one code in the Current Procedural Terminology (American Medical Association, Chicago, Illinois). A 2-sided Poisson regression, adjusted for potential overdispersion, was used to determine P values for the trend; trends were considered significant at P < .05. Tests with the greatest decrease in reimbursement volumes were electrolytes, digoxin, carbamazepine, phenytoin, and lithium, with volume ratios ranging from 0.27 to 0.64 (P < .001). Tests with the greatest increase in reimbursement volumes were meprobamate, opiates, methadone, phencyclidine, amphetamines, cocaine, and vitamin D, with volume ratios ranging from 83 to 1510 (P < .001). Although reimbursement volumes increased for most of the selected tests, other tests exhibited statistically significant downward trends in annual reimbursement volumes. The observed changes in reimbursement volumes may be explained by disease prevalence and severity, patterns of drug use, clinical or laboratory practices, and testing recommendations and guidelines, among others. These data may be useful to policy makers, health systems researchers, laboratory directors, and industry scientists to understand, address, and anticipate trends in laboratory testing in the Medicare population.
NASA Astrophysics Data System (ADS)
Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng
2015-12-01
Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.
NASA Technical Reports Server (NTRS)
Mueller, J. L. (Editor); Fargion, Giuletta S. (Editor); McClain, Charles R. (Editor); Pegau, Scott; Zaneveld, J. Ronald V.; Mitchell, B. Gregg; Kahru, Mati; Wieland, John; Stramska, Malgorzat
2003-01-01
This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 (Mueller and Fargion 2002, Volumes 1 and 2) is entirely superseded by the six volumes of Revision 4 listed above.
Estimating Wood Volume for Pinus Brutia Trees in Forest Stands from QUICKBIRD-2 Imagery
NASA Astrophysics Data System (ADS)
Patias, Petros; Stournara, Panagiota
2016-06-01
Knowledge of forest parameters, such as wood volume, is required for a sustainable forest management. Collecting such information in the field is laborious and even not feasible in inaccessible areas. In this study, tree wood volume is estimated utilizing remote sensing techniques, which can facilitate the extraction of relevant information. The study area is the University Forest of Taxiarchis, which is located in central Chalkidiki, Northern Greece and covers an area of 58km2. The tree species under study is the conifer evergreen species P. brutia (Calabrian pine). Three plot surfaces of 10m radius were used. VHR Quickbird-2 images are used in combination with an allometric relationship connecting the Tree Crown with the Diameter at breast height (Dbh), and a volume table developed for Greece. The overall methodology is based on individual tree crown delineation, based on (a) the marker-controlled watershed segmentation approach and (b) the GEographic Object-Based Image Analysis approach. The aim of the first approach is to extract separate segments each of them including a single tree and eventual lower vegetation, shadows, etc. The aim of the second approach is to detect and remove the "noisy" background. In the application of the first approach, the Blue, Green, Red, Infrared and PCA-1 bands are tested separately. In the application of the second approach, NDVI and image brightness thresholds are utilized. The achieved results are evaluated against field plot data. Their observed difference are between -5% to +10%.
Chi, F; Wu, S; Zhou, J; Li, F; Sun, J; Lin, Q; Lin, H; Guan, X; He, Z
2015-05-01
This study determined the dosimetric comparison of moderate deep inspiration breath-hold using active breathing control and free-breathing intensity-modulated radiotherapy (IMRT) after breast-conserving surgery for left-sided breast cancer. Thirty-one patients were enrolled. One free breathe and two moderate deep inspiration breath-hold images were obtained. A field-in-field-IMRT free-breathing plan and two field-in-field-IMRT moderate deep inspiration breath-holding plans were compared in the dosimetry to target volume coverage of the glandular breast tissue and organs at risks for each patient. The breath-holding time under moderate deep inspiration extended significantly after breathing training (P<0.05). There was no significant difference between the free-breathing and moderate deep inspiration breath-holding in the target volume coverage. The volume of the ipsilateral lung in the free-breathing technique were significantly smaller than the moderate deep inspiration breath-holding techniques (P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. There were no significant differences in target volume coverage between the three plans for the field-in-field-IMRT (all P>0.05). The dose to ipsilateral lung, coronary artery and heart in the field-in-field-IMRT were significantly lower for the free-breathing plan than for the two moderate deep inspiration breath-holding plans (all P<0.05); however, there was no significant difference between the two moderate deep inspiration breath-holding plans. The whole-breast field-in-field-IMRT under moderate deep inspiration breath-hold with active breathing control after breast-conserving surgery in left-sided breast cancer can reduce the irradiation volume and dose to organs at risks. There are no significant differences between various moderate deep inspiration breath-holding states in the dosimetry of irradiation to the field-in-field-IMRT target volume coverage and organs at risks. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Surfactants as blackbird stressing agents
Lefebvre, P.W.; Seubert, J.L.
1970-01-01
Applications of wetting-agent solutions produce mortality in birds. The exact cause of death is undetermined but it is believed that destruction of the insulating qualities of the plumage permits ambient cold temperatures and evaporation to lower the body temperature to a lethal level. The original concept of using these materials as bird-control tools was developed in 1958 at the Patuxent Wildlife Research Center, Bureau of Sport Fisheries and Wildlife Laurel, Maryland. Early field trials by personnel of the Division of Wildlife Services and the Denver Wildlife Research Center indicated that ground-application techniques had promise but limitations of the equipment precluded successful large-scale roost treatments. In 1966, Patuxent Center personnel began using tanker-type aircraft to evaluate high-volume aerial applications of wetting agents. The success of these tests led to the use of small aircraft to make low-volume, high-concentration aerial applications just prior to expected rainfall. Recent trials of the low-volume method show that, with some limitations, it is effective, inexpensive, and safe to the environment. Current research emphasizes the screening of new candidate materials for efficacy, biodegradability, and toxicity to plants and non-target animals, as well as basic investigations of the avian physiological mechanisms involved. Field trials to develop more effective application techniques will continue.
Characterization of fluid flow by digital correlation of scattered light
NASA Technical Reports Server (NTRS)
Gilbert, John A.; Matthys, Donald R.
1989-01-01
The objective is to produce a physical system suitable for a space environment that can measure fluid velocities in a three-dimensional volume by the development of a particle correlation velocimetry technique. Experimental studies were conducted on a field test cell to demonstrate the suitability and accuracy of digital correlation techniques for measuring two-dimensional fluid flows. This objective was satisfied by: (1) the design of an appropriate illumination and detection system for making velocity measurements within a test cell; (2) the design and construction of a test cell; (3) the preliminary evaluations on fluid and seeding requirements; and (4) the performance of controlled tests using a multiple exposure correlation technique. This presentation is represented by viewgraphs with very little text.
nZVI injection into variably saturated soils: Field and modeling study.
Chowdhury, Ahmed I A; Krol, Magdalena M; Kocur, Christopher M; Boparai, Hardiljeet K; Weber, Kela P; Sleep, Brent E; O'Carroll, Denis M
2015-12-01
Nano-scale zero valent iron (nZVI) has been used at a number of contaminated sites over the last decade. At most of these sites, significant decreases in contaminant concentrations have resulted from the application of nZVI. However, limited work has been completed investigating nZVI field-scale mobility. In this study, a field test was combined with numerical modeling to examine nZVI reactivity along with transport properties in variably saturated soils. The field test consisted of 142L of carboxymethyle cellulose (CMC) stabilized monometallic nZVI synthesized onsite and injected into a variably saturated zone. Periodic groundwater samples were collected from the injection well, as well as, from two monitoring wells to analyze for chlorinated solvents and other geochemistry indicators. This study showed that CMC stabilized monometallic nZVI was able to decrease tricholorethene (TCE) concentrations in groundwater by more than 99% from the historical TCE concentrations. A three dimensional, three phase, finite difference numerical simulator, (CompSim) was used to further investigate nZVI and polymer transport at the variably saturated site. The model was able to accurately predict the field observed head data without parameter fitting. In addition, the numerical simulator estimated the mass of nZVI delivered to the saturated and unsaturated zones and distinguished the nZVI phase (i.e. aqueous or attached). The simulation results showed that the injected slurry migrated radially outward from the injection well, and therefore nZVI transport was governed by injection velocity and viscosity of the injected solution. A suite of sensitivity analyses was performed to investigate the impact of different injection scenarios (e.g. different volume and injection rate) on nZVI migration. Simulation results showed that injection of a higher nZVI volume delivered more iron particles at a given distance; however, the travel distance was not proportional to the increase in volume. Moreover, simulation results showed that using a 1D transport equation to simulate nZVI migration in the subsurface may overestimate the travel distance. This is because the 1D transport equation assumes a constant velocity while pore water velocity radially decreases from the well during injection. This study suggests that on-site synthesized nZVI particles are mobile in the subsurface and that a numerical simulator can be a valuable tool for optimal design of nZVI field applications. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigo, H.G.; Chandler, A.J.
Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.
In-field tests of the EURITRACK tagged neutron inspection system
NASA Astrophysics Data System (ADS)
Carasco, C.; Perot, B.; Bernard, S.; Mariani, A.; Szabo, J.-L.; Sannie, G.; Roll, Th.; Valkovic, V.; Sudac, D.; Viesti, G.; Lunardon, M.; Bottosso, C.; Fabris, D.; Nebbia, G.; Pesente, S.; Moretto, S.; Zenoni, A.; Donzella, A.; Moszynski, M.; Gierlik, M.; Batsch, T.; Wolski, D.; Klamra, W.; Le Tourneur, P.; Lhuissier, M.; Colonna, A.; Tintori, C.; Peerani, P.; Sequeira, V.; Salvato, M.
2008-04-01
The EURopean Illicit TRAfficking Countermeasures Kit (EURITRACK) inspection system has been designed to complement X-ray scanners in the detection of explosives and other illicit materials hidden in cargo containers. The containers are interrogated by a 14-MeV tagged neutron beam at any suspect position in the X-ray image. Interrogation of a specific volume element with tagged neutrons yields information about the chemical composition of the material. Implementation and performance tests of the EURITRACK system in the Port of Rijeka in Croatia are described. Cargo container inspection results are reported and discussed.
NASA Technical Reports Server (NTRS)
Koenig, John C.; Billitti, Joseph W.; Tallon, John M.
1979-01-01
Quality assurance criteria are described for manufacturers and installers of solar photovoltaic tests and applications. Quality oriented activities are outlined to be pursued by the contractor/subcontractor to assure the physical and operational quality of equipment produced is included. In the broad sense, guidelines are provided for establishing a QA organization if none exists. Mainly, criteria is provided to be considered in any PV quality assurance plan selected as appropriate by the responsible Field Center. A framework is established for a systematic approach to ensure that photovoltaic tests and applications are constructed in a timely and cost effective manner.
Finite size effects in the thermodynamics of a free neutral scalar field
NASA Astrophysics Data System (ADS)
Parvan, A. S.
2018-04-01
The exact analytical lattice results for the partition function of the free neutral scalar field in one spatial dimension in both the configuration and the momentum space were obtained in the framework of the path integral method. The symmetric square matrices of the bilinear forms on the vector space of fields in both configuration space and momentum space were found explicitly. The exact lattice results for the partition function were generalized to the three-dimensional spatial momentum space and the main thermodynamic quantities were derived both on the lattice and in the continuum limit. The thermodynamic properties and the finite volume corrections to the thermodynamic quantities of the free real scalar field were studied. We found that on the finite lattice the exact lattice results for the free massive neutral scalar field agree with the continuum limit only in the region of small values of temperature and volume. However, at these temperatures and volumes the continuum physical quantities for both massive and massless scalar field deviate essentially from their thermodynamic limit values and recover them only at high temperatures or/and large volumes in the thermodynamic limit.
Sánchez-Hermosilla, Julián; Rincón, Víctor J; Páez, Francisco; Agüera, Francisco; Carvajal, Fernando
2011-08-01
In the greenhouses of south-eastern Spain, plant protection products are applied using mainly sprayers at high pressures and high volumes. This results in major losses on the ground and less than uniform spray deposition on the canopy. Recently, self-propelled vehicles equipped with vertical spray booms have appeared on the market. In this study, deposition on the canopy and the losses to the ground at different spray volumes have been compared, using a self-propelled vehicle with vertical spray booms versus a gun sprayer. Three different spray volumes have been tested with a boom sprayer, and two with a spray gun. The vehicle with the vertical spray boom gave similar depositions to those made with the gun, but at lower application volumes. Also, the distribution of the vertical spray boom was more uniform, with lower losses to the ground. The vertical spray booms used in tomato crops improve the application of plant protection products with respect to the spray gun, reducing the application volumes and the environmental risks of soil pollution. Copyright © 2011 Society of Chemical Industry.
Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model
NASA Astrophysics Data System (ADS)
Pakseresht, Pedram; Apte, Sourabh V.
2017-11-01
Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).
NASA Astrophysics Data System (ADS)
Cho, Yi Je; Lee, Wook Jin; Park, Yong Ho
2014-11-01
Aspects of numerical results from computational experiments on representative volume element (RVE) problems using finite element analyses are discussed. Two different boundary conditions (BCs) are examined and compared numerically for volume elements with different sizes, where tests have been performed on the uniaxial tensile deformation of random particle reinforced composites. Structural heterogeneities near model boundaries such as the free-edges of particle/matrix interfaces significantly influenced the overall numerical solutions, producing force and displacement fluctuations along the boundaries. Interestingly, this effect was shown to be limited to surface regions within a certain distance of the boundaries, while the interior of the model showed almost identical strain fields regardless of the applied BCs. Also, the thickness of the BC-affected regions remained constant with varying volume element sizes in the models. When the volume element size was large enough compared to the thickness of the BC-affected regions, the structural response of most of the model was found to be almost independent of the applied BC such that the apparent properties converged to the effective properties. Finally, the mechanism that leads a RVE model for random heterogeneous materials to be representative is discussed in terms of the size of the volume element and the thickness of the BC-affected region.
Robust Proton Pencil Beam Scanning Treatment Planning for Rectal Cancer Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanco Kiely, Janid Patricia, E-mail: jkiely@sas.upenn.edu; White, Benjamin M.
2016-05-01
Purpose: To investigate, in a treatment plan design and robustness study, whether proton pencil beam scanning (PBS) has the potential to offer advantages, relative to interfraction uncertainties, over photon volumetric modulated arc therapy (VMAT) in a locally advanced rectal cancer patient population. Methods and Materials: Ten patients received a planning CT scan, followed by an average of 4 weekly offline CT verification CT scans, which were rigidly co-registered to the planning CT. Clinical PBS plans were generated on the planning CT, using a single-field uniform-dose technique with single-posterior and parallel-opposed (LAT) fields geometries. The VMAT plans were generated on the planningmore » CT using 2 6-MV, 220° coplanar arcs. Clinical plans were forward-calculated on verification CTs to assess robustness relative to anatomic changes. Setup errors were assessed by forward-calculating clinical plans with a ±5-mm (left–right, anterior–posterior, superior–inferior) isocenter shift on the planning CT. Differences in clinical target volume and organ at risk dose–volume histogram (DHV) indicators between plans were tested for significance using an appropriate Wilcoxon test (P<.05). Results: Dosimetrically, PBS plans were statistically different from VMAT plans, showing greater organ at risk sparing. However, the bladder was statistically identical among LAT and VMAT plans. The clinical target volume coverage was statistically identical among all plans. The robustness test found that all DVH indicators for PBS and VMAT plans were robust, except the LAT's genitalia (V5, V35). The verification CT plans showed that all DVH indicators were robust. Conclusions: Pencil beam scanning plans were found to be as robust as VMAT plans relative to interfractional changes during treatment when posterior beam angles and appropriate range margins are used. Pencil beam scanning dosimetric gains in the bowel (V15, V20) over VMAT suggest that using PBS to treat rectal cancer may reduce radiation treatment–related toxicity.« less
Paratransit Vehicle Test and Evaluation : Volume 3. Handling Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume III) presents the test procedures and results of the handling test series. The test determined the steering and handling characteristics o...
Environmental technology demonstrations involving explosives contamination at the Volunteer Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, A.J.; Broder, M.F.; Jayne, E.A.
1997-08-01
Managed by the US Army Environmental Center, the Army`s test site at Volunteer Army Ammunition Plant encompasses a 300-acre area formerly used for batch production of TNT. Soil and groundwater contamination in the test area is well characterized. A network of monitoring wells and detailed information regarding the volume, location, and concentration of soil contamination is available to potential demonstrators. On-site field and laboratory support is provided by ICI Americas Incorporated, the facility`s operator. Four demonstrations have been conducted at the test site and several are scheduled for 1997. Preliminary findings from the four demonstrations discussed will be available sometimemore » in 1997.« less
Utility gas turbine combustor viewing system: Volume 2, Engine operating envelope test: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morey, W.W.
1988-12-01
This report summarizes the development and field testing of a combustor viewing probe (CVP) as a flame diagnostic monitor for utility gas turbine engines. The prototype system is capable of providing a visual record of combustor flame images, recording flame spectral data, analyzing image and spectral data, and diagnosing certain engine malfunctions. The system should provide useful diagnostic information to utility plant operators, and reduced maintenance costs. The field tests demonstrated the ability of the CVP to monitor combustor flame condition and to relate changes in the engine operation with variations in the flame signature. Engine light off, run upmore » to full speed, the addition of load, and the effect of water injection for NO/sub x/ control could easily be identified on the video monitor. The viewing probe was also valuable in identifying hard startups and shutdowns, as well as transient effects that can seriously harm the engine.« less
Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development
NASA Technical Reports Server (NTRS)
1975-01-01
The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.
The Shock and Vibration Digest. Volume 16, Number 4
1984-04-01
The 2nd International Modal Analysis Conference, which was held in Orlando, Florida, this past February, was highly successful in all respects. A...announcement of the formation of a new technical society dedicated to advancing the modal analysis technology, the International Society for Modal Testing and... Analysis . This new society is I unique in two respects. First, it is dedicated to a specific branch of a specialized technical field..Second, it is a
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.
The curriculum guide for nursing occupations is one of five guides written and field tested in a project to develop statewide articulated competency-based curricula in selected vocational education programs. Following an introductory section giving the philosophy, background, and recommendations for nursing education, the 82 study units are…
1995-02-01
capabilities for the common benefit of the NATO community; — Providing scientific and technical advice and assistance to the Military Committee in the field...Exchange of scientific and technical information; — Providing assistance to member nations for the purpose of increasing their scientific and...technical potential; — Rendering scientific and technical assistance, as requested, to other NATO bodies and to member nations in connection with
NASA Technical Reports Server (NTRS)
Mueller, J. L.; Fargion, G. S.; McClain, C. R. (Editor); Pegau, S.; Zanefeld, J. R. V.; Mitchell, B. G.; Kahru, M.; Wieland, J.; Stramska, M.
2003-01-01
This document stipulates protocols for measuring bio-optical and radiometric data for the Sensor Intercomparision and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities and algorithm development. The document is organized into 6 separate volumes as Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4. Volume I: Introduction, Background, and Conventions; Volume II: Instrument Specifications, Characterization and Calibration; Volume III: Radiometric Measurements and Data Analysis Methods; Volume IV: Inherent Optical Properties: Instruments, Characterization, Field Measurements and Data Analysis Protocols; Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Methods; Volume VI: Special Topics in Ocean Optics Protocols and Appendices. The earlier version of Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3 is entirely superseded by the six volumes of Revision 4 listed above.
Paratransit Vehicle Test and Evaluation : Volume 2. Acceleration and Interior Measurement Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume II) presents the test procedure and results of the acceleration and interior measurement test series. The tests determined the acceleratio...
Paratransit Vehicle Test and Evaluation : Volume 5. Noise Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype paratransit vehicles were conducted. This volume (Volume V) presents the test procedures and results of the noise tests conducted on the two paratransit vehicles and the baseline test vehicle. The te...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gist, Ryan
This technical report summarizes the work completed by BioLite in fulfilment of the US DOE EERE award. The work plan focused on three key objectives: developing an optimized combustion system that demonstrates high combustion efficiency and low PM 2.5 and CO emissions, integrate the system into popular stove phenotypes – side-fed rocket stove architecture like the BioLite HomeStove, and the Patsari chimney stove in Mexico such that they maintain their important phenotypical characteristics, independently evaluate quantitative fuel and emissions performance of the integrated ‘Turbo-Patsari’ in Mexican households. The project activities were organized into six major tasks: A. Develop, fabricate, andmore » test proof-of-concept prototypes B. Develop field prototypes, assess user feedback and field performance C. Define revised stove design for pre-production model, Identify manufacturing requirements and estimated cost to build, Conduct reliability, emissions, and performance testing of pre-production Turbo-Patsari D. Build pre-production Turbo-Patsari stove combustion cores E. Conduct pre-production field trials F. Summarize field trial results and evaluate Turbo-Patsari for potential volume production. A two-pronged approach was adopted for the above tasks. The first involved building a modular test platform that allowed parametric variation of multiple stove design parameters that directly affect its performance – heat output, thermal efficiency, and emissions. The second part of the approach comprised of building a surrogate Patsari based on GIRA’s specifications that could then be modified or retrofitted for optimum performance based on the learnings from the modular test platform. The following sections of the report will describe the findings of tests on these platform, the subsequent development, design, and installation of the Turbo-Patsari, and finally the in-home field trial.« less
Load dissipation by corn residue on tilled soil in laboratory and field-wheeling conditions.
Reichert, José M; Brandt, André A; Rodrigues, Miriam F; Reinert, Dalvan J; Braida, João A
2016-06-01
Crop residues may partially dissipate applied loads and reduce soil compaction. We evaluated the effect of corn residue on energy-applied dissipation during wheeling. The experiment consisted of a preliminary laboratory test and a confirmatory field test on a Paleaudalf soil. In the laboratory, an adapted Proctor test was performed with three energy levels, with and without corn residue. Field treatments consisted of three 5.1 Mg tractor wheeling intensities (0, 2, and 6), with and without 12 Mg ha(-1) corn residue on the soil surface. Corn residue on the soil surface reduced soil bulk density in the adapted Proctor test. By applying energy of 52.6 kN m m(-3) , soil dissipated 2.98% of applied energy, whereas with 175.4 kN m m(-3) a dissipation of 8.60% was obtained. This result confirms the hypothesis that surface mulch absorbs part of the compaction effort. Residue effects on soil compaction observed in the adapted Proctor test was not replicated under subsoiled soil field conditions, because of differences in applied pressure and soil conditions (structure, moisture and volume confinement). Nevertheless, this negative result does not mean that straw has no effect in the field. Such effects should be measured via stress transmission and compared to soil load-bearing capacity, rather than on bulk deformations. Wheeling by heavy tractor on subsoiled soil increased compaction, independently of surface residue. Two wheelings produced a significantly increase, but six wheelings did not further increase compaction. Reduced traffic intensity on recently tilled soil is necessary to minimize soil compaction, since traffic intensity show a greater effect than surface mulch on soil protection from excessive compaction. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Automated pulmonary lobar ventilation measurements using volume-matched thoracic CT and MRI
NASA Astrophysics Data System (ADS)
Guo, F.; Svenningsen, S.; Bluemke, E.; Rajchl, M.; Yuan, J.; Fenster, A.; Parraga, G.
2015-03-01
Objectives: To develop and evaluate an automated registration and segmentation pipeline for regional lobar pulmonary structure-function measurements, using volume-matched thoracic CT and MRI in order to guide therapy. Methods: Ten subjects underwent pulmonary function tests and volume-matched 1H and 3He MRI and thoracic CT during a single 2-hr visit. CT was registered to 1H MRI using an affine method that incorporated block-matching and this was followed by a deformable step using free-form deformation. The resultant deformation field was used to deform the associated CT lobe mask that was generated using commercial software. 3He-1H image registration used the same two-step registration method and 3He ventilation was segmented using hierarchical k-means clustering. Whole lung and lobar 3He ventilation and ventilation defect percent (VDP) were generated by mapping ventilation defects to CT-defined whole lung and lobe volumes. Target CT-3He registration accuracy was evaluated using region- , surface distance- and volume-based metrics. Automated whole lung and lobar VDP was compared with semi-automated and manual results using paired t-tests. Results: The proposed pipeline yielded regional spatial agreement of 88.0+/-0.9% and surface distance error of 3.9+/-0.5 mm. Automated and manual whole lung and lobar ventilation and VDP were not significantly different and they were significantly correlated (r = 0.77, p < 0.0001). Conclusion: The proposed automated pipeline can be used to generate regional pulmonary structural-functional maps with high accuracy and robustness, providing an important tool for image-guided pulmonary interventions.
Paratransit Vehicle Test and Evaluation : Volume 4. Fuel Economy Tests.
DOT National Transportation Integrated Search
1978-06-01
A series of tests and evaluations of two prototype vehicles for paratransit were conducted. This volume (Volume IV) presents the test procedures and results of the fuel economy tests. The test series determined the fuel economy of the vehicles as the...
Kraus, Robert H.; Matlashov, Andrei N.; Espy, Michelle A.; Volegov, Petr L.
2010-03-30
An ultra-low magnetic field NMR system can non-invasively examine containers. Database matching techniques can then identify hazardous materials within the containers. Ultra-low field NMR systems are ideal for this purpose because they do not require large powerful magnets and because they can examine materials enclosed in conductive shells such as lead shells. The NMR examination technique can be combined with ultra-low field NMR imaging, where an NMR image is obtained and analyzed to identify target volumes. Spatial sensitivity encoding can also be used to identify target volumes. After the target volumes are identified the NMR measurement technique can be used to identify their contents.
Toprak, Ibrahim; Yaylalı, Volkan; Yildirim, Cem
2017-01-01
To assess diagnostic consistency and relation between spectral-domain optical coherence tomography (SD-OCT) and standard automated perimetry (SAP) in patients with primary open-angle glaucoma (POAG). This retrospective study comprised 51 eyes of 51 patients with a confirmed diagnosis of POAG. The qualitative and quantitative SD-OCT parameters (retinal nerve fiber layer thicknesses [RNFL; average, superior, inferior, nasal and temporal], RNFL symmetry, rim area, disc area, average and vertical cup/disc [C/D] ratio and cup volume) were compared with parameters of SAP (mean deviation, pattern standard deviation, visual field index, and glaucoma hemifield test reports). Fifty-one eyes of 51 patients with POAG were recruited. Twenty-nine eyes (56.9%) had consistent RNFL and visual field (VF) damage. However, nine patients (17.6%) showed isolated RNFL damage on SD-OCT and 13 patients (25.5%) had abnormal VF test with normal RNFL. In patients with VF defect, age, average C/D ratio, vertical C/D ratio, and cup volume were significantly higher and rim area was lower when compared to those of the patients with normal VF. In addition to these parameters, worsening in average, superior, inferior, and temporal RNFL thicknesses and RNFL symmetry was significantly associated with consistent SD-OCT and SAP outcomes. In routine practice, patients with POAG can be manifested with inconsistent reports between SD-OCT and SAP. An older age, higher C/D ratio, larger cup volume, and lower rim area on SD-OCT appears to be associated with detectable VF damage. Moreover, additional worsening in RNFL parameters might reinforce diagnostic consistency between SD-OCT and SAP.
Ham, Suyun; Song, Homin; Oelze, Michael L; Popovics, John S
2017-03-01
We describe an approach that utilizes ultrasonic surface wave backscatter measurements to characterize the volume content of relatively small distributed defects (microcrack networks) in concrete. A simplified weak scattering model is used to demonstrate that the scattered wave field projected in the direction of the surface wave propagation is relatively insensitive to scatterers that are smaller than the propagating wavelength, while the scattered field projected in the opposite direction is more sensitive to sub-wavelength scatterers. Distributed microcracks in the concrete serve as the small scatterers that interact with a propagating surface wave. Data from a finite element simulation were used to demonstrate the viability of the proposed approach, and also to optimize a testing configuration to collect data. Simulations were validated through experimental measurements of ultrasonic backscattered surface waves from test samples of concrete constructed with different concentrations of fiber filler (0.0, 0.3 and 0.6%) to mimic increasing microcrack volume density and then samples with actual cracking induced by controlled thermal cycles. A surface wave was induced in the concrete samples by a 50kHz ultrasonic source operating 10mm above the surface at an angle of incidence of 9°. Silicon-based miniature MEMS acoustic sensors located a few millimeters above the concrete surface both behind and in front of the sender were used to detect leaky ultrasonic surface waves emanating from concrete. A normalized backscattered energy parameter was calculated from the signals. Statistically significant differences in the normalized backscattered energy were observed between concrete samples with varying levels of simulated and actual cracking damage volume. Copyright © 2016 Elsevier B.V. All rights reserved.
TETAM Model Verification Study. Volume I. Representation of Intervisibility, Initial Comparisons
1976-02-01
simulation models in terms of firings, engagements, and losses between tank and antitank as compared with the field data collected during the free play battles of Field Experiment 11.8 are found in Volume III. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, C.; Waterland, L.R.
1987-03-01
The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue-gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castaldini, C.; Waterland, L.R.
1987-03-01
The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous monitoring of flue-gas emissions; source-assessment sampling system (SASS) sampling of the flue-gas with subsequent laboratory analysis of samples to give total flue-gas organics in two boiling-point ranges, compound category information within these ranges, specific quantitation of the semi-volatile organic priority pollutants, and flue gas concentrations of 73 trace elements; Method 5 sampling for particulate; controlled condensation system sampling for SO/submore » 2/ and SO/sub 3/; and grab sampling of boiler mechanical collector hopper ash for inorganic and organic composition determinations. Total organic emissions decreased from 60-135 mg/dscm firing dry wood to 2-65 mg/dscm firing green wood, in parallel with corresponding boiler CO emissions.« less
The significance of large variations in oil properties of the Dai Hung field, Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behrenbruch, P.; Du, P.Q.
1995-10-01
The Dai Hung Oil field, offshore Vietnam, is comprised of a complex subsurface structure containing stacked reservoir sequences typically found in many other Southeast Asian fields. Combined with areal fault compartmentalization, this situation has led to the observed, large variations in oil properties. Furthermore, the depositional environment in terms of burial history has created a unique overpressure situation which also had an affect, particularly on the crude saturation conditions of individual reservoirs. For commercial and technical reasons, this situation required a detailed analysis, both in terms of variation in crude assay and live oil properties. For whole crude properties: gravity,more » K factor, wax content and pour point-graphs were drawn up using a large data base of worldwide crudes against which the Dai Hung data could be validated. In case of PVT properties (bubble point and formation volume factor) existing industry correlations were examined. It could be concluded that the sweet, medium gravity and moderately waxy Dai Hung crude has whole crude properties which are comparable to other, similar crudes. The general framework of crude properties established is suitable to type other crudes, even if limited information is available. Of the existing PVT correlations tested, it was found that Standing`s correlation for the oil formation volume factor and the Kartoatmodjo-Schmidt correlation for the bubble point fitted the Dai Hung crude data the best. For the lower shrinkage Dai Hung crudes the Malaysian oil formation volume factor correlation by Omar-Todd gave the best data fit.« less
Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.
Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel
2010-04-01
A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.
ERIC Educational Resources Information Center
Hopley, Ken; And Others
The first of several planned volumes of Free Response Test Items contains geology questions developed by the Assessment and Evaluation Unit of the New South Wales Department of Education. Two additional geology volumes and biology and chemistry volumes are in preparation. The questions in this volume were written and reviewed by practicing…
Numerical analysis of bubble-cluster formation in an ultrasonic field
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Son, Gihun
2016-11-01
Bubble-cluster formation in an ultrasonic field is investigated numerically solving the conservation equations of mass, momentum and energy. The liquid-gas interface is calculated using the volume-of-fluid method with variable gas density to consider the bubble compressibility. The effect of liquid-gas phase change is also included as the interface source terms of the mass and energy equations. The numerical approach is tested through the simulation of the expansion and contraction motion of a compressed bubble adjacent to a wall. When the bubble is placed in an ultrasonic field, it oscillates radially and then collapses violently. Numerical simulation is also performed for bubble-cluster formation induced by an ultrasonic generator, where the generated bubbles are merged into a macrostructure along the acoustic flow field. The effects of ultrasonic power and frequency, liquid properties and pool temperature on the bubble-cluster formation are investigated. This work was supported by the Korea Institute of Energy Research.
Mehta, Mohina; Ram, Raja; Bhattacharya, Amita
2014-07-01
The two commercially important apple rootstocks i.e., MM106 and B9 were micropropagated using a liquid culture system. Three different strengths of 0.8% agar solidified PGR free basal MS medium were first tested to optimize the culture media for both the rootstocks. Full strength medium (MS0) supported maximum in vitro growth, multiplication, rooting and survival under field conditions as opposed to quarter and half strength media. When three different volumes of liquid MS0 were tested, highest in vitro growth, multiplication, rooting and also survival under field conditions were achieved in 20 mL liquid MS0. The cost of one litre of liquid medium was also reduced by 8 times to Rs. 6.29 as compared to solid medium. The cost of 20 mL medium was further reduced to Rs. 0.125.
Compact field color schlieren system for use in microgravity materials processing
NASA Technical Reports Server (NTRS)
Poteet, W. M.; Owen, R. B.
1986-01-01
A compact color schlieren system designed for field measurement of materials processing parameters has been built and tested in a microgravity environment. Improvements in the color filter design and a compact optical arrangement allowed the system described here to retain the traditional advantages of schlieren, such as simplicity, sensitivity, and ease of data interpretation. Testing was accomplished by successfully flying the instrument on a series of parabolic trajectories on the NASA KC-135 microgravity simulation aircraft. A variety of samples of interest in materials processing were examined. Although the present system was designed for aircraft use, the technique is well suited to space flight experimentation. A major goal of this effort was to accommodate the main optical system within a volume approximately equal to that of a Space Shuttle middeck locker. Future plans include the development of an automated space-qualified facility for use on the Shuttle and Space Station.
A magnetostrictive composite-fiber Bragg Grating sensor.
Quintero, Sully M M; Braga, Arthur M B; Weber, Hans I; Bruno, Antonio C; Araújo, Jefferson F D F
2010-01-01
This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 μm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor.
A Magnetostrictive Composite-Fiber Bragg Grating Sensor
Quintero, Sully M. M.; Braga, Arthur M. B.; Weber, Hans I.; Bruno, Antonio C.; Araújo, Jefferson F. D. F.
2010-01-01
This paper presents a light and compact optical fiber Bragg Grating sensor for DC and AC magnetic field measurements. The fiber is coated by a thick layer of a magnetostrictive composite consisting of particles of Terfenol-D dispersed in a polymeric matrix. Among the different compositions for the coating that were tested, the best magnetostrictive response was obtained using an epoxy resin as binder and a 30% volume fraction of Terfenol-D particles with sizes ranging from 212 to 300 μm. The effect of a compressive preload in the sensor was also investigated. The achieved resolution was 0.4 mT without a preload or 0.3 mT with a compressive pre-stress of 8.6 MPa. The sensor was tested at magnetic fields of up to 750 mT under static conditions. Dynamic measurements were conducted with a magnetic unbalanced four-pole rotor. PMID:22163644
Volume-of-Change Cone-Beam CT for Image-Guided Surgery
Lee, Junghoon; Stayman, J. Webster; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.
2012-01-01
C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRR) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector (FPD). The VOCs were reconstructed from varying number of images (10–66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index, and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15–20 images were used, allowing dose reduction by the factor of 10–20. PMID:22801026
Volume-of-change cone-beam CT for image-guided surgery
NASA Astrophysics Data System (ADS)
Lee, Junghoon; Webster Stayman, J.; Otake, Yoshito; Schafer, Sebastian; Zbijewski, Wojciech; Khanna, A. Jay; Prince, Jerry L.; Siewerdsen, Jeffrey H.
2012-08-01
C-arm cone-beam CT (CBCT) can provide intraoperative 3D imaging capability for surgical guidance, but workflow and radiation dose are the significant barriers to broad utilization. One main reason is that each 3D image acquisition requires a complete scan with a full radiation dose to present a completely new 3D image every time. In this paper, we propose to utilize patient-specific CT or CBCT as prior knowledge to accurately reconstruct the aspects of the region that have changed by the surgical procedure from only a sparse set of x-rays. The proposed methods consist of a 3D-2D registration between the prior volume and a sparse set of intraoperative x-rays, creating digitally reconstructed radiographs (DRRs) from the registered prior volume, computing difference images by subtracting DRRs from the intraoperative x-rays, a penalized likelihood reconstruction of the volume of change (VOC) from the difference images, and finally a fusion of VOC reconstruction with the prior volume to visualize the entire surgical field. When the surgical changes are local and relatively small, the VOC reconstruction involves only a small volume size and a small number of projections, allowing less computation and lower radiation dose than is needed to reconstruct the entire surgical field. We applied this approach to sacroplasty phantom data obtained from a CBCT test bench and vertebroplasty data with a fresh cadaver acquired from a C-arm CBCT system with a flat-panel detector. The VOCs were reconstructed from a varying number of images (10-66 images) and compared to the CBCT ground truth using four different metrics (mean squared error, correlation coefficient, structural similarity index and perceptual difference model). The results show promising reconstruction quality with structural similarity to the ground truth close to 1 even when only 15-20 images were used, allowing dose reduction by the factor of 10-20.
Qiaoyu Sun; R. Kasten Dumroese; Yong Liu
2018-01-01
Container volume and irrigation management affect seedling growth in the nursery and field. We evaluated the effects of container volumes (D40, 656 ml; D60, 983 ml) and subirrigation schedules (85%, 75%, 65%, and 55% of 100% total substrate moisture content, TSMC) on seedling growth in a greenhouse and outplanting performance of Chinese cork oak (Quercus variabilis...
High efficiency solar cells for concentrator systems: silicon or multi-junction?
NASA Astrophysics Data System (ADS)
Slade, Alexander; Stone, Kenneth W.; Gordon, Robert; Garboushian, Vahan
2005-08-01
Amonix has become the first company to begin production of high concentration silicon solar cells where volumes are over 10 MW/year. Higher volumes are available due to the method of manufacture; Amonix solely uses semiconductor foundries for solar cell production. In the previous years of system and cell field testing, this method of manufacturing enabled Amonix to maintain a very low overhead while incurring a high cost for the solar cell. However, recent simplifications to the solar cell processing sequence resulted in cost reduction and increased yield. This new process has been tested by producing small qualities in very short time periods, enabling a simulation of high volume production. Results have included over 90% wafer yield, up to 100% die yield and world record performance (η =27.3%). This reduction in silicon solar cell cost has increased the required efficiency for multi-junction concentrator solar cells to be competitive / advantageous. Concentrator systems are emerging as a low-cost, high volume option for solar-generated electricity due to the very high utilization of the solar cell, leading to a much lower $/Watt cost of a photovoltaic system. Parallel to this is the onset of alternative solar cell technologies, such as the very high efficiency multi-junction solar cells developed at NREL over the last two decades. The relatively high cost of these type of solar cells has relegated their use to non-terrestrial applications. However, recent advancements in both multi-junction concentrator cell efficiency and their stability under high flux densities has made their large-scale terrestrial deployment significantly more viable. This paper presents Amonix's experience and testing results of both high-efficiency silicon rear-junction solar cells and multi-junction solar cells made for concentrated light operation.
Type testing of the Siemens Plessey electronic personal dosemeter.
Hirning, C R; Yuen, P S
1995-07-01
This paper presents the results of a laboratory assessment of the performance of a new type of personal dosimeter, the Electronic Personal Dosemeter made by Siemens Plessey Controls Limited. Twenty pre-production dosimeters and a reader were purchased by Ontario Hydro for the assessment. Tests were performed on radiological performance, including reproducibility, accuracy, linearity, detection threshold, energy response, angular response, neutron response, and response time. There were also tests on the effects of a variety of environmental factors, such as temperature, humidity, pulsed magnetic and electric fields, low- and high-frequency electromagnetic fields, light exposure, drop impact, vibration, and splashing. Other characteristics that were tested were alarm volume, clip force, and battery life. The test results were compared with the relevant requirements of three standards: an Ontario Hydro standard for personal alarming dosimeters, an International Electrotechnical Commission draft standard for direct reading personal dose monitors, and an International Electrotechnical Commission standard for thermoluminescence dosimetry systems for personal monitoring. In general, the performance of the Electronic Personal Dosemeter was found to be quite acceptable: it met most of the relevant requirements of the three standards. However, the following deficiencies were found: slow response time; sensitivity to high-frequency electromagnetic fields; poor resistance to dropping; and an alarm that was not loud enough. In addition, the response of the electronic personal dosimeter to low-energy beta rays may be too low for some applications. Problems were experienced with the reliability of operation of the pre-production dosimeters used in these tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kole, Thomas P.; Aghayere, Osarhieme; Kwah, Jason
Purpose: To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Methods and Materials: Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters weremore » statistically evaluated using the Wilcoxon rank-sum test. Results: Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Conclusions: Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications.« less
Kole, Thomas P; Aghayere, Osarhieme; Kwah, Jason; Yorke, Ellen D; Goodman, Karyn A
2012-08-01
To compare heart and coronary artery radiation exposure using intensity-modulated radiotherapy (IMRT) vs. four-field three-dimensional conformal radiotherapy (3D-CRT) treatment plans for patients with distal esophageal cancer undergoing chemoradiation. Nineteen patients with distal esophageal cancers treated with IMRT from March 2007 to May 2008 were identified. All patients were treated to 50.4 Gy with five-field IMRT plans. Theoretical 3D-CRT plans with four-field beam arrangements were generated. Dose-volume histograms of the planning target volume, heart, right coronary artery, left coronary artery, and other critical normal tissues were compared between the IMRT and 3D-CRT plans, and selected parameters were statistically evaluated using the Wilcoxon rank-sum test. Intensity-modulated radiotherapy treatment planning showed significant reduction (p < 0.05) in heart dose over 3D-CRT as assessed by average mean dose (22.9 vs. 28.2 Gy) and V30 (24.8% vs. 61.0%). There was also significant sparing of the right coronary artery (average mean dose, 23.8 Gy vs. 35.5 Gy), whereas the left coronary artery showed no significant improvement (mean dose, 11.2 Gy vs. 9.2 Gy), p = 0.11. There was no significant difference in percentage of total lung volume receiving at least 10, 15, or 20 Gy or in the mean lung dose between the planning methods. There were also no significant differences observed for the kidneys, liver, stomach, or spinal cord. Intensity-modulated radiotherapy achieved a significant improvement in target conformity as measured by the conformality index (ratio of total volume receiving 95% of prescription dose to planning target volume receiving 95% of prescription dose), with the mean conformality index reduced from 1.56 to 1.30 using IMRT. Treatment of patients with distal esophageal cancer using IMRT significantly decreases the exposure of the heart and right coronary artery when compared with 3D-CRT. Long-term studies are necessary to determine how this will impact on development of coronary artery disease and other cardiac complications. Copyright © 2012 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Guion, Robert M.; Ironson, Gail H.
Challenges to classical psychometric theory are examined in the context of a broader range of fundamental, derived, and intuitive measurements in psychology; the challenges include content-referenced testing, latent trait theory, and generalizability theory. A taxonomy of psychological measurement is developed, based on: (1) purposes of…
Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment
NASA Astrophysics Data System (ADS)
Libersky, Matthew; nEDM Collaboration
2013-10-01
An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.
NASA Technical Reports Server (NTRS)
1975-01-01
The main tasks described involved an interferometric evaluation of several cubes, a prediction of their dihedral angles, a comparison of these predictions with independent measurements, a prediction and comparison of far field performance, recommendations as to revised dihedral angles and a subsequent analysis of cubes which were reworked to confirm the recommendations. A tolerance study and theoretical evaluation of several cubes was also performed to aid in understanding the results. The far field characteristics evaluated included polarization effects and treated both intensity distribution and encircled energy data. The energy in the 13.2 - 16.9 arc-sec annular region was tabulated as an indicator of performance sensitivity. The results are provided in viewgraph form, and show the average dihedral angle of an original set of test cubes to have been 1.8 arc-sec with an average far field annulus diameter of 18 arc-sec. Since the peak energy in the 13.2 - 16.9 arc-sec annulus was found to occur for a 1.35 arc-sec cube, and since cube tolerances were shown to increase the annulus diameter slightly, a nominal dihedral angle of 1.25 arc-sec was recommended.
Schwarz, Daniel A.; Arman, Krikor G.; Kakwan, Mehreen S.; Jamali, Ameen M.; Elmeligy, Ayman A.; Buchman, Steven R.
2015-01-01
Background The authors’ goal was to ascertain regenerate bone-healing metrics using quantitative histomorphometry at a single consolidation period. Methods Rats underwent either mandibular distraction osteogenesis (n=7) or partially reduced fractures (n=7); their contralateral mandibles were used as controls (n=11). External fixators were secured and unilateral osteotomies performed, followed by either mandibular distraction osteogenesis (4 days’ latency, then 0.3 mm every 12 hours for 8 days; 5.1 mm) or partially reduced fractures (fixed immediately postoperatively; 2.1 mm); both groups underwent 4 weeks of consolidation. After tissue processing, bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, and osteocyte count per high-power field were analyzed by means of quantitative histomorphometry. Results Contralateral mandibles had statistically greater bone volume/tissue volume ratio and osteocyte count per high-power field compared with both mandibular distraction osteogenesis and partially reduced fractures by almost 50 percent, whereas osteoid volume/tissue volume ratio was statistically greater in both mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles. No statistical difference in bone volume/tissue volume ratio, osteoid volume/tissue volume ratio, or osteocyte count per high-power field was found between mandibular distraction osteogenesis specimens and partially reduced fractures. Conclusions The authors’ findings demonstrate significantly decreased bone quantity and maturity in mandibular distraction osteogenesis specimens and partially reduced fractures compared with contralateral mandibles using the clinically analogous protocols. If these results are extrapolated clinically, treatment strategies may require modification to ensure reliable, predictable, and improved outcomes. PMID:20463629
Research to develop guidelines for cathodic protection of concentric neutral cables, volume 3
NASA Astrophysics Data System (ADS)
Hanck, J. A.; Nekoksa, G.
1982-08-01
Data associated with the corrosion of concentric neutral (CN) wires of direct buried primary cables were statistically analyzed, and guidelines for cathodic protection of CN wires for the electric utility industry were developed. The cathodic protection are reported. Field tests conducted at 36 bellholes excavated in California, Oklahoma, and North Carolina are described. Details of the electrochemical, chemical, bacteriological, and sieve analyses of native soil and imported backfill samples are also included.
NASA Technical Reports Server (NTRS)
Price, W. E.; Martin, K. E.; Nichols, D. K.; Gauthier, M. K.; Brown, S. F.
1981-01-01
Steady-state, total-dose radiation test data are provided in graphic format, for use by electronic designers and other personnel using semiconductor devices in a radiation environment. Data are presented by JPL for various NASA space programs on diodes, bipolar transistors, field effect transistors, silicon-controlled rectifiers, and optical devices. A vendor identification code list is included along with semiconductor device electrical parameter symbols and abbreviations.
Development of an Environmental Monitoring Program. Volume 1. Marine Hazardous Chemical Worker.
1985-10-01
policy that prohibits its employees from entering cargo tanks for any reason. Therefore, the two scenarios selected for the field test, involve activities...a respiratory protection program that is in compliance with OSHA 1910.134 will have to enforce a "clean shaven" policy for tankermen who wear...ben- zene loading, did not enforce their safety policy requiring respiratory protection on a ,, SIl 23 barge tankerman working on the barge. This
1994-05-01
TskY=250K) ... 5-27 6-1. Treeline Correlation With 10.1 Microns ...................... 6-2 6-2. Mean Contrast: CARC Panel vs. Treeline ...6-3 6-3. CARC Panel and Treeline .............................. 6-5 6-4. Signal-to-Clutter Ratio for CARC Panel vs. Treeline ............. 6-6 6...5. Low Emissivity Panel and Treeline ......................... 6-7 xii TABLES 4-1: Sensor Characterization Test Summary ....................... 4-2 4
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.
The curriculum guide for air conditioning/refrigeration is one of five guides written and field tested in a project to develop statewide articulated competency-based curricula in selected vocational education programs. Two separate curricula, one for the vocational-technical level and one for the associate degree level, are presented. The six…
Civil Engineering Corrosion Control. Volume 1. Corrosion Control - General
1975-01-01
is generated in the boiler by the decomposition of carbonates and bicar- bonates of sodium, calcium, and magnesium. (c) The pH Range. Natural waters...and products of decomposition Acting as either anodic or cathodic depolarizers. 4.4.1 Forms of Microorganisms. In almost any soil or water, there are... 1945 . Based on field tests of the Iron and Steel Institute Corrosion Committee reported by J.C. Hudson (J. Iron Steel Inst., 11, 209, 1943), with
1981-10-26
areas of non- rippable materials may be encountered throughout the northwestern portion of the valley. Laboratory test results and field observations...non- rippable at shallow depths, thereby classifying them in this instance as areas of rock and/or shallow rock. When this occurs, these areas may...OCCUR- Rock is defined as any earth material which is not rippable RING WITHIN 50 FEET 015m) AND by conventional excavation methods. Where available
NASA Technical Reports Server (NTRS)
1979-01-01
The results of the Coastal Zone Color Scanner protoflight tests are examined in detail while some of the test results are evaluated with respect to expected performance. Performance characteristics examined include spectral response, signal to noise ratio as a function of radiance input, radiance response, the modulation transfer function, and the field of view and coregistration. The results of orbital sequence tests are also included. The in orbit performance or return of radiometric data in the six spectral bands is evaluated along with the data processing sequence necessary to derive the final data products. Examples of the raw data are given and the housekeeping or diagnostic data which provides information on the day to day health or status of the instrument are discussed.
Anthropogenic seismicity rates and operational parameters at the Salton Sea Geothermal Field.
Brodsky, Emily E; Lajoie, Lia J
2013-08-02
Geothermal power is a growing energy source; however, efforts to increase production are tempered by concern over induced earthquakes. Although increased seismicity commonly accompanies geothermal production, induced earthquake rate cannot currently be forecast on the basis of fluid injection volumes or any other operational parameters. We show that at the Salton Sea Geothermal Field, the total volume of fluid extracted or injected tracks the long-term evolution of seismicity. After correcting for the aftershock rate, the net fluid volume (extracted-injected) provides the best correlation with seismicity in recent years. We model the background earthquake rate with a linear combination of injection and net production rates that allows us to track the secular development of the field as the number of earthquakes per fluid volume injected decreases over time.
Application of Quantitative MRI for Brain Tissue Segmentation at 1.5 T and 3.0 T Field Strengths
West, Janne; Blystad, Ida; Engström, Maria; Warntjes, Jan B. M.; Lundberg, Peter
2013-01-01
Background Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. Methods In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. Results Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. Conclusions Most of the brain was identically classified at the two field strengths, although some regional differences were observed. PMID:24066153
A regional-scale estimation of ice wedge ice volumes in the Canadian High Arctic
NASA Astrophysics Data System (ADS)
Templeton, M.; Pollard, W. H.; Grand'Maison, C. B.
2016-12-01
Ice wedges are both prominent and environmentally vulnerable features in continuous permafrost environments. As the world's Arctic regions begin to warm, concern over the potential effects of ice wedge melt out has become an immediate issue, receiving much attention in the permafrost literature. In this study we estimate the volume of ice wedge ice for large areas in the Canadian High Arctic through the use of high resolution satellite imagery and the improved capabilities of Geographic Information Systems (GIS). The methodology used for this study is similar to that of one performed in Siberia and Alaska by Ulrich et al, in 2014. Utilizing Ulrich's technique, this study detected ice wedge polygons from satellite imagery using ArcGIS. The average width and depth of these ice wedges were obtained from a combination of field data and long-term field studies for the same location. The assumptions used in the analysis of ice wedge volume have been tested, including trough width being representative of ice wedge width, and ice wedge ice content (Pollard and French 1980). This study used specific field sites located near Eureka on Ellesmere Island (N80°01', W85°43') and at Expedition Fiord on Axel Heiberg Island (N79°23', W90°59'). The preliminary results indicate that the methodology used by Ulrich et al, 2014 is transferrable to the Canadian High Arctic, and that ice wedge volumes range between 3-10% of the upper part of permafrost. These findings are similar to previous studies and their importance is made all the more evident by the dynamic nature of ice wedges where it could be argued that they are a key driver of thermokarst terrain. The ubiquitous nature of ice wedges across arctic terrain highlights the importance and the need to improve our understanding of ice wedge dynamics, as subsidence from ice wedge melt-out could lead to large scale landscape change.
Transient Pressure Test Article (TPTA) 1.1 and 1.1A, volume 1
NASA Technical Reports Server (NTRS)
Rebells, Clarence A.
1988-01-01
This final test report presents the results obtained during the static hot firing and cold-gas high Q tests of the first Transient Pressure Test Article (TPTA) 1.1. The TPTA consisted of field test joints A and B, which were the original RSRM J-insulation configuration, with a metal capture feature. It also consisted of a flight configuration nozzle-to-case test joint (Joint D) with shorter vent slots. Fluorocarbon O-rings were used in all the test joints. The purpose of the TPTA tests is to evaluate and characterize the RSMR field and nozzle-to-case joints under the influence of ignition and strut loads during liftoff anf high Q. All objectives of the cold-gas high Q (TPTA 1.1A) test were met and all measurements were close to predicted values. During the static hot-firing test (TPTA 1.1), the motor was inadvertently plugged by the quench injector plug, making it a more severe test, although no strut loads were applied. The motor was depressurized after approximately 11 min using an auxiliary system, and no anomalies were noted. In the static hot-firing test, pressure was incident on the insulation and the test joint gaps were within the predicted range. During the static hot-firing test, no strut loads were applied because the loading system malfunctioned. For this test, all measurements were within range of similar tests performed without strut loads.
The Model of Complex Structure of Quark
NASA Astrophysics Data System (ADS)
Liu, Rongwu
2017-09-01
In Quantum Chromodynamics, quark is known as a kind of point-like fundamental particle which carries mass, charge, color, and flavor, strong interaction takes place between quarks by means of exchanging intermediate particles-gluons. An important consequence of this theory is that, strong interaction is a kind of short-range force, and it has the features of ``asymptotic freedom'' and ``quark confinement''. In order to reveal the nature of strong interaction, the ``bag'' model of vacuum and the ``string'' model of string theory were proposed in the context of quantum mechanics, but neither of them can provide a clear interaction mechanism. This article formulates a new mechanism by proposing a model of complex structure of quark, it can be outlined as follows: (1) Quark (as well as electron, etc) is a kind of complex structure, it is composed of fundamental particle (fundamental matter mass and electricity) and fundamental volume field (fundamental matter flavor and color) which exists in the form of limited volume; fundamental particle lies in the center of fundamental volume field, forms the ``nucleus'' of quark. (2) As static electric force, the color field force between quarks has classical form, it is proportional to the square of the color quantity carried by each color field, and inversely proportional to the area of cross section of overlapping color fields which is along force direction, it has the properties of overlap, saturation, non-central, and constant. (3) Any volume field undergoes deformation when interacting with other volume field, the deformation force follows Hooke's law. (4) The phenomena of ``asymptotic freedom'' and ``quark confinement'' are the result of color field force and deformation force.
Using global unique identifiers to link autism collections.
Johnson, Stephen B; Whitney, Glen; McAuliffe, Matthew; Wang, Hailong; McCreedy, Evan; Rozenblit, Leon; Evans, Clark C
2010-01-01
To propose a centralized method for generating global unique identifiers to link collections of research data and specimens. The work is a collaboration between the Simons Foundation Autism Research Initiative and the National Database for Autism Research. The system is implemented as a web service: an investigator inputs identifying information about a participant into a client application and sends encrypted information to a server application, which returns a generated global unique identifier. The authors evaluated the system using a volume test of one million simulated individuals and a field test on 2000 families (over 8000 individual participants) in an autism study. Inverse probability of hash codes; rate of false identity of two individuals; rate of false split of single individual; percentage of subjects for which identifying information could be collected; percentage of hash codes generated successfully. Large-volume simulation generated no false splits or false identity. Field testing in the Simons Foundation Autism Research Initiative Simplex Collection produced identifiers for 96% of children in the study and 77% of parents. On average, four out of five hash codes per subject were generated perfectly (only one perfect hash is required for subsequent matching). The system must achieve balance among the competing goals of distinguishing individuals, collecting accurate information for matching, and protecting confidentiality. Considerable effort is required to obtain approval from institutional review boards, obtain consent from participants, and to achieve compliance from sites during a multicenter study. Generic unique identifiers have the potential to link collections of research data, augment the amount and types of data available for individuals, support detection of overlap between collections, and facilitate replication of research findings.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
Microscopic Holography for flow over rough plate
NASA Astrophysics Data System (ADS)
Talapatra, Siddharth; Hong, Jiarong; Lu, Yuan; Katz, Joseph
2008-11-01
Our objective is to measure the near wall flow structures in a turbulent channel flow over a rough wall. In-line microscopic holographic PIV can resolve the 3-D flow field in a small sample volume, but recording holograms through a rough surface is a challenge. To solve this problem, we match the refractive indices of the fluid with that of the wall. Proof of concept tests involve an acrylic plate containing uniformly distributed, closely packed 0.45mm high pyramids with slope angle of 22^^o located within a concentrated sodium iodide solution. Holograms recorded by a 4864 x 3248 pixel digital camera at 10X magnification provide a field of view of 3.47mm x 2.32mm and pixel resolution of 0.714 μm. Due to index matching, reconstructed seed particles can be clearly seen over the entire volume, with only faint traces with the rough wall that can be removed. Planned experiments will be performed in a 20 x 5 cm rectangular channel with the top and bottom plates having the same roughness as the sample plate.
NASA Technical Reports Server (NTRS)
Hancock, G. D.; Waite, W. P.
1984-01-01
Two experiments were performed employing swept frequency microwaves for the purpose of investigating the reflectivity from soil volumes containing both discontinuous and continuous changes in subsurface soil moisture content. Discontinuous moisture profiles were artificially created in the laboratory while continuous moisture profiles were induced into the soil of test plots by the environment of an agricultural field. The reflectivity for both the laboratory and field experiments was measured using bi-static reflectometers operated over the frequency ranges of 1.0 to 2.0 GHz and 4.0 to 8.0 GHz. Reflectivity models that considered the discontinuous and continuous moisture profiles within the soil volume were developed and compared with the results of the experiments. This comparison shows good agreement between the smooth surface models and the measurements. In particular the comparison of the smooth surface multi-layer model for continuous moisture profiles and the yield experiment measurements points out the sensitivity of the specular component of the scattered electromagnetic energy to the movement of moisture in the soil.
Telephone Equipment Installation and Repair Specialist (AFSC 36254).
ERIC Educational Resources Information Center
Air Univ., Gunter AFS, Ala. Extension Course Inst.
This document contains the four volumes of an Air Force correspondence course in telephone equipment installation and repair. Each volume consists of student learning objectives, information, exercises, and answers to exercises; a volume review exercise is included for each volume. The first volume includes information about career field duties…
NASA Technical Reports Server (NTRS)
Manhardt, P. D.
1982-01-01
The CMC fluid mechanics program system was developed to transmit the theoretical solution of finite element numerical solution methodology, applied to nonlinear field problems into a versatile computer code for comprehensive flow field analysis. Data procedures for the CMC 3 dimensional Parabolic Navier-Stokes (PNS) algorithm are presented. General data procedures a juncture corner flow standard test case data deck is described. A listing of the data deck and an explanation of grid generation methodology are presented. Tabulations of all commands and variables available to the user are described. These are in alphabetical order with cross reference numbers which refer to storage addresses.
Electromagnetic Scattering by Spheroidal Volumes of Discrete Random Medium
NASA Technical Reports Server (NTRS)
Dlugach, Janna M.; Mishchenko, Michael I.
2017-01-01
We use the superposition T-matrix method to compare the far-field scattering matrices generated by spheroidal and spherical volumes of discrete random medium having the same volume and populated by identical spherical particles. Our results fully confirm the robustness of the previously identified coherent and diffuse scattering regimes and associated optical phenomena exhibited by spherical particulate volumes and support their explanation in terms of the interference phenomenon coupled with the order-of-scattering expansion of the far-field Foldy equations. We also show that increasing non-sphericity of particulate volumes causes discernible (albeit less pronounced) optical effects in forward and backscattering directions and explain them in terms of the same interference/multiple-scattering phenomenon.
A finite-volume ELLAM for three-dimensional solute-transport modeling
Russell, T.F.; Heberton, C.I.; Konikow, Leonard F.; Hornberger, G.Z.
2003-01-01
A three-dimensional finite-volume ELLAM method has been developed, tested, and successfully implemented as part of the U.S. Geological Survey (USGS) MODFLOW-2000 ground water modeling package. It is included as a solver option for the Ground Water Transport process. The FVELLAM uses space-time finite volumes oriented along the streamlines of the flow field to solve an integral form of the solute-transport equation, thus combining local and global mass conservation with the advantages of Eulerian-Lagrangian characteristic methods. The USGS FVELLAM code simulates solute transport in flowing ground water for a single dissolved solute constituent and represents the processes of advective transport, hydrodynamic dispersion, mixing from fluid sources, retardation, and decay. Implicit time discretization of the dispersive and source/sink terms is combined with a Lagrangian treatment of advection, in which forward tracking moves mass to the new time level, distributing mass among destination cells using approximate indicator functions. This allows the use of large transport time increments (large Courant numbers) with accurate results, even for advection-dominated systems (large Peclet numbers). Four test cases, including comparisons with analytical solutions and benchmarking against other numerical codes, are presented that indicate that the FVELLAM can usually yield excellent results, even if relatively few transport time steps are used, although the quality of the results is problem-dependent.
1992-01-01
3-37 Table 3.2 Nominal Composition of Explosive D ............................. 3-38 Table 3.3 Nominal Composition of PBXN -6...RDX used during Phase C was PBXN -6, a mixture of RDX and Viton An* (hereafter referred to as 3 RDX), The nominal composition of this explosive is...given in table 3.3. I I I I 3-38 3 I I Table 3.3 Nominal Composition of PBXN -6. II Carbon Content (%) Ingredient Weight (%)I __ .1• •,, ,,,,i, RDX 95.0
Far-field potentials in cylindrical and rectangular volume conductors.
Dumitru, D; King, J C; Rogers, W E
1993-07-01
The occurrence of a transient dipole is one method of producing a far-field potential. This investigation qualitatively defines the characteristics of the near-field and far-field electrical potentials produced by a transient dipole in both cylindrical and rectangular volume conductors. Most body segments of electrophysiologic interest such as arms, legs, thorax, and neck are roughly cylindrical in shape. A centrally located dipole generator produces a nonzero equipotential region which is found to occur along the cylindrical wall at a distance from the dipole of approximately 1.4 times the cylinder's radius and 1.9 times the cylinder's radius for the center of the cylinder. This distance to the equi-potential zone along the surface wall expands but remains less than 3.0 times the cylindrical radius when the dipole is eccentrically placed. The magnitude of the equipotential region resulting from an asymmetrically placed dipole remains identical to that when the dipole is centrally located. This behavior is found to be very similar in rectangular shallow conducting volumes that model a longitudinal slice of the cylinder, thus allowing a simple experimental model of the cylinder to be utilized. Amplitudes of the equipotential region are inversely proportional to the cylindrical or rectangular volume's cross-sectional area at the location of dipolar imbalance. This study predicts that referential electrode montages, when placed at 3.0 times the radius or greater from a dipolar axially aligned far-field generator in cylindrical homogeneous volume conductors, will record only equipotential far-field effects.
Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; ...
2018-03-23
In this paper, we report systematic measurements of the dispersion of long wavelength spin waves for a wide range of wave vectors for the magnetic field along the three principal directions defining the forward volume, backward volume and Damon-Eshbach modes of a 9.72 μm thick film of an yttrium iron garnet obtained using lithographically patterned, multi-element, spatially resonant, antennas. Overall good agreement is found between the experimental data for the backward volume and Damon-Eshbach modes and the magnetostatic theory of Damon and Eshbach. Also, good agreement is found between the experimental data for the forward volume mode and the theorymore » of Damon and van de Vaart.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bang, Wonbae; Lim, Jinho; Trossman, Jonathan
In this paper, we report systematic measurements of the dispersion of long wavelength spin waves for a wide range of wave vectors for the magnetic field along the three principal directions defining the forward volume, backward volume and Damon-Eshbach modes of a 9.72 μm thick film of an yttrium iron garnet obtained using lithographically patterned, multi-element, spatially resonant, antennas. Overall good agreement is found between the experimental data for the backward volume and Damon-Eshbach modes and the magnetostatic theory of Damon and Eshbach. Also, good agreement is found between the experimental data for the forward volume mode and the theorymore » of Damon and van de Vaart.« less
Contemporary bloodletting in cardiac surgical care.
Koch, Colleen G; Reineks, Edmunds Z; Tang, Anne S; Hixson, Eric D; Phillips, Shannon; Sabik, Joseph F; Henderson, J Michael; Blackstone, Eugene H
2015-03-01
Health care providers are seldom aware of the frequency and volume of phlebotomy for laboratory testing, bloodletting that often leads to hospital-acquired anemia. Our objectives were to examine the frequency of laboratory testing in patients undergoing cardiac surgery, calculate cumulative phlebotomy volume from time of initial surgical consultation to hospital discharge, and propose strategies to reduce phlebotomy volume. From January 1, 2012 to June 30, 2012, 1,894 patients underwent cardiac surgery at Cleveland Clinic; 1,867 had 1 hospitalization and 27 had 2. Each laboratory test was associated with a test name and blood volume. Phlebotomy volume was estimated separately for the intensive care unit (ICU), hospital floors, and cumulatively. A total of 221,498 laboratory tests were performed, averaging 115 tests per patient. The most frequently performed tests were 88,068 blood gas analyses, 39,535 coagulation tests, 30,421 complete blood counts, and 29,374 metabolic panels. Phlebotomy volume differed between ICU and hospital floors, with median volumes of 332 mL and 118 mL, respectively. Cumulative median volume for the entire hospital stay was 454 mL. More complex procedures were associated with higher overall phlebotomy volume than isolated procedures; eg, combined coronary artery bypass grafting (CABG) and valve procedure median volume was 653 mL (25th/75th percentiles, 428 of 1,065 mL) versus 448 mL (284 of 658 mL) for isolated CABG and 338 mL (237 of 619) for isolated valve procedures. We were astonished by the extent of bloodletting, with total phlebotomy volumes approaching amounts equivalent to 1 to 2 red blood cell units. Implementation of process improvement initiatives can potentially reduce phlebotomy volumes and resource utilization. Copyright © 2015 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
An experimental study of the validity of the heat-field concept for sonic-boom alleviation
NASA Technical Reports Server (NTRS)
Swigart, R. J.
1974-01-01
An experimental program was carried out in the NASA-Langley 4 ft x 4 ft supersonic pressure tunnel to investigate the validity of the heat-field concept for sonic boom alleviation. The concept involves heating the flow about a supersonic aircraft in such a manner as to obtain an increase in effective aircraft length and yield an effective aircraft shape that will result in a shock-free pressure signature on the ground. First, a basic body-of-revolution representing an SST configuration with its lift equivalence in volume was tested to provide a baseline pressure signature. Second, a model having a 5/2-power area distribution which, according to theory, should yield a linear pressure rise with no front shock wave was tested. Third, the concept of providing the 5/2-power area distribution by using an off-axis slender fin below the basic body was investigated. Then a substantial portion (approximately 40 percent) of the solid fin was replaced by a heat field generated by passing heated nitrogen through the rear of the fin.
Omidvari, Negar; Topping, Geoffrey; Cabello, Jorge; Paul, Stephan; Schwaiger, Markus; Ziegler, Sibylle I
2018-05-01
Compromises in the design of a positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system should minimize the deterioration of image quality in both modalities, particularly when simultaneous demanding acquisitions are performed. In this work, the advantages of using individually read-out crystals with high-gain silicon photomultipliers (SiPMs) were studied with a small animal PET insert for a 7 T MRI system, in which the SiPM charge was transferred to outside the MRI scanner using coaxial cables. The interferences between the two systems were studied with three radio-frequency (RF) coil configurations. The effects of PET on the static magnetic field, flip angle distribution, RF noise, and image quality of various MRI sequences (gradient echo, spin echo, and echo planar imaging (EPI) at 1 H frequency, and chemical shift imaging at 13 C frequency) were investigated. The effects of fast-switching gradient fields and RF pulses on PET count rate were studied, while the PET insert and the readout electronics were not shielded. Operating the insert inside a 1 H volume coil, used for RF transmission and reception, limited the MRI to T1-weighted imaging, due to coil detuning and RF attenuation, and resulted in significant PET count loss. Using a surface receive coil allowed all tested MR sequences to be used with the insert, with 45-59% signal-to-noise ratio (SNR) degradation, compared to without PET. With a 1 H/ 13 C volume coil inside the insert and shielded by a copper tube, the SNR degradation was limited to 23-30% with all tested sequences. The insert did not introduce any discernible distortions into images of two tested EPI sequences. Use of truncated sinc shaped RF excitation pulses and gradient field switching had negligible effects on PET count rate. However, PET count rate was substantially affected by high-power RF block pulses and temperature variations due to high gradient duty cycles.
Development test results of the Portable, Reconfigurable Sky Sensor (PRSS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blattman, D.A.
1993-12-31
The protection of assets against surreptitious access from the sky is a continuing problem. The Portable, Reconfigurable Sky Sensor is designed to provide volumetric intruder detection against low-observable aircraft, helicopters, and parachutists in the sky. Multiple systems may be joined to form continuous detection volume for applications such as borders. The PRSS is resistant to nuisance alarms due to wind up to 70 mph, rain/snow up to 6 inches/hour or small targets such as birds. The PRSS has been successfully tested against multiple intrusions with altitude range from 50 to 3,000 feet and cross-range up to 3,000 feet. This papermore » summarizes some of these field tests and lists specifications and potential uses.« less
Nondestructive testing of moisture separator reheater tubing system using Hall sensor array
NASA Astrophysics Data System (ADS)
Le, Minhhuy; Kim, Jungmin; Kim, Jisoo; Do, Hwa Sik; Lee, Jinyi
2018-01-01
This paper presents a nondestructive testing system for inspecting the moisture separator reheater (MSR) tubing system in a nuclear power plant. The technique is based on partial saturation eddy current testing in which a Hall sensor array is used to measure the radial component of the electromagnetic field distributed in the tubes. A finned MRS tube of ferritic stainless steel (SS439) with artificial, flat-bottom hole-type defects was used in the experiments. The results show that the proposed system has potential applications in the MSR system or ferromagnetic material tubes in general, which could detect the artificial defects of about 20% of the wall thickness (0.24 mm). Furthermore, the defect volume could be quantitatively evaluated.
NASA Astrophysics Data System (ADS)
Weiser, D. A.; Jackson, D. D.
2015-12-01
In a tectonically active area, a definitive discrimination between geothermally-induced and tectonic earthquakes is difficult to achieve. We focus our study on California's 11 major geothermal fields: Amedee, Brawley, Casa Diablo, Coso, East Mesa, The Geysers, Heber, Litchfield, Salton Sea, Susanville, and Wendel. The Geysers geothermal field is the world's largest geothermal energy producer. California's Department of Oil Gas and Geothermal Resources provides field-wide monthly injection and production volumes for each of these sites, which allows us to study the relationship between geothermal pumping activities and seismicity. Since many of the geothermal fields began injecting and producing before nearby seismic stations were installed, we use smoothed seismicity since 1932 from the ANSS catalog as a proxy for tectonic earthquake rate. We examine both geothermal pumping and long-term earthquake rate as factors that may control earthquake rate. Rather than focusing only on the largest earthquake, which is essentially a random occurrence in time, we examine how M≥4 earthquake rate density (probability per unit area, time, and magnitude) varies for each field. We estimate relative contributions to the observed earthquake rate of M≥4 from both a long-term earthquake rate (Kagan and Jackson, 2010) and pumping activity. For each geothermal field, respective earthquake catalogs (NCEDC and SCSN) are complete above at least M3 during the test period (which we tailor to each site). We test the hypothesis that the observed earthquake rate at a geothermal site during the test period is a linear combination of the long-term seismicity and pumping rates. We use a grid search to determine the confidence interval of the weighting parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mell, Loren K.; Tiryaki, Hanifi; Ahn, Kang-Hyun
2008-08-01
Purpose: To compare bone marrow-sparing intensity-modulated pelvic radiotherapy (BMS-IMRT) with conventional (four-field box and anteroposterior-posteroanterior [AP-PA]) techniques in the treatment of cervical cancer. Methods and Materials: The data from 7 cervical cancer patients treated with concurrent chemotherapy and IMRT without BMS were analyzed and compared with data using four-field box and AP-PA techniques. All plans were normalized to cover the planning target volume with the 99% isodose line. The clinical target volume consisted of the pelvic and presacral lymph nodes, uterus and cervix, upper vagina, and parametrial tissue. Normal tissues included bowel, bladder, and pelvic bone marrow (PBM), which comprisedmore » the lumbosacral spine and ilium and the ischium, pubis, and proximal femora (lower pelvis bone marrow). Dose-volume histograms for the planning target volume and normal tissues were compared for BMS-IMRT vs. four-field box and AP-PA plans. Results: BMS-IMRT was superior to the four-field box technique in reducing the dose to the PBM, small bowel, rectum, and bladder. Compared with AP-PA plans, BMS-IMRT reduced the PBM volume receiving a dose >16.4 Gy. BMS-IMRT reduced the volume of ilium, lower pelvis bone marrow, and bowel receiving a dose >27.7, >18.7, and >21.1 Gy, respectively, but increased dose below these thresholds compared with the AP-PA plans. BMS-IMRT reduced the volume of lumbosacral spine bone marrow, rectum, small bowel, and bladder at all dose levels in all 7 patients. Conclusion: BMS-IMRT reduced irradiation of PBM compared with the four-field box technique. Compared with the AP-PA technique, BMS-IMRT reduced lumbosacral spine bone marrow irradiation and reduced the volume of PBM irradiated to high doses. Therefore BMS-IMRT might reduce acute hematologic toxicity compared with conventional techniques.« less
Full-field digital mammography image data storage reduction using a crop tool.
Kang, Bong Joo; Kim, Sung Hun; An, Yeong Yi; Choi, Byung Gil
2015-05-01
The storage requirements for full-field digital mammography (FFDM) in a picture archiving and communication system are significant, so methods to reduce the data set size are needed. A FFDM crop tool for this purpose was designed, implemented, and tested. A total of 1,651 screening mammography cases with bilateral FFDMs were included in this study. The images were cropped using a DICOM editor while maintaining image quality. The cases were evaluated according to the breast volume (1/4, 2/4, 3/4, and 4/4) in the craniocaudal view. The image sizes between the cropped image group and the uncropped image group were compared. The overall image quality and reader's preference were independently evaluated by the consensus of two radiologists. Digital storage requirements for sets of four uncropped to cropped FFDM images were reduced by 3.8 to 82.9 %. The mean reduction rates according to the 1/4-4/4 breast volumes were 74.7, 61.1, 38, and 24 %, indicating that the lower the breast volume, the smaller the size of the cropped data set. The total image data set size was reduced from 87 to 36.7 GB, or a 57.7 % reduction. The overall image quality and the reader's preference for the cropped images were higher than those of the uncropped images. FFDM mammography data storage requirements can be significantly reduced using a crop tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Randolph, P.L.; Hayden, C.G.; Rogers, L.A.
1992-04-01
This report pulls together the data from all of the geopressured-geothermal field research conducted at the Gladys McCall well. The well produced geopressured brine containing dissolved natural gas from the Lower Miocene sands at a depth of 15,150 to 16,650 feet. More than 25 million barrels of brine and 727 million standard cubic feet of natural gas were produced in a series of flow tests between December 1982 and October 1987 at various brine flow rates up to 28,000 barrels per day. Initial short-term flow tests for the Number 9 Sand found the permeability to be 67 to 85 mdmore » (millidarcies) for a brine volume of 85 to 170 million barrels. Initial short-term flow tests for the Number 8 Sand found a permeability of 113 to 132 md for a reservoir volume of 430 to 550 million barrels of brine. The long-term flow and buildup test of the Number 8 Sand found that the high-permeability reservoir connected to the wellbore (measured by the short-term flow test) was connected to a much larger, low-permeability reservoir. Numerical simulation of the flow and buildup tests required this large connected reservoir to have a volume of about 8 billion barrels (two cubic miles of reservoir rock) with effective permeabilities in the range of 0.2 to 20 md. Calcium carbonate scale formation in the well tubing and separator equipment was a problem. During the first 2 years of production, scale formation was prevented in the surface equipment by injection of an inhibitor upstream of the choke. Starting in 1985, scale formation in the production tubing was successfully prevented by injecting inhibitor ``pills`` directly into the reservoir. Corrosion and/or erosion of surface piping and equipment, as well as disposal well tubing, was also significant.« less
Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.S. Brodsky
A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transportmore » properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.« less
Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project
NASA Technical Reports Server (NTRS)
Vernier, Robert; Bonalksy, Todd; Slavin, James
2004-01-01
The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground-testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.
Goddard Space Flight Center Spacecraft Magnetic Test Facility Restoration Project
NASA Technical Reports Server (NTRS)
Vernier, Robert; Bonalosky, Todd; Slavin, James
2004-01-01
The Goddard Space Flight Center Spacecraft Magnetic Test Facility (SMTF) was constructed in the 1960's for the purpose of simulating geomagnetic and interplanetary magnetic field environments. The facility includes a three axis Braunbek coil system consisting of 12 loops, 4 loops on each of the three orthogonal axes; a remote Earth field sensing magnetometer and servo controller; and a remote power control and instrumentation building. The inner coils of the Braunbek system are 42-foot in diameter with a 10-foot by 10-foot opening through the outer coils to accommodate spacecraft access into the test volume. The physical size and precision of the facility are matched by only two other such facilities in the world. The facility was used extensively from the late 1960's until the early 1990's when the requirement for spacecraft level testing diminished. New NASA missions planned under the Living with a Star, Solar Terrestrial Probes, Explorer, and New Millennium Programs include precision, high-resolution magnetometers to obtain magnetic field data that is critical to fulfilling their scientific mission. It is highly likely that future Lunar and Martian exploration missions will also use precision magnetometers to conduct geophysical magnetic surveys. To ensure the success of these missions, ground testing using a magnetic test facility such as the GSFC SMTF will be required. This paper describes the history of the facility, the future mission requirements that have renewed the need for spacecraft level magnetic testing, and the plans for restoring the facility to be capable of performing to its original design specifications.
NASA Astrophysics Data System (ADS)
Baltes, Henry; Brand, Oliver; Fedder, Gary K.; Hierold, Christofer; Korvink, Jan G.; Tabata, Osamu; Löhe, Detlef; Haußelt, Jürgen
2005-10-01
Microstructures, electronics, nanotechnology - these vast fields of research are growing together as the size gap narrows and many different materials are combined. Current research, engineering sucesses and newly commercialized products hint at the immense innovative potentials and future applications that open up once mankind controls shape and function from the atomic level right up to the visible world without any gaps. Continuing from the previous volume, authors from three major competence centres for microengineering here cover all aspects of specialized replication techniques and how to employ state-of-the-art technologies for testing and characterizing micro-scale components, and illustrate quality control aspects and strategies for automation of production procedures in view of future industrial production and commercialisation.
Probability density function approach for compressible turbulent reacting flows
NASA Technical Reports Server (NTRS)
Hsu, A. T.; Tsai, Y.-L. P.; Raju, M. S.
1994-01-01
The objective of the present work is to extend the probability density function (PDF) tubulence model to compressible reacting flows. The proability density function of the species mass fractions and enthalpy are obtained by solving a PDF evolution equation using a Monte Carlo scheme. The PDF solution procedure is coupled with a compression finite-volume flow solver which provides the velocity and pressure fields. A modeled PDF equation for compressible flows, capable of treating flows with shock waves and suitable to the present coupling scheme, is proposed and tested. Convergence of the combined finite-volume Monte Carlo solution procedure is discussed. Two super sonic diffusion flames are studied using the proposed PDF model and the results are compared with experimental data; marked improvements over solutions without PDF are observed.
Guzik, Stephen M.; Gao, Xinfeng; Owen, Landon D.; ...
2015-12-20
We present a fourth-order accurate finite-volume method for solving time-dependent hyperbolic systems of conservation laws on mapped grids that are adaptively refined in space and time. Some novel considerations for formulating the semi-discrete system of equations in computational space are combined with detailed mechanisms for accommodating the adapting grids. Furthermore, these considerations ensure that conservation is maintained and that the divergence of a constant vector field is always zero (freestream-preservation property). The solution in time is advanced with a fourth-order Runge-Kutta method. A series of tests verifies that the expected accuracy is achieved in smooth flows and the solution ofmore » a Mach reflection problem demonstrates the effectiveness of the algorithm in resolving strong discontinuities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakanaka, Katsuyuki; Mizowaki, Takashi, E-mail: mizo@kuhp.kyoto-u.ac.jp; Sato, Sayaka
This study evaluated the dosimetric difference between volumetric-modulated arc therapy (VMAT) and conventional fixed-field intensity-modulated radiotherapy (cIMRT) in whole-ventricular irradiation. Computed tomography simulation data for 13 patients were acquired to create plans for VMAT and cIMRT. In both plans, the same median dose (100% = 24 Gy) was prescribed to the planning target volume (PTV), which comprised a tumor bed and whole ventricles. During optimization, doses to the normal brain and body were reduced, provided that the dose constraints of the target coverage were satisfied. The dose-volume indices of the PTV, normal brain, and body as well as monitor unitsmore » were compared between the 2 techniques by using paired t-tests. The results showed no significant difference in the homogeneity index (0.064 vs 0.065; p = 0.824) of the PTV and conformation number (0.78 vs 0.77; p = 0.065) between the 2 techniques. In the normal brain and body, the dose-volume indices showed no significant difference between the 2 techniques, except for an increase in the volume receiving a low dose in VMAT; the absolute volume of the normal brain and body receiving 1 Gy of radiation significantly increased in VMAT by 1.6% and 8.3%, respectively, compared with that in cIMRT (1044 vs 1028 mL for the normal brain and 3079.2 vs 2823.3 mL for the body; p<0.001). The number of monitor units to deliver a 2.0-Gy fraction was significantly reduced in VMAT compared with that in cIMRT (354 vs 873, respectively; p<0.001). In conclusion, VMAT delivers IMRT to complex target volumes such as whole ventricles with fewer monitor units, while maintaining target coverage and conformal isodose distribution comparable to cIMRT; however, in addition to those characteristics, the fact that the volume of the normal brain and body receiving a low dose would increase in VMAT should be considered.« less
Design of a TEM cell EMP simulator
NASA Astrophysics Data System (ADS)
Sevat, Pete
1991-06-01
Electromagnetic pulse (EMP) simulators are designed to simulate the EMP generated by a nuclear weapon and are used to harden equipment against the effects of EMP. A transverse electromagnetic (TEM) cell is a square or rectangular coaxial transmission line tapered at each end to form a closed cell. The cell is fed at one end with a signal generator, a continuous wave or pulse generator, and terminated at the other end with a resistor equal to the characteristic impedance of the line. An advantage of the TEM cell is that the field is well characterized and reasonably uniform. A small, symmetric, TEM cell EMP simulator is described which is intended for applications such as susceptibility testing of small equipment, calibration of sensors, design and testing of countermeasures, measurement of transfer functions, and research and development. A detailed design is presented for a 50 ohm and 100 ohm TEM cell with an inner volume of 4 m(exp 3) and a test volume of 0.24 m(exp 3). The pulse generator and terminating network are integrated into the cell to form a completely shielded structure. In this way no interference from the inside of the cell to the outside, or vice versa, will occur.
High-pressure swing system for measurements of radioactive fission gases in air samples
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Battle, J.; Yoon, S. R.; Tobin, M. J.
1999-01-01
Radionuclides emitted from nuclear reactors, fuel reprocessing facilities and nuclear weapons tests are distributed widely in the atmosphere but have very low concentrations. As part of the Comprehensive Test Ban Treaty (CTBT), identification and verification of the emission of radionuclides from such sources are fundamental in maintaining nuclear security. To detect underground and underwater nuclear weapons tests, only the gaseous components need to be analyzed. Equipment has now been developed that can be used to collect large volumes of air, separate and concentrate the radioactive gas constituents, such as xenon and krypton, and measure them quantitatively. By measuring xenon isotopes with different half-lives, the time since the fission event can be determined. Developments in high-pressure (3500 kPa) swing chromatography using molecular sieve adsorbents have provided the means to collect and purify trace quantities of the gases from large volumes of air automatically. New scintillation detectors, together with timing and pulse shaping electronics, have provided the low-background levels essential in identifying the gamma ray, X-ray, and electron energy spectra of specific radionuclides. System miniaturization and portability with remote control could be designed for a field-deployable production model.
Improving the accuracy of ionization chamber dosimetry in small megavoltage x-ray fields
NASA Astrophysics Data System (ADS)
McNiven, Andrea L.
The dosimetry of small x-ray fields is difficult, but important, in many radiation therapy delivery methods. The accuracy of ion chambers for small field applications, however, is limited due to the relatively large size of the chamber with respect to the field size, leading to partial volume effects, lateral electronic disequilibrium and calibration difficulties. The goal of this dissertation was to investigate the use of ionization chambers for the purpose of dosimetry in small megavoltage photon beams with the aim of improving clinical dose measurements in stereotactic radiotherapy and helical tomotherapy. A new method for the direct determination of the sensitive volume of small-volume ion chambers using micro computed tomography (muCT) was investigated using four nominally identical small-volume (0.56 cm3) cylindrical ion chambers. Agreement between their measured relative volume and ionization measurements (within 2%) demonstrated the feasibility of volume determination through muCT. Cavity-gas calibration coefficients were also determined, demonstrating the promise for accurate ion chamber calibration based partially on muCT. The accuracy of relative dose factor measurements in 6MV stereotactic x-ray fields (5 to 40mm diameter) was investigated using a set of prototype plane-parallel ionization chambers (diameters of 2, 4, 10 and 20mm). Chamber and field size specific correction factors ( CSFQ ), that account for perturbation of the secondary electron fluence, were calculated using Monte Carlo simulation methods (BEAM/EGSnrc simulations). These correction factors (e.g. CSFQ = 1.76 (2mm chamber, 5mm field) allow for accurate relative dose factor (RDF) measurement when applied to ionization readings, under conditions of electronic disequilibrium. With respect to the dosimetry of helical tomotherapy, a novel application of the ion chambers was developed to characterize the fan beam size and effective dose rate. Characterization was based on an adaptation of the computed tomography dose index (CTDI), a concept normally used in diagnostic radiology. This involved experimental determination of the fan beam thickness using the ion chambers to acquire fan beam profiles and extrapolation to a 'zero-size' detector. In conclusion, improvements have been made in the accuracy of small field dosimetry measurements in stereotactic radiotherapy and helical tomotherapy. This was completed through introduction of an original technique involving micro-CT imaging for sensitive volume determination and potentially ion chamber calibration coefficients, the use of appropriate Monte Carlo derived correction factors for RDF measurement, and the exploitation of the partial volume effect for helical tomotherapy fan beam dosimetry. With improved dosimetry for a wide range of challenging small x-ray field situations, it is expected that the patient's radiation safety will be maintained, and that clinical trials will adopt calibration protocols specialized for modern radiotherapy with small fields or beamlets. Keywords. radiation therapy, ionization chambers, small field dosimetry, stereotactic radiotherapy, helical tomotherapy, micro-CT.
[Features associated with retinal thickness extension in diabetic macular oedema].
Razo Blanco-Hernández, Dulce Milagros; Lima-Gómez, Virgilio; García-Rubio, Yatzul Zuhaila
2015-01-01
Clinically significant macular edema has features that are associated with a major risk of visual loss, with thickening that involves the centre of the macula, field 7 or visual deficiency, although it is unknown if these features are related to retinal thickness extension. An observational, analytical, prospective, cross-sectional and open study was conducted. The sample was divided into initial visual acuity ≥0.5, central field thickness, center point thickness, field 7 and macular volume more than the reported 2 standard deviation mean value in eyes without retinopathy. The extension was determined by the number of the central field area equivalent thickening and these features were compared with by Student's t test for independent samples. A total of 199 eyes were included. In eyes with visual acuity of ≥0.5, the mean extension was 2.88±1.68 and 3.2±1.63 in area equivalent in eyes with visual acuity <0.5 (p=0.12). The mean extension in eyes with less than 2 standard deviation of central field thickness, center point thickness, field 7 and macular volume was significantly lower than in eyes with more than 2 standard deviations (1.9±0.93 vs. 4.07±1.49, 2.44±1.47 vs. 3.94±1.52, 1.79±1.07 vs. 3.61±1.57 and 1.6±0.9 vs. 3.9±1.4, respectively, p<0.001). The extension of retinal thickness is related with the anatomical features reported with a greater risk of visual loss, but is not related to initial visual deficiency. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
NASA Astrophysics Data System (ADS)
Kulkarni, Anita; Filippone, Bradley; Slutsky, Simon; Swank, Christopher; Carr, Robert; Osthelder, Charles; Biswas, Aritra; Molina, Daniel
2016-09-01
Over the last several decades, physicists have been measuring the neutron electric dipole moment (nEDM) with greater and greater sensitivity. The latest experiment we are developing will have 100 times more sensitivity than the previous leading experiment. A nonzero nEDM could, among other consequences, explain the presence of more matter than antimatter in the universe. To measure the nEDM with high accuracy, it is necessary to have a very uniform magnetic field inside the detector since non-uniformities can create false signals via the geometric phase effect. One way to improve field uniformity is to add superconducting lead endcaps to the detector, which constrain the fields at their surfaces to be parallel to them. Here, we test how the endcaps improve field uniformity by measuring the magnetic field at various points in a 1/3-scale experimental volume, inferring what the field must be at all other points, and calculating gradients in the field. This knowledge could help guide further steps needed to improve field uniformity and characterize limitations to the sensitivity of nEDM measurements for the full-scale experiment. Rose Hills Foundation, National Science Foundation Grant 1506459, and Department of Energy.
Army Synthetic Validity Project Report of Phase 2 Results. Volume 2. Appendixes
1990-10-01
to Equipment & Food o Personal Hygine - Field & Garrison (4) o Kitchen Equipment - Garrison o Field Preparation of Foods & Equipment o Food, Field...Results: Volume II: Appendi i 12. PERSONAL AUTHOR(S) Wise, Lauress L. (AIR); Peterson, Norman G.; Houston, Janis (PDRI); Hoffman, R. Gene Campbell, John...o Handling KIA o Personal Hygiene & Preventive Medicine Numbers in parentheses indicate the number of participants that identified the task as
NASA Astrophysics Data System (ADS)
Budiyono, T.; Budi, W. S.; Hidayanto, E.
2016-03-01
Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).
Hasanov, Samir; Demirkilinc Biler, Elif; Acarer, Ahmet; Akkın, Cezmi; Colakoglu, Zafer; Uretmen, Onder
2018-05-09
To evaluate and follow-up of functional and morphological changes of the optic nerve and ocular structures prospectively in patients with early-stage Parkinson's disease. Nineteen patients with a diagnosis of early-stage Parkinson's disease and 19 age-matched healthy controls were included in the study. All participants were examined minimum three times at the intervals of at least 6 month following initial examination. Pattern visually evoked potentials (VEP), contrast sensitivity assessments at photopic conditions, color vision tests with Ishihara cards and full-field visual field tests were performed in addition to measurement of retinal nerve fiber layer (RNFL) thickness of four quadrants (top, bottom, nasal, temporal), central and mean macular thickness and macular volumes. Best corrected visual acuity was observed significantly lower in study group within all three examinations. Contrast sensitivity values of the patient group were significantly lower in all spatial frequencies. P100 wave latency of VEP was significantly longer, and amplitude was lower in patient group; however, significant deterioration was not observed during the follow-up. Although average peripapillary RNFL thickness was not significant between groups, RNFL thickness in the upper quadrant was thinner in the patient group. While there was no difference in terms of mean macular thickness and total macular volume values between the groups initially, a significant decrease occurred in the patient group during the follow-up. During the initial and follow-up process, a significant deterioration in visual field was observed in the patient group. Structural and functional disorders shown as electro-physiologically and morphologically exist in different parts of visual pathways in early-stage Parkinson's disease.
NASA Astrophysics Data System (ADS)
Vastaranta, Mikko; Kankare, Ville; Holopainen, Markus; Yu, Xiaowei; Hyyppä, Juha; Hyyppä, Hannu
2012-01-01
The two main approaches to deriving forest variables from laser-scanning data are the statistical area-based approach (ABA) and individual tree detection (ITD). With ITD it is feasible to acquire single tree information, as in field measurements. Here, ITD was used for measuring training data for the ABA. In addition to automatic ITD (ITD auto), we tested a combination of ITD auto and visual interpretation (ITD visual). ITD visual had two stages: in the first, ITD auto was carried out and in the second, the results of the ITD auto were visually corrected by interpreting three-dimensional laser point clouds. The field data comprised 509 circular plots ( r = 10 m) that were divided equally for testing and training. ITD-derived forest variables were used for training the ABA and the accuracies of the k-most similar neighbor ( k-MSN) imputations were evaluated and compared with the ABA trained with traditional measurements. The root-mean-squared error (RMSE) in the mean volume was 24.8%, 25.9%, and 27.2% with the ABA trained with field measurements, ITD auto, and ITD visual, respectively. When ITD methods were applied in acquiring training data, the mean volume, basal area, and basal area-weighted mean diameter were underestimated in the ABA by 2.7-9.2%. This project constituted a pilot study for using ITD measurements as training data for the ABA. Further studies are needed to reduce the bias and to determine the accuracy obtained in imputation of species-specific variables. The method could be applied in areas with sparse road networks or when the costs of fieldwork must be minimized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRosier, R.
1984-09-01
This volume is a compendium of detailed emission and test data from field tests of a firetube industrial boiler burning a coal/oil/water (COW) mixture. The boiler was tested while burning COW fuel, and COW with soda ash added (COW+SA) to serve as an SO/sub 2/ sorbent. The test data include: preliminary equipment calibration data, boiler operating data for both tests, fuel analysis results, and complete flue gas emission measurement and laboratory analysis results. Flue gas emission measurements included: continuous monitoring for criteria gas pollutants; gas chromatography (GC) of gas grab samples for volatile organics (C1-C6); EPA Method 5 for particulate;more » controlled condensation system for SO2 emissions; and source assessment sampling system (SASS) for total organics in two boiling point ranges (100 to 300 C and > 300 C), organic compound category information using infrared spectrometry (IR) and low resolution mass spectrometry (LRMS), specific quantitation of the semivolatile organic priority pollutants using gas chromatography/mass spectrometry (GC/MS), liquid chromatography (LC) separation of organic extracts into seven polarity fractions with total organic and IR analyses of eluted fractions, flue gas concentrations of trace elements by spark source mass spectrometry (SSMS) and atomic absorption spectroscopy (AAS), and biological assays of organic extracts.« less
Modeling of Army Research Laboratory EMP simulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miletta, J.R.; Chase, R.J.; Luu, B.B.
1993-12-01
Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).
Directory of aerospace safety specialized information sources, volume 2
NASA Technical Reports Server (NTRS)
Rubinstein, R. I.; Pinto, J. J.; Meschkow, S. Z.
1976-01-01
A handbook of organizations and experts in specific and well-defined areas of safety technology is presented. It is designed for the safety specialist as an aid for locating both information sources and individual points of contact (experts) in engineering related fields. The file covers sources of data in aerospace design, tests, and operations, as well as information on hazard and failure cause identification, accident analysis, and materials characteristics. Other related areas include the handling and transportation of hazardous chemicals, radioactive isotopes, and liquified natural gases.
Human Resources Test and Evaluation System (HRTES). Volume 1. Comprehensive Handbook
1984-08-01
INTRODUCTION I. Overview. 7 -"This handbook is designed to assist you in evaluating the performance of the operators and maintainers in a system. The Human...field data have been collected and to diagnose probable causes of inadequate human performance. HI-I HRTES has been designed to complement the existing...71-3). HRTES was designed to meet the reporting requirements that, according to AR 71-3, are a part of the OT&E cycle. These reports are: (1) the
1975-10-01
pesticides were all taken on July 18, 1974. All samples were secured in six (6) ounce po.lyethylene Whirl-pac bags or one (1) liter polyethylene...tested for nutrients, minerals, o,~gen demands, trace metal’s and pesticides throughout the course of the study. The purpose of this quality control...Pastures, lawns, fields Self-heal Pycnanthemum albescens Open woods along streams White Basil Pycnanthemum muticum Dry open woods Mountain Mint Pycnanthemum
NASA Technical Reports Server (NTRS)
1972-01-01
A program to advance the technology for a cost-effective hydrogen/oxygen fuel cell system for future manned spacecraft is discussed. The evaluation of base line design concepts and the development of product improvements in the areas of life, power, specific weight and volume, versatility of operation, field maintenance and thermal control were conducted from the material and component level through the fabrication and test of an engineering model of the fuel cell system. The program was to be accomplished in a 13 month period.
Development and Field Test of Task-Based MOS-Specific Criterion Measures. Volume 1. Appendixes A-E
1988-04-01
WOUND 081-831-1033 APPLY A DRESSING TO AN OPEN HEAD WOUND 081-831-1005 PREVENT SHOCK 081-831-1034 SPLINT A SUSPECTED FRACTURE 081-831-1007 GTVE FIRST...Check seat belts and shoulder harnesses Check unit vehicle/trailer blackout system Service refrigeration unit Check and clean cab interior/exterior...DRESSING TO AN OPEN HEAD WOUND 081-831-1040 TRANSPORT A CASUALTY USING A ONE MAN CARRY 081-831-1041 TRANSPORT A CASUALTY USING A TWO MAN CARRY OR
1979-04-01
RC pilot In the stablied RC mode. To facilitate theme attempts, an automobile , with Its headlights on high beam, was positioned on each side of the...the vans. At approxi- mately 2 to 3 km, the actual automobile headlights would become visible. Then, the operator would attempt to reposition the RPV...to line up between the head- lights. Even though the front wheels of the automobiles were elevated, the automobile headlights were diverted slightly
1979-11-01
diameter test cell used for laser propagation measurements is Path length-84 m to 2.0 km available and has been designed for circulating aerosols or...36- and 110-GHz and found an attenuation ratio of comparison measurements along a 4-km path with rain rate measured near the receiver end. a *02 They...time. Tipping-bucket systems . gauges are reliable, but become increasingly in- accurate at high rates . Flow gauges which The direct field measurement
1980-03-01
ordinates. 3. APPARATUS 3.1 Models 3.1.1 Wings. - The three semispan wing models were each machined from a solid billet of 17 - 4PH stainless steel by a... 17 . DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 1. KEY WORDS (Continue on reverse...Results .. ................. .... 17 5.3.1 Force data .. ................ ...... 17 5.3.2 Pressure data. .. ............... ..... 17 5.3.3 Fuselage
2011-08-02
Representative > COL Leo Tucker, DCDD, User Representative > Dr. James Kirkpatrick. DCDD, Combat Developer > Mr. Willie Lindsay, AMEDD Test Board, Field...Scores 30l ll 25 :E ---- ~ 20 0 15 --~ f 10 =’ --- .t 0 --Controls - - concun1ons ---· lOC /AmnesiJ 151617181920 2122 2324 25 2627 282930 FIGURE...Psychological Health 99 ~;~haracteristics of concussion f’" . Concussion = mild lbi • Concussion may not always include loc • ’a trauma-induced
CrossTalk: The Journal of Defense Software Engineering. Volume 26, Number 6, November/December 2013
2013-12-01
requirements during sprint planning. Automated scanning, which includes automated code-review tools, allows the expert to monitor the system... sprint . This enables the validator to leverage the test results for formal validation and verification, and perform a shortened “hybrid” style of IV&V...per SPRINT (1-4 weeks) 1 week 1 Month Up to four months Ø Deliverable product to user Ø Security posture assessed Ø Accredited to field/operate
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Veranda, M.; Cappello, S.; Chacón, L.; Spizzo, G.
2010-11-01
The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of the dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code NEMATO [Finn J M and Chacón L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonfiglio, Daniele; Veranda, M.; Cappello, Susanna
2010-01-01
The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of themore » dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code nemato [Finn J M and Chacon L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.« less
A coronal magnetic field model with horizontal volume and sheet currents
NASA Technical Reports Server (NTRS)
Zhao, Xuepu; Hoeksema, J. Todd
1994-01-01
When globally mapping the observed photospheric magnetic field into the corona, the interaction of the solar wind and magnetic field has been treated either by imposing source surface boundary conditions that tacitly require volume currents outside the source surface or by limiting the interaction to thin current sheets between oppositely directed field regions. Yet observations and numerical Magnetohydrodynamic (MHD) calculations suggest the presence of non-force-free volume currents throughout the corona as well as thin current sheets in the neighborhoods of the interfaces between closed and open field lines or between oppositely directed open field lines surrounding coronal helmet-streamer structures. This work presents a model including both horizontal volume currents and streamer sheet currents. The present model builds on the magnetostatic equilibria developed by Bogdan and Low and the current-sheet modeling technique developed by Schatten. The calculation uses synoptic charts of the line-of-sight component of the photospheric magnetic field measured at the Wilcox Solar Observatory. Comparison of an MHD model with the calculated model results for the case of a dipole field and comparison of eclipse observations with calculations for CR 1647 (near solar minimum) show that this horizontal current-current-sheet model reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces polar plumes and axes of corona streamers better than the source-surface model and reproduces coro nal helmet structures better than the current-sheet model.
T-COMP—A suite of programs for extracting transmissivity from MODFLOW models
Halford, Keith J.
2016-02-12
Simulated transmissivities are constrained poorly by assigning permissible ranges of hydraulic conductivities from aquifer-test results to hydrogeologic units in groundwater-flow models. These wide ranges are derived from interpretations of many aquifer tests that are categorized by hydrogeologic unit. Uncertainty is added where contributing thicknesses differ between field estimates and numerical models. Wide ranges of hydraulic conductivities and discordant thicknesses result in simulated transmissivities that frequently are much greater than aquifer-test results. Multiple orders of magnitude differences frequently occur between simulated and observed transmissivities where observed transmissivities are less than 1,000 feet squared per day.Transmissivity observations from individual aquifer tests can constrain model calibration as head and flow observations do. This approach is superior to diluting aquifer-test results into generalized ranges of hydraulic conductivities. Observed and simulated transmissivities can be compared directly with T-COMP, a suite of three FORTRAN programs. Transmissivity observations require that simulated hydraulic conductivities and thicknesses in the volume investigated by an aquifer test be extracted and integrated into a simulated transmissivity. Transmissivities of MODFLOW model cells are sampled within the volume affected by an aquifer test as defined by a well-specific, radial-flow model of each aquifer test. Sampled transmissivities of model cells are averaged within a layer and summed across layers. Accuracy of the approach was tested with hypothetical, multiple-aquifer models where specified transmissivities ranged between 250 and 20,000 feet squared per day. More than 90 percent of simulated transmissivities were within a factor of 2 of specified transmissivities.
Role of stranded gas in increasing global gas supplies
Attanasi, E.D.; Freeman, P.A.
2013-01-01
This report synthesizes the findings of three regional studies in order to evaluate, at the global scale, the contribution that stranded gas resources can make to global natural gas supplies. Stranded gas, as defined for this study, is natural gas in discovered conventional gas and oil fields that is currently not commercially producible for either physical or economic reasons. The regional studies evaluated the cost of bringing the large volumes of undeveloped gas in stranded gas fields to selected markets. In particular, stranded gas fields of selected Atlantic Basin countries, north Africa, Russia, and central Asia are screened to determine whether the volumes are sufficient to meet Europe’s increasing demand for gas imports. Stranded gas fields in Russia, central Asia, Southeast Asia, and Australia are also screened to estimate development, production, and transport costs and corresponding gas volumes that could be supplied to Asian markets in China, India, Japan, and South Korea. The data and cost analysis presented here suggest that for the European market and the markets examined in Asia, the development of stranded gas provides a way to meet projected gas import demands for the 2020-to-2040 period. Although this is a reconnaissance-type appraisal, it is based on volumes of gas that are associated with individual identified fields. Individual field data were carefully examined. Some fields were not evaluated because current technology was insufficient or it appeared the gas was likely to be held off the export market. Most of the evaluated stranded gas can be produced and delivered to markets at costs comparable to historical prices. Moreover, the associated volumes of gas are sufficient to provide an interim supply while additional technologies are developed to unlock gas diffused in shale and hydrates or while countries transition to making a greater use of renewable energy sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
Treatment planning for heavy ion radiotherapy: clinical implementation and application.
Jäkel, O; Krämer, M; Karger, C P; Debus, J
2001-04-01
The clinical implementation and application of a novel treatment planning system (TPS) for scanned ion beams is described, which is in clinical use for carbon ion treatments at the German heavy ion facility (GSI). All treatment plans are evaluated on the basis of biologically effective dose distributions. For therapy control, in-beam positron emission tomography (PET) and an online monitoring system for the beam intensity and position are used. The absence of a gantry restricts the treatment plans to horizontal beams. Most of the treatment plans consist of two nearly opposing lateral fields or sometimes orthogonal fields. In only a very few cases a single beam was used. For patients with very complex target volumes lateral and even distal field patching techniques were applied. Additional improvements can be achieved when the patient's head is fixed in a tilted position, in order to achieve sparing of the organs at risk. In order to test the stability of dose distributions in the case of patient misalignments we routinely simulate the effects of misalignments for patients with critical structures next to the target volume. The uncertainties in the range calculation are taken into account by a margin around the target volume of typically 2-3 mm, which can, however, be extended if the simulation demonstrates larger deviations. The novel TPS developed for scanned ion beams was introduced into clinical routine in December 1997 and was used for the treatment planning of 63 patients with head and neck tumours until July 2000. Planning strategies and methods were developed for this tumour location that facilitate the treatment of a larger number of patients with the scanned heavy ion beam in a clinical setting. Further developments aim towards a simultaneous optimization of the treatment field intensities and more effective procedures for the patient set-up. The results demonstrate that ion beams can be integrated into a clinical environment for treatment planning and delivery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laura J. Pyrak-Nolte; Ping Yu; JiangTao Cheng
2002-12-01
The principal challenge of upscaling techniques for multi-phase fluid dynamics in porous media is to determine which properties on the micro-scale can be used to predict macroscopic flow and spatial distribution of phases at core- and field-scales. The most notable outcome of recent theories is the identification of interfacial areas per volume for multiple phases as a fundamental parameter that determines much of the multi-phase properties of the porous medium. A formal program of experimental research was begun to directly test upscaling theories in fluid flow through porous media by comparing measurements of relative permeability and capillary-saturation with measurements ofmore » interfacial area per volume. During this reporting period, we have shown experimentally that the coherence detection can be performed in a borescope. The measurement of interfacial area per volume (IAV), capillary pressure and saturation in two dimensional micro-models structures has shown the existence of a unique relationship among these hydraulic parameters for different pore geometry. The measurement of interfacial area per volume on a three-dimensional natural sample, i.e., sandstone, is essentially completed for imbibition conditions.« less
The correlation of fractal structures in the photospheric and the coronal magnetic field
NASA Astrophysics Data System (ADS)
Dimitropoulou, M.; Georgoulis, M.; Isliker, H.; Vlahos, L.; Anastasiadis, A.; Strintzi, D.; Moussas, X.
2009-10-01
Context: This work examines the relation between the fractal properties of the photospheric magnetic patterns and those of the coronal magnetic fields in solar active regions. Aims: We investigate whether there is any correlation between the fractal dimensions of the photospheric structures and the magnetic discontinuities formed in the corona. Methods: To investigate the connection between the photospheric and coronal complexity, we used a nonlinear force-free extrapolation method that reconstructs the 3d magnetic fields using 2d observed vector magnetograms as boundary conditions. We then located the magnetic discontinuities, which are considered as spatial proxies of reconnection-related instabilities. These discontinuities form well-defined volumes, called here unstable volumes. We calculated the fractal dimensions of these unstable volumes and compared them to the fractal dimensions of the boundary vector magnetograms. Results: Our results show no correlation between the fractal dimensions of the observed 2d photospheric structures and the extrapolated unstable volumes in the corona, when nonlinear force-free extrapolation is used. This result is independent of efforts to (1) bring the photospheric magnetic fields closer to a nonlinear force-free equilibrium and (2) omit the lower part of the modeled magnetic field volume that is almost completely filled by unstable volumes. A significant correlation between the fractal dimensions of the photospheric and coronal magnetic features is only observed at the zero level (lower limit) of approximation of a current-free (potential) magnetic field extrapolation. Conclusions: We conclude that the complicated transition from photospheric non-force-free fields to coronal force-free ones hampers any direct correlation between the fractal dimensions of the 2d photospheric patterns and their 3d counterparts in the corona at the nonlinear force-free limit, which can be considered as a second level of approximation in this study. Correspondingly, in the zero and first levels of approximation, namely, the potential and linear force-free extrapolation, respectively, we reveal a significant correlation between the fractal dimensions of the photospheric and coronal structures, which can be attributed to the lack of electric currents or to their purely field-aligned orientation.
Corstjens, Paul L A M; Nyakundi, Ruth K; de Dood, Claudia J; Kariuki, Thomas M; Ochola, Elizabeth A; Karanja, Diana M S; Mwinzi, Pauline N M; van Dam, Govert J
2015-04-22
Accurate determination of Schistosoma infection rates in low endemic regions to examine progress towards interruption of transmission and elimination requires highly sensitive diagnostic tools. An existing lateral flow (LF) based test demonstrating ongoing infections through detection of worm circulating anodic antigen (CAA), was improved for sensitivity through implementation of a protocol allowing increased sample input. Urine is the preferred sample as collection is non-invasive and sample volume is generally not a restriction. Centrifugal filtration devices provided a method to concentrate supernatant of urine samples extracted with trichloroacetic acid (TCA). For field trials a practical sample volume of 2 mL urine allowed detection of CAA down to 0.3 pg/mL. The method was evaluated on a set of urine samples (n = 113) from an S. mansoni endemic region (Kisumu, Kenya) and compared to stool microscopy (Kato Katz, KK). In this analysis true positivity was defined as a sample with either a positive KK or UCAA test. Implementation of the concentration method increased clinical sensitivity (Sn) from 44 to 98% when moving from the standard 10 μL (UCAA10 assay) to 2000 μL (UCAA2000 assay) urine sample input. Sn for KK varied between 23 and 35% for a duplicate KK (single stool, two slides) to 52% for a six-fold KK (three consecutive day stools, two slides). The UCAA2000 assay indicated 47 positive samples with CAA concentration above 0.3 pg/mL. The six-fold KK detected 25 egg positives; 1 sample with 2 eggs detected in the 6-fold KK was not identified with the UCAA2000 assay. Larger sample input increased Sn of the UCAA assay to a level indicating 'true' infection. Only a single 2 mL urine sample is needed, but analysing larger sample volumes could still increase test accuracy. The UCAA2000 test is an appropriate candidate for accurate identification of all infected individuals in low-endemic regions. Assay materials do not require refrigeration and collected urine samples may be stored and transported to central test laboratories without the need to be frozen.
Experimental study of noise reduction for an unstiffened cylindrical model of an airplane fuselage
NASA Astrophysics Data System (ADS)
Willis, C. M.; Daniels, E. F.
1981-12-01
Noise reduction measurements were made for a simplified model of an airplane fuselage consisting of an unstiffened aluminum cylinder 0.5 m in diameter by 1.2 m long with a 1.6-mm-thick wall. Noise reduction was first measured with a reverberant field pink-noise load on the cylinder exterior. Next, noise reduction was measured by using a propeller to provide a more realistic noise load on the cylinder. Structural resonance frequencies and acoustic reverberation times for the cylinder interior volume were also measured. Comparison of data from the relatively simple test using reverberant-field noise with data from the more complex propeller-noise tests indicates some similarity in both the overall noise reduction and the spectral distribution. However, all of the test parameters investigated (propeller speed, blade pitch, and tip clearance) had some effect on the noise-reduction spectra. Thus, the amount of noise reduction achieved appears to be somewhat dependent upon the spectral and spatial characteristics of the flight conditions. Information is also presented on cyclinder resonance frequencies, damping, and characteristics of propeller-noise loads.
Large Scale Magnetostrictive Valve Actuator
NASA Technical Reports Server (NTRS)
Richard, James A.; Holleman, Elizabeth; Eddleman, David
2008-01-01
Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, E; Belec, J; Vandervoort, E
2015-06-15
Purpose: To calculate using Monte-Carlo the intermediate and total correction factors (CFs) for two microchambers and a plastic scintillator for composite fields delivered by the CyberKnife system. Methods: A linac model was created in BEAMnrc by matching percentage depth dose (PDD) curves and output factors (OFs) measured using an A16 microchamber with Monte Carlo calculations performed in egs-chamber to explicitly model detector response. Intermediate CFs were determined for the A16 and A26 microchambers and the W1 plastic scintillator in fourteen different composite fields inside a solid water phantom. Seven of these fields used a 5 mm diameter collimator; the remainingmore » fields employed a 7.5 mm collimator but were otherwise identical to the first seven. Intermediate CFs are reported relative to the respective CF for a 60 mm collimator (800 mm source to detector distance and 100 mm depth in water). Results: For microchambers in composite fields, the intermediate CFs that account for detector density and volume were the largest contributors to total CFs. The total CFs for the A26 were larger than those for the A16, especially for the 5 mm cone (1.227±0.003 to 1.144±0.004 versus 1.142±0.003 to 1.099±0.004), due to the A26’s larger active volume (0.015 cc) relative to the A16 (0.007 cc), despite the A26 using similar wall and electrode material. The W1 total and intermediate CFs are closer to unity, due to its smaller active volume and near water-equivalent composition, however, 3–4% detector volume corrections are required for 5 mm collimator fields. In fields using the 7.5 mm collimator, the correction is nearly eliminated for the W1 except for a non-isocentric field. Conclusion: Large and variable CFs are required for microchambers in small composite fields primarily due to density and volume effects. Corrections are reduced but not eliminated for a plastic scintillator in the same fields.« less
In Vitro Measures for Assessing Boar Semen Fertility.
Jung, M; Rüdiger, K; Schulze, M
2015-07-01
Optimization of artificial insemination (AI) for pig production and evaluation of the fertilizing capacity of boar semen are highly related. Field studies have demonstrated significant variation in semen quality and fertility. The semen quality of boars is primarily affected by breed and season. AI centres routinely examine boar semen to predict male fertility. Overall, the evaluation of classical parameters, such as sperm morphology, sperm motility, sperm concentration and ejaculate volume, allows the identification of ejaculates corresponding to poor fertility but not high-efficiency prediction of field fertility. The development of new sperm tests for measuring certain sperm functions has attempted to solve this problem. Fluorescence staining can categorize live and dead spermatozoa in the ejaculate and identify spermatozoa with active mitochondria. Computer-assisted semen analysis (CASA) provides an objective assessment of multiple kinetic sperm parameters. However, sperm tests usually assess only single factors involved in the fertilization process. Thus, basing prediction of fertilizing capacity on a selective collection of sperm tests leads to greater accuracy than using single tests. In the present brief review, recent diagnostic laboratory methods that directly relate to AI performance as well as the development of a new boar fertility in vitro index are discussed. © 2015 Blackwell Verlag GmbH.
NASA Technical Reports Server (NTRS)
Wilson, D. J.; Krause, M. C.; Coffey, E. W.; Huang, C. C.; Edwards, B. B.; Shrider, K. R.; Jetton, J. L.; Morrison, L. K.
1974-01-01
A servo-controlled range/elevation scanner for the laser Doppler velocimeter (LDV) was developed and tested in the field to assess its performance in detecting and monitoring aircraft trailing vortices in an airport environment. The elevation scanner provides a capability to manually point the LDV telescope at operator chosen angles from 3.2 deg. to 89.6 deg within 0.2 deg, or to automatically scan the units between operator chosen limits at operator chosen rates of 0.1 Hz to 0.5 Hz. The range scanner provides a capability to manually adjust the focal point of the system from a range of 32 meters to a range of 896 meters under operator control, or to scan between operator chosen limits and at rates from 0.1 Hz to 6.9 Hz. The scanner controls are designed to allow simulataneous range and elevation scanning so as to provide finger scan patterns, arc scan patterns, and vertical line scan patterns. The development and testing of the unit is discussed, along with a fluid dynamic model of the wake vortex developed in a laser Doppler vortex sensor simulation program.
CARS Temperature Measurements in a Hypersonic Propulsion Test Facility
NASA Technical Reports Server (NTRS)
Jarrett, Olin, Jr.; Smith, M. W.; Antcliff, R. R.; Northam, G. Burt; Cutler, A. D.; Capriotti, D. P.; Taylor, D. J.
1990-01-01
Nonintrusive diagnostic measurements were performed in the supersonic reacting flow of the Hypersonic Propulsion Test Cell 2 at NASA-Langley. A Coherent Anti-stokes Raman Spectroscopy (CARS) system was assembled specifically for the test cell environment. System design considerations were: (1) test cell noise and vibration; (2) contamination from flow field or atmospheric borne dust; (3) unwanted laser or electrically induced combustion (inside or outside the duct); (4) efficient signal collection; (5) signal splitting to span the wide dynamic range present throughout the flow field; (6) movement of the sampling volume in the flow; and (7) modification of the scramjet model duct to permit optical access to the reacting flow with the CARS system. The flow in the duct was a nominal Mach 2 flow with static pressure near one atmosphere. A single perpendicular injector introduced hydrogen into the flow behind a rearward facing step. CARS data was obtained in three planes downstream of the injection region. At least 20 CARS data points were collected at each of the regularly spaced sampling locations in each data plane. Contour plots of scramjet combustor static temperature in a reacting flow region are presented.
Gravitational tension, spacetime pressure and black hole volume
NASA Astrophysics Data System (ADS)
Armas, Jay; Obers, Niels A.; Sanchioni, Marco
2016-09-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.
Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept
NASA Astrophysics Data System (ADS)
Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.
2016-10-01
This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.
Novati, A; Hulshof, H J; Koolhaas, J M; Lucassen, P J; Meerlo, P
2011-09-08
Sleep loss strongly affects brain function and may even predispose susceptible individuals to psychiatric disorders. Since a recurrent lack of sleep frequently occurs during adolescence, it has been implicated in the rise in depression incidence during this particular period of life. One mechanism through which sleep loss may contribute to depressive symptomatology is by affecting hippocampal function. In this study, we examined the effects of sleep loss on hippocampal integrity at young age by subjecting adolescent male rats to chronic sleep restriction (SR) for 1 month from postnatal day 30 to 61. They were placed in slowly rotating drums for 20 h per day and were allowed 4 h of rest per day at the beginning of the light phase. Anxiety was measured using an open field and elevated plus maze test, while saccharine preference was used as an indication of anhedonia. All tests were performed after 1 and 4 weeks of SR. We further studied effects of SR on hypothalamic-pituitary-adrenal (HPA) axis activity, and at the end of the experiment, brains were collected to measure hippocampal volume and neurogenesis. Behavior of the SR animals was not affected, except for a transient suppression of saccharine preference after 1 week of SR. Hippocampal volume was significantly reduced in SR rats compared to home cage and forced activity controls. This volume reduction was not paralleled by reduced levels of hippocampal neurogenesis and could neither be explained by elevated levels of glucocorticoids. Thus, our results indicate that insufficient sleep may be a causal factor in the reductions of hippocampal volume that have been reported in human sleep disorders and mood disorders. Since changes in HPA activity or neurogenesis are not causally implicated, sleep disturbance may affect hippocampal volume by other, possibly more direct mechanisms. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
TU-AB-202-03: Prediction of PET Transfer Uncertainty by DIR Error Estimating Software, AUTODIRECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, H; Chen, J; Phillips, J
2016-06-15
Purpose: Deformable image registration (DIR) is a powerful tool, but DIR errors can adversely affect its clinical applications. To estimate voxel-specific DIR uncertainty, a software tool, called AUTODIRECT (automated DIR evaluation of confidence tool), has been developed and validated. This work tests the ability of this software to predict uncertainty for the transfer of standard uptake values (SUV) from positron-emission tomography (PET) with DIR. Methods: Virtual phantoms are used for this study. Each phantom has a planning computed tomography (CT) image and a diagnostic PET-CT image set. A deformation was digitally applied to the diagnostic CT to create the planningmore » CT image and establish a known deformation between the images. One lung and three rectum patient datasets were employed to create the virtual phantoms. Both of these sites have difficult deformation scenarios associated with them, which can affect DIR accuracy (lung tissue sliding and changes in rectal filling). The virtual phantoms were created to simulate these scenarios by introducing discontinuities in the deformation field at the lung rectum border. The DIR algorithm from Plastimatch software was applied to these phantoms. The SUV mapping errors from the DIR were then compared to that predicted by AUTODIRECT. Results: The SUV error distributions closely followed the AUTODIRECT predicted error distribution for the 4 test cases. The minimum and maximum PET SUVs were produced from AUTODIRECT at 95% confidence interval before applying gradient-based SUV segmentation for each of these volumes. Notably, 93.5% of the target volume warped by the true deformation was included within the AUTODIRECT-predicted maximum SUV volume after the segmentation, while 78.9% of the target volume was within the target volume warped by Plastimatch. Conclusion: The AUTODIRECT framework is able to predict PET transfer uncertainty caused by DIR, which enables an understanding of the associated target volume uncertainty.« less
Holographic elements and curved slit used to enlarge field of view in rocket detection system
NASA Astrophysics Data System (ADS)
Breton, Mélanie; Fortin, Jean; Lessard, Roger A.; Châteauneuf, Marc
2006-09-01
Rocket detection over a wide field of view is an important issue in the protection of light armored vehicle. Traditionally, the detection occurs in UV band, but recent studies have shown the existence of significant emission peaks in the visible and near infrared at rocket launch time. The use of the visible region is interesting in order to reduce the weight and cost of systems. Current methods to detect those specific peaks involve use of interferometric filters. However, they fail to combine wide angle with wavelength selectivity. A linear array of volume holographic elements combined with a curved exit slit is proposed for the development of a wide field of view sensor for the detection of solid propellant motor launch flash. The sensor is envisaged to trigger an active protection system. On the basis of geometric theory, a system has been designed. It consists of a collector, a linear array of holographic elements, a curved slit and a detector. The collector is an off-axis parabolic mirror. Holographic elements are recorded subdividing a hologram film in regions, each individually exposed with a different incidence angle. All regions have a common diffraction angle. The incident angle determines the instantaneous field of view of the elements. The volume hologram performs the function of separating and focusing the diffracted beam on an image plane to achieve wavelength filtering. Conical diffraction property is used to enlarge the field of view in elevation. A curved slit was designed to correspond to oblique incidence of the holographic linear array. It is situated at the image plane and filters the diffracted spectrum toward the sensor. The field of view of the design was calculated to be 34 degrees. This was validated by a prototype tested during a field trial. Results are presented and analyzed. The system succeeded in detecting the rocket launch flash at desired fields of view.
Kashif, Muhammad; Bonnety, Jérôme; Guibert, Philippe; Morin, Céline; Legros, Guillaume
2012-12-17
A Laser Extinction Method has been set up to provide two-dimensional soot volume fraction field time history at a tunable frequency up to 70 Hz inside an axis-symmetric diffusion flame experiencing slow unsteady phenomena preserving the symmetry. The use of a continuous wave laser as the light source enables this repetition rate, which is an incremental advance in the laser extinction technique. The technique is shown to allow a fine description of the soot volume fraction field in a flickering flame exhibiting a 12.6 Hz flickering phenomenon. Within this range of repetition rate, the technique and its subsequent post-processing require neither any method for time-domain reconstruction nor any correction for energy intrusion. Possibly complemented by such a reconstruction method, the technique should support further soot volume fraction database in oscillating flames that exhibit characteristic times relevant to the current efforts in the validation of soot processes modeling.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-02-09
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-01-01
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207