Science.gov

Sample records for field tests-low input

  1. Field tests-low input, side-wall vented boiler

    SciTech Connect

    Litzke, W.L.; Butcher, T.A.; Celebi, Y.

    1996-07-01

    The Fan Atomized Burner (FAB) was developed at Brookhaven National Laboratory as part of the Oil Heat Combustion Equipment Technology Program to provide a practical low-firing rate technology leading to new, high efficiency oil-fired appliances. The development of the burner design and results of application testing have been presented in prior oil heat conferences over the past several years. This information is also summarized in a more comprehensive BNL report. The first field trial of a prototype unit was initiated during the 1994-95 heating season. This paper presents the results of the second year of testing, during the 1995-96 heating season. The field tests enable the demonstration of the reliability and performance of the FAB under practical, typical operating conditions. Another important objective of the field test was to demonstrate that the low input is adequate to satisfy the heating and hot water demands of the household. During the first field trial it was shown that at a maximum input rate of 0.4 gph (55,000 Btu/hr) the burner was able to heat a home with over 2,000 square feet of conditioned living space and provide adequate supply of domestic hot water for a family of six. The test is located in Long Island, NY.

  2. Response of traveling waves to transient inputs in neural fields

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Zachary P.; Ermentrout, Bard

    2012-02-01

    We analyze the effects of transient stimulation on traveling waves in neural field equations. Neural fields are modeled as integro-differential equations whose convolution term represents the synaptic connections of a spatially extended neuronal network. The adjoint of the linearized wave equation can be used to identify how a particular input will shift the location of a traveling wave. This wave response function is analogous to the phase response curve of limit cycle oscillators. For traveling fronts in an excitatory network, the sign of the shift depends solely on the sign of the transient input. A complementary estimate of the effective shift is derived using an equation for the time-dependent speed of the perturbed front. Traveling pulses are analyzed in an asymmetric lateral inhibitory network and they can be advanced or delayed, depending on the position of spatially localized transient inputs. We also develop bounds on the amplitude of transient input necessary to terminate traveling pulses, based on the global bifurcation structure of the neural field.

  3. Response of traveling waves to transient inputs in neural fields.

    PubMed

    Kilpatrick, Zachary P; Ermentrout, Bard

    2012-02-01

    We analyze the effects of transient stimulation on traveling waves in neural field equations. Neural fields are modeled as integro-differential equations whose convolution term represents the synaptic connections of a spatially extended neuronal network. The adjoint of the linearized wave equation can be used to identify how a particular input will shift the location of a traveling wave. This wave response function is analogous to the phase response curve of limit cycle oscillators. For traveling fronts in an excitatory network, the sign of the shift depends solely on the sign of the transient input. A complementary estimate of the effective shift is derived using an equation for the time-dependent speed of the perturbed front. Traveling pulses are analyzed in an asymmetric lateral inhibitory network and they can be advanced or delayed, depending on the position of spatially localized transient inputs. We also develop bounds on the amplitude of transient input necessary to terminate traveling pulses, based on the global bifurcation structure of the neural field.

  4. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  5. Mapping Synaptic Input Fields of Neurons with Super-Resolution Imaging.

    PubMed

    Sigal, Yaron M; Speer, Colenso M; Babcock, Hazen P; Zhuang, Xiaowei

    2015-10-08

    As a basic functional unit in neural circuits, each neuron integrates input signals from hundreds to thousands of synapses. Knowledge of the synaptic input fields of individual neurons, including the identity, strength, and location of each synapse, is essential for understanding how neurons compute. Here, we developed a volumetric super-resolution reconstruction platform for large-volume imaging and automated segmentation of neurons and synapses with molecular identity information. We used this platform to map inhibitory synaptic input fields of On-Off direction-selective ganglion cells (On-Off DSGCs), which are important for computing visual motion direction in the mouse retina. The reconstructions of On-Off DSGCs showed a GABAergic, receptor subtype-specific input field for generating direction selective responses without significant glycinergic inputs for mediating monosynaptic crossover inhibition. These results demonstrate unique capabilities of this super-resolution platform for interrogating neural circuitry. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Active control of sound fields in elastic cylinders by vibrational inputs

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1987-01-01

    An experiment is performed to study the mechanisms of active control of sound fields in elastic cylinders via vibrational outputs. In the present method of control, a vibrational force input was used as the secondary control input to reduce the radiated acoustic field. For the frequencies considered, the active vibration technique provided good global reduction of interior sound even though only one actuator was used.

  7. Active control of sound fields in elastic cylinders by vibrational inputs

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1987-01-01

    An experiment is performed to study the mechanisms of active control of sound fields in elastic cylinders via vibrational outputs. In the present method of control, a vibrational force input was used as the secondary control input to reduce the radiated acoustic field. For the frequencies considered, the active vibration technique provided good global reduction of interior sound even though only one actuator was used.

  8. The role of competitive learning in the generation of DG fields from EC inputs.

    PubMed

    Si, Bailu; Treves, Alessandro

    2009-06-01

    We follow up on a suggestion by Rolls and co-workers, that the effects of competitive learning should be assessed on the shape and number of spatial fields that dentate gyrus (DG) granule cells may form when receiving input from medial entorhinal cortex (mEC) grid units. We consider a simple non-dynamical model where DG units are described by a threshold-linear transfer function, and receive feedforward inputs from 1,000 mEC model grid units of various spacing, orientation and spatial phase. Feedforward weights are updated according to a Hebbian rule as the virtual rodent follows a long simulated trajectory through a single environment. Dentate activity is constrained to be very sparse. We find that indeed competitive Hebbian learning tends to result in a few active DG units with a single place field each, rounded in shape and made larger by iterative weight changes. These effects are more pronounced when produced with thousands of DG units and inputs per DG unit, which the realistic system has available, than with fewer units and inputs, in which case several DG units persists with multiple fields. The emergence of single-field units with learning is in contrast, however, to recent data indicating that most active DG units do have multiple fields. We show how multiple irregularly arranged fields can be produced by the addition of non-space selective lateral entorhinal cortex (lEC) units, which are modelled as simply providing an additional effective input specific to each DG unit. The mean number of such multiple DG fields is enhanced, in particular, when lEC and mEC inputs have overall similar variance across DG units. Finally, we show that in a restricted environment the mean size of the fields is unaltered, while their mean number is scaled down with the area of the environment.

  9. Multi-bump solutions in a neural field model with external inputs

    NASA Astrophysics Data System (ADS)

    Ferreira, Flora; Erlhagen, Wolfram; Bicho, Estela

    2016-07-01

    We study the conditions for the formation of multiple regions of high activity or "bumps" in a one-dimensional, homogeneous neural field with localized inputs. Stable multi-bump solutions of the integro-differential equation have been proposed as a model of a neural population representation of remembered external stimuli. We apply a class of oscillatory coupling functions and first derive criteria to the input width and distance, which relate to the synaptic couplings that guarantee the existence and stability of one and two regions of high activity. These input-induced patterns are attracted by the corresponding stable one-bump and two-bump solutions when the input is removed. We then extend our analytical and numerical investigation to N-bump solutions showing that the constraints on the input shape derived for the two-bump case can be exploited to generate a memory of N > 2 localized inputs. We discuss the pattern formation process when either the conditions on the input shape are violated or when the spatial ranges of the excitatory and inhibitory connections are changed. An important aspect for applications is that the theoretical findings allow us to determine for a given coupling function the maximum number of localized inputs that can be stored in a given finite interval.

  10. Contribution of Electric and Magnetic Field Variability to the Energy Input into Ionosphere-Thermosphere System

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Huang, C. Y.; Su, Y. J.

    2016-12-01

    The electric and magnetic fields at high-latitude regions fluctuate on a variety of spatial and temporal scales. The small-scale field variability is poorly represented in the climatological models which are commonly used to estimate the electromagnetic energy input into Earth's Ionosphere-Thermosphere (IT) system. We characterize the variability of electric and magnetic fields in different scales and explore their individual importance in the estimation of Poynting flux and Joule heating in the auroral and polar cap regions using a large data set of Defense Meteorological Satellite Program (DMSP) observations. This study improves the specification of electromagnetic energy input and dissipation in the high-latitude regions and sheds light to the insufficient energy input problems in the General Circulation Models (GCMs) through improving the representation of variability in empirical high-latitude models.

  11. Fold-change detection and scalar symmetry of sensory input fields

    PubMed Central

    Goentoro, Lea; Hart, Yuval; Mayo, Avi; Sontag, Eduardo; Alon, Uri

    2010-01-01

    Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold changes in input and not on absolute levels. Thus, a step change in input from, for example, level 1 to 2 gives precisely the same dynamical output as a step from level 2 to 4, because the steps have the same fold change. We ask what the benefit of FCD is and show that FCD is necessary and sufficient for sensory search to be independent of multiplying the input field by a scalar. Thus, the FCD search pattern depends only on the spatial profile of the input and not on its amplitude. Such scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing/convecting chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. Furthermore, we show that FCD entails two features found across sensory systems, exact adaptation and Weber's law, but that these two features are not sufficient for FCD. Finally, we present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feed-forward loops. We find that bacterial chemotaxis displays feedback within the present class and hence, is expected to show FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study, thus, suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields. PMID:20729472

  12. Sparse Coding Can Predict Primary Visual Cortex Receptive Field Changes Induced by Abnormal Visual Input

    PubMed Central

    Hunt, Jonathan J.; Dayan, Peter; Goodhill, Geoffrey J.

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields. PMID:23675290

  13. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems

    PubMed Central

    Kravchenko, Alexandra N.; Snapp, Sieglinde S.; Robertson, G. Philip

    2017-01-01

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based–organic, management practices for a corn–soybean–wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world. PMID:28096409

  14. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems.

    PubMed

    Kravchenko, Alexandra N; Snapp, Sieglinde S; Robertson, G Philip

    2017-01-31

    Knowledge of production-system performance is largely based on observations at the experimental plot scale. Although yield gaps between plot-scale and field-scale research are widely acknowledged, their extent and persistence have not been experimentally examined in a systematic manner. At a site in southwest Michigan, we conducted a 6-y experiment to test the accuracy with which plot-scale crop-yield results can inform field-scale conclusions. We compared conventional versus alternative, that is, reduced-input and biologically based-organic, management practices for a corn-soybean-wheat rotation in a randomized complete block-design experiment, using 27 commercial-size agricultural fields. Nearby plot-scale experiments (0.02-ha to 1.0-ha plots) provided a comparison of plot versus field performance. We found that plot-scale yields well matched field-scale yields for conventional management but not for alternative systems. For all three crops, at the plot scale, reduced-input and conventional managements produced similar yields; at the field scale, reduced-input yields were lower than conventional. For soybeans at the plot scale, biological and conventional managements produced similar yields; at the field scale, biological yielded less than conventional. For corn, biological management produced lower yields than conventional in both plot- and field-scale experiments. Wheat yields appeared to be less affected by the experimental scale than corn and soybean. Conventional management was more resilient to field-scale challenges than alternative practices, which were more dependent on timely management interventions; in particular, mechanical weed control. Results underscore the need for much wider adoption of field-scale experimentation when assessing new technologies and production-system performance, especially as related to closing yield gaps in organic farming and in low-resourced systems typical of much of the developing world.

  15. Fold-change detection and scalar symmetry of sensory input fields

    NASA Astrophysics Data System (ADS)

    Shoval, Oren; Goentoro, Lea; Hart, Yuval; Mayo, Avi; Sontag, Eduardo; Alon, Uri

    2012-02-01

    Recent studies suggest that certain cellular sensory systems display fold-change detection (FCD): a response whose entire shape, including amplitude and duration, depends only on fold-changes in input, and not on absolute changes. We show that FCD is necessary and sufficient for sensory search to depend only on the spatial profile of the input, and not on its amplitude. Such amplitude scalar symmetry occurs in a wide range of sensory inputs, such as source strength multiplying diffusing chemical fields sensed in chemotaxis, ambient light multiplying the contrast field in vision, and protein concentrations multiplying the output in cellular signaling systems. We present a wide class of mechanisms that have FCD, including certain nonlinear feedback and feedforward loops. In addition, we find that bacterial chemotaxis displays feedback within the present class, and has indeed recently been shown to exhibit FCD. This can explain experiments in which chemotaxis searches are insensitive to attractant source levels. This study thus suggests a connection between properties of biological sensory systems and scalar symmetry stemming from physical properties of their input fields.

  16. Active control of structurally-coupled sound fields in elastic cylinders by vibrational force inputs

    NASA Technical Reports Server (NTRS)

    Jones, J. D.; Fuller, C. R.

    1990-01-01

    Active control of structurally-coupled sound fields in elastic cylinders is analytically and experimentally studied. The primary (noise) field in the cylinder model is generated by the coupled dynamic response of the shell under loading by a single exterior acoustic source. Control of the interior sound field is achieved by applying vibrational force inputs directly to the shell wall. Action of the point controllers serve to increase the input impedance of select structural modes of the shell which are well-coupled to the interior acoustic cavity, thus substantially reducing sound transmission into the cavity. Spatially-averaged noise reductions in excess of 30 dB are demonstrated for acoustic resonant conditions within the cavity. Twin controller configurations are presented which demonstrate the ability to independently control orthogonal modes of the interior acoustic space. Benefits and drawbacks of this new methodology for noise control are discussed and clearly demonstrated.

  17. Diffuse-source pesticide inputs in surface waters: online risk assessment at field scale

    NASA Astrophysics Data System (ADS)

    Reichenberger, S.; Röpke, B.; Bach, M.; Frede, H.-G.

    2003-04-01

    Diffuse pesticide input from agricultural fields into surface waters depends, apart from substance properties, also on soil properties, site hydrology, tillage and application practices, weather conditions, and distance to water bodies. A product which can be used safely at one site may pose unacceptable risk to aquatic life at another site. Thus, there is a great need for site-specific risk assessment approaches. Our objective is therefore to develop a tool for assessing pesticide inputs via runoff/erosion, drainflow, and spraydrift for single fields. The tool will be part of the web-based Information System for Integrated Plant Production (ISIP, www.isip.de), but also able to run independently. ISIP is an interactive portal for both farmers and advisors and will become the leading decision support system for plant production and plant protection in Germany over the next years. The aim is an approach which i) is applicable for the majority of European countries, ii) needs only input data readily available for large areas (such as provided by hydrological and soil maps), iii) predicts, with daily resolution, realistic (not worst-case) loads and resulting aquatic concentrations (PECsw), and iv) provides a substance-specific risk assessment on the basis of model results for consulting and management purposes. Special emphasis is laid on scientifically up-to-date model approaches and robust, but site-specific parameterization. For instance, drainage inputs will be calculated using the preferential flow model MACRO 5 (Nick Jarvis, SLU, Sweden). In the later stages of the project, the tool will provide a fully GIS-based risk assessment in ISIP for single fields in Germany.

  18. Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil's Southern Region.

    PubMed

    Zoffoli, Hugo José Oliveira; do Amaral-Sobrinho, Nelson Moura Brasil; Zonta, Everaldo; Luisi, Marcus Vinícius; Marcon, Gracioso; Tolón-Becerra, Alfredo

    2013-03-01

    Only a few studies have assessed the joint incorporation of heavy metals into agricultural systems based on the range of agrochemicals used on a specific agricultural crop. This study was conducted to assess the heavy metals input through application of the main agrochemicals used in Brazilian tobacco fields. A total of 56 samples of different batches of 5 fertilizers, 3 substrates, 8 insecticides, 3 fungicides, 2 herbicides, and 1 growth regulator commonly used in the cultivation of tobacco in Brazil's Southern Region were collected from 3 warehouses located in the States of Rio Grande do Sul, Santa Catarina, and Paraná. The total As, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, and Zn content of the samples was then determined and compared with the regulations of different countries and information found in the available literature. The fertilizers were identified as the primary source of heavy metals among the agrochemicals used. Application of pesticides directly to the shoots of tobacco plants contributed very little to the supply of heavy metals. The agrochemicals used in Brazilian tobacco fields provide lower inputs of the main heavy metals that are nonessential for plants than those registered in the international literature for the majority of crop fields in different regions of the world.

  19. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus

    NASA Astrophysics Data System (ADS)

    Reid, R. Clay; Shapley, Robert M.

    1992-04-01

    HUMAN colour vision depends on three classes of cone photoreceptors, those sensitive to short (S), medium (M) or long (L) wavelengths, and on how signals from these cones are combined by neurons in the retina and brain. Macaque monkey colour vision is similar to human, and the receptive fields of macaque visual neurons have been used as an animal model of human colour processing1. P retinal ganglion cells and parvocellular neurons are colour-selective neurons in macaque retina and lateral geniculate nucleus. Interactions between cone signals feeding into these neurons are still unclear. On the basis of experimental results with chromatic adaptation, excitatory and inhibitory inputs from L and M cones onto P cells (and parvocellular neurons) were thought to be quite specific2,3 (Fig. la). But these experiments with spatially diffuse adaptation did not rule out the 'mixed-surround' hypothesis: that there might be one cone-specific mechanism, the receptive field centre, and a surround mechanism connected to all cone types indiscriminately (Fig. le). Recent work has tended to support the mixed-surround hypothesis4-8. We report here the development of new stimuli to measure spatial maps of the linear L-, M- and S-cone inputs to test the hypothesis definitively. Our measurements contradict the mixed-surround hypothesis and imply cone specificity in both centre and surround.

  20. Out-of-field doses in radiotherapy: Input to epidemiological studies and dose-risk models.

    PubMed

    Harrison, Roger

    2017-04-06

    Out-of-field doses in radiotherapy have been increasingly studied in recent years because of the generally improved survival of patients who have received radiotherapy as part of their treatment for cancer and their subsequent risk of a second malignancy. This short article attempts to identify some current problems, challenges and opportunities for dosimetry developments in this field. Out-of-field doses and derived risk estimates contribute to general knowledge about radiation effects on humans as well as contributing to risk-benefit considerations for the individual patient. It is suggested that for input into epidemiological studies, the complete dose description (i.e. the synthesis of therapy and imaging doses from all the treatment and imaging modalities) is ideally required, although there is currently no common dosimetry framework which easily covers all modalities. A general strategy for out-of-field dose estimation requires development and improvement in several areas including (i) dosimetry in regions of steep dose gradient close to the field edge (ii) experimentally verified analytical and Monte Carlo models for out-of-field doses (iii) the validity of treatment planning system algorithms outside the field edge (iv) dosimetry of critical sub-structures in organs at risk (v) mixed field (including neutron) dosimetry in proton and ion radiotherapy and photoneutron production in high energy photon beams (vi) the most appropriate quantities to use in neutron dosimetry in a radiotherapy context and (vii) simplification of measurement methods in regions distant from the target volume. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. Soil Carbon Inputs and Ecosystem Respiration: a Field Priming Experiment in Arctic Coastal Tundra

    NASA Astrophysics Data System (ADS)

    Vaughn, L. S.; Zhu, B.; Bimueller, C.; Curtis, J. B.; Chafe, O.; Bill, M.; Abramoff, R. Z.; Torn, M. S.

    2016-12-01

    In Arctic ecosystems, climate change is expected to influence soil carbon stocks through changes in both plant carbon inputs and organic matter decomposition. This study addresses the potential for a priming effect, an interaction between these changes in which root-derived carbon inputs alter SOM decomposition rates via microbial biomass increases, co-metabolism of substrates, induced nitrogen limitation, or other possible mechanisms. The priming effect has been observed in numerous laboratory and greenhouse experiments, and is increasingly included in ecosystem models. Few studies, however, have evaluated the priming effect with in situ field manipulations. In a two-year field experiment in Barrow, Alaska, we tested for a priming effect under natural environmental variability. In September 2014 and August 2015, we added 6.1g of 13C-labeled glucose to 25cm diameter mesocosms, 15cm below the soil surface in the mineral soil layer. Over the following month, we quantified effects on the rate and temperature sensitivity of native (non-glucose) ecosystem respiration and GPP. Following the 2014 treatment, soil samples were collected at 1 and 3 weeks for microbial biomass carbon and 13C/12C analysis, and ion exchange membranes were buried for one week to assess nitrate and ammonium availability. In contrast with many laboratory incubation studies using soils from a broad range of ecosystems, we observed no significant priming effect. In spite of a clear signal of 13C-glucose decomposition in respired CO2 and microbial biomass, we detected no treatment effect on background ecosystem respiration or total microbial biomass carbon. Our findings suggest that glucose taken up by microbes was not used for production of additional SOM-decomposing enzymes, possibly due to stoichiometric limitations on enzyme production. To best inform models representing complex and dynamic ecosystems, this study calls for further research relating theory, laboratory findings, and field

  2. What input data are needed to accurately model electromagnetic fields from mobile phone base stations?

    PubMed

    Beekhuizen, Johan; Kromhout, Hans; Bürgi, Alfred; Huss, Anke; Vermeulen, Roel

    2015-01-01

    The increase in mobile communication technology has led to concern about potential health effects of radio frequency electromagnetic fields (RF-EMFs) from mobile phone base stations. Different RF-EMF prediction models have been applied to assess population exposure to RF-EMF. Our study examines what input data are needed to accurately model RF-EMF, as detailed data are not always available for epidemiological studies. We used NISMap, a 3D radio wave propagation model, to test models with various levels of detail in building and antenna input data. The model outcomes were compared with outdoor measurements taken in Amsterdam, the Netherlands. Results showed good agreement between modelled and measured RF-EMF when 3D building data and basic antenna information (location, height, frequency and direction) were used: Spearman correlations were >0.6. Model performance was not sensitive to changes in building damping parameters. Antenna-specific information about down-tilt, type and output power did not significantly improve model performance compared with using average down-tilt and power values, or assuming one standard antenna type. We conclude that 3D radio wave propagation modelling is a feasible approach to predict outdoor RF-EMF levels for ranking exposure levels in epidemiological studies, when 3D building data and information on the antenna height, frequency, location and direction are available.

  3. Spatiotemporal receptive fields of barrel cortex revealed by reverse correlation of synaptic input.

    PubMed

    Ramirez, Alejandro; Pnevmatikakis, Eftychios A; Merel, Josh; Paninski, Liam; Miller, Kenneth D; Bruno, Randy M

    2014-06-01

    Of all of the sensory areas, barrel cortex is among the best understood in terms of circuitry, yet least understood in terms of sensory function. We combined intracellular recording in rats with a multi-directional, multi-whisker stimulator system to estimate receptive fields by reverse correlation of stimuli to synaptic inputs. Spatiotemporal receptive fields were identified orders of magnitude faster than by conventional spike-based approaches, even for neurons with little spiking activity. Given a suitable stimulus representation, a linear model captured the stimulus-response relationship for all neurons with high accuracy. In contrast with conventional single-whisker stimuli, complex stimuli revealed markedly sharpened receptive fields, largely as a result of adaptation. This phenomenon allowed the surround to facilitate rather than to suppress responses to the principal whisker. Optimized stimuli enhanced firing in layers 4-6, but not in layers 2/3, which remained sparsely active. Surround facilitation through adaptation may be required for discriminating complex shapes and textures during natural sensing.

  4. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    NASA Astrophysics Data System (ADS)

    Tsang, Mankei

    2011-10-01

    In a previous paper [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.81.063837 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to “flying” optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  5. Cavity quantum electro-optics. II. Input-output relations between traveling optical and microwave fields

    SciTech Connect

    Tsang, Mankei

    2011-10-15

    In a previous paper [Phys. Rev. A 81, 063837 (2010)], I proposed a quantum model of the cavity electro-optic modulator, which can coherently couple an optical cavity mode to a microwave resonator mode and enable quantum operations on the two modes, including laser cooling of the microwave resonator, electro-optic entanglement, and backaction-evading optical measurement of a microwave quadrature. In this sequel, I focus on the quantum input-output relations between traveling optical and microwave fields coupled to the cavity electro-optic modulator. With red-sideband optical pumping, the relations are shown to resemble those of a beam splitter for the traveling fields, so that in the ideal case of zero parasitic loss and critical coupling, microwave photons can be coherently up converted to ''flying'' optical photons with unit efficiency, and vice versa. With blue-sideband pumping, the modulator acts as a nondegenerate parametric amplifier, which can generate two-mode squeezing and hybrid entangled photon pairs at optical and microwave frequencies. These fundamental operations provide a potential bridge between circuit quantum electrodynamics and quantum optics.

  6. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  7. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  8. Reconstructing the 3D coronal magnetic field using a Potential Field Source Surface model comparing different magnetograph input data

    NASA Astrophysics Data System (ADS)

    Kruse, M. A., II; Peleikis, T.; Berger, L.; Wimmer-Schweingruber, R. F.

    2014-12-01

    We utilize a Potential Field Source Sourface (PFSS) model developed by Altschuler & Newkirk (1969) to model and analyze the coronal magnetic field up to the source surface at 2.5 solar radii. As the photospheric boundary to that model we employ data from several instruments, namely the Wilcox Solar Observatory, NSO's Kitt Peak Vacuum Telescope, the Michelson Doppler Imager onboard the SOHO spacecraft and its successor, the Helioseismic and Magnetic Imager onboard SDO. Instead of the harmonic function approach commonly used, we employ a three dimensional computational grid and methods of computational fluid dynamics to solve the governing equations in order to easily incorporate more complex phenomena if the need for doing so arises during the course of our work. Another advantage of the grid approach is the possibility to outsource the computational work to a parallel computing architecture like NVIDIA's CUDA, which we employ to speed up processing time and increase data throughput significantly. The obtained magnetic field data is utilized in several ways. First it is compared with in-situ data from several spacecraft like Ulysses to validate the employed PFSS model. We further use the expansion geometry of the magnetic field as an input to a 1D-solar-wind model developed by Cranmer et al. (2007) to determine characteristics of the solar wind in several magnetic flux tubes. We can then infer the theoretical charge-state composition inside these flux tubes, which in turn can be employed to test our hypotheses on the origin of the slow solar wind.

  9. Understanding auditory spectro-temporal receptive fields and their changes with input statistics by efficient coding principles.

    PubMed

    Zhao, Lingyun; Zhaoping, Li

    2011-08-01

    Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed.

  10. Field measurement of moisture-buffering model inputs for residential buildings

    SciTech Connect

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the only unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.

  11. Field measurement of moisture-buffering model inputs for residential buildings

    DOE PAGES

    Woods, Jason; Winkler, Jon

    2016-02-05

    Moisture adsorption and desorption in building materials impact indoor humidity. This effect should be included in building-energy simulations, particularly when humidity is being investigated or controlled. Several models can calculate this moisture-buffering effect, but accurate ones require model inputs that are not always known to the user of the building-energy simulation. This research developed an empirical method to extract whole-house model inputs for the effective moisture penetration depth (EMPD) model. The experimental approach was to subject the materials in the house to a square-wave relative-humidity profile, measure all of the moisture-transfer terms (e.g., infiltration, air-conditioner condensate), and calculate the onlymore » unmeasured term—the moisture sorption into the materials. We validated this method with laboratory measurements, which we used to measure the EMPD model inputs of two houses. After deriving these inputs, we measured the humidity of the same houses during tests with realistic latent and sensible loads and demonstrated the accuracy of this approach. Furthermore, these results show that the EMPD model, when given reasonable inputs, is an accurate moisture-buffering model.« less

  12. Electrical coupling, receptive fields, and relative rod/cone inputs of horizontal cells in the tiger salamander retina.

    PubMed

    Zhang, Ai-Jun; Zhang, Jian; Wu, Samuel M

    2006-11-20

    Light responses, dendritic/axonal morphology, receptive field diameters, patterns of dye coupling, and relative rod/cone inputs of various types of horizontal cells (HCs) were studied using intracellular recording and Lucifer yellow/neurobiotin dye injection methods in the flatmount tiger salamander retina. Three physiologically and morphologically distinct types of HC entities were identified. 1) The A-type HCs are somas that do not bear axons, with average (+/-SE) soma diameters of 20.01 +/- 0.59 microm, relatively sparse and thick dendrites, and they resemble the A-type HC in mammals. The average receptive field diameter of these cells is 529.6 +/- 10.87 microm and they receive inputs predominantly from cones. 2) The B-type HCs are broad-field somas that bear thin and long axons, with average soma diameters of 17.67 +/- 0.38 microm, thinner dendrites of higher density, and they resemble the B-type HC in mammals. The average receptive field diameter of these cells is 1,633.55 +/- 37.34 microm and they receive mixed inputs from rods and cones. 3) The B-type HC axon terminals are broad-field, coarse axon terminal processes and they resemble the B-type HC axon terminal in rabbits. The average receptive field diameter of these axon terminals is 1,291.67 +/- 24.02 microm and they receive mixed inputs from rods and cones. All these types of HC are dye-coupled with adjacent HCs of the same type. Additionally, B-type HCs and axon terminals are dye-coupled with subpopulations of bipolar cells whose axon terminals ramify in the proximal half of the inner plexiform layer, raising the possibility that these HCs may send feedforward antagonistic surround responses to depolarizing bipolar cells through electrical synapses.

  13. Understanding Auditory Spectro-Temporal Receptive Fields and Their Changes with Input Statistics by Efficient Coding Principles

    PubMed Central

    Zhao, Lingyun; Zhaoping, Li

    2011-01-01

    Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed. PMID:21887121

  14. Processing of vestibular inputs by the medullary lateral tegmental field of conscious cats: implications for generation of motion sickness

    PubMed Central

    McCall, Andrew A.; Moy, Jennifer D.; DeMayo, William M.; Puterbaugh, Sonya R.; Miller, Daniel J.; Catanzaro, Michael F.

    2013-01-01

    The dorsolateral reticular formation of the caudal medulla, the lateral tegmental field (LTF), participates in generating vomiting. LTF neurons exhibited complex responses to vestibular stimulation in decerebrate cats, indicating that they received converging inputs from a variety of labyrinthine receptors. Such a convergence pattern of vestibular inputs is appropriate for a brain region that participates in generating motion sickness. Since responses of brainstem neurons to vestibular stimulation can differ between decerebrate and conscious animals, the current study examined the effects of whole-body rotations in vertical planes on the activity of LTF neurons in conscious felines. Wobble stimuli, fixed-amplitude tilts, the direction of which moves around the animal at a constant speed, were used to determine the response vector orientation, and also to ascertain whether neurons had spatial–temporal convergence (STC) behavior (which is due to the convergence of vestibular inputs with different spatial and temporal properties). The proportion of LTF neurons with STC behavior in conscious animals (25 %) was similar to that in decerebrate cats. Far fewer neurons in other regions of the feline brainstem had STC behavior, confirming findings that many LTF neurons receive converging inputs from a variety of labyrinthine receptors. However, responses to vertical plane vestibular stimulation were considerably different in decerebrate and conscious felines for LTF neurons lacking STC behavior. In decerebrate cats, most LTF neurons had graviceptive responses to rotations, similar to those of otolith organ afferents. However, in conscious animals, the response properties were similar to those of semicircular canal afferents. These differences show that higher centers of the brain that are removed during decerebration regulate the labyrinthine inputs relayed to the LTF, either by gating connections in the brainstem or by conveying vestibular inputs directly to the region

  15. Processing of vestibular inputs by the medullary lateral tegmental field of conscious cats: implications for generation of motion sickness.

    PubMed

    McCall, Andrew A; Moy, Jennifer D; DeMayo, William M; Puterbaugh, Sonya R; Miller, Daniel J; Catanzaro, Michael F; Yates, Bill J

    2013-03-01

    The dorsolateral reticular formation of the caudal medulla, the lateral tegmental field (LTF), participates in generating vomiting. LTF neurons exhibited complex responses to vestibular stimulation in decerebrate cats, indicating that they received converging inputs from a variety of labyrinthine receptors. Such a convergence pattern of vestibular inputs is appropriate for a brain region that participates in generating motion sickness. Since responses of brainstem neurons to vestibular stimulation can differ between decerebrate and conscious animals, the current study examined the effects of whole-body rotations in vertical planes on the activity of LTF neurons in conscious felines. Wobble stimuli, fixed-amplitude tilts, the direction of which moves around the animal at a constant speed, were used to determine the response vector orientation, and also to ascertain whether neurons had spatial-temporal convergence (STC) behavior (which is due to the convergence of vestibular inputs with different spatial and temporal properties). The proportion of LTF neurons with STC behavior in conscious animals (25 %) was similar to that in decerebrate cats. Far fewer neurons in other regions of the feline brainstem had STC behavior, confirming findings that many LTF neurons receive converging inputs from a variety of labyrinthine receptors. However, responses to vertical plane vestibular stimulation were considerably different in decerebrate and conscious felines for LTF neurons lacking STC behavior. In decerebrate cats, most LTF neurons had graviceptive responses to rotations, similar to those of otolith organ afferents. However, in conscious animals, the response properties were similar to those of semicircular canal afferents. These differences show that higher centers of the brain that are removed during decerebration regulate the labyrinthine inputs relayed to the LTF, either by gating connections in the brainstem or by conveying vestibular inputs directly to the region.

  16. Control of Goos-Hänchen shift via input probe field intensity

    NASA Astrophysics Data System (ADS)

    Ziauddin; Lee, Ray-Kuang; Qamar, Sajid

    2016-11-01

    We suggest a scheme to control Goos-Hänchen (GH) shift in an ensemble of strongly interacting Rydberg atoms, which act as super-atoms due to the dipole blockade mechanism. The ensemble of three-level cold Rydberg-dressed (87Rb) atoms follows a cascade configurations where two fields, i.e, a strong control and a weak field are employed [D. Petrosyan, J. Otterbach, and M. Fleischhauer, Phys. Rev. Lett. 107, 213601 (2011)]. The propagation of probe field is influenced by two-photon correlation within the blockade distance, which are damped due to the saturation of super-atoms. The amplitude of GH shift in the reflected light depends on the intensity of probe field. We observe large negative GH shift in the reflected light for small values of the probe field intensities.

  17. Influence of input uncertainty on prediction of within-field pesticide leaching risks

    NASA Astrophysics Data System (ADS)

    Lindahl, Anna M. L.; Söderström, Mats; Jarvis, Nicholas

    2008-06-01

    Previous research has suggested that pesticide losses at the field scale can be dominated by a small proportion of the field area. The objective of this study was to investigate whether site-specific applications (i.e. avoiding high-risk areas) at the field scale can contribute to a reduction of pesticide leaching despite uncertainty in the underlying model-based leaching risk map. Using a meta-model of the dual-permeability model MACRO, the annual average pesticide leaching concentrations were estimated for 162 sample sites on a 47 ha field. The procedure was repeated for different scenarios describing different patterns of spatial variation of degradation half-lives and the partition coefficient to soil organic carbon. To account for interpolation uncertainty, maps of predicted pesticide leaching risk were produced by the method of sequential Gaussian simulation. The results of the case study show that larger reductions of predicted leaching were achieved by site-specific application than by that of a comparable uniform dose reduction. Hence, site-specific-applications may be a feasible method to reduce pesticide leaching at the field-scale providing that the model approach gives reasonable estimates of the spatial pattern of pesticide leaching.

  18. [Quantifying direct N2O emissions from paddy fields during rice growing season in China: model and input data validation].

    PubMed

    Zou, Jian-Wen; Liu, Shu-Wei; Qin, Yan-Mei; Feng, De-Sheng; Zhu, Hui-Lin; Xu, Yong-Zhong

    2009-04-15

    The models on direct N2O emissions from rice paddies under different water regimes developed by the authors were validated against field measurements in China reported in 2005-2007 and in other regions. In flooding rice paddies (F), N2O emission predicted by the model was consistent with previous reports in other regions. Under the water regime of flooding-midseason drainage-reflooding (F-D-F), the model developed in this study was comparable to that established by using worldwide database. The models also well fitted N2O emissions from rice paddies under the water regime of flooding-midseason drainage-reflooding-moisture but without waterlogging (F-D-F-M) in China. Consistency of rice production data derived from the database of this study with those reported in previous studies suggests that the model input data of rice production had high reliability. The input data showed that water management and nitrogen input regimes have greatly changed in rice paddies since the 1950s. During the 1950s-1970s, about 20%-25% of the rice paddy was continuous water logging, and 75%-80% under the water regime of F-D-F. Since the 1980s, about 12%-16%, 77% and 7%-12% of paddy fields were under the water regimes of F, F-D-F and F-D-F-M, respectively. Total N input during the rice growing season averaged 87.49 kg x hm(-2) in the 1950s and 224.64 kg x hm(-2) in the 1990s. Chemical N input during the rice growing season has increased from 37.4 kg x hm(-2) in the 1950s to 198.8 kg x hm(-2) in the 1990s, accounting for 43% and 88% of the seasonal total N inputs, respectively. Manure N input was applied at stable rate, ranging from 45.2 kg x hm(-2) to 48.2 kg x hm(-2) during the 1950s-1970s, but thereafter it decreased over time. The contribution of manure N to total N inputs has decreased from 52% in the 1950s to 9% in the 1990s. Crop residue N retained during the rice growing season has increased from 4.9 kg x hm(-2) in the 1950s to 6.3 kg x hm(-2) in the 1980s. A high spatial

  19. Inferring electric fields and currents from ground magnetometer data - A test with theoretically derived inputs

    NASA Technical Reports Server (NTRS)

    Wolf, R. A.; Kamide, Y.

    1983-01-01

    Advanced techniques considered by Kamide et al. (1981) seem to have the potential for providing observation-based high time resolution pictures of the global ionospheric current and electric field patterns for interesting events. However, a reliance on the proposed magnetogram-inversion schemes for the deduction of global ionospheric current and electric field patterns requires proof that reliable results are obtained. 'Theoretical' tests of the accuracy of the magnetogram inversion schemes have, therefore, been considered. The present investigation is concerned with a test, involving the developed KRM algorithm and the Rice Convection Model (RCM). The test was successful in the sense that there was overall agreement between electric fields and currents calculated by the RCM and KRM schemes.

  20. Influence of spatiotemporally distributed irradiance data input on temperature evolution in parabolic trough solar field simulations

    NASA Astrophysics Data System (ADS)

    Bubolz, K.; Schenk, H.; Hirsch, T.

    2016-05-01

    Concentrating solar field operation is affected by shadowing through cloud movement. For line focusing systems the impact of varying irradiance has been studied before by several authors with simulations of relevant thermodynamics assuming spatially homogeneous irradiance or using artificial test signals. While today's simulation capabilities allow more and more a higher spatiotemporal resolution of plant processes there are only few studies on influence of spatially distributed irradiance due to lack of available data. Based on recent work on generating real irradiance maps with high spatial resolution this paper demonstrates their influence on solar field thermodynamics. For a case study an irradiance time series is chosen. One solar field section with several loops and collecting header is modeled for simulation purpose of parabolic trough collectors and oil as heat transfer medium. Assuming homogeneous mass flow distribution among all loops we observe spatially varying temperature characteristics. They are analysed without and with mass flow control and their impact on solar field control design is discussed. Finally, the potential of distributed irradiance data is outlined.

  1. Tidal and groundwater fluxes to a shallow, microtidal estuary: Constraining inputs through field observations and hydrodynamic modeling

    USGS Publications Warehouse

    Ganju, Neil K.; Hayn, Melanie; Chen, Shih-Nan; Howarth, Robert W.; Dickhudt, Patrick J.; Aretxabaleta, Alfredo L.; Marino, Roxanne

    2012-01-01

    Increased nutrient loading to estuaries has led to eutrophication, degraded water quality, and ecological transformations. Quantifying nutrient loads in systems with significant groundwater input can be difficult due to the challenge of measuring groundwater fluxes. We quantified tidal and freshwater fluxes over an 8-week period at the entrance of West Falmouth Harbor, Massachusetts, a eutrophic, groundwater-fed estuary. Fluxes were estimated from velocity and salinity measurements and a total exchange flow (TEF) methodology. Intermittent cross-sectional measurements of velocity and salinity were used to convert point measurements to cross-sectionally averaged values over the entire deployment (index relationships). The estimated mean freshwater flux (0.19 m3/s) for the 8-week period was mainly due to groundwater input (0.21 m3/s) with contributions from precipitation to the estuary surface (0.026 m3/s) and removal by evaporation (0.048 m3/s). Spring–neap variations in freshwater export that appeared in shorter-term averages were mostly artifacts of the index relationships. Hydrodynamic modeling with steady groundwater input demonstrated that while the TEF methodology resolves the freshwater flux signal, calibration of the index–salinity relationships during spring tide conditions only was responsible for most of the spring–neap signal. The mean freshwater flux over the entire period estimated from the combination of the index-velocity, index–salinity, and TEF calculations were consistent with the model, suggesting that this methodology is a reliable way of estimating freshwater fluxes in the estuary over timescales greater than the spring–neap cycle. Combining this type of field campaign with hydrodynamic modeling provides guidance for estimating both magnitude of groundwater input and estuarine storage of freshwater and sets the stage for robust estimation of the nutrient load in groundwater.

  2. Map transfer from the thalamus to the neocortex: inputs from the barrel field.

    PubMed

    Lokmane, Ludmilla; Garel, Sonia

    2014-11-01

    Sensory perception relies on the formation of stereotyped maps inside the brain. This feature is particularly well illustrated in the mammalian neocortex, which is subdivided into distinct cortical sensory areas that comprise topological maps, such as the somatosensory homunculus in humans or the barrel field of the large whiskers in rodents. How somatosensory maps are formed and relayed into the neocortex remain essential questions in developmental neuroscience. Here, we will present our current knowledge on whisker map transfer in the mouse model, with the goal of linking embryonic and postnatal studies into a comprehensive framework.

  3. Non-Markovian open quantum systems: Input-output fields, memory, and monitoring

    NASA Astrophysics Data System (ADS)

    Diósi, Lajos

    2012-03-01

    Principles of monitoring non-Markovian open quantum systems are analyzed. We use a field representation of the environment [C. W. Gardiner and M. J. Collett, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.31.3761 31, 3761 (1985)] for the separation of its memory and detector part, respectively. We claim that the system-plus-memory compound becomes Markovian; the detector part is tractable by standard Markovian monitoring. Because of non-Markovianity, only the mixed state of the system can be predicted; the pure state of the system can be retrodicted. We present the corresponding non-Markovian stochastic Schrödinger equation.

  4. A biologically inspired model of bat echolocation in a cluttered environment with inputs designed from field Recordings

    NASA Astrophysics Data System (ADS)

    Loncich, Kristen Teczar

    Bat echolocation strategies and neural processing of acoustic information, with a focus on cluttered environments, is investigated in this study. How a bat processes the dense field of echoes received while navigating and foraging in the dark is not well understood. While several models have been developed to describe the mechanisms behind bat echolocation, most are based in mathematics rather than biology, and focus on either peripheral or neural processing---not exploring how these two levels of processing are vitally connected. Current echolocation models also do not use habitat specific acoustic input, or account for field observations of echolocation strategies. Here, a new approach to echolocation modeling is described capturing the full picture of echolocation from signal generation to a neural picture of the acoustic scene. A biologically inspired echolocation model is developed using field research measurements of the interpulse interval timing used by a frequency modulating (FM) bat in the wild, with a whole method approach to modeling echolocation including habitat specific acoustic inputs, a biologically accurate peripheral model of sound processing by the outer, middle, and inner ear, and finally a neural model incorporating established auditory pathways and neuron types with echolocation adaptations. Field recordings analyzed underscore bat sonar design differences observed in the laboratory and wild, and suggest a correlation between interpulse interval groupings and increased clutter. The scenario model provides habitat and behavior specific echoes and is a useful tool for both modeling and behavioral studies, and the peripheral and neural model show that spike-time information and echolocation specific neuron types can produce target localization in the midbrain.

  5. Sensitivity of Global Modeling Initiative Model Predictions of Antarctic Ozone Recovery to Input Meteorological Fields

    NASA Technical Reports Server (NTRS)

    Considine, David B.; Connell, Peter S.; Bergmann, Daniel J.; Rotman, Douglas A.; Strahan, Susan E.

    2004-01-01

    We use the Global Modeling Initiative chemistry and transport model to simulate the evolution of stratospheric ozone between 1995 and 2030, using boundary conditions consistent with the recent World Meteorological Organization ozone assessment. We compare the Antarctic ozone recovery predictions of two simulations, one driven by an annually repeated year of meteorological data from a general circulation model (GCM), the other using a year of output from a data assimilation system (DAS), to examine the sensitivity of Antarctic ozone recovery predictions to the characteristic dynamical differences between GCM- and DAS-generated meteorological data. Although the age of air in the Antarctic lower stratosphere differs by a factor of 2 between the simulations, we find little sensitivity of the 1995-2030 Antarctic ozone recovery between 350 and 650 K to the differing meteorological fields, particularly when the recovery is specified in mixing ratio units. Percent changes are smaller in the DAS-driven simulation compared to the GCM-driven simulation because of a surplus of Antarctic ozone in the DAS-driven simulation which is not consistent with observations. The peak ozone change between 1995 and 2030 in both simulations is approx.20% lower than photochemical expectations, indicating that changes in ozone transport due to changing ozone gradients at 450 K between 1995 and 2030 constitute a small negative feedback. Total winter/spring ozone loss during the base year (1995) of both simulations and the rate of ozone loss during August and September is somewhat weaker than observed. This appears to be due to underestimates of Antarctic Cl(sub y) at the 450 K potential temperature level.

  6. Response variability of frontal eye field neurons modulates with sensory input and saccade preparation but not visual search salience

    PubMed Central

    Purcell, Braden A.; Heitz, Richard P.; Cohen, Jeremiah Y.

    2012-01-01

    Discharge rate modulation of frontal eye field (FEF) neurons has been identified with a representation of visual search salience (physical conspicuity and behavioral relevance) and saccade preparation. We tested whether salience or saccade preparation are evident in the trial-to-trial variability of discharge rate. We quantified response variability via the Fano factor in FEF neurons recorded in monkeys performing efficient and inefficient visual search tasks. Response variability declined following stimulus presentation in most neurons, but despite clear discharge rate modulation, variability did not change with target salience. Instead, we found that response variability was modulated by stimulus luminance and the number of items in the visual field independently of attentional demands. Response variability declined to a minimum before saccade initiation, and presaccadic response variability was directionally tuned. In addition, response variability was correlated with the response time of memory-guided saccades. These results indicate that the trial-by-trial response variability of FEF neurons reflects saccade preparation and the strength of sensory input, but not visual search salience or attentional allocation. PMID:22956785

  7. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite

    PubMed Central

    Obermayer, Klaus

    2016-01-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial “ball-and-stick” (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology

  8. Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.

    PubMed

    Aspart, Florian; Ladenbauer, Josef; Obermayer, Klaus

    2016-11-01

    Transcranial brain stimulation and evidence of ephaptic coupling have recently sparked strong interests in understanding the effects of weak electric fields on the dynamics of brain networks and of coupled populations of neurons. The collective dynamics of large neuronal populations can be efficiently studied using single-compartment (point) model neurons of the integrate-and-fire (IF) type as their elements. These models, however, lack the dendritic morphology required to biophysically describe the effect of an extracellular electric field on the neuronal membrane voltage. Here, we extend the IF point neuron models to accurately reflect morphology dependent electric field effects extracted from a canonical spatial "ball-and-stick" (BS) neuron model. Even in the absence of an extracellular field, neuronal morphology by itself strongly affects the cellular response properties. We, therefore, derive additional components for leaky and nonlinear IF neuron models to reproduce the subthreshold voltage and spiking dynamics of the BS model exposed to both fluctuating somatic and dendritic inputs and an extracellular electric field. We show that an oscillatory electric field causes spike rate resonance, or equivalently, pronounced spike to field coherence. Its resonance frequency depends on the location of the synaptic background inputs. For somatic inputs the resonance appears in the beta and gamma frequency range, whereas for distal dendritic inputs it is shifted to even higher frequencies. Irrespective of an external electric field, the presence of a dendritic cable attenuates the subthreshold response at the soma to slowly-varying somatic inputs while implementing a low-pass filter for distal dendritic inputs. Our point neuron model extension is straightforward to implement and is computationally much more efficient compared to the original BS model. It is well suited for studying the dynamics of large populations of neurons with heterogeneous dendritic morphology with

  9. Adaptive control of input field to achieve desired output intensity profile in multimode fiber with random mode coupling.

    PubMed

    Mahalati, Reza Nasiri; Askarov, Daulet; Wilde, Jeffrey P; Kahn, Joseph M

    2012-06-18

    We develop a method for synthesis of a desired intensity profile at the output of a multimode fiber (MMF) with random mode coupling by controlling the input field distribution using a spatial light modulator (SLM) whose complex reflectance is piecewise constant over a set of disjoint blocks. Depending on the application, the desired intensity profile may be known or unknown a priori. We pose the problem as optimization of an objective function quantifying, and derive a theoretical lower bound on the achievable objective function. We present an adaptive sequential coordinate ascent (SCA) algorithm for controlling the SLM, which does not require characterizing the full transfer characteristic of the MMF, and which converges to near the lower bound after one pass over the SLM blocks. This algorithm is faster than optimizations based on genetic algorithms or random assignment of SLM phases. We present simulated and experimental results applying the algorithm to forming spots of light at a MMF output, and describe how the algorithm can be applied to imaging.

  10. Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex

    DTIC Science & Technology

    2015-11-19

    differentials to link the result to the angular velocities. The two resulting equations are relate to each other through the common Visual-Spatial Input...cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or...fields. These differences could correspond to different posi- tions within the visual field of the animal . This model puts forth a testable hypothesis

  11. Water vapour correction of the daily 1 km AVHRR global land dataset: Part I validation and use of the Water Vapour input field

    USGS Publications Warehouse

    DeFelice, Thomas P.; Lloyd, D.; Meyer, D.J.; Baltzer, T. T.; Piraina, P.

    2003-01-01

    An atmospheric correction algorithm developed for the 1 km Advanced Very High Resolution Radiometer (AVHRR) global land dataset was modified to include a near real-time total column water vapour data input field to account for the natural variability of atmospheric water vapour. The real-time data input field used for this study is the Television and Infrared Observational Satellite (TIROS) Operational Vertical Sounder (TOVS) Pathfinder A global total column water vapour dataset. It was validated prior to its use in the AVHRR atmospheric correction process using two North American AVHRR scenes, namely 13 June and 28 November 1996. The validation results are consistent with those reported by others and entail a comparison between TOVS, radiosonde, experimental sounding, microwave radiometer, and data from a hand-held sunphotometer. The use of this data layer as input to the AVHRR atmospheric correction process is discussed.

  12. Bedtime Stories in English: Field-Testing Comprehensible Input Materials for Natural Second-Language Acquisition in Japanese Pre-School Children

    ERIC Educational Resources Information Center

    Hamilton, Robert

    2014-01-01

    In this study, the prototype of a new type of bilingual picture book was field-tested with two sets of mother-son subject pairs. This picture book was designed as a possible tool for providing children with comprehensible input during their critical period for second language acquisition. Context is provided by visual cues and both Japanese and…

  13. Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.

    PubMed

    Ruksenas, O; Fjeld, I T; Heggelund, P

    2000-01-01

    Spatial summation and degree of center-surround antagonism were examined in the receptive field of nonlagged cells in the dorsal lateral geniculate nucleus (dLGN). We recorded responses to stationary light or dark circular spots that were stepwise varied in width. The spots were centered on the receptive field. For a sample of nonlagged X-cells, we made simultaneous recordings of action potentials and S-potentials, and could thereby compare spatial summation in the dLGN cell and in the retinal input to the cell. Plots of response versus spot diameter showed that the response for a dLGN cell was consistently below the response in the retinal input at all spot sizes. There was a marked increase of antagonism at the retinogeniculate relay. The difference between the retinal input and dLGN cell response suggested that the direct retinal input to a relay cell is counteracted in dLGN by an inhibitory field that has an antagonistic center-surround organization. The inhibitory field seems to have the same center sign (ON- or OFF-center), but a wider receptive-field center than the direct retinal input to the relay cell. The broader center of the inhibitory field can explain the increased center-surround antagonism at the retinogeniculate relay. The ratio between the response of a dLGN cell and its retinal input (transfer ratio) varied with spot width. This variation did not necessarily reflect a nonlinearity at the retinogeniculate relay. Plots of dLGN cell response against retinal input were piecewise linear, suggesting that both excitatory and inhibitory transmission in dLGN are close to linear. The variation in transfer ratio could be explained by sustained suppression evoked by the background stimulation, because such suppression has relatively stronger effect on the response to a spot evoking weak response than to a spot evoking a strong response. A simple model for the spatial receptive-field organization of nonlagged X-cells, that is consistent with our findings, is

  14. Testing low cost anaerobic digestion (AD) systems

    USDA-ARS?s Scientific Manuscript database

    To evaluate the potential for low technology and low cost digesters for small dairies, BARC and researchers from the University of Maryland installed six modified Taiwanese-model field-scale (FS) digesters near the original dairy manure digester. The FS units receive the same post-separated liquid ...

  15. Simulation of a two step TGF ignition above cloudtops with MeV electron input fluxes generated in the electric fields of lightning streamers

    NASA Astrophysics Data System (ADS)

    Connell, P. H.

    2014-12-01

    The origin of high energy electrons which contribute to the Runaway Electron Avalanche of a TGF are not precisely known, or yet observed, though the most obvious source would seem to be the products of cosmic ray showers, or electron avalanches generated in the high electric field near the tips of lightning leaders. With our TGF simulation software package LEPTRACK we can easily create all kinds of electric field geometries and are investigating the second scenario with combinations of lightning leader and streamer micro-fields producing electron avalanches, which may or may not be runaway, which are then input to the macro-fields expected at or above thunderstorm cloudtops.We will present the detailed evolution of photon, electron, neutron/proton and ionization density fields resulting to demonstrate the possibility that TGF origin is not one of the two models currently proposed but may be a combination of both.

  16. Further Evidence of Asymmetrical Processing of Tachistoscopic Inputs in Undergraduates across Sex, Handedness, Field-Side, and Fixation Instructions.

    ERIC Educational Resources Information Center

    Iaccino, James F.

    A study examined laterality effects observed in previous studies in which men as well as right-handers show a right-visual field (RVF) advantage for letter recall and a left-visual field (LVF) advantage for letter position recall, suggesting asymmetrical brain organization for these groups. Subjects, 96 undergraduates equally divided by sex and…

  17. Dual Input AND Gate Fabricated From a Single Channel Poly (3-Hexylthiophene) Thin Film Field Effect Transistor

    NASA Technical Reports Server (NTRS)

    Pinto, N. J.; Perez, R.; Mueller, C. H.; Theofylaktos, N.; Miranda, F. A.

    2006-01-01

    A regio-regular poly (3-hexylthiophene) (RRP3HT) thin film transistor having a split-gate architecture has been fabricated on a doped silicon/silicon nitride substrate and characterized. This device demonstrates AND logic functionality. The device functionality was controlled by applying either 0 or -10 V to each of the gate electrodes. When -10 V was simultaneously applied to both gates, the device was conductive (ON), while any other combination of gate voltages rendered the device resistive (OFF). The p-type carrier charge mobility was about 5x10(exp -4) per square centimeter per V-sec. The low mobility is attributed to the sharp contours of the RRP3HT film due to substrate non-planarity. A significant advantage of this architecture is that AND logic devices with multiple inputs can be fabricated using a single RRP3HT channel with multiple gates.

  18. Effect of high-latitude ionospheric electric field variability on the estimate of magnetospheric energy and momentum inputs

    NASA Astrophysics Data System (ADS)

    Matsuo, T.; Richmond, A. D.

    2003-04-01

    One of the outstanding problems in modeling of the magnetosphere-ionosphere-thermosphere system is quantitative bias systematically seen in simulated thermosphere and ionosphere responses to magnetospheric forcing. This systematic bias is considered to be attributed to insufficient acceleration of high-latitude winds and insufficient Joule heating. In this study the effects of high-latitude ionospheric electric field variability on the estimation of ion-drag and Joule heating are investigated by incorporating the characteristics of electric field variability derived observations into the forcing of a thermosphere-ionosphere-electrodynamic general circulation model (TIEGCM). First, the magnitude of the variability is quantified using the standard deviation as a summary measure of the deviations of the observations about the mean. The spatial distribution of the standard deviation over the area poleward of 45o magnetic latitude and its climatological behavior with respect to the magnitude and orientation of the interplanetary magnetic field (IMF) and the dipole tilt angle (season) are examined. In general, the magnitude of the standard deviation exceeds the strength of the mean electric field in most of the polar area, especially under northward IMF conditions. The analysis reveals that electric field variability varies with magnetic-latitude, magnetic-local-time, IMF, and season in a manner distinct from that of the climatological electric field. Second, we characterize dominant modes of high-latitude electric field variability as a set of two-dimensional empirical orthogonal functions (EOFs), based on a sequential non-linear regression analysis of the electric field derived from DE-2 plasma drift measurements. Together with the mean fields, 11 EOFs are capable of representing 68% of the squared electric field, leaving only a fairly random component as a residual. Third, the temporal coherence of electric field variability whose spatial coherence can be represented

  19. Input in Tsunami Hazard for Far-East Coast of Russia from Regional and Far-Field Sources

    NASA Astrophysics Data System (ADS)

    Gusiakov, V. K.; Beisel, S. A.; Chubarov, L. B.

    2013-12-01

    The Probabilistic Tsunami Hazard Assessment (PTHA) methodology, having many features similar to the Probabilistic Seismic Hazard Assessment (PSHA) methodology, differs from the latter in one important relation - far-field sources, ignored in PSHA, in some cases can be of great importance in PTHA. Tsunami hazard assessment for the Far East coast of Russia gives a typical example of this situation. While regional tsunamigenic earthquakes located along the Kuril-Kamchatka subduction zone and in the eastern part of the Sea of Japan represent the major hazard, most part of this coast is open to tsunami impact from other tsunamigenic regions of the Pacific, and, first of all, from the sources near South America. Analysis of real historical data shows that during the last 50 years only three far-field tsunamis (1960 Chilean, 1964 Alaska and 2011Tohoku) produced dangerous impact along the Far East coast of Russia. However, during this period 19 regional tsunami warnings were issued in relation to far-field tsunamigenic sources, 16 of them turned out to be false. This statistic shows that the problem of far-field sources is worth of a special consideration in relation to Far-East coast of Russia. The results of numerical modeling show that the real threat can come only from M9 class mega-events in the far-field. Tsunami run-up height expected from such events along the Kurile-Kamchatka coast can reach 4-5 m, however, its actual value strongly depends on the position and orientation of a far-field source relatively the region. In general, the expected maximum heights from far-field sources (up to 6 m) are not so large as possible maximum heights from the regional earthquakes with magnitudes M7.5-8.5 (15-20 m), however, the waves from trans-Pacific tsunamis affect all parts of the Far-East coastline. Another feature of far-field tsunamis is that the duration of dangerous sea level oscillations can be considerably longer (up to 48 hours) and the maximum height can be observed

  20. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields

    NASA Astrophysics Data System (ADS)

    Joosten, S.; Pammler, K.; Silny, J.

    2009-02-01

    The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.

  1. The influence of anatomical and physiological parameters on the interference voltage at the input of unipolar cardiac pacemakers in low frequency electric fields.

    PubMed

    Joosten, S; Pammler, K; Silny, J

    2009-02-07

    The problem of electromagnetic interference of electronic implants such as cardiac pacemakers has been well known for many years. An increasing number of field sources in everyday life and occupational environment leads unavoidably to an increased risk for patients with electronic implants. However, no obligatory national or international safety regulations exist for the protection of this patient group. The aim of this study is to find out the anatomical and physiological worst-case conditions for patients with an implanted pacemaker adjusted to unipolar sensing in external time-varying electric fields. The results of this study with 15 volunteers show that, in electric fields, variation of the interference voltage at the input of a cardiac pacemaker adds up to 200% only because of individual factors. These factors should be considered in human studies and in the setting of safety regulations.

  2. Pre-Mission Input Requirements to Enable Successful Sample Collection by A Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Lim, D. S. S.; Young, K. E.; Brunner, A.; Elphic, R. E.; Horne, A.; Kerrigan, M. C.; Osinski, G. R.; Skok, J. R.; Squyres, S. W.; hide

    2016-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team, part of the Solar System Exploration Virtual Institute (SSERVI), is a field-based research program aimed at generating strategic knowledge in preparation for human and robotic exploration of the Moon, near-Earth asteroids, Phobos and Deimos, and beyond. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused and, moreover, is sampling-focused with the explicit intent to return the best samples for geochronology studies in the laboratory. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. We examined the in situ sample characterization and real-time decision-making process of the astronauts, with a guiding hypothesis that pre-mission training that included detailed background information on the analytical fate of a sample would better enable future astronauts to select samples that would best meet science requirements. We conducted three tests of this hypothesis over several days in the field. Our investigation was designed to document processes, tools and procedures for crew sampling of planetary targets. This was not meant to be a blind, controlled test of crew efficacy, but rather an effort to explicitly recognize the relevant variables that enter into sampling protocol and to be able to develop recommendations for crew and backroom training in future endeavors.

  3. Organic and inorganic inputs and losses in an irrigated corn field after inorganic fertilizer or manure application

    USDA-ARS?s Scientific Manuscript database

    Little is known about inorganic fertilizer or manure effects on organic carbon (OC) and inorganic C (IC) losses from a furrow irrigated field, particularly in the context of other system C gains or losses. In 2003 and 2004, we measured dissolved organic and inorganic C (DOC, DIC), particulate OC an...

  4. Multiple reflected beam synthesis of fields excited by a high-frequency oblique beam input in an elastic plate.

    PubMed

    Zeroug, S; Felsen, L B

    1992-04-01

    Transducer-excited beams provide important diagnostic tools for ultrasonic nondestructive evaluation (NDE) of elastic materials. For bonded multilayer elastic plates, an obliquely injected high-frequency compressional (P) beam creates interior dynamic fields that are sensitive to weak debonding between the layers. In an effort to clarify the wave phenomena that are operative under these conditions of excitation, a highly idealized model has been chosen wherein a lossless plate in vacuum is insonified by an internal oblique P-beam source. This problem was analyzed in a previous investigation [Lu, Felsen, and Klosner, J. Acoust. Soc. Am. 87, 42-53 (1990)] by expressing the total field in terms of a sum of P-S (vertically polarized or in-plane) coupled normal modes. While the resulting field assumed oscillatory modal patterns at interior cross sections far from the source region, the modally synthesized field near the source clearly outlined profiles interpretable as incident and singly or multiply reflected P-S coupled beams. The problem is therefore studied here directly by Gaussian beam tracing as implemented via our previously employed complex ray field algorithm. The results clarify the observed phenomena by revealing the successive buildup from initially well-resolved beams into oscillatory mode patterns synthesized by overlapping multiples. For the same idealized model, the beam algorithm has been applied elsewhere to the detection and identification of weak debonding in a layered plate [Felsen and Zeroug, J. Acoust. Soc. Am. 90, 1527-1538 (1991)]. With an understanding of the physical mechanisms that arise in the beam-to-mode conversion, one may now explore how their utility is affected under realistic NDE conditions.

  5. Chorda Tympani Nerve Terminal Field Maturation and Maintenance Is Severely Altered Following Changes To Gustatory Nerve Input to the Nucleus of the Solitary Tract

    PubMed Central

    Dudgeon, Sara L.; Hill, David L.

    2011-01-01

    Neural competition among multiple inputs can affect the refinement and maintenance of terminal fields in sensory systems. In the rat gustatory system, the chorda tympani, greater superficial petrosal, and glossopharyngeal nerves have distinct but overlapping terminal fields in the first central relay, the nucleus of the solitary tract (NTS). This overlap is largest at early postnatal ages followed by a significant refinement and pruning of the fields over a three-week period, suggesting that competitive mechanisms underlie the pruning. Here, we manipulated the putative competitive interactions among the three nerves by sectioning the greater superficial petrosal and glossopharyngeal nerves at postnatal day 15 (P15), P25, or at adulthood, while leaving the chorda tympani nerve intact. The terminal field of the chorda tympani nerve was assessed 35 days following nerve sections, a period before the sectioned nerves functionally regenerated. Regardless of the age when the nerves were cut, the chorda tympani nerve terminal field expanded to a volume four times larger than sham controls. Terminal field density measurements revealed that the expanded terminal field was similar to P15 control rats. Thus, it appears that the chorda tympani nerve terminal field defaults to its early postnatal field size and shape when the nerves with overlapping fields are cut, and this anatomical plasticity is retained into adulthood. These findings not only demonstrate the dramatic and lifelong plasticity in the central gustatory system, but also suggest that corresponding changes in functional and taste-related behaviors will accompany injury-induced changes in brainstem circuits. PMID:21613473

  6. Amplitude-Squared Squeezing in the m-PHOTON Jaynes-Cummings Model with Squeezed Field Input

    NASA Astrophysics Data System (ADS)

    Mir, Mubeen A.; Razmi, M. S. K.

    Amplitude-squared (AS) squeezing has been investigated for the m-photon Jaynes-Cummings model assuming the field to be initially in the squeezed states. The role played by intensity-dependent coupling has also been discussed. It has been shown that for the large initial average photon number (bar {n}) with odd values of m, AS squeezing revokes permanently whereas with even values it recurs periodically. As m increases the revocation is hastened and the duration of occurrence decreases. Higher values of m for the initial field in a squeezed vacuum state can make one of the quadrature permanently squeezed. The AS squeezing behavior for two initial states of the atom, i.e., ground state versus excited state is also compared.

  7. Pre-Mission Input Requirements to Enable Successful Sample Collection by a Remote Field/EVA Team

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Young, K. E.; Lim, D. S.

    2015-01-01

    This paper is intended to evaluate the sample collection process with respect to sample characterization and decision making. In some cases, it may be sufficient to know whether a given outcrop or hand sample is the same as or different from previous sampling localities or samples. In other cases, it may be important to have more in-depth characterization of the sample, such as basic composition, mineralogy, and petrology, in order to effectively identify the best sample. Contextual field observations, in situ/handheld analysis, and backroom evaluation may all play a role in understanding field lithologies and their importance for return. For example, whether a rock is a breccia or a clast-laden impact melt may be difficult based on a single sample, but becomes clear as exploration of a field site puts it into context. The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is a new activity focused on a science and exploration field based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We used the FINESSE field excursion to the West Clearwater Lake Impact structure (WCIS) as an opportunity to test factors related to sampling decisions. In contract to other technology-driven NASA analog studies, The FINESSE WCIS activity is science-focused, and moreover, is sampling-focused, with the explicit intent to return the best samples for geochronology studies in the laboratory. This specific objective effectively reduces the number of variables in the goals of the field test and enables a more controlled investigation of the role of the crewmember in selecting samples. We formulated one hypothesis to test: that providing details regarding the analytical fate of the samples (e.g. geochronology, XRF/XRD, etc.) to the crew prior to their traverse will result in samples that are more likely to meet specific analytical

  8. Wireless hippocampal neural recording via a multiple input RF receiver to construct place-specific firing fields.

    PubMed

    Lee, Seung Bae; Manns, Joseph R; Ghovanloo, Maysam

    2012-01-01

    This paper reports scientifically meaningful in vivo experiments using a 32-channel wireless neural recording system (WINeR). The WINeR system is divided into transmitter (Tx) and receiver (Rx) parts. On the Tx side, we had WINeR-6, a system-on-a-chip (SoC) that operated based on time division multiplexing (TDM) of pulse width modulated (PWM) samples. The chip was fabricated in a 0.5-µm CMOS process, occupying 4.9 × 3.3 mm(2) and consuming 15 mW from ±1.5V supplies. The Rx used two antennas with separate pathways to down-convert the RF signal from a large area. A time-to-digital converter (TDC) in an FPGA converted the PWM pulses into digitized samples. In order to further increase the wireless coverage area and eliminate blind spots within a large experimental arena, two receivers were synchronized. The WINeR system was used to record epileptic activities from a rat that was injected with tetanus toxin (TT) in the dorsal hippocampus. In a different in vivo experiment, place-specific firing fields of place cells, which are parts of the hippocampal-dependent memory, were mapped from a series of behavioral experiments from a rat running in a circular track. Results from the same animal were compared against a commercial hard-wired recording system to evaluate the quality of the wireless recordings.

  9. Target spectrum matrix definition for multiple-input- multiple-output control strategies applied on direct-field- acoustic-excitation tests

    NASA Astrophysics Data System (ADS)

    Alvarez Blanco, M.; Janssens, K.; Bianciardi, F.

    2016-09-01

    During the last two decades there have been several improvements on environmental acoustic qualification testing for launch and space vehicles. Direct field excitation (DFAX) tests using Multiple-Input-Multiple-Output (MIMO) control strategies seems to become the most cost-efficient way for component and subsystem acoustic testing. However there are still some concerns about the uniformity and diffusivity of the acoustic field produced by direct field testing. Lately, much of the documented progresses aimed to solve the non-uniformity of the field by altering the sound pressure level requirement, limiting responses and adding or modifying control microphones positions. However, the first two solutions imply modifying the qualification criteria, which could lead to under-testing, potentially risking the mission. Furthermore, adding or moving control microphones prematurely changes the system configuration, even if it is an optimal geometric layout in terms of wave interference patterns control. This research investigates the target definition as an initial condition for the acoustic MIMO control. Through experiments it is shown that for a given system configuration the performance of a DFAX test strongly depends on the target definition procedure. As output of this research a set of descriptors are presented describing a phenomenon defined as “Energy- sink”.

  10. Logic gates realized by nonvolatile GeTe/Sb2Te3 super lattice phase-change memory with a magnetic field input

    NASA Astrophysics Data System (ADS)

    Lu, Bin; Cheng, Xiaomin; Feng, Jinlong; Guan, Xiawei; Miao, Xiangshui

    2016-07-01

    Nonvolatile memory devices or circuits that can implement both storage and calculation are a crucial requirement for the efficiency improvement of modern computer. In this work, we realize logic functions by using [GeTe/Sb2Te3]n super lattice phase change memory (PCM) cell in which higher threshold voltage is needed for phase change with a magnetic field applied. First, the [GeTe/Sb2Te3]n super lattice cells were fabricated and the R-V curve was measured. Then we designed the logic circuits with the super lattice PCM cell verified by HSPICE simulation and experiments. Seven basic logic functions are first demonstrated in this letter; then several multi-input logic gates are presented. The proposed logic devices offer the advantages of simple structures and low power consumption, indicating that the super lattice PCM has the potential in the future nonvolatile central processing unit design, facilitating the development of massive parallel computing architecture.

  11. Parallel molecular computation of modular-multiplication with two same inputs over finite field GF(2(n)) using self-assembly of DNA tiles.

    PubMed

    Li, Yongnan; Xiao, Limin; Ruan, Li

    2014-06-01

    Two major advantages of DNA computing - huge memory capacity and high parallelism - are being explored for large-scale parallel computing, mass data storage and cryptography. Tile assembly model is a highly distributed parallel model of DNA computing. Finite field GF(2(n)) is one of the most commonly used mathematic sets for constructing public-key cryptosystem. It is still an open question that how to implement the basic operations over finite field GF(2(n)) using DNA tiles. This paper proposes how the parallel tile assembly process could be used for computing the modular-square, modular-multiplication with two same inputs, over finite field GF(2(n)). This system could obtain the final result within less steps than another molecular computing system designed in our previous study, because square and reduction are executed simultaneously and the previous system computes reduction after calculating square. Rigorous theoretical proofs are described and specific computing instance is given after defining the basic tiles and the assembly rules. Time complexity of this system is 3n-1 and space complexity is 2n(2). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions

    PubMed Central

    Vinck, Martin; Bosman, Conrado A.

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30–90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other’s CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that

  13. More Gamma More Predictions: Gamma-Synchronization as a Key Mechanism for Efficient Integration of Classical Receptive Field Inputs with Surround Predictions.

    PubMed

    Vinck, Martin; Bosman, Conrado A

    2016-01-01

    During visual stimulation, neurons in visual cortex often exhibit rhythmic and synchronous firing in the gamma-frequency (30-90 Hz) band. Whether this phenomenon plays a functional role during visual processing is not fully clear and remains heavily debated. In this article, we explore the function of gamma-synchronization in the context of predictive and efficient coding theories. These theories hold that sensory neurons utilize the statistical regularities in the natural world in order to improve the efficiency of the neural code, and to optimize the inference of the stimulus causes of the sensory data. In visual cortex, this relies on the integration of classical receptive field (CRF) data with predictions from the surround. Here we outline two main hypotheses about gamma-synchronization in visual cortex. First, we hypothesize that the precision of gamma-synchronization reflects the extent to which CRF data can be accurately predicted by the surround. Second, we hypothesize that different cortical columns synchronize to the extent that they accurately predict each other's CRF visual input. We argue that these two hypotheses can account for a large number of empirical observations made on the stimulus dependencies of gamma-synchronization. Furthermore, we show that they are consistent with the known laminar dependencies of gamma-synchronization and the spatial profile of intercolumnar gamma-synchronization, as well as the dependence of gamma-synchronization on experience and development. Based on our two main hypotheses, we outline two additional hypotheses. First, we hypothesize that the precision of gamma-synchronization shows, in general, a negative dependence on RF size. In support, we review evidence showing that gamma-synchronization decreases in strength along the visual hierarchy, and tends to be more prominent in species with small V1 RFs. Second, we hypothesize that gamma-synchronized network dynamics facilitate the emergence of spiking output that is

  14. Hydrothermal Input into Volcaniclastic Sediments of the SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Bismarck Sea, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Hrischeva, E. H.; Scott, S. D.

    2005-05-01

    Short sediment cores were examined from the active SuSu Knolls hydrothermal field in the eastern Manus back-arc basin in order to understand the origin of the hydrothermal component in sediments surrounding volcanogenic massive sulfide deposits. Their mineralogical and geochemical composition displays various inputs of intra-basin volcaniclastic, hydrothermal, terrigenous and biogenic components. A 40 cm-thick sediment recovered from the base of a core proximal to the Suzette chimney site consists of blocky nonvesicular to elongate vesicular volcanic glass fragments at different stages of alteration intermixed with pyrite, chalcopyrite, barite, gypsum, atacamite, illite, Fe oxyhydroxide, quartz, cristobalite, plagioclase and alunite. The composition indicates that the sediment was derived from erosion of volcanic edifices and old oxidized chimneys. Geochemical indicators for the mass wasting event are the extremely high concentrations of Cu (up to 2.3%) and Au (up to 3.5 ppm), elevated concentrations of As, Ba, Zn and Fe, as well as a positive Eu anomaly. The strong Cu-Au positive correlation suggests that chalcopyrite and gold-rich chimneys of the Suzette site are the source of hydrothermal detritus. 14C dating of foraminifera points to an approximate age of the beginning of the strongest mass wasting event at about 2050 ybp. This event was interrupted by deposition of a widespread apron of volcaniclastic sediment overlying the SuSu Knolls volcanic rocks. The volcaniclastic sediment consists of dacite fragments with plagioclase and pyroxene microlites, angular grains of Ca-rich plagioclase and clino- and orthopyroxenes, glass shards, cristobalite, aggregates of Si-dominated amorphous material and illite, alunite, pyrite, magnetite and barite. Based on the compositional similarity between the components of the volcaniclastic sediment and plagioclase-pyroxene porphyric dacite lavas building the SuSu Knolls together with the products of their hydrothermal alteration

  15. Evaluation of input output efficiency of oil field considering undesirable output —A case study of sandstone reservoir in Xinjiang oilfield

    NASA Astrophysics Data System (ADS)

    Zhang, Shuying; Wu, Xuquan; Li, Deshan; Xu, Yadong; Song, Shulin

    2017-06-01

    Based on the input and output data of sandstone reservoir in Xinjiang oilfield, the SBM-Undesirable model is used to study the technical efficiency of each block. Results show that: the model of SBM-undesirable to evaluate its efficiency and to avoid defects caused by traditional DEA model radial angle, improve the accuracy of the efficiency evaluation. by analyzing the projection of the oil blocks, we find that each block is in the negative external effects of input redundancy and output deficiency benefit and undesirable output, and there are greater differences in the production efficiency of each block; the way to improve the input-output efficiency of oilfield is to optimize the allocation of resources, reduce the undesirable output and increase the expected output.

  16. A Rice Gene for Microbial Symbiosis, Oryza sativa CCaMK, Reduces CH4 Flux in a Paddy Field with Low Nitrogen Input

    PubMed Central

    Bao, Zhihua; Watanabe, Aya; Sasaki, Kazuhiro; Okubo, Takashi; Tokida, Takeshi; Liu, Dongyan; Ikeda, Seishi; Imaizumi-Anraku, Haruko; Asakawa, Susumu; Sato, Tadashi; Mitsui, Hisayuki

    2014-01-01

    Plants have mutualistic symbiotic relationships with rhizobia and fungi by the common symbiosis pathway, of which Ca2+/calmodulin-dependent protein kinase (encoded by CCaMK) is a central component. Although Oryza sativa CCaMK (OsCCaMK) is required for fungal accommodation in rice roots, little is known about the role of OsCCaMK in rice symbiosis with bacteria. Here, we report the effect of a Tos17-induced OsCCaMK mutant (NE1115) on CH4 flux in low-nitrogen (LN) and standard-nitrogen (SN) paddy fields compared with wild-type (WT) Nipponbare. The growth of NE1115 was significantly decreased compared with that of the WT, especially in the LN field. The CH4 flux of NE1115 in the LN field was significantly greater (156 to 407% in 2011 and 170 to 816% in 2012) than that of the WT, although no difference was observed in the SN field. The copy number of pmoA (encodes methane monooxygenase in methanotrophs) was significantly higher in the roots and rhizosphere soil of the WT than in those of NE1115. However, the mcrA (encodes methyl coenzyme M reductase in methanogens) copy number did not differ between the WT and NE1115. These results were supported by a 13C-labeled CH4-feeding experiment. In addition, the natural abundance of 15N in WT shoots (3.05‰) was significantly lower than in NE1115 shoots (3.45‰), suggesting greater N2 fixation in the WT because of dilution with atmospheric N2 (0.00‰). Thus, CH4 oxidation and N2 fixation were simultaneously activated in the root zone of WT rice in the LN field and both processes are likely controlled by OsCCaMK. PMID:24441161

  17. Talking Speech Input.

    ERIC Educational Resources Information Center

    Berliss-Vincent, Jane; Whitford, Gigi

    2002-01-01

    This article presents both the factors involved in successful speech input use and the potential barriers that may suggest that other access technologies could be more appropriate for a given individual. Speech input options that are available are reviewed and strategies for optimizing use of speech recognition technology are discussed. (Contains…

  18. MDS MIC Catalog Inputs

    NASA Technical Reports Server (NTRS)

    Johnson-Throop, Kathy A.; Vowell, C. W.; Smith, Byron; Darcy, Jeannette

    2006-01-01

    This viewgraph presentation reviews the inputs to the MDS Medical Information Communique (MIC) catalog. The purpose of the group is to provide input for updating the MDS MIC Catalog and to request that MMOP assign Action Item to other working groups and FSs to support the MITWG Process for developing MIC-DDs.

  19. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  20. A methodology for fast assessments to the electrical activity of barrel fields in vivo: from population inputs to single unit outputs

    PubMed Central

    Riera, Jorge J.; Goto, Takakuni; Kawashima, Ryuta

    2014-01-01

    Here we propose a methodology to analyze volumetric electrical activity of neuronal masses in the somatosensory barrel field of Wistar rats. The key elements of the proposed methodology are a three-dimensional microelectrode array, which was customized by our group to observe extracellular recordings from an extended area of the barrel field, and a novel method for the current source density analysis. By means of this methodology, we were able to localize single barrels from their event-related responses to single whisker deflection. It was also possible to assess the spatiotemporal dynamics of neuronal aggregates in several barrels at the same time with the resolution of single neurons. We used simulations to study the robustness of our methodology to unavoidable physiological noise and electrode configuration. We compared the accuracy to reconstruct neocortical current sources with that obtained with a previous method. This constitutes a type of electrophysiological microscopy with high spatial and temporal resolution, which could change the way we analyze the activity of cortical neurons in the future. PMID:24550785

  1. [Rational range and optimum proportion of energy input in farmland].

    PubMed

    Yin, J; Zhou, N; Gao, Z; Yang, W; Miao, G

    2000-04-01

    There exists a rational range of artificial supplemental energy inputs in fields. In the range, the inputs can improve the yield and the output/input ratio. The rational range of energy input in total energy output is bigger than that in the output/input ratio. It is bigger in low yield fields than high yield fields, which suggests that increasing artificial supplemental energy input can increase the production of low yield fields as same as high yield fields. In the rational range of energy input, there exist high efficient lines in water and fertilizer inputs. The highest efficiency occurs when the rational inputs of water and fertilizer occur in these two lines. There also exist optimum lines of energy and economy input proportions. In the two lines, the proportions of energy and economy output/input of water and fertilizer inputs are the highest, which are the optimum of water and fertilizer inputs. Water and fertilizer may replace each other for equal yields, but would result in a decrease in the output/input ratio.

  2. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field.

    PubMed

    Lee, Jumin; Cheng, Xi; Swails, Jason M; Yeom, Min Sun; Eastman, Peter K; Lemkul, Justin A; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S; Case, David A; Brooks, Charles L; MacKerell, Alexander D; Klauda, Jeffery B; Im, Wonpil

    2016-01-12

    Proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  3. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    DOE PAGES

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; ...

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find themore » optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.« less

  4. Extremely Small Sizes for Faint z ˜ 2-8 Galaxies in the Hubble Frontier Fields: A Key Input for Establishing Their Volume Density and UV Emissivity

    NASA Astrophysics Data System (ADS)

    Bouwens, R. J.; Illingworth, G. D.; Oesch, P. A.; Atek, H.; Lam, D.; Stefanon, M.

    2017-07-01

    We provide the first observational constraints on the sizes of the faintest galaxies lensed by the Hubble Frontier Fields (HFF) clusters. Ionizing radiation from faint galaxies likely drives cosmic reionization, and the HFF initiative provides a key opportunity to find such galaxies. However, we cannot assess their ionizing emissivity without a robust measurement of their sizes, since this is key to quantifying both their prevalence and the faint-end slope to the UV luminosity function. Here we provide the first size constraints with two new techniques. The first utilizes the fact that the detectability of highly magnified galaxies as a function of shear is very dependent on a galaxy’s size. Only the most compact galaxies remain detectable in high-shear regions (versus a larger detectable size range for low shear), a phenomenon we quantify using simulations. Remarkably, however, no correlation is found between the surface density of faint galaxies and the predicted shear, using 87 high-magnification (μ =10-100) z˜ 2-8 galaxies seen behind the first four HFF clusters. This can only be the case if faint (˜ -15 mag) galaxies have significantly smaller sizes than more luminous galaxies, i.e., ≲ 30 mas or 160-240 pc. As a second size probe, we rotate and stack 26 faint high-magnification sources along the major shear axis. Less elongation is found even for objects with an intrinsic half-light radius of 10 mas. Together, these results indicate that extremely faint z˜ 2-8 galaxies have near point-source profiles (half-light radii <30 mas and perhaps 5-10 mas). These results suggest smaller completeness corrections and hence shallower faint-end slopes for the z˜ 2-8 LFs than derived in some recent studies (by {{Δ }}α ≳ 0.1-0.3).

  5. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli

    PubMed Central

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  6. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field

    SciTech Connect

    Lee, Jumin; Cheng, Xi; Swails, Jason M.; Yeom, Min Sun; Eastman, Peter K.; Lemkul, Justin A.; Wei, Shuai; Buckner, Joshua; Jeong, Jong Cheol; Qi, Yifei; Jo, Sunhwan; Pande, Vijay S.; Case, David A.; Brooks, Charles L.; MacKerell, Alexander D.; Klauda, Jeffery B.; Im, Wonpil

    2015-11-12

    Here we report that proper treatment of nonbonded interactions is essential for the accuracy of molecular dynamics (MD) simulations, especially in studies of lipid bilayers. The use of the CHARMM36 force field (C36 FF) in different MD simulation programs can result in disagreements with published simulations performed with CHARMM due to differences in the protocols used to treat the long-range and 1-4 nonbonded interactions. In this study, we systematically test the use of the C36 lipid FF in NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM. A wide range of Lennard-Jones (LJ) cutoff schemes and integrator algorithms were tested to find the optimal simulation protocol to best match bilayer properties of six lipids with varying acyl chain saturation and head groups. MD simulations of a 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) bilayer were used to obtain the optimal protocol for each program. MD simulations with all programs were found to reasonably match the DPPC bilayer properties (surface area per lipid, chain order parameters, and area compressibility modulus) obtained using the standard protocol used in CHARMM as well as from experiments. The optimal simulation protocol was then applied to the other five lipid simulations and resulted in excellent agreement between results from most simulation programs as well as with experimental data. AMBER compared least favorably with the expected membrane properties, which appears to be due to its use of the hard-truncation in the LJ potential versus a force-based switching function used to smooth the LJ potential as it approaches the cutoff distance. The optimal simulation protocol for each program has been implemented in CHARMM-GUI. This protocol is expected to be applicable to the remainder of the additive C36 FF including the proteins, nucleic acids, carbohydrates, and small molecules.

  7. Climate Change and Potassium Effects Under Different N-Fertilization Input on Potato (Solanum tuberosum L.) Yield in a Long Term Field Experiment

    NASA Astrophysics Data System (ADS)

    László, Márton, ,, Dr.

    2010-05-01

    Climate change of Hungary was initiated about of 1850. Nowadays among the natural catastrophes, drought and flooding caused by over-abundant rainfall cause the greatest problems in field crop production. The droughts and the floods were experienced in the early eighties as well as today have drawn renewed attention to the analysis of this problem. The potato is demanding indicator crop of climate factors (temperature, rainfall) and soil nutrient status. Has a particularly high requirement for quantity of precipitation and for supply of soil potassium, nitrogen, phosphorus and magnesium. This paper reports the results achieved in the period from 1962 to 2001 of a long term small- plot fertilization experiment set up on acidic sandy brown forest soil at Nyírlugos in the Nyírség region in North- Eastern Hungary. Characteristics of the experiment soil were a pH (KCl) 4.5, humus 0.5%, CEC 5-10 mgeq 100g-1 in the ploughed layer. The topsoil was poor in all four macronutrient N, P, K and Mg. The mineral fertilization experiment involved 2 (genotype: Gülbaba and Aranyalma) x 2 (ploughed depth: 20 and 40 cm) x 16 (fertilizations: N, P, K, Mg) = 64 treatments in 8 replications, giving a total of 512 plots. The gross and net plot sizes were 10x5=50 m2 and 35.5 m2. The experimental designe was split-split-plot. The N levels were 0, 50, 100, 150 kg ha-1 year-1 and the P, K, Mg levels were 48, 150, 30 kg ha-1 year-1 P2O5, K2O, MgO in the form of 25% calcium ammonium nitrate, 18% superphosphate, 40% potassium chloride, and technological powdered magnesium sulphate. The forecrop every second year was rye. The groundwater level was at a depth of 2-3 m. From the 64 treatments, eight replications, altogether 512- experimental plots with 7 treatments and their 16 combinations are summarised of experiment period from 1962 to 1979. The main conclusions were as follows: 1. The experiment years (1962-1963, 1964-1965, 1966-1967, 1968-1969, 1970-1971, 1972-1973, 1974-1975, 1976

  8. Input and Input Processing in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Alcon, Eva

    1998-01-01

    Analyzes second-language learners' processing of linguistic data within the target language, focusing on input and intake in second-language acquisition and factors and cognitive processes that affect input processing. Input factors include input simplification, input enhancement, and interactional modifications. Individual learner differences…

  9. Input Decimated Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.

  10. A signal input coil made of superconducting thin film for improved signal-to-noise ratio in a high-Tc SQUID-based ultra-low field nuclear magnetic resonance system

    NASA Astrophysics Data System (ADS)

    Chen, Kuen-Lin; Hsu, Chin-Wei; Ku, Yue-Bai; Chen, Hsin-Hsien; Liao, Shu-Hsien; Wang, Li-Min; Horng, Herng-Er; Yang, Hong-Chang

    2013-11-01

    Resonant coupling schemes are commonly used in SQUID-based ultra-low field (ULF) nuclear magnetic resonance (NMR) systems to couple the spin relaxation signals from samples to the SQUID. Generally, in NMR systems, a resonant coupling scheme is composed of two solenoid coils which are made of enamel insulated wires and a capacitor connected in series. In this work, we tried to replace the metal solenoid input coil with a planar high-Tc superconducting spiral coil to improve the signal-to-noise ratio (SNR) of the ULF NMR signal. A measurement of the free induction decay signal of water protons was performed to demonstrate the improved performance of the system. This improvement is due to the fact that the planar superconducting spiral coil possesses a higher mutual inductance with the SQUID. Therefore, it is a promising way to enhance the SNR of high-Tc SQUID-based ULF NMR/MRI systems.

  11. Data including GROMACS input files for atomistic molecular dynamics simulations of mixed, asymmetric bilayers including molecular topologies, equilibrated structures, and force field for lipids compatible with OPLS-AA parameters.

    PubMed

    Róg, Tomasz; Orłowski, Adam; Llorente, Alicia; Skotland, Tore; Sylvänne, Tuulia; Kauhanen, Dimple; Ekroos, Kim; Sandvig, Kirsten; Vattulainen, Ilpo

    2016-06-01

    In this Data in Brief article we provide a data package of GROMACS input files for atomistic molecular dynamics simulations of multicomponent, asymmetric lipid bilayers using the OPLS-AA force field. These data include 14 model bilayers composed of 8 different lipid molecules. The lipids present in these models are: cholesterol (CHOL), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine (POPE), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidyl-ethanolamine (SOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 1-stearoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (SOPS), N-palmitoyl-D-erythro-sphingosyl-phosphatidylcholine (SM16), and N-lignoceroyl-D-erythro-sphingosyl-phosphatidylcholine (SM24). The bilayers׳ compositions are based on lipidomic studies of PC-3 prostate cancer cells and exosomes discussed in Llorente et al. (2013) [1], showing an increase in the section of long-tail lipid species (SOPS, SOPE, and SM24) in the exosomes. Former knowledge about lipid asymmetry in cell membranes was accounted for in the models, meaning that the model of the inner leaflet is composed of a mixture of PC, PS, PE, and cholesterol, while the extracellular leaflet is composed of SM, PC and cholesterol discussed in Van Meer et al. (2008) [2]. The provided data include lipids׳ topologies, equilibrated structures of asymmetric bilayers, all force field parameters, and input files with parameters describing simulation conditions (md.mdp). The data is associated with the research article "Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner" (Róg et al., 2016) [3].

  12. Symmetrical double input coupler development

    SciTech Connect

    Deruyter, H.; Hoag, H.; Ko, K.; Ng, C.K.

    1992-08-01

    RF power is usually transmitted into an accelerator section from a rectangular waveguide through a single coupling iris. This arrangement introduces phase and amplitude asymmetries into the coupler fields with which the beam interacts. Field distortion can be reduced by machining an offset into the cavity wall opposite the iris. However, the compensation is imperfect. In this paper we describe the development and testing of a double input coupler which is completely symmetric about a vertical plane through the beam axis. Two identical irises are used on opposite sides of the coupler cavity. These are fed in-phase by signals from a Magic Tee power divider. Each iris transmits one half of the total power flow. Coupler dimensions for an X-Band model have been optimized using MAFIA and conventional low-power matching techniques. The coupler has been built into a 30-cavity test accelerator section and operated up to 85 MV/m with no evidence of breakdown.

  13. Canopy Research Network seeks input

    NASA Astrophysics Data System (ADS)

    In July 1993, the Canopy Research Network was established with a 2-year planning grant from the National Science Foundation to bring together forest canopy researchers, quantitative scientists, and computer specialists to establish methods for collecting, storing, analyzing, interpreting, and displaying three-dimensional data that relate to tree crowns and forest canopies. The CRN is now soliciting input from scientists in other fields who may have developed techniques and software to help obtain answers to questions that concern the complex three-dimensional structure of tree crowns and forest canopies. Over the next 3 years, the CRN plans to compile an array of research questions and issues requiring information on canopy structure, examine useful information models and software tools already in use in allied fields, and develop conceptual models and recommendations for the types and format of information and analyses necessary to answer research questions posed by canopy researchers.

  14. Impacts of an African Green Revolution on Greenhouse Gases and Pollution Precursors: Nonlinear Trace N Gas Emission Responses to Incremental Increases in Fertilizer Inputs in a Western Kenyan Maize Field

    NASA Astrophysics Data System (ADS)

    Hickman, J. E.; Palm, C.

    2011-12-01

    Over the last several decades, agricultural soils in many parts of sub-Saharan Africa have become depleted of nitrogen (N) and other nutrients, creating challenges to achieving food security in many countries. At only 7 kg N ha-1 yr-1, average fertilizer application rates in the region are an order of magnitude lower than typical rates in the United States, and well below optimal levels. Increased use of nutrient inputs is a centerpiece of most African Green Revolution strategies, making it important to quantify the impacts of this change in practices as farmers begin moving towards 50-80 kg N ha-1 yr-1. Increased N inputs are invariably accompanied by losses of trace N gases to the atmosphere, including the greenhouse gas nitrous oxide (N2O), and nitric oxide (NO), a precursor to tropospheric ozone pollution. Several investigations of greenhouse gas emissions and one investigation of NO emissions from sub-Saharan agricultural systems have been conducted over the last 20 years, but they are few in number and were not designed to identify potentially important thresholds in the response of trace gas emissions to fertilization rate. Here we examine the response function of NO and N2O emissions to 6 different levels of inorganic fertilizer additions in a maize field in Yala, Kenya during the 2011 long rainy season. We used a randomized complete block design incorporating inorganic fertilizer treatments of 0, 50, 75, 100, 150, and 200 kg N ha-1 in 4 blocks. After each of 2 fertilizer applications, we measured trace gas fluxes daily, and conducted weekly measurements until trace gas emissions subsided to control levels. We fit the data to linear and exponential models relating N gas emissions to N input levels, and conducted a model comparison using AIC. Preliminary analysis suggests that NO emissions do respond in a non-linear fashion over the course of 67 days, as has been found in several commercial agroecosystems for N2O. Although N2O emissions responded linearly

  15. Input Manipulation, Enhancement and Processing: Theoretical Views and Empirical Research

    ERIC Educational Resources Information Center

    Benati, Alessandro

    2016-01-01

    Researchers in the field of instructed second language acquisition have been examining the issue of how learners interact with input by conducting research measuring particular kinds of instructional interventions (input-oriented and meaning-based). These interventions include such things as input flood, textual enhancement and processing…

  16. Nitrogen loss from high N-input vegetable fields: a) Direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4+, NO3-) in soils

    NASA Astrophysics Data System (ADS)

    Palmer, I.; Pfab, H.; Ruser, R.; Fiedler, S.

    2009-04-01

    Nitrous oxide (N2O) is a greenhouse gas contributing to stratospheric ozone depletion. Soils are considered to be the major (70%) source for atmospheric N2O. Agriculture in general accounts for about 85% of the anthropogenic N2O emissions. Whereas 80% of these, are emitted from ag-riculturally used soils. Such estimations of N2O fluxes are associated with a high degree of uncertainties. Uncertainty of source strength estimates mainly results from local scale variability of known and unknown sources. It is not known how much uncertainty is due to unmeasured sources. For example, considerations of N2O fluxes from soils used for intensive vegetable production within inventories are still missing. We speculate that these types of arable soils act as ‚hot spots' for N2O. Given conditions (1) high N-input due to fertilization in concert with (2) easily mineralizable harvest residues should pro-mote disproportional high reaction rates in N-cycling and enhance N2O production as a by-product of nitrification and denitrification. Our investigation focused on the influence of: (1) N-input level (Ammonium Sulfate Nitrate (ASN)) below and above common N doses used for "good agricultural practice". (2) Application of modified fertilizers including nitrification inhibitor DMPP (Dimethylpyrazolphosphate, ENTEC®) and depot fertilization (pseudo-CULTAN) in comparison to non-fertilized control and common ASN application. (3) Effects of plant residues on N-cycling and (4) the deduction of mitigation strategies to reduce the potential N-loss from theses sites. The study was carried out during summer and autumn 2008 on a field cropped with cauliflower, located at the "Heidfeldhof" (South-West Germany; MAT 10.5°C, MAP 660 mm). Three different N-species (N2O; within gaseous soil phase, ammonium (NH4+) and nitrate (NO3-) extracted from bulk soil) were measured weekly in three different soil depths (0-25 cm; 25-50 cm and 50-75 cm) in a fully randomized field design. At same depths water

  17. Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions.

    PubMed

    Agharkar, Mrinalini; Lomba, Paula; Altpeter, Fredy; Zhang, Hangning; Kenworthy, Kevin; Lange, Theo

    2007-11-01

    Bahiagrass (Paspalum notatum Flugge) is a prime candidate for molecular improvement of turf quality. Its persistence and low input characteristics made it the dominant utility turfgrass along highways in the south-eastern USA. However, the comparatively poor turf quality due to reduced turf density and prolific production of unsightly inflorescences currently limits the widespread use of bahiagrass as residential turf. Alteration of endogenous gibberellin (GA) levels by application of growth regulators or transgenic strategies has modified plant architecture in several crops. GA catabolizing AtGA2ox1 was subcloned under the control of the constitutive maize ubiquitin promoter and Nos 3'UTR. A minimal AtGA2ox1 expression cassette lacking vector backbone sequences was stably introduced into apomictic bahiagrass by biolistic gene transfer as confirmed by Southern blot analysis. Expression of AtGA2ox1 in bahiagrass as indicated by reverse transcription-polymerase chain reaction and Northern blot analysis resulted in a significant reduction of endogenous bioactive GA(1) levels compared to wild type. Interestingly, transgenic plants displayed an increased number of vegetative tillers which correlated with the level of AtGA2ox1 expression and enhanced turf density under field conditions. This indicates that GAs contribute to signalling the outgrowth of axillary buds in this perennial grass. Transgenic plants also showed decreased stem length and delayed flowering under controlled environment and field conditions. Consequently, turf quality following weekly mowing was improved in transgenic bahiagrass. Transgene expression and phenotype were transmitted to seed progeny. Argentine bahiagrass produces seeds asexually by apomixis, which reduces the risk of unintended transgene dispersal by pollen and results in uniform progeny.

  18. TASSRAP Input Module

    DTIC Science & Technology

    1977-07-29

    retrieve data necessary for the other modules to function. Initially there are 13 inputs, with the CRT dis - playing the information to be entered...id 46aý .0sso somma % 4bt--f. ft Aa W #4t - lQ *a - 4 c ,0 45 40 aK 43 ’ C = 04 ZSC 0 de *020.4 %- li’l ~ ~ ~ ~ ~ ~ & 1&.1 gol~ -,.-’ ow. -6 -N*4••1L...tv Z (𔃽 - C- ft %- ftb 0*4 *- -1 *4* (30 w ag &h 𔃾 0 a _6a .N I 0 A. 6.2 IL ILN ’ S MS 6C 0 to ~ 0 " di a S 0 m J *- -j f’ md op9 -9 $-. -6 = -A U .Af

  19. Modeling and generating input processes

    SciTech Connect

    Johnson, M.E.

    1987-01-01

    This tutorial paper provides information relevant to the selection and generation of stochastic inputs to simulation studies. The primary area considered is multivariate but much of the philosophy at least is relevant to univariate inputs as well. 14 refs.

  20. Input Multiplicities in Process Control.

    ERIC Educational Resources Information Center

    Koppel, Lowell B.

    1983-01-01

    Describes research investigating potential effect of input multiplicity on multivariable chemical process control systems. Several simple processes are shown to exhibit the possibility of theoretical developments on input multiplicity and closely related phenomena are discussed. (JN)

  1. The Kepler Input Catalog

    NASA Astrophysics Data System (ADS)

    Latham, D. W.; Brown, T. M.; Monet, D. G.; Everett, M.; Esquerdo, G. A.; Hergenrother, C. W.

    2005-12-01

    The Kepler mission will monitor 170,000 planet-search targets during the first year, and 100,000 after that. The Kepler Input Catalog (KIC) will be used to select optimum targets for the search for habitable earth-like transiting planets. The KIC will include all known catalogued stars in an area of about 177 square degrees centered at RA 19:22:40 and Dec +44:30 (l=76.3 and b=+13.5). 2MASS photometry will be supplemented with new ground-based photometry obtained in the SDSS g, r, i, and z bands plus a custom filter centered on the Mg b lines, using KeplerCam on the 48-inch telescope at the Whipple Observatory on Mount Hopkins, Arizona. The photometry will be used to estimate stellar characteristics for all stars brighter than K 14.5 mag. The KIC will include effective temperature, surface gravity, metallicity, reddening, distance, and radius estimates for these stars. The CCD images are pipeline processed to produce instrumental magnitudes at PSI. The photometry is then archived and transformed to the SDSS system at HAO, where the astrophysical analysis of the stellar characteristics is carried out. The results are then merged with catalogued data at the USNOFS to produce the KIC. High dispersion spectroscopy with Hectochelle on the MMT will be used to supplement the information for many of the most interesting targets. The KIC will be released before launch for use by the astronomical community and will be available for queries over the internet. Support from the Kepler mission is gratefully acknowledged.

  2. Serial Input Output

    SciTech Connect

    Waite, Anthony; /SLAC

    2011-09-07

    Serial Input/Output (SIO) is designed to be a long term storage format of a sophistication somewhere between simple ASCII files and the techniques provided by inter alia Objectivity and Root. The former tend to be low density, information lossy (floating point numbers lose precision) and inflexible. The latter require abstract descriptions of the data with all that that implies in terms of extra complexity. The basic building blocks of SIO are streams, records and blocks. Streams provide the connections between the program and files. The user can define an arbitrary list of streams as required. A given stream must be opened for either reading or writing. SIO does not support read/write streams. If a stream is closed during the execution of a program, it can be reopened in either read or write mode to the same or a different file. Records represent a coherent grouping of data. Records consist of a collection of blocks (see next paragraph). The user can define a variety of records (headers, events, error logs, etc.) and request that any of them be written to any stream. When SIO reads a file, it first decodes the record name and if that record has been defined and unpacking has been requested for it, SIO proceeds to unpack the blocks. Blocks are user provided objects which do the real work of reading/writing the data. The user is responsible for writing the code for these blocks and for identifying these blocks to SIO at run time. To write a collection of blocks, the user must first connect them to a record. The record can then be written to a stream as described above. Note that the same block can be connected to many different records. When SIO reads a record, it scans through the blocks written and calls the corresponding block object (if it has been defined) to decode it. Undefined blocks are skipped. Each of these categories (streams, records and blocks) have some characteristics in common. Every stream, record and block has a name with the condition that each

  3. SDR Input Power Estimation Algorithms

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer M.; Briones, Janette C.

    2013-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCAN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SDR has an analog and a digital automatic gain control (AGC) and the response of the AGCs to changes in SDR input power and temperature was characterized prior to the launch and installation of the SCAN Testbed on the ISS. The AGCs were used to estimate the SDR input power and SNR of the received signal and the characterization results showed a nonlinear response to SDR input power and temperature. In order to estimate the SDR input from the AGCs, three algorithms were developed and implemented on the ground software of the SCAN Testbed. The algorithms include a linear straight line estimator, which used the digital AGC and the temperature to estimate the SDR input power over a narrower section of the SDR input power range. There is a linear adaptive filter algorithm that uses both AGCs and the temperature to estimate the SDR input power over a wide input power range. Finally, an algorithm that uses neural networks was designed to estimate the input power over a wide range. This paper describes the algorithms in detail and their associated performance in estimating the SDR input power.

  4. Intermediate inputs and economic productivity.

    PubMed

    Baptist, Simon; Hepburn, Cameron

    2013-03-13

    Many models of economic growth exclude materials, energy and other intermediate inputs from the production function. Growing environmental pressures and resource prices suggest that this may be increasingly inappropriate. This paper explores the relationship between intermediate input intensity, productivity and national accounts using a panel dataset of manufacturing subsectors in the USA over 47 years. The first contribution is to identify sectoral production functions that incorporate intermediate inputs, while allowing for heterogeneity in both technology and productivity. The second contribution is that the paper finds a negative correlation between intermediate input intensity and total factor productivity (TFP)--sectors that are less intensive in their use of intermediate inputs have higher productivity. This finding is replicated at the firm level. We propose tentative hypotheses to explain this association, but testing and further disaggregation of intermediate inputs is left for further work. Further work could also explore more directly the relationship between material inputs and economic growth--given the high proportion of materials in intermediate inputs, the results in this paper are suggestive of further work on material efficiency. Depending upon the nature of the mechanism linking a reduction in intermediate input intensity to an increase in TFP, the implications could be significant. A third contribution is to suggest that an empirical bias in productivity, as measured in national accounts, may arise due to the exclusion of intermediate inputs. Current conventions of measuring productivity in national accounts may overstate the productivity of resource-intensive sectors relative to other sectors.

  5. Nitrogen loss from high N-input vegetable fields - a) direct N2O emissions b) Spatiotemporal variability of N species (N2O, NH4+, NO3-) in soils

    NASA Astrophysics Data System (ADS)

    Pfab, H.; Ruser, R.; Palmer, I.; Fiedler, S.

    2009-04-01

    Nitrous oxide is a climate relevant trace gas. It contributes 7.9 % to the total anthropogenic greenhouse gas emission and it is also involved in stratospheric ozone depletion. Approximately 85 % of the anthropogenic N2O emissions result from agricultural activities, more than 50 % are produced during microbial N-turnover processes in soils. Especially soils with high N-input (N-fertilizer and high amount of N in plant residues) like vegetable cropped soils are assumed to cause high N2O losses. The aims of the study presented were (i) to quantify the N2O loss from a vegetable field (lettuce-cauliflower crop rotation), (ii) to calculate an emission factor for the study site in Southwest Germany and to compare this factor with the default value provided by the IPCC (2006) and (iii) to test the emission reduction potential (Ammonium Sulfate Nitrate fertilizer, ASN either by reduced N-fertilization) in comparison with common N doses used for good agricultural practice or by the use of a nitrification inhibitor (DMPP), a banded N-application (lettuce) or a depot fertilization measure (pseudo-CULTAN in order to suppress nitrification). N2O fluxes determined with the closed chamber method were highly variable in time with strongly increased flux rates after N-fertilization in combination with rainfall or irrigation measures and after the incorporation of cauliflower crop residues. Using the mean soil nitrate contents of the top soil of our investigated treatments (0-25 cm depth), we could explain approximately 60 % of the variability of the cumulative N2O losses during the vegetation period of lettuce and cauliflower. The cumulative N2O emissions ranged between 0,99 kg N2O-N ha-1 from the unfertilized control plots (vegetation period) and 6,81 kg N2O-N ha-1 from the plots with the highest N-dose. Based on the guidelines of the IPCC (2006), we calculated an emission factor around 0,9 % for the cropping season. This value is in good agreement with the default value of the

  6. Input Range Testing for the General Mission Analysis Tool (GMAT)

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.

    2007-01-01

    This document contains a test plan for testing input values to the General Mission Analysis Tool (GMAT). The plan includes four primary types of information, which rigorously define all tests that should be performed to validate that GMAT will accept allowable inputs and deny disallowed inputs. The first is a complete list of all allowed object fields in GMAT. The second type of information, is test input to be attempted for each field. The third type of information is allowable input values for all objects fields in GMAT. The final piece of information is how GMAT should respond to both valid and invalid information. It is VERY important to note that the tests below must be performed for both the Graphical User Interface and the script!! The examples are illustrated using a scripting perspective, because it is simpler to write up. However, the test must be performed for both interfaces to GMAT.

  7. REL - English Bulk Data Input.

    ERIC Educational Resources Information Center

    Bigelow, Richard Henry

    A bulk data input processor which is available for the Rapidly Extensible Language (REL) English versions is described. In REL English versions, statements that declare names of data items and their interrelationships normally are lines from a terminal or cards in a batch input stream. These statements provide a convenient means of declaring some…

  8. Inputs for L2 Acquisition.

    ERIC Educational Resources Information Center

    Saleemi, Anjum P.

    1989-01-01

    Major approaches of describing or examining linguistic data from a potential target language (input) are analyzed for adequacy in addressing the concerns of second language learning theory. Suggestions are made for making the best of these varied concepts of input and for reformulation of a unified concept. (MSE)

  9. Input in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Gass, Susan M., Ed.; Madden, Carolyn G., Ed.

    This collection of conference papers includes: "When Does Teacher Talk Work as Input?"; "Cultural Input in Second Language Learning"; "Skilled Variation in a Kindergarten Teacher's Use of Foreigner Talk"; "Teacher-Pupil Interaction in Second Language Development"; "Foreigner Talk in the University…

  10. Input in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Gass, Susan M., Ed.; Madden, Carolyn G., Ed.

    This collection of conference papers includes: "When Does Teacher Talk Work as Input?"; "Cultural Input in Second Language Learning"; "Skilled Variation in a Kindergarten Teacher's Use of Foreigner Talk"; "Teacher-Pupil Interaction in Second Language Development"; "Foreigner Talk in the University…

  11. Beyond Poverty: Engaging with Input in Generative SLA

    ERIC Educational Resources Information Center

    Rankin, Tom; Unsworth, Sharon

    2016-01-01

    A generative approach to language acquisition is no different from any other in assuming that target language input is crucial for language acquisition. This discussion note addresses the place of input in generative second language acquisition (SLA) research and the perception in the wider field of SLA research that generative SLA…

  12. Beyond Poverty: Engaging with Input in Generative SLA

    ERIC Educational Resources Information Center

    Rankin, Tom; Unsworth, Sharon

    2016-01-01

    A generative approach to language acquisition is no different from any other in assuming that target language input is crucial for language acquisition. This discussion note addresses the place of input in generative second language acquisition (SLA) research and the perception in the wider field of SLA research that generative SLA…

  13. Input management of production systems.

    PubMed

    Odum, E P

    1989-01-13

    Nonpoint sources of pollution, which are largely responsible for stressing regional and global life-supporting atmosphere, soil, and water, can only be reduced (and ultimately controlled) by input management that involves increasing the efficiency of production systems and reducing the inputs of environmentally damaging materials. Input management requires a major change, an about-face, in the approach to management of agriculture, power plants, and industries because the focus is on waste reduction and recycling rather than on waste disposal. For large-scale ecosystem-level situations a top-down hierarchical approach is suggested and illustrated by recent research in agroecology and landscape ecology.

  14. System monitors discrete computer inputs

    NASA Technical Reports Server (NTRS)

    Burns, J. J.

    1966-01-01

    Computer system monitors inputs from checkout devices. The comparing, addressing, and controlling functions are performed in the I/O unit. This leaves the computer main frame free to handle memory, access priority, and interrupt instructions.

  15. Input Type and Parameter Resetting: Is Naturalistic Input Necessary?

    ERIC Educational Resources Information Center

    Rothman, Jason; Iverson, Michael

    2007-01-01

    It has been argued that extended exposure to naturalistic input provides L2 learners with more of an opportunity to converge of target morphosyntactic competence as compared to classroom-only environments, given that the former provide more positive evidence of less salient linguistic properties than the latter (e.g., Isabelli 2004). Implicitly,…

  16. Mass exchange processes with input

    NASA Astrophysics Data System (ADS)

    Krapivsky, P. L.

    2015-05-01

    We investigate a system of interacting clusters evolving through mass exchange and supplemented by input of small clusters. Three possibilities depending on the rate of exchange generically occur when input is homogeneous: continuous growth, gelation, and instantaneous gelation. We mostly study the growth regime using scaling methods. An exchange process with reaction rates equal to the product of reactant masses admits an exact solution which allows us to justify the validity of scaling approaches in this special case. We also investigate exchange processes with a localized input. We show that if the diffusion coefficients are mass-independent, the cluster mass distribution becomes stationary and develops an algebraic tail far away from the source.

  17. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent.

    PubMed

    Burger, Tomás; Lucová, Marcela; Moritz, Regina E; Oelschläger, Helmut H A; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Nemec, Pavel

    2010-09-06

    The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal-hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit.

  18. Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent

    PubMed Central

    Burger, Tomáš; Lucová, Marcela; Moritz, Regina E.; Oelschläger, Helmut H. A.; Druga, Rastislav; Burda, Hynek; Wiltschko, Wolfgang; Wiltschko, Roswitha; Němec, Pavel

    2010-01-01

    The neural substrate subserving magnetoreception and magnetic orientation in mammals is largely unknown. Previous experiments have demonstrated that the processing of magnetic sensory information takes place in the superior colliculus. Here, the effects of magnetic field conditions on neuronal activity in the rodent navigation circuit were assessed by quantifying c-Fos expression. Ansell's mole-rats (Fukomys anselli), a mammalian model to study the mechanisms of magnetic compass orientation, were subjected to natural, periodically changing, and shielded magnetic fields while exploring an unfamiliar circular arena. In the undisturbed local geomagnetic field, the exploration of the novel environment and/or nesting behaviour induced c-Fos expression throughout the head direction system and the entorhinal–hippocampal spatial representation system. This induction was significantly suppressed by exposure to periodically changing and/or shielded magnetic fields; discrete decreases in c-Fos were seen in the dorsal tegmental nucleus, the anterodorsal and the laterodorsal thalamic nuclei, the postsubiculum, the retrosplenial and entorhinal cortices, and the hippocampus. Moreover, in inactive animals, magnetic field intensity manipulation suppressed c-Fos expression in the CA1 and CA3 fields of the hippocampus and the dorsal subiculum, but induced expression in the polymorph layer of the dentate gyrus. These findings suggest that key constituents of the rodent navigation circuit contain populations of neurons responsive to magnetic stimuli. Thus, magnetic information may be integrated with multimodal sensory and motor information into a common spatial representation of allocentric space within this circuit. PMID:20219838

  19. Regional Hospital Input Price Indexes

    PubMed Central

    Freeland, Mark S.; Schendler, Carol Ellen; Anderson, Gerard

    1981-01-01

    This paper describes the development of regional hospital input price indexes that is consistent with the general methodology used for the National Hospital Input Price Index. The feasibility of developing regional indexes was investigated because individuals inquired whether different regions experienced different rates of increase in hospital input prices. The regional indexes incorporate variations in cost-share weights (the amount an expense category contributes to total spending) associated with hospital type and location, and variations in the rate of input price increases for various regions. We found that between 1972 and 1979 none of the regional price indexes increased at average annual rates significantly different from the national rate. For the more recent period 1977 through 1979, the increase in one Census Region was significantly below the national rate. Further analyses indicated that variations in cost-share weights for various types of hospitals produced no substantial variations in the regional price indexes relative to the national index. We consider these findings preliminary because of limitations in the availability of current, relevant, and reliable data, especially for local area wage rate increases. PMID:10309557

  20. Lab Inputs for Common Micros.

    ERIC Educational Resources Information Center

    Tinker, Robert

    1984-01-01

    The game paddle inputs of Apple microcomputers provide a simple way to get laboratory measurements into the computer. Discusses these game paddles and the necessary interface software. Includes schematics for Apple built-in paddle electronics, TRS-80 game paddle I/O, Commodore circuit for user port, and bus interface for Sinclair/Timex, Commodore,…

  1. Analog Input Data Acquisition Software

    NASA Technical Reports Server (NTRS)

    Arens, Ellen

    2009-01-01

    DAQ Master Software allows users to easily set up a system to monitor up to five analog input channels and save the data after acquisition. This program was written in LabVIEW 8.0, and requires the LabVIEW runtime engine 8.0 to run the executable.

  2. The advanced LIGO input optics

    NASA Astrophysics Data System (ADS)

    Mueller, Chris L.; Arain, Muzammil A.; Ciani, Giacomo; DeRosa, Ryan. T.; Effler, Anamaria; Feldbaum, David; Frolov, Valery V.; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J.; Kokeyama, Keiko; Korth, William Z.; Martin, Rodica M.; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H.; Tanner, David B.; Vorvick, Cheryl; Williams, Luke F.; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  3. The advanced LIGO input optics

    SciTech Connect

    Mueller, Chris L. Arain, Muzammil A.; Ciani, Giacomo; Feldbaum, David; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Martin, Rodica M.; Reitze, David H.; Tanner, David B.; Williams, Luke F.; Mueller, Guido; DeRosa, Ryan T.; Effler, Anamaria; Kokeyama, Keiko; Frolov, Valery V.; Mullavey, Adam; Kawabe, Keita; Vorvick, Cheryl; King, Eleanor J.; and others

    2016-01-15

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  4. World Input-Output Network

    PubMed Central

    Cerina, Federica; Zhu, Zhen; Chessa, Alessandro; Riccaboni, Massimo

    2015-01-01

    Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries. PMID:26222389

  5. The advanced LIGO input optics.

    PubMed

    Mueller, Chris L; Arain, Muzammil A; Ciani, Giacomo; DeRosa, Ryan T; Effler, Anamaria; Feldbaum, David; Frolov, Valery V; Fulda, Paul; Gleason, Joseph; Heintze, Matthew; Kawabe, Keita; King, Eleanor J; Kokeyama, Keiko; Korth, William Z; Martin, Rodica M; Mullavey, Adam; Peold, Jan; Quetschke, Volker; Reitze, David H; Tanner, David B; Vorvick, Cheryl; Williams, Luke F; Mueller, Guido

    2016-01-01

    The advanced LIGO gravitational wave detectors are nearing their design sensitivity and should begin taking meaningful astrophysical data in the fall of 2015. These resonant optical interferometers will have unprecedented sensitivity to the strains caused by passing gravitational waves. The input optics play a significant part in allowing these devices to reach such sensitivities. Residing between the pre-stabilized laser and the main interferometer, the input optics subsystem is tasked with preparing the laser beam for interferometry at the sub-attometer level while operating at continuous wave input power levels ranging from 100 mW to 150 W. These extreme operating conditions required every major component to be custom designed. These designs draw heavily on the experience and understanding gained during the operation of Initial LIGO and Enhanced LIGO. In this article, we report on how the components of the input optics were designed to meet their stringent requirements and present measurements showing how well they have lived up to their design.

  6. Signal Prediction With Input Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Chen, Ya-Chin

    1999-01-01

    A novel coding technique is presented for signal prediction with applications including speech coding, system identification, and estimation of input excitation. The approach is based on the blind equalization method for speech signal processing in conjunction with the geometric subspace projection theory to formulate the basic prediction equation. The speech-coding problem is often divided into two parts, a linear prediction model and excitation input. The parameter coefficients of the linear predictor and the input excitation are solved simultaneously and recursively by a conventional recursive least-squares algorithm. The excitation input is computed by coding all possible outcomes into a binary codebook. The coefficients of the linear predictor and excitation, and the index of the codebook can then be used to represent the signal. In addition, a variable-frame concept is proposed to block the same excitation signal in sequence in order to reduce the storage size and increase the transmission rate. The results of this work can be easily extended to the problem of disturbance identification. The basic principles are outlined in this report and differences from other existing methods are discussed. Simulations are included to demonstrate the proposed method.

  7. Optimal Inputs for System Identification.

    DTIC Science & Technology

    1995-09-01

    The derivation of the power spectral density of the optimal input for system identification is addressed in this research. Optimality is defined in...identification potential of general System Identification algorithms, a new and efficient System Identification algorithm that employs Iterated Weighted Least

  8. Lab Inputs for Common Micros.

    ERIC Educational Resources Information Center

    Tinker, Robert

    1984-01-01

    The game paddle inputs of Apple microcomputers provide a simple way to get laboratory measurements into the computer. Discusses these game paddles and the necessary interface software. Includes schematics for Apple built-in paddle electronics, TRS-80 game paddle I/O, Commodore circuit for user port, and bus interface for Sinclair/Timex, Commodore,…

  9. Systems and methods for reconfiguring input devices

    NASA Technical Reports Server (NTRS)

    Lancaster, Jeff (Inventor); De Mers, Robert E. (Inventor)

    2012-01-01

    A system includes an input device having first and second input members configured to be activated by a user. The input device is configured to generate activation signals associated with activation of the first and second input members, and each of the first and second input members are associated with an input function. A processor is coupled to the input device and configured to receive the activation signals. A memory coupled to the processor, and includes a reconfiguration module configured to store the input functions assigned to the first and second input members and, upon execution of the processor, to reconfigure the input functions assigned to the input members when the first input member is inoperable.

  10. Enhancing optical extreme events through input wave disorder

    NASA Astrophysics Data System (ADS)

    Pierangeli, D.; Musarra, G.; Di Mei, F.; Di Domenico, G.; Agranat, A. J.; Conti, C.; DelRe, E.

    2016-12-01

    We demonstrate how the emergence of extreme events strongly depends on the correlation length of the input field distribution. Observing the behavior of optical waves in turbulent photorefractive propagation with partially incoherent excitations, we find that rogue waves are strongly enhanced for a characteristic input correlation scale. Waveform analysis identifies this scale with a characteristic peak-intensity-independent wave size, suggesting a general role played by saturation in the nonlinear response in rogue phenomena.

  11. National Hospital Input Price Index

    PubMed Central

    Freeland, Mark S.; Anderson, Gerard; Schendler, Carol Ellen

    1979-01-01

    The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 percent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies. PMID:10309052

  12. National hospital input price index.

    PubMed

    Freeland, M S; Anderson, G; Schendler, C E

    1979-01-01

    The national community hospital input price index presented here isolates the effects of prices of goods and services required to produce hospital care and measures the average percent change in prices for a fixed market basket of hospital inputs. Using the methodology described in this article, weights for various expenditure categories were estimated and proxy price variables associated with each were selected. The index is calculated for the historical period 1970 through 1978 and forecast for 1979 through 1981. During the historical period, the input price index increased an average of 8.0 percent a year, compared with an average rate of increase of 6.6 percent for overall consumer prices. For the period 1979 through 1981, the average annual increase is forecast at between 8.5 and 9.0 per cent. Using the index to deflate growth in expenses, the level of real growth in expenditures per inpatient day (net service intensity growth) averaged 4.5 percent per year with considerable annual variation related to government and hospital industry policies.

  13. EPICS Input Output Controller (IOC) Record Reference Manual

    SciTech Connect

    Anderson, J.B.; Kraimer, M.R.

    1994-12-01

    This manual describes all supported EPICS record types. The first chapter gives introduction and describes the field summary table. The second chapter describes the fields in database common, i.e. the fields that are present in every record type. The third chapter describes the input and output field that are common to many record types and have the same usage wherever they are used. Following the third chapter is a separate chapter for each record type containing a description of all the fields for that record type except those in database common.

  14. Preisach models of hysteresis driven by Markovian input processes

    NASA Astrophysics Data System (ADS)

    Schubert, Sven; Radons, Günter

    2017-08-01

    We study the response of Preisach models of hysteresis to stochastically fluctuating external fields. We perform numerical simulations, which indicate that analytical expressions derived previously for the autocorrelation functions and power spectral densities of the Preisach model with uncorrelated input, hold asymptotically also if the external field shows exponentially decaying correlations. As a consequence, the mechanisms causing long-term memory and 1 /f noise in Preisach models with uncorrelated inputs still apply in the presence of fast decaying input correlations. We collect additional evidence for the importance of the effective Preisach density previously introduced even for Preisach models with correlated inputs. Additionally, we present some results for the output of the Preisach model with uncorrelated input using analytical methods. It is found, for instance, that in order to produce the same long-time tails in the output, the elementary hysteresis loops of large width need to have a higher weight for the generic Preisach model than for the symmetric Preisach model. Further, we find autocorrelation functions and power spectral densities to be monotonically decreasing independently of the choice of input and Preisach density.

  15. MERRA-2 Input Observations: Summary and Assessment

    NASA Technical Reports Server (NTRS)

    Koster, Randal D. (Editor); McCarty, Will; Coy, Lawrence; Gelaro, Ronald; Huang, Albert; Merkova, Dagmar; Smith, Edmond B.; Sienkiewicz, Meta; Wargan, Krzysztof

    2016-01-01

    The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is an atmospheric reanalysis, spanning 1980 through near-realtime, that uses state-of-the-art processing of observations from the continually evolving global observing system. The effectiveness of any reanalysis is a function not only of the input observations themselves, but also of how the observations are handled in the assimilation procedure. Relevant issues to consider include, but are not limited to, data selection, data preprocessing, quality control, bias correction procedures, and blacklisting. As the assimilation algorithm and earth system models are fundamentally fixed in a reanalysis, it is often a change in the character of the observations, and their feedbacks on the system, that cause changes in the character of the reanalysis. It is therefore important to provide documentation of the observing system so that its discontinuities and transitions can be readily linked to discontinuities seen in the gridded atmospheric fields of the reanalysis. With this in mind, this document provides an exhaustive list of the input observations, the context under which they are assimilated, and an initial assessment of selected core observations fundamental to the reanalysis.

  16. Analysis of rainfall inputs and runoff under an A-frame oscillating rainfall simulator in a sugarcane field, Mackay region of Queensland: Matching measurement techniques to meet project water balance objectives

    NASA Astrophysics Data System (ADS)

    Fentie, Banti; Yu, Bofu; Ciesiolka, Cyril

    2010-05-01

    A total of 11 rainfall simulations were conducted on four different plots (ranging in area from 22.10 to 26.20 m2) in a sugarcane field (with slopes varying from 1-9% and a groundcover variability of bare - 100% cover) in the Mackay region of Northern Queensland. The objectives of these rainfall simulation experiments were many, but this paper discusses the measurement methodology and data quality of rainfall generated and subsequent runoff. Rainfall amount during the simulations was measured using two different sizes of rain gauges placed at different locations on the plot (left, centre, and right sides of the experimental plot). In addition to the 203mm ordinary rain gauges, three pluviometers (300mm) were placed along the centre of the plot to measure rainfall as a function of time during the simulation. The rainfall data from these three pluviometers was collected using dataloggers and processed using a computer program called Datalog, which converted the number of tips/minute into mm/h. Due to spatial variation of rainfall intensity applied to the surface as a function of height from the nozzles of the rainfall simulators, correction factors were determined using a computer program called ERFS developed for this purpose. The rainfall from each gauge and pluviometer was subsequently corrected for distance from the nozzles of the simulator and height of the gauge by multiplying it by the corresponding correction factor. The spatial distribution of rainfall amount during each simulation was determined by spatially interpolating measured amounts in order to ascertain the best estimate of applied rainfall and its energy. Runoff data during each simulation was collected using tipping buckets connected to data loggers. Runoff amounts were also manually collected at specified intervals as a back up, and for validation of those collected using tipping buckets in determining runoff rates for each simulation. Soil cores were taken for determining soil moisture balances

  17. Solid state switch provides high input-to-output isolation

    NASA Technical Reports Server (NTRS)

    Magee, R. L.; Trowbridge, L. E.

    1970-01-01

    Switch uses a combination of N-channel and P-channel Metal Oxide Semiconductor Field Effect Transistors /MOSFET/ to obtain a normally open switch with no power applied. Series-shunt-series MOSFET switching achieves high input-output isolation.

  18. Detection of Floating Inputs in Logic Circuits

    NASA Technical Reports Server (NTRS)

    Cash, B.; Thornton, M. G.

    1984-01-01

    Simple modification of oscilloscope probe allows easy detection of floating inputs or tristate outputs in digital-IC's. Oscilloscope probe easily modified with 1/4 W resistor and switch for detecting floating inputs in CMOS logic circuits.

  19. 7 CFR 3430.15 - Stakeholder input.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...)(2)) requires the Secretary to solicit and consider input on each program RFA from persons who... programs. CSREES will provide instructions for submission of stakeholder input in the RFA. CSREES will...

  20. Detection of Floating Inputs in Logic Circuits

    NASA Technical Reports Server (NTRS)

    Cash, B.; Thornton, M. G.

    1984-01-01

    Simple modification of oscilloscope probe allows easy detection of floating inputs or tristate outputs in digital-IC's. Oscilloscope probe easily modified with 1/4 W resistor and switch for detecting floating inputs in CMOS logic circuits.

  1. Repositioning Recitation Input in College English Teaching

    ERIC Educational Resources Information Center

    Xu, Qing

    2009-01-01

    This paper tries to discuss how recitation input helps overcome the negative influences on the basis of second language acquisition theory and confirms the important role that recitation input plays in improving college students' oral and written English.

  2. Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.

  3. Input Devices for Young Handicapped Children.

    ERIC Educational Resources Information Center

    Morris, Karen

    The versatility of the computer can be expanded considerably for young handicapped children by using input devices other than the typewriter-style keyboard. Input devices appropriate for young children can be classified into four categories: alternative keyboards, contact switches, speech input devices, and cursor control devices. Described are…

  4. Textual Enhancement of Input: Issues and Possibilities

    ERIC Educational Resources Information Center

    Han, ZhaoHong; Park, Eun Sung; Combs, Charles

    2008-01-01

    The input enhancement hypothesis proposed by Sharwood Smith (1991, 1993) has stimulated considerable research over the last 15 years. This article reviews the research on textual enhancement of input (TE), an area where the majority of input enhancement studies have aggregated. Methodological idiosyncrasies are the norm of this body of research.…

  5. 7 CFR 3430.15 - Stakeholder input.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.15 Section 3430.15... Stakeholder input. Section 103(c)(2) of the Agricultural Research, Extension, and Education Reform Act of 1998... RFAs for competitive programs. CSREES will provide instructions for submission of stakeholder input...

  6. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION... § 3430.607 Stakeholder input. CSREES shall seek and obtain stakeholder input through a variety of...

  7. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Lee, F. C.

    1984-01-01

    Problems caused by input filter interaction and conventional input filter design techniques are discussed. The concept of feedforward control is modeled with an input filter and a buck regulator. Experimental measurement and comparison to the analytical predictions is carried out. Transient response and the use of a feedforward loop to stabilize the regulator system is described. Other possible applications for feedforward control are included.

  8. Biogenic inputs to ocean mixing.

    PubMed

    Katija, Kakani

    2012-03-15

    Recent studies have evoked heated debate about whether biologically generated (or biogenic) fluid disturbances affect mixing in the ocean. Estimates of biogenic inputs have shown that their contribution to ocean mixing is of the same order as winds and tides. Although these estimates are intriguing, further study using theoretical, numerical and experimental techniques is required to obtain conclusive evidence of biogenic mixing in the ocean. Biogenic ocean mixing is a complex problem that requires detailed understanding of: (1) marine organism behavior and characteristics (i.e. swimming dynamics, abundance and migratory behavior), (2) mechanisms utilized by swimming animals that have the ability to mix stratified fluids (i.e. turbulence and fluid drift) and (3) knowledge of the physical environment to isolate contributions of marine organisms from other sources of mixing. In addition to summarizing prior work addressing the points above, observations on the effect of animal swimming mode and body morphology on biogenic fluid transport will also be presented. It is argued that to inform the debate on whether biogenic mixing can contribute to ocean mixing, our studies should focus on diel vertical migrators that traverse stratified waters of the upper pycnocline. Based on our understanding of mixing mechanisms, body morphologies, swimming modes and body orientation, combined with our knowledge of vertically migrating populations of animals, it is likely that copepods, krill and some species of gelatinous zooplankton and fish have the potential to be strong sources of biogenic mixing.

  9. Testing low-mass stellar models with M-dwarf eclipsing binaries from SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Bhatti, Waqas A.

    Large astronomical surveys such as the Sloan Digital Sky Survey (SDSS) have revolutionized ensemble studies of stellar populations in the Galaxy. Modern and upcoming synoptic surveys extend this concept to the time-domain, by covering large areas of the sky to a faint magnitude limit, and at observing cadences optimized for a large range in variability. In this thesis, we explore methods of efficiently analyzing a large synoptic survey dataset and its application to stellar astronomy, specifically focusing on the discovery and characterization of low-mass star eclipsing binaries. Eclipsing binaries (EBs) provide direct measurements of the absolute masses and radii of the component stars. Recent observations of EBs composed of low-mass stars (< 0.7 M⊙ ) indicate that the measured radii of the component stars are systematically 10-15% larger than those predicted by stellar models. Tidally induced magnetic fields that arise in these close binaries may be responsible for this discrepancy. The small number of fully characterized low-mass EBs, however, makes any hypothesis for this discrepancy difficult to verify. These objects are difficult to detect because of the intrinsic faintness of low-mass stars, in addition to the already low probability of favorable orbital alignment for eclipse observation. Fortunately, both of these problems can be overcome by a large-area and deep time-domain survey. We describe a search for periodic variables carried out using multi-band timeseries photometry from SDSS Stripe 82 focused on identifying a large sample of EBs to help resolve this issue. We outline the construction of our light-curve catalog and the methodology for extracting variable point sources. We discuss the classification of the ˜1100 periodic variables found in these data, and the subsequent discovery of ˜211 EB candidates with securely determined periods. For ˜90 EBs with suitable light-curves, we fit binary models and estimate parameters for the binary components

  10. A basic study on application of voice recognition input to an electronic nursing record system -evaluation of the function as an input interface-.

    PubMed

    Marukami, Terutaka; Tani, Shoko; Matsuda, Atsuko; Takemoto, Keiko; Shindo, Akiko; Inada, Hiroshi

    2012-06-01

    As computerization in the nursing field has been recently progressing, an electronic nursing record system is gradually introduced in the medical institution in Japan. Although it is expected for the electronic nursing record system to reduce the load of nursing work, the conventional keyboard operation is used for information input of the present electronic nursing record system and it has some problems concerning the input time and the operationability for common nurses who are unfamiliar with the computer operation. In the present study, we conducted a basic study on application of voice recognition input to an electronic nursing record system. The voice input is recently introduced to an electronic medical record system in a few clinics. However, so far the entered information cannot be processed because the information of the medical record must be entered as a free sentence. Therefore, we contrived a template for an electronic nursing record system and introduced it to the system for simple information entry and easy processing of the entered information in this study. Furthermore, an input experiment for evaluation of the voice input with the template was carried out by voluntary subjects for evaluation of the function as an input interface of an electronic nursing record system. The results of the experiment revealed that the input time by the voice input is obviously fast compared with that by the keyboard input and operationability of the voice input was superior to the keyboard input although all subjects had inexperience of the voice input. As a result, it was suggested our method, the voice input using the template made by us, might be useful for an input interface of an electronic nursing record system.

  11. Response attenuation during coincident afferent excitatory inputs.

    PubMed

    Kogo, N; Ariel, M

    1999-06-01

    The linearity of the synaptic summation of two unitary excitatory synaptic events was investigated during whole cell recordings from retinal target neurons in an eye-attached isolated brain stem preparation. Pairs of unitary excitatory postsynaptic potentials (EPSPs) were evoked by bipolar stimulation electrodes that were directed to two distinct foci on the retinal surface based on the visual receptive field boundaries. The interval between stimulation of each retinal site was incremented by 0.5-1 ms to quantify the time course of nonlinear summation using an exponential fit. Response facilitation was never observed; however, the coincident arrival of synaptic inputs caused a response attenuation in 26 of the 37 pairs studied. Twelve of the 26 pairs had time constants of their attenuation that were similar to the time constants of the decaying phases of the first EPSPs of each pair. This suggests that the attenuation of these 12 pairs may be entirely due to voltage-dependent mechanisms, such as a reduction in driving force or a change of the activity of voltage-sensitive channels. On the other hand, the 14 other pairs had their time constant of attenuation shorter than the time constants of the decaying phase of the first EPSP. In fact, the attenuation time constants were often closer to the time constants of the decaying phases of the first excitatory postsynaptic currents of each pair. This finding suggests that the attenuation of these 14 pairs involve a shunting mechanism due to the opening of synaptic channels. The presence of this conductance-dependent mechanism is supported by the finding of asymmetric effects on the time course of attenuation when the stimulation sequence was reversed. These results are discussed in terms of the processing by neurons of coincident excitatory inputs onto spatially distinct points of their dendritic trees.

  12. Bilinearity in Spatiotemporal Integration of Synaptic Inputs

    PubMed Central

    Li, Songting; Liu, Nan; Zhang, Xiao-hui; Zhou, Douglas; Cai, David

    2014-01-01

    Neurons process information via integration of synaptic inputs from dendrites. Many experimental results demonstrate dendritic integration could be highly nonlinear, yet few theoretical analyses have been performed to obtain a precise quantitative characterization analytically. Based on asymptotic analysis of a two-compartment passive cable model, given a pair of time-dependent synaptic conductance inputs, we derive a bilinear spatiotemporal dendritic integration rule. The summed somatic potential can be well approximated by the linear summation of the two postsynaptic potentials elicited separately, plus a third additional bilinear term proportional to their product with a proportionality coefficient . The rule is valid for a pair of synaptic inputs of all types, including excitation-inhibition, excitation-excitation, and inhibition-inhibition. In addition, the rule is valid during the whole dendritic integration process for a pair of synaptic inputs with arbitrary input time differences and input locations. The coefficient is demonstrated to be nearly independent of the input strengths but is dependent on input times and input locations. This rule is then verified through simulation of a realistic pyramidal neuron model and in electrophysiological experiments of rat hippocampal CA1 neurons. The rule is further generalized to describe the spatiotemporal dendritic integration of multiple excitatory and inhibitory synaptic inputs. The integration of multiple inputs can be decomposed into the sum of all possible pairwise integration, where each paired integration obeys the bilinear rule. This decomposition leads to a graph representation of dendritic integration, which can be viewed as functionally sparse. PMID:25521832

  13. PREVIMER : Meteorological inputs and outputs

    NASA Astrophysics Data System (ADS)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  14. Turn customer input into innovation.

    PubMed

    Ulwick, Anthony W

    2002-01-01

    It's difficult to find a company these days that doesn't strive to be customer-driven. Too bad, then, that most companies go about the process of listening to customers all wrong--so wrong, in fact, that they undermine innovation and, ultimately, the bottom line. What usually happens is this: Companies ask their customers what they want. Customers offer solutions in the form of products or services. Companies then deliver these tangibles, and customers just don't buy. The reason is simple--customers aren't expert or informed enough to come up with solutions. That's what your R&D team is for. Rather, customers should be asked only for outcomes--what they want a new product or service to do for them. The form the solutions take should be up to you, and you alone. Using Cordis Corporation as an example, this article describes, in fine detail, a series of effective steps for capturing, analyzing, and utilizing customer input. First come indepth interviews, in which a moderator works with customers to deconstruct a process or activity in order to unearth "desired outcomes." Addressing participants' comments one at a time, the moderator rephrases them to be both unambiguous and measurable. Once the interviews are complete, researchers then compile a comprehensive list of outcomes that participants rank in order of importance and degree to which they are satisfied by existing products. Finally, using a simple mathematical formula called the "opportunity calculation," researchers can learn the relative attractiveness of key opportunity areas. These data can be used to uncover opportunities for product development, to properly segment markets, and to conduct competitive analysis.

  15. The series product for gaussian quantum input processes

    NASA Astrophysics Data System (ADS)

    Gough, John E.; James, Matthew R.

    2017-02-01

    We present a theory for connecting quantum Markov components into a network with quantum input processes in a Gaussian state (including thermal and squeezed). One would expect on physical grounds that the connection rules should be independent of the state of the input to the network. To compute statistical properties, we use a version of Wicks' theorem involving fictitious vacuum fields (Fock space based representation of the fields) and while this aids computation, and gives a rigorous formulation, the various representations need not be unitarily equivalent. In particular, a naive application of the connection rules would lead to the wrong answer. We establish the correct interconnection rules, and show that while the quantum stochastic differential equations of motion display explicitly the covariances (thermal and squeezing parameters) of the Gaussian input fields we introduce the Wick-Stratonovich form which leads to a way of writing these equations that does not depend on these covariances and so corresponds to the universal equations written in terms of formal quantum input processes. We show that a wholly consistent theory of quantum open systems in series can be developed in this way, and as required physically, is universal and in particular representation-free.

  16. Optical device with conical input and output prism faces

    DOEpatents

    Brunsden, Barry S.

    1981-01-01

    A device for radially translating radiation in which a right circular cylinder is provided at each end thereof with conical prism faces. The faces are oppositely extending and the device may be severed in the middle and separated to allow access to the central part of the beam. Radiation entering the input end of the device is radially translated such that radiation entering the input end at the perimeter is concentrated toward the output central axis and radiation at the input central axis is dispersed toward the output perimeter. Devices are disclosed for compressing beam energy to enhance drilling techniques, for beam manipulation of optical spatial frequencies in the Fourier plane and for simplification of dark field and color contrast microscopy. Both refracting and reflecting devices are disclosed.

  17. Beyond Field Education: Leadership of Field Directors

    ERIC Educational Resources Information Center

    Wertheimer, Mindy R.; Sodhi, Mimi

    2014-01-01

    This article presents a conceptual model of the field director's role outside of field education, specifically in the following 3 areas of leadership: (1) curricular, (2) programmatic, and (3) institutional. A survey was conducted to explore the field director's input targeted in these areas beyond prescribed field education tasks. The…

  18. Kriging atomic properties with a variable number of inputs.

    PubMed

    Davie, Stuart J; Di Pasquale, Nicodemo; Popelier, Paul L A

    2016-09-14

    A new force field called FFLUX uses the machine learning technique kriging to capture the link between the properties (energies and multipole moments) of topological atoms (i.e., output) and the coordinates of the surrounding atoms (i.e., input). Here we present a novel, general method of applying kriging to chemical systems that do not possess a fixed number of (geometrical) inputs. Unlike traditional kriging methods, which require an input system to be of fixed dimensionality, the method presented here can be readily applied to molecular simulation, where an interaction cutoff radius is commonly used and the number of atoms or molecules within the cutoff radius is not constant. The method described here is general and can be applied to any machine learning technique that normally operates under a fixed number of inputs. In particular, the method described here is also useful for interpolating methods other than kriging, which may suffer from difficulties stemming from identical sets of inputs corresponding to different outputs or input biasing. As a demonstration, the new method is used to predict 54 energetic and electrostatic properties of the central water molecule of a set of 5000, 4 Å radius water clusters, with a variable number of water molecules. The results are validated against equivalent models from a set of clusters composed of a fixed number of water molecules (set to ten, i.e., decamers) and against models created by using a naïve method of treating the variable number of inputs problem presented. Results show that the 4 Å water cluster models, utilising the method presented here, return similar or better kriging models than the decamer clusters for all properties considered and perform much better than the truncated models.

  19. Kriging atomic properties with a variable number of inputs

    NASA Astrophysics Data System (ADS)

    Davie, Stuart J.; Di Pasquale, Nicodemo; Popelier, Paul L. A.

    2016-09-01

    A new force field called FFLUX uses the machine learning technique kriging to capture the link between the properties (energies and multipole moments) of topological atoms (i.e., output) and the coordinates of the surrounding atoms (i.e., input). Here we present a novel, general method of applying kriging to chemical systems that do not possess a fixed number of (geometrical) inputs. Unlike traditional kriging methods, which require an input system to be of fixed dimensionality, the method presented here can be readily applied to molecular simulation, where an interaction cutoff radius is commonly used and the number of atoms or molecules within the cutoff radius is not constant. The method described here is general and can be applied to any machine learning technique that normally operates under a fixed number of inputs. In particular, the method described here is also useful for interpolating methods other than kriging, which may suffer from difficulties stemming from identical sets of inputs corresponding to different outputs or input biasing. As a demonstration, the new method is used to predict 54 energetic and electrostatic properties of the central water molecule of a set of 5000, 4 Å radius water clusters, with a variable number of water molecules. The results are validated against equivalent models from a set of clusters composed of a fixed number of water molecules (set to ten, i.e., decamers) and against models created by using a naïve method of treating the variable number of inputs problem presented. Results show that the 4 Å water cluster models, utilising the method presented here, return similar or better kriging models than the decamer clusters for all properties considered and perform much better than the truncated models.

  20. Input estimation from measured structural response

    SciTech Connect

    Harvey, Dustin; Cross, Elizabeth; Silva, Ramon A; Farrar, Charles R; Bement, Matt

    2009-01-01

    This report will focus on the estimation of unmeasured dynamic inputs to a structure given a numerical model of the structure and measured response acquired at discrete locations. While the estimation of inputs has not received as much attention historically as state estimation, there are many applications where an improved understanding of the immeasurable input to a structure is vital (e.g. validating temporally varying and spatially-varying load models for large structures such as buildings and ships). In this paper, the introduction contains a brief summary of previous input estimation studies. Next, an adjoint-based optimization method is used to estimate dynamic inputs to two experimental structures. The technique is evaluated in simulation and with experimental data both on a cantilever beam and on a three-story frame structure. The performance and limitations of the adjoint-based input estimation technique are discussed.

  1. Chemical input multiplicity facilitates arithmetical processing.

    PubMed

    Margulies, David; Melman, Galina; Felder, Clifford E; Arad-Yellin, Rina; Shanzer, Abraham

    2004-12-01

    We describe the design and function of a molecular logic system, by which a combinatorial recognition of the input signals is utilized to efficiently process chemically encoded information. Each chemical input can target simultaneously multiple domains on the same molecular platform, resulting in a unique combination of chemical states, each with its characteristic fluorescence output. Simple alteration of the input reagents changes the emitted logic pattern and enables it to perform different algebraic operations between two bits, solely in the fluorescence mode. This system exhibits parallelism in both its chemical inputs and light outputs.

  2. Input apparatus for dynamic signature verification systems

    DOEpatents

    EerNisse, Errol P.; Land, Cecil E.; Snelling, Jay B.

    1978-01-01

    The disclosure relates to signature verification input apparatus comprising a writing instrument and platen containing piezoelectric transducers which generate signals in response to writing pressures.

  3. Vomeronasal inputs to the rodent ventral striatum.

    PubMed

    Ubeda-Bañon, I; Novejarque, A; Mohedano-Moriano, A; Pro-Sistiaga, P; Insausti, R; Martinez-Garcia, F; Lanuza, E; Martinez-Marcos, A

    2008-03-18

    Vertebrates sense chemical signals through the olfactory and vomeronasal systems. In squamate reptiles, which possess the largest vomeronasal system of all vertebrates, the accessory olfactory bulb projects to the nucleus sphericus, which in turn projects to a portion of the ventral striatum known as olfactostriatum. Characteristically, the olfactostriatum is innervated by neuropeptide Y, tyrosine hydroxylase and serotonin immunoreactive fibers. In this study, the possibility that a structure similar to the reptilian olfactostriatum might be present in the mammalian brain has been investigated. Injections of dextran-amines have been aimed at the posteromedial cortical amygdaloid nucleus (the putative mammalian homologue of the reptilian nucleus sphericus) of rats and mice. The resulting anterograde labeling includes the olfactory tubercle, the islands of Calleja and sparse terminal fields in the shell of the nucleus accumbens and ventral pallidum. This projection has been confirmed by injections of retrograde tracers into the ventral striato-pallidum that render retrograde labeling in the posteromedial cortical amygdaloid nucleus. The analysis of the distribution of neuropeptide Y, tyrosine hydroxylase, serotonin and substance P in the ventral striato-pallidum of rats, and the anterograde tracing of the vomeronasal amygdaloid input in the same material confirm that, similar to reptiles, the ventral striatum of mammals includes a specialized vomeronasal structure (olfactory tubercle and islands of Calleja) displaying dense neuropeptide Y-, tyrosine hydroxylase- and serotonin-immunoreactive innervations. The possibility that parts of the accumbens shell and/or ventral pallidum could be included in the mammalian olfactostriatum cannot be discarded.

  4. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  5. Remote sensing inputs to water demand modeling

    NASA Technical Reports Server (NTRS)

    Estes, J. E.; Jensen, J. R.; Tinney, L. R.; Rector, M.

    1975-01-01

    In an attempt to determine the ability of remote sensing techniques to economically generate data required by water demand models, the Geography Remote Sensing Unit, in conjunction with the Kern County Water Agency of California, developed an analysis model. As a result it was determined that agricultural cropland inventories utilizing both high altitude photography and LANDSAT imagery can be conducted cost effectively. In addition, by using average irrigation application rates in conjunction with cropland data, estimates of agricultural water demand can be generated. However, more accurate estimates are possible if crop type, acreage, and crop specific application rates are employed. An analysis of the effect of saline-alkali soils on water demand in the study area is also examined. Finally, reference is made to the detection and delineation of water tables that are perched near the surface by semi-permeable clay layers. Soil salinity prediction, automated crop identification on a by-field basis, and a potential input to the determination of zones of equal benefit taxation are briefly touched upon.

  6. Cortical input in control of swallowing.

    PubMed

    Michou, Emilia; Hamdy, Shaheen

    2009-06-01

    This review presents a current synopsis of newer research in cortical control of swallowing and its relationship to advancing knowledge in the field of human swallowing neurophysiology. The intent is to highlight recent findings and to stimulate potential research questions not yet investigated. Advances in human brain imaging have led to a wealth of newer insights into the cortical and subcortical control of human swallowing. This includes a better understanding of the hemispheric contributions to swallowing control and the mechanisms that underlie recovery or compensation after neurological injury. Through advances in imaging and neuroimaging techniques, our knowledge of the neuroanatomy and physiology of swallowing has increased dramatically over the last decade. Integration and interconnection of the diverse swallowing cortical network and how sensory input influences swallowing cortical activation has started to provide a better understanding of the physiological mechanisms that underpin this exquisite yet fundamental sensorimotor function. Experimental paradigms for swallowing neural reorganization have begun to provide evidence for their translation into clinical practice for dysphagia rehabilitation.

  7. Modality of Input and Vocabulary Acquisition

    ERIC Educational Resources Information Center

    Sydorenko, Tetyana

    2010-01-01

    This study examines the effect of input modality (video, audio, and captions, i.e., on-screen text in the same language as audio) on (a) the learning of written and aural word forms, (b) overall vocabulary gains, (c) attention to input, and (d) vocabulary learning strategies of beginning L2 learners. Twenty-six second-semester learners of Russian…

  8. CREATING INPUT TABLES FROM WAPDEG FOR RIP

    SciTech Connect

    K.G. Mon

    1998-08-10

    The purpose of this calculation is to create tables for input into RIP ver. 5.18 (Integrated Probabilistic Simulator for Environmental Systems) from WAPDEG ver. 3.06 (Waste Package Degradation) output. This calculation details the creation of the RIP input tables for TSPA-VA REV.00.

  9. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  10. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  11. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  12. 7 CFR 3430.607 - Stakeholder input.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.607 Section 3430.607 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or via Web site), as well as through a notice in the Federal Register, from the...

  13. Computing Functions by Approximating the Input

    ERIC Educational Resources Information Center

    Goldberg, Mayer

    2012-01-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their…

  14. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following entities...

  15. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following entities...

  16. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Stakeholder input. 3430.907 Section 3430.907 Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... input and/or Web site), as well as through a notice in the Federal Register, from the following entities...

  17. EDP Applications to Musical Bibliography: Input Considerations

    ERIC Educational Resources Information Center

    Robbins, Donald C.

    1972-01-01

    The application of Electronic Data Processing (EDP) has been a boon in the analysis and bibliographic control of music. However, an extra step of encoding must be undertaken for input of music. The best hope to facilitate musical input is the development of an Optical Character Recognition (OCR) music-reading machine. (29 references) (Author/NH)

  18. Tools to Develop or Convert MOVES Inputs

    EPA Pesticide Factsheets

    The following tools are designed to help users develop inputs to MOVES and post-process the output. With the release of MOVES2014, EPA strongly encourages state and local agencies to develop local inputs based on MOVES fleet and activity categories.

  19. Input, Interaction, and Second Language Production.

    ERIC Educational Resources Information Center

    Gass, Susan M.; Varonis, Evangeline Marlos

    1994-01-01

    This study investigated the relationship among input, interaction, and second-language production among 16 native-nonnative dyads. The results indicated that both modified input and interaction initiated by the native speaker lead to greater comprehension by the nonnative speaker, as measured by task performance. (Contains 48 references.) (MDM)

  20. Making Input Comprehensible: Do Interactional Modifications Help?

    ERIC Educational Resources Information Center

    Pica, Teresa; And Others

    1990-01-01

    A pilot study of a larger project on second language comprehension under two input conditions is reported. The first condition is characterized by the availability of samples of target input that have been modified a priori toward greater semantic redundancy and transparency and less complex syntax. The second condition is characterized by the…

  1. Managing Input during Assistive Technology Product Design

    ERIC Educational Resources Information Center

    Choi, Young Mi

    2011-01-01

    Many different sources of input are available to assistive technology innovators during the course of designing products. However, there is little information on which ones may be most effective or how they may be efficiently utilized within the design process. The aim of this project was to compare how three types of input--from simulation tools,…

  2. Statistical identification of effective input variables. [SCREEN

    SciTech Connect

    Vaurio, J.K.

    1982-09-01

    A statistical sensitivity analysis procedure has been developed for ranking the input data of large computer codes in the order of sensitivity-importance. The method is economical for large codes with many input variables, since it uses a relatively small number of computer runs. No prior judgemental elimination of input variables is needed. The sceening method is based on stagewise correlation and extensive regression analysis of output values calculated with selected input value combinations. The regression process deals with multivariate nonlinear functions, and statistical tests are also available for identifying input variables that contribute to threshold effects, i.e., discontinuities in the output variables. A computer code SCREEN has been developed for implementing the screening techniques. The efficiency has been demonstrated by several examples and applied to a fast reactor safety analysis code (Venus-II). However, the methods and the coding are general and not limited to such applications.

  3. Understanding sideline jet noise using input-output analysis

    NASA Astrophysics Data System (ADS)

    Jeun, Jinah; Nichols, Joseph W.; Jovanovic, Mihailo R.

    2016-11-01

    We apply input-output analysis to high-speed turbulent jets to obtain the far-field acoustic response at different radiation angles. We consider both axisymmetric and higher azimuthal modes over a range of different frequencies to investigate the resulting noise spectra. At each frequency, singular value decomposition of the resolvent operator distinguishes between the optimal mode and several sub-optimal input-output modes by the magnitude of corresponding singular value. While both types of modes resemble wavepackets, the optimal mode associated with the largest singular value is superdirective in the peak noise radiation angle. Sub-optimal modes, in contrast, appear increasingly omnidirectional, rotating progressively to the sideline direction. Our analysis also recovers a broadening of the far-field acoustic spectra as the radiation angle increases. We show that a significant amount of the entire acoustic field can be captured by a superposition of a small number of coherent input-output modes. The LES data was produced as part of a Cascade Technologies STTR project sponsored by NAVAIR, under the supervision of Dr. John T. Spyropoulos. The LES calculations were performed at the ERDC supercomputer center.

  4. Power spectra of the natural input to the visual system.

    PubMed

    Pamplona, D; Triesch, J; Rothkopf, C A

    2013-05-03

    The efficient coding hypothesis posits that sensory systems are adapted to the regularities of their signal input so as to reduce redundancy in the resulting representations. It is therefore important to characterize the regularities of natural signals to gain insight into the processing of natural stimuli. While measurements of statistical regularity in vision have focused on photographic images of natural environments it has been much less investigated, how the specific imaging process embodied by the organism's eye induces statistical dependencies on the natural input to the visual system. This has allowed using the convenient assumption that natural image data are homogeneous across the visual field. Here we give up on this assumption and show how the imaging process in a human model eye influences the local statistics of the natural input to the visual system across the entire visual field. Artificial scenes with three-dimensional edge elements were generated and the influence of the imaging projection onto the back of a spherical model eye were quantified. These distributions show a strong radial influence of the imaging process on the resulting edge statistics with increasing eccentricity from the model fovea. This influence is further quantified through computation of the second order intensity statistics as a function of eccentricity from the center of projection using samples from the dead leaves image model. Using data from a naturalistic virtual environment, which allows generation of correctly projected images onto the model eye across the entire field of view, we quantified the second order dependencies as function of the position in the visual field using a new generalized parameterization of the power spectra. Finally, we compared this analysis with a commonly used natural image database, the van Hateren database, and show good agreement within the small field of view available in these photographic images. We conclude by providing a detailed

  5. Reticular thalamic responses to nociceptive inputs in anesthetized rats.

    PubMed

    Yen, Chen-Tung; Shaw, Fu-Zen

    2003-04-11

    The present study compares nociceptive responses of neurons in the reticular thalamic nucleus (RT) to those of the ventroposterior lateral nucleus (VPL). Extracellular single-unit activities of cells in the RT and VPL were recorded in anesthetized rats. Only units with identified tactile receptive fields in the forepaw or hindpaw were studied. In the first series of experiments, RT and VPL responses to pinching with a small artery clamp were tested with the rats under pentobarbital, urethane, ketamine, or halothane anesthesia. Under all types of anesthesia, many RT units were inhibited. Second, the specificity of the nociceptive response was tested by pinching and noxious heating of the unit's tactile receptive field. Of the 39 VPL units tested, 20 were excited by both types of noxious stimuli. In sharp contrast, of the 30 RT units tested, none were excited and 17 were inhibited. In a third series of experiments, low-intensity and beam-diffused CO(2) laser irradiation was used to activate peripheral nociceptive afferents. Wide-dynamic-range VPL units responded with short- and long-latency excitations. In contrast, RT units had short-latency excitation followed by long-latency inhibition. Nociceptive input inhibited RT units in less than 500 ms. We conclude that a significant portion of RT neurons were polysynaptically inhibited by nociceptive inputs. Since all the cells tested were excited by light tactile inputs, the somatosensory RT may serve in the role of a modality gate, which modifies (i.e. inhibits) tactile inputs while letting noxious inputs pass.

  6. Measuring Input Thresholds on an Existing Board

    NASA Technical Reports Server (NTRS)

    Kuperman, Igor; Gutrich, Daniel G.; Berkun, Andrew C.

    2011-01-01

    A critical PECL (positive emitter-coupled logic) interface to Xilinx interface needed to be changed on an existing flight board. The new Xilinx input interface used a CMOS (complementary metal-oxide semiconductor) type of input, and the driver could meet its thresholds typically, but not in worst-case, according to the data sheet. The previous interface had been based on comparison with an external reference, but the CMOS input is based on comparison with an internal divider from the power supply. A way to measure what the exact input threshold was for this device for 64 inputs on a flight board was needed. The measurement technique allowed an accurate measurement of the voltage required to switch a Xilinx input from high to low for each of the 64 lines, while only probing two of them. Directly driving an external voltage was considered too risky, and tests done on any other unit could not be used to qualify the flight board. The two lines directly probed gave an absolute voltage threshold calibration, while data collected on the remaining 62 lines without probing gave relative measurements that could be used to identify any outliers. The PECL interface was forced to a long-period square wave by driving a saturated square wave into the ADC (analog to digital converter). The active pull-down circuit was turned off, causing each line to rise rapidly and fall slowly according to the input s weak pull-down circuitry. The fall time shows up as a change in the pulse width of the signal ready by the Xilinx. This change in pulse width is a function of capacitance, pulldown current, and input threshold. Capacitance was known from the different trace lengths, plus a gate input capacitance, which is the same for all inputs. The pull-down current is the same for all inputs including the two that are probed directly. The data was combined, and the Excel solver tool was used to find input thresholds for the 62 lines. This was repeated over different supply voltages and

  7. Design of frequency domain multiplexing of TES signals by multi-input SQUIDs

    NASA Astrophysics Data System (ADS)

    Yamasaki, Noriko Y.; Masui, Kensuke; Mitsuda, Kazuhisa; Morooka, Toshimitsu; Nakayama, Satoshi; Takei, Yoh

    2006-04-01

    In frequency-domain Superconducting Quantum Interference Device (SQUID) multiplexing for Transition Edge Sensor (TES) readout, a magnetic field summation method utilizing multi-input SQUIDs has a fundamental merit of small degradation of signal-to-noise ratio. Independent wiring without common impedance avoids the cross talk current, and the current induced by magnetic coupling between the input coils is suppressed by the direct feedback at the summing point. A multi-input SQUID which has 8 input coils has been fabricated and requirements for Flux Locked Loop (FLL) circuits are summarized.

  8. Input-state approach to Boolean networks.

    PubMed

    Cheng, Daizhan

    2009-03-01

    This paper investigates the structure of Boolean networks via input-state structure. Using the algebraic form proposed by the author, the logic-based input-state dynamics of Boolean networks, called the Boolean control networks, is converted into an algebraic discrete-time dynamic system. Then the structure of cycles of Boolean control systems is obtained as compounded cycles. Using the obtained input-state description, the structure of Boolean networks is investigated, and their attractors are revealed as nested compounded cycles, called rolling gears. This structure explains why small cycles mainly decide the behaviors of cellular networks. Some illustrative examples are presented.

  9. Non-recursive sequential input deconvolution

    NASA Astrophysics Data System (ADS)

    Bernal, Dionisio

    2017-01-01

    A scheme for sequential deconvolution of inputs from measured outputs is presented. The key feature in the formulation is elimination of the initial state from the input-output relations by projecting the output in the left null space of the observability block. Removal of the initial state allows the sequential format of the deconvolution, essential for computational reasons, to be implemented non-recursively, assuring unconditional stability. Identifiability is realized when the input-output arrangement does not have transmission zeros, and observability and controllability are shown immaterial. Comparison of results from the scheme with those from Dynamic Programming highlights the benefits of eliminating the initial state.

  10. Wireless, relative-motion computer input device

    DOEpatents

    Holzrichter, John F.; Rosenbury, Erwin T.

    2004-05-18

    The present invention provides a system for controlling a computer display in a workspace using an input unit/output unit. A train of EM waves are sent out to flood the workspace. EM waves are reflected from the input unit/output unit. A relative distance moved information signal is created using the EM waves that are reflected from the input unit/output unit. Algorithms are used to convert the relative distance moved information signal to a display signal. The computer display is controlled in response to the display signal.

  11. Energy Input Flux in the Global Quiet-Sun Corona

    NASA Astrophysics Data System (ADS)

    Mac Cormack, Cecilia; Vásquez, Alberto M.; López Fuentes, Marcelo; Nuevo, Federico A.; Landi, Enrico; Frazin, Richard A.

    2017-07-01

    We present first results of a novel technique that provides, for the first time, constraints on the energy input flux at the coronal base (r ˜ 1.025 R ⊙) of the quiet Sun at a global scale. By combining differential emission measure tomography of EUV images, with global models of the coronal magnetic field, we estimate the energy input flux at the coronal base that is required to maintain thermodynamically stable structures. The technique is described in detail and first applied to data provided by the Extreme Ultraviolet Imager instrument, on board the Solar TErrestrial RElations Observatory mission, and the Atmospheric Imaging Assembly instrument, on board the Solar Dynamics Observatory mission, for two solar rotations with different levels of activity. Our analysis indicates that the typical energy input flux at the coronal base of magnetic loops in the quiet Sun is in the range ˜0.5-2.0 × 105 (erg s-1 cm-2), depending on the structure size and level of activity. A large fraction of this energy input, or even its totality, could be accounted for by Alfvén waves, as shown by recent independent observational estimates derived from determinations of the non-thermal broadening of spectral lines in the coronal base of quiet-Sun regions. This new tomography product will be useful for the validation of coronal heating models in magnetohydrodinamic simulations of the global corona.

  12. Examination of time-variable input effects in a nonlinear analogue magnetosphere model

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Klimas, A. J.; Roberts, D. A.

    1991-01-01

    The plasma physical analog model (an extension of the damped, harmonic-oscillator dripping faucet model) is employed to consider explicitly the effect of time-varying the inputs. This work is equivalent to considering the effects of northward and southward turnings of the interplanetary magnetic field for various periods of time. It is found that relatively extended episodes (not less than 2 hours) of turned-on input with shorter (about 1 hour) periods of turned-off input lead to model behavior much like the continuously driven case. Going to short input intervals with longer periods of zero input leads to highly irregular and dramatically fluctuating episodes of magnetotail unloading. These results give an insight into the diversity of apparent magnetospheric responses during relatively isolated substorm conditions. This work shows the absolutely critical interdependence (in a nonlinear dynamical system) of input phasing and internal magnetospheric response cycles.

  13. Examination of time-variable input effects in a nonlinear analogue magnetosphere model

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Klimas, A. J.; Roberts, D. A.

    1991-01-01

    The plasma physical analog model (an extension of the damped, harmonic-oscillator dripping faucet model) is employed to consider explicitly the effect of time-varying the inputs. This work is equivalent to considering the effects of northward and southward turnings of the interplanetary magnetic field for various periods of time. It is found that relatively extended episodes (not less than 2 hours) of turned-on input with shorter (about 1 hour) periods of turned-off input lead to model behavior much like the continuously driven case. Going to short input intervals with longer periods of zero input leads to highly irregular and dramatically fluctuating episodes of magnetotail unloading. These results give an insight into the diversity of apparent magnetospheric responses during relatively isolated substorm conditions. This work shows the absolutely critical interdependence (in a nonlinear dynamical system) of input phasing and internal magnetospheric response cycles.

  14. University Inputs, Outputs and Educational Technology

    ERIC Educational Resources Information Center

    Pickford, Michael

    1975-01-01

    Paper examines in general terms the characteristics of university inputs and outputs, brings to light some of the special features of an education "production process," and examines the role of educational technology. (Author)

  15. Scaling of global input-output networks

    NASA Astrophysics Data System (ADS)

    Liang, Sai; Qi, Zhengling; Qu, Shen; Zhu, Ji; Chiu, Anthony S. F.; Jia, Xiaoping; Xu, Ming

    2016-06-01

    Examining scaling patterns of networks can help understand how structural features relate to the behavior of the networks. Input-output networks consist of industries as nodes and inter-industrial exchanges of products as links. Previous studies consider limited measures for node strengths and link weights, and also ignore the impact of dataset choice. We consider a comprehensive set of indicators in this study that are important in economic analysis, and also examine the impact of dataset choice, by studying input-output networks in individual countries and the entire world. Results show that Burr, Log-Logistic, Log-normal, and Weibull distributions can better describe scaling patterns of global input-output networks. We also find that dataset choice has limited impacts on the observed scaling patterns. Our findings can help examine the quality of economic statistics, estimate missing data in economic statistics, and identify key nodes and links in input-output networks to support economic policymaking.

  16. 7 CFR 3430.907 - Stakeholder input.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) NATIONAL INSTITUTE OF FOOD AND... ADMINISTRATIVE PROVISIONS New Era Rural Technology Competitive Grants Program § 3430.907 Stakeholder input..., for technology development, applied research, and/or training. ...

  17. Combined LTP and LTD of modulatory inputs controls neuronal processing of primary sensory inputs.

    PubMed

    Doiron, Brent; Zhao, Yanjun; Tzounopoulos, Thanos

    2011-07-20

    A hallmark of brain organization is the integration of primary and modulatory pathways by principal neurons. However, the pathway interactions that shape primary input processing remain unknown. We investigated this problem in mouse dorsal cochlear nucleus (DCN) where principal cells integrate primary, auditory nerve input with modulatory, parallel fiber input. Using a combined experimental and computational approach, we show that combined LTP and LTD of parallel fiber inputs to DCN principal cells and interneurons, respectively, broaden the time window within which synaptic inputs summate. Enhanced summation depolarizes the resting membrane potential and thus lowers the response threshold to auditory nerve inputs. Combined LTP and LTD, by preserving the variance of membrane potential fluctuations and the membrane time constant, fixes response gain and spike latency as threshold is lowered. Our data reveal a novel mechanism mediating adaptive and concomitant homeostatic regulation of distinct features of neuronal processing of sensory inputs.

  18. Input-dependent wave attenuation in a critically-balanced model of cortex.

    PubMed

    Yan, Xiao-Hu; Magnasco, Marcelo O

    2012-01-01

    A number of studies have suggested that many properties of brain activity can be understood in terms of critical systems. However it is still not known how the long-range susceptibilities characteristic of criticality arise in the living brain from its local connectivity structures. Here we prove that a dynamically critically-poised model of cortex acquires an infinitely-long ranged susceptibility in the absence of input. When an input is presented, the susceptibility attenuates exponentially as a function of distance, with an increasing spatial attenuation constant (i.e., decreasing range) the larger the input. This is in direct agreement with recent results that show that waves of local field potential activity evoked by single spikes in primary visual cortex of cat and macaque attenuate with a characteristic length that also increases with decreasing contrast of the visual stimulus. A susceptibility that changes spatial range with input strength can be thought to implement an input-dependent spatial integration: when the input is large, no additional evidence is needed in addition to the local input; when the input is weak, evidence needs to be integrated over a larger spatial domain to achieve a decision. Such input-strength-dependent strategies have been demonstrated in visual processing. Our results suggest that input-strength dependent spatial integration may be a natural feature of a critically-balanced cortical network.

  19. Computing functions by approximating the input

    NASA Astrophysics Data System (ADS)

    Goldberg, Mayer

    2012-12-01

    In computing real-valued functions, it is ordinarily assumed that the input to the function is known, and it is the output that we need to approximate. In this work, we take the opposite approach: we show how to compute the values of some transcendental functions by approximating the input to these functions, and obtaining exact answers for their output. Our approach assumes only the most rudimentary knowledge of algebra and trigonometry, and makes no use of calculus.

  20. Influential input classification in probabilistic multimedia models

    SciTech Connect

    Maddalena, Randy L.; McKone, Thomas E.; Hsieh, Dennis P.H.; Geng, Shu

    1999-05-01

    Monte Carlo analysis is a statistical simulation method that is often used to assess and quantify the outcome variance in complex environmental fate and effects models. Total outcome variance of these models is a function of (1) the uncertainty and/or variability associated with each model input and (2) the sensitivity of the model outcome to changes in the inputs. To propagate variance through a model using Monte Carlo techniques, each variable must be assigned a probability distribution. The validity of these distributions directly influences the accuracy and reliability of the model outcome. To efficiently allocate resources for constructing distributions one should first identify the most influential set of variables in the model. Although existing sensitivity and uncertainty analysis methods can provide a relative ranking of the importance of model inputs, they fail to identify the minimum set of stochastic inputs necessary to sufficiently characterize the outcome variance. In this paper, we describe and demonstrate a novel sensitivity/uncertainty analysis method for assessing the importance of each variable in a multimedia environmental fate model. Our analyses show that for a given scenario, a relatively small number of input variables influence the central tendency of the model and an even smaller set determines the shape of the outcome distribution. For each input, the level of influence depends on the scenario under consideration. This information is useful for developing site specific models and improving our understanding of the processes that have the greatest influence on the variance in outcomes from multimedia models.

  1. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    A novel input filter compensation scheme for a buck regulator that eliminates the interaction between the input filter output impedance and the regulator control loop is presented. The scheme is implemented using a feedforward loop that senses the input filter state variables and uses this information to modulate the duty cycle signal. The feedforward design process presented is seen to be straightforward and the feedforward easy to implement. Extensive experimental data supported by analytical results show that significant performance improvement is achieved with the use of feedforward in the following performance categories: loop stability, audiosusceptibility, output impedance and transient response. The use of feedforward results in isolating the switching regulator from its power source thus eliminating all interaction between the regulator and equipment upstream. In addition the use of feedforward removes some of the input filter design constraints and makes the input filter design process simpler thus making it possible to optimize the input filter. The concept of feedforward compensation can also be extended to other types of switching regulators.

  2. Estimation of input energy in rocket-triggered lightning

    NASA Astrophysics Data System (ADS)

    Jayakumar, Vinod; Rakov, Vladimir A.; Miki, Megumu; Uman, Martin A.; Schnetzer, George H.; Rambo, Keith J.

    2006-03-01

    Electric fields in the immediate vicinity (within 0.1 to 1.6 m) of the triggered-lightning channel were measured with Pockels sensors at the International Center for Lightning Research and Testing at Camp Blanding, Florida. These fields and the associated currents measured at the base of a 2-m strike object were used to compute the input power and energy, each per unit channel length and as a function of time, associated with return strokes in rocket-triggered lightning. In doing so, we assumed that the vertical component of the electric field at horizontal distances of 0.1 to 1.6 m from the lightning attachment point is not much different from the longitudinal electric field inside the channel (Borovsky, 1995). The estimated mean input energy over the first 50 μs or so is between 103 and 104 J/m, consistent with predictions of gas dynamic models, but one to two orders of magnitude smaller than Krider et al.'s (1968) estimate for a natural-lightning first stroke, based on the conversion of measured optical energy to total energy using energy ratios observed in laboratory long-spark experiments. The mean channel radius and resistance per unit channel length at the instance of peak power are estimated to be 0.32 cm and 7.5 Ω/m, respectively.

  3. Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs

    PubMed Central

    McFarland, James M.; Cui, Yuwei; Butts, Daniel A.

    2013-01-01

    The computation represented by a sensory neuron's response to stimuli is constructed from an array of physiological processes both belonging to that neuron and inherited from its inputs. Although many of these physiological processes are known to be nonlinear, linear approximations are commonly used to describe the stimulus selectivity of sensory neurons (i.e., linear receptive fields). Here we present an approach for modeling sensory processing, termed the Nonlinear Input Model (NIM), which is based on the hypothesis that the dominant nonlinearities imposed by physiological mechanisms arise from rectification of a neuron's inputs. Incorporating such ‘upstream nonlinearities’ within the standard linear-nonlinear (LN) cascade modeling structure implicitly allows for the identification of multiple stimulus features driving a neuron's response, which become directly interpretable as either excitatory or inhibitory. Because its form is analogous to an integrate-and-fire neuron receiving excitatory and inhibitory inputs, model fitting can be guided by prior knowledge about the inputs to a given neuron, and elements of the resulting model can often result in specific physiological predictions. Furthermore, by providing an explicit probabilistic model with a relatively simple nonlinear structure, its parameters can be efficiently optimized and appropriately regularized. Parameter estimation is robust and efficient even with large numbers of model components and in the context of high-dimensional stimuli with complex statistical structure (e.g. natural stimuli). We describe detailed methods for estimating the model parameters, and illustrate the advantages of the NIM using a range of example sensory neurons in the visual and auditory systems. We thus present a modeling framework that can capture a broad range of nonlinear response functions while providing physiologically interpretable descriptions of neural computation. PMID:23874185

  4. Multi-input distributed classifiers for synthetic genetic circuits.

    PubMed

    Kanakov, Oleg; Kotelnikov, Roman; Alsaedi, Ahmed; Tsimring, Lev; Huerta, Ramón; Zaikin, Alexey; Ivanchenko, Mikhail

    2015-01-01

    For practical construction of complex synthetic genetic networks able to perform elaborate functions it is important to have a pool of relatively simple modules with different functionality which can be compounded together. To complement engineering of very different existing synthetic genetic devices such as switches, oscillators or logical gates, we propose and develop here a design of synthetic multi-input classifier based on a recently introduced distributed classifier concept. A heterogeneous population of cells acts as a single classifier, whose output is obtained by summarizing the outputs of individual cells. The learning ability is achieved by pruning the population, instead of tuning parameters of an individual cell. The present paper is focused on evaluating two possible schemes of multi-input gene classifier circuits. We demonstrate their suitability for implementing a multi-input distributed classifier capable of separating data which are inseparable for single-input classifiers, and characterize performance of the classifiers by analytical and numerical results. The simpler scheme implements a linear classifier in a single cell and is targeted at separable classification problems with simple class borders. A hard learning strategy is used to train a distributed classifier by removing from the population any cell answering incorrectly to at least one training example. The other scheme implements a circuit with a bell-shaped response in a single cell to allow potentially arbitrary shape of the classification border in the input space of a distributed classifier. Inseparable classification problems are addressed using soft learning strategy, characterized by probabilistic decision to keep or discard a cell at each training iteration. We expect that our classifier design contributes to the development of robust and predictable synthetic biosensors, which have the potential to affect applications in a lot of fields, including that of medicine and industry.

  5. Blurring the Inputs: A Natural Language Approach to Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Kleb, William L.; Thompson, Richard A.; Johnston, Christopher O.

    2007-01-01

    To document model parameter uncertainties and to automate sensitivity analyses for numerical simulation codes, a natural-language-based method to specify tolerances has been developed. With this new method, uncertainties are expressed in a natural manner, i.e., as one would on an engineering drawing, namely, 5.25 +/- 0.01. This approach is robust and readily adapted to various application domains because it does not rely on parsing the particular structure of input file formats. Instead, tolerances of a standard format are added to existing fields within an input file. As a demonstration of the power of this simple, natural language approach, a Monte Carlo sensitivity analysis is performed for three disparate simulation codes: fluid dynamics (LAURA), radiation (HARA), and ablation (FIAT). Effort required to harness each code for sensitivity analysis was recorded to demonstrate the generality and flexibility of this new approach.

  6. The atmospheric input of trace species to the world ocean

    NASA Astrophysics Data System (ADS)

    Duce, R. A.; Liss, P. S.; Merrill, J. T.; Atlas, E. L.; Buat-Menard, P.; Hicks, B. B.; Miller, J. M.; Prospero, J. M.; Arimoto, R.; Church, T. M.; Ellis, W.; Galloway, J. N.; Hansen, L.; Jickells, T. D.; Knap, A. H.; Reinhardt, K. H.; Schneider, B.; Soudine, A.; Tokos, J. J.; Tsunogai, S.; Wollast, R.; Zhou, M.

    1991-09-01

    Over the past decade it has become apparent that the atmosphere is a significant pathway for the transport of many natural and pollutant materials from the continents to the ocean. The atmospheric input of many of these species can have an impact (either positive or negative) on biological processes in the sea and on marine chemical cycling. For example, there is now evidence that the atmosphere may be an important transport path for such essential nutrients as iron and nitrogen in some regions. In this report we assess current data in this area, develop global scale estimates of the atmospheric fluxes of trace elements, mineral aerosol, nitrogen species, and synthetic organic compounds to the ocean; and compare the atmospheric input rates of these substances to their input via rivers. Trace elements considered were Pb, Cd, Zn, Cu, Ni, As, Hg, Sn, Al, Fe, Si, and P. Oxidized and reduced forms of nitrogen were considered, including nitrate and ammonium ions and the gaseous species NO, NO2, HNO3, and NH3. Synthetic organic compounds considered included polychlorinated biphenyls (PCBs), hexachlorocyclohexanes (HCHs), DDTs, chlordane, dieldrin, and hexachlorobenzenes (HCBs). Making this assessment was difficult because there are very few actual measurements of deposition rates of these substances to the ocean. However, there are considerably more data on the atmospheric concentrations of these species in aerosol and gaseous form. Mean concentration data for 10° × 10° ocean areas were determined from the available concentration data or from extrapolation of these data into other regions. These concentration distributions were then combined with appropriate exchange coefficients and precipitation fields to obtain the global wet and dry deposition fluxes. Careful consideration was given to atmospheric transport processes as well as to removal mechanisms and the physical and physicochemical properties of aerosols and gases. Only annual values were calculated. On a

  7. Interaction between rod and cone inputs in mixed-input bipolar cells in goldfish retina.

    PubMed

    Joselevitch, Christina; Kamermans, Maarten

    2007-05-15

    One class of goldfish bipolar cells, the mixed-input bipolar cell, contacts both rods and cones. Although the morphology of the different mixed-input bipolar cell subtypes has been described, insight into the interaction between rods and cones at the bipolar cell level is scarce. The aim of this study was to characterize this interaction in the different physiological types of mixed-input bipolar cells. We found mixed-input bipolar cells that depolarized, hyperpolarized, or showed a combination of the two types of response after center stimulation. The relative contributions of rod and cone inputs varied strongly in these cell populations. Depolarizing mixed-input bipolar cells are rod-dominated, having the highest sensitivity and the smallest dynamic range. Hyperpolarizing mixed-input bipolar cells, on the other hand, have a more balanced rod-cone input ratio. This extends their dynamic range and decreases their sensitivity. Finally, opponent mixed-input bipolar cells seem to be mostly cone-dominated, although some rod input is present. The antagonistic photoreceptor inputs form a push-pull system that makes these mixed-input bipolar cells very sensitive to changes in light intensity. Our finding that spectral tuning changes with light intensity conflicts with the idea that the separate non-opponent and opponent channels are related to coding of brightness and color, respectively. The organization of mixed-input bipolar cells into various classes with different dynamic ranges and absolute sensitivities might be a strategy to transmit information about all visual aspects most efficiently, given the sustained nature of bipolar cell responses and their limited voltage range.

  8. Six axis force feedback input device

    NASA Technical Reports Server (NTRS)

    Ohm, Timothy (Inventor)

    1998-01-01

    The present invention is a low friction, low inertia, six-axis force feedback input device comprising an arm with double-jointed, tendon-driven revolute joints, a decoupled tendon-driven wrist, and a base with encoders and motors. The input device functions as a master robot manipulator of a microsurgical teleoperated robot system including a slave robot manipulator coupled to an amplifier chassis, which is coupled to a control chassis, which is coupled to a workstation with a graphical user interface. The amplifier chassis is coupled to the motors of the master robot manipulator and the control chassis is coupled to the encoders of the master robot manipulator. A force feedback can be applied to the input device and can be generated from the slave robot to enable a user to operate the slave robot via the input device without physically viewing the slave robot. Also, the force feedback can be generated from the workstation to represent fictitious forces to constrain the input device's control of the slave robot to be within imaginary predetermined boundaries.

  9. Agricultural management affects below ground carbon input estimations

    NASA Astrophysics Data System (ADS)

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Mayer, Jochen

    2017-04-01

    Root biomass and rhizodeposition carbon (C release by living roots) are among the most relevant root parameters for studies of plant response to environmental change, soil C modelling or estimations of soil C sequestration. Below ground C inputs of agricultural crops are typically estimated from above ground biomass or yield, thereby implying constant below to above ground C ratios. Agricultural management practices affect above ground biomass considerably; however, their effects on below ground C inputs are only poorly understood. Our aims were therefore to (i) quantify root biomass C and rhizodeposition C of maize and wheat grown in agricultural management systems with different fertilization intensities and (ii) determine management effects on below/above ground C ratios and vertical distribution of below ground C inputs into soil. We conducted a comprehensive field study on two Swiss long-term field trials, DOK (Basel) and ZOFE (Zurich), with silage (DOK) and grain (ZOFE) maize in 2013 and winter wheat in 2014 (ZOFE) and 2015 (DOK). Three treatments in DOK (2 bio-organic, 1 mixed conventional) and 4 treatments in ZOFE (1 without, 1 manure, 2 mineral fertilization) reflected increasing fertilization intensities. In each of 4 replicated field plots per treatment, one microplot (steel tube of 0.5m depth) was inserted into soil, covering an area of 0.1m2. The microplot plants were pulse-labelled with 13C-CO2 in weekly intervals throughout the respective growing season. After harvest, the microplot soil was sampled in three soil depths (0 - 0.25, 0.25 - 0.5, 0.5 - 0.75m), roots were separated from soil by picking and wet sieving, and root and soil samples were analysed for their δ13C values by IRMS. Carbon rhizodeposition was calculated from 13C-excess values in bulk soil and roots. (i) Average root biomasses of maize and wheat were 1.9 and 1.4 tha 1, respectively, in DOK and 0.9 and 1.1 tha 1, respectively, in ZOFE. Average amounts of C rhizodeposition of maize

  10. Decontextualized language input and preschoolers' vocabulary development.

    PubMed

    Rowe, Meredith L

    2013-11-01

    This article discusses the importance of using decontextualized language, or language that is removed from the here and now including pretend, narrative, and explanatory talk, with preschool children. The literature on parents' use of decontextualized language is reviewed and results of a longitudinal study of parent decontextualized language input in relation to child vocabulary development are explained. The main findings are that parents who provide their preschool children with more explanations and narrative utterances about past or future events in the input have children with larger vocabularies 1 year later, even with quantity of parent input and child prior vocabulary skill controlled. Recommendations for how to engage children in decontextualized language conversations are provided. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  11. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input

    PubMed Central

    Beatty, Joseph A.; Song, Soomin C.

    2014-01-01

    Neurons respond to synaptic inputs in cell-type-specific ways. Each neuron type may thus respond uniquely to shared patterns of synaptic input. We applied statistically identical barrages of artificial synaptic inputs to four striatal cell types to assess differences in their responses to a realistic input pattern. Each interneuron type fired in phase with a specific input-frequency component. The fast-spiking interneuron fired in relation to the gamma-band (and higher) frequencies, the low-threshold spike interneuron to the beta-band frequencies, and the cholinergic neurons to the delta-band frequencies. Low-threshold spiking and cholinergic interneurons showed input impedance resonances at frequencies matching their spiking resonances. Fast-spiking interneurons showed resonance of input impedance but at lower than gamma frequencies. The spiny projection neuron's frequency preference did not have a fixed frequency but instead tracked its own firing rate. Spiny cells showed no input impedance resonance. Striatal interneurons are each tuned to a specific frequency band corresponding to the major frequency components of local field potentials. Their influence in the circuit may fluctuate along with the contribution of that frequency band to the input. In contrast, spiny neurons may tune to any of the frequency bands by a change in firing rate. PMID:25411465

  12. Harmonize input selection for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  13. Nuclear reaction inputs based on effective interactions

    NASA Astrophysics Data System (ADS)

    Hilaire, S.; Goriely, S.; Péru, S.; Dubray, N.; Dupuis, M.; Bauge, E.

    2016-11-01

    Extensive nuclear structure studies have been performed for decades using effective interactions as sole input. They have shown a remarkable ability to describe rather accurately many types of nuclear properties. In the early 2000s, a major effort has been engaged to produce nuclear reaction input data out of the Gogny interaction, in order to challenge its quality also with respect to nuclear reaction observables. The status of this project, well advanced today thanks to the use of modern computers as well as modern nuclear reaction codes, is reviewed and future developments are discussed.

  14. An update of input instructions to TEMOD

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The theory and operation of a FORTRAN 4 computer code, designated as TEMOD, used to calcuate tubular thermoelectric generator performance is described in WANL-TME-1906. The original version of TEMOD was developed in 1969. A description is given of additions to the mathematical model and an update of the input instructions to the code. Although the basic mathematical model described in WANL-TME-1906 has remained unchanged, a substantial number of input/output options were added to allow completion of module performance parametrics as required in support of the compact thermoelectric converter system technology program.

  15. Locked-mode avoidance and recovery without momentum input

    NASA Astrophysics Data System (ADS)

    Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.

    2015-11-01

    Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.

  16. Encoding of whisker input by cerebellar Purkinje cells

    PubMed Central

    Bosman, Laurens W J; Koekkoek, Sebastiaan K E; Shapiro, Joël; Rijken, Bianca F M; Zandstra, Froukje; van der Ende, Barry; Owens, Cullen B; Potters, Jan-Willem; de Gruijl, Jornt R; Ruigrok, Tom J H; De Zeeuw, Chris I

    2010-01-01

    The cerebellar cortex is crucial for sensorimotor integration. Sensorimotor inputs converge on cerebellar Purkinje cells via two afferent pathways: the climbing fibre pathway triggering complex spikes, and the mossy fibre–parallel fibre pathway, modulating the simple spike activities of Purkinje cells. We used, for the first time, the mouse whisker system as a model system to study the encoding of somatosensory input by Purkinje cells. We show that most Purkinje cells in ipsilateral crus 1 and crus 2 of awake mice respond to whisker stimulation with complex spike and/or simple spike responses. Single-whisker stimulation in anaesthetised mice revealed that the receptive fields of complex spike and simple spike responses were strikingly different. Complex spike responses, which proved to be sensitive to the amplitude, speed and direction of whisker movement, were evoked by only one or a few whiskers. Simple spike responses, which were not affected by the direction of movement, could be evoked by many individual whiskers. The receptive fields of Purkinje cells were largely intermingled, and we suggest that this facilitates the rapid integration of sensory inputs from different sources. Furthermore, we describe that individual Purkinje cells, at least under anaesthesia, may be bound in two functional ensembles based on the receptive fields and the synchrony of the complex spike and simple spike responses. The ‘complex spike ensembles’ were oriented in the sagittal plane, following the anatomical organization of the climbing fibres, while the ‘simple spike ensembles’ were oriented in the transversal plane, as are the beams of parallel fibres. PMID:20724365

  17. Identifying Inputs Toward Production Function Application in Education.

    ERIC Educational Resources Information Center

    Copa, George H.

    Production function applications to improve the efficiency of educational programs require identification of inputs and outputs and the establishment of a data bank to provide information on input and output variables. This generalizable input identification model organizes inputs for systems analysis at various levels of inputs and provides a…

  18. Comprehensible Input and Second Language Acquisition: What Is the Relationship?

    ERIC Educational Resources Information Center

    Loschky, Lester

    1994-01-01

    Examined the influence of input and interactional modifications on second-language acquisition, assigning 41 learners of Japanese to 1 of 3 experimental groups: (1) unmodified input with no interaction; (2) premodified input with no interaction; and (3) unmodified input with the chance for negotiated input. Results indicated that comprehension was…

  19. On the path to a science of patient input.

    PubMed

    Anderson, Margaret; Kimberly McCleary, K

    2016-04-27

    It is early days in the creation of a science of patient input. Participants are establishing rigorous methods to better integrate patient perspectives, needs, and priorities throughout biomedical and bioengineering R&D and care delivery to patients. To assess progress and unmet needs, FasterCures tracked more than 70 collaborative initiatives clustered in six categories that are defining and shaping this developing field. No longer is patient engagement a fanciful notion as it was at the start of our journey in 2003, and the rush of activity is welcome and vital.

  20. A probabilistic graphical model based stochastic input model construction

    SciTech Connect

    Wan, Jiang; Zabaras, Nicholas

    2014-09-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media.

  1. Multichannel analyzers at high rates of input

    NASA Technical Reports Server (NTRS)

    Rudnick, S. J.; Strauss, M. G.

    1969-01-01

    Multichannel analyzer, used with a gating system incorporating pole-zero compensation, pile-up rejection, and baseline-restoration, achieves good resolution at high rates of input. It improves resolution, reduces tailing and rate-contributed continuum, and eliminates spectral shift.

  2. 39 CFR 3020.92 - Public input.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Service submissions pursuant to § 3020.91 on its Web site and provide interested persons with an... 39 Postal Service 1 2011-07-01 2011-07-01 false Public input. 3020.92 Section 3020.92 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL PRODUCT LISTS Requests Initiated by the Postal Service to...

  3. 39 CFR 3020.92 - Public input.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Service submissions pursuant to § 3020.91 on its Web site and provide interested persons with an... 39 Postal Service 1 2012-07-01 2012-07-01 false Public input. 3020.92 Section 3020.92 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL PRODUCT LISTS Requests Initiated by the Postal Service to...

  4. 39 CFR 3020.92 - Public input.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Service submissions pursuant to § 3020.91 on its Web site and provide interested persons with an... 39 Postal Service 1 2014-07-01 2014-07-01 false Public input. 3020.92 Section 3020.92 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL PRODUCT LISTS Requests Initiated by the Postal Service to...

  5. 39 CFR 3020.92 - Public input.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Service submissions pursuant to § 3020.91 on its Web site and provide interested persons with an... 39 Postal Service 1 2013-07-01 2013-07-01 false Public input. 3020.92 Section 3020.92 Postal Service POSTAL REGULATORY COMMISSION PERSONNEL PRODUCT LISTS Requests Initiated by the Postal Service to...

  6. Minimum Input Techniques for Valley Oak Restocking

    Treesearch

    Elizabeth A. Bernhardt; Tedmund J. Swiecki

    1991-01-01

    We set up experiments at four locations in northern California to demonstrate minimum input techniques for restocking valley oak, Quercus lobata. Overall emergence of acorns planted in 1989 ranged from 47 to 61 percent. Use of supplemental irrigation had a significant positive effect on seedling growth at two of three sites. Mulch, of organic...

  7. Input and Intake in Language Acquisition

    ERIC Educational Resources Information Center

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  8. Instrumentation for measuring energy inputs to implements

    SciTech Connect

    Tompkins, F.D.; Wilhelm, L.R.

    1981-01-01

    A microcomputer-based instrumentation system for monitoring tractor operating parameters and energy inputs to implements was developed and mounted on a 75-power-takeoff-KW tractor. The instrumentation system, including sensors and data handling equipment, is discussed. 10 refs.

  9. Anomalous neuronal responses to fluctuated inputs

    NASA Astrophysics Data System (ADS)

    Hosaka, Ryosuke; Sakai, Yutaka

    2015-10-01

    The irregular firing of a cortical neuron is thought to result from a highly fluctuating drive that is generated by the balance of excitatory and inhibitory synaptic inputs. A previous study reported anomalous responses of the Hodgkin-Huxley neuron to the fluctuated inputs where an irregularity of spike trains is inversely proportional to an input irregularity. In the current study, we investigated the origin of these anomalous responses with the Hindmarsh-Rose neuron model, map-based models, and a simple mixture of interspike interval distributions. First, we specified the parameter regions for the bifurcations in the Hindmarsh-Rose model, and we confirmed that the model reproduced the anomalous responses in the dynamics of the saddle-node and subcritical Hopf bifurcations. For both bifurcations, the Hindmarsh-Rose model shows bistability in the resting state and the repetitive firing state, which indicated that the bistability was the origin of the anomalous input-output relationship. Similarly, the map-based model that contained bistability reproduced the anomalous responses, while the model without bistability did not. These results were supported by additional findings that the anomalous responses were reproduced by mimicking the bistable firing with a mixture of two different interspike interval distributions. Decorrelation of spike trains is important for neural information processing. For such spike train decorrelation, irregular firing is key. Our results indicated that irregular firing can emerge from fluctuating drives, even weak ones, under conditions involving bistability. The anomalous responses, therefore, contribute to efficient processing in the brain.

  10. Input-Based Incremental Vocabulary Instruction

    ERIC Educational Resources Information Center

    Barcroft, Joe

    2012-01-01

    This fascinating presentation of current research undoes numerous myths about how we most effectively learn new words in a second language. In clear, reader-friendly text, the author details the successful approach of IBI vocabulary instruction, which emphasizes the presentation of target vocabulary as input early on and the incremental (gradual)…

  11. Treatments of Precipitation Inputs to Hydrologic Models

    USDA-ARS?s Scientific Manuscript database

    Hydrological models are used to assess many water resources problems from agricultural use and water quality to engineering issues. The success of these models are dependent on correct parameterization; the most sensitive being the rainfall input time series. These records can come from land-based ...

  12. Selecting training inputs via greedy rank covering

    SciTech Connect

    Buchsbaum, A.L.; Santen, J.P.H. van

    1996-12-31

    We present a general method for selecting a small set of training inputs, the observations of which will suffice to estimate the parameters of a given linear model. We exemplify the algorithm in terms of predicting segmental duration of phonetic-segment feature vectors in a text-to-speech synthesizer, but the algorithm will work for any linear model and its associated domain.

  13. Input and Intake in Language Acquisition

    ERIC Educational Resources Information Center

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  14. Input, Interaction and Output: An Overview

    ERIC Educational Resources Information Center

    Gass, Susan; Mackey, Alison

    2006-01-01

    This paper presents an overview of what has come to be known as the "Interaction Hypothesis," the basic tenet of which is that through input and interaction with interlocutors, language learners have opportunities to notice differences between their own formulations of the target language and the language of their conversational…

  15. Adaptive random testing with combinatorial input domain.

    PubMed

    Huang, Rubing; Chen, Jinfu; Lu, Yansheng

    2014-01-01

    Random testing (RT) is a fundamental testing technique to assess software reliability, by simply selecting test cases in a random manner from the whole input domain. As an enhancement of RT, adaptive random testing (ART) has better failure-detection capability and has been widely applied in different scenarios, such as numerical programs, some object-oriented programs, and mobile applications. However, not much work has been done on the effectiveness of ART for the programs with combinatorial input domain (i.e., the set of categorical data). To extend the ideas to the testing for combinatorial input domain, we have adopted different similarity measures that are widely used for categorical data in data mining and have proposed two similarity measures based on interaction coverage. Then, we propose a new version named ART-CID as an extension of ART in combinatorial input domain, which selects an element from categorical data as the next test case such that it has the lowest similarity against already generated test cases. Experimental results show that ART-CID generally performs better than RT, with respect to different evaluation metrics.

  16. Soil Organic Carbon Input from Urban Turfgrasses

    USDA-ARS?s Scientific Manuscript database

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon sequ...

  17. Soil Organic Carbon Input from Urban Turfgrasses

    USDA-ARS?s Scientific Manuscript database

    Turfgrass is a major vegetation type in the urban and suburban environment. Management practices such as species selection, irrigation, and mowing may affect carbon (C) input and storage in these systems. Research was conducted to determine the rate of soil organic carbon (SOC) changes, soil carbon ...

  18. Young Children's Use of Microcomputer Input Devices.

    ERIC Educational Resources Information Center

    King, John; Alloway, Nola

    1993-01-01

    Reports on a study of the ability of preschoolers and first, second, and third graders to use three computer input devices: a joystick, a mouse, and a keyboard. For all grade levels, the mouse offered the greatest ease of use in manipulating icons, followed by the joystick and the keyboard. No effect for gender was found. (Contains 30 references.)…

  19. Preschooler's Use of Microcomputers and Input Devices.

    ERIC Educational Resources Information Center

    King, John; Alloway, Nola

    1992-01-01

    Describes a study that measured preschoolers' use of microcomputers in the following areas: (1) efficiency of use of input devices, including the keyboard, the joystick, and the mouse; (2) use during free-play activities, including interaction with the microcomputer and with each other; and (3) gender differences. (40 references) (LRW)

  20. Multiple Input Microcantilever Sensor with Capacitive Readout

    SciTech Connect

    Britton, C.L., Jr.; Brown, G.M.; Bryan, W.L.; Clonts, L.G.; DePriest, J.C.; Emergy, M.S.; Ericson, M.N.; Hu, Z.; Jones, R.L.; Moore, M.R.; Oden, P.I.; Rochelle, J.M.; Smith, S.F.; Threatt, T.D.; Thundat, T.; Turner, G.W.; Warmack, R.J.; Wintenberg, A.L.

    1999-03-11

    A surface-micromachined MEMS process has been used to demonstrate multiple-input chemical sensing using selectively coated cantilever arrays. Combined hydrogen and mercury-vapor detection was achieved with a palm-sized, self-powered module with spread-spectrum telemetry reporting.

  1. CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Wastewater Inputs

    EPA Pesticide Factsheets

    Intro to wastewater inputs associated with urbanization, overview of combined sewer overflows, overview of how wastewater inputs can contribute to enrichment or eutrophication, overview of how wastewater inputs can affect reproduction by stream fauna.

  2. Input-output Gaussian channels: theory and application

    NASA Astrophysics Data System (ADS)

    Tufarelli, Tommaso; Retzker, Alex; Plenio, Martin B.; Serafini, Alessio

    2012-09-01

    Setting off from the classic input-output formalism, we develop a theoretical framework to characterize the Gaussian quantum channels relating the initial correlations of an open bosonic system to those of properly identified output modes. We then proceed to apply our formalism to the case of quantum harmonic oscillators, such as the motional degrees of freedom of trapped ions or nanomechanical oscillators, interacting with travelling electromagnetic modes through cavity fields and subject to external white noise. We thus determine the degree of squeezing that can be transferred from an intra-cavity oscillator to light and show that the intra-cavity squeezing can be transformed into distributed optical entanglement if one can access both output fields of a two-sided cavity.

  3. Optimum employment of satellite indirect soundings as numerical model input

    NASA Technical Reports Server (NTRS)

    Horn, L. H.; Derber, J. C.; Koehler, T. L.; Schmidt, B. D.

    1981-01-01

    The characteristics of satellite-derived temperature soundings that would significantly affect their use as input for numerical weather prediction models were examined. Independent evaluations of satellite soundings were emphasized to better define error characteristics. Results of a Nimbus-6 sounding study reveal an underestimation of the strength of synoptic scale troughs and ridges, and associated gradients in isobaric height and temperature fields. The most significant errors occurred near the Earth's surface and the tropopause. Soundings from the TIROS-N and NOAA-6 satellites were also evaluated. Results again showed an underestimation of upper level trough amplitudes leading to weaker thermal gradient depictions in satellite-only fields. These errors show a definite correlation to the synoptic flow patterns. In a satellite-only analysis used to initialize a numerical model forecast, it was found that these synoptically correlated errors were retained in the forecast sequence.

  4. CASIM input parameters for various materials

    SciTech Connect

    Malensek, A.J.; Elwyn, A.J.

    1994-07-14

    During the past year, the computer program CASIM has been placed in a common area from which copies can be obtained by a wide array of users. The impetus for this arrangement was the need to have a standard code that could be maintained and transported to other platforms. In addition, an historical record would be kept of each version as the program evolved. CASIM requires a series of parameters (input by the user) that describe the medium in which the cascade develops. Presently a total of 9 materials can be defined. Occasions arise when one needs to know the properties of materials (elements, compounds, and mixtures) that have not been defined. Because it is desirable to have a uniform set of values for all CASIM users, this note presents a methodology for obtaining the input parameters for an arbitrary material. They are read in by the Subroutine CASIM{underscore}PROG from the user supplied file CASIM.DAT.

  5. Neuroprosthetics and the science of patient input.

    PubMed

    Benz, Heather L; Civillico, Eugene F

    2017-01-01

    Safe and effective neuroprosthetic systems are of great interest to both DARPA and CDRH, due to their innovative nature and their potential to aid severely disabled populations. By expanding what is possible in human-device interaction, these devices introduce new potential benefits and risks. Therefore patient input, which is increasingly important in weighing benefits and risks, is particularly relevant for this class of devices. FDA has been a significant contributor to an ongoing stakeholder conversation about the inclusion of the patient voice, working collaboratively to create a new framework for a patient-centered approach to medical device development. This framework is evolving through open dialogue with researcher and patient communities, investment in the science of patient input, and policymaking that is responsive to patient-centered data throughout the total product life cycle. In this commentary, we will discuss recent developments in patient-centered benefit-risk assessment and their relevance to the development of neural prosthetic systems.

  6. Energy input to the lower thermosphere

    NASA Technical Reports Server (NTRS)

    Johnson, F. S.

    1974-01-01

    The asymmetry in solar heat input to the upper atmosphere at the solstice, and the asymmetry in atomic oxygen production, are largely compensated by a large scale wind system towards the winter polar region. At magnetically disturbed times, atmospheric composition at high winter latitudes changes in such a way as to indicate that polar region heating by magnetic variations, energetic particle inputs, and current systems is more intense than solar heating at low latitudes, thus leading to a reversal of the normal pattern of upper atmospheric circulation. Uncertainties in the intensity of solar radiation responsible for upper atmospheric heating and oxygen dissociation, and uncertainties in the degree of oxygen dissociation in the upper atmosphere, are such that the average rates of eddy mixing may be significantly lower than frequently assumed for the lower thermosphere.

  7. Virtual input device with diffractive optical element

    NASA Astrophysics Data System (ADS)

    Wu, Ching Chin; Chu, Chang Sheng

    2005-02-01

    As a portable device, such as PDA and cell phone, a small size build in virtual input device is more convenient for complex input demand. A few years ago, a creative idea called 'virtual keyboard' is announced, but up to now there's still no mass production method for this idea. In this paper we'll show the whole procedure of making a virtual keyboard. First of all is the HOE (Holographic Optical Element) design of keyboard image which yields a fan angle about 30 degrees, and then use the electron forming method to copy this pattern in high precision. And finally we can product this element by inject molding. With an adaptive lens design we can get a well correct keyboard image in distortion and a wilder fan angle about 70 degrees. With a batter alignment of HOE pattern lithography, we"re sure to get higher diffraction efficiency.

  8. XBox Input -Version 1.0

    SciTech Connect

    2012-10-03

    Contains class for connecting to the Xbox 360 controller, displaying the user inputs {buttons, triggers, analog sticks), and controlling the rumble motors. Also contains classes for converting the raw Xbox 360 controller inputs into meaningful commands for the following objects: • Robot arms - Provides joint control and several tool control schemes • UGV's - Provides translational and rotational commands for "skid-steer" vehicles • Pan-tilt units - Provides several modes of control including velocity, position, and point-tracking • Head-mounted displays (HMO)- Controls the viewpoint of a HMO • Umbra frames - Controls the position andorientation of an Umbra posrot object • Umbra graphics window - Provides several modes of control for the Umbra OSG window viewpoint including free-fly, cursor-focused, and object following.

  9. Neutron star inner crust: Nuclear physics input

    SciTech Connect

    Steiner, Andrew W.

    2008-03-15

    A fully self-consistent model of the neutron star inner crust based upon models of the nucleonic equation of state at zero temperature is constructed. The results nearly match those of previous calculations of the inner crust given the same input equation of state. The extent to which the uncertainties in the symmetry energy, the compressibility, and the equation of state of low-density neutron matter affect the composition of the crust are examined. The composition and pressure of the crust is sensitive to the description of low-density neutron matter and the nuclear symmetry energy, and the latter dependence is nonmonotonic, giving larger nuclei for moderate symmetry energies and smaller nuclei for more extreme symmetry energies. Future nuclear experiments may help constrain the crust and future astrophysical observations may constrain the nuclear physics input.

  10. Multimodal interfaces with voice and gesture input

    SciTech Connect

    Milota, A.D.; Blattner, M.M.

    1995-07-20

    The modalities of speech and gesture have different strengths and weaknesses, but combined they create synergy where each modality corrects the weaknesses of the other. We believe that a multimodal system such a one interwining speech and gesture must start from a different foundation than ones which are based solely on pen input. In order to provide a basis for the design of a speech and gesture system, we have examined the research in other disciplines such as anthropology and linguistics. The result of this investigation was a taxonomy that gave us material for the incorporation of gestures whose meanings are largely transparent to the users. This study describes the taxonomy and gives examples of applications to pen input systems.

  11. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  12. Generalized Input-Output Inequality Systems

    SciTech Connect

    Liu Yingfan Zhang Qinghong

    2006-09-15

    In this paper two types of generalized Leontief input-output inequality systems are introduced. The minimax properties for a class of functions associated with the inequalities are studied. Sufficient and necessary conditions for the inequality systems to have solutions are obtained in terms of the minimax value. Stability analysis for the solution set is provided in terms of upper semi-continuity and hemi-continuity of set-valued maps.

  13. Aortic Input Impedance during Nitroprusside Infusion

    PubMed Central

    Pepine, Carl J.; Nichols, W. W.; Curry, R. C.; Conti, C. Richard

    1979-01-01

    Beneficial effects of nitroprusside infusion in heart failure are purportedly a result of decreased afterload through “impedance” reduction. To study the effect of nitroprusside on vascular factors that determine the total load opposing left ventricular ejection, the total aortic input impedance spectrum was examined in 12 patients with heart failure (cardiac index <2.0 liters/min per m2 and left ventricular end diastolic pressure >20 mm Hg). This input impedance spectrum expresses both mean flow (resistance) and pulsatile flow (compliance and wave reflections) components of vascular load. Aortic root blood flow velocity and pressure were recorded continuously with a catheter-tip electromagnetic velocity probe in addition to left ventricular pressure. Small doses of nitroprusside (9-19 μg/min) altered the total aortic input impedance spectrum as significant (P < 0.05) reductions in both mean and pulsatile components were observed within 60-90 s. With these acute changes in vascular load, left ventricular end diastolic pressure declined (44%) and stroke volume increased (20%, both P < 0.05). Larger nitroprusside doses (20-38 μg/min) caused additional alteration in the aortic input impedance spectrum with further reduction in left ventricular end diastolic pressure and increase in stroke volume but no additional changes in the impedance spectrum or stroke volume occurred with 39-77 μg/min. Improved ventricular function persisted when aortic pressure was restored to control values with simultaneous phenylephrine infusion in three patients. These data indicate that nitroprusside acutely alters both the mean and pulsatile components of vascular load to effect improvement in ventricular function in patients with heart failure. The evidence presented suggests that it may be possible to reduce vascular load and improve ventricular function independent of aortic pressure reduction. PMID:457874

  14. Minimizing structural vibrations with Input Shaping (TM)

    NASA Technical Reports Server (NTRS)

    Singhose, Bill; Singer, Neil

    1995-01-01

    A new method for commanding machines to move with increased dynamic performance was developed. This method is an enhanced version of input shaping, a patented vibration suppression algorithm. This technique intercepts a command input to a system command that moves the mechanical system with increased performance and reduced residual vibration. This document describes many advanced methods for generating highly optimized shaping sequences which are tuned to particular systems. The shaping sequence is important because it determines the trade off between move/settle time of the system and the insensitivity of the input shaping algorithm to variations or uncertainties in the machine which can be controlled. For example, a system with a 5 Hz resonance that takes 1 second to settle can be improved to settle instantaneously using a 0.2 shaping sequence (thus improving settle time by a factor of 5). This system could vary by plus or minus 15% in its natural frequency and still have no apparent vibration. However, the same system shaped with a 0.3 second shaping sequence could tolerate plus or minus 40% or more variation in natural frequency. This document describes how to generate sequences that maximize performance, sequences that maximize insensitivity, and sequences that trade off between the two. Several software tools are documented and included.

  15. Input Impedance of the Microstrip SQUID Amplifier

    NASA Astrophysics Data System (ADS)

    Kinion, Darin; Clarke, John

    2008-03-01

    We present measurements of the complex scattering parameters of microstrip SQUID amplifiers (MSA) cooled to 4.2 K. The input of the MSA is a microstrip transmission line in the shape of a square spiral coil surrounding the hole in the SQUID washer that serves as the ground plane. The input impedance is found by measuring the reverse scattering parameter (S11) and is described well by a low-loss transmission line model. We map the low-loss transmission line model into an equivalent parallel RLC circuit in which a resistance R, inductance L, and capacitance C are calculated from the resonant frequency, characteristic impedance and attenuation factor. Using this equivalent RLC circuit, we model the MSA and input network with a lumped circuit model that accurately predicts the observed gain given by the forward scattering parameter (S21). We will summarize results for different coil geometries and terminations as well as SQUID bias conditions. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 and by Lawrence Berkeley National Laboratory under Contract No. DE-AC02-05CH11231.

  16. Limits on negative information in language input.

    PubMed

    Morgan, J L; Travis, L L

    1989-10-01

    Hirsh-Pasek, Treiman & Schneiderman (1984) and Demetras, Post & Snow (1986) have recently suggested that certain types of parental repetitions and clarification questions may provide children with subtle cues to their grammatical errors. We further investigated this possibility by examining parental responses to inflectional over-regularizations and wh-question auxiliary-verb omission errors in the sets of transcripts from Adam, Eve and Sarah (Brown 1973). These errors were chosen because they are exemplars of overgeneralization, the type of mistake for which negative information is, in theory, most critically needed. Expansions and Clarification Questions occurred more often following ill-formed utterances in Adam's and Eve's input, but not in Sarah's. However, these corrective responses formed only a small proportion of all adult responses following Adam's and Eve's grammatical errors. Moreover, corrective responses appear to drop out of children's input while they continue to make overgeneralization errors. Whereas negative feedback may occasionally be available, in the light of these findings the contention that language input generally incorporates negative information appears to be unfounded.

  17. Light inputs shape the Arabidopsis circadian system.

    PubMed

    Wenden, Bénédicte; Kozma-Bognár, László; Edwards, Kieron D; Hall, Anthony J W; Locke, James C W; Millar, Andrew J

    2011-05-01

    The circadian clock is a fundamental feature of eukaryotic gene regulation that is emerging as an exemplar genetic sub-network for systems biology. The circadian system in Arabidopsis plants is complex, in part due to its phototransduction pathways, which are themselves under circadian control. We therefore analysed two simpler experimental systems. Etiolated seedlings entrained by temperature cycles showed circadian rhythms in the expression of genes that are important for the clock mechanism, but only a restricted set of downstream target genes were rhythmic in microarray assays. Clock control of phototransduction pathways remained robust across a range of light inputs, despite the arrhythmic transcription of light-signalling genes. Circadian interactions with light signalling were then analysed using a single active photoreceptor. Phytochrome A (phyA) is expected to be the only active photoreceptor that can mediate far-red (FR) light input to the circadian clock. Surprisingly, rhythmic gene expression was profoundly altered under constant FR light, in a phyA-dependent manner, resulting in high expression of evening genes and low expression of morning genes. Dark intervals were required to allow high-amplitude rhythms across the transcriptome. Clock genes involved in this response were identified by mutant analysis, showing that the EARLY FLOWERING 4 gene is a likely target and mediator of the FR effects. Both experimental systems illustrate how profoundly the light input pathways affect the plant circadian clock, and provide strong experimental manipulations to understand critical steps in the plant clock mechanism.

  18. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons.

    PubMed

    Bittner, Katie C; Grienberger, Christine; Vaidya, Sachin P; Milstein, Aaron D; Macklin, John J; Suh, Junghyup; Tonegawa, Susumu; Magee, Jeffrey C

    2015-08-01

    Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity, we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials were produced by an interaction between properly timed input from entorhinal cortex and hippocampal CA3. These conjunctive signals positively modulated the firing of previously established place fields and rapidly induced new place field formation to produce feature selectivity in CA1 that is a function of both entorhinal cortex and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps.

  19. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons

    PubMed Central

    Bittner, Katie C.; Grienberger, Christine; Vaidya, Sachin P.; Milstein, Aaron D.; Macklin, John J.; Suh, Junghyup; Tonegawa, Susumu; Magee, Jeffrey C.

    2016-01-01

    Feature selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly via generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials are produced by an interaction between properly timed input from entorhinal cortex (EC3) and hippocampal CA3. These conjunctive signals positively modulate the firing of previously established place fields and rapidly induce novel place field formation to produce feature selectivity in CA1 that is a function of both EC3 and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps. PMID:26167906

  20. Synaptic inputs to the ganglion cells in the tiger salamander retina.

    PubMed

    Wunk, D F; Werblin, F S

    1979-03-01

    The postsynaptic potentials (PSPs) that form the ganglion cell light response were isolated by polarizing the cell membrane with extrinsic currents while stimulating at either the center or surround of the cell's receptive field. The time-course and receptive field properties of the PSPs were correlated with those of the bipolar and amacrine cells. The tiger salamander retina contains four main types of ganglion cell: "on" center, "off" center, "on-off", and a "hybrid" cell that responds transiently to center, but sustainedly, to surround illumination. The results lead to these inferences. The on-ganglion cell receives excitatory synpatic input from the on bipolars and that synapse is "silent" in the dark. The off-ganglion cell receives excitatory synaptic input from the off bipolars with this synapse tonically active in the dark. The on-off and hybrid ganglion cells receive a transient excitatory input with narrow receptive field, not simply correlated with the activity of any presynaptic cell. All cell types receive a broad field transient inhibitory input, which apparently originates in the transient amacrine cells. Thus, most, but not all, ganglion cell responses can be explained in terms of synaptic inputs from bipolar and amacrine cells, integrated at the ganglion cell membrane.

  1. INDES User's guide multistep input design with nonlinear rotorcraft modeling

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The INDES computer program, a multistep input design program used as part of a data processing technique for rotorcraft systems identification, is described. Flight test inputs base on INDES improve the accuracy of parameter estimates. The input design algorithm, program input, and program output are presented.

  2. Water resources and environmental input-output analysis and its key study issues: a review

    NASA Astrophysics Data System (ADS)

    YANG, Z.; Xu, X.

    2013-12-01

    Used to study the material and energy flow in socioeconomic system, Input-Output Analysis(IOA) had been an effective analysis tool since its appearance. The research fields of Input-Output Analysis were increasingly expanded and studied in depth with the development of fundamental theory. In this paper, starting with introduction of theory development, the water resources input-output analysis and environmental input-output analysis had been specifically reviewed, and two key study issues mentioned as well. Input-Occupancy-Output Analysis and Grey Input-Output Analysis whose proposal and development were introduced firstly could be regard as the effective complements of traditional IOA theory. Because of the hypotheses of homogeneity, stability and proportionality, Input-Occupancy-Output Analysis and Grey Input-Output Analysis always had been restricted in practical application inevitably. In the applied study aspect, with investigation of abundant literatures, research of water resources input-output analysis and environmental input-output analysis had been comprehensively reviewed and analyzed. The regional water resources flow between different economic sectors had been systematically analyzed and stated, and several types of environmental input-output analysis models combined with other effective analysis tools concluded. In two perspectives in terms of external and inland aspect, the development of water resources and environmental input-output analysis model had been explained, and several typical study cases in recent years listed respectively. By the aid of sufficient literature analysis, the internal development tendency and study hotspot had also been summarized. In recent years, Chinese literatures reporting water resources consumption analysis and virtue water study had occupied a large share. Water resources consumption analysis had always been the emphasis of inland water resources IOA. Virtue water study had been considered as the new hotspot of

  3. Influence of proprioceptive input on parkinsonian tremor.

    PubMed

    Spiegel, Jörg; Fuss, Gerhard; Krick, Christoph; Schimrigk, Klaus; Dillmann, Ulrich

    2002-01-01

    Previous studies have shown a modification of parkinsonian tremor (PT) by proprioceptive input induced by passive joint movements. The authors investigated the impact of electrically evoked proprioceptive input on PT. In eight patients with PT they recorded surface EMG from the opponens pollicis muscle, and forearm extensors and flexors. Rhythmic electrical stimulation was applied to the ipsilateral median nerve at the wrist using a submaximal stimulus intensity and stimulus frequencies between two stimuli per second and five stimuli per second. The tremor frequency did not adapt to the stimulus frequency. Tremor frequency of parkinsonian resting tremor increased significantly in the directly stimulated opponens pollicis muscle (mean +/- standard deviation, 4.35 +/- 0.64 Hz without stimulation versus 4.53 +/- 0.68 Hz with stimulation; P < 0.05, paired t-test), the not directly stimulated forearm muscles (4.90 +/- 0.72 Hz versus 5.18 +/- 0.73 Hz, P < 0.001), and the upper arm muscles (5.13 +/- 0.61 Hz versus 5.36 +/- 0.68 Hz, P < 0.01). Furthermore, the parkinsonian postural tremor accelerated significantly during ipsilateral median nerve stimulation (5.31 +/- 0.99 Hz versus 5.44 +/- 1.03 Hz, P < 0.05). Parkinsonian resting tremor in the forearm muscles also accelerated significantly during ipsilateral ulnar nerve stimulation (4.85 +/- 0.57 Hz versus 5.05 +/- 0.65 Hz, P < 0.05). Contralateral median nerve stimulation had no significant effect. These results suggest a close interaction between proprioceptive input and PT generation.

  4. Hospital quality, efficiency, and input slack differentials.

    PubMed

    Valdmanis, Vivian G; Rosko, Michael D; Mutter, Ryan L

    2008-10-01

    To use an advance in data envelopment analysis (DEA) called congestion analysis to assess the trade-offs between quality and efficiency in U.S. hospitals. Urban U.S. hospitals in 34 states operating in 2004. Input and output data from 1,377 urban hospitals were taken from the American Hospital Association Annual Survey and the Medicare Cost Reports. Nurse-sensitive measures of quality came from the application of the Patient Safety Indicator (PSI) module of the Agency for Healthcare Research and Quality (AHRQ) Quality Indicator software to State Inpatient Databases (SID) provided by the Healthcare Cost and Utilization Project (HCUP). In the first step of the study, hospitals' relative output-based efficiency was determined in order to obtain a measure of congestion (i.e., the productivity loss due to the occurrence of patient safety events). The outputs were adjusted to account for this productivity loss, and a second DEA was performed to obtain input slack values. Differences in slack values between unadjusted and adjusted outputs were used to measure either relative inefficiency or a need for quality improvement. Overall, the hospitals in our sample could increase the total amount of outputs produced by an average of 26 percent by eliminating inefficiency. About 3 percent of this inefficiency can be attributed to congestion. Analysis of subsamples showed that teaching hospitals experienced no congestion loss. We found that quality of care could be improved by increasing the number of labor inputs in low-quality hospitals, whereas high-quality hospitals tended to have slack on personnel. Results suggest that reallocation of resources could increase the relative quality among hospitals in our sample. Further, higher quality in some dimensions of care need not be achieved as a result of higher costs or through reduced access to health care.

  5. Feed and manure use in low-N-input and high-N-input dairy cattle production systems

    NASA Astrophysics Data System (ADS)

    Powell, J. Mark

    2014-11-01

    In most parts of Sub-Saharan Africa fertilizers and feeds are costly, not readily available and used sparingly in agricultural production. In many parts of Western Europe, North America, and Oceania fertilizers and feeds are relatively inexpensive, readily available and used abundantly to maximize profitable agricultural production. A case study, dairy systems approach was used to illustrate how differences in feed and manure management in a low-N-input dairy cattle system (Niger, West Africa) and a high-N-input dairy production system (Wisconsin, USA) impact agricultural production and environmental N loss. In Niger, an additional daily feed N intake of 114 g per dairy animal unit (AU, 1000 kg live weight) could increase annual milk production from 560 to 1320 kg AU-1, and the additional manure N could greatly increase millet production. In Wisconsin, reductions in daily feed N intake of 100 g AU-1 would not greatly impact milk production but decrease urinary N excretion by 25% and ammonia and nitrous oxide emissions from manure by 18% to 30%. In Niger, compared to the practice of housing livestock and applying dung only onto fields, corralling cattle or sheep on cropland (to capture urinary N) increased millet yields by 25% to 95%. The additional millet grain due to dung applications or corralling would satisfy the annual food grain requirements of 2-5 persons; the additional forage would provide 120-300 more days of feed for a typical head of cattle; and 850 to 1600 kg ha-1 more biomass would be available for soil conservation. In Wisconsin, compared to application of barn manure only, corralling heifers in fields increased forage production by only 8% to 11%. The application of barn manure or corralling increased forage production by 20% to 70%. This additional forage would provide 350-580 more days of feed for a typical dairy heifer. Study results demonstrate how different approaches to feed and manure management in low-N-input and high-N-input dairy cattle

  6. Input data to run Landis-II

    USGS Publications Warehouse

    DeJager, Nathan R.

    2017-01-01

    The data are input data files to run the forest simulation model Landis-II for Isle Royale National Park. Files include: a) Initial_Comm, which includes the location of each mapcode, b) Cohort_ages, which includes the ages for each tree species-cohort within each mapcode, c) Ecoregions, which consist of different regions of soils and climate, d) Ecoregion_codes, which define the ecoregions, and e) Species_Params, which link the potential establishment and growth rates for each species with each ecoregion.

  7. Intelligent Graph Layout Using Many Users' Input.

    PubMed

    Yuan, Xiaoru; Che, Limei; Hu, Yifan; Zhang, Xin

    2012-12-01

    In this paper, we propose a new strategy for graph drawing utilizing layouts of many sub-graphs supplied by a large group of people in a crowd sourcing manner. We developed an algorithm based on Laplacian constrained distance embedding to merge subgraphs submitted by different users, while attempting to maintain the topological information of the individual input layouts. To facilitate collection of layouts from many people, a light-weight interactive system has been designed to enable convenient dynamic viewing, modification and traversing between layouts. Compared with other existing graph layout algorithms, our approach can achieve more aesthetic and meaningful layouts with high user preference.

  8. Example of input-output analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The thirty sectors included in the ECASTAR energy input-output model were listed. Five of these belong to energy producing sectors, fifteen to manufacturing industries, two to residential and commercial sectors, and eight to service industries. The model is capable of tracing impacts of an action in three dimensions: dollars, BTU's of energy, and labor. Four conservation actions considered were listed and then discussed separately, dealing with the following areas: increase in fuel efficiency, reduction in fuel used by the transportation and warehousing group, manufacturing of smaller automobiles, and a communications/transportation trade-off.

  9. Lattices of processes in graphs with inputs

    SciTech Connect

    Shakhbazyan, K.V.

    1995-09-01

    This article is a continuation of others work, presenting a detailed analysis of finite lattices of processes in graphs with input nodes. Lattices of processes in such graphs are studied by representing the lattices in the form of an algebra of pairs. We define the algebra of pairs somewhat generalizing the definition. Let K and D be bounded distributive lattices. A sublattice {delta} {contained_in} K x D is called an algebra of pairs if for all K {element_of} K we have (K, 1{sub D}) {element_of} {delta} and for all d {element_of} D we have (O{sub K}).

  10. Approximate input physics for stellar modelling

    NASA Astrophysics Data System (ADS)

    Pols, Onno R.; Tout, Christopher A.; Eggleton, Peter P.; Han, Zhanwen

    1995-06-01

    We present a simple and efficient, yet reasonably accurate, equation of state, which at the moderately low temperatures and high densities found in the interiors of stars less massive than the Sun is substantially more accurate than its predecessor by Eggleton, Faulkner & Flannery. Along with the most recently available values in tabular form of opacities, neutrino loss rates, and nuclear reaction rates for a selection of the most important reactions, this provides a convenient package of input physics for stellar modelling. We briefly discuss a few results obtained with the updated stellar evolution code.

  11. Echo state property linked to an input: exploring a fundamental characteristic of recurrent neural networks.

    PubMed

    Manjunath, G; Jaeger, H

    2013-03-01

    The echo state property is a key for the design and training of recurrent neural networks within the paradigm of reservoir computing. In intuitive terms, this is a passivity condition: a network having this property, when driven by an input signal, will become entrained by the input and develop an internal response signal. This excited internal dynamics can be seen as a high-dimensional, nonlinear, unique transform of the input with a rich memory content. This view has implications for understanding neural dynamics beyond the field of reservoir computing. Available definitions and theorems concerning the echo state property, however, are of little practical use because they do not relate the network response to temporal or statistical properties of the driving input. Here we present a new definition of the echo state property that directly connects it to such properties. We derive a fundamental 0-1 law: if the input comes from an ergodic source, the network response has the echo state property with probability one or zero, independent of the given network. Furthermore, we give a sufficient condition for the echo state property that connects statistical characteristics of the input to algebraic properties of the network connection matrix. The mathematical methods that we employ are freshly imported from the young field of nonautonomous dynamical systems theory. Since these methods are not yet well known in neural computation research, we introduce them in some detail. As a side story, we hope to demonstrate the eminent usefulness of these methods.

  12. Two-Input Enzymatic Logic Gates Made Sigmoid by Modifications of the Biocatalytic Reaction Cascades

    SciTech Connect

    Zavalov, Oleksandr; Bocharova, Vera; Halamek, Jan; Halamkova, Lenka; Korkmaz, Sevim; Arugula, Mary; Chinnapareddy, Soujanya; Katz, Evgeny; Privman, Vladimir

    2012-01-01

    Computing based on biochemical processes is a newest rapidly developing field of unconventional information and signal processing. In this paper we present results of our research in the field of biochemical computing and summarize the obtained numerical and experimental data for implementations of the standard two-input OR and AND gates with double-sigmoid shape of the output signal. This form of response was obtained as a function of the two inputs in each of the realized biochemical systems. The enzymatic gate processes in the first system were activated with two chemical inputs and resulted in optically detected chromogen oxidation, which happens when either one or both of the inputs are present. In this case, the biochemical system is functioning as the OR gate. We demonstrate that the addition of a filtering biocatalytic process leads to a considerable reduction of the noise transmission factor and the resulting gate response has sigmoid shape in both inputs. The second system was developed for functioning as an AND gate, where the output signal was activated only by a simultaneous action of two enzymatic biomarkers. This response can be used as an indicator of liver damage, but only if both of these of the inputs are present at their elevated, pathophysiological values of concentrations. A kinetic numerical model was developed and used to estimate the range of parameters for which the experimentally realized logic gate is close to optimal. We also analyzed the system to evaluate its noise-handling properties.

  13. Global sensitivity analysis approach for input selection and system identification purposes--a new framework for feedforward neural networks.

    PubMed

    Fock, Eric

    2014-08-01

    A new algorithm for the selection of input variables of neural network is proposed. This new method, applied after the training stage, ranks the inputs according to their importance in the variance of the model output. The use of a global sensitivity analysis technique, extended Fourier amplitude sensitivity test, gives the total sensitivity index for each variable, which allows for the ranking and the removal of the less relevant inputs. Applied to some benchmarking problems in the field of features selection, the proposed approach shows good agreement in keeping the relevant variables. This new method is a useful tool for removing superfluous inputs and for system identification.

  14. Processing in (linear) systems with stochastic input

    NASA Astrophysics Data System (ADS)

    Nutu, Catalin Silviu; Axinte, Tiberiu

    2016-12-01

    The paper is providing a different approach to real-world systems, such as micro and macro systems of our real life, where the man has little or no influence on the system, either not knowing the rules of the respective system or not knowing the input of the system, being thus mainly only spectator of the system's output. In such a system, the input of the system and the laws ruling the system could be only "guessed", based on intuition or previous knowledge of the analyzer of the respective system. But, as we will see in the paper, it exists also another, more theoretical and hence scientific way to approach the matter of the real-world systems, and this approach is mostly based on the theory related to Schrödinger's equation and the wave function associated with it and quantum mechanics as well. The main results of the paper are regarding the utilization of the Schrödinger's equation and related theory but also of the Quantum mechanics, in modeling real-life and real-world systems.

  15. [Prosody, speech input and language acquisition].

    PubMed

    Jungheim, M; Miller, S; Kühn, D; Ptok, M

    2014-04-01

    In order to acquire language, children require speech input. The prosody of the speech input plays an important role. In most cultures adults modify their code when communicating with children. Compared to normal speech this code differs especially with regard to prosody. For this review a selective literature search in PubMed and Scopus was performed. Prosodic characteristics are a key feature of spoken language. By analysing prosodic features, children gain knowledge about underlying grammatical structures. Child-directed speech (CDS) is modified in a way that meaningful sequences are highlighted acoustically so that important information can be extracted from the continuous speech flow more easily. CDS is said to enhance the representation of linguistic signs. Taking into consideration what has previously been described in the literature regarding the perception of suprasegmentals, CDS seems to be able to support language acquisition due to the correspondence of prosodic and syntactic units. However, no findings have been reported, stating that the linguistically reduced CDS could hinder first language acquisition.

  16. Optimization of input-constrained systems

    NASA Astrophysics Data System (ADS)

    Malki, Suleyman; Spaanenburg, Lambert

    2009-05-01

    The computational demands of algorithms are rapidly growing. The naive implementation uses extended doubleprecision floating-point numbers and has therefore extreme difficulties in maintaining real-time performance. For fixedpoint numbers, the value representation pushes in two directions (value range and step size) to set the applicationdependent word size. In the general case, checking all combinations of all different values on all system inputs will easily become computationally infeasible. Checking corner cases only helps to reduce the combinatorial explosion, as still checking for accuracy and precision to limit word size remains a considerable effort. A range of evolutionary techniques have been tried where the sheer size of the problem withstands an extensive search. When the value range can be limited, the problem becomes tractable and a constructive approach becomes feasible. We propose an approach that is reminiscent of the Quine-Mc.Cluskey logic minimization procedure. Next to the conjunctive search as popular in Boolean minimization, we investigate the disjunctive approach that starts from a presumed minimal word size. To eliminate the occurrence of anomalies, this still has to be checked for larger word sizes. The procedure has initially been implemented using Java and Matlab. We have applied the above procedure to feed-forward and to cellular neural networks (CNN) as typical examples of input-constrained systems. In the case of hole-filling by means of a CNN, we find that the 1461 different coefficient sets can be reduced to 360, each giving robust behaviour on 7-bits internal words.

  17. Tilt compensated MOEMS projector as input device

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Heberer, Andreas; Gerwig, Christian; Nauber, Petra; Scholles, Michael; Lakner, Hubert

    2007-02-01

    Silicon micro machining once headed into two directions: MEMS (micro electro mechanical systems) based sensors like accelerometers and gyroscopes on the one hand, MOEMS (micro opto electro mechanical systems) based actuators like scanner mirrors on the other hand. Now both directions meet again: A tilt compensated projector module uses a two dimensional excited scanner mirror as well as accelerometers and gyroscopes. The projector module can have a minimum size of 30 x 15 x 15 mm 3 with a monochrome red laser source (λ = 635 nm). It reaches a resolution of 640 x 480 pixels (VGA) and a frame rate of 50fps. Colour projection requires lager size due to the lack of compact green laser sources. The tilt and roll angles are measured statically by a three axes accelerometer, fast movement is detected dynamically by three single axis gyroscopes. Thus tilt of the projection systems was compensated successfully. The dynamic range was set to 300 x 300 pixels for sufficient system dynamic. Furthermore the motion detection was used to achieve control and input device functions. The first demonstration and test system consists of a projector mounted at the axis of a PC racing wheel together with the additional inertial measurement unit (IMU) system. It was shown that projection and input function work well together. Using this approach, new possibilities for hand-held devices arise in the close future.

  18. Ground motion input in seismic evaluation studies

    SciTech Connect

    Sewell, R.T.; Wu, S.C.

    1996-07-01

    This report documents research pertaining to conservatism and variability in seismic risk estimates. Specifically, it examines whether or not artificial motions produce unrealistic evaluation demands, i.e., demands significantly inconsistent with those expected from real earthquake motions. To study these issues, two types of artificial motions are considered: (a) motions with smooth response spectra, and (b) motions with realistic variations in spectral amplitude across vibration frequency. For both types of artificial motion, time histories are generated to match target spectral shapes. For comparison, empirical motions representative of those that might result from strong earthquakes in the Eastern U.S. are also considered. The study findings suggest that artificial motions resulting from typical simulation approaches (aimed at matching a given target spectrum) are generally adequate and appropriate in representing the peak-response demands that may be induced in linear structures and equipment responding to real earthquake motions. Also, given similar input Fourier energies at high-frequencies, levels of input Fourier energy at low frequencies observed for artificial motions are substantially similar to those levels noted in real earthquake motions. In addition, the study reveals specific problems resulting from the application of Western U.S. type motions for seismic evaluation of Eastern U.S. nuclear power plants.

  19. Use of input uncertainty and model sensitivity to guide site exploration

    USGS Publications Warehouse

    Graettinger, A.J.; Reeves, H.W.; Lee, J.; Dethan, D.; ,

    2003-01-01

    Three Quantitatively Directed Exploration (QDE) methods to identify optimum field sampling locations based on model input covariance and model sensitivity are presented. The first method bases site exploration only on the spatial variation in the uncertainty of input properties. The second method uses only the spatial variation in model sensitivities. The third method uses a first-order second-moment (FOSM) method to estimate the spatial variation in the output covariance. The FOSM method estimates output uncertainty using the product of the input covariance and model sensitivity. The three methods are illustrated by means of a synthetic groundwater site simulated with MODFLOW-2000. The groundwater-flow model computes piezometric head and the sensitivity of head to changes in input values. The QDE methods are evaluated by comparing model results to the "true" head. For the synthetic site used in this study, the most effective QDE method was the FOSM method.

  20. Input to interaction to instruction: three key shifts in the history of child language research.

    PubMed

    Snow, Catherine E

    2014-07-01

    In the early years of the Journal of Child Language, there was considerable disagreement about the role of language input or adult-child interaction in children's language acquisition. The view that quantity and quality of input to language-learning children is relevant to their language development has now become widely accepted as a principle guiding advice to parents and the design of early childhood education programs, even if it is not yet uncontested in the field of language development. The focus on variation in the language input to children acquires particular educational relevance when we consider variation in access to academic language - features of language particularly valued in school and related to success in reading and writing. Just as many children benefit from language environments that are intentionally designed to ensure adequate quantity and quality of input, even more probably need explicit instruction in the features of language that characterize its use for academic purposes.

  1. A Role for Synaptic Input Distribution in a Dendritic Computation of Motion Direction in the Retina.

    PubMed

    Vlasits, Anna L; Morrie, Ryan D; Tran-Van-Minh, Alexandra; Bleckert, Adam; Gainer, Christian F; DiGregorio, David A; Feller, Marla B

    2016-03-16

    The starburst amacrine cell in the mouse retina presents an opportunity to examine the precise role of sensory input location on neuronal computations. Using visual receptive field mapping, glutamate uncaging, two-photon Ca(2+) imaging, and genetic labeling of putative synapses, we identify a unique arrangement of excitatory inputs and neurotransmitter release sites on starburst amacrine cell dendrites: the excitatory input distribution is skewed away from the release sites. By comparing computational simulations with Ca(2+) transients recorded near release sites, we show that this anatomical arrangement of inputs and outputs supports a dendritic mechanism for computing motion direction. Direction-selective Ca(2+) transients persist in the presence of a GABA-A receptor antagonist, though the directional tuning is reduced. These results indicate a synergistic interaction between dendritic and circuit mechanisms for generating direction selectivity in the starburst amacrine cell.

  2. The importance of mineralogical input into geometallurgy programs

    USGS Publications Warehouse

    Hoal, K. Olson; Woodhead, J.D.; Smith, Kathleen S.

    2013-01-01

    Mineralogy is the link between ore formation and ore extraction. It is the most fundamental component of geomet programs, and the most important aspect of a life-of-project approach to mineral resource projects. Understanding orebodies is achieved by understanding the mineralogy and texture of the materials, throughout the process, because minerals hold the information required to unlock the value they contain. Geomet mineralogy programs absolutely require the appropriate expertise and at least three steps of mineral characterisation prior to using semi-automated or other methods: field examination, thorough core logging, and optical microscopy. Economic geological inputs for orebody characterisation are necessary for orebody understanding, and are exemplified by current research in the Zambian Copperbelt, where revised sequence stratigraphy and understanding of alteration, metasomatism and metamorphism can be used to predict topical issues at mine sites. Environmental inputs for sustainability characterisation are demonstrated by recent work on tailings from the Leadville, Colorado, USA area, including linking mineralogy to water quality issues. Risk assessments need to take into account the technical uncertainties around geological variability and mineral extractability, and mineralogy is the only metric that can be used to make this risk contribution.

  3. Residential oil burners with low input and two stages firing

    SciTech Connect

    Butcher, T.; Krajewski, R.; Leigh, R.

    1997-12-31

    The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

  4. Partial Granger causality--eliminating exogenous inputs and latent variables.

    PubMed

    Guo, Shuixia; Seth, Anil K; Kendrick, Keith M; Zhou, Cong; Feng, Jianfeng

    2008-07-15

    Attempts to identify causal interactions in multivariable biological time series (e.g., gene data, protein data, physiological data) can be undermined by the confounding influence of environmental (exogenous) inputs. Compounding this problem, we are commonly only able to record a subset of all related variables in a system. These recorded variables are likely to be influenced by unrecorded (latent) variables. To address this problem, we introduce a novel variant of a widely used statistical measure of causality--Granger causality--that is inspired by the definition of partial correlation. Our 'partial Granger causality' measure is extensively tested with toy models, both linear and nonlinear, and is applied to experimental data: in vivo multielectrode array (MEA) local field potentials (LFPs) recorded from the inferotemporal cortex of sheep. Our results demonstrate that partial Granger causality can reveal the underlying interactions among elements in a network in the presence of exogenous inputs and latent variables in many cases where the existing conditional Granger causality fails.

  5. Cortical network reorganization guided by sensory input features.

    PubMed

    Kilgard, Michael P; Pandya, Pritesh K; Engineer, Navzer D; Moucha, Raluca

    2002-12-01

    Sensory experience alters the functional organization of cortical networks. Previous studies using behavioral training motivated by aversive or rewarding stimuli have demonstrated that cortical plasticity is specific to salient inputs in the sensory environment. Sensory experience associated with electrical activation of the basal forebrain (BasF) generates similar input specific plasticity. By directly engaging plasticity mechanisms and avoiding extensive behavioral training, BasF stimulation makes it possible to efficiently explore how specific sensory features contribute to cortical plasticity. This review summarizes our observations that cortical networks employ a variety of strategies to improve the representation of the sensory environment. Different combinations of receptive-field, temporal, and spectrotemporal plasticity were generated in primary auditory cortex neurons depending on the pitch, modulation rate, and order of sounds paired with BasF stimulation. Simple tones led to map expansion, while modulated tones altered the maximum cortical following rate. Exposure to complex acoustic sequences led to the development of combination-sensitive responses. This remodeling of cortical response characteristics may reflect changes in intrinsic cellular mechanisms, synaptic efficacy, and local neuronal connectivity. The intricate relationship between the pattern of sensory activation and cortical plasticity suggests that network-level rules alter the functional organization of the cortex to generate the most behaviorally useful representation of the sensory environment.

  6. Physiological properties of brain-machine interface input signals.

    PubMed

    Slutzky, Marc W; Flint, Robert D

    2017-08-01

    Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability. Copyright © 2017 the American Physiological Society.

  7. Effect of the shrinking dipole on solar-terrestrial energy input to the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    McPherron, R. L.

    2011-12-01

    The global average temperature of the Earth is rising rapidly. This rise is primarily attributed to the release of greenhouse gases as a result of human activity. However, it has been argued that changes in radiation from the Sun might play a role. Most energy input to the Earth is light in the visible spectrum. Our best measurements suggest this power input has been constant for the last 40 years (the space age) apart from a small 11-year variation due to the solar cycle of sunspot activity. Another possible energy input from the Sun is the solar wind. The supersonic solar wind carries the magnetic field of the Sun into the solar system. As it passes the Earth it can connect to the Earth's magnetic field whenever it is antiparallel t the Earth's field. This connection allows mass, momentum, and energy from the solar wind to enter the magnetosphere producing geomagnetic activity. Ultimately much of this energy is deposited at high latitudes in the form of particle precipitation (aurora) and heating by electrical currents. Although the energy input by this process is miniscule compared to that from visible radiation it might alter the absorption of visible radiation. Two other processes affected by the solar cycle are atmospheric entry of galactic cosmic rays (GCR) and solar energetic protons (SEP). A weak solar magnetic field at sunspot minimum facilitates GCR entry which has been implicated in creation of clouds. Large coronal mass ejections and solar flares create SEP at solar maximum. All of these alternative energy inputs and their effects depend on the strength of the Earth's magnetic field. Currently the Earth's field is decreasing rapidly and conceivably might reverse polarity in 1000 years. In this paper we describe the changes in the Earth's magnetic field and how this might affect GCR, SEP, electrical heating, aurora, and radio propagation. Whether these effects are important in global climate change can only be determined by detailed physical models.

  8. Garbage In Garbage Out Garbage In : Improving the Inputs and Atmospheric Feedbacks in Seasonal Snowpack Modeling

    NASA Astrophysics Data System (ADS)

    Gutmann, E. D.

    2016-12-01

    Without good input data, almost any model will produce bad output; however, alpine environments are extremely difficult places to make measurements of those inputs. Perhaps the least well known input is precipitation, but almost as important are temperature, wind, humidity, and radiation. Recent advances in atmospheric modeling have improved the fidelity of the output such that model output is sometimes better than interpolated observations, particularly for precipitation; however these models come with a tremendous computational cost. We describe the Intermediate Complexity Atmospheric Research model (ICAR) as one path to a computationally efficient method to improve snow pack model inputs over complex terrain. ICAR provides estimates of all inputs at a small fraction of the computational cost of a traditional atmospheric model such as the Weather Research and Forecasting model (WRF). Importantly, ICAR is able to simulate feedbacks from the land surface that are critical for estimating the air temperature. In addition, we will explore future improvements to the local wind fields including the use of statistics derived from limited duration Large Eddy Simulation (LES) model runs. These wind fields play a critical role in determing the redistribution of snow, and the redistribution of snow changes the surface topography and thus the wind field. We show that a proper depiction of snowpack redistribution can have a large affect on streamflow timing, and an even larger effect on the climate change signal of that streamflow.

  9. Multiple-Input Multiple-Output (MIMO) Linear Systems Extreme Inputs/Outputs

    DOE PAGES

    Smallwood, David O.

    2007-01-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the autospectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the autospectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input autospectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one willmore » result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.« less

  10. Extreme inputs/outputs for multiple input multiple output linear systems.

    SciTech Connect

    Smallwood, David Ora

    2005-09-01

    A linear structure is excited at multiple points with a stationary normal random process. The response of the structure is measured at multiple outputs. If the auto spectral densities of the inputs are specified, the phase relationships between the inputs are derived that will minimize or maximize the trace of the auto spectral density matrix of the outputs. If the autospectral densities of the outputs are specified, the phase relationships between the outputs that will minimize or maximize the trace of the input auto spectral density matrix are derived. It is shown that other phase relationships and ordinary coherence less than one will result in a trace intermediate between these extremes. Least favorable response and some classes of critical response are special cases of the development. It is shown that the derivation for stationary random waveforms can also be applied to nonstationary random, transients, and deterministic waveforms.

  11. Variation in freshwater input to the Eastern US coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Feng, D.; Yoon, Y.; Beighley, E., II; Hughes, R.; Kimbro, D.

    2014-12-01

    Phragmites is one of the most invasive plants in North American wetlands. Although its spread in coastal marshes has been linked by independent studies to urbanization, eutrophication, and salinity change, there is good evidence that these factors may interactively determine invasion success and in turn, the ecosystem services provided by marshes. We hypothesize that the invasion of Phragmites is linked to changes in freshwater inputs due to climate and/or land use change. El Nino/Southern Oscillation (ENSO), originating in the sea surface temperature anomalies (warm or cold) in the eastern tropical Pacific Ocean, is a notable and prominent signal in inter-annual climatic variation. Recent studies shows that the probability of strong El Nino events may increase in the future. In this study, we will investigate the teleconnections between freshwater inputs to the coastal zone along the eastern U.S. and ENSO indices, and attempt to explore the predictability of temporal and spatial variation of freshwater inputs based on ENSO conditions. To quantify changes in freshwater input in this region, hydrologic modeling, remote sensing and field measurements are combined. The Hillslope River Routing (HRR) model is used to simulate hourly streamflow from all watersheds from southern Florida to northern Maine draining into the Atlantic Ocean. The modeling effort utilizes satellite precipitation (Tropical Rainfall Measuring Mission Product 3B42v7: 2001-current with a 3-hr temporal resolution and 0.25 degree spatial resolution), land surface temperature and vegetation measures (Moderate Resolution Imaging Spectroradiometer, MODIS, products: 2001-current with a monthly temporal resolution and 0.05 degree spatial resolution). To account for land cover change, annual MODIS land cover data and time varying population statics are merged to estimate annual land cover characteristics for each sub-catchment within the study region. Static datasets for soils and ground elevations are

  12. Sky input horn for a far-infrared interferometer

    NASA Technical Reports Server (NTRS)

    Miller, M. S.; Eichhorn, W. L.; Mather, J. C.

    1982-01-01

    A unique design has been developed whereby a compound parabolic concentrator (CPC) and a compound elliptical concentrator (CEC) are joined at their throats. The CPC serves as the field-defining optics, in that it accepts up to a certain maximum acceptance angle and then concentrates this accepted energy at its throat. Energy incident from angles greater than the acceptance angle is rejected. The CEC takes the energy concentrated at the CPC throat and then redirects this energy into a finite-sized pupil a given distance away. The considered design will be used as the sky input horn for a cryogenic far-infrared polarizing interferometer to be flown on NASA's Cosmic Background Explorer satellite. The interferometer will operate at 2 K and measure the 3-K cosmic background radiation of the universe in the 100-micrometer-1-cm spectral range.

  13. Graphical Input Aggregate Control (GIAC), Version 23.x

    SciTech Connect

    Koscielniak, Michael; Dearing, James; Hite, David; Gaschen, Brian; Maness, Larry Karl

    2016-01-11

    Supporting Military Mission Rehearsals and Large Scale Simulation Training for over 20 years. GIAC is a perfect example of computer graphics, distributed computing, system configurations comprised of 3 components: A Graphical User Interface (GUI) and GDS, a distributed data GIAC's main function is to display the electronic battle field, provide Situational Awareness (SA), using computer graphics, by the training simulations and war games as well as provide input (Command and Control ) also provides terrain analysis features such as Line of Sight (LOS) calculations, shaded relief programming using a socket api written by GIAC team members in a point to point scheme written/modified algorithms/data structures to obtain the maximum performance and GIAC can display and interact with LIVE, VIRTUAL and CONSTRUCTIVE entities. objects and track by attribute and source (customize the SA if you will). GIAC is compatible with Google Earth, saving the military training.

  14. Input evidence regarding the semantic bootstrapping hypothesis.

    PubMed

    Rondal, J A; Cession, A

    1990-10-01

    The input language addressed to 18 language-learning children (MLU 1.00-3.00) was analysed so as to assess the quality of the semantic-syntactic correspondence posited by the semantic bootstrapping hypothesis. The correspondence appears to be quite satisfactory with little variation from the lower to the higher MLUs. All the persons and things referred to in the corpora were labelled by the mothers using nouns. All the actions referred to were labelled using verbs. Most of the attributive information was conveyed by adjectives. Spatial information was expressed through the use of spatial prepositions. As to the functional categories, all agents of actions and causes of events were encoded as subjects of sentences. All patients, themes, sources, goals, locations, and instruments were encoded as objects of sentences (either direct or oblique). This good semantic-syntactic correspondence may make the child's construction of grammatical categories easier.

  15. Dual motion valve with single motion input

    NASA Technical Reports Server (NTRS)

    Belew, Robert (Inventor)

    1987-01-01

    A dual motion valve includes two dual motion valve assemblies with a rotary input which allows the benefits of applying both rotary and axial motion to a rotary sealing element with a plurality of ports. The motion of the rotary sealing element during actuation provides axial engagement of the rotary sealing element with a stationary valve plate which also has ports. Fluid passages are created through the valve when the ports of the rotary sealing element are aligned with the ports of the stationary valve plate. Alignment is achieved through rotation of the rotary sealing element with respect to the stationary valve plate. The fluid passages provide direct paths which minimize fluid turbulence created in the fluid as it passes through the valve.

  16. Auto Draw from Excel Input Files

    NASA Technical Reports Server (NTRS)

    Strauss, Karl F.; Goullioud, Renaud; Cox, Brian; Grimes, James M.

    2011-01-01

    The design process often involves the use of Excel files during project development. To facilitate communications of the information in the Excel files, drawings are often generated. During the design process, the Excel files are updated often to reflect new input. The problem is that the drawings often lag the updates, often leading to confusion of the current state of the design. The use of this program allows visualization of complex data in a format that is more easily understandable than pages of numbers. Because the graphical output can be updated automatically, the manual labor of diagram drawing can be eliminated. The more frequent update of system diagrams can reduce confusion and reduce errors and is likely to uncover symmetric problems earlier in the design cycle, thus reducing rework and redesign.

  17. The IVS data input to ITRF2014

    NASA Astrophysics Data System (ADS)

    Nothnagel, Axel; Alef, Walter; Amagai, Jun; Andersen, Per Helge; Andreeva, Tatiana; Artz, Thomas; Bachmann, Sabine; Barache, Christophe; Baudry, Alain; Bauernfeind, Erhard; Baver, Karen; Beaudoin, Christopher; Behrend, Dirk; Bellanger, Antoine; Berdnikov, Anton; Bergman, Per; Bernhart, Simone; Bertarini, Alessandra; Bianco, Giuseppe; Bielmaier, Ewald; Boboltz, David; Böhm, Johannes; Böhm, Sigrid; Boer, Armin; Bolotin, Sergei; Bougeard, Mireille; Bourda, Geraldine; Buttaccio, Salvo; Cannizzaro, Letizia; Cappallo, Roger; Carlson, Brent; Carter, Merri Sue; Charlot, Patrick; Chen, Chenyu; Chen, Maozheng; Cho, Jungho; Clark, Thomas; Collioud, Arnaud; Colomer, Francisco; Colucci, Giuseppe; Combrinck, Ludwig; Conway, John; Corey, Brian; Curtis, Ronald; Dassing, Reiner; Davis, Maria; de-Vicente, Pablo; De Witt, Aletha; Diakov, Alexey; Dickey, John; Diegel, Irv; Doi, Koichiro; Drewes, Hermann; Dube, Maurice; Elgered, Gunnar; Engelhardt, Gerald; Evangelista, Mark; Fan, Qingyuan; Fedotov, Leonid; Fey, Alan; Figueroa, Ricardo; Fukuzaki, Yoshihiro; Gambis, Daniel; Garcia-Espada, Susana; Gaume, Ralph; Gaylard, Michael; Geiger, Nicole; Gipson, John; Gomez, Frank; Gomez-Gonzalez, Jesus; Gordon, David; Govind, Ramesh; Gubanov, Vadim; Gulyaev, Sergei; Haas, Ruediger; Hall, David; Halsig, Sebastian; Hammargren, Roger; Hase, Hayo; Heinkelmann, Robert; Helldner, Leif; Herrera, Cristian; Himwich, Ed; Hobiger, Thomas; Holst, Christoph; Hong, Xiaoyu; Honma, Mareki; Huang, Xinyong; Hugentobler, Urs; Ichikawa, Ryuichi; Iddink, Andreas; Ihde, Johannes; Ilijin, Gennadiy; Ipatov, Alexander; Ipatova, Irina; Ishihara, Misao; Ivanov, D. V.; Jacobs, Chris; Jike, Takaaki; Johansson, Karl-Ake; Johnson, Heidi; Johnston, Kenneth; Ju, Hyunhee; Karasawa, Masao; Kaufmann, Pierre; Kawabata, Ryoji; Kawaguchi, Noriyuki; Kawai, Eiji; Kaydanovsky, Michael; Kharinov, Mikhail; Kobayashi, Hideyuki; Kokado, Kensuke; Kondo, Tetsuro; Korkin, Edward; Koyama, Yasuhiro; Krasna, Hana; Kronschnabl, Gerhard; Kurdubov, Sergey; Kurihara, Shinobu; Kuroda, Jiro; Kwak, Younghee; La Porta, Laura; Labelle, Ruth; Lamb, Doug; Lambert, Sébastien; Langkaas, Line; Lanotte, Roberto; Lavrov, Alexey; Le Bail, Karine; Leek, Judith; Li, Bing; Li, Huihua; Li, Jinling; Liang, Shiguang; Lindqvist, Michael; Liu, Xiang; Loesler, Michael; Long, Jim; Lonsdale, Colin; Lovell, Jim; Lowe, Stephen; Lucena, Antonio; Luzum, Brian; Ma, Chopo; Ma, Jun; Maccaferri, Giuseppe; Machida, Morito; MacMillan, Dan; Madzak, Matthias; Malkin, Zinovy; Manabe, Seiji; Mantovani, Franco; Mardyshkin, Vyacheslav; Marshalov, Dmitry; Mathiassen, Geir; Matsuzaka, Shigeru; McCarthy, Dennis; Melnikov, Alexey; Michailov, Andrey; Miller, Natalia; Mitchell, Donald; Mora-Diaz, Julian Andres; Mueskens, Arno; Mukai, Yasuko; Nanni, Mauro; Natusch, Tim; Negusini, Monia; Neidhardt, Alexander; Nickola, Marisa; Nicolson, George; Niell, Arthur; Nikitin, Pavel; Nilsson, Tobias; Ning, Tong; Nishikawa, Takashi; Noll, Carey; Nozawa, Kentarou; Ogaja, Clement; Oh, Hongjong; Olofsson, Hans; Opseth, Per Erik; Orfei, Sandro; Pacione, Rosa; Pazamickas, Katherine; Petrachenko, William; Pettersson, Lars; Pino, Pedro; Plank, Lucia; Ploetz, Christian; Poirier, Michael; Poutanen, Markku; Qian, Zhihan; Quick, Jonathan; Rahimov, Ismail; Redmond, Jay; Reid, Brett; Reynolds, John; Richter, Bernd; Rioja, Maria; Romero-Wolf, Andres; Ruszczyk, Chester; Salnikov, Alexander; Sarti, Pierguido; Schatz, Raimund; Scherneck, Hans-Georg; Schiavone, Francesco; Schreiber, Ulrich; Schuh, Harald; Schwarz, Walter; Sciarretta, Cecilia; Searle, Anthony; Sekido, Mamoru; Seitz, Manuela; Shao, Minghui; Shibuya, Kazuo; Shu, Fengchun; Sieber, Moritz; Skjaeveland, Asmund; Skurikhina, Elena; Smolentsev, Sergey; Smythe, Dan; Sousa, Don; Sovers, Ojars; Stanford, Laura; Stanghellini, Carlo; Steppe, Alan; Strand, Rich; Sun, Jing; Surkis, Igor; Takashima, Kazuhiro; Takefuji, Kazuhiro; Takiguchi, Hiroshi; Tamura, Yoshiaki; Tanabe, Tadashi; Tanir, Emine; Tao, An; Tateyama, Claudio; Teke, Kamil; Thomas, Cynthia; Thorandt, Volkmar; Thornton, Bruce; Tierno Ros, Claudia; Titov, Oleg; Titus, Mike; Tomasi, Paolo; Tornatore, Vincenza; Trigilio, Corrado; Trofimov, Dmitriy; Tsutsumi, Masanori; Tuccari, Gino; Tzioumis, Tasso; Ujihara, Hideki; Ullrich, Dieter; Uunila, Minttu; Venturi, Tiziana; Vespe, Francesco; Vityazev, Veniamin; Volvach, Alexandr; Vytnov, Alexander; Wang, Guangli; Wang, Jinqing; Wang, Lingling; Wang, Na; Wang, Shiqiang; Wei, Wenren; Weston, Stuart; Whitney, Alan; Wojdziak, Reiner; Yatskiv, Yaroslav; Yang, Wenjun; Ye, Shuhua; Yi, Sangoh; Yusup, Aili; Zapata, Octavio; Zeitlhoefler, Reinhard; Zhang, Hua; Zhang, Ming; Zhang, Xiuzhong; Zhao, Rongbing; Zheng, Weimin; Zhou, Ruixian; Zubko, Nataliya

    2015-01-01

    Very Long Baseline Interferometry (VLBI) is a primary space-geodetic technique for determining precise coordinates on the Earth, for monitoring the variable Earth rotation and orientation with highest precision, and for deriving many other parameters of the Earth system. The International VLBI Service for Geodesy and Astrometry (IVS, http://ivscc.gsfc.nasa.gov/) is a service of the International Association of Geodesy (IAG) and the International Astronomical Union (IAU). The datasets published here are the results of individual Very Long Baseline Interferometry (VLBI) sessions in the form of normal equations in SINEX 2.0 format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/SinexFormat/sinex.html, the SINEX 2.0 description is attached as pdf) provided by IVS as the input for the next release of the International Terrestrial Reference System (ITRF): ITRF2014. This is a new version of the ITRF2008 release (Bockmann et al., 2009). For each session/ file, the normal equation systems contain elements for the coordinate components of all stations having participated in the respective session as well as for the Earth orientation parameters (x-pole, y-pole, UT1 and its time derivatives plus offset to the IAU2006 precession-nutation components dX, dY (https://www.iau.org/static/resolutions/IAU2006_Resol1.pdf). The terrestrial part is free of datum. The data sets are the result of a weighted combination of the input of several IVS Analysis Centers. The IVS contribution for ITRF2014 is described in Bachmann et al (2015), Schuh and Behrend (2012) provide a general overview on the VLBI method, details on the internal data handling can be found at Behrend (2013).

  18. Input and output constraints affecting irrigation development

    NASA Astrophysics Data System (ADS)

    Schramm, G.

    1981-05-01

    In many of the developing countries the expansion of irrigated agriculture is used as a major development tool for bringing about increases in agricultural output, rural economic growth and income distribution. Apart from constraints imposed by water availability, the major limitations considered to any acceleration of such programs are usually thought to be those of costs and financial resources. However, as is shown on the basis of empirical data drawn from Mexico, in reality the feasibility and effectiveness of such development programs is even more constrained by the lack of specialized physical and human factors on the input and market limitations on the output side. On the input side, the limited availability of complementary factors such as, for example, truly functioning credit systems for small-scale farmers or effective agricultural extension services impose long-term constraints on development. On the output side the limited availability, high risk, and relatively slow growth of markets for high-value crops sharply reduce the usually hoped-for and projected profitable crop mix that would warrant the frequently high costs of irrigation investments. Three conclusions are drawn: (1) Factors in limited supply have to be shadow-priced to reflect their high opportunity costs in alternative uses. (2) Re-allocation of financial resources from immediate construction of projects to longer-term increase in the supply of scarce, highly-trained manpower resources are necessary in order to optimize development over time. (3) Inclusion of high-value, high-income producing crops in the benefit-cost analysis of new projects is inappropriate if these crops could potentially be grown in already existing projects.

  19. Parallel momentum input by tangential neutral beam injections in stellarator and heliotron plasmas

    SciTech Connect

    Nishimura, S.; Nakamura, Y.; Nishioka, K.

    2015-09-15

    The configuration dependence of parallel momentum inputs to target plasma particle species by tangentially injected neutral beams is investigated in non-axisymmetric stellarator/heliotron model magnetic fields by assuming the existence of magnetic flux-surfaces. In parallel friction integrals of the full Rosenbluth-MacDonald-Judd collision operator in thermal particles' kinetic equations, numerically obtained eigenfunctions are used for excluding trapped fast ions that cannot contribute to the friction integrals. It is found that the momentum inputs to thermal ions strongly depend on magnetic field strength modulations on the flux-surfaces, while the input to electrons is insensitive to the modulation. In future plasma flow studies requiring flow calculations of all particle species in more general non-symmetric toroidal configurations, the eigenfunction method investigated here will be useful.

  20. Robust input design for nonlinear dynamic modeling of AUV.

    PubMed

    Nouri, Nowrouz Mohammad; Valadi, Mehrdad

    2017-09-01

    Input design has a dominant role in developing the dynamic model of autonomous underwater vehicles (AUVs) through system identification. Optimal input design is the process of generating informative inputs that can be used to generate the good quality dynamic model of AUVs. In a problem with optimal input design, the desired input signal depends on the unknown system which is intended to be identified. In this paper, the input design approach which is robust to uncertainties in model parameters is used. The Bayesian robust design strategy is applied to design input signals for dynamic modeling of AUVs. The employed approach can design multiple inputs and apply constraints on an AUV system's inputs and outputs. Particle swarm optimization (PSO) is employed to solve the constraint robust optimization problem. The presented algorithm is used for designing the input signals for an AUV, and the estimate obtained by robust input design is compared with that of the optimal input design. According to the results, proposed input design can satisfy both robustness of constraints and optimality. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  1. How Much Input Is Enough? Correlating Comprehension and Child Language Input in an Endangered Language

    ERIC Educational Resources Information Center

    Meakins, Felicity; Wigglesworth, Gillian

    2013-01-01

    In situations of language endangerment, the ability to understand a language tends to persevere longer than the ability to speak it. As a result, the possibility of language revival remains high even when few speakers remain. Nonetheless, this potential requires that those with high levels of comprehension received sufficient input as children for…

  2. Exploring Input Processing in the Classroom: An Experimental Comparison of Processing Instruction and Enriched Input

    ERIC Educational Resources Information Center

    Marsden, Emma

    2006-01-01

    The research reported here tests the claim made in the Input Processing approach to second language (L2) acquisition that interpreting the meaning of language form is essential for learning. This claim has been put forward as an underlying part of the pedagogical package known as Processing Instruction (PI) (VanPatten, 1996, 2002a, 2004). Two…

  3. Hybrid input function estimation using a single-input-multiple-output (SIMO) approach

    NASA Astrophysics Data System (ADS)

    Su, Yi; Shoghi, Kooresh I.

    2009-02-01

    A hybrid blood input function (BIF) model that incorporates region of interests (ROIs) based peak estimation and a two exponential tail model was proposed to describe the blood input function. The hybrid BIF model was applied to the single-input-multiple-output (SIMO) optimization based approach for BIF estimation using time activity curves (TACs) obtained from ROIs defined at left ventricle (LV) blood pool and myocardium regions of dynamic PET images. The proposed BIF estimation method was applied with 0, 1 and 2 blood samples as constraints for BIF estimation using simulated small animal PET data. Relative percentage difference of the area-under-curve (AUC) measurement between the estimated BIF and the true BIF was calculated to evaluate the BIF estimation accuracy. SIMO based BIF estimation using Feng's input function model was also applied for comparison. The hybrid method provided improved BIF estimation in terms of both mean accuracy and variability compared to Feng's model based BIF estimation in our simulation study. When two blood samples were used as constraints, the percentage BIF estimation error was 0.82 +/- 4.32% for the hybrid approach and 4.63 +/- 10.67% for the Feng's model based approach. Using hybrid BIF, improved kinetic parameter estimation was also obtained.

  4. Input Quality Matters: Some Comments on Input Type and Age-Effects in Adult SLA

    ERIC Educational Resources Information Center

    Rothman, Jason; Guijarro-Fuentes, Pedro

    2010-01-01

    In accord with the general program of researching factors relating to ultimate attainment and maturational constraints in adult language acquisition, this commentary highlights the importance of input differences in amount, type, and setting between naturalistic and classroom learners of an L2. It is suggested that these variables are often…

  5. Exploring Input Processing in the Classroom: An Experimental Comparison of Processing Instruction and Enriched Input

    ERIC Educational Resources Information Center

    Marsden, Emma

    2006-01-01

    The research reported here tests the claim made in the Input Processing approach to second language (L2) acquisition that interpreting the meaning of language form is essential for learning. This claim has been put forward as an underlying part of the pedagogical package known as Processing Instruction (PI) (VanPatten, 1996, 2002a, 2004). Two…

  6. Effect of input compression and input frequency response on music perception in cochlear implant users.

    PubMed

    Halliwell, Emily R; Jones, Linor L; Fraser, Matthew; Lockley, Morag; Hill-Feltham, Penelope; McKay, Colette M

    2015-06-01

    A study was conducted to determine whether modifications to input compression and input frequency response characteristics can improve music-listening satisfaction in cochlear implant users. Experiment 1 compared three pre-processed versions of music and speech stimuli in a laboratory setting: original, compressed, and flattened frequency response. Music excerpts comprised three music genres (classical, country, and jazz), and a running speech excerpt was compared. Experiment 2 implemented a flattened input frequency response in the speech processor program. In a take-home trial, participants compared unaltered and flattened frequency responses. Ten and twelve adult Nucleus Freedom cochlear implant users participated in Experiments 1 and 2, respectively. Experiment 1 revealed a significant preference for music stimuli with a flattened frequency response compared to both original and compressed stimuli, whereas there was a significant preference for the original (rising) frequency response for speech stimuli. Experiment 2 revealed no significant mean preference for the flattened frequency response, with 9 of 11 subjects preferring the rising frequency response. Input compression did not alter music enjoyment. Comparison of the two experiments indicated that individual frequency response preferences may depend on the genre or familiarity, and particularly whether the music contained lyrics.

  7. How Much Input Is Enough? Correlating Comprehension and Child Language Input in an Endangered Language

    ERIC Educational Resources Information Center

    Meakins, Felicity; Wigglesworth, Gillian

    2013-01-01

    In situations of language endangerment, the ability to understand a language tends to persevere longer than the ability to speak it. As a result, the possibility of language revival remains high even when few speakers remain. Nonetheless, this potential requires that those with high levels of comprehension received sufficient input as children for…

  8. Development of High Data Rate Acoustic Multiple-Input/Multiple-Output Modems

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Development of High Data Rate Acoustic Multiple-Input...substantial inter-symbol interference (ISI) produced by the extensive multipath is difficult to remove, therefore, restricting achievable data rates...3 2) Using the AMDP, we developed a time reversal acoustic modem prototype for shallow water environments. 3) We conducted multiple field

  9. Density of Visual Input Enhancement and Grammar Learning: A Research Proposal

    ERIC Educational Resources Information Center

    Tran, Thu Hoang

    2009-01-01

    Research in the field of second language acquisition (SLA) has been done to ascertain the effectiveness of visual input enhancement (VIE) on grammar learning. However, one issue remains unexplored: the effects of VIE density on grammar learning. This paper presents a research proposal to investigate the effects of the density of VIE on English…

  10. Investigation of Effects of Varying Model Inputs on Mercury Deposition Estimates in the Southwest US

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US). The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (E...

  11. Investigation of Effects of Varying Model Inputs on Mercury Deposition Estimates in the Southwest US

    EPA Science Inventory

    The Community Multiscale Air Quality (CMAQ) model version 4.7.1 was used to simulate mercury wet and dry deposition for a domain covering the continental United States (US). The simulations used MM5-derived meteorological input fields and the US Environmental Protection Agency (E...

  12. Toward an inventory of nitrogen input to the United States

    EPA Science Inventory

    Accurate accounting of nitrogen inputs is increasingly necessary for policy decisions related to aquatic nutrient pollution. Here we synthesize available data to provide the first integrated estimates of the amount and uncertainty of nitrogen inputs to the United States. Abou...

  13. Diversity matters: parent input predicts toddler verb production.

    PubMed

    Hsu, Ning; Hadley, Pamela A; Rispoli, Matthew

    2017-01-01

    The contribution of parent input to children's subsequent expressive verb diversity was explored in twenty typically developing toddlers with small verb lexicons. Child developmental factors and parent input measures (i.e. verb quantity, verb diversity, and verb-related structural cues) at age 1;9 were examined as potential predictors of children's verb production in spontaneous language samples at age 2;3. Parent verb input diversity, rather than input quantity, was the primary input factor contributing to children's subsequent verb diversity. Regression analysis showed that verb diversity in parent input at age 1;9 accounted for 30% of the variance in children's verb production six months later, with children's total vocabulary size at age 1;9 accounting for an additional 16% of the variance. These findings demonstrate the relative contributions of developmental and input factors to individual differences in toddlers' language development and establish the importance of input diversity to verb acquisition.

  14. INGEN: A COBRA-NC input generator user's manual

    SciTech Connect

    Wheeler, C.L.; Dodge, R.E.

    1986-12-01

    The INGEN (INput GENerator) computer program has been developed as a preprocessor to simplify input generation for the COBRA-NC computer program. INGEN uses several empirical correlations and geometric assumptions to simplify the data input requirements for the COBRA-NC computer code. The simplified input scheme is obtained at the expense of much flexibility provided by COBRA-NC. For more complex problems requiring additional flexibility however, INGEN may be used to provide a skeletal input file to which the more detailed input may be added. This report describes the input requirements for INGEN and describes the algorithms and correlations used to generate the COBRA-NC input. 9 refs., 3 figs., 6 tabs.

  15. Toward an inventory of nitrogen input to the United States

    EPA Science Inventory

    Accurate accounting of nitrogen inputs is increasingly necessary for policy decisions related to aquatic nutrient pollution. Here we synthesize available data to provide the first integrated estimates of the amount and uncertainty of nitrogen inputs to the United States. Abou...

  16. The spatial distribution of glutamatergic inputs to dendrites of retinal ganglion cells.

    PubMed

    Jakobs, Tatjana C; Koizumi, Amane; Masland, Richard H

    2008-09-10

    The spatial pattern of excitatory glutamatergic input was visualized in a large series of ganglion cells of the rabbit retina, by using particle-mediated gene transfer of an expression plasmid for postsynaptic density 95-green fluorescent protein (PSD95-GFP). PSD95-GFP was confirmed as a marker of excitatory input by co-localization with synaptic ribbons (RIBEYE and kinesin II) and glutamate receptor subunits. Despite wide variation in the size, morphology, and functional complexity of the cells, the distribution of excitatory synaptic inputs followed a single set of rules: 1) the linear density of synaptic inputs (PSD95 sites/linear mum) varied surprisingly little and showed little specialization within the arbor; 2) the total density of excitatory inputs across individual arbors peaked in a ring-shaped region surrounding the soma, which is in accord with high-resolution maps of receptive field sensitivity in the rabbit; and 3) the areal density scaled inversely with the total area of the dendritic arbor, so that narrow dendritic arbors receive more synapses per unit area than large ones. To achieve sensitivity comparable to that of large cells, those that report upon a small region of visual space may need to receive a denser synaptic input from within that space.

  17. Atmospheric input of inorganic nitrogen to Delaware Bay

    SciTech Connect

    Scudlark, J.R.; Church, T.M. )

    1993-12-01

    The coastal waters of the mid-Atlantic region of the United States receive inputs of atmospheric pollutants as a consequence of being located downwind from major industrial and urban emission. These inputs are potentially the largest received by any marine area of the country. Of current interest is the atmospheric input of dissolved inorganic nitrogen (DIN = NO[sub 3][sup [minus

  18. Comparison of Linear Microinstability Calculations of Varying Input Realism

    SciTech Connect

    G. Rewoldt

    2003-09-08

    The effect of varying ''input realism'' or varying completeness of the input data for linear microinstability calculations, in particular on the critical value of the ion temperature gradient for the ion temperature gradient mode, is investigated using gyrokinetic and gyrofluid approaches. The calculations show that varying input realism can have a substantial quantitative effect on the results.

  19. Information Fusion of Conflicting Input Data.

    PubMed

    Mönks, Uwe; Dörksen, Helene; Lohweg, Volker; Hübner, Michael

    2016-10-29

    Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible.

  20. Information Fusion of Conflicting Input Data

    PubMed Central

    Mönks, Uwe; Dörksen, Helene; Lohweg, Volker; Hübner, Michael

    2016-01-01

    Sensors, and also actuators or external sources such as databases, serve as data sources in order to realise condition monitoring of industrial applications or the acquisition of characteristic parameters like production speed or reject rate. Modern facilities create such a large amount of complex data that a machine operator is unable to comprehend and process the information contained in the data. Thus, information fusion mechanisms gain increasing importance. Besides the management of large amounts of data, further challenges towards the fusion algorithms arise from epistemic uncertainties (incomplete knowledge) in the input signals as well as conflicts between them. These aspects must be considered during information processing to obtain reliable results, which are in accordance with the real world. The analysis of the scientific state of the art shows that current solutions fulfil said requirements at most only partly. This article proposes the multilayered information fusion system MACRO (multilayer attribute-based conflict-reducing observation) employing the μBalTLCS (fuzzified balanced two-layer conflict solving) fusion algorithm to reduce the impact of conflicts on the fusion result. The performance of the contribution is shown by its evaluation in the scope of a machine condition monitoring application under laboratory conditions. Here, the MACRO system yields the best results compared to state-of-the-art fusion mechanisms. The utilised data is published and freely accessible. PMID:27801874

  1. Watershed processing of atmospheric polychlorinated biphenyl inputs.

    PubMed

    Rowe, Amy A; Totten, Lisa A; Cavallo, Gregory I; Yagecic, John R

    2007-04-01

    Indirect atmospheric deposition of PCBs was examined in subwatersheds of the Delaware River Estuary. Tributary PCB loads and atmospheric PCB concentrations were used to understand the pass-through efficiencies for nine rivers/ creeks for which PCB inputs appeared to be dominated by atmospheric deposition. The pass-through efficiency, E, was calculated from tributary loads and atmospheric deposition fluxes. Unfortunately, uncertainties in the gaseous and dry particle deposition velocities, vg and vd, respectively, render the calculated atmospheric deposition fluxes highly uncertain. In order to circumvent this problem, export of PCBs from the watershed was related directly to atmospheric PCB concentrations via a new mass transfer coefficient, the watershed delivery rate or vws, which describes the process by which the watershed transfers PCBs from the airto the River's main stem. vws increases with increasing chlorination and is significantly correlated with vapor pressure. This trend suggests that the transfer of PCBs from the atmosphere to the River via the watershed is more efficient for high molecular weight PCBs than for low molecular weight PCBs. This may indicate that the selected watersheds are at or close to equilibrium with respect to gaseous exchange of PCBs, such that lower molecular weight congeners undergo substantial revolatilization after deposition. The magnitude of the pass-through efficiency, E, depends on the deposition velocities used to calculate the atmospheric deposition flux, but when congener-specific deposition velocities are used, E is independent of vapor pressure and is relatively constant at about 3%.

  2. Expectancy Learning from Probabilistic Input by Infants

    PubMed Central

    Romberg, Alexa R.; Saffran, Jenny R.

    2013-01-01

    Across the first few years of life, infants readily extract many kinds of regularities from their environment, and this ability is thought to be central to development in a number of domains. Numerous studies have documented infants’ ability to recognize deterministic sequential patterns. However, little is known about the processes infants use to build and update representations of structure in time, and how infants represent patterns that are not completely predictable. The present study investigated how infants’ expectations fora simple structure develope over time, and how infants update their representations with new information. We measured 12-month-old infants’ anticipatory eye movements to targets that appeared in one of two possible locations. During the initial phase of the experiment, infants either saw targets that appeared consistently in the same location (Deterministic condition) or probabilistically in either location, with one side more frequent than the other (Probabilistic condition). After this initial divergent experience, both groups saw the same sequence of trials for the rest of the experiment. The results show that infants readily learn from both deterministic and probabilistic input, with infants in both conditions reliably predicting the most likely target location by the end of the experiment. Local context had a large influence on behavior: infants adjusted their predictions to reflect changes in the target location on the previous trial. This flexibility was particularly evident in infants with more variable prior experience (the Probabilistic condition). The results provide some of the first data showing how infants learn in real time. PMID:23439947

  3. Collective input/output under memory constraints

    SciTech Connect

    Lu, Yin; Chen, Yong; Zhuang, Yu; Liu, Jialin; Thakur, Rajeev

    2015-01-01

    Compared with current high-performance computing (HPC) systems, exascale systems are expected to have much less memory per node, which can significantly reduce necessary collective input/output (I/O) performance. In this study, we introduce a memory-conscious collective I/O strategy that takes into account memory capacity and bandwidth constraints. The new strategy restricts aggregation data traffic within disjointed subgroups, coordinates I/O accesses in intranode and internode layers, and determines I/O aggregators at run time considering memory consumption among processes. We have prototyped the design and evaluated it with commonly used benchmarks to verify its potential. The evaluation results demonstrate that this strategy holds promise in mitigating the memory pressure, alleviating the contention for memory bandwidth, and improving the I/O performance for projected extreme-scale systems. Given the importance of supporting increasingly data-intensive workloads and projected memory constraints on increasingly larger scale HPC systems, this new memory-conscious collective I/O can have a significant positive impact on scientific discovery productivity.

  4. Parvalbumin-producing cortical interneurons receive inhibitory inputs on proximal portions and cortical excitatory inputs on distal dendrites.

    PubMed

    Kameda, Hiroshi; Hioki, Hiroyuki; Tanaka, Yasuyo H; Tanaka, Takuma; Sohn, Jaerin; Sonomura, Takahiro; Furuta, Takahiro; Fujiyama, Fumino; Kaneko, Takeshi

    2012-03-01

    To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex. Even in layer 4, where VGluT2-positive terminals were most densely distributed, VGluT1-positive inputs to PV-producing interneurons were 2.4-fold more frequent than VGluT2-positive inputs. Furthermore, although GABAergic inputs to PV-producing interneurons were as numerous as VGluT2-positive inputs in most cortical layers, GABAergic inputs clearly preferred the proximal dendrites and somata of the interneurons, indicating that the sites of GABAergic inputs were more optimized than those of VGluT2-positive inputs. Simulation analysis with a PV-producing interneuron model compatible with the present morphological data revealed a plausible reason for this observation, by showing that GABAergic and glutamatergic postsynaptic potentials evoked by inputs to distal dendrites were attenuated to 60 and 87%, respectively, of those evoked by somatic inputs. As VGluT1-positive and VGluT2-positive axon terminals were presumed to be cortical and thalamic glutamatergic inputs, respectively, cortical excitatory inputs to PV-producing interneurons outnumbered the thalamic excitatory and intrinsic inhibitory inputs more than two-fold in any cortical layer. Although thalamic inputs are known to evoke about two-fold larger unitary excitatory postsynaptic potentials than cortical ones, the present results suggest that cortical inputs control PV-producing interneurons at least as strongly as thalamic inputs.

  5. An affine projection algorithm using grouping selection of input vectors

    NASA Astrophysics Data System (ADS)

    Shin, JaeWook; Kong, NamWoong; Park, PooGyeon

    2011-10-01

    This paper present an affine projection algorithm (APA) using grouping selection of input vectors. To improve the performance of conventional APA, the proposed algorithm adjusts the number of the input vectors using two procedures: grouping procedure and selection procedure. In grouping procedure, the some input vectors that have overlapping information for update is grouped using normalized inner product. Then, few input vectors that have enough information for for coefficient update is selected using steady-state mean square error (MSE) in selection procedure. Finally, the filter coefficients update using selected input vectors. The experimental results show that the proposed algorithm has small steady-state estimation errors comparing with the existing algorithms.

  6. Evaluation of Piloted Inputs for Onboard Frequency Response Estimation

    NASA Technical Reports Server (NTRS)

    Grauer, Jared A.; Martos, Borja

    2013-01-01

    Frequency response estimation results are presented using piloted inputs and a real-time estimation method recently developed for multisine inputs. A nonlinear simulation of the F-16 and a Piper Saratoga research aircraft were subjected to different piloted test inputs while the short period stabilator/elevator to pitch rate frequency response was estimated. Results show that the method can produce accurate results using wide-band piloted inputs instead of multisines. A new metric is introduced for evaluating which data points to include in the analysis and recommendations are provided for applying this method with piloted inputs.

  7. Input visualization for the Cyclus nuclear fuel cycle simulator: CYClus Input Control

    SciTech Connect

    Flanagan, R.; Schneider, E.

    2013-07-01

    This paper discusses and demonstrates the methods used for the graphical user interface for the Cyclus fuel cycle simulator being developed at the University of Wisconsin-Madison. Cyclus Input Control (CYCIC) is currently being designed with nuclear engineers in mind, but future updates to the program will be made to allow even non-technical users to quickly and efficiently simulate fuel cycles to answer the questions important to them. (authors)

  8. Geometric field-line calculations

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.; Mead, G. D.

    1972-01-01

    Procedure for calculating three components of vector field from spherical harmonic using either geocentric or geodetic coordinates as input and output is described. Three subroutines of computer program are explained. Program is written in FORTRAN for IBM 360 computer.

  9. Eolian inputs of lead to the North Pacific

    SciTech Connect

    Jones, C.E.; Halliday, A.N.; Rea, D.K.; Owen, R.M.

    2000-04-01

    The authors evaluate the importance of natural eolian Pb to the dissolved oceanic Pb budget by measuring the isotopic composition of Pb in 35 Holocene and late Quaternary sediment samples from the North Pacific and in 10 samples of Chinese loess. When the Pacific is divided into sediments provinces based on published {var_epsilon}{sub Nd} and sedimentological data, Pb from the central North Pacific tends to be the most radiogenic and homogeneous due to the dominance of eolian Chinese loess. Lead from the marginal North Pacific and the sparsely sampled regions south of 5{degree}N are less radiogenic and more variable owing to hemipelagic inputs from various volcanic arcs and older continental crust located around the Pacific Rim. {sup 208}Pb/{sup 204}Pb ratios provide the most distinctive provenance information due to the relatively high ratios in Chinese loess. The Chinese loess samples come from 3 localities and span up to 2 Myr of time. Acetic-acid leachate, bulk loess, and loess silicate fractions were analyzed separately. Leachate Pb is considerably less radiogenic than silicate Pb. The isotopic composition of the silicate component closely matches the sediment data from the central North Pacific, confirming the dominance of eolian loess in this region. The authors divided up a suite of published hydrogenous Pb-isotope data from the Pacific Ocean according to their locations within the three independently defined sediment provinces. These data define three distinct fields differentiated primarily by their {sup 206}Pb/{sup 204}Pb ratios, which increase going form the Central to Southern to Marginal provinces. This relationship with sediment province strongly suggests that natural eolian and probably hemipelagic inputs significantly impact the seawater Pb budget. Direct support for the dominance of eolian Chinese loess in the central North Pacific dissolved Pb budget comes from the close match between loess leachate Pb and the Central Province hydrogenous Pb data

  10. Soil-related Input Parameters for the Biosphere Model

    SciTech Connect

    A. J. Smith

    2003-07-02

    This analysis is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the geologic repository at Yucca Mountain. The biosphere model is one of a series of process models supporting the Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A graphical representation of the documentation hierarchy for the ERMYN biosphere model is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the plan for development of the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan: for Biosphere Modeling and Expert Support'' (BSC 2003 [163602]). It should be noted that some documents identified in Figure 1-1 may be under development at the time this report is issued and therefore not available. This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. ''The Biosphere Model Report'' (BSC 2003 [160699]) describes in detail the conceptual model as well as the mathematical model and its input parameters. The purpose of this analysis was to develop the biosphere model parameters needed to evaluate doses from pathways associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation and ash

  11. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  12. Optimal input design for aircraft instrumentation systematic error estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1991-01-01

    A new technique for designing optimal flight test inputs for accurate estimation of instrumentation systematic errors was developed and demonstrated. A simulation model of the F-18 High Angle of Attack Research Vehicle (HARV) aircraft was used to evaluate the effectiveness of the optimal input compared to input recorded during flight test. Instrumentation systematic error parameter estimates and their standard errors were compared. It was found that the optimal input design improved error parameter estimates and their accuracies for a fixed time input design. Pilot acceptability of the optimal input design was demonstrated using a six degree-of-freedom fixed base piloted simulation of the F-18 HARV. The technique described in this work provides a practical, optimal procedure for designing inputs for data compatibility experiments.

  13. Optimal input design for aircraft instrumentation systematic error estimation

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1991-01-01

    A new technique for designing optimal flight test inputs for accurate estimation of instrumentation systematic errors was developed and demonstrated. A simulation model of the F-18 High Angle of Attack Research Vehicle (HARV) aircraft was used to evaluate the effectiveness of the optimal input compared to input recorded during flight test. Instrumentation systematic error parameter estimates and their standard errors were compared. It was found that the optimal input design improved error parameter estimates and their accuracies for a fixed time input design. Pilot acceptability of the optimal input design was demonstrated using a six degree-of-freedom fixed base piloted simulation of the F-18 HARV. The technique described in this work provides a practical, optimal procedure for designing inputs for data compatibility experiments.

  14. Handling Input and Output for COAMPS

    NASA Technical Reports Server (NTRS)

    Fitzpatrick, Patrick; Tran, Nam; Li, Yongzuo; Anantharaj, Valentine

    2007-01-01

    Two suites of software have been developed to handle the input and output of the Coupled Ocean Atmosphere Prediction System (COAMPS), which is a regional atmospheric model developed by the Navy for simulating and predicting weather. Typically, the initial and boundary conditions for COAMPS are provided by a flat-file representation of the Navy s global model. Additional algorithms are needed for running the COAMPS software using global models. One of the present suites satisfies this need for running COAMPS using the Global Forecast System (GFS) model of the National Oceanic and Atmospheric Administration. The first step in running COAMPS downloading of GFS data from an Internet file-transfer-protocol (FTP) server computer of the National Centers for Environmental Prediction (NCEP) is performed by one of the programs (SSC-00273) in this suite. The GFS data, which are in gridded binary (GRIB) format, are then changed to a COAMPS-compatible format by another program in the suite (SSC-00278). Once a forecast is complete, still another program in the suite (SSC-00274) sends the output data to a different server computer. The second suite of software (SSC- 00275) addresses the need to ingest up-to-date land-use-and-land-cover (LULC) data into COAMPS for use in specifying typical climatological values of such surface parameters as albedo, aerodynamic roughness, and ground wetness. This suite includes (1) a program to process LULC data derived from observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments aboard NASA s Terra and Aqua satellites, (2) programs to derive new climatological parameters for the 17-land-use-category MODIS data; and (3) a modified version of a FORTRAN subroutine to be used by COAMPS. The MODIS data files are processed to reformat them into a compressed American Standard Code for Information Interchange (ASCII) format used by COAMPS for efficient processing.

  15. Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework

    NASA Astrophysics Data System (ADS)

    Li, Mingliang; Yang, Dawen; Chen, Jinsong; Hubbard, Susan S.

    2012-08-01

    In the process of calibrating distributed hydrological models, accounting for input uncertainty is important, yet challenging. In this study, we develop a Bayesian model to estimate parameters associated with a geomorphology-based hydrological model (GBHM). The GBHM model uses geomorphic characteristics to simplify model structure and physically based methods to represent hydrological processes. We divide the observed discharge into low- and high-flow data, and use the first-order autoregressive model to describe their temporal dependence. We consider relative errors in rainfall as spatially distributed variables and estimate them jointly with the GBHM parameters. The joint posterior probability distribution is explored using Markov chain Monte Carlo methods, which include Metropolis-Hastings, delay rejection adaptive Metropolis, and Gibbs sampling methods. We evaluate the Bayesian model using both synthetic and field data sets. The synthetic case study demonstrates that the developed method generally is effective in calibrating GBHM parameters and in estimating their associated uncertainty. The calibration ignoring input errors has lower accuracy and lower reliability compared to the calibration that includes estimation of the input errors, especially under model structure uncertainty. The field case study shows that calibration of GBHM parameters under complex field conditions remains a challenge. Although jointly estimating input errors and GBHM parameters improves the continuous ranked probability score and the consistency of the predictive distribution with the observed data, the improvement is incremental. To better calibrate parameters in a distributed model, such as GBHM here, we need to develop a more complex model and incorporate much more information.

  16. Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.

    PubMed

    Fernández-Ruiz, Antonio; Oliva, Azahara; Nagy, Gergő A; Maurer, Andrew P; Berényi, Antal; Buzsáki, György

    2017-03-08

    Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation.

  17. Lattice QCD input for axion cosmology

    NASA Astrophysics Data System (ADS)

    Berkowitz, Evan; Buchoff, Michael I.; Rinaldi, Enrico

    2015-08-01

    One intriguing beyond-the-Standard-Model particle is the QCD axion, which could simultaneously provide a solution to the Strong C P Problem and account for some, if not all, of the dark matter density in the Universe. This particle is a pseudo-Nambu-Goldstone boson of the conjectured Peccei-Quinn symmetry of the Standard Model. Its mass and interactions are suppressed by a heavy symmetry-breaking scale, fa, the value of which is roughly greater than 109 GeV (or, conversely, the axion mass, ma, is roughly less than 104 μ eV ). The density of axions in the Universe, which cannot exceed the relic dark matter density and is a quantity of great interest in axion experiments like ADMX, is a result of the early Universe interplay between cosmological evolution and the axion mass as a function of temperature. The latter quantity is proportional to the second derivative of the temperature-dependent QCD free energy with respect to the C P -violating phase, θ . However, this quantity is generically nonperturbative, and previous calculations have only employed instanton models at the high temperatures of interest (roughly 1 GeV). In this and future works, we aim to calculate the temperature-dependent axion mass at small θ from first-principle lattice calculations, with controlled statistical and systematic errors. Once calculated, this temperature-dependent axion mass is input for the classical evolution equations of the axion density of the Universe, which is required to be less than or equal to the dark matter density. Due to a variety of lattice systematic effects at the very high temperatures required, we perform a calculation of the leading small-θ cumulant of the theta vacua on large volume lattices for SU(3) Yang-Mills with high statistics as a first proof of concept, before attempting a full QCD calculation in the future. From these pure glue results, the misalignment mechanism yields the axion mass bound ma≥(14.6 ±0.1 ) μ eV when Peccei-Quinn breaking occurs

  18. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  19. Rapid Airplane Parametric Input Design (RAPID)

    NASA Technical Reports Server (NTRS)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  20. Bayesian calibration of groundwater models with input data uncertainty

    NASA Astrophysics Data System (ADS)

    Xu, Tianfang; Valocchi, Albert J.; Ye, Ming; Liang, Feng; Lin, Yu-Feng

    2017-04-01

    Effective water resources management typically relies on numerical models to analyze groundwater flow and solute transport processes. Groundwater models are often subject to input data uncertainty, as some inputs (such as recharge and well pumping rates) are estimated and subject to uncertainty. Current practices of groundwater model calibration often overlook uncertainties in input data; this can lead to biased parameter estimates and compromised predictions. Through a synthetic case study of surface-ground water interaction under changing pumping conditions and land use, we investigate the impacts of uncertain pumping and recharge rates on model calibration and uncertainty analysis. We then present a Bayesian framework of model calibration to handle uncertain input of groundwater models. The framework implements a marginalizing step to account for input data uncertainty when evaluating likelihood. It was found that not accounting for input uncertainty may lead to biased, overconfident parameter estimates because parameters could be over-adjusted to compensate for possible input data errors. Parameter compensation can have deleterious impacts when the calibrated model is used to make forecast under a scenario that is different from calibration conditions. By marginalizing input data uncertainty, the Bayesian calibration approach effectively alleviates parameter compensation and gives more accurate predictions in the synthetic case study. The marginalizing Bayesian method also decomposes prediction uncertainty into uncertainties contributed by parameters, input data, and measurements. The results underscore the need to account for input uncertainty to better inform postmodeling decision making.

  1. Numerical simulations of input and output couplers for linear accelerator structures

    SciTech Connect

    Ng, C.K.; Ko, K.

    1993-04-01

    We present the numerical procedures involved in the design of coupler cavities for accelerator sections for linear colliders. The MAFIA code is used to simulate an X-band accelerator section with a symmetrical double-input coupler at each end. The transmission properties of the structure are calculated in the time domain and the dimensions of the coupler cavities are adjusted until the power coupling is optimized and frequency synchronism is obtained. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak gradient in the coupler and discuss the implication of pulse rise time on dark current generation.

  2. Numerical simulations of input and output couplers for linear accelerator structures

    SciTech Connect

    Ng, C.; Ko, K. )

    1993-12-25

    We present the numerical procedures involved in the design of coupler cavities for accelerator sections for linear colliders. The MAFIA code is used to simulate an X-band accelerator section with a symmetrical double-input coupler at each end. The transmissions properties of the structure are calculated in the time domain and the dimensions of the coupler cavities are adjusted until the power coupling is optimized and frequency synchronism is obtained. We compare the performance of the symmetrical double-input design with that of the conventional single-input type by evaluating the field amplitude and phase asymmetries. We also evaluate the peak gradient in the coupler and discuss the implication of pulse rise time on dark current generation.

  3. Soil-Related Input Parameters for the Biosphere Model

    SciTech Connect

    A. J. Smith

    2004-09-09

    This report presents one of the analyses that support the Environmental Radiation Model for Yucca Mountain Nevada (ERMYN). The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes the details of the conceptual model as well as the mathematical model and the required input parameters. The biosphere model is one of a series of process models supporting the postclosure Total System Performance Assessment (TSPA) for the Yucca Mountain repository. A schematic representation of the documentation flow for the Biosphere input to TSPA is presented in Figure 1-1. This figure shows the evolutionary relationships among the products (i.e., analysis and model reports) developed for biosphere modeling, and the biosphere abstraction products for TSPA, as identified in the ''Technical Work Plan for Biosphere Modeling and Expert Support'' (TWP) (BSC 2004 [DIRS 169573]). This figure is included to provide an understanding of how this analysis report contributes to biosphere modeling in support of the license application, and is not intended to imply that access to the listed documents is required to understand the contents of this report. This report, ''Soil-Related Input Parameters for the Biosphere Model'', is one of the five analysis reports that develop input parameters for use in the ERMYN model. This report is the source documentation for the six biosphere parameters identified in Table 1-1. The purpose of this analysis was to develop the biosphere model parameters associated with the accumulation and depletion of radionuclides in the soil. These parameters support the calculation of radionuclide concentrations in soil from on-going irrigation or ash deposition and, as a direct consequence, radionuclide concentration in other environmental media that are affected by radionuclide concentrations in soil. The analysis was performed in accordance with the TWP (BSC 2004 [DIRS 169573]) where the governing procedure was defined as AP-SIII.9Q, ''Scientific Analyses''. This

  4. Single freeform surface design for prescribed input wavefront and target irradiance

    NASA Astrophysics Data System (ADS)

    Bösel, Christoph; Gross, Herbert

    2017-09-01

    In beam shaping applications, the minimization of the number of necessary optical elements for the beam shaping process can benefit the compactness of the optical system and reduce its cost. The single freeform surface design for input wavefronts, which are neither planar nor spherical, is therefore of interest. In this work, the design of single freeform surfaces for a given zero-\\'etendue source and complex target irradiances is investigated. Hence, not only collimated input beams or point sources are assumed. Instead, a predefined input ray direction vector field and irradiance distribution on a source plane, which has to be redistributed by a single freeform surface to give the predefined target irradiance, is considered. To solve this design problem, a partial differential equation (PDE) or PDE system, respectively, for the unknown surface and its corresponding ray mapping is derived from energy conservation and the ray-tracing equations. In contrast to former PDE formulations of the single freeform design problem, the derived PDE of Monge-Amp\\`ere type is formulated for general zero-\\'etendue sources in cartesian coordinates. The PDE system is discretized with finite differences and the resulting nonlinear equation system solved by a root-finding algorithm. The basis of the efficient solution of the PDE system builds the introduction of an initial iterate constuction approach for a given input direction vector field, which uses optimal mass transport with a quadratic cost function. After a detailed description of the numerical algorithm, the efficiency of the design method is demonstrated by applying it to several design examples. This includes the redistribution of a collimated input beam beyond the paraxial approximation, the shaping of point source radiation and the shaping of an astigmatic input wavefront into a complex target irradiance distribution.

  5. Cholinergic modulation of excitatory synaptic input integration in hippocampal CA1.

    PubMed

    McQuiston, A Rory

    2010-10-01

    During theta rhythm, the timing of inputs to hippocampal CA1 from the perforant path (PP) of the entorhinal cortex and the Schaffer collaterals (SCs) from individual CA3 pyramidal neurons can vary within an individual theta period. Importantly, during theta rhythms these interactions occur during elevated acetylcholine concentrations. Thus, I examined the effect that PP inputs have on SC inputs in hippocampal CA1 during cholinergic receptor activation. To do this I measured the impact that a single electrical stimulus of the stratum lacunosum-moleculare (SLM, which contains the PP) had on excitation evoked by stimulation of the stratum radiatum (SR, which contains the SC) using voltage-sensitive dye imaging, field excitatory postsynaptic potentials and whole cell patch clamping in rat hippocampal brain slices. My data showed that SLM stimulation one half a theta cycle or less (25-75 ms) before SR stimulation resulted in the summation of excitatory events in SR and SP of hippocampal CA1. The summation was unaffected by cholinergic receptor activation by carbachol. SLM stimulation one theta cycle (150-225 ms) preceding SR stimulation significantly suppressed excitatory events measured in SR and SP. This SLM stimulus inhibition of SR-driven excitatory events was augmented by carbachol application. The carbachol effect was blocked by atropine and SLM-driven suppression of excitatory events was blocked by the GABA(B) receptor antagonist CGP 54626. SR field EPSP slopes were unaffected by SLM prepulses. Carbachol increased the probability of SR input to drive action potential firing in CA1 pyramidal neurons, which was inhibited by SLM prepulses (150-225 ms). Together these data provide important information regarding the integration of inputs in hippocampal CA1 during theta rhythms. More specifically, SR inputs can be differentially gated by SLM feedforward inhibition at varying temporal intervals within a theta cycle.

  6. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    PubMed

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC , Mg C ha(-1)  yr(-1) ). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC . The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  7. Volume holographic wavelet correlators with multi-input channels

    NASA Astrophysics Data System (ADS)

    Feng, Wenyi; Yan, Yingbai; Jin, Guofan; Wu, Minxian; He, Qingsheng

    1999-10-01

    Optical correlators based on volume holographic associative storage and wavelet matched filtering generally have single input channel. In other words, they can only process one input image at a same time. Based on the fact that a volume holographic correlator is not a shift invariance system, novel volume holographic wavelet correlators with multi- input channels are proposed and constructed in this paper to improve the parallelism of processing. Without adding any component, the method of input plane shifting and the technique of angle multiplexing are combined besides the introduction of wavelet transform. With the correlators, several input images can be recognized simultaneously according to a same system output. Conditions of realizing multi-input channel processing are studied in this paper. The mechanism and prototype of the system are described in detail. The performance of the system in human face recognition is testified by experiment. Promising results are given.

  8. Inhibitory Gating of Input Comparison in the CA1 Microcircuit.

    PubMed

    Milstein, Aaron D; Bloss, Erik B; Apostolides, Pierre F; Vaidya, Sachin P; Dilly, Geoffrey A; Zemelman, Boris V; Magee, Jeffrey C

    2015-09-23

    Spatial and temporal features of synaptic inputs engage integration mechanisms on multiple scales, including presynaptic release sites, postsynaptic dendrites, and networks of inhibitory interneurons. Here we investigate how these mechanisms cooperate to filter synaptic input in hippocampal area CA1. Dendritic recordings from CA1 pyramidal neurons reveal that proximal inputs from CA3 as well as distal inputs from entorhinal cortex layer III (ECIII) sum sublinearly or linearly at low firing rates due to feedforward inhibition, but sum supralinearly at high firing rates due to synaptic facilitation, producing a high-pass filter. However, during ECIII and CA3 input comparison, supralinear dendritic integration is dynamically balanced by feedforward and feedback inhibition, resulting in suppression of dendritic complex spiking. We find that a particular subpopulation of CA1 interneurons expressing neuropeptide Y (NPY) contributes prominently to this dynamic filter by integrating both ECIII and CA3 input pathways and potently inhibiting CA1 pyramidal neuron dendrites.

  9. NIDR (New Input Deck Reader) V2.0 2

    SciTech Connect

    Gay, David

    2010-03-31

    NIDR (New Input Deck Reader) is a facility for processing block-structured input to large programs. NIDR was written to simplify maintenance of DAKOTA (a program for uncertainty quantification and optimization), to provide better error checking of input and to allow use of aliases in the input. While written to support DAKOTA input conventions, NIDR itself is independent of DAKOTA and can be used in many kinds of programs. The initial version of NIDR was copyrighted in 2008. We have since extended NIDR to support a graphical user interface called Jaguar for DAKOTA. In the Review and Approval process for an updated paper on NIDR, the Classification Approver states that a new copyright assertion should be performed.processing input to programs. NIDR is not primarily for military applications.

  10. [Regional differences of inputs of organic matter and chemical fertilizer in South Central China].

    PubMed

    Liu, Huan-yao; Wu, Jin-shui; Zhou, Jiao-gen; Xiao, He-ai; Zhou, Ping

    2015-09-01

    This article analyzed the inputs of organic matter and chemical fertilizer in the cropland of South Central China, i.e., Hunan, Hubei, Guangdong and Guangxi, and then calculated the budgets of nitrogen (N), phosphorus (P) and potassium (K), based on the data from field investigations and peasant household surveys in the four provinces. The results showed that total amounts of organic matter inputs in the four provinces was ranked as follow: 8993 kg · hm(-2) in Guangxi, 6390 kg · hm(-2) in Hunan, 5012 kg · hm(-2) in Hubei, 4630 kg · hm(-2) in Guangdong, and average NPK inputs in the four provinces were ranked as follow: 777.5 kg · hm(-2) in Guangxi, 501.6 kg · hm(-2) in Hunan, 486.4 kg · hm(-2) in Hubei, 340.4 kg · hm(-2) in Guangdong. The N and P input surpluses were greatest in Guangxi (67.2% and 99.0% as for N and P, respectively) , followed by Hunan (33.2% and 50.8%), Hubei (11.8% and 11.0%), and Guangdong (7.8% and 30.0%). However, K input was deficient in Hunan, Hubei, and Guangdong (6.6%, 18.7% and 12.4%), but surplus in Guangxi (19.5%).

  11. Retrograde analyses of spinothalamic projections in the macaque monkey: input to ventral posterior nuclei.

    PubMed

    Craig, A D ' Bud '

    2006-12-20

    The distribution of retrogradely labeled spinothalamic tract (STT) neurons was analyzed in monkeys following variously sized injections of cholera toxin subunit B (CTb) in order to determine whether different STT termination sites receive input from different sets of STT cells. This report focuses on STT input to the ventral posterior lateral nucleus (VPL) and the subjacent ventral posterior inferior nucleus (VPI), where prior anterograde tracing studies identified scattered STT terminal bursts and a dense terminal field, respectively. In cases with small or medium-sized injections in VPL, labeled STT cells were located almost entirely in lamina V (in spinal segments consistent with the mediolateral VPL topography); few cells were labeled in lamina I (<8%) and essentially none in lamina VII. Large and very large injections in VPL produced marked increases in labeling in lamina I, associated first with spread into VPI and next into the posterior part of the ventral medial nucleus (VMpo), and abundant labeling in lamina VII, associated with spread into the ventral lateral (VL) nucleus. Small injections restricted to VPI labeled many STT cells in laminae I and V with an anteroposterior topography. These observations indicate that VPL receives STT input almost entirely from lamina V neurons, whereas VPI receives STT input from both laminae I and V cells, with two different topographic organizations. Together with the preceding observation that STT input to VMpo originates almost entirely from lamina I, these findings provide strong evidence that the primate STT consists of anatomically and functionally differentiable components.

  12. Is moral hazard good for the environment? Revenue insurance and chemical input use.

    PubMed

    Mishra, Ashok K; Wesley Nimon, R; El-Osta, Hisham S

    2005-01-01

    Using farm level data we evaluate the input use and environmental effects of revenue insurance. A priori, the moral hazard effect on input use is indeterminate. This paper empirically assesses the input use impact of the increasingly popular, and federally subsidized, risk management instrument of revenue insurance and the extent to which its effects on input use may differ from those of the older yield based instruments. We conclude that among winter wheat farmers, those who purchase revenue insurance tend to spend less on fertilizers but do not appreciably alter pesticide expenditures. Thus, any improved environmental outcomes due to crop insurance are likely due to reduced fertilizer not pesticide use. When the environmental indicators included indicated a potential environmental fragility (i.e. high erosion, pesticide leaching or pesticide runoff potential), the input use equation suggested that fertilizer expenditures decreased. Revenue insurance undoubtedly further reduces fertilizer applications on these fields as well, but the marginal environmental benefit of revenue insurance is lessened because the reduction, where it matters most, accrues on land on which fertilizer use has already been curtailed to some degree.

  13. Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex

    PubMed Central

    Wilson, Daniel E.; Whitney, David E.; Scholl, Benjamin; Fitzpatrick, David

    2016-01-01

    The majority of neurons in primary visual cortex are tuned for stimulus orientation, but the factors that account for the range of orientation selectivities exhibited by cortical neurons remain unclear. To address this issue, we used in vivo 2-photon calcium imaging to characterize the orientation tuning and spatial arrangement of synaptic inputs to the dendritic spines of individual pyramidal neurons in layer 2/3 of ferret visual cortex. The summed synaptic input to individual neurons reliably predicted the neuron’s orientation preference, but did not account for differences in orientation selectivity among neurons. These differences reflected a robust input-output nonlinearity that could not be explained by spike threshold alone, and was strongly correlated with the spatial clustering of co-tuned synaptic inputs within the dendritic field. Dendritic branches with more co-tuned synaptic clusters exhibited greater rates of local dendritic calcium events supporting a prominent role for functional clustering of synaptic inputs in dendritic nonlinearities that shape orientation selectivity. PMID:27294510

  14. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Hallquist, J. O.; Sanford, Larry

    1996-07-15

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  15. MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ

    SciTech Connect

    Sanford, L.; Hallquist, J.O.

    1992-02-24

    MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.

  16. Input-output analysis of high-speed axisymmetric isothermal jet noise

    NASA Astrophysics Data System (ADS)

    Jeun, Jinah; Nichols, Joseph W.; Jovanović, Mihailo R.

    2016-04-01

    We use input-output analysis to predict and understand the aeroacoustics of high-speed isothermal turbulent jets. We consider axisymmetric linear perturbations about Reynolds-averaged Navier-Stokes solutions of ideally expanded turbulent jets with jet Mach numbers 0.6 < Mj < 1.8. For each base flow, we compute the optimal harmonic forcing function and the corresponding linear response using singular value decomposition of the resolvent operator. In addition to the optimal mode, input-output analysis also yields sub-optimal modes associated with smaller singular values. For supersonic jets, the optimal response closely resembles a wavepacket in both the near-field and the far-field such as those obtained by the parabolized stability equations (PSE), and this mode dominates the response. For subsonic jets, however, the singular values indicate that the contributions of sub-optimal modes to noise generation are nearly equal to that of the optimal mode, explaining why the PSE do not fully capture the far-field sound in this case. Furthermore, high-fidelity large eddy simulation (LES) is used to assess the prevalence of sub-optimal modes in the unsteady data. By projecting LES source term data onto input modes and the LES acoustic far-field onto output modes, we demonstrate that sub-optimal modes of both types are physically relevant.

  17. High-speed multiplexing of keyboard data inputs

    NASA Technical Reports Server (NTRS)

    Anderson, T. O. (Inventor)

    1981-01-01

    A high speed multiplexing system is described in which keyboard entered data is sequentially and automatically sampled by the multiplexing system for input to a computer. A sequencer is provided which sequentially and automatically controls the multiplexer to sample each keyboard input in accordance with a predetermined sampling sequence. Whenever keyboard entered data appears on input lines to the multiplexer, the system inputs the keyboard data to the computer during a brief time interval in which the multiplexer remains at the particular keyboard address or port. Thus, a high speed sampling circuit is provided whereby the only operator action required is data entry through a keyboard. Priority or interrupt systems are not required.

  18. Orthogonal topography in the parallel input architecture of songbird HVC.

    PubMed

    Elliott, Kevin C; Wu, Wei; Bertram, Richard; Hyson, Richard L; Johnson, Frank

    2017-06-15

    Neural activity within the cortical premotor nucleus HVC (acronym is name) encodes the learned songs of adult male zebra finches (Taeniopygia guttata). HVC activity is driven and/or modulated by a group of five afferent nuclei (the Medial Magnocellular nucleus of the Anterior Nidopallium, MMAN; Nucleus Interface, NIf; nucleus Avalanche, Av; the Robust nucleus of the Arcopallium, RA; the Uvaeform nucleus, Uva). While earlier evidence suggested that HVC receives a uniformly distributed and nontopographic pattern of afferent input, recent evidence suggests this view is incorrect (Basista et al., ). Here, we used a double-labeling strategy (varying both the distance between and the axial orientation of dual tracer injections into HVC) to reveal a massively parallel and in some cases topographic pattern of afferent input. Afferent neurons target only one rostral or caudal location within medial or lateral HVC, and each HVC location receives convergent input from each afferent nucleus in parallel. Quantifying the distributions of single-labeled cells revealed an orthogonal topography in the organization of afferent input from MMAN and NIf, two cortical nuclei necessary for song learning. MMAN input is organized across the lateral-medial axis whereas NIf input is organized across the rostral-caudal axis. To the extent that HVC activity is influenced by afferent input during the learning, perception, or production of song, functional models of HVC activity may need revision to account for the parallel input architecture of HVC, along with the orthogonal input topography of MMAN and NIf. © 2017 Wiley Periodicals, Inc.

  19. Electronically Tunable High Input Impedance Voltage-Mode Multifunction Filter

    NASA Astrophysics Data System (ADS)

    Chen, Hua-Pin; Yang, Wan-Shing

    A novel electronically tunable high input impedance voltage-mode multifunction filter with single inputs and three outputs employing two single-output-operational transconductance amplifiers, one differential difference current conveyor and two capacitors is proposed. The presented filter can be realized the highpass, bandpass and lowpass functions, simultaneously. The input of the filter exhibits high input impedance so that the synthesized filter can be cascaded without additional buffers. The circuit needs no any external resistors and employs two grounded capacitors, which is suitable for integrated circuit implementation.

  20. Input design for identification of aircraft stability and control derivatives

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Hall, W. E., Jr.

    1975-01-01

    An approach for designing inputs to identify stability and control derivatives from flight test data is presented. This approach is based on finding inputs which provide the maximum possible accuracy of derivative estimates. Two techniques of input specification are implemented for this objective - a time domain technique and a frequency domain technique. The time domain technique gives the control input time history and can be used for any allowable duration of test maneuver, including those where data lengths can only be of short duration. The frequency domain technique specifies the input frequency spectrum, and is best applied for tests where extended data lengths, much longer than the time constants of the modes of interest, are possible. These technqiues are used to design inputs to identify parameters in longitudinal and lateral linear models of conventional aircraft. The constraints of aircraft response limits, such as on structural loads, are realized indirectly through a total energy constraint on the input. Tests with simulated data and theoretical predictions show that the new approaches give input signals which can provide more accurate parameter estimates than can conventional inputs of the same total energy. Results obtained indicate that the approach has been brought to the point where it should be used on flight tests for further evaluation.

  1. Sedimentary input of trace metals from the Chukchi Shelf

    NASA Astrophysics Data System (ADS)

    Aguilar-Islas, A. M.; Seguré, M.; Rember, R.; Nishino, S.

    2014-12-01

    The distribution of trace metals in the Arctic Ocean has implications for their global cycles, yet until recently few trace metal observations were available from this rapidly changing ocean. Profiles of dissolved Fe from recent Japanese field efforts in the Western Canada Basin (2008, 2010) indicate the broad Chukchi Shelf as a source of Fe to the halocline of the Western Canada Basin. Here we present dissolved and particulate data for crustal (Al, Mn, Fe) and non-crustal elements (Co, Cu, Zn) from the productive Chukchi Sea to characterize the sedimentary input of these metals to shelf waters contributing to the halocline layer of the Canada Basin. Water column profiles were collected in late summer 2013 onboard the R/V Mirai at 10 stations from the Bering Strait to the slope, and at a time-series (10 days) station located over the outer shelf. A narrow and variable (5-10 m) benthic boundary layer was sampled at the time-series station with highly elevated dissolved and suspended particulate metal concentrations. High metal concentrations were also observed in the subsurface at a station over Barrow Canyon where mixing is enhanced. Reactivity of suspended particulate metals was determined by the leachable vs. refractory fractions. Metal concentrations were determined by ICP-MS. Trace metal transport from the shelf to the interior will be discussed in context with shelf mechanisms contributing to this export, and to expected future changes in the Arctic Ocean.

  2. Prefrontal Cortical Kappa Opioid Receptors Attenuate Responses to Amygdala Inputs.

    PubMed

    Tejeda, Hugo A; Hanks, Ashley N; Scott, Liam; Mejias-Aponte, Carlos; Hughes, Zoë A; O'Donnell, Patricio

    2015-12-01

    Kappa opioid receptors (KORs) have been implicated in anxiety and stress, conditions that involve activation of projections from the basolateral amygdala (BLA) to the medial prefrontal cortex (mPFC). Although KORs have been studied in several brain regions, their role on mPFC physiology and on BLA projections to the mPFC remains unclear. Here, we explored whether KORs modify synaptic inputs from the BLA to the mPFC using in vivo electrophysiological recordings with electrical and optogenetic stimulation. Systemic administration of the KOR agonist U69,593 inhibited BLA-evoked synaptic responses in the mPFC without altering hippocampus-evoked responses. Intra-mPFC U69,593 inhibited electrical and optogenetic BLA-evoked synaptic responses, an effect blocked by the KOR antagonist nor-BNI. Bilateral intra-mPFC injection of the KOR antagonist nor-BNI increased center time in the open field test, suggesting an anxiolytic effect. The data demonstrate that mPFC KORs negatively regulate glutamatergic synaptic transmission in the BLA-mPFC pathway and anxiety-like behavior. These findings provide a framework whereby KOR signaling during stress and anxiety can regulate the flow of emotional state information from the BLA to the mPFC.

  3. Multiphoton catalysis with coherent state input: nonclassicality and decoherence

    NASA Astrophysics Data System (ADS)

    Hu, Li-Yun; Wu, Jia-Ni; Liao, Zeyang; Zubairy, M. Suhail

    2016-09-01

    We propose a scheme to generate a new kind of non-Gaussian state—the Laguerre polynomial excited coherent state (LPECS)—by using multiphoton catalysis with coherent state input. The nonclassical properties of the LPECS are studied in terms of nonclassical depth, Mandel’s parameter, second-order correlation, quadrature squeezing, and the negativity of the Wigner function (WF). It is found that the LPECS is highly nonclassical and its nonclassicality depends on the amplitude of the coherent state, the catalysis photon number, and the parameters of the unbalanced beam splitter (BS). In particular, the maximum degree of squeezing can be enhanced by increasing the catalysis photon number. In addition, we examine the effect of decoherence using the WF, which shows that the negative region, the characteristic time of decoherence, and the structure of the WF are affected by catalysis photon number and the parameters of the unbalanced BS. Our work provides general analysis on how to prepare polynomial quantum states, which may be useful in the fields of quantum information and quantum computation.

  4. Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber).

    PubMed

    Sarko, Diana K; Leitch, Duncan B; Catania, Kenneth C

    2013-01-01

    The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats' behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment.

  5. Cutaneous and periodontal inputs to the cerebellum of the naked mole-rat (Heterocephalus glaber)

    PubMed Central

    Sarko, Diana K.; Leitch, Duncan B.; Catania, Kenneth C.

    2013-01-01

    The naked mole-rat (Heterocephalus glaber) is a small fossorial rodent with specialized dentition that is reflected by the large cortical area dedicated to representation of the prominent incisors. Due to naked mole-rats’ behavioral reliance on the incisors for digging and for manipulating objects, as well as their ability to move the lower incisors independently, we hypothesized that expanded somatosensory representations of the incisors would be present within the cerebellum in order to accommodate a greater degree of proprioceptive, cutaneous, and periodontal input. Multiunit electrophysiological recordings targeting the ansiform lobule were used to investigate tactile inputs from receptive fields on the entire body with a focus on the incisors. Similar to other rodents, a fractured somatotopy appeared to be present with discrete representations of the same receptive fields repeated within each folium of the cerebellum. These findings confirm the presence of somatosensory inputs to a large area of the naked mole-rat cerebellum with particularly extensive representations of the lower incisors and mystacial vibrissae. We speculate that these extensive inputs facilitate processing of tactile cues as part of a sensorimotor integration network that optimizes how sensory stimuli are acquired through active exploration and in turn adjusts motor outputs (such as independent movement of the lower incisors). These results highlight the diverse sensory specializations and corresponding brain organizational schemes that have evolved in different mammals to facilitate exploration of and interaction with their environment. PMID:24302898

  6. The role of size of input box, location of input box, input method and display size in Chinese handwriting performance and preference on mobile devices.

    PubMed

    Chen, Zhe; Rau, Pei-Luen Patrick

    2017-03-01

    This study presented two experiments on Chinese handwriting performance (time, accuracy, the number of protruding strokes and number of rewritings) and subjective ratings (mental workload, satisfaction, and preference) on mobile devices. Experiment 1 evaluated the effects of size of the input box, input method and display size on Chinese handwriting performance and preference. It was indicated that the optimal input sizes were 30.8 × 30.8 mm, 46.6 × 46.6 mm, 58.9 × 58.9 mm and 84.6 × 84.6 mm for devices with 3.5-inch, 5.5-inch, 7.0-inch and 9.7-inch display sizes, respectively. Experiment 2 proved the significant effects of location of the input box, input method and display size on Chinese handwriting performance and subjective ratings. It was suggested that the optimal location was central regardless of display size and input method.

  7. Mitigation strategies to reduce pesticide inputs into ground- and surface water and their effectiveness; a review.

    PubMed

    Reichenberger, Stefan; Bach, Martin; Skitschak, Adrian; Frede, Hans-Georg

    2007-10-01

    In this paper, the current knowledge on mitigation strategies to reduce pesticide inputs into surface water and groundwater, and their effectiveness when applied in practice is reviewed. Apart from their effectiveness in reducing pesticide inputs into ground- and surface water, the mitigation measures identified in the literature are evaluated with respect to their practicability. Those measures considered both effective and feasible are recommended for implementing at the farm and catchment scale. Finally, recommendations for modelling are provided using the identified reduction efficiencies. Roughly 180 publications directly dealing with or being somehow related to mitigation of pesticide inputs into water bodies were examined. The effectiveness of grassed buffer strips located at the lower edges of fields has been demonstrated. However, this effectiveness is very variable, and the variability cannot be explained by strip width alone. Riparian buffer strips are most probably much less effective than edge-of-field buffer strips in reducing pesticide runoff and erosion inputs into surface waters. Constructed wetlands are promising tools for mitigating pesticide inputs via runoff/erosion and drift into surface waters, but their effectiveness still has to be demonstrated for weakly and moderately sorbing compounds. Subsurface drains are an effective mitigation measure for pesticide runoff losses from slowly permeable soils with frequent waterlogging. For the pathways drainage and leaching, the only feasible mitigation measures are application rate reduction, product substitution and shift of the application date. There are many possible effective measures of spray drift reduction. While sufficient knowledge exists for suggesting default values for the efficiency of single drift mitigation measures, little information exists on the effect of the drift reduction efficiency of combinations of measures. More research on possible interactions between different drift

  8. Active control of sound transmission/radiation from elastic plates by vibration inputs. II - Experiments

    NASA Technical Reports Server (NTRS)

    Metcalf, V. L.; Fuller, C. R.; Silcox, R. J.; Brown, D. E.

    1992-01-01

    Actively controlled harmonic force inputs were applied experimentally to reduce the sound transmitted through an elastic circular plate. The control implementation used a time domain least mean square adaptive algorithm with two error sensors. The control forces were applied directly to the plate by point force vibration inputs, while the error information and performance were measured in the radiated acoustic field by microphones. Test cases were also performed in which the error sensors were accelerometers mounted on the plate. When accelerometers were used as error sensors, the controller performance was degraded; leading to the conclusion that minimizing plate motion does not necessarily lead to an associated decrease in radiated sound levels. In contrast, the results show excellent attenuation of the transmitted sound field when microphone error sensors were used. This result was consistent over a range of frequencies. In addition, the experimental results are compared to previously derived analytical results and the effect of using a point or global minimization scheme is discussed.

  9. Steering and focusing effects in TESLA cavity due to high order mode and input couplers

    SciTech Connect

    Piot, P.; Dohlus, M.; Flottmann, K.; Marx, M.; Wipf, S.G.; /DESY

    2005-05-01

    Many state-of-art electron accelerator proposals incorporate TESLA-type superconducting radio-frequency (rf) cavities [1]. These standing wave rf cavities include rf input couplers and a pair of high order mode (HOM) couplers to absorb the energy associated to HOM field excited as the bunch passes through the cavity. In the present paper we investigate, using numerical simulations, the impact of the input and HOM couplers on the beam dynamics to zeroth and first order in initial position, and present parametric studies of the strength of these effects for various incoming beam energies. We finally study the impact of this asymmetric field on the beam dynamics, taking as an example the low energy section of the X-ray FEL injector.

  10. Input impedance of a probe-fed circular microstrip antenna with thick substrate

    NASA Technical Reports Server (NTRS)

    Davidovitz, M.; Lo, Y. T.

    1986-01-01

    A method of computing the input impedance for the probe fed circular microstrip antenna with thick dielectric substrate is presented. Utilizing the framework of the cavity model, the fields under the microstrip patch are expanded in a set of modes satisfying the boundary conditions on the eccentrically located probe, as well as on the cavity magnetic wall. A mode-matching technique is used to solve for the electric field at the junction between the cavity and the coaxial feed cable. The reflection coefficient of the transverse electromagnetic (TEM) mode incident in the coaxial cable is determined, from which the input impedance of the antenna is computed. Measured data are presented to verify the theoretical calculations. Results of the computation of various losses for the circular printed antenna as a function of substrate thickness are also included.

  11. Active control of sound transmission/radiation from elastic plates by vibration inputs. II - Experiments

    NASA Technical Reports Server (NTRS)

    Metcalf, V. L.; Fuller, C. R.; Silcox, R. J.; Brown, D. E.

    1992-01-01

    Actively controlled harmonic force inputs were applied experimentally to reduce the sound transmitted through an elastic circular plate. The control implementation used a time domain least mean square adaptive algorithm with two error sensors. The control forces were applied directly to the plate by point force vibration inputs, while the error information and performance were measured in the radiated acoustic field by microphones. Test cases were also performed in which the error sensors were accelerometers mounted on the plate. When accelerometers were used as error sensors, the controller performance was degraded; leading to the conclusion that minimizing plate motion does not necessarily lead to an associated decrease in radiated sound levels. In contrast, the results show excellent attenuation of the transmitted sound field when microphone error sensors were used. This result was consistent over a range of frequencies. In addition, the experimental results are compared to previously derived analytical results and the effect of using a point or global minimization scheme is discussed.

  12. Transmission from the dominant input shapes the stereotypic ratio of photoreceptor inputs onto horizontal cells

    PubMed Central

    Yoshimatsu, Takeshi; Williams, Philip R.; D’Orazi, Florence D.; Suzuki, Sachihiro C.; Fadool, James M.; Allison, W. Ted; Raymond, Pamela A.; Wong, Rachel O.

    2014-01-01

    Many neurons receive synapses in stereotypic proportions from converging but functionally distinct afferents. However, developmental mechanisms regulating synaptic convergence are not well understood. Here we describe a heterotypic mechanism by which one afferent controls synaptogenesis of another afferent, but not vice-versa. Like other CNS circuits, zebrafish retinal H3 horizontal cells undergo an initial period of remodeling, establishing synapses with UV and blue cones while eliminating red and green cone contacts. As development progresses, the horizontal cells selectively synapse with UV cones to generate a 5:1 UV-to-blue cone synapse ratio. Blue cone synaptogenesis increases in mutants lacking UV cones, and when transmitter release or visual stimulation of UV cones is perturbed. Connectivity is unaltered when blue cone transmission is suppressed. Moreover, there is no homotypic regulation of cone synaptogenesis by neurotransmission. Thus, biased connectivity in this circuit is established by an unusual activity-dependent, unidirectional control of synaptogenesis exerted by the dominant input. PMID:24832361

  13. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    ERIC Educational Resources Information Center

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.

    2009-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…

  14. Methodology Development for Advocate Team Use for Input Evaluation.

    ERIC Educational Resources Information Center

    Reinhard, Diane L.

    Methodology for input evaluation, as defined by Daniel L. Stufflebeam, is relatively nonexistent. Advocate teams have recently become a popular means of generating and assessing alternative strategies for a set of objectives. This study was undertaken to develop and evaluate methodology for advocate team use in input evaluation. Steps taken…

  15. The Comparison of Visual Working Memory Representations with Perceptual Inputs

    ERIC Educational Resources Information Center

    Hyun, Joo-seok; Woodman, Geoffrey F.; Vogel, Edward K.; Hollingworth, Andrew; Luck, Steven J.

    2009-01-01

    The human visual system can notice differences between memories of previous visual inputs and perceptions of new visual inputs, but the comparison process that detects these differences has not been well characterized. In this study, the authors tested the hypothesis that differences between the memory of a stimulus array and the perception of a…

  16. 40 CFR 1065.210 - Work input and output sensors.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that...

  17. Input and Output Analysis of Suburban Elementary School Districts.

    ERIC Educational Resources Information Center

    Dunnell, John P.

    The relationship of certain input variables to output was determined by a multiple regression analysis, using a sample of 44 suburban elementary school districts. The four input factors were: (1) socioeconomic characteristics, (2) assessed valuation, (3) per-pupil operating expenditure, and (4) educational treatments. The output was mean scores on…

  18. Input graph: the hidden geometry in controlling complex networks

    PubMed Central

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-01-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes. PMID:27901102

  19. Diversity Matters: Parent Input Predicts Toddler Verb Production

    ERIC Educational Resources Information Center

    Hsu, Ning; Hadley, Pamela A.; Rispoli, Matthew

    2017-01-01

    The contribution of parent input to children's subsequent expressive verb diversity was explored in twenty typically developing toddlers with small verb lexicons. Child developmental factors and parent input measures (i.e. verb quantity, verb diversity, and verb-related structural cues) at age 1;9 were examined as potential predictors of…

  20. Input gate circuit converted for use as linear amplifier

    NASA Technical Reports Server (NTRS)

    Harper, T. P.

    1968-01-01

    Commercially available integrated circuit that is marketed as a digital computer input gate circuit was converted to a linear amplifier in a microphone circuit that has high input impedance, low output impedance, low cost, and is small enough to fit on a standard printed circuit card.

  1. Exact Repetition as Input Enhancement in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Jensen, Eva Dam; Vinther, Thora

    2003-01-01

    Reports on two studies on input enhancement used to support learners' selection of focus of attention in Spanish second language listening material. Input consisted of video recordings of dialogues between native speakers. Exact repetition and speech rate reduction were examined for effect on comprehension, acquisition of decoding strategies, and…

  2. Master control data handling program uses automatic data input

    NASA Technical Reports Server (NTRS)

    Alliston, W.; Daniel, J.

    1967-01-01

    General purpose digital computer program is applicable for use with analysis programs that require basic data and calculated parameters as input. It is designed to automate input data preparation for flight control computer programs, but it is general enough to permit application in other areas.

  3. Language Learning from Inconsistent Input: Bilingual and Monolingual Toddlers Compared

    ERIC Educational Resources Information Center

    Bree, Elise; Verhagen, Josje; Kerkhoff, Annemarie; Doedens, Willemijn; Unsworth, Sharon

    2017-01-01

    This study examines novel language learning from inconsistent input in monolingual and bilingual toddlers. We predicted an advantage for the bilingual toddlers on the basis of the structural sensitivity hypothesis. Monolingual and bilingual 24-month-olds performed two novel language learning experiments. The first contained consistent input, and…

  4. Optimal input sizes for neural network de-interlacing

    NASA Astrophysics Data System (ADS)

    Choi, Hyunsoo; Seo, Guiwon; Lee, Chulhee

    2009-02-01

    Neural network de-interlacing has shown promising results among various de-interlacing methods. In this paper, we investigate the effects of input size for neural networks for various video formats when the neural networks are used for de-interlacing. In particular, we investigate optimal input sizes for CIF, VGA and HD video formats.

  5. Input graph: the hidden geometry in controlling complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhe; Lv, Tianyang; Pu, Yuanyuan

    2016-11-01

    The ability to control a complex network towards a desired behavior relies on our understanding of the complex nature of these social and technological networks. The existence of numerous control schemes in a network promotes us to wonder: what is the underlying relationship of all possible input nodes? Here we introduce input graph, a simple geometry that reveals the complex relationship between all control schemes and input nodes. We prove that the node adjacent to an input node in the input graph will appear in another control scheme, and the connected nodes in input graph have the same type in control, which they are either all possible input nodes or not. Furthermore, we find that the giant components emerge in the input graphs of many real networks, which provides a clear topological explanation of bifurcation phenomenon emerging in dense networks and promotes us to design an efficient method to alter the node type in control. The findings provide an insight into control principles of complex networks and offer a general mechanism to design a suitable control scheme for different purposes.

  6. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  7. Measuring Equity: Creating a New Standard for Inputs and Outputs

    ERIC Educational Resources Information Center

    Knoeppel, Robert C.; Della Sala, Matthew R.

    2013-01-01

    The purpose of this article is to introduce a new statistic to capture the ratio of equitable student outcomes given equitable inputs. Given the fact that finance structures should be aligned to outcome standards according to judicial interpretation, a ratio of outputs to inputs, or "equity ratio," is introduced to discern if conclusions can be…

  8. Does Input Enhancement Work for Learning Politeness Strategies?

    ERIC Educational Resources Information Center

    Khatib, Mohammad; Safari, Mahmood

    2013-01-01

    The present study investigated the effect of input enhancement on the acquisition of English politeness strategies by intermediate EFL learners. Two groups of freshman English majors were randomly assigned to the experimental (enhanced input) group and the control (mere exposure) group. Initially, a TOEFL test and a discourse completion test (DCT)…

  9. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    ERIC Educational Resources Information Center

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  10. Naturally Simplified Input, Comprehension, and Second Language Acquisition.

    ERIC Educational Resources Information Center

    Ellis, Rod

    This article examines the concept of simplification in second language (SL) learning, reviewing research on the simplified input that both naturalistic and classroom SL learners receive. Research indicates that simplified input, particularly if derived from naturally occurring interactions, does aid comprehension but has not been shown to…

  11. 40 CFR 1065.210 - Work input and output sensors.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Work input and output sensors. 1065... Ambient Conditions § 1065.210 Work input and output sensors. (a) Application. Use instruments as specified... sensors, transducers, and meters that meet the specifications in Table 1 of § 1065.205. Note that your...

  12. Measuring Equity: Creating a New Standard for Inputs and Outputs

    ERIC Educational Resources Information Center

    Knoeppel, Robert C.; Della Sala, Matthew R.

    2013-01-01

    The purpose of this article is to introduce a new statistic to capture the ratio of equitable student outcomes given equitable inputs. Given the fact that finance structures should be aligned to outcome standards according to judicial interpretation, a ratio of outputs to inputs, or "equity ratio," is introduced to discern if conclusions can be…

  13. Identifying Inputs to Leadership Development within an Interdisciplinary Leadership Minor

    ERIC Educational Resources Information Center

    McKim, Aaron J.; Sorensen, Tyson J.; Velez, Jonathan J.

    2015-01-01

    Researchers conducted a qualitative analysis of students' experiences while enrolled in an interdisciplinary leadership minor with the intent to determine programmatic inputs that spur leadership development. Based on students' reflections, three domains of programmatic inputs for leadership development within the minor were identified. These…

  14. Modeling Recognition Memory Using the Similarity Structure of Natural Input

    ERIC Educational Resources Information Center

    Lacroix, Joyca P. W.; Murre, Jaap M. J.; Postma, Eric O.; van den Herik, H. Jaap

    2006-01-01

    The natural input memory (NAM) model is a new model for recognition memory that operates on natural visual input. A biologically informed perceptual preprocessing method takes local samples (eye fixations) from a natural image and translates these into a feature-vector representation. During recognition, the model compares incoming preprocessed…

  15. Diversity Matters: Parent Input Predicts Toddler Verb Production

    ERIC Educational Resources Information Center

    Hsu, Ning; Hadley, Pamela A.; Rispoli, Matthew

    2017-01-01

    The contribution of parent input to children's subsequent expressive verb diversity was explored in twenty typically developing toddlers with small verb lexicons. Child developmental factors and parent input measures (i.e. verb quantity, verb diversity, and verb-related structural cues) at age 1;9 were examined as potential predictors of…

  16. A Clinical Evaluation of the Competing Sources of Input Hypothesis

    ERIC Educational Resources Information Center

    Fey, Marc E.; Leonard, Laurence B.; Bredin-Oja, Shelley L.; Deevy, Patricia

    2017-01-01

    Purpose: Our purpose was to test the competing sources of input (CSI) hypothesis by evaluating an intervention based on its principles. This hypothesis proposes that children's use of main verbs without tense is the result of their treating certain sentence types in the input (e.g., "Was 'she laughing'?") as models for declaratives…

  17. Somatosensory Anticipatory Alpha Activity Increases to Suppress Distracting Input

    ERIC Educational Resources Information Center

    Haegens, Saskia; Luther, Lisa; Jensen, Ole

    2012-01-01

    Effective processing of sensory input in daily life requires attentional selection and amplification of relevant input and, just as importantly, attenuation of irrelevant information. It has been proposed that top-down modulation of oscillatory alpha band activity (8-14 Hz) serves to allocate resources to various regions, depending on task…

  18. Computer-Drawn Field Lines and Potential Surfaces for a Wide Range of Field Configurations

    ERIC Educational Resources Information Center

    Brandt, Siegmund; Schneider, Hermann

    1976-01-01

    Describes a computer program that computes field lines and equipotential surfaces for a wide range of field configurations. Presents the mathematical technique and details of the program, the input data, and different modes of graphical representation. (MLH)

  19. Visual Working Memory Enhances the Neural Response to Matching Visual Input.

    PubMed

    Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp

    2017-07-12

    Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response.SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind

  20. Sound effects: Multimodal input helps infants find displaced objects.

    PubMed

    Shinskey, Jeanne L

    2017-09-01

    Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion, suggesting auditory input is more salient in the absence of visual input. This article addresses how audiovisual input affects 10-month-olds' search for displaced objects. In AB tasks, infants who previously retrieved an object at A subsequently fail to find it after it is displaced to B, especially following a delay between hiding and retrieval. Experiment 1 manipulated auditory input by keeping the hidden object audible versus silent, and visual input by presenting the delay in the light versus dark. Infants succeeded more at B with audible than silent objects and, unexpectedly, more after delays in the light than dark. Experiment 2 presented both the delay and search phases in darkness. The unexpected light-dark difference disappeared. Across experiments, the presence of auditory input helped infants find displaced objects, whereas the absence of visual input did not. Sound might help by strengthening object representation, reducing memory load, or focusing attention. This work provides new evidence on when bimodal input aids object processing, corroborates claims that audiovisual processing improves over the first year of life, and contributes to multisensory approaches to studying cognition. Statement of contribution What is already known on this subject Before 9 months, infants use sound to retrieve a stationary object hidden by darkness but not one hidden by occlusion. This suggests they find auditory input more salient in the absence of visual input in simple search tasks. After 9 months, infants' object processing appears more sensitive to multimodal (e.g., audiovisual) input. What does this study add? This study tested how audiovisual input affects 10-month-olds' search for an object displaced in an AB task. Sound helped infants find displaced objects in both the presence and absence of visual input. Object processing becomes more

  1. Balanced synaptic input shapes the correlation between neural spike trains.

    PubMed

    Litwin-Kumar, Ashok; Oswald, Anne-Marie M; Urban, Nathaniel N; Doiron, Brent

    2011-12-01

    Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.

  2. On Optimal Input Design and Model Selection for Communication Channels

    SciTech Connect

    Li, Yanyan; Djouadi, Seddik M; Olama, Mohammed M

    2013-01-01

    In this paper, the optimal model (structure) selection and input design which minimize the worst case identification error for communication systems are provided. The problem is formulated using metric complexity theory in a Hilbert space setting. It is pointed out that model selection and input design can be handled independently. Kolmogorov n-width is used to characterize the representation error introduced by model selection, while Gel fand and Time n-widths are used to represent the inherent error introduced by input design. After the model is selected, an optimal input which minimizes the worst case identification error is shown to exist. In particular, it is proven that the optimal model for reducing the representation error is a Finite Impulse Response (FIR) model, and the optimal input is an impulse at the start of the observation interval. FIR models are widely popular in communication systems, such as, in Orthogonal Frequency Division Multiplexing (OFDM) systems.

  3. Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains

    PubMed Central

    Litwin-Kumar, Ashok; Oswald, Anne-Marie M.; Urban, Nathaniel N.; Doiron, Brent

    2011-01-01

    Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states. PMID:22215995

  4. Evaluation of dome-input geometry for pyroelectric detectors

    NASA Astrophysics Data System (ADS)

    Zeng, J.; Hanssen, L. M.; Eppeldauer, G. P.

    2013-06-01

    Dome-input pyroelectric radiometers with different black coatings were developed to extend the spectral responsivity scale from near infrared (NIR) to 20 μm. The reflective dome with shiny gold-coating has been known to be an efficient light trap to enhance the detector absorptance and to minimize spectral responsivity variation. The enhancement of spectral responsivity using reflective dome relies on optical characterization of black coating on detector, reflectance of dome reflector, and input aperture dimension, etc. We report a comparison of spectral responsivity of dome-input pyroelectric radiometers measured with/without dome-trap from 2.4 μm to 14 μm using the Infrared Spectral Comparator Facility (IRSCF) at NIST. The results show 4 % to 8 % gain of responsivity for two dome-input pyroelectric detectors, with reduced structure of spectral responsivity. The uncertainty of dome-input pyroelectric radiometer calibrations is approximately 2 % (k = 2).

  5. KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION

    SciTech Connect

    Brown, Timothy M.; Latham, David W.; Esquerdo, Gilbert A.; Everett, Mark E. E-mail: latham@cfa.harvard.edu E-mail: everett@noao.edu

    2011-10-15

    We describe the photometric calibration and stellar classification methods used by the Stellar Classification Project to produce the Kepler Input Catalog (KIC). The KIC is a catalog containing photometric and physical data for sources in the Kepler mission field of view; it is used by the mission to select optimal targets. Four of the visible-light (g, r, i, z) magnitudes used in the KIC are tied to Sloan Digital Sky Survey magnitudes; the fifth (D51) is an AB magnitude calibrated to be consistent with Castelli and Kurucz (CK) model atmosphere fluxes. We derived atmospheric extinction corrections from hourly observations of secondary standard fields within the Kepler field of view. For these filters and extinction estimates, repeatability of absolute photometry for stars brighter than magnitude 15 is typically 2%. We estimated stellar parameters {l_brace}T{sub eff}, log (g), log (Z), E{sub B-V}{r_brace} using Bayesian posterior probability maximization to match observed colors to CK stellar atmosphere models. We applied Bayesian priors describing the distribution of solar-neighborhood stars in the color-magnitude diagram, in log (Z), and in height above the galactic plane. Several comparisons with samples of stars classified by other means indicate that for 4500 K {<=}T{sub eff} {<=} 6500 K, our classifications are reliable within about {+-}200 K and 0.4 dex in log (g) for dwarfs, with somewhat larger log (g) uncertainties for giants. It is difficult to assess the reliability of our log (Z) estimates, but there is reason to suspect that it is poor, particularly at extreme T{sub eff}. Comparisons between the CK models and observed colors are generally satisfactory with some exceptions, notably for stars cooler than 4500 K. Of great importance for the Kepler mission, for T{sub eff} {<=} 5400 K, comparison with asteroseismic results shows that the distinction between main-sequence stars and giants is reliable with about 98% confidence. Larger errors in log (g) occur

  6. Statistics of the electrosensory input in the freely swimming weakly electric fish Apteronotus leptorhynchus.

    PubMed

    Fotowat, Haleh; Harrison, Reid R; Krahe, Rüdiger

    2013-08-21

    The neural computations underlying sensory-guided behaviors can best be understood in view of the sensory stimuli to be processed under natural conditions. This input is often actively shaped by the movements of the animal and its sensory receptors. Little is known about natural sensory scene statistics taking into account the concomitant movement of sensory receptors in freely moving animals. South American weakly electric fish use a self-generated quasi-sinusoidal electric field for electrolocation and electrocommunication. Thousands of cutaneous electroreceptors detect changes in the transdermal potential (TDP) as the fish interact with conspecifics and the environment. Despite substantial knowledge about the circuitry and physiology of the electrosensory system, the statistical properties of the electrosensory input evoked by natural swimming movements have never been measured directly. Using underwater wireless telemetry, we recorded the TDP of Apteronotus leptorhynchus as they swam freely by themselves and during interaction with a conspecific. Swimming movements caused low-frequency TDP amplitude modulations (AMs). Interacting with a conspecific caused additional AMs around the difference frequency of their electric fields, with the amplitude of the AMs (envelope) varying at low frequencies due to mutual movements. Both AMs and envelopes showed a power-law relationship with frequency, indicating spectral scale invariance. Combining a computational model of the electric field with video tracking of movements, we show that specific swimming patterns cause characteristic spatiotemporal sensory input correlations that contain information that may be used by the brain to guide behavior.

  7. A 3-input all magnetic full adder with misalignment-free clocking mechanism

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Krishnan, Kannan M.

    2017-01-01

    The clocking field misalignment is a critical issue for the application of Magnetic Quantum-dot Cellular Automata (MQCA). Recent work demonstrates a novel architecture to address this issue—by progressively tuning the shape anisotropy, we could enforce a misalignment-free signal propagation and logic operation. In this paper, we propose a novel architecture of a 3-input full adder based on the 45°-clocking field mechanism. The effectiveness of this design is confirmed through both simulation and experiments. Our work paves the way for the application of MQCA logic.

  8. Cardiopulmonary sympathetic afferent input to lower thoracic spinal neurons.

    PubMed

    Ammons, W S

    1990-10-08

    Spinal neuronal responses to stimulation of cardiopulmonary sympathetic afferent (CPS) fibers were studied in 25 alpha-chloralose-anesthetized cats. Eighty-two neurons located in the T7-T9 segments were tested for responses to electrical stimulation of CPS fibers. Activity of 55 neurons was altered; 37 were excited, 10 were inhibited, and 8 were both excited and inhibited. All 55 cells with CPS input also responded to stimulation of somatic receptors and the left greater splanchnic nerve (SPL). Somatic receptive fields were primarily located on the upper portion of the abdomen and left lower rib cage. Short and long latency responses occurred following CPS and SPL stimulation. Latencies of responses to CPS stimulation were significantly longer than latencies of responses to SPL stimulation (P less than 0.05). Early responses to CPS stimulation were significantly less in magnitude compared to early responses to SPL stimulation (P less than 0.05). Cell responses to CPS stimulation were reduced in magnitude for as long as 300 ms when a conditioning stimulus was applied to SPL. Inhibitory responses of 10 cells to CPS fiber stimulation were best observed during repetitive stimulation. Eight of the cells were also inhibited by repetitive stimulation of SPL. Injection of bradykinin (4 micrograms/kg) into the left atrium increased activity of 16/30 cells from 8 +/- 2 to 22 +/- 5 spikes/s. The results demonstrate that CPS fiber stimulation alters activity of lower thoracic spinal neurons but not as intensely as SPL stimulation. These neurons may participate in cardiac-abdominal visceral reflexes or the pain of cardiac origin that is referred to the abdomen.

  9. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    PubMed

    Bordean, Despina-Maria; Nica, Dragos V; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  10. Flexible Peripheral Component Interconnect Input/Output Card

    NASA Technical Reports Server (NTRS)

    Bigelow, Kirk K.; Jerry, Albert L.; Baricio, Alisha G.; Cummings, Jon K.

    2010-01-01

    The Flexible Peripheral Component Interconnect (PCI) Input/Output (I/O) Card is an innovative circuit board that provides functionality to interface between a variety of devices. It supports user-defined interrupts for interface synchronization, tracks system faults and failures, and includes checksum and parity evaluation of interface data. The card supports up to 16 channels of high-speed, half-duplex, low-voltage digital signaling (LVDS) serial data, and can interface combinations of serial and parallel devices. Placement of a processor within the field programmable gate array (FPGA) controls an embedded application with links to host memory over its PCI bus. The FPGA also provides protocol stacking and quick digital signal processor (DSP) functions to improve host performance. Hardware timers, counters, state machines, and other glue logic support interface communications. The Flexible PCI I/O Card provides an interface for a variety of dissimilar computer systems, featuring direct memory access functionality. The card has the following attributes: 8/16/32-bit, 33-MHz PCI r2.2 compliance, Configurable for universal 3.3V/5V interface slots, PCI interface based on PLX Technology's PCI9056 ASIC, General-use 512K 16 SDRAM memory, General-use 1M 16 Flash memory, FPGA with 3K to 56K logical cells with embedded 27K to 198K bits RAM, I/O interface: 32-channel LVDS differential transceivers configured in eight, 4-bit banks; signaling rates to 200 MHz per channel, Common SCSI-3, 68-pin interface connector.

  11. Soil Manganese Enrichment from Industrial Inputs: A Gastropod Perspective

    PubMed Central

    Bordean, Despina-Maria; Nica, Dragos V.; Harmanescu, Monica; Banatean-Dunea, Ionut; Gergen, Iosif I.

    2014-01-01

    Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems. PMID:24454856

  12. Carbon balance of renovated grasslands: input- or output-driven?

    NASA Astrophysics Data System (ADS)

    Choncubhair, Órlaith Ní; Osborne, Bruce; Lanigan, Gary

    2015-04-01

    Temperate grasslands constitute over 30% of the Earth's naturally-occurring biomes and make an important contribution towards the partial mitigation of anthropogenic greenhouse gas emissions by terrestrial ecosystems. In permanent temperate grasslands, biomass production and sward quality can deteriorate over time and periodic renovation activities, involving soil tillage and reseeding, are commonly carried out to halt this decline. Long-term cultivation of agricultural land has been associated with soil aggregate degradation and reduced soil carbon storage. However, the impact of these single tillage disturbances on C cycling in grasslands is less clear. This study evaluated gaseous and dissolved organic carbon (DOC) losses following a single tillage event by subjecting grassland lysimeters with contrasting soil drainage characteristics to simulated conventional inversion or minimum tillage. Field-scale CO2 emissions after conventional tillage were also quantified and empirically modelled over short- and medium-term timeframes to delineate the ecosystem response to environmental variables. Soil moisture was the limiting determinant of ecosystem carbon release following conventional tillage. Freshly-tilled soils were associated with reduced water retention and increased sensitivity to soil moisture, which was particularly pronounced following rewetting events. Significantly elevated but ephemeral CO2 effluxes were detected in the hours following inversion ploughing, however tillage disturbance did not generate significantly enhanced C emission rates in the medium term. Equally, DOC losses were not significantly amplified by conventional tillage compared with conservative minimum tillage and were predominantly controlled by soil drainage across tillage regimes. Our results suggest that a net ecosystem source of 120 to 210 g C m-2 over an approximately two-month period was most likely a consequence of reduced productivity and C input rather than enhanced soil CO2

  13. Robotics control using isolated word recognition of voice input

    NASA Technical Reports Server (NTRS)

    Weiner, J. M.

    1977-01-01

    A speech input/output system is presented that can be used to communicate with a task oriented system. Human speech commands and synthesized voice output extend conventional information exchange capabilities between man and machine by utilizing audio input and output channels. The speech input facility is comprised of a hardware feature extractor and a microprocessor implemented isolated word or phrase recognition system. The recognizer offers a medium sized (100 commands), syntactically constrained vocabulary, and exhibits close to real time performance. The major portion of the recognition processing required is accomplished through software, minimizing the complexity of the hardware feature extractor.

  14. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, R.P.; Paris, R.D.; Feldman, M.

    1993-02-23

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  15. Wavelength meter having single mode fiber optics multiplexed inputs

    DOEpatents

    Hackel, Richard P.; Paris, Robert D.; Feldman, Mark

    1993-01-01

    A wavelength meter having a single mode fiber optics input is disclosed. The single mode fiber enables a plurality of laser beams to be multiplexed to form a multiplexed input to the wavelength meter. The wavelength meter can provide a determination of the wavelength of any one or all of the plurality of laser beams by suitable processing. Another aspect of the present invention is that one of the laser beams could be a known reference laser having a predetermined wavelength. Hence, the improved wavelength meter can provide an on-line calibration capability with the reference laser input as one of the plurality of laser beams.

  16. Correlation entropy of synaptic input-output dynamics

    NASA Astrophysics Data System (ADS)

    Kleppe, Ingo C.; Robinson, Hugh P. C.

    2006-10-01

    The responses of synapses in the neocortex show highly stochastic and nonlinear behavior. The microscopic dynamics underlying this behavior, and its computational consequences during natural patterns of synaptic input, are not explained by conventional macroscopic models of deterministic ensemble mean dynamics. Here, we introduce the correlation entropy of the synaptic input-output map as a measure of synaptic reliability which explicitly includes the microscopic dynamics. Applying this to experimental data, we find that cortical synapses show a low-dimensional chaos driven by the natural input pattern.

  17. Input-output analysis and the hospital budgeting process.

    PubMed Central

    Cleverly, W O

    1975-01-01

    Two hospitals budget systems, a conventional budget and an input-output budget, are compared to determine how they affect management decisions in pricing, output, planning, and cost control. Analysis of data from a 210-bed not-for-profit hospital indicates that adoption of the input-output budget could cause substantial changes in posted hospital rates in individual departments but probably would have no impact on hospital output determination. The input-output approach promises to be a more accurate system for cost control and planning because, unlike the conventional approach, it generates objective signals for investigating variances of expenses from budgeted levels. PMID:1205865

  18. Barrier island forest ecosystem: role of meteorologic nutrient inputs.

    PubMed

    Art, H W; Bormann, F H; Voigt, G K; Woodwell, G M

    1974-04-05

    The Sunken Forest, located on Fire Island, a barrier island in the Atlantic Ocean off Long Island, New York, is an ecosystem in which most of the basic cation input is in the form of salt spray. This meteorologic input is sufficient to compensate for the lack of certain nutrients in the highly weathered sandy soils. In other ecosystems these nutrients are generally supplied by weathering of soil particles. The compensatory effect of meteorologic input allows for primary production rates in the Sunken Forest similar to those of inland temperate forests.

  19. Multiple input/output random vibration control system

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1988-01-01

    A multi-input/output random vibration control algorithm was developed based on system identification concepts derived from random vibration spectral analysis theory. The unique features of the algorithm are: (1) the number of input excitors and the number of output control responses need not be identical; (2) the system inverse response matrix is obtained directly from the input/output spectral matrix; and (3) the system inverse response matrix is updated every control loop cycle to accommodate system amplitude nonlinearities. A laboratory demonstration case of two imputs with three outputs is presented to demonstrate the system capabilities.

  20. Input clustering and the microscale structure of local circuits

    PubMed Central

    DeBello, William M.; McBride, Thomas J.; Nichols, Grant S.; Pannoni, Katy E.; Sanculi, Daniel; Totten, Douglas J.

    2014-01-01

    The recent development of powerful tools for high-throughput mapping of synaptic networks promises major advances in understanding brain function. One open question is how circuits integrate and store information. Competing models based on random vs. structured connectivity make distinct predictions regarding the dendritic addressing of synaptic inputs. In this article we review recent experimental tests of one of these models, the input clustering hypothesis. Across circuits, brain regions and species, there is growing evidence of a link between synaptic co-activation and dendritic location, although this finding is not universal. The functional implications of input clustering and future challenges are discussed. PMID:25309336

  1. The effect of smoothed solar wind inputs on global modeling results

    NASA Astrophysics Data System (ADS)

    Ilie, Raluca; Liemohn, Michael W.; Ridley, Aaron

    2010-01-01

    This study investigates the role of fluctuations in the solar wind parameters in triggering a magnetic storm and assesses the storm simulation ability of the Space Weather Modeling Framework (SWMF) through a model-data comparison. The event of 22 September 1999 is examined through global magnetosphere simulations, using as input Advanced Composition Explorer (ACE) observations (4 min temporal resolution) along with running averages of this data with windows of 60, 120, and 180 min. It is noted that for this storm the model produces a two phase, fast then slow recovery phase due to a sudden drop in plasma sheet density during the interval of southward interplanetary magnetic field (IMF). Also, smoothing the input with a window larger than 60 min changes the entire magnetosphere and reduces the plasma sheet density and pressure, therefore a less intense storm develops. It is worth mentioning that the main phase (measured from Storm Sudden Commencement to minimum Dst) for this magnetic storm lasted about 3 h. This explains the change in the Dst profile for the 120 and 180 min averaged input. Averaging only IMF Bz or solar wind density reveals that all input parameters are important for the development of the storm, but Bz is the most significant. Also, comparison with Dst predictions (using the formula of O'Brien and McPherron (2000)) are presented and discussed. For all cases studied, there are no significant differences for Cross Polar Cap Potential (CPCP) in both hemispheres, while the nightside plasma sheet density shows a sharp drop when the input is averaged over 60 min or more. Our results indicate that the magnetosphere responds nonlinearly to the changes in the energy input, suggesting the need for a threshold in the amount of energy transferred to the system in order for the ring current to develop. Further increase of the energy input leads to a saturation limit where the inner magnetosphere response is no longer affected by any additional amount of energy

  2. Selection of relevant input variables in storm water quality modeling by multiobjective evolutionary polynomial regression paradigm

    NASA Astrophysics Data System (ADS)

    Creaco, E.; Berardi, L.; Sun, Siao; Giustolisi, O.; Savic, D.

    2016-04-01

    The growing availability of field data, from information and communication technologies (ICTs) in "smart" urban infrastructures, allows data modeling to understand complex phenomena and to support management decisions. Among the analyzed phenomena, those related to storm water quality modeling have recently been gaining interest in the scientific literature. Nonetheless, the large amount of available data poses the problem of selecting relevant variables to describe a phenomenon and enable robust data modeling. This paper presents a procedure for the selection of relevant input variables using the multiobjective evolutionary polynomial regression (EPR-MOGA) paradigm. The procedure is based on scrutinizing the explanatory variables that appear inside the set of EPR-MOGA symbolic model expressions of increasing complexity and goodness of fit to target output. The strategy also enables the selection to be validated by engineering judgement. In such context, the multiple case study extension of EPR-MOGA, called MCS-EPR-MOGA, is adopted. The application of the proposed procedure to modeling storm water quality parameters in two French catchments shows that it was able to significantly reduce the number of explanatory variables for successive analyses. Finally, the EPR-MOGA models obtained after the input selection are compared with those obtained by using the same technique without benefitting from input selection and with those obtained in previous works where other data-modeling techniques were used on the same data. The comparison highlights the effectiveness of both EPR-MOGA and the input selection procedure.

  3. Identification of inputs to olivocochlear neurons using transneuronal labeling with pseudorabies virus (PRV).

    PubMed

    Brown, M Christian; Mukerji, Sudeep; Drottar, Marie; Windsor, Alanna M; Lee, Daniel J

    2013-10-01

    Olivocochlear (OC) neurons respond to sound and provide descending input that controls processing in the cochlea. The identities of neurons in the pathways providing inputs to OC neurons are incompletely understood. To explore these pathways, the retrograde transneuronal tracer pseudorabies virus (Bartha strain, expressing green fluorescent protein) was used to label OC neurons and their inputs in guinea pigs. Labeling of OC neurons began 1 day after injection into the cochlea. On day 2 (and for longer survival times), transneuronal labeling spread to the cochlear nucleus, inferior colliculus, and other brainstem areas. There was a correlation between the numbers of these transneuronally labeled neurons and the number of labeled medial (M) OC neurons, suggesting that the spread of labeling proceeds mainly via synapses on MOC neurons. In the cochlear nucleus, the transneuronally labeled neurons were multipolar cells including the subtype known as planar cells. In the central nucleus of the inferior colliculus, transneuronally labeled neurons were of two principal types: neurons with disc-shaped dendritic fields and neurons with dendrites in a stellate pattern. Transneuronal labeling was also observed in pyramidal cells in the auditory cortex and in centers not typically associated with the auditory pathway such as the pontine reticular formation, subcoerulean nucleus, and the pontine dorsal raphe. These data provide information on the identity of neurons providing input to OC neurons, which are located in auditory as well as non-auditory centers.

  4. Segregation of Tactile Input Features in Neurons of the Cuneate Nucleus

    PubMed Central

    Jörntell, Henrik; Bengtsson, Fredrik; Geborek, Pontus; Spanne, Anton; Terekhov, Alexander V.; Hayward, Vincent

    2014-01-01

    Summary Our tactile perception of external objects depends on skin-object interactions. The mechanics of contact dictates the existence of fundamental spatiotemporal input features—contact initiation and cessation, slip, and rolling contact—that originate from the fact that solid objects do not interpenetrate. However, it is unknown whether these features are represented within the brain. We used a novel haptic interface to deliver such inputs to the glabrous skin of finger/digit pads and recorded from neurons of the cuneate nucleus (the brain’s first level of tactile processing) in the cat. Surprisingly, despite having similar receptive fields and response properties, each cuneate neuron responded to a unique combination of these inputs. Hence, distinct haptic input features are encoded already at subcortical processing stages. This organization maps skin-object interactions into rich representations provided to higher cortical levels and may call for a re-evaluation of our current understanding of the brain’s somatosensory systems. PMID:25175880

  5. Segregation of tactile input features in neurons of the cuneate nucleus.

    PubMed

    Jörntell, Henrik; Bengtsson, Fredrik; Geborek, Pontus; Spanne, Anton; Terekhov, Alexander V; Hayward, Vincent

    2014-09-17

    Our tactile perception of external objects depends on skin-object interactions. The mechanics of contact dictates the existence of fundamental spatiotemporal input features-contact initiation and cessation, slip, and rolling contact-that originate from the fact that solid objects do not interpenetrate. However, it is unknown whether these features are represented within the brain. We used a novel haptic interface to deliver such inputs to the glabrous skin of finger/digit pads and recorded from neurons of the cuneate nucleus (the brain's first level of tactile processing) in the cat. Surprisingly, despite having similar receptive fields and response properties, each cuneate neuron responded to a unique combination of these inputs. Hence, distinct haptic input features are encoded already at subcortical processing stages. This organization maps skin-object interactions into rich representations provided to higher cortical levels and may call for a re-evaluation of our current understanding of the brain's somatosensory systems. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Intracortical Network Effects Preserve Thalamocortical Input Efficacy in a Cortex Without Layers.

    PubMed

    Guy, Julien; Sachkova, Alexandra; Möck, Martin; Witte, Mirko; Wagener, Robin J; Staiger, Jochen F

    2017-10-01

    Layer IV (LIV) of the rodent somatosensory cortex contains the somatotopic barrel field. Barrels receive much of the sensory input to the cortex through innervation by thalamocortical axons from the ventral posteromedial nucleus. In the reeler mouse, the absence of cortical layers results in the formation of mispositioned barrel-equivalent clusters of LIV fated neurons. Although functional imaging suggests that sensory input activates the cortex, little is known about the cellular and synaptic properties of identified excitatory neurons of the reeler cortex. We examined the properties of thalamic input to spiny stellate (SpS) neurons in the reeler cortex with in vitro electrophysiology, optogenetics, and subcellular channelrhodopsin-2-assisted circuit mapping (sCRACM). Our results indicate that reeler SpS neurons receive direct but weakened input from the thalamus, with a dispersed spatial distribution along the somatodendritic arbor. These results further document subtle alterations in functional connectivity concomitant of absent layering in the reeler mutant. We suggest that intracortical amplification mechanisms compensate for this weakening in order to allow reliable sensory transmission to the mutant neocortex. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Stochastic weather inputs for improved urban water demand forecasting: application of nonlinear input variable selection and machine learning methods

    NASA Astrophysics Data System (ADS)

    Quilty, J.; Adamowski, J. F.

    2015-12-01

    Urban water supply systems are often stressed during seasonal outdoor water use as water demands related to the climate are variable in nature making it difficult to optimize the operation of the water supply system. Urban water demand forecasts (UWD) failing to include meteorological conditions as inputs to the forecast model may produce poor forecasts as they cannot account for the increase/decrease in demand related to meteorological conditions. Meteorological records stochastically simulated into the future can be used as inputs to data-driven UWD forecasts generally resulting in improved forecast accuracy. This study aims to produce data-driven UWD forecasts for two different Canadian water utilities (Montreal and Victoria) using machine learning methods by first selecting historical UWD and meteorological records derived from a stochastic weather generator using nonlinear input variable selection. The nonlinear input variable selection methods considered in this work are derived from the concept of conditional mutual information, a nonlinear dependency measure based on (multivariate) probability density functions and accounts for relevancy, conditional relevancy, and redundancy from a potential set of input variables. The results of our study indicate that stochastic weather inputs can improve UWD forecast accuracy for the two sites considered in this work. Nonlinear input variable selection is suggested as a means to identify which meteorological conditions should be utilized in the forecast.

  8. Integration of synchronous synaptic input in CA1 pyramidal neuron depends on spatial and temporal distributions of the input.

    PubMed

    Tigerholm, Jenny; Migliore, Michele; Fransén, Erik

    2013-01-01

    Highly synchronized neural firing has been discussed in relation to learning and memory, for instance sharp-wave activity in hippocampus. We were interested to study how a postsynaptic CA1 pyramidal neuron would integrate input of different levels of synchronicity. In previous work using computational modeling we studied how the integration depends on dendritic conductances. We found that the transient A-type potassium channel K(A) was able to selectively suppress input of high synchronicity. In recent years, compartmentalization of dendritic integration has been shown. We were therefore interested to study the influence of localization and pattern of synaptic input over the dendritic tree of the CA1 pyramidal neuron. We find that the selective suppression increases when synaptic inputs are placed on oblique dendrites further out from the soma. The suppression also increases along the radial axis from the apical trunk out to the end of oblique dendrites. We also find that the K(A) channel suppresses the occurrence of dendritic spikes. Moreover, recent studies have shown interaction between synaptic inputs. We therefore studied the influence of apical tuft input on the integration studied above. We find that excitatory input provides a modulatory influence reducing the capacity of K(A) to suppress synchronized activity, thus facilitating the excitatory drive of oblique dendritic input. Conversely, inhibitory tuft input increases the suppression by K(A) providing a larger control of oblique depolarizing factors on the CA1 pyramidal neuron in terms of what constitutes the most effective level of synchronicity. Furthermore, we show that the selective suppression studied above depends on the conductance of the K(A) channel. K(A) , as several other potassium channels, is modulated by several neuromodulators, for instance acetylcholine and dopamine, both of which have been discussed in relation to learning and memory. We suggest that dendritic conductances and their

  9. Test Input Generation for Red-Black Trees using Abstraction

    NASA Technical Reports Server (NTRS)

    Visser, Willem; Pasareanu, Corina S.; Pelanek, Radek

    2005-01-01

    We consider the problem of test input generation for code that manipulates complex data structures. Test inputs are sequences of method calls from the data structure interface. We describe test input generation techniques that rely on state matching to avoid generation of redundant tests. Exhaustive techniques use explicit state model checking to explore all the possible test sequences up to predefined input sizes. Lossy techniques rely on abstraction mappings to compute and store abstract versions of the concrete states; they explore under-approximations of all the possible test sequences. We have implemented the techniques on top of the Java PathFinder model checker and we evaluate them using a Java implementation of red-black trees.

  10. Reading Performance of Disadvantaged Children: Cost Effectiveness of Educational Inputs

    ERIC Educational Resources Information Center

    Kiesling, Herbert J.

    1972-01-01

    Extends the findings of a study of relationships of some educational inputs and reading performance of disadvantaged California Title I pupils, utilizing a highly simplified model of the compensatory education process. (JM)

  11. Thalamocortical Inputs Show Post-Critical Period Plasticity

    PubMed Central

    Yu, Xin; Chung, Seungsoo; Chen, Der-Yow; Wang, Shumin; Dodd, Stephen; Walters, Judith; Isaac, John; Koretsky, Alan

    2014-01-01

    Summary Experience-dependent plasticity in the adult brain has clinical potential for functional rehabilitation following central and peripheral nerve injuries. Here, plasticity induced by unilateral infraorbital (IO) nerve resection in four week-old rats was mapped using MRI and synaptic mechanisms were elucidated by slice electrophysiology. Functional MRI demonstrates a cortical potentiation compared to thalamus two weeks after IO nerve resection. Tracing thalamocortical (TC) projections with manganese-enhanced MRI revealed circuit changes in the spared layer 4 (L4) barrel cortex. Brain slice electrophysiology revealed TC input strengthening onto L4 stellate cells due to an increase in postsynaptic strength and the number of functional synapses. This work shows that the TC input is a site for robust plasticity after the end of the previously defined critical period for this input. Thus, TC inputs may represent a major site for adult plasticity in contrast to the consensus that adult plasticity mainly occurs at cortico-cortical connections. PMID:22632730

  12. TCP congestion control in input-queued crossbar switch

    NASA Astrophysics Data System (ADS)

    Zheng, Hongyun; Zhao, Yongxiang; Chen, Changjia

    2005-02-01

    In this paper, we consider congestion control in input queued crossbar switch environment where each input port with finite buffer space while TCP protocol is employed for end-to-end congestion control. We find that it is impossible to achieve efficiency and fairness among TCP flows at the same time only by queue management. Then we propose a scheme of hFS&rEDF, which combine heuristic fair switch arbitration (hFS) and queue management policy of early drop front randomly (rEDF). In our proposed scheme, switch arbitration strategy of hFS unevenly allows input ports to transfer packets to output ports while packets at head of any other input ports involved in conflicts have to be dropped by the policy of rEDF with a probability. Simulation results prove that our proposed scheme can achieve better tradeoff between throughput and fairness.

  13. EFFECTS OF CORRELATED PROBABILISTIC EXPOSURE MODEL INPUTS ON SIMULATED RESULTS

    EPA Science Inventory

    In recent years, more probabilistic models have been developed to quantify aggregate human exposures to environmental pollutants. The impact of correlation among inputs in these models is an important issue, which has not been resolved. Obtaining correlated data and implementi...

  14. EFFECTS OF CORRELATED PROBABILISTIC EXPOSURE MODEL INPUTS ON SIMULATED RESULTS

    EPA Science Inventory

    In recent years, more probabilistic models have been developed to quantify aggregate human exposures to environmental pollutants. The impact of correlation among inputs in these models is an important issue, which has not been resolved. Obtaining correlated data and implementi...

  15. Third order TRANSPORT with MAD (Methodical Accelerator Design) input

    SciTech Connect

    Carey, D.C.

    1988-09-20

    This paper describes computer-aided design codes for particle accelerators. Among the topics discussed are: input beam description; parameters and algebraic expressions; the physical elements; beam lines; operations; and third-order transfer matrix. (LSP)

  16. MIG: MCNP input generator for EFFI magnet geometries

    SciTech Connect

    Gohar, Y.; Attaya, M.

    1985-07-01

    A computer code, MIG, has been developed to interface the magnet design and the three dimensional Monte Carlo code MCNP to perform neutronics design analyses. MIG prepares all the required MCNP cells and surfaces to simulate the magnets described in EFFI input. Extra zones with different materials could be added to envelop or divide the winding packs of the magnets. Examples of the input and output of MIG used by MCNP are given to illustrate the different capabilities of MIG.

  17. Tumor Growth Model with PK Input for Neuroblastoma Drug Development

    DTIC Science & Technology

    2015-09-01

    AWARD NUMBER: W81XWH-14-1-0103 TITLE: Tumor Growth Model with PK Input for Neuroblastoma Drug Development PRINCIPAL INVESTIGATOR: Clinton...AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0103 Tumor Growth Model with PK Input for Neuroblastoma Drug Development 5b. GRANT NUMBER 5c...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The long-term goal for our project is to develop a

  18. MIG: MCNP input generator for EFFI magnet geometries

    SciTech Connect

    Attaya, H.; Gohar, Y.

    1985-03-01

    A computer code, MIG, has been developed to interface the magnet design and the three-dimensional Monte Carlo code MCNP to perform neutronics design analyses. MIG prepares all the required MCNP cells and surfaces to simulate the magnets described in EFFI input. Extra zones with different materials could be added to envelop or divide the winding packs of the magnets. Examples of the input and output of MIG used by MCNP are given to illustrate the different capabilities of MIG.

  19. An on-line system for hand-printed input

    NASA Technical Reports Server (NTRS)

    Williams, T. G.; Bebb, J.

    1971-01-01

    The capability of graphic input/output systems is described. Topics considered are a character recognizer and dictionary building program, an initial flow chart element input program, and a system entitled The Assistant Mathematician, which uses ordinary mathematics to specify numeric computation. All three parts are necessary to allow a user to carry on a mathematical dialogue with the computer in the language and notation of his discipline or problem domain.

  20. Effects of Nitrogen Inputs and Watershed Characteristics on ...

    EPA Pesticide Factsheets

    Nitrogen (N) inputs to the landscape have been linked previously to N loads exported from watersheds at the national scale; however, stream N concentration is arguably more relevant than N load for drinking water quality, freshwater biological responses and establishment of nutrient criteria. In this study, we combine national-scale anthropogenic N input data, including synthetic fertilizer, crop biological N fixation, manure applied to farmland, atmospheric N deposition, and point source inputs, with data from the 2008-09 National Rivers and Streams Assessment to quantify the relationship between N inputs and in-stream concentrations of total N (TN), dissolved inorganic N (DIN), and total organic N (TON) (calculated as TN – DIN). In conjunction with simple linear regression, we use multiple regression to understand how watershed and stream reach attributes modify the effect of N inputs on N concentrations. Median TN was 0.50 mg N L-1 with a maximum of 25.8 mg N L-1. Total N inputs to the watershed ranged from less than 1 to 196 kg N ha-1 y-1, with a median of 14.4 kg N ha-1 y-1. Atmospheric N deposition was the single largest anthropogenic N source in the majority of sites, but, agricultural sources generally dominate total N inputs in sites with elevated N concentrations. The sum of all N inputs were positively correlated with concentrations of all forms of N [r2 = 0.44, 0.43, and 0.18 for TN, DIN, and TON, respectively (all log-transformed), n = 1112], indi

  1. Development of a 3-D Pen Input Device

    DTIC Science & Technology

    2008-09-01

    remote sites. Compared to other distance learning technologies such as video cameras, the 3-D pen input device would require much less bandwidth. The...other form of eLearning portal. However with a pen-type input device, the professors are saved the trouble of either rewriting their notes or copying...and scanning the notes then uploading them into a form of eLearning , then broadcasting them for the distance learning students. Instead, the

  2. Storm-impact scenario XBeach model inputs and tesults

    USGS Publications Warehouse

    Mickey, Rangley; Long, Joseph W.; Thompson, David M.; Plant, Nathaniel G.; Dalyander, P. Soupy

    2017-01-01

    The XBeach model input and output of topography and bathymetry resulting from simulation of storm-impact scenarios at the Chandeleur Islands, LA, as described in USGS Open-File Report 2017–1009 (https://doi.org/10.3133/ofr20171009), are provided here. For further information regarding model input generation and visualization of model output topography and bathymetry refer to USGS Open-File Report 2017–1009 (https://doi.org/10.3133/ofr20171009).

  3. Input from Key Stakeholders in the National Security Technology Incubator

    SciTech Connect

    2008-01-31

    This report documents the input from key stakeholders of the National Security Technology Incubator (NSTI) in developing a new technology incubator and related programs for southern New Mexico. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes identification of key stakeholders as well as a description and analysis of their input for the development of an incubator.

  4. Integration of auditory and tactile inputs in musical meter perception.

    PubMed

    Huang, Juan; Gamble, Darik; Sarnlertsophon, Kristine; Wang, Xiaoqin; Hsiao, Steven

    2013-01-01

    Musicians often say that they not only hear but also "feel" music. To explore the contribution of tactile information to "feeling" music, we investigated the degree that auditory and tactile inputs are integrated in humans performing a musical meter-recognition task. Subjects discriminated between two types of sequences, "duple" (march-like rhythms) and "triple" (waltz-like rhythms), presented in three conditions: (1) unimodal inputs (auditory or tactile alone); (2) various combinations of bimodal inputs, where sequences were distributed between the auditory and tactile channels such that a single channel did not produce coherent meter percepts; and (3) bimodal inputs where the two channels contained congruent or incongruent meter cues. We first show that meter is perceived similarly well (70-85 %) when tactile or auditory cues are presented alone. We next show in the bimodal experiments that auditory and tactile cues are integrated to produce coherent meter percepts. Performance is high (70-90 %) when all of the metrically important notes are assigned to one channel and is reduced to 60 % when half of these notes are assigned to one channel. When the important notes are presented simultaneously to both channels, congruent cues enhance meter recognition (90 %). Performance dropped dramatically when subjects were presented with incongruent auditory cues (10 %), as opposed to incongruent tactile cues (60 %), demonstrating that auditory input dominates meter perception. These observations support the notion that meter perception is a cross-modal percept with tactile inputs underlying the perception of "feeling" music.

  5. Distribution of vestibulospinal synaptic input to cat triceps surae motoneurons.

    PubMed

    Westcott, S L; Powers, R K; Robinson, F R; Binder, M D

    1995-01-01

    We applied supramaximal, repetitive stimulation to the lateral vestibular nucleus (Deiters' nucleus, DN) at 200 Hz to evoke stead-state synaptic potentials in ipsilateral triceps surae motoneurons of the cat. The effective synaptic currents underlying these potentials were measured using a modified voltage-clamp technique. The steady-state effective synaptic currents evoked by activating DN were generally small and depolarizing (mean 2.5 +/- 2.6 nA). DN stimulation generated hyperpolarizing synaptic currents in 2 of the 34 triceps motoneurons studied. The effective synaptic currents from DN tended to be larger in putative type F motoneurons than in putative type S cells (type F mean 3.0 +/- 3.1 nA; type S mean 1.8 +/- 1.0 nA). There was a statistically significant difference between the inputs to putative type FF and putative type S motoneurons (mean difference 2.8 nA, t = 2.87, P < 0.01). The synaptic input from DN to medial gastrocnemius motoneurons had approximately the same amplitude as that from homonymous Ia afferent fibers. However, the distribution of DN input with respect to putative motor unit type was the opposite of that previously reported for Ia afferent input. Thus, the synaptic input from DN might act to compress the range of recruitment thresholds within the motoneuron pool and thereby increase the gain of its input-output function.

  6. The effect of input perturbations on swimming performance

    NASA Astrophysics Data System (ADS)

    Lehn, Andrea M.; Thornycroft, Patrick J. M.; Lauder, George V.; Leftwich, Megan C.

    2014-11-01

    The influence of flexibility and fluid characteristics on the hydrodynamics of swimming has been investigated for a range of experimental systems. One investigative method is to use reduced-order physical models--pitching and heaving hydrofoils. Typically, a smooth, periodic, input signal is used to control foil motion in experiments that explore fundamental factors (aspect ratio, shape, etc.) in swimming performance. However, the significance of non-smooth input signals in undulating swimmers is non-trivial. Instead of varying external properties, we study the impact of perturbed input motions on swimming performance. A smooth sinusoid is overlaid with high frequency, low amplitude perturbations as the input signal for a heaving panel in a closed loop flow tank. Specifically, 1 cm heave amplitude base sinusoids are added to 0.1 cm heave perturbations with frequencies ranging from 0.5 to 13 Hz. Two thin foils with different stiffness are flapped with the combined input signals in addition to the individual high heave and low heave signals that were added to create the combined inputs. Results demonstrate that perturbations can increase thrust and that adding the perturbed signal to a base frequency alters wake structure.

  7. Non-perturbative inputs for gluon distributions in the hadrons

    NASA Astrophysics Data System (ADS)

    Ermolaev, B. I.; Troyan, S. I.

    2017-03-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.

  8. Input current shaped ac-to-dc converters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Input current shaping techniques for ac-to-dc converters were investigated. Input frequencies much higher than normal, up to 20 kHz were emphasized. Several methods of shaping the input current waveform in ac-to-dc converters were reviewed. The simplest method is the LC filter following the rectifier. The next simplest method is the resistor emulation approach in which the inductor size is determined by the converter switching frequency and not by the line input frequency. Other methods require complicated switch drive algorithms to construct the input current waveshape. For a high-frequency line input, on the order of 20 kHz, the simple LC cannot be discarded so peremptorily, since the inductor size can be compared with that for the resistor emulation method. In fact, since a dc regulator will normally be required after the filter anyway, the total component count is almost the same as for the resistor emulation method, in which the filter is effectively incorporated into the regulator.

  9. Input coding for neuro-electronic hybrid systems.

    PubMed

    George, Jude Baby; Abraham, Grace Mathew; Singh, Katyayani; Ankolekar, Shreya M; Amrutur, Bharadwaj; Sikdar, Sujit Kumar

    2014-12-01

    Liquid State Machines have been proposed as a framework to explore the computational properties of neuro-electronic hybrid systems (Maass et al., 2002). Here the neuronal culture implements a recurrent network and is followed by an array of linear discriminants implemented using perceptrons in electronics/software. Thus in this framework, it is desired that the outputs of the neuronal network, corresponding to different inputs, be linearly separable. Previous studies have demonstrated this by either using only a small set of input stimulus patterns to the culture (Hafizovic et al., 2007), large number of input electrodes (Dockendorf et al., 2009) or by using complex schemes to post-process the outputs of the neuronal culture prior to linear discriminance (Ortman et al., 2011). In this study we explore ways to temporally encode inputs into stimulus patterns using a small set of electrodes such that the neuronal culture's output can be directly decoded by simple linear discriminants based on perceptrons. We demonstrate that network can detect the timing and order of firing of inputs on multiple electrodes. Based on this, we demonstrate that the neuronal culture can be used as a kernel to transform inputs which are not linearly separable in a low dimensional space, into outputs in a high dimension where they are linearly separable. Thus simple linear discriminants can now be directly connected to outputs of the neuronal culture and allow for implementation of any function for such a hybrid system.

  10. Input torque sensitivity to uncertain parameters in biped robot

    NASA Astrophysics Data System (ADS)

    Ding, Chang-Tao; Yang, Shi-Xi; Gan, Chun-Biao

    2013-06-01

    Input torque is themain power to maintain bipedal walking of robot, and can be calculated from trajectory planning and dynamic modeling on biped robot. During bipedal walking, the input torque is usually required to be adjusted due to some uncertain parameters arising from objective or subjective factors in the dynamical model to maintain the pre-planned stable trajectory. Here, a planar 5-link biped robot is used as an illustrating example to investigate the effects of uncertain parameters on the input torques. Kinematic equations of the biped robot are firstly established by the third-order spline curves based on the trajectory planning method, and the dynamic modeling is accomplished by taking both the certain and uncertain parameters into account. Next, several evaluation indices on input torques are introduced to perform sensitivity analysis of the input torque with respect to the uncertain parameters. Finally, based on the Monte Carlo simulation, the values of evaluation indices on input torques are presented, from which all the robot parameters are classified into three categories, i.e., strongly sensitive, sensitive and almost insensitive parameters.

  11. Input Shaping to Reduce Solar Array Structural Vibrations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael J.; Tolson, Robert J.

    1998-01-01

    Structural vibrations induced by actuators can be minimized using input shaping. Input shaping is a feedforward method in which actuator commands are convolved with shaping functions to yield a shaped set of commands. These commands are designed to perform the maneuver while minimizing the residual structural vibration. In this report, input shaping is extended to stepper motor actuators. As a demonstration, an input-shaping technique based on pole-zero cancellation was used to modify the Solar Array Drive Assembly (SADA) actuator commands for the Lewis satellite. A series of impulses were calculated as the ideal SADA output for vibration control. These impulses were then discretized for use by the SADA stepper motor actuator and simulated actuator outputs were used to calculate the structural response. The effectiveness of input shaping is limited by the accuracy of the knowledge of the modal frequencies. Assuming perfect knowledge resulted in significant vibration reduction. Errors of 10% in the modal frequencies caused notably higher levels of vibration. Controller robustness was improved by incorporating additional zeros in the shaping function. The additional zeros did not require increased performance from the actuator. Despite the identification errors, the resulting feedforward controller reduced residual vibrations to the level of the exactly modeled input shaper and well below the baseline cases. These results could be easily applied to many other vibration-sensitive applications involving stepper motor actuators.

  12. [Relationship between production input and secondary succession of earthworm population in salinity transforming region of north China--a case study in Quzhou County].

    PubMed

    Qiao, Y; Wu, W

    2001-06-01

    The analysis on earthworm diversity in the farmland ecosystem of salinity transforming region in Quzhou County, Hebei Province, showed that the secondary succession of earthworm population had a close relationship with the input of fertilizer and manure. An optimum input, especially manure input, could accelerate the secondary succession. The general trend of earthworm distribution was in the order of second experimental district > first experimental district > third experimental district > original area. The distribution, biomass and amount of earthworm varied in different types of land-use, and the relationship was in the order of vegetable field > crop field > orchard and margin land.

  13. Cortical inputs to the middle temporal visual area in New World owl monkeys

    PubMed Central

    Cerkevich, Christina M; Collins, Christine E; Kaas, Jon H

    2015-01-01

    We made eight retrograde tracer injections into the middle temporal visual area (MT) of three New World owl monkeys (Aotus nancymaae). These injections were placed across the representation of the retina in MT to allow us to compare the locations of labeled cells in other areas in order to provide evidence for any retinotopic organization in those areas. Four regions projected to MT: 1) early visual areas, including V1, V2, V3, the dorsolateral visual area, and the dorsomedial visual area, provided topographically organized inputs to MT; 2) all areas in the MT complex (the middle temporal crescent, the middle superior temporal area, and the fundal areas of the superior temporal sulcus) projected to MT. Somewhat variably across injections, neurons were labeled in other parts of the temporal lobe; 3) regions in the location of the medial visual area, the posterior parietal cortex, and the lateral sulcus provided other inputs to MT; 4) finally, projections from the frontal eye field, frontal visual field, and prefrontal cortex were also labeled by our injections. These results further establish the sources of input to MT, and provide direct evidence within and across cases for retinotopic patterns of projections from early visual areas to MT. PMID:25620872

  14. Cortical inputs to the middle temporal visual area in New World owl monkeys.

    PubMed

    Cerkevich, Christina M; Collins, Christine E; Kaas, Jon H

    2014-12-23

    We made eight retrograde tracer injections into the middle temporal visual area (MT) of three New World owl monkeys (Aotus nancymaae). These injections were placed across the representation of the retina in MT to allow us to compare the locations of labeled cells in other areas in order to provide evidence for any retinotopic organization in those areas. Four regions projected to MT: 1) early visual areas, including V1, V2, V3, the dorsolateral visual area, and the dorsomedial visual area, provided topographically organized inputs to MT; 2) all areas in the MT complex (the middle temporal crescent, the middle superior temporal area, and the fundal areas of the superior temporal sulcus) projected to MT. Somewhat variably across injections, neurons were labeled in other parts of the temporal lobe; 3) regions in the location of the medial visual area, the posterior parietal cortex, and the lateral sulcus provided other inputs to MT; 4) finally, projections from the frontal eye field, frontal visual field, and prefrontal cortex were also labeled by our injections. These results further establish the sources of input to MT, and provide direct evidence within and across cases for retinotopic patterns of projections from early visual areas to MT.

  15. Speech intelligibility benefits of hearing AIDS at various input levels.

    PubMed

    Kuk, Francis; Lau, Chi-Chuen; Korhonen, Petri; Crose, Bryan

    2015-03-01

    Although the benefits of hearing aids are generally recognized for soft- and conversational-level sounds, most studies have reported negative benefits (i.e., poorer aided than unaided performance) at high noise inputs. Advances in digital signal processing such as compression, noise reduction, and directional microphone could improve speech perception at high input levels. This could alter our view on the efficacy of hearing aids in loud, noisy situations. The current study compared the aided versus the unaided speech intelligibility performance of hearing-impaired (HI) listeners at various input levels (from 50-100 dB SPL) and signal-to-noise ratios (SNRs; quiet, +6, +3, and -3 dB) in order to document the benefits of modern hearing aids. In addition, subjective preference between aided and unaided sounds (speech and music) at various input levels was also compared. The experiment used a factorial repeated-measures design. A total of 10 HI adults with symmetrical moderate to severe hearing losses served as test participants. In addition, speech intelligibility scores of five normal-hearing (NH) listeners were also measured for comparison. Speech perception was studied at 50 and 65 dB SPL input levels in quiet and also in noise at levels of 65, 85, and 100 dB SPL with SNRs of +6, +3, and -3 dB. This was done for all participants (HI and NH). In addition, the HI participants compared subjective preference between the aided and unaided presentations of speech and music stimuli at 50, 65, 85, and 100 dB SPL in quiet. The data were analyzed with repeated-measures analysis of variance. The results showed a decrease in aided benefits as input levels increased. However, even at the two highest input levels (i.e., 85 and 100 dB SPL), aided speech scores were still higher than the unaided speech scores. Furthermore, NH listeners and HI listeners in the aided condition showed stable speech-in-noise performance between 65 and 100 dB SPL input levels, except that the absolute

  16. High-Voltage-Input Level Translator Using Standard CMOS

    NASA Technical Reports Server (NTRS)

    Yager, Jeremy A.; Mojarradi, Mohammad M.; Vo, Tuan A.; Blalock, Benjamin J.

    2011-01-01

    proposed integrated circuit would translate (1) a pair of input signals having a low differential potential and a possibly high common-mode potential into (2) a pair of output signals having the same low differential potential and a low common-mode potential. As used here, "low" and "high" refer to potentials that are, respectively, below or above the nominal supply potential (3.3 V) at which standard complementary metal oxide/semiconductor (CMOS) integrated circuits are designed to operate. The input common-mode potential could lie between 0 and 10 V; the output common-mode potential would be 2 V. This translation would make it possible to process the pair of signals by use of standard 3.3-V CMOS analog and/or mixed-signal (analog and digital) circuitry on the same integrated-circuit chip. A schematic of the circuit is shown in the figure. Standard 3.3-V CMOS circuitry cannot withstand input potentials greater than about 4 V. However, there are many applications that involve low-differential-potential, high-common-mode-potential input signal pairs and in which standard 3.3-V CMOS circuitry, which is relatively inexpensive, would be the most appropriate circuitry for performing other functions on the integrated-circuit chip that handles the high-potential input signals. Thus, there is a need to combine high-voltage input circuitry with standard low-voltage CMOS circuitry on the same integrated-circuit chip. The proposed circuit would satisfy this need. In the proposed circuit, the input signals would be coupled into both a level-shifting pair and a common-mode-sensing pair of CMOS transistors. The output of the level-shifting pair would be fed as input to a differential pair of transistors. The resulting differential current output would pass through six standoff transistors to be mirrored into an output branch by four heterojunction bipolar transistors. The mirrored differential current would be converted back to potential by a pair of diode-connected transistors

  17. A coupled isotope tracer method to characterize input water to lakes

    NASA Astrophysics Data System (ADS)

    Yi, Yi; Brock, Bronwyn E.; Falcone, Matthew D.; Wolfe, Brent B.; Edwards, Thomas W. D.

    2008-02-01

    SummaryWe develop a new coupled isotope tracer method for characterizing the isotopic composition of input water to lakes, and apply it in the context of ongoing hydrological process studies in the Peace-Athabasca Delta, a large, remote, riparian ecosystem in the boreal region of western Canada. The region has a highly seasonal climate, with floodplain lakes typically receiving input only during the 4-6 month open-water season from varying proportions of spring snowmelt, summer rains and river flooding. These possible input sources have distinct ranges of isotopic compositions that are strongly constrained to a well-defined local meteoric water line, thus affording the opportunity to derive lake-specific estimates of the integrated isotopic composition of input waters after accounting for the effects of secondary evaporative isotopic enrichment. As shown by comparison of the results of isotopic surveys of delta lakes prior to freeze-up in 2000 and 2005, this isotopic characterization of input waters can be combined with other data and field observations to provide new insight into spatial and temporal variability in delta lake recharge processes. This includes evidence that summer rainfall in 2000 played an important role in replenishing shallow basins delta-wide, especially in the central low-lying region, compensating for below-average snow accumulation during the previous winter. In contrast, 2005 was marked by greater relative contributions from both snowmelt and river flooding because of high winter snow accumulation and a spring ice-jam that caused river floodwaters to enter some basins in the southern part of the delta. The method is readily transferable to investigations in other remote regions that are sparsely monitored by conventional hydrometric networks.

  18. Modifications to the WDTVOR and VORTWD computer programs for converting input data between VORLAX and wave drag input formats

    NASA Technical Reports Server (NTRS)

    Martin, G. L.

    1978-01-01

    Computer programs, WDTVOR and VORTWD, were developed to convert input data between wave drag and VORLAX input formats. Both programs were modified to include the capability of converting multisegment fuselage data. The capability of converting VORLAX geometric data to wave drag format without camber as well as with camber was added to the VORTWD program. Listings of the original program, the modifications, and the modified program are included for both programs.

  19. K2: Extending Kepler's Power to the Ecliptic-Ecliptic Plane Input Catalog

    NASA Technical Reports Server (NTRS)

    Huber, Daniel; Bryson, Stephen T.

    2017-01-01

    This document describes the Ecliptic Plane Input Catalog (EPIC) for the K2 mission (Howell et al. 2014). The primary purpose of this catalog is to provide positions and Kepler magnitudes for target management and aperture photometry. The Ecliptic Plane Input Catalog is hosted at MAST (http://archive.stsci.edu/k2/epic/search.php) and should be used for selecting targets when ever possible. The EPIC is updated for future K2 campaigns as their fields of view are finalized and the associated target management is completed. Table 0 summarizes the EPIC updates to date and the ID range for each. The main algorithms used to construct the EPIC are described in Sections 2 through 4. The details for individual campaigns are described in the subsequent sections, with the references listed in the last section. Further details can be found in Huber et al. (2016).

  20. The variable input coupler for the Fermilab Vertical Cavity Test Facility

    SciTech Connect

    Champion, Mark; Ginsburg, Camille M.; Lunin, Andrei; Moeller, Wolf-Dietrich; Nehring, Roger; Poloubotko, Valeri; /Fermilab

    2008-09-01

    A variable input coupler has been designed for the Fermilab vertical cavity test facility (VCTF), a facility for CW RF vertical testing of bare ILC 1.3 GHz 9-cell SRF cavities at 2K, to provide some flexibility in the test stand RF measurements. The variable coupler allows the cavity to be critically coupled for all RF tests, including all TM010 passband modes, which will simplify or make possible the measurement of those modes with very low end-cell fields, e.g., {pi}/9 mode. The variable coupler assembly mounts to the standard input coupler port on the cavity, and uses a cryogenic motor submerged in superfluid helium to control the antenna position. The RF and mechanical design and RF test results are described.

  1. Rapid, accurate improvement in 3D mask representation via input geometry optimization and crosstalk

    NASA Astrophysics Data System (ADS)

    Fryer, David; Lam, Michael; Adam, Kostas; Clifford, Chris; Oliver, Mike; Zuniga, Christian; Sturtevant, John; Wang, ChangAn; Mansfield, Scott

    2014-03-01

    This paper extends the state of the art by demonstrating performance improvements in the Domain Decomposition Method (DDM) from a physical perturbation of the input mask geometry. Results from four testcases demonstrate that small, direct modifications in the input mask stack slope and edge location can result in model calibration and verification accuracy benefit of up to 30%. All final mask optimization results from this approach are shown to be valid within measurement accuracy of the dimensions expected from manufacture. We highlight the benefits of a more accurate description of the 3D EMF near field with crosstalk in model calibration and impact as a function of mask dimensions. The result is a useful technique to align DDM mask model accuracy with physical mask dimensions and scattering via model calibration.

  2. Glutamatergic inputs and glutamate-releasing immature inhibitory inputs activate a shared postsynaptic receptor population in lateral superior olive

    PubMed Central

    Alamilla, Javier; Gillespie, Deda C

    2013-01-01

    Principal cells of the lateral superior olive (LSO) compute interaural intensity differences by comparing converging excitatory and inhibitory inputs. The excitatory input carries information from the ipsilateral ear and the inhibitory input carries information from the contralateral ear. Throughout life, the excitatory input pathway releases glutamate. In adulthood, the inhibitory input pathway releases glycine. During a period of major developmental refinement in the LSO, however, synaptic terminals of the immature inhibitory input pathway release not only glycine, but also GABA and glutamate. To determine whether glutamate released by terminals in either pathway could spill over to activate postsynaptic NMDA receptors under the other pathway, we made whole-cell recordings from LSO principal cells in acute slices of neonatal rat brainstem bathed in the use-dependent NMDA receptor antagonist MK-801, and stimulated in the two opposing pathways. We found that during the first postnatal week glutamate spillover occurs bidirectionally from both immature excitatory terminals and immature inhibitory terminals. We further found that a population of postsynaptic NMDA receptors is shared: glutamate released from either pathway can diffuse to and activate these receptors. We suggest that these shared receptors contain the GluN2B subunit and are located extrasynaptically. PMID:21907763

  3. Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse.

    PubMed

    Chen, Guifen; Manson, Daniel; Cacucci, Francesca; Wills, Thomas Joseph

    2016-09-12

    Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues.

  4. Large uncertainty in soil carbon modelling related to carbon input calculation method

    NASA Astrophysics Data System (ADS)

    Keel, Sonja G.; Leifeld, Jens; Taghizadeh-Toosi, Arezoo; Oleson, Jørgen E.

    2016-04-01

    A model-based inventory for carbon (C) sinks and sources in agricultural soils is being established for Switzerland. As part of this project, five frequently used allometric equations that estimate soil C inputs based on measured yields are compared. To evaluate the different methods, we calculate soil C inputs for a long-term field trial in Switzerland. This DOK experiment (bio-Dynamic, bio-Organic, and conventional (German: Konventionell)) compares five different management systems, that are applied to identical crop rotations. Average calculated soil C inputs vary largely between allometric equations and range from 1.6 t C ha-1 yr-1 to 2.6 t C ha-1 yr-1. Among the most important crops in Switzerland, the uncertainty is largest for barley (difference between highest and lowest estimate: 3.0 t C ha-1 yr-1). For the unfertilized control treatment, the estimated soil C inputs vary less between allometric equations than for the treatment that received mineral fertilizer and farmyard manure. Most likely, this is due to the higher yields in the latter treatment, i.e. the difference between methods might be amplified because yields differ more. To evaluate the influence of these allometric equations on soil C dynamics we simulate the DOK trial for the years 1977-2004 using the model C-TOOL (Taghizadeh-Toosi et al. 2014) and the five different soil C input calculation methods. Across all treatments, C-TOOL simulates a decrease in soil C in line with the experimental data. This decline, however, varies between allometric equations (-2.4 t C ha-1 to -6.3 t C ha-1 for the years 1977-2004) and has the same order of magnitude as the difference between treatments. In summary, the method to estimate soil C inputs is identified as a significant source of uncertainty in soil C modelling. Choosing an appropriate allometric equation to derive the input data is thus a critical step when setting up a model-based national soil C inventory. References Taghizadeh-Toosi A et al. (2014) C

  5. Frequency-band signatures of visual responses to naturalistic input in ferret primary visual cortex during free viewing.

    PubMed

    Sellers, Kristin K; Bennett, Davis V; Fröhlich, Flavio

    2015-02-19

    Neuronal firing responses in visual cortex reflect the statistics of visual input and emerge from the interaction with endogenous network dynamics. Artificial visual stimuli presented to animals in which the network dynamics were constrained by anesthetic agents or trained behavioral tasks have provided fundamental understanding of how individual neurons in primary visual cortex respond to input. In contrast, very little is known about the mesoscale network dynamics and their relationship to microscopic spiking activity in the awake animal during free viewing of naturalistic visual input. To address this gap in knowledge, we recorded local field potential (LFP) and multiunit activity (MUA) simultaneously in all layers of primary visual cortex (V1) of awake, freely viewing ferrets presented with naturalistic visual input (nature movie clips). We found that naturalistic visual stimuli modulated the entire oscillation spectrum; low frequency oscillations were mostly suppressed whereas higher frequency oscillations were enhanced. In average across all cortical layers, stimulus-induced change in delta and alpha power negatively correlated with the MUA responses, whereas sensory-evoked increases in gamma power positively correlated with MUA responses. The time-course of the band-limited power in these frequency bands provided evidence for a model in which naturalistic visual input switched V1 between two distinct, endogenously present activity states defined by the power of low (delta, alpha) and high (gamma) frequency oscillatory activity. Therefore, the two mesoscale activity states delineated in this study may define the degree of engagement of the circuit with the processing of sensory input.

  6. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex

    PubMed Central

    McGarry, Laura M.

    2016-01-01

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. SIGNIFICANCE STATEMENT The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at

  7. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    SciTech Connect

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun; Chen, Changhua

    2014-09-15

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave during the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.

  8. Mechanism of phase control in a klystron-like relativistic backward wave oscillator by an input signal

    NASA Astrophysics Data System (ADS)

    Xiao, Renzhen; Song, Zhimin; Deng, Yuqun; Chen, Changhua

    2014-09-01

    Theoretical analyses and particle-in-cell (PIC) simulations are carried out to understand the mechanism of microwave phase control realized by the external RF signal in a klystron-like relativistic backward wave oscillator (RBWO). Theoretical calculations show that a modulated electron beam can lead the microwave field with an arbitrary initial phase to the same equilibrium phase, which is determined by the phase factor of the modulated current, and the difference between them is fixed. Furthermore, PIC simulations demonstrate that the phase of input signal has a close relation to that of modulated current, which initiates the phase of the irregularly microwave during the build-up of oscillation. Since the microwave field is weak during the early time of starting oscillation, it is easy to be induced, and a small input signal is sufficient to control the phase of output microwave. For the klystron-like RBWO with two pre-modulation cavities and a reentrant input cavity, an input signal with 100 kW power and 4.21 GHz frequency can control the phase of 5 GW output microwave with relative phase difference less than 6% when the diode voltage is 760 kV, and beam current is 9.8 kA, corresponding to a power ratio of output microwave to input signal of 47 dB.

  9. Identifying local and descending inputs for primary sensory neurons

    PubMed Central

    Zhang, Yi; Zhao, Shengli; Rodriguez, Erica; Takatoh, Jun; Han, Bao-Xia; Zhou, Xiang; Wang, Fan

    2015-01-01

    Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses–based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission. PMID:26426077

  10. Earthquake motion input and its dissemination via the Internet

    NASA Astrophysics Data System (ADS)

    Halldorsson, Benedikt; Dong, Gang; Papageorgiou, Apostolos S.

    2002-06-01

    Objectives of this task are to conduct research on seismic hazards, and to provide relevant input on the expected levels of these hazards to other tasks. Other tasks requiring this input include those dealing with inventory, fragility curves, rehabilitation strategies and demonstration projects. The corresponding input is provided in various formats depending on the intended use: as peak ground motion parameters and/or response spectral values for a given magnitude, epicentral distance and site conditions; or as time histories for scenario earthquakes that are selected based on the disaggregated seismic hazard mapped by the U.S. Geological Survey and are incorporated in building codes. The user community for this research is both academic researchers and practicing engineers who may use the seismic input generated by the synthesis techniques that are developed under this task for a variety of applications. These include ground motions for scenario earthquakes, for developing fragility curves and in specifying ground motion input for critical facilities (such as hospitals) located in the eastern U.S.

  11. Mixing at the microscale: Power input in shaken microtiter plates.

    PubMed

    Dürauer, Astrid; Hobiger, Stefanie; Walther, Cornelia; Jungbauer, Alois

    2016-12-01

    Power input and local energy dissipation are crucial parameters for the engineering characterization of mixing and fluid dynamics at the microscale. Since hydrodynamic stress is solely dependent on the maximum power input, we adapted the clay/polymer method to obtain flock destruction kinetics in six-, 24-, and 96-well microtiter plates on orbital shakers. We also determined the specific power input using calorimetry and found that the power input is at the same order of magnitude for the six- and 96-well plates and the laboratory-scale stirred tank reactor, with 40 to 90 W/m(3) (Re' = 180 to 440), 40 to 140 W/m3 (Re' = 320 to 640), and 30 to 50 W/m(3) (Re = 4000 to 8500), respectively. All of these values are significantly below 450 to 2100 W/m(3) determined for the pilot-scale reactor. The hydrodynamic stress differs significantly between the different formats of MTPs, as the 96-well plates showed very low shear stress on the shaker with a shaking amplitude of 3 mm. Thus, the transfer of mixing conditions from the microtiter plate to small-scale and pilot-scale reactors must be undertaken with care. Our findings, especially the power input determined by the calorimetric method, show that the hydrodynamic conditions in laboratory- and pilot-scale reactors cannot be reached. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synchronization of oscillators through time-shifted common inputs

    NASA Astrophysics Data System (ADS)

    Bolhasani, Ehsan; Azizi, Yousef; Valizadeh, Alireza; Perc, Matjaž

    2017-03-01

    Shared upstream dynamical processes are frequently the source of common inputs in various physical and biological systems. However, due to finite signal transmission speeds and differences in the distance to the source, time shifts between otherwise common inputs are unavoidable. Since common inputs can be a source of correlation between the elements of multi-unit dynamical systems, regardless of whether these elements are directly connected with one another or not, it is of importance to understand their impact on synchronization. As a canonical model that is representative for a variety of different dynamical systems, we study limit-cycle oscillators that are driven by stochastic time-shifted common inputs. We show that if the oscillators are coupled, time shifts in stochastic common inputs do not simply shift the distribution of the phase differences, but rather the distribution actually changes as a result. The best synchronization is therefore achieved at a precise intermediate value of the time shift, which is due to a resonance-like effect with the most probable phase difference that is determined by the deterministic dynamics.

  13. Direct Cortical Inputs Erase LTP at Schaffer Collateral Synapses

    PubMed Central

    Izumi, Yukitoshi; Zorumski, Charles F.

    2008-01-01

    Long-term potentiation (LTP), a synaptic mechanism thought to underlie memory formation, has been studied extensively at hippocampal Schaffer collateral (SC) synapses. The SC pathway transmits information to area CA1 that originates in entorhinal cortex and is processed by the dentate gyrus and area CA3. CA1 also receives direct excitatory input from entorhinal cortex via the perforant path (PP), but the role of this cortical input is less certain. Here we report that low frequency stimulation of PP inputs to CA1 has no lasting effect on basal SC transmission, but effectively depotentiates SC synapses that have undergone LTP in a fashion that can be reversed by subsequent high frequency stimulation of SC inputs. This depotentiation does not require N-methyl-D-aspartate receptors, Group I metabotropic glutamate receptors or L-type calcium channels, but involves adenosine acting at A1 receptors. Given the limited storage capacity of the hippocampus, these observations provide a mechanism by which input from cortex can help to reset synaptic transmission in the hippocampus and facilitate further information processing. PMID:18799687

  14. Heat input and dilution effects in microalloyed steel weld metals

    SciTech Connect

    Hunt, A.C. ); Kluken, A.O. . Div. of Metallurgy); Edwards, G.R. . Center for Welding and Joining Research)

    1994-01-01

    The sensitivity of weld metal microstructure and mechanical properties to variations in both heat input (i.e., cooling rate) and weld dilution in submerged arc (SA) welding of microalloyed steel was examined. Weldments were prepared with weld metal dilutions of approximately 40% and 70% at heat inputs of 2.0, 3.3, 4.6, and 5.3 kJ/mm, using two commercial welding wires and a basic commercial flux. The high dilution welds, which were ordinary bead-on-plate welds, resulted in microstructures that ranged from ferrite with aligned second phase at low heat inputs to acicular ferrite at high heat inputs. Special over-welding techniques were used to make the low dilution welds, allowing use of the same welding parameters as those for the high dilution welds. The technique involved remelting of weld metal to simulate the effect of multipass welding. The microstructure of these welds was predominantly acicular ferrite, independent of heat input. As a consequence, the low dilution welds had superior toughness compared to the high dilution welds.

  15. Functional transformations of odor inputs in the mouse olfactory bulb

    PubMed Central

    Adam, Yoav; Livneh, Yoav; Miyamichi, Kazunari; Groysman, Maya; Luo, Liqun; Mizrahi, Adi

    2014-01-01

    Sensory inputs from the nasal epithelium to the olfactory bulb (OB) are organized as a discrete map in the glomerular layer (GL). This map is then modulated by distinct types of local neurons and transmitted to higher brain areas via mitral and tufted cells. Little is known about the functional organization of the circuits downstream of glomeruli. We used in vivo two-photon calcium imaging for large scale functional mapping of distinct neuronal populations in the mouse OB, at single cell resolution. Specifically, we imaged odor responses of mitral cells (MCs), tufted cells (TCs) and glomerular interneurons (GL-INs). Mitral cells population activity was heterogeneous and only mildly correlated with the olfactory receptor neuron (ORN) inputs, supporting the view that discrete input maps undergo significant transformations at the output level of the OB. In contrast, population activity profiles of TCs were dense, and highly correlated with the odor inputs in both space and time. Glomerular interneurons were also highly correlated with the ORN inputs, but showed higher activation thresholds suggesting that these neurons are driven by strongly activated glomeruli. Temporally, upon persistent odor exposure, TCs quickly adapted. In contrast, both MCs and GL-INs showed diverse temporal response patterns, suggesting that GL-INs could contribute to the transformations MCs undergo at slow time scales. Our data suggest that sensory odor maps are transformed by TCs and MCs in different ways forming two distinct and parallel information streams. PMID:25408637

  16. Identification of single-input-single-output quantum linear systems

    NASA Astrophysics Data System (ADS)

    Levitt, Matthew; GuÅ£ǎ, Mǎdǎlin

    2017-03-01

    The purpose of this paper is to investigate system identification for single-input-single-output general (active or passive) quantum linear systems. For a given input we address the following questions: (1) Which parameters can be identified by measuring the output? (2) How can we construct a system realization from sufficient input-output data? We show that for time-dependent inputs, the systems which cannot be distinguished are related by symplectic transformations acting on the space of system modes. This complements a previous result of Guţă and Yamamoto [IEEE Trans. Autom. Control 61, 921 (2016), 10.1109/TAC.2015.2448491] for passive linear systems. In the regime of stationary quantum noise input, the output is completely determined by the power spectrum. We define the notion of global minimality for a given power spectrum, and characterize globally minimal systems as those with a fully mixed stationary state. We show that in the case of systems with a cascade realization, the power spectrum completely fixes the transfer function, so the system can be identified up to a symplectic transformation. We give a method for constructing a globally minimal subsystem direct from the power spectrum. Restricting to passive systems the analysis simplifies so that identifiability may be completely understood from the eigenvalues of a particular system matrix.

  17. Nitrogen input effectiveness on carbon sequestration in rainfed cropping system

    NASA Astrophysics Data System (ADS)

    Novara, Agata; Gristina, Luciano; Poma, Ignazio

    2016-04-01

    The combined effect of total N and C/N ratio had a large influence on the decomposition rate and consequently on potential soil organic carbon sequestration. The aim of the work was to evaluate Carbon sequestration potentiality under three mineral N fertilization levels in interaction with two cropping systems characterized by addition of N input due to leguminous species in the rotation. The study was carried out in the semiarid Mediterranean environment in a 18years long-term experiment. Is well know that in the semiarid environment the excess of N fertilization reduces biomass yield and the consequent C input. On the contrary, both N and C input determine high difference in C/N input ratio and faster organic matter mineralization. Results showed no influence of N fertilization on SOC sequestration and a reduction of SOC stock due to crop rotation due to lower C input. Crop residue quality of durum wheat-pea crop rotation characterized by a faster decomposition rate could explain the lower ability of crop rotation to sequester C in the semiarid environment.

  18. Are some parents' interaction styles associated with richer grammatical input?

    PubMed

    Fitzgerald, Colleen E; Hadley, Pamela A; Rispoli, Matthew

    2013-08-01

    Evidence for tense marking in child-directed speech varies both across languages ( Guasti, 2002; Legate & Yang, 2007) and across speakers of a single language ( Hadley, Rispoli, Fitzgerald, & Bahnsen, 2011). The purpose of this study was to understand how parent interaction styles and register use overlap with the tense-marking properties of child-directed speech. This study investigated how parent interaction style, measured by utterance function, and parent register use when asking questions interacted with verb forms in child-directed input to identify interaction styles associated with the richest grammatical input. Participants were 15 parent-toddler dyads. The communicative function of parent utterances and the form of their questions were coded from language samples of parent-child play when children were 21 months of age. Verbs were coded for linguistic form (e.g., imperative, modal, copula). Directives and reduced questions were both negatively related to input informativeness (i.e., the proportion of unambiguous evidence for tense). Other-focused descriptives were positively related to input informativeness. Predictable overlap existed between the characteristics of parents' interaction styles and register use and their input informativeness. An other-focused descriptive style most strongly related to richer evidence for the +Tense grammar of English.

  19. Controlling chaos in balanced neural circuits with input spike trains

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    The cerebral cortex can be seen as a system of neural circuits driving each other with spike trains. Here we study how the statistics of these spike trains affects chaos in balanced target circuits.Earlier studies of chaos in balanced neural circuits either used a fixed input [van Vreeswijk, Sompolinsky 1996, Monteforte, Wolf 2010] or white noise [Lajoie et al. 2014]. We study dynamical stability of balanced networks driven by input spike trains with variable statistics. The analytically obtained Jacobian enables us to calculate the complete Lyapunov spectrum. We solved the dynamics in event-based simulations and calculated Lyapunov spectra, entropy production rate and attractor dimension. We vary correlations, irregularity, coupling strength and spike rate of the input and action potential onset rapidness of recurrent neurons.We generally find a suppression of chaos by input spike trains. This is strengthened by bursty and correlated input spike trains and increased action potential onset rapidness. We find a link between response reliability and the Lyapunov spectrum. Our study extends findings in chaotic rate models [Molgedey et al. 1992] to spiking neuron models and opens a novel avenue to study the role of projections in shaping the dynamics of large neural circuits.

  20. Modelling Oyster Population Response to Variation in Freshwater Input

    NASA Astrophysics Data System (ADS)

    Livingston, R. J.; Lewis, F. G.; Woodsum, G. C.; Niu, X.-F.; Galperin, B.; Huang, W.; Christensen, J. D.; Monaco, M. E.; Battista, T. A.; Klein, C. J.; Howell, R. L.; Ray, G. L.

    2000-05-01

    This paper describes the linkage of a three-dimensional hydrodynamic circulation model with descriptive and experimental biological data concerning oyster (Crassostrea virginica) population dynamics in the Apalachicola Estuary (Florida, U.S.A.). Our intent was to determine the direct and indirect role of Apalachicola River flow in the maintenance of oyster production. Results of a monthly field sampling programme conducted on the oyster reefs in the Apalachicola system during 1985-1986 were used to develop statistical models relating several life-history characteristics of oysters to physical-chemical aspects of water quality. The same life-history characteristics were related statistically to output from a circulation model of Apalachicola Bay. Highest oyster densities and overall bar growth were found in the vicinity of the confluence of high salinity water moving westwards from St George Sound and river-dominated (low salinity) water moving south and eastwards from East Bay. With the exception of models for oyster mortality, the predictive capability of results from the parallel modelling efforts was low. A time-averaged model was developed for oyster mortality during the summer of 1985 by running a regression analysis with averaged predictors derived from the hydrodynamic model and observed (experimental) mortality rates throughout the estuary. A geographic information system was then used to depict the results spatially and to compare the extent of expected mortality in 1985 and 1986. High salinity, relatively low-velocity current patterns, and the proximity of a given oyster bar to entry points of saline Gulf water into the bay were important factors that contribute to increased oyster mortality. Mortality was a major determinant of oyster production in the Apalachicola Estuary with predation as a significant aspect of such mortality. By influencing salinity levels and current patterns throughout the bay, the Apalachicola River was important in controlling

  1. Vibration nullification of MEMS device using input shaping

    NASA Astrophysics Data System (ADS)

    Jordan, Scott; Lawrence, Eric M.

    2003-07-01

    The active silicon microstructures known as Micro-Electromechanical Systems (MEMS) are improving many existing technologies through simplification and cost reduction. Many industries have already capitalized on MEMS technology such as those in fields as diverse as telecommunications, computing, projection displays, automotive safety, defense and biotechnology. As they grow in sophistication and complexity, the familiar pressures to further reduce costs and increase performance grow for those who design and manufacture MEMS devices and the engineers who specify them for their end applications. One example is MEMS optical switches that have evolved from simple, bistable on/off elements to microscopic, freelypositionable beam steering optics. These can be actuated to discrete angular positions or to continuously-variable angular states through applied command signals. Unfortunately, elaborate closed-loop actuation schemes are often necessitated in order to stabilize the actuation. Furthermore, preventing one actuated micro-element from vibrationally cross-coupling with its neighbors is another reason costly closed-loop approaches are thought to be necessary. The Laser Doppler Vibrometer (LDV) is a valuable tool for MEMS characterization that provides non-contact, real-time measurements of velocity and/or displacement response. The LDV is a proven technology for production metrology to determine dynamical behaviors of MEMS elements, which can be a sensitive indicator of manufacturing variables such as film thickness, etch depth, feature tolerances, handling damage and particulate contamination. They are also important for characterizing the actuation dynamics of MEMS elements for implementation of a patented controls technique called Input Shaping«, which we show here can virtually eliminate the vibratory resonant response of MEMS elements even when subjected to the most severe actuation profiles. In this paper, we will demonstrate the use of the LDV to determine how

  2. Implementing and testing a panel-based method for modeling acoustic scattering from CFD input

    NASA Astrophysics Data System (ADS)

    Swift, S. Hales

    Exposure of sailors to high levels of noise in the aircraft carrier deck environment is a problem that has serious human and economic consequences. A variety of approaches to quieting exhausting jets from high-performance aircraft are undergoing development. However, testing of noise abatement solutions at full-scale may be prohibitively costly when many possible nozzle treatments are under consideration. A relatively efficient and accurate means of predicting the noise levels resulting from engine-quieting technologies at personnel locations is needed. This is complicated by the need to model both the direct and the scattered sound field in order to determine the resultant spectrum and levels. While the direct sound field may be obtained using CFD plus surface integral methods such as the Ffowcs-Williams Hawkings method, the scattered sound field is complicated by its dependence on the geometry of the scattering surface--the aircraft carrier deck, aircraft control surfaces and other nearby structures. In this work, a time-domain boundary element method, or TD-BEM, (sometimes referred to in terms of source panels) is proposed and developed that takes advantage of and offers beneficial effects for the substantial planar components of the aircraft carrier deck environment and uses pressure gradients as its input. This method is applied to and compared with analytical results for planar surfaces, corners and spherical surfaces using an analytic point source as input. The method can also accept input from CFD data on an acoustic data surface by using the G1A pressure gradient formulation to obtain pressure gradients on the surface from the flow variables contained on the acoustic data surface. The method is also applied to a planar scattering surface characteristic of an aircraft carrier flight deck with an acoustic data surface from a supersonic jet large eddy simulation, or LES, as input to the scattering model. In this way, the process for modeling the complete

  3. Distributed and Mixed Information in Monosynaptic Inputs to Dopamine Neurons.

    PubMed

    Tian, Ju; Huang, Ryan; Cohen, Jeremiah Y; Osakada, Fumitaka; Kobak, Dmitry; Machens, Christian K; Callaway, Edward M; Uchida, Naoshige; Watabe-Uchida, Mitsuko

    2016-09-21

    Dopamine neurons encode the difference between actual and predicted reward, or reward prediction error (RPE). Although many models have been proposed to account for this computation, it has been difficult to test these models experimentally. Here we established an awake electrophysiological recording system, combined with rabies virus and optogenetic cell-type identification, to characterize the firing patterns of monosynaptic inputs to dopamine neurons while mice performed classical conditioning tasks. We found that each variable required to compute RPE, including actual and predicted reward, was distributed in input neurons in multiple brain areas. Further, many input neurons across brain areas signaled combinations of these variables. These results demonstrate that even simple arithmetic computations such as RPE are not localized in specific brain areas but, rather, distributed across multiple nodes in a brain-wide network. Our systematic method to examine both activity and connectivity revealed unexpected redundancy for a simple computation in the brain.

  4. Improved input parameters for diffusion models of skin absorption.

    PubMed

    Hansen, Steffi; Lehr, Claus-Michael; Schaefer, Ulrich F

    2013-02-01

    To use a diffusion model for predicting skin absorption requires accurate estimates of input parameters on model geometry, affinity and transport characteristics. This review summarizes methods to obtain input parameters for diffusion models of skin absorption focusing on partition and diffusion coefficients. These include experimental methods, extrapolation approaches, and correlations that relate partition and diffusion coefficients to tabulated physico-chemical solute properties. Exhaustive databases on lipid-water and corneocyte protein-water partition coefficients are presented and analyzed to provide improved approximations to estimate lipid-water and corneocyte protein-water partition coefficients. The most commonly used estimates of lipid and corneocyte diffusion coefficients are also reviewed. In order to improve modeling of skin absorption in the future diffusion models should include the vertical stratum corneum heterogeneity, slow equilibration processes, the absorption from complex non-aqueous formulations, and an improved representation of dermal absorption processes. This will require input parameters for which no suitable estimates are yet available.

  5. Input shaped control of 3-dimensional maneuvers of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, T.; Vadali, S. R.

    1992-01-01

    This paper deals with the control of three dimensional rotational maneuvers of flexible spacecraft. A spacecraft with a spherical hub and six symmetric appendages is considered here as a model. The appendages are long and flexible leading to low frequency vibration under any control action. To provide a comprehensive treatment of input shaped controllers, both open loop and closed loop controllers are considered. The minimum-time bang-bang and the near-minimum-time controller, used in conjunction with the shaped input technique are studied. In addition, a combination of a Liapunov controller with the shaped input control technique is proposed to take advantage of the simple feedback control strategy and augment it with a technique that can eliminate the vibratory motion of the flexible appendages more efficiently.

  6. Using quantum theory to simplify input-output processes

    NASA Astrophysics Data System (ADS)

    Thompson, Jayne; Garner, Andrew J. P.; Vedral, Vlatko; Gu, Mile

    2017-02-01

    All natural things process and transform information. They receive environmental information as input, and transform it into appropriate output responses. Much of science is dedicated to building models of such systems-algorithmic abstractions of their input-output behavior that allow us to simulate how such systems can behave in the future, conditioned on what has transpired in the past. Here, we show that classical models cannot avoid inefficiency-storing past information that is unnecessary for correct future simulation. We construct quantum models that mitigate this waste, whenever it is physically possible to do so. This suggests that the complexity of general input-output processes depends fundamentally on what sort of information theory we use to describe them.

  7. Atmospheric input of carbon dioxide from burning wood.

    PubMed

    Wong, C S

    1978-04-14

    The atmospheric input of carbon dioxide from burning wood, in particular from forest fires in boreal and temperate regions resulting from both natural and man-made causes and predominantly from forest fires in tropical regions caused by shifting cultivation, is estimated to be 5.7 x 10(15) grams of carbon per year as gross input and 1.5 x 10(15) grams of carbon per year as net input. This is a significant amount as compared to the fossil fuel carbon dioxide produced from the utilization of oil, gas, coal, and limestone, and bears on the hypothesis of the enhanced sedimentation of marine detritus as a removal mechanism of excess atmospheric carbon dioxide.

  8. Adaptation to sensory input tunes visual cortex to criticality

    NASA Astrophysics Data System (ADS)

    Shew, Woodrow L.; Clawson, Wesley P.; Pobst, Jeff; Karimipanah, Yahya; Wright, Nathaniel C.; Wessel, Ralf

    2015-08-01

    A long-standing hypothesis at the interface of physics and neuroscience is that neural networks self-organize to the critical point of a phase transition, thereby optimizing aspects of sensory information processing. This idea is partially supported by strong evidence for critical dynamics observed in the cerebral cortex, but the impact of sensory input on these dynamics is largely unknown. Thus, the foundations of this hypothesis--the self-organization process and how it manifests during strong sensory input--remain unstudied experimentally. Here we show in visual cortex and in a computational model that strong sensory input initially elicits cortical network dynamics that are not critical, but adaptive changes in the network rapidly tune the system to criticality. This conclusion is based on observations of multifaceted scaling laws predicted to occur at criticality. Our findings establish sensory adaptation as a self-organizing mechanism that maintains criticality in visual cortex during sensory information processing.

  9. Input/output properties of the lateral vestibular nucleus.

    PubMed

    Boyle, R; Bush, G; Ehsanian, R

    2004-05-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  10. Monosynaptic inputs to new neurons in the dentate gyrus.

    PubMed

    Vivar, Carmen; Potter, Michelle C; Choi, Jiwon; Lee, Ji-Young; Stringer, Thomas P; Callaway, Edward M; Gage, Fred H; Suh, Hoonkyo; van Praag, Henriette

    2012-01-01

    Adult hippocampal neurogenesis is considered important for cognition. The integration of newborn dentate gyrus granule cells into the existing network is regulated by afferent neuronal activity of unspecified origin. Here we combine rabies virus-mediated retrograde tracing with retroviral labelling of new granule cells (21, 30, 60, 90 days after injection) to selectively identify and quantify their monosynaptic inputs in vivo. Our results show that newborn granule cells receive afferents from intra-hippocampal cells (interneurons, mossy cells, area CA3 and transiently, mature granule cells) and septal cholinergic cells. Input from distal cortex (perirhinal (PRH) and lateral entorhinal cortex (LEC)) is sparse 21 days after injection and increases over time. Patch-clamp recordings support innervation by the LEC rather than from the medial entorhinal cortex. Mice with excitotoxic PRH/LEC lesions exhibit deficits in pattern separation but not in water maze learning. Thus, PRH/LEC input is an important functional component of new dentate gyrus neuron circuitry.

  11. Linearisation via input-output injection of time delay systems

    NASA Astrophysics Data System (ADS)

    García-Ramírez, Eduardo; Moog, Claude H.; Califano, Claudia; Alejandro Márquez-Martínez, Luis

    2016-06-01

    This paper deals with the problem of linearisation of systems with constant commensurable delays by input-output injection using algebraic control tools based on the theory of non-commutative rings. Solutions for the problem of linearisation free of delays, and with delays of an observable nonlinear time-delay systems are presented based on the analysis of the input-output equation. These results are achieved by means of constructive algorithms that use the nth derivative of the output expressed in terms of the state-space variables instead of the explicit computation of the input-output representation of the system. Necessary and sufficient conditions are established in both cases by means of an invertible change of coordinates.

  12. Incorporating uncertainty in RADTRAN 6.0 input files.

    SciTech Connect

    Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John

    2010-02-01

    Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine is required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.

  13. Deliberation: obtaining informed input from a diverse public.

    PubMed

    Wang, Grace; Gold, Marthe; Siegel, Joanna; Sofaer, Shoshanna; Yang, Manshu; Mallery, Coretta; Carman, Kristin L

    2015-02-01

    Health care decision makers require public input to incorporate diverse values into programs and policies. Deliberation, one method for obtaining input, seeks to apply inclusive principles wherein diverse groups provide perspectives to inform decisions. We evaluate whether participants of different racial, ethnic, and educational backgrounds show differences in the effect of deliberation and the value placed on deliberation participation. We surveyed 907 participants before and after deliberation. Regression models examined associations between demographics and change in knowledge and attitudes, and perceived impact. Changes in knowledge about using medical evidence in decision-making were not associated with race, ethnicity, or education. Changes in attitudes were not associated with these characteristics with one exception. African American, Hispanic, and participants with lower educational attainment reported more perceived impact. Similar results across demographic groups suggest deliberation's promise for obtaining input from a diverse public to inform health programs and policies.

  14. Input and Language Development in Bilingually Developing Children

    PubMed Central

    Hoff, Erika; Core, Cynthia

    2015-01-01

    Language skills in young bilingual children are highly varied as a result of the variability in their language experiences, making it difficult for speech-language pathologists to differentiate language disorder from language difference in bilingual children. Understanding the sources of variability in bilingual contexts and the resulting variability in children’s skills will help improve language assessment practices by speech-language pathologists. In this article, we review literature on bilingual first language development for children under 5 years of age. We describe the rate of development in single and total language growth, we describe effects of quantity of input and quality of input on growth, and we describe effects of family composition on language input and language growth in bilingual children. We provide recommendations for language assessment of young bilingual children and consider implications for optimizing children’s dual language development. PMID:24297614

  15. Input/output properties of the lateral vestibular nucleus

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  16. Manipulating stored phonological input during verbal working memory.

    PubMed

    Cogan, Gregory B; Iyer, Asha; Melloni, Lucia; Thesen, Thomas; Friedman, Daniel; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2017-02-01

    Verbal working memory (vWM) involves storing and manipulating information in phonological sensory input. An influential theory of vWM proposes that manipulation is carried out by a central executive while storage is performed by two interacting systems: a phonological input buffer that captures sound-based information and an articulatory rehearsal system that controls speech motor output. Whether, when and how neural activity in the brain encodes these components remains unknown. Here we read out the contents of vWM from neural activity in human subjects as they manipulated stored speech sounds. As predicted, we identified storage systems that contained both phonological sensory and articulatory motor representations. Unexpectedly, however, we found that manipulation did not involve a single central executive but rather involved two systems with distinct contributions to successful manipulation. We propose, therefore, that multiple subsystems comprise the central executive needed to manipulate stored phonological input for articulatory motor output in vWM.

  17. Classification of finger vibrotactile input using scalp EEG.

    PubMed

    He, Yongtian; Contreras-Vidal, Jose L

    2015-01-01

    While there are many output brain-computer interface (output BCIs) studies, few have examined the input pathway, namely decoding the sensory input. To examine the possibility of building a BCI with sensory input using scalp electroencephalography (EEG), this study builds a classifier based on Local Fisher Discriminant Analysis (LFDA) and Gaussian Mixture Model (GMM) to classify neural activity generated by vibrotactile sensory stimuli delivered to the fingers. Small vibrators were placed on the fingertips of the participant. They vibrated one by one in a random sequence while the participant sat still with eyes closed. EEG data were recorded and later used to classify which finger was vibrated. There were two tasks: one focusing on differentiating between ipsilateral fingers, the other one focusing on differentiating contralateral fingers. Decoding accuracies were high in both tasks: 97.6% and 99.3% respectively. Event-related EEG features in both amplitude and power domain are discussed.

  18. Input/output properties of the lateral vestibular nucleus

    NASA Technical Reports Server (NTRS)

    Boyle, R.; Bush, G.; Ehsanian, R.

    2004-01-01

    This article is a review of work in three species, squirrel monkey, cat, and rat studying the inputs and outputs from the lateral vestibular nucleus (LVN). Different electrophysiological shock paradigms were used to determine the synaptic inputs derived from thick to thin diameter vestibular nerve afferents. Angular and linear mechanical stimulations were used to activate and study the combined and individual contribution of inner ear organs and neck afferents. The spatio-temporal properties of LVN neurons in the decerebrated rat were studied in response to dynamic acceleration inputs using sinusoidal linear translation in the horizontal head plane. Outputs were evaluated using antidromic identification techniques and identified LVN neurons were intracellularly injected with biocytin and their morphology studied.

  19. On the design of optimal input signals in system identification

    NASA Technical Reports Server (NTRS)

    Lopez-Toledo, A. A.; Athans, M.

    1974-01-01

    The problem of designing optimal inputs in the identification of multi-input multi-output linear systems with unknown time-varying parameters is considered using a Bayesian approach. A sensitivity index gives a measure of performance for the closed-loop system inputs. The computation of the optimal closed-loop mappings is shown to be a nontrivial exercise in stochastic control with no analytic solution, but optimal open-loop and affine laws yield much more tractable problems. For time-invariant systems, the sensitivity index considered is shown to be equivalent to the trace of the (strictly positive definite) information matrix associated with the system. Numerical examples are given. A Kalman filter is used to estimate the parameters. A necessary condition for the Kalman filter not to diverge when applying linear feedback is also given.

  20. Distribution of periodontal afferent input to motoneurons of human masseter.

    PubMed

    Yang, J; Türker, K S

    2001-11-01

    The distribution of the synaptic input from the periodontal mechanoreceptors onto the motoneurons of the human masseter is studied. Periodontal mechanoreceptors were activated using slowly rising force profiles of 2.5 N, which are known to induce predominantly excitatory reflex responses in the surface electromyogram (EMG) of the masseter. The reflex responses of single motor units (SMUs) were recorded to quantify the distribution of the periodontal input onto the masseter motoneurons. The relative sizes of motoneurons were estimated by comparing the peak-to-peak amplitude of the MacroRep (i.e. the representation of the SMU in the Macro EMG record). It was found that the larger SMUs had more excitatory and less inhibitory reflex responses than those of smaller size. This study demonstrates that the inputs from the periodontal mechanoreceptors, activated by slowly rising force profiles, are not distributed equally to the masseteric motoneurons. This may cause recruitment of motoneurons contrary to the size principle under some circumstances.