Sample records for field theory defined

  1. Towards weakly constrained double field theory

    NASA Astrophysics Data System (ADS)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  2. Using Wavelet Bases to Separate Scales in Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Michlin, Tracie L.

    This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.

  3. Functional renormalization group analysis of tensorial group field theories on Rd

    NASA Astrophysics Data System (ADS)

    Geloun, Joseph Ben; Martini, Riccardo; Oriti, Daniele

    2016-07-01

    Rank-d tensorial group field theories are quantum field theories (QFTs) defined on a group manifold G×d , which represent a nonlocal generalization of standard QFT and a candidate formalism for quantum gravity, since, when endowed with appropriate data, they can be interpreted as defining a field theoretic description of the fundamental building blocks of quantum spacetime. Their renormalization analysis is crucial both for establishing their consistency as quantum field theories and for studying the emergence of continuum spacetime and geometry from them. In this paper, we study the renormalization group flow of two simple classes of tensorial group field theories (TGFTs), defined for the group G =R for arbitrary rank, both without and with gauge invariance conditions, by means of functional renormalization group techniques. The issue of IR divergences is tackled by the definition of a proper thermodynamic limit for TGFTs. We map the phase diagram of such models, in a simple truncation, and identify both UV and IR fixed points of the RG flow. Encouragingly, for all the models we study, we find evidence for the existence of a phase transition of condensation type.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vankerschaver, Joris; Liao, Cuicui; Leok, Melvin

    The main goal of this paper is to derive an alternative characterization of the multisymplectic form formula for classical field theories using the geometry of the space of boundary values. We review the concept of Type-I/II generating functionals defined on the space of boundary data of a Lagrangian field theory. On the Lagrangian side, we define an analogue of Jacobi's solution to the Hamilton–Jacobi equation for field theories, and we show that by taking variational derivatives of this functional, we obtain an isotropic submanifold of the space of Cauchy data, described by the so-called multisymplectic form formula. As an examplemore » of the latter, we show that Lorentz's reciprocity principle in electromagnetism is a particular instance of the multisymplectic form formula. We also define a Hamiltonian analogue of Jacobi's solution, and we show that this functional is a Type-II generating functional. We finish the paper by defining a similar framework of generating functions for discrete field theories, and we show that for the linear wave equation, we recover the multisymplectic conservation law of Bridges.« less

  5. Supersymmetric interactions of a six-dimensional self-dual tensor and fixed-shape second quantized strings

    NASA Astrophysics Data System (ADS)

    Ganor, Ori J.

    2018-02-01

    "Curvepole (2,0)-theory" is a deformation of the (2,0)-theory with nonlocal interactions. A curvepole is defined as a two-dimensional generalization of a dipole. It is an object of fixed two-dimensional shape of which the boundary is a charged curve that interacts with a 2-form gauge field. Curvepole theory was previously only defined indirectly via M-theory. Here, we propose a supersymmetric Lagrangian, constructed explicitly up to quartic terms, for an "Abelian" curvepole theory, which is an interacting deformation of the free (2,0) tensor multiplet. This theory contains fields of which the quanta are curvepoles (i.e., fixed-shape strings). Supersymmetry is preserved (at least up to quartic terms) if the shape of the curvepoles is (two-dimensional) planar. This nonlocal six-dimensional quantum field theory may also serve as a UV completion for certain (local) five-dimensional gauge theories.

  6. The first law of black hole mechanics for fields with internal gauge freedom

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik

    2017-02-01

    We derive the first law of black hole mechanics for physical theories based on a local, covariant and gauge-invariant Lagrangian where the dynamical fields transform non-trivially under the action of some internal gauge transformations. The theories of interest include General Relativity formulated in terms of tetrads, Einstein-Yang-Mills theory and Einstein-Dirac theory. Since the dynamical fields of these theories have some internal gauge freedom, we argue that there is no natural group action of diffeomorphisms of spacetime on such dynamical fields. In general, such fields cannot even be represented as smooth, globally well-defined tensor fields on spacetime. Consequently the derivation of the first law by Iyer and Wald cannot be used directly. Nevertheless, we show how such theories can be formulated on a principal bundle and that there is a natural action of automorphisms of the bundle on the fields. These bundle automorphisms encode both spacetime diffeomorphisms and internal gauge transformations. Using this reformulation we define the Noether charge associated to an infinitesimal automorphism and the corresponding notion of stationarity and axisymmetry of the dynamical fields. We first show that we can define certain potentials and charges at the horizon of a black hole so that the potentials are constant on the bifurcate Killing horizon, giving a generalised zeroth law for bifurcate Killing horizons. We further identify the gravitational potential and perturbed charge as the temperature and perturbed entropy of the black hole which gives an explicit formula for the perturbed entropy analogous to the Wald entropy formula. We then obtain a general first law of black hole mechanics for such theories. The first law relates the perturbed Hamiltonians at spatial infinity and the horizon, and the horizon contributions take the form of a ‘potential times perturbed charge’ term. We also comment on the ambiguities in defining a prescription for the total entropy for black holes.

  7. Quasi-local conserved charges in the Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-05-01

    In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ

  8. Quantum entanglement of local operators in conformal field theories.

    PubMed

    Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi

    2014-03-21

    We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.

  9. Foreign exchange market as a lattice gauge theory

    NASA Astrophysics Data System (ADS)

    Young, K.

    1999-10-01

    A simple model of the foreign exchange market is exactly a lattice gauge theory. Exchange rates are the exponentials of gauge potentials defined on spatial links while interest rates are related to gauge potentials on temporal links. Arbitrage opportunities are given by nonzero values of the gauge-invariant field tensor or curvature defined on closed loops. Arbitrage opportunities involving cross-rates at one time are "magnetic fields," while arbitrage opportunities involving future contracts are "electric fields."

  10. Stochastic quantization of topological field theory: Generalized Langevin equation with memory kernel

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2006-07-01

    We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient.

  11. Magic bases, metric ansaetze and generalized graph theories in the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halpern, M.B.; Obers, N.A.

    1991-11-15

    The authors define a class of magic Lie group bases in which the Virasoro master equation admits a class of simple metric ansaetze (g{sub metric}), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of So(n) and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). A new phenomenon is observed in the high-level comparison of SU(n){sub metric}: Due to the trigonometricmore » structure constants of the Pauli-like basis, irrational central charge is clearly visible at finite order of the expansion. They also define the sine-area graphs of SU(n), which label the conformal field theories of SU(n){sub metric} and note that, in a similar fashion, each magic basis of g defines a generalize graph theory on g which labels the conformal field theories of g{sub metric}.« less

  12. The Lagrangian-Hamiltonian formalism for higher order field theories

    NASA Astrophysics Data System (ADS)

    Vitagliano, Luca

    2010-06-01

    We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.

  13. A superstring field theory for supergravity

    NASA Astrophysics Data System (ADS)

    Reid-Edwards, R. A.; Riccombeni, D. A.

    2017-09-01

    A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.

  14. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-04-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equations is given. By studying ansaetze of the master equation, we obtain exact solutions and gain insight in the structure of large slices of affine-Virasoro space. We find an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabelled graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graph of graph theory. We also define a class of magic'' Lie group bases in which themore » Virasoro master equation admits a simple metric ansatz (gmetric), whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, we define the sine-area graphs'' of SU(n), which label the conformal field theories of SU(n){sub metric}, and we note that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}. 24 figs., 4 tabs.« less

  15. Solution to the nonlinear field equations of ten dimensional supersymmetric Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Mafra, Carlos R.; Schlotterer, Oliver

    2015-09-01

    In this paper, we present a formal solution to the nonlinear field equations of ten-dimensional super Yang-Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher-mass dimensions are defined and their equations of motion are spelled out.

  16. Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory

    NASA Astrophysics Data System (ADS)

    Maroun, Michael Anthony

    This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.

  17. Graph theory and the Virasoro master equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obers, N.A.J.

    1991-01-01

    A brief history of affine Lie algebra, the Virasoro algebra and its culmination in the Virasoro master equation is given. By studying ansaetze of the master equation, the author obtains exact solutions and gains insight in the structure of large slices of affine-Virasoro space. He finds an isomorphism between the constructions in the ansatz SO(n){sub diag}, which is a set of unitary, generically irrational affine-Virasoro constructions on SO(n), and the unlabeled graphs of order n. On the one hand, the conformal constructions, are classified by the graphs, while, conversely, a group-theoretic and conformal field-theoretic identification is obtained for every graphmore » of graph theory. He also defines a class of magic Lie group bases in which the Virasoro master equation admits a simple metric ansatz {l brace}g{sub metric}{r brace}, whose structure is visible in the high-level expansion. When a magic basis is real on compact g, the corresponding g{sub metric} is a large system of unitary, generically irrational conformal field theories. Examples in this class include the graph-theory ansatz SO(n){sub diag} in the Cartesian basis of SO(n), and the ansatz SU(n){sub metric} in the Pauli-like basis of SU(n). Finally, he defines the sine-area graphs' of SU(n), which label the conformal field theories of SU(n){sub metric}, and he notes that, in similar fashion, each magic basis of g defines a generalized graph theory on g which labels the conformal field theories of g{sub metric}.« less

  18. New type IIB backgrounds and aspects of their field theory duals

    NASA Astrophysics Data System (ADS)

    Caceres, Elena; Macpherson, Niall T.; Núñez, Carlos

    2014-08-01

    In this paper we study aspects of geometries in Type IIA and Type IIB String theory and elaborate on their field theory dual pairs. The backgrounds are associated with reductions to Type IIA of solutions with G 2 holonomy in eleven dimensions. We classify these backgrounds according to their G-structure, perform a non-Abelian T-duality on them and find new Type IIB configurations presenting dynamical SU(2)-structure. We study some aspects of the associated field theories defined by these new backgrounds. Various technical details are clearly spelled out.

  19. Constrained field theories on spherically symmetric spacetimes with horizons

    NASA Astrophysics Data System (ADS)

    Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman

    2017-02-01

    We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.

  20. On the BV formalism of open superstring field theory in the large Hilbert space

    NASA Astrophysics Data System (ADS)

    Matsunaga, Hiroaki; Nomura, Mitsuru

    2018-05-01

    We construct several BV master actions for open superstring field theory in the large Hilbert space. First, we show that a naive use of the conventional BV approach breaks down at the third order of the antifield number expansion, although it enables us to define a simple "string antibracket" taking the Darboux form as spacetime antibrackets. This fact implies that in the large Hilbert space, "string fields-antifields" should be reassembled to obtain master actions in a simple manner. We determine the assembly of the string anti-fields on the basis of Berkovits' constrained BV approach, and give solutions to the master equation defined by Dirac antibrackets on the constrained string field-antifield space. It is expected that partial gauge-fixing enables us to relate superstring field theories based on the large and small Hilbert spaces directly: reassembling string fields-antifields is rather natural from this point of view. Finally, inspired by these results, we revisit the conventional BV approach and construct a BV master action based on the minimal set of string fields-antifields.

  1. Covariant conserved currents for scalar-tensor Horndeski theory

    NASA Astrophysics Data System (ADS)

    Schmidt, J.; Bičák, J.

    2018-04-01

    The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory.

  2. Towards a double field theory on para-Hermitian manifolds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaisman, Izu

    In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action ofmore » the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.« less

  3. Group field theories for all loop quantum gravity

    NASA Astrophysics Data System (ADS)

    Oriti, Daniele; Ryan, James P.; Thürigen, Johannes

    2015-02-01

    Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.

  4. Using Web-Based Instruction to Teach Music Theory in the Piano Studio: Defining, Designing, and Implementing an Integrative Approach

    ERIC Educational Resources Information Center

    Carney, Robert D.

    2010-01-01

    This dissertation rationalizes the best use of Web-based instruction (WBI) for teaching music theory to private piano students in the later primary grades. It uses an integrative research methodology for defining, designing, and implementing a curriculum that includes WBI. Research from the fields of music education, educational technology,…

  5. Unambiguous formalism for higher order Lagrangian field theories

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris

    2009-11-01

    The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.

  6. Skeletonization and Partitioning of Digital Images Using Discrete Morse Theory.

    PubMed

    Delgado-Friedrichs, Olaf; Robins, Vanessa; Sheppard, Adrian

    2015-03-01

    We show how discrete Morse theory provides a rigorous and unifying foundation for defining skeletons and partitions of grayscale digital images. We model a grayscale image as a cubical complex with a real-valued function defined on its vertices (the voxel values). This function is extended to a discrete gradient vector field using the algorithm presented in Robins, Wood, Sheppard TPAMI 33:1646 (2011). In the current paper we define basins (the building blocks of a partition) and segments of the skeleton using the stable and unstable sets associated with critical cells. The natural connection between Morse theory and homology allows us to prove the topological validity of these constructions; for example, that the skeleton is homotopic to the initial object. We simplify the basins and skeletons via Morse-theoretic cancellation of critical cells in the discrete gradient vector field using a strategy informed by persistent homology. Simple working Python code for our algorithms for efficient vector field traversal is included. Example data are taken from micro-CT images of porous materials, an application area where accurate topological models of pore connectivity are vital for fluid-flow modelling.

  7. Perturbative reduction of derivative order in EFT

    NASA Astrophysics Data System (ADS)

    Glavan, Dražen

    2018-02-01

    Higher derivative corrections are ubiquitous in effective field theories, which seemingly introduces new degrees of freedom at successive orders. This is actually an artefact of the implicit local derivative expansion defining effective field theories. We argue that higher derivative corrections that introduce additional degrees of freedom should be removed and their effects captured either by lower derivative corrections, or special combinations of higher derivative corrections not propagating extra degrees of freedom. Three methods adapted for this task are examined and field redefinitions are found to be most appropriate. First order higher derivative corrections in a scalar tensor theory are removed by field redefinition and it is found that their effects are captured by a subset of Horndeski theories. A case is made for restricting the effective field theory expansions in principle to only terms not introducing additional degrees of freedom.

  8. The theory of n-scales

    NASA Astrophysics Data System (ADS)

    Dündar, Furkan Semih

    2018-01-01

    We provide a theory of n-scales previously called as n dimensional time scales. In previous approaches to the theory of time scales, multi-dimensional scales were taken as product space of two time scales [1, 2]. n-scales make the mathematical structure more flexible and appropriate to real world applications in physics and related fields. Here we define an n-scale as an arbitrary closed subset of ℝn. Modified forward and backward jump operators, Δ-derivatives and Δ-integrals on n-scales are defined.

  9. Integrating Feminist Research and Practice in the Field of HRD. Innovative Session.

    ERIC Educational Resources Information Center

    Bierema, Laura L.; Tisdell, Elizabeth; Johnson-Bailey, Juanita; Gedro, Julie

    The human resource development (HRD) profession needs to continue to develop its core theories and to integrate new theories into the body of knowledge. Creating new knowledge is of essential importance to both HRD practitioners and researchers. As an emerging field, HRD is in the process of defining itself as a discipline. Currently, there are…

  10. Pressure and Chemical Potential: Effects Hydrophilic Soils Have on Adsorption and Transport

    NASA Astrophysics Data System (ADS)

    Bennethum, L. S.; Weinstein, T.

    2003-12-01

    Using the assumption that thermodynamic properties of fluid is affected by its proximity to the solid phase, a theoretical model has been developed based on upscaling and fundamental thermodynamic principles (termed Hybrid Mixture Theory). The theory indicates that Darcy's law and the Darcy-scale chemical potential (which determines the rate of adsorption and diffusion) need to be modified in order to apply to soils containing hydrophilic soils. In this talk we examine the Darcy-scale definition of pressure and chemical potential, especially as it applies to hydrophilic soils. To arrive at our model, we used hybrid mixture theory - first pioneered by Hassanizadeh and Gray in 1979. The technique involves averaging the field equations (i.e. conservation of mass, momentum balance, energy balance, etc.) to obtain macroscopic field equations, where each field variable is defined precisely in terms of its microscale counterpart. To close the system consistently with classical thermodynamics, the entropy inequality is exploited in the sense of Coleman and Noll. With the exceptions that the macroscale field variables are defined precisely in terms of their microscale counterparts and that microscopic interfacial equations can also be treated in a similar manner, the resulting system of equations is consistent with those derived using classical mixture theory. Hence the terminology, Hybrid Mixture Theory.

  11. Ostrogradsky in theories with multiple fields

    NASA Astrophysics Data System (ADS)

    de Rham, Claudia; Matas, Andrew

    2016-06-01

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.

  12. Momentum-resolved spectroscopy of a Fermi liquid

    PubMed Central

    Doggen, Elmer V. H.; Kinnunen, Jami J.

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  13. What is a photon?

    NASA Astrophysics Data System (ADS)

    Kracklauer, A. F.

    2015-09-01

    The linguistic and epistemological constraints on finding and expressing an answer to the title question are reviewed. First, it is recalled that "fields" are defined in terms of their effect on "test charges" and not in terms of any, even idealistically considered, primary, native innate qualities of their own. Thus, before fields can be discussed, the theorist has to have already available a defined "test particle" and field source. Clearly, neither the test nor the engendering particles can be defined as elements of the considered field without redefining the term "field." Further, the development of a theory as a logical structure (i.e., an internally self consistent conceptual complex) entails that the subject(s) of the theory (the primitive elements) and the rules governing their interrelationships (axioms) cannot be deduced by any logical procedure. They are always hypothesized on the basis of intuition supported by empirical experience. Given hypothesized primitive elements and axioms it is possible, in principle, to test for the 'completion' of the axiom set (i.e., any addition introduces redundancy) and for self consistency. Thus, theory building is limited to establishing the self consistency of a theory's mathematical expression and comparing that with the external, ontic world. Finally, a classical model with an event-by-event simulation of an EPR-B experiment to test a Bell Inequality is described. This model leads to a violation of Bell's limit without any quantum input (no nonlocal interaction nor entanglement), thus substantiating previous critical analysis of the derivation of Bell inequalities. On the basis of this result, it can be concluded that the electromagnetic interaction possesses no preternatural aspects, and that the usual models in terms of waves, fields and photons are all just imaginary constructs with questionable relation to a presumed reality.

  14. The complete Brans–Dicke theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kofinas, Georgios, E-mail: gkofinas@aegean.gr

    Given that the simple wave equation of Brans–Dicke theory for the scalar field is preserved, we have investigated, through exhaustively analyzing the Bianchi identities, the consistent theories which violate the exact energy conservation equation. It is found that only three theories exist which are unambiguously determined from consistency, without imposing arbitrary functions by hand. Each of these theories possesses a specific interaction term which controls the energy exchange between the scalar field and ordinary matter. The theories contain new parameters (integration constants from the integration procedure) and when these are switched-off, Brans–Dicke theory emerges. As usually, the vacuum theories canmore » be defined from the complete Brans–Dicke theories when the matter energy–momentum tensor vanishes.« less

  15. General covariance, topological quantum field theories and fractional statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamboa, J.

    1992-01-20

    Topological quantum field theories and fractional statistics are both defined in multiply connected manifolds. The authors study the relationship between both theories in 2 + 1 dimensions and the authors show that, due to the multiply-connected character of the manifold, the propagator for any quantum (field) theory always contains a first order pole that can be identified with a physical excitation with fractional spin. The article starts by reviewing the definition of general covariance in the Hamiltonian formalism, the gauge-fixing problem and the quantization following the lines of Batalin, Fradkin and Vilkovisky. The BRST-BFV quantization is reviewed in order tomore » understand the topological approach proposed here.« less

  16. Remarks on entanglement entropy in string theory

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  17. Highly effective action from large N gauge fields

    NASA Astrophysics Data System (ADS)

    Yang, Hyun Seok

    2014-10-01

    Recently Schwarz put forward a conjecture that the world-volume action of a probe D3-brane in an AdS5×S5 background of type IIB superstring theory can be reinterpreted as the highly effective action (HEA) of four-dimensional N =4 superconformal field theory on the Coulomb branch. We argue that the HEA can be derived from the noncommutative (NC) field theory representation of the AdS/CFT correspondence and the Seiberg-Witten (SW) map defining a spacetime field redefinition between ordinary and NC gauge fields. It is based only on the well-known facts that the master fields of large N matrices are higher-dimensional NC U(1) gauge fields and the SW map is a local coordinate transformation eliminating U(1) gauge fields known as the Darboux theorem in symplectic geometry.

  18. Tensor hierarchy and generalized Cartan calculus in SL(3) × SL(2) exceptional field theory

    NASA Astrophysics Data System (ADS)

    Hohm, Olaf; Wang, Yi-Nan

    2015-04-01

    We construct exceptional field theory for the duality group SL(3) × SL(2). The theory is defined on a space with 8 `external' coordinates and 6 `internal' coordinates in the (3, 2) fundamental representation, leading to a 14-dimensional generalized spacetime. The bosonic theory is uniquely determined by gauge invariance under generalized external and internal diffeomorphisms. The latter invariance can be made manifest by introducing higher form gauge fields and a so-called tensor hierarchy, which we systematically develop to much higher degree than in previous studies. To this end we introduce a novel Cartan-like tensor calculus based on a covariant nil-potent differential, generalizing the exterior derivative of conventional differential geometry. The theory encodes the full D = 11 or type IIB supergravity, respectively.

  19. The Topological Field Theory of Data: a program towards a novel strategy for data mining through data language

    NASA Astrophysics Data System (ADS)

    Rasetti, M.; Merelli, E.

    2015-07-01

    This paper aims to challenge the current thinking in IT for the 'Big Data' question, proposing - almost verbatim, with no formulas - a program aiming to construct an innovative methodology to perform data analytics in a way that returns an automaton as a recognizer of the data language: a Field Theory of Data. We suggest to build, directly out of probing data space, a theoretical framework enabling us to extract the manifold hidden relations (patterns) that exist among data, as correlations depending on the semantics generated by the mining context. The program, that is grounded in the recent innovative ways of integrating data into a topological setting, proposes the realization of a Topological Field Theory of Data, transferring and generalizing to the space of data notions inspired by physical (topological) field theories and harnesses the theory of formal languages to define the potential semantics necessary to understand the emerging patterns.

  20. Ostrogradsky in theories with multiple fields

    DOE PAGES

    de Rham, Claudia; Matas, Andrew

    2016-06-23

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamicalmore » or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.« less

  1. Ostrogradsky in theories with multiple fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Rham, Claudia; Matas, Andrew

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamicalmore » or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.« less

  2. String scattering amplitudes and deformed cubic string field theory

    NASA Astrophysics Data System (ADS)

    Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi

    2018-01-01

    We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.

  3. Yeh-Stratton Criterion for Stress Concentrations on Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang; Richards, W. Lance

    1996-01-01

    This study investigated the Yeh-Stratton Failure Criterion with the stress concentrations on fiber-reinforced composites materials under tensile stresses. The Yeh-Stratton Failure Criterion was developed from the initial yielding of materials based on macromechanics. To investigate this criterion, the influence of the materials anisotropic properties and far field loading on the composite materials with central hole and normal crack were studied. Special emphasis was placed on defining the crack tip stress fields and their applications. The study of Yeh-Stratton criterion for damage zone stress fields on fiber-reinforced composites under tensile loading was compared with several fracture criteria; Tsai-Wu Theory, Hoffman Theory, Fischer Theory, and Cowin Theory. Theoretical predictions from these criteria are examined using experimental results.

  4. How is quantum information localized in gravity?

    NASA Astrophysics Data System (ADS)

    Donnelly, William; Giddings, Steven B.

    2017-10-01

    A notion of localization of information within quantum subsystems plays a key role in describing the physics of quantum systems, and in particular is a prerequisite for discussing important concepts such as entanglement and information transfer. While subsystems can be readily defined for finite quantum systems and in local quantum field theory, a corresponding definition for gravitational systems is significantly complicated by the apparent nonlocality arising due to gauge invariance, enforced by the constraints. A related question is whether "soft hair" encodes otherwise localized information, and the question of such localization also remains an important puzzle for proposals that gravity emerges from another structure such as a boundary field theory as in AdS/CFT. This paper describes different approaches to defining local subsystem structure, and shows that at least classically, perturbative gravity has localized subsystems based on a split structure, generalizing the split property of quantum field theory. This, and related arguments for QED, give simple explanations that in these theories there is localized information that is independent of fields outside a region, in particular so that there is no role for "soft hair" in encoding such information. Additional subtleties appear in quantum gravity. We argue that localized information exists in perturbative quantum gravity in the presence of global symmetries, but that nonperturbative dynamics is likely tied to a modification of such structure.

  5. Gravitational energy in the framework of embedding and splitting theories

    NASA Astrophysics Data System (ADS)

    Grad, D. A.; Ilin, R. V.; Paston, S. A.; Sheykin, A. A.

    We study various definitions of the gravitational field energy based on the usage of isometric embeddings in the Regge-Teitelboim approach. For the embedding theory, we consider the coordinate translations on the surface as well as the coordinate translations in the flat bulk. In the latter case, the independent definition of gravitational energy-momentum tensor appears as a Noether current corresponding to global inner symmetry. In the field-theoretic form of this approach (splitting theory), we consider Noether procedure and the alternative method of energy-momentum tensor defining by varying the action of the theory with respect to flat bulk metric. As a result, we obtain energy definition in field-theoretic form of embedding theory which, among the other features, gives a nontrivial result for the solutions of embedding theory which are also solutions of Einstein equations. The question of energy localization is also discussed.

  6. The gravity duals of modular Hamiltonians

    DOE PAGES

    Jafferis, Daniel L.; Suh, S. Josephine

    2016-09-12

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  7. The gravity duals of modular Hamiltonians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafferis, Daniel L.; Suh, S. Josephine

    In this study, we investigate modular Hamiltonians defined with respect to arbitrary spatial regions in quantum field theory states which have semi-classical gravity duals. We find prescriptions in the gravity dual for calculating the action of the modular Hamiltonian on its defining state, including its dual metric, and also on small excitations around the state. Curiously, use of the covariant holographic entanglement entropy formula leads us to the conclusion that the modular Hamiltonian, which in the quantum field theory acts only in the causal completion of the region, does not commute with bulk operators whose entire gauge-invariant description is space-likemore » to the causal completion of the region.« less

  8. Vacuum polarization and Hawking radiation

    NASA Astrophysics Data System (ADS)

    Rahmati, Shohreh

    Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.

  9. Defining and Measuring Psychomotor Performance

    ERIC Educational Resources Information Center

    Autio, Ossi

    2007-01-01

    Psychomotor performance is fundamental to human existence. It is important in many real world activities and nowadays psychomotor tests are used in several fields of industry, army, and medical sciences in employee selection. This article tries to define psychomotor activity by introducing some psychomotor theories. Furthermore the…

  10. Inerton fields: very new ideas on fundamental physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnoholovets, Volodymyr

    2010-12-22

    Modern theories of everything, or theories of the grand unification of all physical interactions, try to describe the whole world starting from the first principles of quantum theory. However, the first principles operate with undetermined notions, such as the wave {psi}-function, particle, lepton and quark, de Broglie and Compton wavelengths, mass, electric charge, spin, electromagnetic field, photon, gravitation, physical vacuum, space, etc. From a logical point of view this means that such modern approach to the theory of everything is condemned to failure... Thus, what should we suggest to improve the situation? It seems quite reasonable to develop initially amore » theory of something, which will be able to clarify the major fundamental notions (listed above) that physics operates with every day. What would be a starting point in such approach? Of course a theory of space as such, because particles and all physical fields emerge just from space. After that, when a particle and fields (and hence the fields' carriers) are well defined and introduced in the well defined physical space, different kinds of interactions can be proposed and investigated. Moreover, we must also allow for a possible interaction of a created particle with the space that generated the appearance of the particle. The mathematical studies of Michel Bounias and the author have shown what the real physical space is, how the space is constituted, how it is arranged and what its elements are. Having constructed the real physical space we can then derive whatever we wish, in particular, such basic notions as mass, particle and charge. How are mechanics of such objects (a massive particle, a charged massive particle) organised? The appropriate theory of motion has been called a sub microscopic mechanics of particles, which is developed in the real physical space, not an abstract phase space, as conventional quantum mechanics does. A series of questions arise: can these two mechanics (submicroscopic and conventional quantum mechanics) be unified?, what can such unification bring new for us?, can such submicroscopic mechanics be a starting point for the derivation of the phenomenon of gravity?, can this new theory be a unified physical theory?, does the theory allow experimental verification? These major points have been clarified in detail. And, perhaps, the most intriguing aspect of the theory is the derivation of a new physical field associated with the notion of mass (or rather inertia of a particle, which has been called the inerton field and which represents a real sense of the particle's wave {psi}-function). This field emerges by analogy with the electromagnetic field associated with the notion of the electric charge. Yes, the postulated inerton field has being tested in a series of different experiments. Even more, the inerton field might have a number of practical applications...« less

  11. de Sitter limit analysis for dark energy and modified gravity models

    NASA Astrophysics Data System (ADS)

    De Felice, Antonio; Frusciante, Noemi; Papadomanolakis, Georgios

    2017-07-01

    The effective field theory of dark energy and modified gravity is supposed to well describe, at low energies, the behavior of the gravity modifications due to one extra scalar degree of freedom. The usual curvature perturbation is very useful when studying the conditions for the avoidance of ghost instabilities as well as the positivity of the squared speeds of propagation for both the scalar and tensor modes, or the Stückelberg field performs perfectly when investigating the evolution of linear perturbations. We show that the viable parameter space identified by requiring no-ghost instabilities and positive squared speeds of propagation does not change by performing a field redefinition, while the requirement of the avoidance of tachyonic instability might instead be different. Therefore, we find it interesting to associate to the general modified gravity theory described in the effective field theory framework, a perturbation field which will inherit all of the properties of the theory. In the present paper we address the following questions: (1) how can we define such a field? and (2) what is the mass of such a field as the background approaches a final de Sitter state? We define a gauge-invariant quantity which identifies the density of the dark energy perturbation field valid for any background. We derive the mass associated to the gauge-invariant dark energy field on a de Sitter background, which we retain to be still a good approximation also at very low redshift (z ≃0 ). On this background we also investigate the value of the speed of propagation and we find that there exist classes of theories which admit a nonvanishing speed of propagation, even in the Horndeski model, for which a zero speed of sound has previously been found in the literature. We finally apply our results to specific well-known models.

  12. A tensorial description of particle perception in black-hole physics

    NASA Astrophysics Data System (ADS)

    Barbado, Luis C.; Barceló, Carlos; Garay, Luis J.; Jannes, G.

    2016-09-01

    In quantum field theory in curved backgrounds, one typically distinguishes between objective, tensorial quantities such as the renormalized stress-energy tensor (RSET) and subjective, nontensorial quantities such as Bogoliubov coefficients which encode perception effects associated with the specific trajectory of a detector. In this work, we propose a way to treat both objective and subjective notions on an equal tensorial footing. For that purpose, we define a new tensor which we will call the perception renormalized stress-energy tensor (PeRSET). The PeRSET is defined as the subtraction of the RSET corresponding to two different vacuum states. Based on this tensor, we can define perceived energy densities and fluxes. The PeRSET helps us to have a more organized and systematic understanding of various results in the literature regarding quantum field theory in black hole spacetimes. We illustrate the physics encoded in this tensor by working out various examples of special relevance.

  13. A Method for Co-Designing Theory-Based Behaviour Change Systems for Health Promotion.

    PubMed

    Janols, Rebecka; Lindgren, Helena

    2017-01-01

    A methodology was defined and developed for designing theory-based behaviour change systems for health promotion that can be tailored to the individual. Theories from two research fields were combined with a participatory action research methodology. Two case studies applying the methodology were conducted. During and between group sessions the participants created material and designs following the behaviour change strategy themes, which were discussed, analysed and transformed into a design of a behaviour change system. Theories in behavioural change and persuasive technology guided the data collection, data analyses, and the design of a behaviour change system. The methodology has strong emphasis on the target group's participation in the design process. The different aspects brought forward related to behaviour change strategies defined in literature on persuasive technology, and the dynamics of these are associated to needs and motivation defined in literature on behaviour change. It was concluded that the methodology aids the integration of theories into a participatory action research design process, and aids the analyses and motivations of design choices.

  14. MatchingTools: A Python library for symbolic effective field theory calculations

    NASA Astrophysics Data System (ADS)

    Criado, Juan C.

    2018-06-01

    MatchingTools is a Python library for doing symbolic calculations in effective field theory. It provides the tools to construct general models by defining their field content and their interaction Lagrangian. Once a model is given, the heavy particles can be integrated out at the tree level to obtain an effective Lagrangian in which only the light particles appear. After integration, some of the terms of the resulting Lagrangian might not be independent. MatchingTools contains functions for transforming these terms to rewrite them in terms of any chosen set of operators.

  15. Type II superstring field theory: geometric approach and operadic description

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Münster, Korbinian

    2013-04-01

    We outline the construction of type II superstring field theory leading to a geometric and algebraic BV master equation, analogous to Zwiebach's construction for the bosonic string. The construction uses the small Hilbert space. Elementary vertices of the non-polynomial action are described with the help of a properly formulated minimal area problem. They give rise to an infinite tower of superstring field products defining a {N} = 1 generalization of a loop homotopy Lie algebra, the genus zero part generalizing a homotopy Lie algebra. Finally, we give an operadic interpretation of the construction.

  16. An Alternative Lattice Field Theory Formulation Inspired by Lattice Supersymmetry-Summary of the Formulation-

    NASA Astrophysics Data System (ADS)

    D'Adda, Alessandro; Kawamoto, Noboru; Saito, Jun

    2018-03-01

    We propose a lattice field theory formulation which overcomes some fundamental diffculties in realizing exact supersymmetry on the lattice. The Leibniz rule for the difference operator can be recovered by defining a new product on the lattice, the star product, and the chiral fermion species doublers degrees of freedom can be avoided consistently. This framework is general enough to formulate non-supersymmetric lattice field theory without chiral fermion problem. This lattice formulation has a nonlocal nature and is essentially equivalent to the corresponding continuum theory. We can show that the locality of the star product is recovered exponentially in the continuum limit. Possible regularization procedures are proposed.The associativity of the product and the lattice translational invariance of the formulation will be discussed.

  17. Geometric low-energy effective action in a doubled spacetime

    NASA Astrophysics Data System (ADS)

    Ma, Chen-Te; Pezzella, Franco

    2018-05-01

    The ten-dimensional supergravity theory is a geometric low-energy effective theory and the equations of motion for its fields can be obtained from string theory by computing β functions. With d compact dimensions, an O (d , d ; Z) geometric structure can be added to it giving the supergravity theory with T-duality manifest. In this paper, this is constructed through the use of a suitable star product whose role is the one to implement the weak constraint on the fields and the gauge parameters in order to have a closed gauge symmetry algebra. The consistency of the action here proposed is based on the orthogonality of the momenta associated with fields in their triple star products in the cubic terms defined for d ≥ 1. This orthogonality holds also for an arbitrary number of star products of fields for d = 1. Finally, we extend our analysis to the double sigma model, non-commutative geometry and open string theory.

  18. The future (and past) of quantum theory after the Higgs boson: a quantum-informational viewpoint.

    PubMed

    Plotnitsky, Arkady

    2016-05-28

    Taking as its point of departure the discovery of the Higgs boson, this article considers quantum theory, including quantum field theory, which predicted the Higgs boson, through the combined perspective of quantum information theory and the idea of technology, while also adopting anon-realistinterpretation, in 'the spirit of Copenhagen', of quantum theory and quantum phenomena themselves. The article argues that the 'events' in question in fundamental physics, such as the discovery of the Higgs boson (a particularly complex and dramatic, but not essentially different, case), are made possible by the joint workings of three technologies: experimental technology, mathematical technology and, more recently, digital computer technology. The article will consider the role of and the relationships among these technologies, focusing on experimental and mathematical technologies, in quantum mechanics (QM), quantum field theory (QFT) and finite-dimensional quantum theory, with which quantum information theory has been primarily concerned thus far. It will do so, in part, by reassessing the history of quantum theory, beginning with Heisenberg's discovery of QM, in quantum-informational and technological terms. This history, the article argues, is defined by the discoveries of increasingly complex configurations of observed phenomena and the emergence of the increasingly complex mathematical formalism accounting for these phenomena, culminating in the standard model of elementary-particle physics, defining the current state of QFT. © 2016 The Author(s).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smilga, A. V.

    We discuss non-Hermitian field theories where the spectrum of the Hamiltonian involves only real energies. We make three observations. (i) The theories obtained from supersymmetric theories by nonanticommutative deformations belong in many cases to this class. (ii) When the deformation parameter is small, the deformed theory enjoys the same supersymmetry algebra as the undeformed one. Half of the supersymmetries are manifest and the existence of another half can be deduced from the structure of the spectrum. (iii) Generically, the conventionally defined S-matrix is not unitary for such theories.

  20. Some elements of a theory of multidimensional complex variables. I - General theory. II - Expansions of analytic functions and application to fluid flows

    NASA Technical Reports Server (NTRS)

    Martin, E. Dale

    1989-01-01

    The paper introduces a new theory of N-dimensional complex variables and analytic functions which, for N greater than 2, is both a direct generalization and a close analog of the theory of ordinary complex variables. The algebra in the present theory is a commutative ring, not a field. Functions of a three-dimensional variable were defined and the definition of the derivative then led to analytic functions.

  1. Quantum Field Theory on Spacetimes with a Compactly Generated Cauchy Horizon

    NASA Astrophysics Data System (ADS)

    Kay, Bernard S.; Radzikowski, Marek J.; Wald, Robert M.

    1997-02-01

    We prove two theorems which concern difficulties in the formulation of the quantum theory of a linear scalar field on a spacetime, (M,g_{ab}), with a compactly generated Cauchy horizon. These theorems demonstrate the breakdown of the theory at certain base points of the Cauchy horizon, which are defined as 'past terminal accumulation points' of the horizon generators. Thus, the theorems may be interpreted as giving support to Hawking's 'Chronology Protection Conjecture', according to which the laws of physics prevent one from manufacturing a 'time machine'. Specifically, we prove: Theorem 1. There is no extension to (M,g_{ab}) of the usual field algebra on the initial globally hyperbolic region which satisfies the condition of F-locality at any base point. In other words, any extension of the field algebra must, in any globally hyperbolic neighbourhood of any base point, differ from the algebra one would define on that neighbourhood according to the rules for globally hyperbolic spacetimes. Theorem 2. The two-point distribution for any Hadamard state defined on the initial globally hyperbolic region must (when extended to a distributional bisolution of the covariant Klein-Gordon equation on the full spacetime) be singular at every base point x in the sense that the difference between this two point distribution and a local Hadamard distribution cannot be given by a bounded function in any neighbourhood (in M 2 M) of (x,x). In consequence of Theorem 2, quantities such as the renormalized expectation value of J2 or of the stress-energy tensor are necessarily ill-defined or singular at any base point. The proof of these theorems relies on the 'Propagation of Singularities' theorems of Duistermaat and Hörmander.

  2. Motivation and Gender in the Japanese EFL Classroom

    ERIC Educational Resources Information Center

    Mori, Setsuko; Gobel, Peter

    2006-01-01

    In the field of SLA, there have been various attempts to define second language learning motivation and to discover relationships between motivation and gender. Using two well-known motivational models: Expectancy-value theory, and Gardner's Socio-educational model, the present study sought to (1) first define foreign language learning motivation…

  3. Exact solution of matricial Φ23 quantum field theory

    NASA Astrophysics Data System (ADS)

    Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar

    2017-12-01

    We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.

  4. Boundary reflection matrices for nonsimply laced affine Toda field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.D.

    The boundary reflection matrices for nonsimply laced affine Toda field theories defined on a half line with the Neumann boundary condition are investigated. The boundary reflection matrices for some pairs of the models are evaluated up to one loop order by perturbation theory. Then the exact boundary reflection matrices which are consistent with the one loop result are found under the assumption of {open_quote}{open_quote}duality{close_quote}{close_quote} and tested against algebraic consistency such as the boundary bootstrap equation and boundary crossing-unitarity relation. {copyright} {ital 1996 The American Physical Society.}

  5. Dynamic acoustic radiation force acting on cylindrical shells: theory and simulations.

    PubMed

    Mitri, F G; Fatemi, M

    2005-05-01

    An object placed in an acoustic field is known to experience a force due to the transfer of momentum from the wave to the object itself. This force is known to be steady when the incident field is considered to be continuous with constant amplitude. One may define the dynamic (oscillatory) radiation force for a continuous wave-field whose intensity varies slowly with time. This paper extends the theory of the dynamic acoustic radiation force resulting from an amplitude-modulated progressive plane wave-field incident on solid cylinders to the case of solid cylindrical shells with particular emphasis on their thickness and contents of their hollow regions. A new factor corresponding to the dynamic radiation force is defined as Y(d) and stands for the dynamic radiation force per unit energy density and unit cross sectional surface. The results of numerical calculations are presented, indicating the ways in which the form of the dynamic radiation force function curves are affected by variations in the material mechanical parameters and by changes in the interior fluid inside the shell's hollow region. It was shown that the dynamic radiation force function Y(d) deviates from the static radiation force function for progressive waves Y(p) when the modulation frequency increases. These results indicate that the theory presented here is broader than the existing theory on cylinders.

  6. Does boundary quantum mechanics imply quantum mechanics in the bulk?

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Lifschytz, Gilad

    2018-03-01

    Perturbative bulk reconstruction in AdS/CFT starts by representing a free bulk field ϕ (0) as a smeared operator in the CFT. A series of 1 /N corrections must be added to ϕ (0) to represent an interacting bulk field ϕ. These corrections have been determined in the literature from several points of view. Here we develop a new perspective. We show that correlation functions involving ϕ (0) suffer from ambiguities due to analytic continuation. As a result ϕ (0) fails to be a well-defined linear operator in the CFT. This means bulk reconstruction can be understood as a procedure for building up well-defined operators in the CFT which thereby singles out the interacting field ϕ. We further propose that the difficulty with defining ϕ (0) as a linear operator can be re-interpreted as a breakdown of associativity. Presumably ϕ (0) can only be corrected to become an associative operator in perturbation theory. This suggests that quantum mechanics in the bulk is only valid in perturbation theory around a semiclassical bulk geometry.

  7. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    NASA Astrophysics Data System (ADS)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  8. Hamilton-Jacobi theory in multisymplectic classical field theories

    NASA Astrophysics Data System (ADS)

    de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia

    2017-09-01

    The geometric framework for the Hamilton-Jacobi theory developed in the studies of Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de León et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.

  9. The Institution of Sociological Theory in Canada.

    PubMed

    Guzman, Cinthya; Silver, Daniel

    2018-02-01

    Using theory syllabi and departmental data collected for three academic years, this paper investigates the institutional practice of theory in sociology departments across Canada. In particular, it examines the position of theory within the sociological curriculum, and how this varies among universities. Taken together, our analyses indicate that theory remains deeply institutionalized at the core of sociological education and Canadian sociologists' self-understanding; that theorists as a whole show some coherence in how they define themselves, but differ in various ways, especially along lines of region, intellectual background, and gender; that despite these differences, the classical versus contemporary heuristic largely cuts across these divides, as does the strongly ingrained position of a small group of European authors as classics of the discipline as a whole. Nevertheless, who is a classic remains an unsettled question, alternatives to the "classical versus contemporary" heuristic do exist, and theorists' syllabi reveal diverse "others" as potential candidates. Our findings show that the field of sociology is neither marked by universal agreement nor by absolute division when it comes to its theoretical underpinnings. To the extent that they reveal a unified field, the findings suggest that unity lies more in a distinctive form than in a distinctive content, which defines the space and structure of the field of sociology. © 2018 Canadian Sociological Association/La Société canadienne de sociologie.

  10. Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.

    PubMed

    Strelkov, V V; Ganeev, R A

    2017-09-04

    We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.

  11. Learning Theories 101: Application to Everyday Teaching and Scholarship

    ERIC Educational Resources Information Center

    Kay, Denise; Kibble, Jonathan

    2016-01-01

    Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the…

  12. Asymptotic states and the definition of the S-matrix in quantum gravity

    NASA Astrophysics Data System (ADS)

    Wiesendanger, C.

    2013-04-01

    Viewing gravitational energy-momentum p_G^\\mu as equal by observation, but different in essence from inertial energy-momentum p_I^\\mu naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner Minkowski space M4. The generalized asymptotic free scalar, Dirac and gauge fields in that theory are canonically quantized, the Fock spaces of stationary states are constructed and the gravitational limit—mapping the gravitational energy-momentum onto the inertial energy-momentum to account for their observed equality—is introduced. Next the S-matrix in quantum gravity is defined as the gravitational limit of the transition amplitudes of asymptotic in- to out-states in the gauge theory of volume-preserving diffeomorphisms. The so-defined S-matrix relates in- and out-states of observable particles carrying gravitational equal to inertial energy-momentum. Finally, generalized Lehmann-Symanzik-Zimmermann reduction formulae for scalar, Dirac and gauge fields are established which allow us to express S-matrix elements as the gravitational limit of truncated Fourier-transformed vacuum expectation values of time-ordered products of field operators of the interacting theory. Together with the generating functional of the latter established in Wiesendanger (2011 arXiv:1103.1012) any transition amplitude can in principle be computed consistently to any order in perturbative quantum gravity.

  13. No-Go Theorem for k-Essence Dark Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonvin, Camille; Caprini, Chiara; Durrer, Ruth

    We demonstrate that if k-essence can solve the coincidence problem and play the role of dark energy in the Universe, the fluctuations of the field have to propagate superluminally at some stage. We argue that this implies that successful k-essence models violate causality. It is not possible to define a time ordered succession of events in a Lorentz invariant way. Therefore, k-essence cannot arise as a low energy effective field theory of a causal, consistent high energy theory.

  14. Supersymmetric Casimir energy and the anomaly polynomial

    NASA Astrophysics Data System (ADS)

    Bobev, Nikolay; Bullimore, Mathew; Kim, Hee-Cheol

    2015-09-01

    We conjecture that for superconformal field theories in even dimensions, the supersymmetric Casimir energy on a space with topology S 1 × S D-1 is equal to an equivariant integral of the anomaly polynomial. The equivariant integration is defined with respect to the Cartan subalgebra of the global symmetry algebra that commutes with a given supercharge. We test our proposal extensively by computing the supersymmetric Casimir energy for large classes of superconformal field theories, with and without known Lagrangian descriptions, in two, four and six dimensions.

  15. Gauge invariant lattice quantum field theory: Implications for statistical properties of high frequency financial markets

    NASA Astrophysics Data System (ADS)

    Dupoyet, B.; Fiebig, H. R.; Musgrove, D. P.

    2010-01-01

    We report on initial studies of a quantum field theory defined on a lattice with multi-ladder geometry and the dilation group as a local gauge symmetry. The model is relevant in the cross-disciplinary area of econophysics. A corresponding proposal by Ilinski aimed at gauge modeling in non-equilibrium pricing is implemented in a numerical simulation. We arrive at a probability distribution of relative gains which matches the high frequency historical data of the NASDAQ stock exchange index.

  16. All in the family: a belated response to Knudson-Martin's feminist revision of Bowen theory.

    PubMed

    Horne, K Blake; Hicks, Mary W

    2002-01-01

    The first formal attempt at revising Bowen theory within the marriage and family therapy literature is represented in the work of Knudson-Martin (1994). Claiming that several of the theory's concepts are defined at odds with female development, Knudson-Martin (1994) reconceptualizes and expands Bowen theory to rectify these perceived shortcomings. In turn, we address several fundamental concerns with Knudson-Martin's critique and revision of Bowen theory. An alternative representation of Bowen Theory, as well as its relationship to feminist thought, is put forth. Suggestions for the field's future relationship to Bowen theory are also discussed.

  17. Book Review:

    NASA Astrophysics Data System (ADS)

    Folacci, Antoine; Jensen, Bruce

    2003-12-01

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. One knows in advance that this book can only lead to a genuine enrichment of the literature. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983 [1, 2], have had a great impact on quantum field theory. All this makes the reader keen to pick up his new work and a deeper reading confirms the reviewer's initial enthusiasm. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field (unless of course we are talking about references [1] and [2], of which the book under review is an extension and reworking). This uniqueness applies to both the scientific content and the way the ideas are presented. A quick description of this book and a brief explanation of its title should convince the reader of the book's unique quality. For DeWitt, a central concept of field theory is that of `space of histories'. For a field varphii defined on a given spacetime M, the set of all varphii(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the `space of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold [3]. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 [1] were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin--Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynman functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky--DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should be noted that DeWitt's book is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix~A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. It should be noted that these exercises previously appeared in references [1], [2] and [3], but here they have been worked out in some detail by the author. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that `this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic.' But the reviewers should add a few more remarks: (1) There are very few references. Of course, this is because the work is largely original. Even where the work of other researchers is presented, it has mostly been transformed by the DeWittian point of view. (2) There are very few diagrams, which sometimes hinders the exposition. In summary, in our opinion, this is one of the best books dealing with quantum field theory existing today. It will be of great interest for graduate and postgraduate students as well as workers in the domains of quantum field theory in flat and in curved spacetime and string theories. But we believe that the reader must have previously studied standard textbooks on quantum field theory and general relativity. Even with this preparation, it is by no means an easy book to read. However, the reward is to be able to share the deep and unique vision of the quantum theory of fields and its formalism by one of its greatest expositors. References [1] DeWitt B S 1965 Dynamical Theory of Groups and Fields (Les Houches Lectures 1963) (New York: Gordon and Breach) [2] DeWitt B S 1984 Relativity, Groups and Topology II (Les Houches Lectures 1983) ed R Stora and B S DeWitt (Amsterdam: North-Holland) [3] DeWitt B S 1994 Supermanifolds (Cambridge: Cambridge University Press)

  18. Characteristic classes of gauge systems

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Sharapov, A. A.

    2004-12-01

    We define and study invariants which can be uniformly constructed for any gauge system. By a gauge system we understand an (anti-)Poisson supermanifold provided with an odd Hamiltonian self-commuting vector field called a homological vector field. This definition encompasses all the cases usually included into the notion of a gauge theory in physics as well as some other similar (but different) structures like Lie or Courant algebroids. For Lagrangian gauge theories or Hamiltonian first class constrained systems, the homological vector field is identified with the classical BRST transformation operator. We define characteristic classes of a gauge system as universal cohomology classes of the homological vector field, which are uniformly constructed in terms of this vector field itself. Not striving to exhaustively classify all the characteristic classes in this work, we compute those invariants which are built up in terms of the first derivatives of the homological vector field. We also consider the cohomological operations in the space of all the characteristic classes. In particular, we show that the (anti-)Poisson bracket becomes trivial when applied to the space of all the characteristic classes, instead the latter space can be endowed with another Lie bracket operation. Making use of this Lie bracket one can generate new characteristic classes involving higher derivatives of the homological vector field. The simplest characteristic classes are illustrated by the examples relating them to anomalies in the traditional BV or BFV-BRST theory and to characteristic classes of (singular) foliations.

  19. Bianchi identities and the automatic conservation of energy-momentum and angular momentum in general-relativistic field theories

    NASA Astrophysics Data System (ADS)

    Hehl, Friedrich W.; McCrea, J. Dermott

    1986-03-01

    Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.

  20. Covariant electromagnetic field lines

    NASA Astrophysics Data System (ADS)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  1. Theoretical models for application in school health education research.

    PubMed

    Parcel, G S

    1984-01-01

    Theoretical models that may be useful to research studies in school health education are reviewed. Selected, well-defined theories include social learning theory, problem-behavior theory, theory of reasoned action, communications theory, coping theory, social competence, and social and family theories. Also reviewed are multiple theory models including models of health related-behavior, the PRECEDE Framework, social-psychological approaches and the Activated Health Education Model. Two major reviews of teaching models are also discussed. The paper concludes with a brief outline of the general applications of theory to the field of school health education including applications to basic research, development and design of interventions, program evaluation, and program utilization.

  2. Mean Field Type Control with Congestion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achdou, Yves, E-mail: achdou@ljll.univ-paris-diderot.fr; Laurière, Mathieu

    2016-06-15

    We analyze some systems of partial differential equations arising in the theory of mean field type control with congestion effects. We look for weak solutions. Our main result is the existence and uniqueness of suitably defined weak solutions, which are characterized as the optima of two optimal control problems in duality.

  3. Defining human death: an intersection of bioethics and metaphysics.

    PubMed

    Manninen, Bertha Alvarez

    2009-01-01

    For many years now, bioethicists, physicians, and others in the medical field have disagreed concerning how to best define human death. Different theories range from the Harvard Criteria of Brain Death, which defines death as the cessation of all brain activity, to the Cognitive Criteria, which is based on the loss of almost all core mental properties, e.g., memory, self-consciousness, moral agency, and the capacity for reason. A middle ground is the Irreversibility Standard, which defines death as occurring when the capacity for consciousness is forever lost. Given all these different theories, how can we begin to approach solving the issue of how to define death? I propose that a necessary starting point is discussing an even more fundamental question that properly belongs in the philosophical field of metaphysics: we must first address the issue of diachronic identity over time, and the persistence conditions of personal identity. In this paper, I illustrate the interdependent relationship between this metaphysical question and questions concerning the definition of death. I also illustrate how it is necessary to antecedently attend to the metaphysical issue of defining death before addressing certain issues in medical ethics, e.g., whether it is morally permissible to euthanize patients in persistent vegetative states or procure organs from anencephalic infants.

  4. Simple recursion relations for general field theories

    DOE PAGES

    Cheung, Clifford; Shen, Chia -Hsien; Trnka, Jaroslav

    2015-06-17

    On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensionalmore » analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. In conclusion, our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.« less

  5. Extended canonical field theory of matter and space-time

    NASA Astrophysics Data System (ADS)

    Struckmeier, J.; Vasak, D.; matter, H. Stoecker Field theory of; space-time

    2015-11-01

    Any physical theory that follows from an action principle should be invariant in its form under mappings of the reference frame in order to comply with the general principle of relativity. The required form-invariance of the action principle implies that the mapping must constitute a particular extended canonical transformation. In the realm of the covariant Hamiltonian formulation of field theory, the term ``extended'' implies that not only the fields but also the space-time geometry is subject to transformation. A canonical transformation maintains the general form of the action principle by simultaneously defining the appropriate transformation rules for the fields, the conjugate momentum fields, and the transformation rule for the Hamiltonian. Provided that the given system of fields exhibits a particular global symmetry, the associated extended canonical transformation determines an amended Hamiltonian that is form-invariant under the corresponding local symmetry. This will be worked out for a Hamiltonian system of scalar and vector fields that is presupposed to be form-invariant under space-time transformations xμ\\mapsto Xμ with partial Xμ/partial xν=const., hence under global space-time transformations such as the Poincaré transformation. The corresponding amended system that is form-invariant under local space-time transformations partial Xμ/partial xν≠qconst. then describes the coupling of the fields to the space-time geometry and thus yields the dynamics of space-time that is associated with the given physical system. Non-zero spin matter determines thereby the space-time curvature via a well-defined source term in a covariant Poisson-type equation for the Riemann tensor.

  6. Boundary conditions and unitarity in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Andrade, Tomas

    This thesis investigates various issues regarding unitarity in the context of Anti-de Sitter/Conformal Field theory (AdS/CFT) dualities. When the boundary duals are conformal, unitarity implies that there are lower bounds on the dimension of primary operators. Now, the AdS/CFT dictionary relates insertions of boundary operators to different choices of boundary conditions on the gravity side. Therefore, we expect the possible choices of boundary conditions in AdS to be restricted accordingly. Our first main goal will be to identify what are the pathologies that occur in the gravitational side of the duality when the boundary operators violate the pertinent unitarity bounds. In all the studied cases, we find that such bulk theories are ill-defined as expected, although unitarity is not nec- essarily violated. As our first example we consider a Klein-Gordon field in AdS, and extend the analysis to bosonic fields of spin 1 and 2 later on, with analogous results. Interestingly, it turns our that the bulk settings are pathological even in the absence of strict conformal invariance. Secondly, we argue that introducing a geometrical cut-off in spacetime along with the appropriate modifications of the boundary conditions yields the resulting (IR) theories well-defined. By study- ing in detail a Klein-Gordon field with boundary conditions that correspond to double-trace deformations, we are able to explicitly verify this claim. Finally, we discuss future research directions which include generalizations of AdS/CFT-like dualities and potential applications for condensed matter theory.

  7. Discovering Shared Experiences of Second Generation Community College Employees: A Grounded Theory Study

    ERIC Educational Resources Information Center

    Studebaker, Eric J.

    2012-01-01

    The second generation community college employee had not been a target population of any previous research in the field of higher education. This study added to a broader understanding of employees, their various characteristics, and the implications of those characteristics. The purpose of this study was to develop a grounded theory defining the…

  8. Legislative Analysis of the Federal Role in Indian Education.

    ERIC Educational Resources Information Center

    Deloria, Vine, Jr.

    Legislation pertaining to American Indian affairs is highly dependent upon the events and movements of history. No purified legal theory such as contract law or the law of damages emerges from the field of Indian law. While some of the legal theory must come from the ratified treaties, statutes, and case law defining the relationship of the United…

  9. The paraphysical principles of natural philosophy

    NASA Astrophysics Data System (ADS)

    Beichler, James Edward

    The word `paraphysics' has never been precisely defined. To establish paraphysics as a true science, the word is first defined and its scope and limits identified. The natural phenomena which are studied in paraphysics, psi phenomena, are distinguished by their common physical properties. The historical roots of paraphysics are also discussed. Paraphysics can be defined, represented by a specific body of natural phenomena and it has a historical basis. Therefore, paraphysics is a distinguishable science. It only needs a theoretical foundation. Rather than using a quantum approach, a new theory of physical reality can be based upon a field theoretical point of view. This approach dispels philosophical questions regarding the continuity/discrete debate and the wave/particle paradox. Starting from a basic Einstein-Kaluza geometrical structure and assuming a real fifth dimension, a comprehensive and complete theory emerges. The four forces of nature are unified as are the quantum and relativity. Life, mind, consciousness and psi emerge as natural consequences of the physics. The scientific concept of consciousness, ambiguous at best, has become an increasingly important factor in modern physics. No one has ever defined consciousness in an acceptable manner let alone develop a workable theory of consciousness while no viable physical theories of life and mind are even being considered even though they are prerequisites of consciousness. In the five-dimensional model, life, mind and consciousness are explained as increasingly complex `entanglements' or patterns of density variation within the single unified field. Psi is intimately connected to consciousness, giving the science of paranormal phenomena a theoretical basis in the physics of hyperspace. Psi results from different modes of consciousness interacting non-locally via the fifth dimension. Several distinct areas of future research are suggested which will lead to falsification of the theory. A new theory of the atomic nucleus is clearly indicated as is a simple theory of the predominant spiral shape of galaxies. A quantifiable theory of life is also suggested. And finally, this model strongly implies a direct correspondence between emotional states and psi phenomena which should render the existence of psi verifiable.

  10. Cartographic generalization of urban street networks based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei

    2014-05-01

    The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.

  11. Test-particle simulations in increasingly strong turbulence

    NASA Technical Reports Server (NTRS)

    Pontius, D. H., Jr.; Gray, P. C.; Matthaeus, W. H.

    1995-01-01

    Quasi-linear theory supposes that the energy in resonant fluctuations is small compared to that in the mean magnetic field. This is evident in the fact that the zeroth-order particle trajectories are helices about a mean field B(sub o) that is spatially uniform over many correlation lengths. However, in the solar wind it is often the case that the fluctuating part of the field is comparable in magnitude to the mean part. It is generally expected that quasi-linear theory remains viable for particles that are in resonance with a region of the fluctuation spectrum having only small energy density, but even so, care must be taken when comparing simulations to theoretical predictions. We have performed a series of test-particle simulations to explore the evolution of ion distributions in turbulent situations with varying levels of magnetic fluctuations. As delta-B/B(sub o) is increased the distinctions among absolute pitch angle (defined relative to B(sub o)), local pitch angle (defined relative to B(x)), and magnetic moment become important, some of them exhibiting periodic sloshing unrelated to the nonadiabatic processes of interest. Comparing and contrasting the various runs illustrates the phenomena that must be considered when the premise underlying quasi-linear theory are relaxed.

  12. Statistics of Smoothed Cosmic Fields in Perturbation Theory. I. Formulation and Useful Formulae in Second-Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Matsubara, Takahiko

    2003-02-01

    We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.

  13. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    PubMed

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  14. Abelian Toda field theories on the noncommutative plane

    NASA Astrophysics Data System (ADS)

    Cabrera-Carnero, Iraida

    2005-10-01

    Generalizations of GL(n) abelian Toda and GL with tilde above(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL with tilde above(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.

  15. A BRST gauge-fixing procedure for Yang Mills theory on sphere

    NASA Astrophysics Data System (ADS)

    Banerjee, Rabin; Deguchi, Shinichi

    2006-01-01

    A gauge-fixing procedure for the Yang-Mills theory on an n-dimensional sphere (or a hypersphere) is discussed in a systematic manner. We claim that Adler's gauge-fixing condition used in massless Euclidean QED on a hypersphere is not conventional because of the presence of an extra free index, and hence is unfavorable for the gauge-fixing procedure based on the BRST invariance principle (or simply BRST gauge-fixing procedure). Choosing a suitable gauge condition, which is proved to be equivalent to a generalization of Adler's condition, we apply the BRST gauge-fixing procedure to the Yang-Mills theory on a hypersphere to obtain consistent results. Field equations for the Yang-Mills field and associated fields are derived in manifestly O (n + 1) covariant or invariant forms. In the large radius limit, these equations reproduce the corresponding field equations defined on the n-dimensional flat space.

  16. T-duality and α'-corrections

    NASA Astrophysics Data System (ADS)

    Marqués, Diego; Nuñez, Carmen A.

    2015-10-01

    We construct an O( d, d) invariant universal formulation of the first-order α'-corrections of the string effective actions involving the dilaton, metric and two-form fields. Two free parameters interpolate between four-derivative terms that are even and odd with respect to a Z 2-parity transformation that changes the sign of the two-form field. The Z 2-symmetric model reproduces the closed bosonic string, and the heterotic string effective action is obtained through a Z 2-parity-breaking choice of parameters. The theory is an extension of the generalized frame formulation of Double Field Theory, in which the gauge transformations are deformed by a first-order generalized Green-Schwarz transformation. This deformation defines a duality covariant gauge principle that requires and fixes the four-derivative terms. We discuss the O( d, d) structure of the theory and the (non-)covariance of the required field redefinitions.

  17. Defining Signature Pedagogy in Social Work Education: Learning Theory and the Learning Contract

    ERIC Educational Resources Information Center

    Boitel, Craig R.; Fromm, Laurentine R.

    2014-01-01

    In 2008 the Council on Social Work Education identified field education as the signature pedagogy of social work. In doing so, it designated field education as the synthetic, integrative curricular area in which students are socialized to the profession. This article examines challenges and opportunities this designation presents. How field…

  18. Adiabatic regularization for gauge fields and the conformal anomaly

    NASA Astrophysics Data System (ADS)

    Chu, Chong-Sun; Koyama, Yoji

    2017-03-01

    Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.

  19. Book Review:

    NASA Astrophysics Data System (ADS)

    Louko, Jorma

    2007-04-01

    Bastianelli and van Nieuwenhuizen's monograph `Path Integrals and Anomalies in Curved Space' collects in one volume the results of the authors' 15-year research programme on anomalies that arise in Feynman diagrams of quantum field theories on curved manifolds. The programme was spurred by the path-integral techniques introduced in Alvarez-Gaumé and Witten's renowned 1983 paper on gravitational anomalies which, together with the anomaly cancellation paper by Green and Schwarz, led to the string theory explosion of the 1980s. The authors have produced a tour de force, giving a comprehensive and pedagogical exposition of material that is central to current research. The first part of the book develops from scratch a formalism for defining and evaluating quantum mechanical path integrals in nonlinear sigma models, using time slicing regularization, mode regularization and dimensional regularization. The second part applies this formalism to quantum fields of spin 0, 1/2, 1 and 3/2 and to self-dual antisymmetric tensor fields. The book concludes with a discussion of gravitational anomalies in 10-dimensional supergravities, for both classical and exceptional gauge groups. The target audience is researchers and graduate students in curved spacetime quantum field theory and string theory, and the aims, style and pedagogical level have been chosen with this audience in mind. Path integrals are treated as calculational tools, and the notation and terminology are throughout tailored to calculational convenience, rather than to mathematical rigour. The style is closer to that of an exceedingly thorough and self-contained review article than to that of a textbook. As the authors mention, the first part of the book can be used as an introduction to path integrals in quantum mechanics, although in a classroom setting perhaps more likely as supplementary reading than a primary class text. Readers outside the core audience, including this reviewer, will gain from the book a heightened appreciation of the central role of regularization as a defining ingredient of a quantum field theory and will be impressed by the agreement of results arising from different regularization schemes. The readers may in particular enjoy the authors' `brief history of anomalies' in quantum field theory, as well as a similar historical discussion of path integrals in quantum mechanics.

  20. Using Social Learning Theory to Reduce Small Business Breakdown along the Internet Superhighway: An Exploratory Model.

    ERIC Educational Resources Information Center

    Barker, Randolph T.; Sturm, Philip R.; Camarata, Michael

    1997-01-01

    Calls upon the innovators of the communications field to look in the rear view mirror to see the businesses left behind in the information expansion race. Puts forth a model utilizing social learning theory to define a framework for "road service," getting the small business "resister" up to the information superhighway speed…

  1. Bukhvostov-Lipatov model and quantum-classical duality

    NASA Astrophysics Data System (ADS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  2. Prescriptive unitarity

    DOE PAGES

    Bourjaily, Jacob L.; Herrmann, Enrico; Trnka, Jaroslav

    2017-06-12

    We introduce a prescriptive approach to generalized unitarity, resulting in a strictly-diagonal basis of loop integrands with coefficients given by specifically-tailored residues in field theory. We illustrate the power of this strategy in the case of planar, maximally supersymmetric Yang-Mills theory (SYM), where we construct closed-form representations of all (n-point N k MHV) scattering amplitudes through three loops. The prescriptive approach contrasts with the ordinary description of unitarity-based methods by avoiding any need for linear algebra to determine integrand coefficients. We describe this approach in general terms as it should have applications to many quantum field theories, including those withoutmore » planarity, supersymmetry, or massless spectra defined in any number of dimensions.« less

  3. Double Ramification Cycles and Quantum Integrable Systems

    NASA Astrophysics Data System (ADS)

    Buryak, Alexandr; Rossi, Paolo

    2016-03-01

    In this paper, we define a quantization of the Double Ramification Hierarchies of Buryak (Commun Math Phys 336:1085-1107, 2015) and Buryak and Rossi (Commun Math Phys, 2014), using intersection numbers of the double ramification cycle, the full Chern class of the Hodge bundle and psi-classes with a given cohomological field theory. We provide effective recursion formulae which determine the full quantum hierarchy starting from just one Hamiltonian, the one associated with the first descendant of the unit of the cohomological field theory only. We study various examples which provide, in very explicit form, new (1+1)-dimensional integrable quantum field theories whose classical limits are well-known integrable hierarchies such as KdV, Intermediate Long Wave, extended Toda, etc. Finally, we prove polynomiality in the ramification multiplicities of the integral of any tautological class over the double ramification cycle.

  4. Calculating the spontaneous magnetization and defining the Curie temperature using a positive-feedback model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, R. G., E-mail: rgh@doe.carleton.ca

    2014-01-21

    A positive-feedback mean-field modification of the classical Brillouin magnetization theory provides an explanation of the apparent persistence of the spontaneous magnetization beyond the conventional Curie temperature—the little understood “tail” phenomenon that occurs in many ferromagnetic materials. The classical theory is unable to resolve this apparent anomaly. The modified theory incorporates the temperature-dependent quantum-scale hysteretic and mesoscopic domain-scale anhysteretic magnetization processes and includes the effects of demagnetizing and exchange fields. It is found that the thermal behavior of the reversible and irreversible segments of the hysteresis loops, as predicted by the theory, is a key to the presence or absence ofmore » the “tails.” The theory, which permits arbitrary values of the quantum spin number J, generally provides a quantitative agreement with the thermal variations of both the spontaneous magnetization and the shape of the hysteresis loop.« less

  5. Extended Quantum Field Theory, Index Theory, and the Parity Anomaly

    NASA Astrophysics Data System (ADS)

    Müller, Lukas; Szabo, Richard J.

    2018-06-01

    We use techniques from functorial quantum field theory to provide a geometric description of the parity anomaly in fermionic systems coupled to background gauge and gravitational fields on odd-dimensional spacetimes. We give an explicit construction of a geometric cobordism bicategory which incorporates general background fields in a stack, and together with the theory of symmetric monoidal bicategories we use it to provide the concrete forms of invertible extended quantum field theories which capture anomalies in both the path integral and Hamiltonian frameworks. Specialising this situation by using the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners due to Loya and Melrose, we obtain a new Hamiltonian perspective on the parity anomaly. We compute explicitly the 2-cocycle of the projective representation of the gauge symmetry on the quantum state space, which is defined in a parity-symmetric way by suitably augmenting the standard chiral fermionic Fock spaces with Lagrangian subspaces of zero modes of the Dirac Hamiltonian that naturally appear in the index theorem. We describe the significance of our constructions for the bulk-boundary correspondence in a large class of time-reversal invariant gauge-gravity symmetry-protected topological phases of quantum matter with gapless charged boundary fermions, including the standard topological insulator in 3 + 1 dimensions.

  6. Quantum supergravity, supergravity anomalies and string phenomenology

    DOE PAGES

    Gaillard, Mary K.

    2016-03-15

    I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.

  7. Quiver W-algebras

    NASA Astrophysics Data System (ADS)

    Kimura, Taro; Pestun, Vasily

    2018-06-01

    For a quiver with weighted arrows, we define gauge-theory K-theoretic W-algebra generalizing the definition of Shiraishi et al. and Frenkel and Reshetikhin. In particular, we show that the qq-character construction of gauge theory presented by Nekrasov is isomorphic to the definition of the W-algebra in the operator formalism as a commutant of screening charges in the free field representation. Besides, we allow arbitrary quiver and expect interesting applications to representation theory of generalized Borcherds-Kac-Moody Lie algebras, their quantum affinizations and associated W-algebras.

  8. Differential Models for B-Type Open-Closed Topological Landau-Ginzburg Theories

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Doryn, Dmitry; Lazaroiu, Calin Iuliu; Tavakol, Mehdi

    2018-05-01

    We propose a family of differential models for B-type open-closed topological Landau-Ginzburg theories defined by a pair (X,W), where X is any non-compact Calabi-Yau manifold and W is any holomorphic complex-valued function defined on X whose critical set is compact. The models are constructed at cochain level using smooth data, including the twisted Dolbeault algebra of polyvector-valued forms and a twisted Dolbeault category of holomorphic factorizations of W. We give explicit proposals for cochain level versions of the bulk and boundary traces and for the bulk-boundary and boundary-bulk maps of the Landau-Ginzburg theory. We prove that most of the axioms of an open-closed TFT (topological field theory) are satisfied on cohomology and conjecture that the remaining two axioms (namely non-degeneracy of bulk and boundary traces and the topological Cardy constraint) are also satisfied.

  9. Statement on nursing: a personal perspective.

    PubMed

    McCutcheon, Tonna

    2004-01-01

    Contemporary nursing is based on a conglomerate of theoretical nursing models. These models each incorporate four central concepts: person, health, environment, and nursing. By defining these concepts, nurses develop an individual framework from which they base their nursing practice. As an aspiring nurse practitioner in the gastroenterology field, I have retrospectively assessed my personal definitions of person, health, environment, and nursing. From these definitions, I am able to incorporate specific theoretical frameworks into my personal belief system, thus formulating a basis for my nursing practice. This foundation is comprised of the influence of nursing theorists Jean Watson, Sister Callista Roy, Kolcaba, Florence Nightingale, and Ida J. Orlando; the Perioperative Patient-Focused Model; Watson's Theory of Human Caring; theories regarding transpersonal human caring and healing; and feminist theories. Therefore, this article describes self-examination of nursing care by defining central nursing concepts, acknowledging the influence of nursing theorists and theories, and developing a personal framework from which I base my nursing practice.

  10. Are field quanta real objects? Some remarks on the ontology of quantum field theory

    NASA Astrophysics Data System (ADS)

    Bigaj, Tomasz

    2018-05-01

    One of the key philosophical questions regarding quantum field theory is whether it should be given a particle or field interpretation. The particle interpretation of QFT is commonly viewed as being undermined by the well-known no-go results, such as the Malament, Reeh-Schlieder and Hegerfeldt theorems. These theorems all focus on the localizability problem within the relativistic framework. In this paper I would like to go back to the basics and ask the simple-minded question of how the notion of quanta appears in the standard procedure of field quantization, starting with the elementary case of the finite numbers of harmonic oscillators, and proceeding to the more realistic scenario of continuous fields with infinitely many degrees of freedom. I will try to argue that the way the standard formalism introduces the talk of field quanta does not justify treating them as particle-like objects with well-defined properties.

  11. Fusion of Positive Energy Representations of LSpin(2n)

    NASA Astrophysics Data System (ADS)

    Toledano-Laredo, V.

    2004-09-01

    Building upon the Jones-Wassermann program of studying Conformal Field Theory using operator algebraic tools, and the work of A. Wassermann on the loop group of LSU(n) (Invent. Math. 133 (1998), 467-538), we give a solution to the problem of fusion for the loop group of Spin(2n). Our approach relies on the use of A. Connes' tensor product of bimodules over a von Neumann algebra to define a multiplicative operation (Connes fusion) on the (integrable) positive energy representations of a given level. The notion of bimodules arises by restricting these representations to loops with support contained in an interval I of the circle or its complement. We study the corresponding Grothendieck ring and show that fusion with the vector representation is given by the Verlinde rules. The computation rests on 1) the solution of a 6-parameter family of Knizhnik-Zamolodchikhov equations and the determination of its monodromy, 2) the explicit construction of the primary fields of the theory, which allows to prove that they define operator-valued distributions and 3) the algebraic theory of superselection sectors developed by Doplicher-Haag-Roberts.

  12. Characteristic classes of Q-manifolds: Classification and applications

    NASA Astrophysics Data System (ADS)

    Lyakhovich, S. L.; Mosman, E. A.; Sharapov, A. A.

    2010-05-01

    A Q-manifold M is a supermanifold endowed with an odd vector field Q squaring to zero. The Lie derivative LQ along Q makes the algebra of smooth tensor fields on M into a differential algebra. In this paper, we define and study the invariants of Q-manifolds called characteristic classes. These take values in the cohomology of the operator LQ and, given an affine symmetric connection with curvature R, can be represented by universal tensor polynomials in the repeated covariant derivatives of Q and R up to some finite order. As usual, the characteristic classes are proved to be independent of the choice of the affine connection used to define them. The main result of the paper is a complete classification of the intrinsic characteristic classes, which, by definition, do not vanish identically on flat Q-manifolds. As an illustration of the general theory we interpret some of the intrinsic characteristic classes as anomalies in the BV and BFV-BRST quantization methods of gauge theories. An application to the theory of (singular) foliations is also discussed.

  13. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  14. Chern-Simons theory and Wilson loops in the Brillouin zone

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng

    2017-03-01

    Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3D) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the six-dimensional phase space, where the physical space defects play the role of topological D-branes.

  15. Dynamical Chern-Simons Theory in the Brillouin Zone

    NASA Astrophysics Data System (ADS)

    Lian, Biao; Vafa, Cumrun; Vafa, Farzan; Zhang, Shou-Cheng

    Berry connection is conventionally defined as a static gauge field in the Brillouin zone. Here we show that for three-dimensional (3d) time-reversal invariant superconductors, a generalized Berry gauge field behaves as a dynamical fluctuating field of a Chern-Simons gauge theory. The gapless nodal lines in the momentum space play the role of Wilson loop observables, while their linking and knot invariants modify the gravitational theta angle. This angle induces a topological gravitomagnetoelectric effect where a temperature gradient induces a rotational energy flow. We also show how topological strings may be realized in the 6 dimensional phase space, where the physical space defects play the role of topological D-branes.

  16. Physical stress, mass, and energy for non-relativistic matter

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  17. Rainbow valley of colored (anti) de Sitter gravity in three dimensions

    NASA Astrophysics Data System (ADS)

    Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong

    2016-04-01

    We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.

  18. A new unified theory of electromagnetic and gravitational interactions

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2016-12-01

    In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

  19. Linear algebraic theory of partial coherence: discrete fields and measures of partial coherence.

    PubMed

    Ozaktas, Haldun M; Yüksel, Serdar; Kutay, M Alper

    2002-08-01

    A linear algebraic theory of partial coherence is presented that allows precise mathematical definitions of concepts such as coherence and incoherence. This not only provides new perspectives and insights but also allows us to employ the conceptual and algebraic tools of linear algebra in applications. We define several scalar measures of the degree of partial coherence of an optical field that are zero for full incoherence and unity for full coherence. The mathematical definitions are related to our physical understanding of the corresponding concepts by considering them in the context of Young's experiment.

  20. The role of the psychiatrist : defining methods, theories, and practice in the time of managed care.

    PubMed

    Verhulst, J

    1996-12-01

    This essay proposes that the division between biological and psychotherapy-oriented psychiatry originates in the discipline's reliance on two fundamentally different methods of inquiry, that is, the medical-biological and the empathic-narrative. These terms are defined and distinguished from psychotherapy and psychodynamic psychiatry, as well as from general humanistic qualities in medicine. The division within the field may be fueled by a lack of clarity with respect to these concepts. The author argues that the essence of psychiatry is defined by a balanced combination of both methods. Psychiatry does not consist only of basic methods, but also of rules and guidelines for clinical practice, and of knowledge and theories used in the application of the methods. The role expectations for psychiatry in the managed care environment are examined and their effects upon methods, theory, and practice are analyzed. Some suggestions for dealing with the challenges of health care reform are offered.

  1. Theories and control models and motor learning: clinical applications in neuro-rehabilitation.

    PubMed

    Cano-de-la-Cuerda, R; Molero-Sánchez, A; Carratalá-Tejada, M; Alguacil-Diego, I M; Molina-Rueda, F; Miangolarra-Page, J C; Torricelli, D

    2015-01-01

    In recent decades there has been a special interest in theories that could explain the regulation of motor control, and their applications. These theories are often based on models of brain function, philosophically reflecting different criteria on how movement is controlled by the brain, each being emphasised in different neural components of the movement. The concept of motor learning, regarded as the set of internal processes associated with practice and experience that produce relatively permanent changes in the ability to produce motor activities through a specific skill, is also relevant in the context of neuroscience. Thus, both motor control and learning are seen as key fields of study for health professionals in the field of neuro-rehabilitation. The major theories of motor control are described, which include, motor programming theory, systems theory, the theory of dynamic action, and the theory of parallel distributed processing, as well as the factors that influence motor learning and its applications in neuro-rehabilitation. At present there is no consensus on which theory or model defines the regulations to explain motor control. Theories of motor learning should be the basis for motor rehabilitation. The new research should apply the knowledge generated in the fields of control and motor learning in neuro-rehabilitation. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  2. Apparently noninvariant terms of nonlinear sigma models in lattice perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Koji; Hattori, Nozomu; Kubo, Hirofumi

    2009-03-15

    Apparently noninvariant terms (ANTs) that appear in loop diagrams for nonlinear sigma models are revisited in lattice perturbation theory. The calculations have been done mostly with dimensional regularization so far. In order to establish that the existence of ANTs is independent of the regularization scheme, and of the potential ambiguities in the definition of the Jacobian of the change of integration variables from group elements to 'pion' fields, we employ lattice regularization, in which everything (including the Jacobian) is well defined. We show explicitly that lattice perturbation theory produces ANTs in the four-point functions of the pion fields at one-loopmore » and the Jacobian does not play an important role in generating ANTs.« less

  3. A periodic table of effective field theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less

  4. A periodic table of effective field theories

    DOE PAGES

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...

    2017-02-06

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less

  5. On the Foundations of the Two Measures Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guendelman, E. I.; Kaganovich, A. B.

    2006-11-03

    Two Measures Field Theory (TMT) uses both the Riemannian volume element {radical}(-g)d{sup 4}x and a new one Fcy d4x where the new measure of integration Fcy can be build of four scalar fields. Arguments in favor of TMT, both from the point of view of first principles and from the TMT results are summarized. Possible origin of the TMT and symmetries that protect the structure of TMT are reviewed. It appears that four measure scalar fields treated as 'physical coordinates' allow to define local observables in quantum gravity. The resolution of the old cosmological constant problem as a possible directmore » consequence of the TMT structure is discussed. Other applications of TMT to cosmology and particle physics are also mentioned.« less

  6. Relativistic thermodynamics, a Lagrangian field theory for general flows including rotation

    NASA Astrophysics Data System (ADS)

    Frønsdal, Christian

    Any theory that is based on an action principle has a much greater predictive power than one that does not have such a formulation. The formulation of a dynamical theory of General Relativity, including matter, is here viewed as a problem of coupling Einstein’s theory of pure gravity to an independently chosen and well-defined field theory of matter. It is well known that this is accomplished in a most natural way when both theories are formulated as relativistic, Lagrangian field theories, as is the case with Einstein-Maxwell theory. Special matter models of this type have been available; here a more general thermodynamical model that allows for vortex flows is presented. In a wider context, the problem of subjecting hydrodynamics and thermodynamics to an action principle is one that has been pursued for at least 150 years. A solution to this problem has been known for some time, but only under the strong restriction to potential flows. A variational principle for general flows has become available. It represents a development of the Navier-Stokes-Fourier approach to fluid dynamics. The principal innovation is the recognition that two kinds of flow velocity fields are needed, one the gradient of a scalar field and the other the time derivative of a vector field, the latter closely associated with vorticity. In the relativistic theory that is presented here, the latter is the Hodge dual of an exact 3-form, well known as the notoph field of Ogievetskij and Palubarinov, the B-field of Kalb and Ramond and the vorticity field of Lund and Regge. The total number of degrees of freedom of a unary system, including the density and the two velocity fields is 4, as expected — as in classical hydrodynamics. In this paper, we do not reduce Einstein’s dynamical equation for the metric to phenomenology, which would have denied the relevance of any intrinsic dynamics for the matter sector, nor do we abandon the equation of continuity - the very soul of hydrodynamics.

  7. Beable-guided quantum theories: Generalizing quantum probability laws

    NASA Astrophysics Data System (ADS)

    Kent, Adrian

    2013-02-01

    Beable-guided quantum theories (BGQT) are generalizations of quantum theory, inspired by Bell's concept of beables. They modify the quantum probabilities for some specified set of fundamental events, histories, or other elements of quasiclassical reality by probability laws that depend on the realized configuration of beables. For example, they may define an additional probability weight factor for a beable configuration, independent of the quantum dynamics. Beable-guided quantum theories can be fitted to observational data to provide foils against which to compare explanations based on standard quantum theory. For example, a BGQT could, in principle, characterize the effects attributed to dark energy or dark matter, or any other deviation from the predictions of standard quantum dynamics, without introducing extra fields or a cosmological constant. The complexity of the beable-guided theory would then parametrize how far we are from a standard quantum explanation. Less conservatively, we give reasons for taking suitably simple beable-guided quantum theories as serious phenomenological theories in their own right. Among these are the possibility that cosmological models defined by BGQT might in fact fit the empirical data better than any standard quantum explanation, and the fact that BGQT suggest potentially interesting nonstandard ways of coupling quantum matter to gravity.

  8. Toward a Definition of Complexity for Quantum Field Theory States.

    PubMed

    Chapman, Shira; Heller, Michal P; Marrochio, Hugo; Pastawski, Fernando

    2018-03-23

    We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form su(1,1) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.

  9. Toward a Definition of Complexity for Quantum Field Theory States

    NASA Astrophysics Data System (ADS)

    Chapman, Shira; Heller, Michal P.; Marrochio, Hugo; Pastawski, Fernando

    2018-03-01

    We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form s u (1 ,1 ) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.

  10. Daphnia swarms: from single agent dynamics to collective vortex formation

    NASA Astrophysics Data System (ADS)

    Ordemann, Anke; Balazsi, Gabor; Caspari, Elizabeth; Moss, Frank

    2003-05-01

    Swarm theories have become fashionable in theoretical physics over the last decade. They span the range of interactions from individual agents moving in a mean field to coherent collective motions of large agent populations, such as vortex-swarming. But controlled laboratory tests of these theories using real biological agents have been problematic due primarily to poorly known agent-agent interactions (in the case of e.g. bacteria and slime molds) or the large swarm size (e.g. for flocks of birds and schools of fish). Moreover, the entire range of behaviors from single agent interactions to collective vortex motions of the swarm have here-to-fore not been observed with a single animal. We present the results of well defined experiments with the zooplankton Daphnia in light fields showing this range of behaviors. We interpret our results with a theory of the motions of self-propelled agents in a field.

  11. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    NASA Astrophysics Data System (ADS)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  12. Quantization of Space-like States in Lorentz-Violating Theories

    NASA Astrophysics Data System (ADS)

    Colladay, Don

    2018-01-01

    Lorentz violation frequently induces modified dispersion relations that can yield space-like states that impede the standard quantization procedures. In certain cases, an extended Hamiltonian formalism can be used to define observer-covariant normalization factors for field expansions and phase space integrals. These factors extend the theory to include non-concordant frames in which there are negative-energy states. This formalism provides a rigorous way to quantize certain theories containing space-like states and allows for the consistent computation of Cherenkov radiation rates in arbitrary frames and avoids singular expressions.

  13. Spinor matter fields in SL(2,C) gauge theories of gravity: Lagrangian and Hamiltonian approaches

    NASA Astrophysics Data System (ADS)

    Antonowicz, Marek; Szczyrba, Wiktor

    1985-06-01

    We consider the SL(2,C)-covariant Lagrangian formulation of gravitational theories with the presence of spinor matter fields. The invariance properties of such theories give rise to the conservation laws (the contracted Bianchi identities) having in the presence of matter fields a more complicated form than those known in the literature previously. A general SL(2,C) gauge theory of gravity is cast into an SL(2,C)-covariant Hamiltonian formulation. Breaking the SL(2,C) symmetry of the system to the SU(2) symmetry, by introducing a spacelike slicing of spacetime, we get an SU(2)-covariant Hamiltonian picture. The qualitative analysis of SL(2,C) gauge theories of gravity in the SU(2)-covariant formulation enables us to define the dynamical symplectic variables and the gauge variables of the theory under consideration as well as to divide the set of field equations into the dynamical equations and the constraints. In the SU(2)-covariant Hamiltonian formulation the primary constraints, which are generic for first-order matter Lagrangians (Dirac, Weyl, Fierz-Pauli), can be reduced. The effective matter symplectic variables are given by SU(2)-spinor-valued half-forms on three-dimensional slices of spacetime. The coupled Einstein-Cartan-Dirac (Weyl, Fierz-Pauli) system is analyzed from the (3+1) point of view. This analysis is complete; the field equations of the Einstein-Cartan-Dirac theory split into 18 gravitational dynamical equations, 8 dynamical Dirac equations, and 7 first-class constraints. The system has 4+8=12 independent degrees of freedom in the phase space.

  14. No chiral truncation of quantum log gravity?

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  15. Trace anomaly and invariance under transformation of units

    NASA Astrophysics Data System (ADS)

    Namavarian, Nadereh

    2017-05-01

    Paying attention to conformal invariance as the invariance under local transformations of units of measure, we take a conformal-invariant quantum field as a quantum matter theory in which one has the freedom to choose the values of units of mass, length, and time arbitrarily at each point. To be able to have this view, it is necessary that the background on which the quantum field is based be conformal invariant as well. Consequently, defining the unambiguous expectation value of the energy-momentum tensor of such a quantum field through the Wald renormalizing prescription necessitates breaking down the conformal symmetry of the background. Then, noticing the field equations suitable for describing the backreaction effect, we show that the existence of the "trace anomaly," known for indicating the brokenness of conformal symmetry in quantum field theory, can also indicate the above "gravitational" conformal symmetry brokenness.

  16. The Effects of Laboratory-Based and Field-Based Practicum Experience on Pre-Service Teachers' Self-Efficacy

    ERIC Educational Resources Information Center

    Gurvitch, Rachel; Metzler, Michael W.

    2009-01-01

    A well defined line of research has been conducted on the role of self-efficacy (Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. "Psychological Review", 84, 191-215.) in teaching and learning environments. The purpose of this study was to examine the effect of Laboratory-Based (LB) and Field-Based (FB)…

  17. On the four-dimensional holoraumy of the 4D, 𝒩 = 1 complex linear supermultiplet

    NASA Astrophysics Data System (ADS)

    Caldwell, Wesley; Diaz, Alejandro N.; Friend, Isaac; Gates, S. James; Harmalkar, Siddhartha; Lambert-Brown, Tamar; Lay, Daniel; Martirosova, Karina; Meszaros, Victor A.; Omokanwaye, Mayowa; Rudman, Shaina; Shin, Daeljuck; Vershov, Anthony

    2018-04-01

    We present arguments to support the existence of weight spaces for supersymmetric field theories and identify the calculations of information about supermultiplets to define such spaces via the concept of “holoraumy.” For the first time, this is extended to the complex linear superfield by a calculation of the commutator of supercovariant derivatives on all of its component fields.

  18. Recognizing and defining clinical nurse leaders.

    PubMed

    Stanley, David

    This article addresses the issue of clinical leadership and how it is defined. The concepts and definitions of clinical leadership are considered as well as the results of new research that suggests that clinical leaders can be seen as experts in their field, and because they are approachable and are effective communicators, are empowered to act as a role model, motivating others by matching their values and beliefs about nursing and care to their practice. This is supported by a new leadership theory, congruent leadership, proposed as the most appropriate leadership theory to support an understanding of clinical leadership. Congruent leaders (clinical nurse leaders) are followed because there is a match between the leader's values and beliefs and their actions.

  19. Learning theories 101: application to everyday teaching and scholarship.

    PubMed

    Kay, Denise; Kibble, Jonathan

    2016-03-01

    Shifts in educational research, in how scholarship in higher education is defined, and in how funding is appropriated suggest that educators within basic science fields can benefit from increased understanding of learning theory and how it applies to classroom practice. This article uses a mock curriculum design scenario as a framework for the introduction of five major learning theories. Foundational constructs and principles from each theory and how they apply to the proposed curriculum designs are described. A summative table that includes basic principles, constructs, and classroom applications as well as the role of the teacher and learner is also provided for each theory. Copyright © 2016 The American Physiological Society.

  20. Computer Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1976-04-01

    from that of the ideal charge-contrpl model. Application of the test developed here to a practical MOS NAND gate demonstrates marked violations of...defining properties: [31] J. E. Meyer, RCA Review, 321, 42 (1971). [32] R.S.C. Cobbold , Theory and Applications of Field-Effect Transistors...decrease of thxs dxs- I ’ [!] H.K.J. Ihantola and J. L. Moll, Solid State Electronics, 7, 423 (1964). [2] R.S.C. Cobbold , Theory and

  1. Black holes in vector-tensor theories and their thermodynamics

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying

    2018-01-01

    In this paper, we study Einstein gravity either minimally or non-minimally coupled to a vector field which breaks the gauge symmetry explicitly in general dimensions. We first consider a minimal theory which is simply the Einstein-Proca theory extended with a quartic self-interaction term for the vector field. We obtain its general static maximally symmetric black hole solution and study the thermodynamics using Wald formalism. The aspects of the solution are much like a Reissner-Nordstrøm black hole in spite of that a global charge cannot be defined for the vector. For non-minimal theories, we obtain a lot of exact black hole solutions, depending on the parameters of the theories. In particular, many of the solutions are general static and have maximal symmetry. However, there are some subtleties and ambiguities in the derivation of the first laws because the existence of an algebraic degree of freedom of the vector in general invalids the Wald entropy formula. The thermodynamics of these solutions deserves further studies.

  2. Dirac Cellular Automaton from Split-step Quantum Walk

    PubMed Central

    Mallick, Arindam; Chandrashekar, C. M.

    2016-01-01

    Simulations of one quantum system by an other has an implication in realization of quantum machine that can imitate any quantum system and solve problems that are not accessible to classical computers. One of the approach to engineer quantum simulations is to discretize the space-time degree of freedom in quantum dynamics and define the quantum cellular automata (QCA), a local unitary update rule on a lattice. Different models of QCA are constructed using set of conditions which are not unique and are not always in implementable configuration on any other system. Dirac Cellular Automata (DCA) is one such model constructed for Dirac Hamiltonian (DH) in free quantum field theory. Here, starting from a split-step discrete-time quantum walk (QW) which is uniquely defined for experimental implementation, we recover the DCA along with all the fine oscillations in position space and bridge the missing connection between DH-DCA-QW. We will present the contribution of the parameters resulting in the fine oscillations on the Zitterbewegung frequency and entanglement. The tuneability of the evolution parameters demonstrated in experimental implementation of QW will establish it as an efficient tool to design quantum simulator and approach quantum field theory from principles of quantum information theory. PMID:27184159

  3. Local phase space and edge modes for diffeomorphism-invariant theories

    NASA Astrophysics Data System (ADS)

    Speranza, Antony J.

    2018-02-01

    We discuss an approach to characterizing local degrees of freedom of a subregion in diffeomorphism-invariant theories using the extended phase space of Donnelly and Freidel [36]. Such a characterization is important for defining local observables and entanglement entropy in gravitational theories. Traditional phase space constructions for subregions are not invariant with respect to diffeomorphisms that act at the boundary. The extended phase space remedies this problem by introducing edge mode fields at the boundary whose transformations under diffeomorphisms render the extended symplectic structure fully gauge invariant. In this work, we present a general construction for the edge mode symplectic structure. We show that the new fields satisfy a surface symmetry algebra generated by the Noether charges associated with the edge mode fields. For surface-preserving symmetries, the algebra is universal for all diffeomorphism-invariant theories, comprised of diffeomorphisms of the boundary, SL(2, ℝ) transformations of the normal plane, and, in some cases, normal shearing transformations. We also show that if boundary conditions are chosen such that surface translations are symmetries, the algebra acquires a central extension.

  4. Conserved charges of minimal massive gravity coupled to scalar field

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2018-02-01

    Recently, the theory of topologically massive gravity non-minimally coupled to a scalar field has been proposed, which comes from the Lorentz-Chern-Simons theory (JHEP 06, 113, 2015), a torsion-free theory. We extend this theory by adding an extra term which makes the torsion to be non-zero. We show that the BTZ spacetime is a particular solution to this theory in the case where the scalar field is constant. The quasi-local conserved charge is defined by the concept of the generalized off-shell ADT current. Also a general formula is found for the entropy of the stationary black hole solution in context of the considered theory. The obtained formulas are applied to the BTZ black hole solution in order to obtain the energy, the angular momentum and the entropy of this solution. The central extension term, the central charges and the eigenvalues of the Virasoro algebra generators for the BTZ black hole solution are thus obtained. The energy and the angular momentum of the BTZ black hole using the eigenvalues of the Virasoro algebra generators are calculated. Also, using the Cardy formula, the entropy of the BTZ black hole is found. It is found that the results obtained in two different ways exactly match, just as expected.

  5. From fractals to wormholes via string theory

    NASA Astrophysics Data System (ADS)

    Felce, Andrew George

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibits critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view. The thesis reports the results of an initial investigation of the free energy, N-point functions and boundary state for this type of critical theory. Although the primary goal is to study the magnetic field dependence of these quantities, some new results are presented which bear on the zero magnetic field case as well.

  6. Research Management--Of What Nature Is the Concept?

    ERIC Educational Resources Information Center

    Cook, Desmond L.

    Research management is defined as the application of both management and management science to a particular field of research and development activities. Seven components of research management include theory and methodology; the planning, implementation, and evaluation of research programs; communications; utilization; and special applications.…

  7. Rural Theory.

    ERIC Educational Resources Information Center

    Gilbert, Jess

    To be scientific, rural sociology must have a distinctive conceptual basis; therefore, defining "rural" has long been a major concern of rural sociologists. Recently faced with similar problems, political economists have revitalized the field of urban sociology by looking beyond the city to the social production of spatial forms under…

  8. School-to-Work Transition and Counseling Psychology.

    ERIC Educational Resources Information Center

    Lent, Robert W.; O'Brien, Karen M.; Fassinger, Ruth E.

    1998-01-01

    Reports on recommendations and action plans conceived at the November 1997 conference School-to-Work Transition: Defining the Role of Vocational Psychology. Topics discussed: theory and research; marketing and dissemination; funding; assessment and evaluation; schools and communities; and professional advocacy. Urges the field of counseling…

  9. Response of two-band systems to a single-mode quantized field

    NASA Astrophysics Data System (ADS)

    Shi, Z. C.; Shen, H. Z.; Wang, W.; Yi, X. X.

    2016-03-01

    The response of topological insulators (TIs) to an external weakly classical field can be expressed in terms of Kubo formula, which predicts quantized Hall conductivity of the quantum Hall family. The response of TIs to a single-mode quantized field, however, remains unexplored. In this work, we take the quantum nature of the external field into account and define a Hall conductance to characterize the linear response of a two-band system to the quantized field. The theory is then applied to topological insulators. Comparisons with the traditional Hall conductance are presented and discussed.

  10. Irreversibility and higher-spin conformal field theory

    NASA Astrophysics Data System (ADS)

    Anselmi, Damiano

    2000-08-01

    I discuss the properties of the central charges c and a for higher-derivative and higher-spin theories (spin 2 included). Ordinary gravity does not admit a straightforward identification of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-derivative theories can be conformal, but have negative c and a. A third possibility is to consider higher-spin conformal field theories. They are not unitary, but have a variety of interesting properties. Bosonic conformal tensors have a positive-definite action, equal to the square of a field strength, and a higher-derivative gauge invariance. There exists a conserved spin-2 current (not the canonical stress tensor) defining positive central charges c and a. I calculate the values of c and a and study the operator-product structure. Higher-spin conformal spinors have no gauge invariance, admit a standard definition of c and a and can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the quantum level, they contribute to the one-loop beta function with the same sign as ordinary matter, admit a conformal window and non-trivial interacting fixed points. There are composite operators of high spin and low dimension, which violate the Ferrara-Gatto-Grillo theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more severe internal problems. This research is motivated by the idea that fundamental quantum field theories should be renormalization-group (RG) interpolations between ultraviolet and infrared conformal fixed points, and quantum irreversibility should be a general principle of nature.

  11. Notes on hyperscaling violating Lifshitz and shear diffusion

    NASA Astrophysics Data System (ADS)

    Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.

    2017-07-01

    We explore in greater detail our investigations of shear diffusion in hyperscaling violating Lifshitz theories in Phys. Lett. B 760, 86 (2016), 10.1016/j.physletb.2016.06.046. This adapts and generalizes the membrane-paradigm-like analysis of Kovtun, Son, and Starinets for shear gravitational perturbations in the near horizon region given certain self-consistent approximations, leading to the shear diffusion constant on an appropriately defined stretched horizon. In theories containing a gauge field, some of the metric perturbations mix with some of the gauge field perturbations and the above analysis is somewhat more complicated. We find a similar near-horizon analysis can be obtained in terms of new field variables involving a linear combination of the metric and the gauge field perturbation resulting in a corresponding diffusion equation. Thereby as before, for theories with Lifshitz and hyperscaling violating exponents z , θ satisfying z <4 -θ in four bulk dimensions, our analysis here results in a similar expression for the shear diffusion constant with power-law scaling with temperature suggesting universal behavior in relation to the viscosity bound. For z =4 -θ , we find logarithmic behavior.

  12. Kibble Zurek mechanism of topological defect formation in quantum field theory with matrix product states

    NASA Astrophysics Data System (ADS)

    Gillman, Edward; Rajantie, Arttu

    2018-05-01

    The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D =(1 +1 ) is studied using uniform matrix product states. The equal time two point function in momentum space G2(k ) is approximated as the system is driven through a quantum phase transition at a variety of different quench rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate the consistency of the picture that the two point function G2(k ) displays two characteristic scales, the defect density n and the kink width dK. Consequently, G2(k ) provides a clear signature for the formation of defects and a well defined measure of the defect density in the system. These results provide a benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for relativistic quantum field theory, providing a promising technique for the future study of high energy physics and cosmology.

  13. Higher groupoid bundles, higher spaces, and self-dual tensor field equations

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Sämann, Christian; Wolf, Martin

    2016-08-01

    We develop a description of higher gauge theory with higher groupoids as gauge structure from first principles. This approach captures ordinary gauge theories and gauged sigma models as well as their categorifications on a very general class of (higher) spaces comprising presentable differentiable stacks, as e.g. orbifolds. We start off with a self-contained review on simplicial sets as models of $(\\infty,1)$-categories. We then discuss principal bundles in terms of simplicial maps and their homotopies. We explain in detail a differentiation procedure, suggested by Severa, that maps higher groupoids to $L_\\infty$-algebroids. Generalising this procedure, we define connections for higher groupoid bundles. As an application, we obtain six-dimensional superconformal field theories via a Penrose-Ward transform of higher groupoid bundles over a twistor space. This construction reduces the search for non-Abelian self-dual tensor field equations in six dimensions to a search for the appropriate (higher) gauge structure. The treatment aims to be accessible to theoretical physicists.

  14. Scaling of the low-energy structure in above-threshold ionization in the tunneling regime: theory and experiment.

    PubMed

    Guo, L; Han, S S; Liu, X; Cheng, Y; Xu, Z Z; Fan, J; Chen, J; Chen, S G; Becker, W; Blaga, C I; DiChiara, A D; Sistrunk, E; Agostini, P; DiMauro, L F

    2013-01-04

    A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold ionization is presented for the case when the binding potential is the unscreened Coulomb potential. Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the theory by considering the depletion of the atomic ground state due to the applied laser field, which is well defined and does not require the introduction of a screening constant. We focus on the low-energy structure, which was observed in recent experiments with a midinfrared wavelength laser field. Both the spectra and, in particular, the observed scaling versus the Keldysh parameter and the ponderomotive energy are reproduced. The theory provides evidence that the origin of the structure lies in the long-range Coulomb interaction.

  15. Research on early-warning index of the spatial temperature field in concrete dams.

    PubMed

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan

    2016-01-01

    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

  16. The Holographic F Theorem

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2017-12-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.

  17. Section sigma models coupled to symplectic duality bundles on Lorentzian four-manifolds

    NASA Astrophysics Data System (ADS)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-06-01

    We give the global mathematical formulation of a class of generalized four-dimensional theories of gravity coupled to scalar matter and to Abelian gauge fields. In such theories, the scalar fields are described by a section of a surjective pseudo-Riemannian submersion π over space-time, whose total space carries a Lorentzian metric making the fibers into totally-geodesic connected Riemannian submanifolds. In particular, π is a fiber bundle endowed with a complete Ehresmann connection whose transport acts through isometries between the fibers. In turn, the Abelian gauge fields are "twisted" by a flat symplectic vector bundle defined over the total space of π. This vector bundle is endowed with a vertical taming which locally encodes the gauge couplings and theta angles of the theory and gives rise to the notion of twisted self-duality, of crucial importance to construct the theory. When the Ehresmann connection of π is integrable, we show that our theories are locally equivalent to ordinary Einstein-Scalar-Maxwell theories and hence provide a global non-trivial extension of the universal bosonic sector of four-dimensional supergravity. In this case, we show using a special trivializing atlas of π that global solutions of such models can be interpreted as classical "locally-geometric" U-folds. In the non-integrable case, our theories differ locally from ordinary Einstein-Scalar-Maxwell theories and may provide a geometric description of classical U-folds which are "locally non-geometric".

  18. Low-energy dynamics of gravitation

    NASA Astrophysics Data System (ADS)

    Torma, Tibor

    The present status of theories of quantum gravity are reviewed from the low energy point of view. String theory relates classical black-hole type solutions of Einstein- like equations (e.g. axidilaton gravity) to the string vacuum. Several such solutions are proposed and their properties are investigated, including their behavior under supersymmetry transformations. A general feature of all possible quantum theories of gravitation is that they lead to a field theory description at low (as compared to the Planck mass) energies. The theoretical consistency, uniqueness and consequences of such an effective theory are investigated. I show that a power counting theorem allows for the momentum expansion that defines the effective theory even in the presence of large masses. I also show that graviton-graviton scattering is free of potential infrared and collinear divergencies that plague perturbative discussions of Yang-Mills theories.

  19. Defining Adapted Physical Activity: International Perspectives

    ERIC Educational Resources Information Center

    Hutzler, Yeshayahu; Sherrill, Claudine

    2007-01-01

    The purpose of this study was to describe international perspectives concerning terms, definitions, and meanings of adapted physical activity (APA) as (a) activities or service delivery, (b) a profession, and (c) an academic field of study. Gergen's social constructionism, our theory, guided analysis of multiple sources of data via qualitative…

  20. Sport and Exercise Pedagogy and Questions about Learning

    ERIC Educational Resources Information Center

    Quennerstedt, Mikael; Öhman, Marie; Armour, Kathleen

    2014-01-01

    One important challenge ahead for sport and exercise pedagogy (SEP) researchers is to consider afresh questions about learning. Learning in the fields of sport, physical activity and physical education (PE) is a particularly complex business. Most existing theories of learning are defined cognitively, yet learning in sport and physical activity…

  1. Transforming Gifts into Talents: The DMGT as a Developmental Theory

    ERIC Educational Resources Information Center

    Gagne, Francoys

    2004-01-01

    The Differentiated Model of Giftedness and Talent (DMGT) presents the talent development process (P) as the transformation of outstanding natural abilities, or gifts (G), into outstanding systematically developed skills which define expertise, or talent (T) 3 in a particular occupational field. This developmental sequence constitutes the heart of…

  2. Genetic applications in avian conservation

    Treesearch

    Susan M. Haig; Whitcomb M. Bronaugh; Rachel S. Crowhurst; Jesse D' Elia; Collin A. Eagles-Smith; Clinton W. Epps; Brian Knaus; Mark P. Miller; Michael L. Moses; Sara Oyler-McCance; W. Douglas Robinson; Brian. Sidlauskas

    2011-01-01

    A fundamental need in conserving species and their habitats is defining distinct entities that range from individuals to species to ecosystems and beyond. Rapid progression in this interdisciplinary field continues at an exponential rate; thus, periodic updates on theory, techniques, and applications are important for informing practitioners and consumers of genetic...

  3. The Bach equations in spin-coefficient form

    NASA Astrophysics Data System (ADS)

    Forbes, Hamish

    2018-06-01

    Conformal gravity theories are defined by field equations that determine only the conformal structure of the spacetime manifold. The Bach equations represent an early example of such a theory, we present them here in component form in terms of spin- and boost-weighted spin-coefficients using the compacted spin-coefficient formalism. These equations can be used as an efficient alternative to the standard tensor form. As a simple application we solve the Bach equations for pp-wave and static spherically symmetric spacetimes.

  4. Berry connection in atom-molecule systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Fucheng; Wu Biao; International Center for Quantum Materials, Peking University, 100871 Beijing

    2011-08-15

    In the mean-field theory of atom-molecule systems, where bosonic atoms combine to form molecules, there is no usual U(1) symmetry, presenting an apparent hurdle for defining the Berry phase and Berry curvature for these systems. We define a Berry connection for this system, with which the Berry phase and Berry curvature can be naturally computed. We use a three-level atom-molecule system to illustrate our results. In particular, we have computed the mean-field Berry curvature of this system analytically, and compared it to the Berry curvature computed with the second-quantized model of the same system. An excellent agreement is found, indicatingmore » the validity of our definition.« less

  5. From Quantum Fields to Local Von Neumann Algebras

    NASA Astrophysics Data System (ADS)

    Borchers, H. J.; Yngvason, Jakob

    The subject of the paper is an old problem of the general theory of quantized fields: When can the unbounded operators of a Wightman field theory be associated with local algebras of bounded operators in the sense of Haag? The paper reviews and extends previous work on this question, stressing its connections with a noncommutive generalization of the classical Hamburger moment problem. Necessary and sufficient conditions for the existence of a local net of von Neumann algebras corresponding to a given Wightman field are formulated in terms of strengthened versions of the usual positivity property of Wightman functionals. The possibility that the local net has to be defined in an enlarged Hilbert space cannot be ruled out in general. Under additional hypotheses, e.g., if the field operators obey certain energy bounds, such an extension of the Hilbert space is not necessary, however. In these cases a fairly simple condition for the existence of a local net can be given involving the concept of “central positivity” introduced by Powers. The analysis presented here applies to translationally covariant fields with an arbitrary number of components, whereas Lorentz covariance is not needed. The paper contains also a brief discussion of an approach to noncommutative moment problems due to Dubois-Violette, and concludes with some remarks on modular theory for algebras of unbounded operators.

  6. NIFTY - Numerical Information Field Theory. A versatile PYTHON library for signal inference

    NASA Astrophysics Data System (ADS)

    Selig, M.; Bell, M. R.; Junklewitz, H.; Oppermann, N.; Reinecke, M.; Greiner, M.; Pachajoa, C.; Enßlin, T. A.

    2013-06-01

    NIFTy (Numerical Information Field Theory) is a software package designed to enable the development of signal inference algorithms that operate regardless of the underlying spatial grid and its resolution. Its object-oriented framework is written in Python, although it accesses libraries written in Cython, C++, and C for efficiency. NIFTy offers a toolkit that abstracts discretized representations of continuous spaces, fields in these spaces, and operators acting on fields into classes. Thereby, the correct normalization of operations on fields is taken care of automatically without concerning the user. This allows for an abstract formulation and programming of inference algorithms, including those derived within information field theory. Thus, NIFTy permits its user to rapidly prototype algorithms in 1D, and then apply the developed code in higher-dimensional settings of real world problems. The set of spaces on which NIFTy operates comprises point sets, n-dimensional regular grids, spherical spaces, their harmonic counterparts, and product spaces constructed as combinations of those. The functionality and diversity of the package is demonstrated by a Wiener filter code example that successfully runs without modification regardless of the space on which the inference problem is defined. NIFTy homepage http://www.mpa-garching.mpg.de/ift/nifty/; Excerpts of this paper are part of the NIFTy source code and documentation.

  7. An analysis of the radiation from apertures in curved surfaces by the geometrical theory of diffraction. [ray technique for electromagnetic fields

    NASA Technical Reports Server (NTRS)

    Pathak, P. H.; Kouyoumjian, R. G.

    1974-01-01

    In this paper the geometrical theory of diffraction is extended to treat the radiation from apertures of slots in convex perfectly conducting surfaces. It is assumed that the tangential electric field in the aperture is known so that an equivalent infinitesimal source can be defined at each point in the aperture. Surface rays emanate from this source which is a caustic of the ray system. A launching coefficient is introduced to describe the excitation of the surface ray modes. If the field radiated from the surface is desired, the ordinary diffraction coefficients are used to determine the field of the rays shed tangentially from the surface rays. The field of the surface ray modes is not the field on the surface; hence if the mutual coupling between slots is of interest, a second coefficient related to the launching coefficient must be employed. In the region adjacent to the shadow boundary, the component of the field directly radiated from the source is represented by Fock-type functions. In the illuminated region the incident radiation from the source (this does not include the diffracted field components) is treated by geometrical optics. This extension of the geometrical theory of diffraction is applied to calculate the radiation from slots on elliptic cylinders, spheres, and spheroids.

  8. Gerbes, M5-Brane Anomalies and E8 Gauge Theory

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Jurco, Branislav

    2004-10-01

    Abelian gerbes and twisted bundles describe the topology of the NS 3-form gauge field strength H. We review how they have been usefully applied to study and resolve global anomalies in open string theory. Abelian 2-gerbes and twisted nonabelian gerbes describe the topology of the 4-form field strength G of M-theory. We show that twisted nonabelian gerbes are relevant in the study and resolution of global anomalies of multiple coinciding M5-branes. Global anomalies for one M5-brane have been studied by Witten and by Diaconescu, Freed and Moore. The structure and the differential geometry of twisted nonabelian gerbes (i.e. modules for 2-gerbes) is defined and studied. The nonabelian 2-form gauge potential living on multiple coinciding M5-branes arises as curving (curvature) of twisted nonabelian gerbes. The nonabelian group is in general tilde OmegaE8, the central extension of the E8 loop group. The twist is in general necessary to cancel global anomalies due to the nontriviality of the 11-dimensional 4-form field strength G and due to the possible torsion present in the cycles the M5-branes wrap. Our description of M5-branes global anomalies leads to the D4-branes one upon compactification of M-theory to Type IIA theory.

  9. Quantum Hall states and conformal field theory on a singular surface

    NASA Astrophysics Data System (ADS)

    Can, T.; Wiegmann, P.

    2017-12-01

    In Can et al (2016 Phys. Rev. Lett. 117), quantum Hall states on singular surfaces were shown to possess an emergent conformal symmetry. In this paper, we develop this idea further and flesh out details on the emergent conformal symmetry in holomorphic adiabatic states, which we define in the paper. We highlight the connection between the universal features of geometric transport of quantum Hall states and holomorphic dimension of primary fields in conformal field theory. In parallel we compute the universal finite-size corrections to the free energy of a critical system on a hyperbolic sphere with conical and cusp singularities, thus extending the result of Cardy and Peschel for critical systems on a flat cone (Cardy and Peschel 1988 Nucl. Phys. B 300 377-92), and the known results for critical systems on polyhedra and flat branched Riemann surfaces.

  10. From Constructive Field Theory to Fractional Stochastic Calculus. (II) Constructive Proof of Convergence for the Lévy Area of Fractional Brownian Motion with Hurst Index {{alpha} {in} ((1)/(8),(1)/(4))}

    NASA Astrophysics Data System (ADS)

    Magnen, Jacques; Unterberger, Jérémie

    2012-03-01

    {Let $B=(B_1(t),...,B_d(t))$ be a $d$-dimensional fractional Brownian motion with Hurst index $\\alpha<1/4$, or more generally a Gaussian process whose paths have the same local regularity. Defining properly iterated integrals of $B$ is a difficult task because of the low H\\"older regularity index of its paths. Yet rough path theory shows it is the key to the construction of a stochastic calculus with respect to $B$, or to solving differential equations driven by $B$. We intend to show in a series of papers how to desingularize iterated integrals by a weak, singular non-Gaussian perturbation of the Gaussian measure defined by a limit in law procedure. Convergence is proved by using "standard" tools of constructive field theory, in particular cluster expansions and renormalization. These powerful tools allow optimal estimates, and call for an extension of Gaussian tools such as for instance the Malliavin calculus. After a first introductory paper \\cite{MagUnt1}, this one concentrates on the details of the constructive proof of convergence for second-order iterated integrals, also known as L\\'evy area.

  11. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

  12. Inhabiting the solar system

    NASA Astrophysics Data System (ADS)

    Sherwood, Brent

    2011-03-01

    The new field of space architecture is introduced. Defined as the "theory and practice of designing and building inhabited environments in outer space," the field synthesizes human space flight systems engineering subjects with the long tradition of making environments that support human living, work, and aspiration. The scope of the field is outlined, and its three principal domains differentiated. The current state of the art is described in terms of executed projects. Foreseeable options for 21st century developments in human space flight provide a framework to tease out potential space architecture opportunities for the next century.

  13. Two Virasoro symmetries in stringy warped AdS 3

    DOE PAGES

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    2014-12-02

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  14. Two Virasoro symmetries in stringy warped AdS 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Compere, Geoffrey; Guica, Monica; Rodriguez, Maria J.

    We study three-dimensional consistent truncations of type IIB supergravity which admit warped AdS 3 solutions. These theories contain subsectors that have no bulk dynamics. We show that the symplectic form for these theories, when restricted to the non-dynamical subsectors, equals the symplectic form for pure Einstein gravity in AdS 3. Consequently, for each consistent choice of boundary conditions in AdS 3, we can define a consistent phase space in warped AdS 3 with identical conserved charges. This way, we easily obtain a Virasoro × Virasoro asymptotic symmetry algebra in warped AdS 3; two different types of Virasoro × Kač-Moody symmetriesmore » are also consistent alternatives. Next, we study the phase space of these theories when propagating modes are included. We show that, as long as one can define a conserved symplectic form without introducing instabilities, the Virasoro × Virasoro asymptotic symmetries can be extended to the entire (linearised) phase space. In conclusion, this implies that, at least at semi-classical level, consistent theories of gravity in warped AdS 3 are described by a two-dimensional conformal field theory, as long as stability is not an issue.« less

  15. Current matrix element in HAL QCD's wavefunction-equivalent potential method

    NASA Astrophysics Data System (ADS)

    Watanabe, Kai; Ishii, Noriyoshi

    2018-04-01

    We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.

  16. How to Define the Mean Square Amplitude of Solar Wind Fluctuations With Respect to the Local Mean Magnetic Field

    NASA Astrophysics Data System (ADS)

    Podesta, John J.

    2017-12-01

    Over the last decade it has become popular to analyze turbulent solar wind fluctuations with respect to a coordinate system aligned with the local mean magnetic field. This useful analysis technique has provided new information and new insights about the nature of solar wind fluctuations and provided some support for phenomenological theories of MHD turbulence based on the ideas of Goldreich and Sridhar. At the same time it has drawn criticism suggesting that the use of a scale-dependent local mean field is somehow inconsistent or irreconcilable with traditional analysis techniques based on second-order structure functions and power spectra that, for stationary time series, are defined with respect to the constant (scale-independent) ensemble average magnetic field. Here it is shown that for fluctuations with power law spectra, such as those observed in solar wind turbulence, it is possible to define the local mean magnetic field in a special way such that the total mean square amplitude (trace amplitude) of turbulent fluctuations is approximately the same, scale by scale, as that obtained using traditional second-order structure functions or power spectra. This fact should dispel criticism concerning the physical validity or practical usefulness of the local mean magnetic field in these applications.

  17. Stefan-Maxwell Relations and Heat Flux with Anisotropic Transport Coefficients for Ionized Gases in a Magnetic Field with Application to the Problem of Ambipolar Diffusion

    NASA Astrophysics Data System (ADS)

    Kolesnichenko, A. V.; Marov, M. Ya.

    2018-01-01

    The defining relations for the thermodynamic diffusion and heat fluxes in a multicomponent, partially ionized gas mixture in an external electromagnetic field have been obtained by the methods of the kinetic theory. Generalized Stefan-Maxwell relations and algebraic equations for anisotropic transport coefficients (the multicomponent diffusion, thermal diffusion, electric and thermoelectric conductivity coefficients as well as the thermal diffusion ratios) associated with diffusion-thermal processes have been derived. The defining second-order equations are derived by the Chapman-Enskog procedure using Sonine polynomial expansions. The modified Stefan-Maxwell relations are used for the description of ambipolar diffusion in the Earth's ionospheric plasma (in the F region) composed of electrons, ions of many species, and neutral particles in a strong electromagnetic field.

  18. Statistical effects in large N supersymmetric gauge theories

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej Stanislaw

    This thesis discusses statistical simplifications arising in supersymmetric gauge theories in the limit of large rank. Applications involve the physics of black holes and the problem of predicting the low energy effective theory from a landscape of string vacua. The first part of this work uses the AdS/CFT correspondence to explain properties of black holes. We establish that in the large charge sector of toric quiver gauge theories there exists a typical state whose structure is closely mimicked by almost all other states. Then, working in the settings of the half-BPS sector of N = 4 super-Yang-Mills theory, we show that in the dual gravity theory semiclassical observations cannot distinguish a pair of geometries corresponding to two generic heavy states. Finally, we argue on general grounds that these conclusions are exponentially enhanced in quantum cosmological settings. The results establish that one may consistently account for the entropy of a black hole with heavy states in the dual field theory and suggest that the usual properties of black holes arise as artifacts of imposing a semiclassical description on a quantum system. In the second half we develop new tools to determine the infrared behavior of quiver gauge theories in a certain class. We apply the dynamical results to a toy model of the landscape of effective field theories defined at some high energy scale, and derive firm statistical predictions for the low energy effective theory.

  19. Quantum criticality and black holes.

    PubMed

    Sachdev, Subir; Müller, Markus

    2009-04-22

    Many condensed matter experiments explore the finite temperature dynamics of systems near quantum critical points. Often, there are no well-defined quasiparticle excitations, and so quantum kinetic equations do not describe the transport properties completely. The theory shows that the transport coefficients are not proportional to a mean free scattering time (as is the case in the Boltzmann theory of quasiparticles), but are completely determined by the absolute temperature and by equilibrium thermodynamic observables. Recently, explicit solutions of this quantum critical dynamics have become possible via the anti-de Sitter/conformal field theory duality discovered in string theory. This shows that the quantum critical theory provides a holographic description of the quantum theory of black holes in a negatively curved anti-de Sitter space, and relates its transport coefficients to properties of the Hawking radiation from the black hole. We review how insights from this connection have led to new results for experimental systems: (i) the vicinity of the superfluid-insulator transition in the presence of an applied magnetic field, and its possible application to measurements of the Nernst effect in the cuprates, (ii) the magnetohydrodynamics of the plasma of Dirac electrons in graphene and the prediction of a hydrodynamic cyclotron resonance.

  20. Emergent Geometry from Entropy and Causality

    NASA Astrophysics Data System (ADS)

    Engelhardt, Netta

    In this thesis, we investigate the connections between the geometry of spacetime and aspects of quantum field theory such as entanglement entropy and causality. This work is motivated by the idea that spacetime geometry is an emergent phenomenon in quantum gravity, and that the physics responsible for this emergence is fundamental to quantum field theory. Part I of this thesis is focused on the interplay between spacetime and entropy, with a special emphasis on entropy due to entanglement. In general spacetimes, there exist locally-defined surfaces sensitive to the geometry that may act as local black hole boundaries or cosmological horizons; these surfaces, known as holographic screens, are argued to have a connection with the second law of thermodynamics. Holographic screens obey an area law, suggestive of an association with entropy; they are also distinguished surfaces from the perspective of the covariant entropy bound, a bound on the total entropy of a slice of the spacetime. This construction is shown to be quite general, and is formulated in both classical and perturbatively quantum theories of gravity. The remainder of Part I uses the Anti-de Sitter/ Conformal Field Theory (AdS/CFT) correspondence to both expand and constrain the connection between entanglement entropy and geometry. The AdS/CFT correspondence posits an equivalence between string theory in the "bulk" with AdS boundary conditions and certain quantum field theories. In the limit where the string theory is simply classical General Relativity, the Ryu-Takayanagi and more generally, the Hubeny-Rangamani-Takayanagi (HRT) formulae provide a way of relating the geometry of surfaces to entanglement entropy. A first-order bulk quantum correction to HRT was derived by Faulkner, Lewkowycz and Maldacena. This formula is generalized to include perturbative quantum corrections in the bulk at any (finite) order. Hurdles to spacetime emergence from entanglement entropy as described by HRT and its quantum generalizations are discussed, both at the classical and perturbatively quantum limits. In particular, several No Go Theorems are proven, indicative of a conclusion that supplementary approaches or information may be necessary to recover the full spacetime geometry. Part II of this thesis involves the relation between geometry and causality, the property that information cannot travel faster than light. Requiring this of any quantum field theory results in constraints on string theory setups that are dual to quantum field theories via the AdS/CFT correspondence. At the level of perturbative quantum gravity, it is shown that causality in the field theory constraints the causal structure in the bulk. At the level of nonperturbative quantum string theory, we find that constraints on causal signals restrict the possible ways in which curvature singularities can be resolved in string theory. Finally, a new program of research is proposed for the construction of bulk geometry from the divergences of correlation functions in the dual field theory. This divergence structure is linked to the causal structure of the bulk and of the field theory.

  1. Using health education theories to explain behavior change: a cross-country analysis. 2000-2001.

    PubMed

    Murray-Johnson, Lisa; Witte, Kim; Boulay, Marc; Figueroa, Maria Elena; Storey, Douglas; Tweedie, Ian

    Scholars within the fields of public health, health education, health promotion, and health communication look to specific theories to explain health behavior change. The purpose of this article is to critically compare four health theories and key variables within them with regard to behavior change in the area of reproductive health. Using cross-country analyses of Ghana, Nepal, and Nicaragua (data sets provided by the Center for Communication Programs, Johns Hopkins University), the authors looked at the Health Belief Model, Theory of Reasoned Action, Extended Parallel Process Model, and Social Cognitive Theory for these two defined objectives. Results show that all four theories provide an excellent fit to the data, but that certain variables within them may have particular value for understanding specific aspects of behavior change. Recommendations for the selection of theories to use as guidelines in the design and evaluation of reproductive health programs are provided.

  2. Unified theory of nonlinear electrodynamics and gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos

    2011-01-15

    We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but formore » any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.« less

  3. Diffusion in the special theory of relativity.

    PubMed

    Herrmann, Joachim

    2009-11-01

    The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a nonstationary analytical solution is derived for the example of force-free relativistic diffusion.

  4. On the multiple zeros of a real analytic function with applications to the averaging theory of differential equations

    NASA Astrophysics Data System (ADS)

    García, Isaac A.; Llibre, Jaume; Maza, Susanna

    2018-06-01

    In this work we consider real analytic functions , where , Ω is a bounded open subset of , is an interval containing the origin, are parameters, and ε is a small parameter. We study the branching of the zero-set of at multiple points when the parameter ε varies. We apply the obtained results to improve the classical averaging theory for computing T-periodic solutions of λ-families of analytic T-periodic ordinary differential equations defined on , using the displacement functions defined by these equations. We call the coefficients in the Taylor expansion of in powers of ε the averaged functions. The main contribution consists in analyzing the role that have the multiple zeros of the first non-zero averaged function. The outcome is that these multiple zeros can be of two different classes depending on whether the zeros belong or not to the analytic set defined by the real variety associated to the ideal generated by the averaged functions in the Noetheriang ring of all the real analytic functions at . We bound the maximum number of branches of isolated zeros that can bifurcate from each multiple zero z 0. Sometimes these bounds depend on the cardinalities of minimal bases of the former ideal. Several examples illustrate our results and they are compared with the classical theory, branching theory and also under the light of singularity theory of smooth maps. The examples range from polynomial vector fields to Abel differential equations and perturbed linear centers.

  5. Textbook of Family and Couples Therapy: Clinical Applications.

    ERIC Educational Resources Information Center

    Sholevar, G. Pirooz, Ed.; Schwoeri, Linda D., Ed.

    In the past decade, family therapy has evolved from a loosely defined aggregate of approaches to a mature field with codified schools of theoretical systems and concepts. This book draws together theories and techniques from these various schools and combines them with specific clinical approaches in a single comprehensive resource. This textbook…

  6. The Development of Social Cognition. Studies in Developmental Psychology.

    ERIC Educational Resources Information Center

    Hala, Suzanne, Ed.

    Defining social cognition as our attempts to make sense of how people think, perceive, infer, feel, and react, this book examines both the classical issues and contemporary understanding of theory and research in social cognitive development. The initial chapters highlight one of the central, theoretical tensions in the field, which is whether the…

  7. The Current Perspectives, Theories and Practices of Mobile Learning

    ERIC Educational Resources Information Center

    Keskin, Nilgun Ozdamar; Metcalf, David

    2011-01-01

    Mobile learning (m-learning) is a highly popular multidisciplinary study field around the world. It has attracted a great deal of attention from researchers in different disciplines who have realized the potential to apply mobile technologies to enhance learning. Thus, mobile learning has been defined differently by different people. This study is…

  8. Broken Scale Invariance and Anomalous Dimensions

    DOE R&D Accomplishments Database

    Wilson, K. G.

    1970-05-01

    Mack and Kastrup have proposed that broken scale invariance is a symmetry of strong interactions. There is evidence from the Thirring model and perturbation theory that the dimensions of fields defined by scale transformations will be changed by the interaction from their canonical values. We review these ideas and their consequences for strong interactions.

  9. Perspectives on Research and Scholarship in Composition.

    ERIC Educational Resources Information Center

    McClelland, Ben W.; Donovan, Timothy R.

    As a follow-up to the successful book "Eight Approaches to Teaching Composition," this collection of 13 original essays presents the major research and scholarship in the related fields that are shaping the theory and practice of composition studies. Each chapter defines a special area of study, assesses its published literature from the…

  10. Moral Development and Social Worker Ethical Decision-Making

    ERIC Educational Resources Information Center

    Groessl, Joan

    2013-01-01

    This study examined both the moral development levels using the Defining Issues Test-2 (DIT--2) and ethical decision-making using the Professional Opinion Scale (POS) of social workers who provide field supervision to students within accredited social work programs in Wisconsin. Using the moral development theory of Kohlberg (1981) which defined…

  11. Galileon string measure and other modified measure extended objects

    NASA Astrophysics Data System (ADS)

    Vulfs, T. O.; Guendelman, E. I.

    2017-12-01

    We show that it is possible to formulate string theory as a “Galileon string theory”. The Galileon field χ enters in the definition of the integration measure in the action. Following the methods of the modified measure string theory, we find that the final equations are again those of the sigma-model. Moreover, the string tension appears again as an additional dynamical degree of freedom. At the same time, the theory satisfies all requirements of the Galileon higher derivative theory at the action level while the equations of motion are still of the second-order. A Galileon symmetry is displayed explicitly in the conformal string worldsheet frame. Also, we define the Galileon gauge transformations. Generalizations to branes with other modified measures are discussed.

  12. Single-scale renormalisation group improvement of multi-scale effective potentials

    NASA Astrophysics Data System (ADS)

    Chataignier, Leonardo; Prokopec, Tomislav; Schmidt, Michael G.; Świeżewska, Bogumiła

    2018-03-01

    We present a new method for renormalisation group improvement of the effective potential of a quantum field theory with an arbitrary number of scalar fields. The method amounts to solving the renormalisation group equation for the effective potential with the boundary conditions chosen on the hypersurface where quantum corrections vanish. This hypersurface is defined through a suitable choice of a field-dependent value for the renormalisation scale. The method can be applied to any order in perturbation theory and it is a generalisation of the standard procedure valid for the one-field case. In our method, however, the choice of the renormalisation scale does not eliminate individual logarithmic terms but rather the entire loop corrections to the effective potential. It allows us to evaluate the improved effective potential for arbitrary values of the scalar fields using the tree-level potential with running coupling constants as long as they remain perturbative. This opens the possibility of studying various applications which require an analysis of multi-field effective potentials across different energy scales. In particular, the issue of stability of the scalar potential can be easily studied beyond tree level.

  13. {{SO(d,1)}}-Invariant Yang-Baxter Operators and the dS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Hollands, Stefan; Lechner, Gandalf

    2018-01-01

    We propose a model for the dS/CFT correspondence. The model is constructed in terms of a "Yang-Baxter operator" R for unitary representations of the de Sitter group {SO(d,1)}. This R-operator is shown to satisfy the Yang-Baxter equation, unitarity, as well as certain analyticity relations, including in particular a crossing symmetry. With the aid of this operator we construct: (a) a chiral (light-ray) conformal quantum field theory whose internal degrees of freedom transform under the given unitary representation of {SO(d,1)}. By analogy with the O( N) non-linear sigma model, this chiral CFT can be viewed as propagating in a de Sitter spacetime. (b) A (non-unitary) Euclidean conformal quantum field theory on R}^{d-1, where SO( d, 1) now acts by conformal transformations in (Euclidean) spacetime. These two theories can be viewed as dual to each other if we interpret R}^{d-1 as conformal infinity of de Sitter spacetime. Our constructions use semi-local generator fields defined in terms of R and abstract methods from operator algebras.

  14. Renormalizable group field theory beyond melonic diagrams: An example in rank four

    NASA Astrophysics Data System (ADS)

    Carrozza, Sylvain; Lahoche, Vincent; Oriti, Daniele

    2017-09-01

    We prove the renormalizability of a gauge-invariant, four-dimensional group field theory (GFT) model on SU(2), whose defining interactions correspond to necklace bubbles (found also in the context of new large-N expansions of tensor models), rather than melonic ones, which are not renormalizable in this case. The respective scaling of different interactions in the vicinity of the Gaussian fixed point is determined by the renormalization group itself. This is possible because the appropriate notion of canonical dimension of the GFT coupling constants takes into account the detailed combinatorial structure of the individual interaction terms. This is one more instance of the peculiarity (and greater mathematical richness) of GFTs with respect to ordinary local quantum field theories. We also explore the renormalization group flow of the model at the nonperturbative level, using functional renormalization group methods, and identify a nontrivial fixed point in various truncations. This model is expected to have a similar structure of divergences as the GFT models of 4D quantum gravity, thus paving the way to more detailed investigations on them.

  15. QED theory of multiphoton transitions in atoms and ions

    NASA Astrophysics Data System (ADS)

    Zalialiutdinov, Timur A.; Solovyev, Dmitry A.; Labzowsky, Leonti N.; Plunien, Günter

    2018-03-01

    This review surveys the quantum theory of electromagnetic radiation for atomic systems. In particular, a review of current theoretical studies of multiphoton processes in one and two-electron atoms and highly charged ions is provided. Grounded on the quantum electrodynamics description the multiphoton transitions in presence of cascades, spin-statistic behaviour of equivalent photons and influence of external electric fields on multiphoton in atoms and anti-atoms are discussed. Finally, the nonresonant corrections which define the validity of the concept of the excited state energy levels are introduced.

  16. A non-asymptotic homogenization theory for periodic electromagnetic structures.

    PubMed

    Tsukerman, Igor; Markel, Vadim A

    2014-08-08

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.

  17. Orbifold Schur index and IR formula

    NASA Astrophysics Data System (ADS)

    Imamura, Yosuke

    2018-04-01

    We discuss an orbifold version of the Schur index defined as the supersymmetric partition function in S^3/{Z}_n×{S}^1. We first give a general formula for Lagrangian theories obtained by the localization technique, and then suggest a generalization of the Cordova and Shao IR formula. We confirm that the generalized IR formula gives the correct answer for systems with free hypermultiplets if we tune the background fields so that they are invariant under the orbifold action. Unfortunately, we find disagreement for theories with dynamical vector multiplets.

  18. Dependence of the ferroelectric domain shape on the electric field of the microscope tip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkov, Alexander S.; Starkov, Ivan A., E-mail: starkov@feec.vutbr.cz

    2015-08-21

    A theory of an equilibrium shape of the domain formed in an electric field of a scanning force microscope (SFM) tip is proposed. We do not assume a priori that the domain has a fixed form. The shape of the domain is defined by the minimum of the free energy of the ferroelectric. This energy includes the energy of the depolarization field, the energy of the domain wall, and the energy of the interaction between the domain and the electric field of the SFM tip. The contributions of the apex and conical part of the tip are examined. Moreover, inmore » the proposed approach, any narrow tip can be considered. The surface energy is determined on the basis of the Ginzburg-Landau-Devonshire theory and takes into account the curvature of the domain wall. The variation of the free energy with respect to the domain shape leads to an integro-differential equation, which must be solved numerically. Model results are illustrated for lithium tantalate ceramics.« less

  19. Rotary-wing aerodynamics. Volume 1: Basic theories of rotor aerodynamics with application to helicopters. [momentum, vortices, and potential theory

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.

    1979-01-01

    The concept of rotary-wing aircraft in general is defined. The energy effectiveness of helicopters is compared with that of other static thrust generators in hover, as well as with various air and ground vehicles in forward translation. The most important aspects of rotor-blade dynamics and rotor control are reviewed. The simple physicomathematical model of the rotor offered by the momentum theory is introduced and its usefulness and limitations are assessed. The combined blade-element and momentum theory approach, which provides greater accuracy in performance predictions, is described as well as the vortex theory which models a rotor blade by means of a vortex filament or vorticity surface. The application of the velocity and acceleration potential theory to the determination of flow fields around three dimensional, non-rotating bodies as well as to rotor aerodynamic problems is described. Airfoil sections suitable for rotors are also considered.

  20. Ghost busting: PT-symmetric interpretation of the Lee model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bender, Carl M.; Brandt, Sebastian F.; Chen, J.-H.

    2005-01-15

    The Lee model was introduced in the 1950s as an elementary quantum field theory in which mass, wave function, and charge renormalization could be carried out exactly. In early studies of this model it was found that there is a critical value of g{sup 2}, the square of the renormalized coupling constant, above which g{sub 0}{sup 2}, the square of the unrenormalized coupling constant, is negative. Thus, for g{sup 2} larger than this critical value, the Hamiltonian of the Lee model becomes non-Hermitian. It was also discovered that in this non-Hermitian regime a new state appears whose norm is negative.more » This state is called a ghost state. It has always been assumed that in this ghost regime the Lee model is an unacceptable quantum theory because unitarity appears to be violated. However, in this regime while the Hamiltonian is not Hermitian, it does possess PT symmetry. It has recently been discovered that a non-Hermitian Hamiltonian having PT symmetry may define a quantum theory that is unitary. The proof of unitarity requires the construction of a new time-independent operator called C. In terms of C one can define a new inner product with respect to which the norms of the states in the Hilbert space are positive. Furthermore, it has been shown that time evolution in such a theory is unitary. In this paper the C operator for the Lee model in the ghost regime is constructed in the V/N{theta} sector. It is then shown that the ghost state has a positive norm and that the Lee model is an acceptable unitary quantum field theory for all values of g{sup 2}.« less

  1. Superconformal quantum field theory in curved spacetime

    NASA Astrophysics Data System (ADS)

    de Medeiros, Paul; Hollands, Stefan

    2013-09-01

    By conformally coupling vector and hyper multiplets in Minkowski space, we obtain a class of field theories with extended rigid conformal supersymmetry on any Lorentzian 4-manifold admitting twistor spinors. We construct the conformal symmetry superalgebras which describe classical symmetries of these theories and derive an appropriate BRST operator in curved spacetime. In the process, we elucidate the general framework of cohomological algebra which underpins the construction. We then consider the corresponding perturbative quantum field theories. In particular, we examine the conditions necessary for conformal supersymmetries to be preserved at the quantum level, i.e. when the BRST operator commutes with the perturbatively defined S-matrix, which ensures superconformal invariance of amplitudes. To this end, we prescribe a renormalization scheme for time-ordered products that enter the perturbative S-matrix and show that such products obey certain Ward identities in curved spacetime. These identities allow us to recast the problem in terms of the cohomology of the BRST operator. Through a careful analysis of this cohomology, and of the renormalization group in curved spacetime, we establish precise criteria which ensure that all conformal supersymmetries are preserved at the quantum level. As a by-product, we provide a rigorous proof that the beta-function for such theories is one-loop exact. We also briefly discuss the construction of chiral rings and the role of non-perturbative effects in curved spacetime.

  2. Linear spin-2 fields in most general backgrounds

    NASA Astrophysics Data System (ADS)

    Bernard, Laura; Deffayet, Cédric; Schmidt-May, Angnis; von Strauss, Mikael

    2016-04-01

    We derive the full perturbative equations of motion for the most general background solutions in ghost-free bimetric theory in its metric formulation. Clever field redefinitions at the level of fluctuations enable us to circumvent the problem of varying a square-root matrix appearing in the theory. This greatly simplifies the expressions for the linear variation of the bimetric interaction terms. We show that these field redefinitions exist and are uniquely invertible if and only if the variation of the square-root matrix itself has a unique solution, which is a requirement for the linearized theory to be well defined. As an application of our results we examine the constraint structure of ghost-free bimetric theory at the level of linear equations of motion for the first time. We identify a scalar combination of equations which is responsible for the absence of the Boulware-Deser ghost mode in the theory. The bimetric scalar constraint is in general not manifestly covariant in its nature. However, in the massive gravity limit the constraint assumes a covariant form when one of the interaction parameters is set to zero. For that case our analysis provides an alternative and almost trivial proof of the absence of the Boulware-Deser ghost. Our findings generalize previous results in the metric formulation of massive gravity and also agree with studies of its vielbein version.

  3. Selected Topics in Light Front Field Theory and Applications to the High Energy Phenomena

    NASA Astrophysics Data System (ADS)

    Kundu, Rajen

    1999-10-01

    In this thesis, we have presented some of the aspects of light-front (LF) field theory through their successful application in the Deep Inelastic Scattering (DIS). We have developed a LFQCD Hamiltonian description of the DIS structure functions starting from Bjorken-Johnson-Low limit of virtual forward Compton scattering amplitude and using LF current commutators. We worked in the LF gauge A^+=0 and used the old-fashioned LFQCD perturbation theory in our calculations. The importance of our work are summarized below. Our approach shares the intution of parton model and addresses directly the structure functions, which are experimental objects, instead of its moments as in OPE method. Moreover, it can potentially incorporate the non-perturbative contents of the structure functions as we have demonstrated by introducing a new factorization scheme. In the context of nucleonic helicity structure, the well known gauge fixed LF helicity operator is shown to provide consistent physical information and helps us defining new relevant structure functions. The anomalous dimensions relevant for the Q^2-evolution of such structure functions are calculated. Our study is important in establishing the equivalance of LF field theory and the usual equal-time one through perturbative calculations of the dressed parton structure functions reproducing the well known results. Also the importance of Gallilean boost symmetry in understanding the correctness of any higher order calculation using (x^+)-ordered LFQCD perturbation theory are emphasized.

  4. Lie algebraic similarity transformed Hamiltonians for lattice model systems

    NASA Astrophysics Data System (ADS)

    Wahlen-Strothman, Jacob M.; Jiménez-Hoyos, Carlos A.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-01

    We present a class of Lie algebraic similarity transformations generated by exponentials of two-body on-site Hermitian operators whose Hausdorff series can be summed exactly without truncation. The correlators are defined over the entire lattice and include the Gutzwiller factor ni ↑ni ↓ , and two-site products of density (ni ↑+ni ↓) and spin (ni ↑-ni ↓) operators. The resulting non-Hermitian many-body Hamiltonian can be solved in a biorthogonal mean-field approach with polynomial computational cost. The proposed similarity transformation generates locally weighted orbital transformations of the reference determinant. Although the energy of the model is unbound, projective equations in the spirit of coupled cluster theory lead to well-defined solutions. The theory is tested on the one- and two-dimensional repulsive Hubbard model where it yields accurate results for small and medium sized interaction strengths.

  5. A Review of Curriculum History and the Conceptual Framework of Curriculum History in Turkey

    ERIC Educational Resources Information Center

    Aktan, Sümer

    2015-01-01

    Curriculum is generally defined based on the philosophical perspectives of the individuals. One of the definitions of curriculum states that curriculum is a field of academic study and research, having an intrinsic research systematic, theory, and tradition. From this perspective, this study is designed as three main chapters. The first chapter…

  6. Effective actions for bosonic topological defects

    NASA Technical Reports Server (NTRS)

    Gregory, Ruth

    1990-01-01

    A gauge field theory is considered which admits p-dimensional topological defects, expanding the equations of motion in powers of the defect thickness. In this way an effective action and effective equation of motion is derived for the defect in terms of the coordinates of the p-dimensional worldsurface defined by the history of the core of the defect.

  7. Requisite to Great Undertakings: Impacts of Self-Efficacy Beliefs in College Composition Instructors

    ERIC Educational Resources Information Center

    Sanchez, Kendall

    2017-01-01

    This dissertation addresses the problem of teacher self-efficacy theory being largely absent as a concept of study in composition studies, despite the field maintaining a primary focus on issues like teacher development and effective composition pedagogy. This absence of the study of teacher self-efficacy, defined as "a [teacher's] judgment…

  8. Do Transitions and Social Structures Matter? How "Emerging Adults" Define Themselves as Adults

    ERIC Educational Resources Information Center

    Molgat, Marc

    2007-01-01

    Recently, theories and research in the new field of "emerging adulthood" have indicated that young people may currently view adulthood based on individualistic criteria and not according to the passing of one or another of the transitions many sociologists use to frame the analysis of youth. Based on qualitative interviews conducted with…

  9. Management Development: Using Internal or External Resources in Developing Core Competence

    ERIC Educational Resources Information Center

    Espedal, Bjarne

    2005-01-01

    This article defines management as a source of organizational competitive advantage and from the view that managers are some of the employees most vital to a firm. According to influential theories in the field of strategic management, such human assets should be protected, governed, and developed internally. In contrast to the traditional view of…

  10. Spinning particle and gauge theories as integrability conditions

    NASA Astrophysics Data System (ADS)

    Eisenberg, Yeshayahu

    1992-02-01

    Starting from a new four dimensional spinning point particle we obtain new representations of the standard four dimensional gauge field equations in terms of a generalized space (Minkowski + light cone). In terms of this new formulation we define linear systems whose integrability conditions imply the massive Dirac-Maxwell and the Yang-Mills equations. Research supported by the Rothschild Fellowship.

  11. Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program

    NASA Astrophysics Data System (ADS)

    Manin, Yuri I.

    Introduction. The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere defined due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].

  12. Antigravity and the big crunch/big bang transition

    NASA Astrophysics Data System (ADS)

    Bars, Itzhak; Chen, Shih-Hung; Steinhardt, Paul J.; Turok, Neil

    2012-08-01

    We point out a new phenomenon which seems to be generic in 4d effective theories of scalar fields coupled to Einstein gravity, when applied to cosmology. A lift of such theories to a Weyl-invariant extension allows one to define classical evolution through cosmological singularities unambiguously, and hence construct geodesically complete background spacetimes. An attractor mechanism ensures that, at the level of the effective theory, generic solutions undergo a big crunch/big bang transition by contracting to zero size, passing through a brief antigravity phase, shrinking to zero size again, and re-emerging into an expanding normal gravity phase. The result may be useful for the construction of complete bouncing cosmologies like the cyclic model.

  13. The state of the art in organizational cognitive neuroscience: the therapeutic gap and possible implications for clinical practice

    PubMed Central

    Senior, Carl; Lee, Nick

    2013-01-01

    In the last decade, researchers in the social sciences have increasingly adopted neuroscientific techniques, with the consequent rise of research inspired by neuroscience in disciplines such as economics, marketing, decision sciences, and leadership. In 2007, we introduced the term organizational cognitive neuroscience (OCN), in an attempt to clearly demarcate research carried out in these many areas, and provide an overarching paradigm for research utilizing cognitive neuroscientific methods, theories, and concepts, within the organizational and business research fields. Here we will revisit and further refine the OCN paradigm, and define an approach where we feel the marriage of organizational theory and neuroscience will return even greater dividends in the future and that is within the field of clinical practice. PMID:24367310

  14. Singular reduction of resonant Hamiltonians

    NASA Astrophysics Data System (ADS)

    Meyer, Kenneth R.; Palacián, Jesús F.; Yanguas, Patricia

    2018-06-01

    We investigate the dynamics of resonant Hamiltonians with n degrees of freedom to which we attach a small perturbation. Our study is based on the geometric interpretation of singular reduction theory. The flow of the Hamiltonian vector field is reconstructed from the cross sections corresponding to an approximation of this vector field in an energy surface. This approximate system is also built using normal forms and applying reduction theory obtaining the reduced Hamiltonian that is defined on the orbit space. Generically, the reduction is of singular character and we classify the singularities in the orbit space, getting three different types of singular points. A critical point of the reduced Hamiltonian corresponds to a family of periodic solutions in the full system whose characteristic multipliers are approximated accordingly to the nature of the critical point.

  15. The state of the art in organizational cognitive neuroscience: the therapeutic gap and possible implications for clinical practice.

    PubMed

    Senior, Carl; Lee, Nick

    2013-01-01

    In the last decade, researchers in the social sciences have increasingly adopted neuroscientific techniques, with the consequent rise of research inspired by neuroscience in disciplines such as economics, marketing, decision sciences, and leadership. In 2007, we introduced the term organizational cognitive neuroscience (OCN), in an attempt to clearly demarcate research carried out in these many areas, and provide an overarching paradigm for research utilizing cognitive neuroscientific methods, theories, and concepts, within the organizational and business research fields. Here we will revisit and further refine the OCN paradigm, and define an approach where we feel the marriage of organizational theory and neuroscience will return even greater dividends in the future and that is within the field of clinical practice.

  16. Loop Quantum Gravity.

    PubMed

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  17. Systems with outer constraints. Gupta-Bleuler electromagnetism as an algebraic field theory

    NASA Astrophysics Data System (ADS)

    Grundling, Hendrik

    1988-03-01

    Since there are some important systems which have constraints not contained in their field algebras, we develop here in a C*-context the algebraic structures of these. The constraints are defined as a group G acting as outer automorphisms on the field algebra ℱ, α: G ↦ Aut ℱ, α G ⊄ Inn ℱ, and we find that the selection of G-invariant states on ℱ is the same as the selection of states ω on M( G M(Gmathop × limits_α F) ℱ) by ω( U g)=1∨ g∈ G, where U g ∈ M ( G M(Gmathop × limits_α F) ℱ)/ℱ are the canonical elements implementing α g . These states are taken as the physical states, and this specifies the resulting algebraic structure of the physics in M( G M(Gmathop × limits_α F) ℱ), and in particular the maximal constraint free physical algebra ℛ. A nontriviality condition is given for ℛ to exist, and we extend the notion of a crossed product to deal with a situation where G is not locally compact. This is necessary to deal with the field theoretical aspect of the constraints. Next the C*-algebra of the CCR is employed to define the abstract algebraic structure of Gupta-Bleuler electromagnetism in the present framework. The indefinite inner product representation structure is obtained, and this puts Gupta-Bleuler electromagnetism on a rigorous footing. Finally, as a bonus, we find that the algebraic structures just set up, provide a blueprint for constructive quadratic algebraic field theory.

  18. Asymptotically locally AdS and flat black holes in Horndeski theory

    NASA Astrophysics Data System (ADS)

    Anabalon, Andres; Cisterna, Adolfo; Oliva, Julio

    2014-04-01

    In this paper we construct asymptotically locally AdS and flat black holes in the presence of a scalar field whose kinetic term is constructed out from a linear combination of the metric and the Einstein tensor. The field equations as well as the energy-momentum tensor are second order in the metric and the field, therefore the theory belongs to the ones defined by Horndeski. We show that in the presence of a cosmological term in the action, it is possible to have a real scalar field in the region outside the event horizon. The solutions are characterized by a single integration constant, the scalar field vanishes at the horizon and it contributes to the effective cosmological constant at infinity. We extend these results to the topological case. The solution is disconnected from the maximally symmetric AdS background, however, within this family there exists a gravitational soliton which is everywhere regular. This soliton is therefore used as a background to define a finite Euclidean action and to obtain the thermodynamics of the black holes. For a certain region in the space of parameters, the thermodynamic analysis reveals a critical temperature at which a Hawking-Page phase transition between the black hole and the soliton occurs. We extend the solution to arbitrary dimensions greater than 4 and show that the presence of a cosmological term in the action allows one to consider the case in which the standard kinetic term for the scalar it is not present. In such a scenario, the solution reduces to an asymptotically flat black hole.

  19. A Real Lorentz-FitzGerald Contraction

    NASA Astrophysics Data System (ADS)

    Barceló, Carlos; Jannes, Gil

    2008-02-01

    Many condensed matter systems are such that their collective excitations at low energies can be described by fields satisfying equations of motion formally indistinguishable from those of relativistic field theory. The finite speed of propagation of the disturbances in the effective fields (in the simplest models, the speed of sound) plays here the role of the speed of light in fundamental physics. However, these apparently relativistic fields are immersed in an external Newtonian world (the condensed matter system itself and the laboratory can be considered Newtonian, since all the velocities involved are much smaller than the velocity of light) which provides a privileged coordinate system and therefore seems to destroy the possibility of having a perfectly defined relativistic emergent world. In this essay we ask ourselves the following question: In a homogeneous condensed matter medium, is there a way for internal observers, dealing exclusively with the low-energy collective phenomena, to detect their state of uniform motion with respect to the medium? By proposing a thought experiment based on the construction of a Michelson-Morley interferometer made of quasi-particles, we show that a real Lorentz-FitzGerald contraction takes place, so that internal observers are unable to find out anything about their ‘absolute’ state of motion. Therefore, we also show that an effective but perfectly defined relativistic world can emerge in a fishbowl world situated inside a Newtonian (laboratory) system. This leads us to reflect on the various levels of description in physics, in particular regarding the quest towards a theory of quantum gravity.

  20. Spin foam models for quantum gravity

    NASA Astrophysics Data System (ADS)

    Perez, Alejandro

    The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be perturbatively finite. The second model contains both time-like and space-like representations. The spectrum of geometrical operators coincide with the prediction of the canonical approach of loop QG. At the moment, the convergence properties of the model are less understood and remain for future investigation.

  1. Geometry of Spin and SPINc Structures in the M-Theory Partition Function

    NASA Astrophysics Data System (ADS)

    Sati, Hisham

    We study the effects of having multiple Spin structures on the partition function of the spacetime fields in M-theory. This leads to a potential anomaly which appears in the eta invariants upon variation of the Spin structure. The main sources of such spaces are manifolds with nontrivial fundamental group, which are also important in realistic models. We extend the discussion to the Spinc case and find the phase of the partition function, and revisit the quantization condition for the C-field in this case. In type IIA string theory in 10 dimensions, the (mod 2) index of the Dirac operator is the obstruction to having a well-defined partition function. We geometrically characterize manifolds with and without such an anomaly and extend to the case of nontrivial fundamental group. The lift to KO-theory gives the α-invariant, which in general depends on the Spin structure. This reveals many interesting connections to positive scalar curvature manifolds and constructions related to the Gromov-Lawson-Rosenberg conjecture. In the 12-dimensional theory bounding M-theory, we study similar geometric questions, including choices of metrics and obtaining elements of K-theory in 10 dimensions by pushforward in K-theory on the disk fiber. We interpret the latter in terms of the families index theorem for Dirac operators on the M-theory circle and disk. This involves superconnections, eta forms, and infinite-dimensional bundles, and gives elements in Deligne cohomology in lower dimensions. We illustrate our discussion with many examples throughout.

  2. Open superstring field theory based on the supermoduli space

    NASA Astrophysics Data System (ADS)

    Ohmori, Kantaro; Okawa, Yuji

    2018-04-01

    We present a new approach to formulating open superstring field theory based on the covering of the supermoduli space of super-Riemann surfaces and explicitly construct a gauge-invariant action in the Neveu-Schwarz sector up to quartic interactions. The cubic interaction takes a form of an integral over an odd modulus of disks with three punctures and the associated ghost is inserted. The quartic interaction takes a form of an integral over one even modulus and two odd moduli, and it can be interpreted as the integral over the region of the supermoduli space of disks with four punctures which is not covered by Feynman diagrams with two cubic vertices and one propagator. As our approach is based on the covering of the supermoduli space, the resulting theory naturally realizes an A ∞ structure, and the two-string product and the three-string product used in defining the cubic and quartic interactions are constructed to satisfy the A ∞ relations to this order.

  3. Shape dependence of two-cylinder Rényi entropies for free bosons on a lattice

    NASA Astrophysics Data System (ADS)

    Chojnacki, Leilee; Cook, Caleb Q.; Dalidovich, Denis; Hayward Sierens, Lauren E.; Lantagne-Hurtubise, Étienne; Melko, Roger G.; Vlaar, Tiffany J.

    2016-10-01

    Universal scaling terms occurring in Rényi entanglement entropies have the potential to bring new understanding to quantum critical points in free and interacting systems. Quantitative comparisons between analytical continuum theories and numerical calculations on lattice models play a crucial role in advancing such studies. In this paper, we exactly calculate the universal two-cylinder shape dependence of entanglement entropies for free bosons on finite-size square lattices, and compare to approximate functions derived in the continuum using several different Ansätze. Although none of these Ansätze are exact in the thermodynamic limit, we find that numerical fits are in good agreement with continuum functions derived using the anti-de Sitter/conformal field theory correspondence, an extensive mutual information model, and a quantum Lifshitz model. We use fits of our lattice data to these functions to calculate universal scalars defined in the thin-cylinder limit, and compare to values previously obtained for the free boson field theory in the continuum.

  4. Theory, Research, and Practice for Students Who Are Deaf and Hard of Hearing With Disabilities: Addressing the Challenges from Birth to Postsecondary Education.

    PubMed

    Guardino, Caroline; Cannon, Joanna E

    2015-01-01

    Students who are deaf with a disability or disabilities (DWD) constitute nearly half of the population of K-12 learners who are deaf or hard of hearing. However, there is a dearth of information on theory, research, and practice related to these learners. The authors present an overview of (a) how the field of education of students who are D/deaf and hard of hearing might refer to this unique population in a way that represents the learner, not the disability; (b) the demographic data that further define these learners; (c) a theoretical framework within which to guide research and practice; (d) prevalence and frequency of the existing research; and (e) the practices and resources available to guide practitioners and the parents of students who are DWD. Questions are posed to the field on how to continue to improve the theory, research, and pedagogy used with these students.

  5. Field-theoretic approach to fluctuation effects in neural networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buice, Michael A.; Cowan, Jack D.; Mathematics Department, University of Chicago, Chicago, Illinois 60637

    A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governedmore » by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience.« less

  6. Migration of tree species in New England based on elevational and regional analyses

    Treesearch

    Dale S. Solomon; William B. Leak

    1994-01-01

    With field measurements of migration patterns, we used two complementary approaches to examine tree-species movement after a documented increase in temperatures. The advancing-front theory was used to examine age trends over distance and elevation for both a mountain site in New Hampshire and a regional comparison across the State of Maine. Well-defined stationary...

  7. A non-asymptotic homogenization theory for periodic electromagnetic structures

    PubMed Central

    Tsukerman, Igor; Markel, Vadim A.

    2014-01-01

    Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions. PMID:25104912

  8. The Supersymmetric Effective Field Theory of Inflation

    DOE PAGES

    Delacrétaz, Luca V.; Gorbenko, Victor; Senatore, Leonardo

    2017-03-10

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelbergmore » transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to fNL equil.,orthog.~1 or, for particular operators, even >> 1. The non-degenerate contribution from modes of order H is estimated to be very small.« less

  9. Physical and geometrical aspects of de sitter interior of a gravastar

    NASA Astrophysics Data System (ADS)

    Morawiec, Pawel Jan

    The principal motivation for the investigations reported in this thesis is the gravastar model for physical black holes. According to this model the final state of the gravitational collapse of cold super-dense stars with the mass greater than some critical value is a non-singular object called a gravastar. This thesis presents results related to the various aspects of the de Sitter interior of a gravastar. The main object of the research was a generalized rotating interior of a gravastar. It was shown that the rotation, characterized by the vorticity, is localized on the vortex line. The metric under considerations is the de Sitter metric, however in some variant of the oblate spheroidal coordinates. Additionally a cosmic string on the rotation axis is present. This new result is the de Sitter version of the Mazur string, which was obtained from the four dimensional Levi-Civita metric as the generalization of the three-dimensional cosmic string by Adler and Jackiw. Also, using analogy between rotation in the superfluid and the magnetic field we gave another example of the Cosmic No Hair Theorem, this time "no magnetic fields in de Sitter space". But we also have shown that when the de Sitter event horizon is replaced by a thin shell (with a finite thickness), as it is in the gravastar model, the non-vanishing magnetic field could be present. To our knowledge these are new results. In this thesis we have studied behavior of the massless Dirac field as an example of a matter field in the de Sitter spacetime in the vicinity of an event horizon. We found convenient to work in the frame of the optical geometry of the de Sitter space as it is related to the metric in the static coordinates through a conformal Weyl rescaling and the dynamics of the massless Dirac fields is conformally invariant. The fact that the spatial part of the metric in the optical geometry of de Sitter space is the constant negative curvature Lobachevski space (the Euclidean ant-de Sitter space) suggested the existenc of the emerging de Sitter quantum field theory and conformal field theory correspondence on the de Sitter event horizon. We have studied implications of this conjecture. According to the AdS/CFT correspondence prescription the functional integral over the matter fields described by the action with the properly chosen boundary terms defining the so called partition function as the functional of the boundary values of the matter fields is also the generating functional for the correlation functions in the conformal field theory on the boundary of AdS space. In the case of the optical geometry of the de Sitter space the boundary is the event horizon that is the boundary of its Lobachevski spatial part times time. We have chosen the action for the massless Dirac fields in the optical de Sitter geometry with appropriate surface term and subsequently we have evaluated the real time partition function as the functional of the carefully defined boundary values of the Dirac field. It turns out that this partition functional can be, indeed, interpreted as the generating functional of the real time conformal field theory correlation functions of the fermionic operators, dual to the fermionic fields on the boundary. This means that the conformal field theory correlation functions are evaluated as the vacuum expectation values of the chronologically ordered fermionic operator. This result demonstrates the emergence of the de Sitter/Conformal field theory correspondence on the de Sitter horizon. The presence of the negative curvature Lobachevski geometry in the spatial part of the optical geometry of the de Sitter space, is responsible for the effective one-dimensional behavior of the matter degrees of freedom and of the emergence of the de Sitter/Conformal field theory correspondence on the event horizon. Although we have demonstrated the existence of this correspondence for the fermionic fields only, we anticipate this result to be valid generally.

  10. Critical electric field for maximum tunability in nonlinear dielectrics

    NASA Astrophysics Data System (ADS)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  11. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  12. Magnetoresistivity of thin YBa2Cu3O7-δ films on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Probst, Petra; Il'in, Konstantin; Engel, Andreas; Semenov, Alexei; Hübers, Heinz-Wilhelm; Hänisch, Jens; Holzapfel, Bernhardt; Siegel, Michael

    2012-09-01

    Magnetoresistivity of YBa2Cu3O7-δ films with thicknesses between 7 and 100 nm deposited on CeO2 and PrBa2Cu3O7-δ buffer layers on sapphire substrate has been measured to analyze the temperature dependence of the second critical magnetic field Bc2. To define Bc2, the mean-field transition temperature Tc was evaluated by fitting the resistive transition in zero magnetic field with the fluctuation conductivity theory of Aslamazov and Larkin. At T → Tc the Bc2(T) dependence shows a crossover from downturn to upturn curvature with the increase in film thickness.

  13. Effective-medium theory of elastic waves in random networks of rods.

    PubMed

    Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G

    2012-06-01

    We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.

  14. Poisson sigma models, reduction and nonlinear gauge theories

    NASA Astrophysics Data System (ADS)

    Signori, Daniele

    This dissertation comprises two main lines of research. Firstly, we study non-linear gauge theories for principal bundles, where the structure group is replaced by a Lie groupoid. We follow the approach of Moerdijk-Mrcun and establish its relation with the existing physics literature. In particular, we derive a new formula for the gauge transformation which closely resembles and generalizes the classical formulas found in Yang Mills gauge theories. Secondly, we give a field theoretic interpretation of the of the BRST (Becchi-Rouet-Stora-Tyutin) and BFV (Batalin-Fradkin-Vilkovisky) methods for the reduction of coisotropic submanifolds of Poisson manifolds. The generalized Poisson sigma models that we define are related to the quantization deformation problems of coisotropic submanifolds using homotopical algebras.

  15. Dispersion of acoustic surface waves by velocity gradients

    NASA Astrophysics Data System (ADS)

    Kwon, S. D.; Kim, H. C.

    1987-10-01

    The perturbation theory of Auld [Acoustic Fields and Waves in Solids (Wiley, New York, 1973), Vol. II, p. 294], which describes the effect of a subsurface gradient on the velocity dispersion of surface waves, has been modified to a simpler form by an approximation using a newly defined velocity gradient for the case of isotropic materials. The modified theory is applied to nitrogen implantation in AISI 4140 steel with a velocity gradient of Gaussian profile, and compared with dispersion data obtained by the ultrasonic right-angle technique in the frequency range from 2.4 to 14.8 MHz. The good agreement between experiments and our theory suggests that the compound layer in the subsurface region plays a dominant role in causing the dispersion of acoustic surface waves.

  16. Seniority Number in Valence Bond Theory.

    PubMed

    Chen, Zhenhua; Zhou, Chen; Wu, Wei

    2015-09-08

    In this work, a hierarchy of valence bond (VB) methods based on the concept of seniority number, defined as the number of singly occupied orbitals in a determinant or an orbital configuration, is proposed and applied to the studies of the potential energy curves (PECs) of H8, N2, and C2 molecules. It is found that the seniority-based VB expansion converges more rapidly toward the full configuration interaction (FCI) or complete active space self-consistent field (CASSCF) limit and produces more accurate PECs with smaller nonparallelity errors than its molecular orbital (MO) theory-based analogue. Test results reveal that the nonorthogonal orbital-based VB theory provides a reverse but more efficient way to truncate the complete active Hilbert space by seniority numbers.

  17. Preliminary study of the effect of the turbulent flow field around complex surfaces on their acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Olsen, W. A.; Boldman, D.

    1978-01-01

    Fundamental theories for noise generated by flow over surfaces exist for only a few simple configurations. The role of turbulence in noise generation by complex surfaces should be essentially the same as for simple configurations. Examination of simple-surface theories indicates that the spatial distributions of the mean velocity and turbulence properties are sufficient to define the noise emission. Measurements of these flow properties were made for a number of simple and complex surfaces. The configurations were selected because of their acoustic characteristics are quite different. The spatial distribution of the turbulent flow properties around the complex surfaces and approximate theory are used to locate and describe the noise sources, and to qualitatively explain the varied acoustic characteristics.

  18. Generalized quasitopological gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; KubizÅák, David; Mann, Robert B.

    2017-05-01

    We construct the most general, to cubic order in curvature, theory of gravity whose (most general) static spherically symmetric vacuum solutions are fully described by a single field equation. The theory possesses the following remarkable properties: (i) It has a well-defined Einstein gravity limit, (ii) it admits "Schwarzschild-like" solutions characterized by a single metric function, (iii) on maximally symmetric backgrounds it propagates the same degrees of freedom as Einstein's gravity, and (iv) Lovelock and quasitopological gravities, as well as the recently developed Einsteinian cubic gravity [Bueno and Cano Phys. Rev. D 94, 104005 (2016)., 10.1103/PhysRevD.94.104005] in four dimensions, are recovered as special cases. We perform a brief analysis of asymptotically flat black holes in this theory and study their thermodynamics.

  19. Instantons in Lifshitz field theories

    NASA Astrophysics Data System (ADS)

    Fujimori, Toshiaki; Nitta, Muneto

    2015-10-01

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for "the superpotential" defining "the detailed balance condition". The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4 + 1 dimensions, for which we take the Chern-Simons term as the superpotential.

  20. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    PubMed

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.

  1. a Simpler Solution of the Non-Uniqueness Problem of the Covariant Dirac Theory

    NASA Astrophysics Data System (ADS)

    Arminjon, Mayeul

    2013-05-01

    Although the standard generally covariant Dirac equation is unique in a topologically simple spacetime, it has been shown that it leads to non-uniqueness problems for the Hamiltonian and energy operators, including the non-uniqueness of the energy spectrum. These problems should be solved by restricting the choice of the Dirac gamma field in a consistent way. Recently, we proposed to impose the value of the rotation rate of the tetrad field. This is not necessarily easy to implement and works only in a given reference frame. Here, we propose that the gamma field should change only by constant gauge transformations. To get that situation, we are naturally led to assume that the metric can be put in a space-isotropic diagonal form. When this is the case, it distinguishes a preferred reference frame. We show that by defining the gamma field from the "diagonal tetrad" in a chart in which the metric has that form, the uniqueness problems are solved at once for all reference frames. We discuss the physical relevance of the metric considered and our restriction to first-quantized theory.

  2. SO(N) restricted Schur polynomials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kemp, Garreth, E-mail: garreth.kemp@students.wits.ac.za

    2015-02-15

    We focus on the 1/4-BPS sector of free super Yang-Mills theory with an SO(N) gauge group. This theory has an AdS/CFT (an equivalence between a conformal field theory in d-1 dimensions and type II string theory defined on an AdS space in d-dimensions) dual in the form of type IIB string theory with AdS{sub 5}×RP{sup 5} geometry. With the aim of studying excited giant graviton dynamics, we construct an orthogonal basis for this sector of the gauge theory in this work. First, we demonstrate that the counting of states, as given by the partition function, and the counting of restrictedmore » Schur polynomials match by restricting to a particular class of Young diagram labels. We then give an explicit construction of these gauge invariant operators and evaluate their two-point function exactly. This paves the way to studying the spectral problem of these operators and their D-brane duals.« less

  3. Technology and Occupation: Past, Present, and the Next 100 Years of Theory and Practice.

    PubMed

    Smith, Roger O

    During the first 100 years of occupational therapy, the profession developed a remarkable practice and theory base. All along, technology was an active and core component of practice, but often technology was mentioned only as an adjunct component of therapy and as if it was a specialty. This lecture proposes a new foundational theory that places technology at the heart of occupational therapy as a fundamental part of human occupation and the human experience. Moreover, this new Metaphysical Physical-Emotive Theory of Occupation pushes the occupational therapy profession and the occupational science discipline to overtly consider occupation on the level of a metaphysical-level reality. The presentation of this theory at the Centennial of the profession charges the field to test and further define the theory over the next 100 years and to leverage technology and its role in optimizing occupational performance into the future. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  4. Finite Geometries in Quantum Theory:. from Galois (fields) to Hjelmslev (rings)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod; Planat, Michel

    Geometries over Galois fields (and related finite combinatorial structures/algebras) have recently been recognized to play an ever-increasing role in quantum theory, especially when addressing properties of mutually unbiased bases (MUBs). The purpose of this contribution is to show that completely new vistas open up if we consider a generalized class of finite (projective) geometries, viz. those defined over Galois rings and/or other finite Hjelmslev rings. The case is illustrated by demonstrating that the basic combinatorial properties of a complete set of MUBs of a q-dimensional Hilbert space { H}q, q = pr with p being a prime and r a positive integer, are qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p2 and rank r. The q vectors of a basis of { H}q correspond to the q points of a (so-called) neighbour class and the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on the conic. Although this remarkable analogy is still established at the level of cardinalities only, we currently work on constructing an explicit mapping by associating a MUB to each neighbour class of the points of the conic and a state vector of this MUB to a particular point of the class. Further research in this direction may prove to be of great relevance for many areas of quantum information theory, in particular for quantum information processing.

  5. Renormalization group evolution of the universal theories EFT

    DOE PAGES

    Wells, James D.; Zhang, Zhengkang

    2016-06-21

    The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less

  6. Effective theories of universal theories

    DOE PAGES

    Wells, James D.; Zhang, Zhengkang

    2016-01-20

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf 2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less

  7. Renormalization group evolution of the universal theories EFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, James D.; Zhang, Zhengkang

    The conventional oblique parameters analyses of precision electroweak data can be consistently cast in the modern framework of the Standard Model effective field theory (SMEFT) when restrictions are imposed on the SMEFT parameter space so that it describes universal theories. However, the usefulness of such analyses is challenged by the fact that universal theories at the scale of new physics, where they are matched onto the SMEFT, can flow to nonuniversal theories with renormalization group (RG) evolution down to the electroweak scale, where precision observables are measured. The departure from universal theories at the electroweak scale is not arbitrary, butmore » dictated by the universal parameters at the matching scale. But to define oblique parameters, and more generally universal parameters at the electroweak scale that directly map onto observables, additional prescriptions are needed for the treatment of RG-induced nonuniversal effects. Finally, we perform a RG analysis of the SMEFT description of universal theories, and discuss the impact of RG on simplified, universal-theories-motivated approaches to fitting precision electroweak and Higgs data.« less

  8. Effective theories of universal theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, James D.; Zhang, Zhengkang

    It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. The oblique parameters should not be associated with Wilson coefficients in a particular operator basis in the effective field theory (EFT) framework, unless restrictions have been imposed on the EFT so that it describes universal theories. Here, we work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16more » parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hff, hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order yf 2. Furthermore, all these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.« less

  9. Topics in Two-Dimensional Quantum Gravity and Chern-Simons Gauge Theories

    NASA Astrophysics Data System (ADS)

    Zemba, Guillermo Raul

    A series of studies in two and three dimensional theories is presented. The two dimensional problems are considered in the framework of String Theory. The first one determines the region of integration in the space of inequivalent tori of a tadpole diagram in Closed String Field Theory, using the naive Witten three-string vertex. It is shown that every surface is counted an infinite number of times and the source of this behavior is identified. The second study analyzes the behavior of the discrete matrix model of two dimensional gravity without matter using a mathematically well-defined construction, confirming several conjectures and partial results from the literature. The studies in three dimensions are based on Chern Simons pure gauge theory. The first one deals with the projection of the theory onto a two-dimensional surface of constant time, whereas the second analyzes the large N behavior of the SU(N) theory and makes evident a duality symmetry between the only two parameters of the theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  10. Propulsion Physics Under the Changing Density Field Model

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    2011-01-01

    To grow as a space faring race, future spaceflight systems will requires new propulsion physics. Specifically a propulsion physics model that does not require mass ejection without limiting the high thrust necessary to accelerate within or beyond our solar system and return within a normal work period or lifetime. In 2004 Khoury and Weltman produced a density dependent cosmology theory they called Chameleon Cosmology, as at its nature, it is hidden within known physics. This theory represents a scalar field within and about an object, even in the vacuum. Whereby, these scalar fields can be viewed as vacuum energy fields with definable densities that permeate all matter; having implications to dark matter/energy with universe acceleration properties; implying a new force mechanism for propulsion physics. Using Chameleon Cosmology, the author has developed a new propulsion physics model, called the Changing Density Field (CDF) Model. This model relates to density changes in these density fields, where the density field density changes are related to the acceleration of matter within an object. These density changes in turn change how an object couples to the surrounding density fields. Whereby, thrust is achieved by causing a differential in the coupling to these density fields about an object. Since the model indicates that the density of the density field in an object can be changed by internal mass acceleration, even without exhausting mass, the CDF model implies a new propellant-less propulsion physics model

  11. Life-space foam: A medium for motivational and cognitive dynamics

    NASA Astrophysics Data System (ADS)

    Ivancevic, Vladimir; Aidman, Eugene

    2007-08-01

    General stochastic dynamics, developed in a framework of Feynman path integrals, have been applied to Lewinian field-theoretic psychodynamics [K. Lewin, Field Theory in Social Science, University of Chicago Press, Chicago, 1951; K. Lewin, Resolving Social Conflicts, and, Field Theory in Social Science, American Psychological Association, Washington, 1997; M. Gold, A Kurt Lewin Reader, the Complete Social Scientist, American Psychological Association, Washington, 1999], resulting in the development of a new concept of life-space foam (LSF) as a natural medium for motivational and cognitive psychodynamics. According to LSF formalisms, the classic Lewinian life space can be macroscopically represented as a smooth manifold with steady force fields and behavioral paths, while at the microscopic level it is more realistically represented as a collection of wildly fluctuating force fields, (loco)motion paths and local geometries (and topologies with holes). A set of least-action principles is used to model the smoothness of global, macro-level LSF paths, fields and geometry. To model the corresponding local, micro-level LSF structures, an adaptive path integral is used, defining a multi-phase and multi-path (multi-field and multi-geometry) transition process from intention to goal-driven action. Application examples of this new approach include (but are not limited to) information processing, motivational fatigue, learning, memory and decision making.

  12. Influencing Attitudes and Changing Behavior: A Basic Introduction to Relevant Methodology, Theory, and Applications. Revised Edition.

    ERIC Educational Resources Information Center

    Zimbardo, Philip; Ebbesen, Ebbe B.

    In this introductory text to the field of attitude change, the emphasis is on one of the end products of research in social psychology--manipulation and control of attitudes and related behaviors. The text first defines the concept of attitude, then identifies ideas from the areas of history, literature, law, religion, and the social sciences that…

  13. Static Wormholes in Vacuum and Gravity in Diverse Dimensions

    NASA Astrophysics Data System (ADS)

    Susskind, Leonard

    If the observable universe really is a hologram, then of what sort? Is it rich enough to keep track of an eternally inflating multiverse? What physical and mathematical principles underlie it? Is the hologram a lower dimensional quantum field theory, and if so, how many dimensions are explicit, and how many "emerge?" Does the Holographic description provide clues for defining a probability measure on the Landscape?

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwala, Susama; Delaney, Colleen

    This paper defines a generalization of the Connes-Moscovici Hopf algebra, H(1), that contains the entire Hopf algebra of rooted trees. A relationship between the former, a much studied object in non-commutative geometry, and the latter, a much studied object in perturbative quantum field theory, has been established by Connes and Kreimer. The results of this paper open the door to study the cohomology of the Hopf algebra of rooted trees.

  15. Issues in Optical Diffraction Theory

    PubMed Central

    Mielenz, Klaus D.

    2009-01-01

    This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are reduced to the usual ones specified by Fresnel’s theory. In the specific case of a diffracting half plane the numerical results obtained were practically the same as those given by Sommerfeld’s rigorous theory. The modified theory developed in this paper is based on the explicit assumption that the scalar theory of light cannot explain plolarization effects. This premise is justified in Sec. 4, where it is shown that previous attempts to do so have produced dubious results. PMID:27504215

  16. Description of rotating N=Z nuclei in terms of isovector pairing

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.; Frauendorf, S.

    2005-06-01

    A systematic investigation of the rotating N=Z even-even nuclei in the mass A=68-80 region has been performed within the frameworks of the cranked relativistic mean field, cranked relativistic Hartree-Bogoliubov theories, and cranked Nilsson-Strutinsky approach. Most of the experimental data are well accounted for in the calculations. The present study suggests the presence of strong isovector np pair field at low spin, whose strength is defined by the isospin symmetry. At high spin, the isovector pair field is destroyed and the data are well described by the calculations assuming zero pairing. No clear evidence for the existence of the isoscalar t=0 np pairing has been obtained in the present investigation performed at the mean field level.

  17. Numerical analysis of the effect of non-uniformity of the magnetic field produced by a solenoid on temperature distribution during magnetic hyperthermia

    NASA Astrophysics Data System (ADS)

    Tang, Yun-dong; Flesch, Rodolfo C. C.; Zhang, Cheng; Jin, Tao

    2018-03-01

    Magnetic hyperthermia ablates malignant cells by the heat produced by power dissipation of magnetic nanoparticles (MNPs) under an alternating magnetic field. Most of the works in literature consider a uniform magnetic field for solving numerical models to estimate the temperature field during a hyperthermia treatment, however this assumption is generally not true in real circumstances. This paper considers the magnetic field produced by a solenoid and analyzes its effects on the treatment temperature. To that end, a set of partial differential equations is numerically solved for a specific tumor model using the finite element method and the obtained results are analyzed to draw general conclusions. The magnetic field inside the solenoid is obtained by using Maxwell's theory, and the treatment temperature of the tumor model is determined by using Rosensweig's theory and Pennes bio-heat transfer equation. Simulation results demonstrate that the temperature field obtained using a solenoid model is similar to that obtained considering a uniform magnetic field if tumor is centered with respect to solenoid and if the physical characteristics of solenoid are properly defined based on tumor volume. As the distance of tumor from the solenoid center is increased, the effects of non-uniformity of magnetic field become more evident and the adoption of the proposed model is necessary to obtain accurate results.

  18. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  19. Variational and perturbative formulations of quantum mechanical/molecular mechanical free energy with mean-field embedding and its analytical gradients.

    PubMed

    Yamamoto, Takeshi

    2008-12-28

    Conventional quantum chemical solvation theories are based on the mean-field embedding approximation. That is, the electronic wavefunction is calculated in the presence of the mean field of the environment. In this paper a direct quantum mechanical/molecular mechanical (QM/MM) analog of such a mean-field theory is formulated based on variational and perturbative frameworks. In the variational framework, an appropriate QM/MM free energy functional is defined and is minimized in terms of the trial wavefunction that best approximates the true QM wavefunction in a statistically averaged sense. Analytical free energy gradient is obtained, which takes the form of the gradient of effective QM energy calculated in the averaged MM potential. In the perturbative framework, the above variational procedure is shown to be equivalent to the first-order expansion of the QM energy (in the exact free energy expression) about the self-consistent reference field. This helps understand the relation between the variational procedure and the exact QM/MM free energy as well as existing QM/MM theories. Based on this, several ways are discussed for evaluating non-mean-field effects (i.e., statistical fluctuations of the QM wavefunction) that are neglected in the mean-field calculation. As an illustration, the method is applied to an S(N)2 Menshutkin reaction in water, NH(3)+CH(3)Cl-->NH(3)CH(3) (+)+Cl(-), for which free energy profiles are obtained at the Hartree-Fock, MP2, B3LYP, and BHHLYP levels by integrating the free energy gradient. Non-mean-field effects are evaluated to be <0.5 kcal/mol using a Gaussian fluctuation model for the environment, which suggests that those effects are rather small for the present reaction in water.

  20. Self-consistent inclusion of space-charge in the traveling wave tube

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    1987-01-01

    It is shown how the complete field of the electron beam may be incorporated into the transmission line model theory of the traveling wave tube (TWT). The fact that the longitudinal component of the field due to the bunched beam is not used when formulating the beam-to-circuit coupling equation is not well-known. The fundamental partial differential equation for the traveling wave field is developed and compared with the older (now standard) one. The equation can be solved numerically using the same algorithms, but now the coefficients can be updated continuously as the calculation proceeds down the tube. The coefficients in the older equations are primarily derived from preliminary measurements and some trial and error. The newer coefficients can be found by a recursive method, since each has a well defined physical interpretation and can be calculated once a reasonable first trial solution is postulated. The results of the new expression were compared with those of the older forms, as well as to a field theory model to show the ease in which a reasonable fit to the field prediction is obtained. A complete summary of the existing transmission line modeling of the TWT is given to explain the somewhat vague ideas and techniques in the general area of drifting carrier-traveling circuit wave interactions. The basic assumptions and inconsistencies of the existing theory and areas of confusion in the general literature are examined and hopefully cleared up.

  1. Quantum gravity in timeless configuration space

    NASA Astrophysics Data System (ADS)

    Gomes, Henrique

    2017-12-01

    On the path towards quantum gravity we find friction between temporal relations in quantum mechanics (QM) (where they are fixed and field-independent), and in general relativity (where they are field-dependent and dynamic). This paper aims to attenuate that friction, by encoding gravity in the timeless configuration space of spatial fields with dynamics given by a path integral. The framework demands that boundary conditions for this path integral be uniquely given, but unlike other approaches where they are prescribed—such as the no-boundary and the tunneling proposals—here I postulate basic principles to identify boundary conditions in a large class of theories. Uniqueness arises only if a reduced configuration space can be defined and if it has a profoundly asymmetric fundamental structure. These requirements place strong restrictions on the field and symmetry content of theories encompassed here; shape dynamics is one such theory. When these constraints are met, any emerging theory will have a Born rule given merely by a particular volume element built from the path integral in (reduced) configuration space. Also as in other boundary proposals, Time, including space-time, emerges as an effective concept; valid for certain curves in configuration space but not assumed from the start. When some such notion of time becomes available, conservation of (positive) probability currents ensues. I show that, in the appropriate limits, a Schrödinger equation dictates the evolution of weakly coupled source fields on a classical gravitational background. Due to the asymmetry of reduced configuration space, these probabilities and currents avoid a known difficulty of standard WKB approximations for Wheeler DeWitt in minisuperspace: the selection of a unique Hamilton–Jacobi solution to serve as background. I illustrate these constructions with a simple example of a full quantum gravitational theory (i.e. not in minisuperspace) for which the formalism is applicable, and give a formula for calculating gravitational semi-classical relative probabilities in it.

  2. Entanglement entropy of ABJM theory and entropy of topological black hole

    NASA Astrophysics Data System (ADS)

    Nian, Jun; Zhang, Xinyu

    2017-07-01

    In this paper we discuss the supersymmetric localization of the 4D N = 2 offshell gauged supergravity on the background of the AdS4 neutral topological black hole, which is the gravity dual of the ABJM theory defined on the boundary {S}^1× H^2 . We compute the large- N expansion of the supergravity partition function. The result gives the black hole entropy with the logarithmic correction, which matches the previous result of the entanglement entropy of the ABJM theory up to some stringy effects. Our result is consistent with the previous on-shell one-loop computation of the logarithmic correction to black hole entropy. It provides an explicit example of the identification of the entanglement entropy of the boundary conformal field theory with the bulk black hole entropy beyond the leading order given by the classical Bekenstein-Hawking formula, which consequently tests the AdS/CFT correspondence at the subleading order.

  3. Polymer quantization, stability and higher-order time derivative terms

    NASA Astrophysics Data System (ADS)

    Cumsille, Patricio; Reyes, Carlos M.; Ossandon, Sebastian; Reyes, Camilo

    2016-03-01

    The possibility that fundamental discreteness implicit in a quantum gravity theory may act as a natural regulator for ultraviolet singularities arising in quantum field theory has been intensively studied. Here, along the same expectations, we investigate whether a nonstandard representation called polymer representation can smooth away the large amount of negative energy that afflicts the Hamiltonians of higher-order time derivative theories, rendering the theory unstable when interactions come into play. We focus on the fourth-order Pais-Uhlenbeck model which can be reexpressed as the sum of two decoupled harmonic oscillators one producing positive energy and the other negative energy. As expected, the Schrödinger quantization of such model leads to the stability problem or to negative norm states called ghosts. Within the framework of polymer quantization we show the existence of new regions where the Hamiltonian can be defined well bounded from below.

  4. The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.

    1980-01-01

    The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giveon, Amit; Kutasov, David

    We show that in any two dimensional conformal field theory with (2, 2) super-symmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit n → 1 it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in stringmore » theory on AdS3.« less

  6. BRST quantization of Yang-Mills theory: A purely Hamiltonian approach on Fock space

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2018-04-01

    We develop the basic ideas and equations for the BRST quantization of Yang-Mills theories in an explicit Hamiltonian approach, without any reference to the Lagrangian approach at any stage of the development. We present a new representation of ghost fields that combines desirable self-adjointness properties with canonical anticommutation relations for ghost creation and annihilation operators, thus enabling us to characterize the physical states on a well-defined Fock space. The Hamiltonian is constructed by piecing together simple BRST invariant operators to obtain a minimal invariant extension of the free theory. It is verified that the evolution equations implied by the resulting minimal Hamiltonian provide a quantum version of the classical Yang-Mills equations. The modifications and requirements for the inclusion of matter are discussed in detail.

  7. Theories about the propagation of yellow fever: the scientific debate in the São Paulo press between 1895 and 1903.

    PubMed

    Lódola, Soraya; Góis Junior, Edivaldo

    2015-01-01

    This article describes the debate over theories about the propagation of yellow fever in the São Paulo press. Our time span was defined as the period between 1895 and 1903, a time that saw high indices of the disease in Brazil. Documentary research involved mass circulation newspapers in São Paulo and medical journals of the period. The empirical data was collected from the Public Archives of the State of São Paulo and from the library of the Faculdade de Saúde Pública at Universidade de São Paulo. It was observed a clash between theories as to the propagation of yellow fever that revealed a symbolic dispute for influence in the formation of the scientific field.

  8. Constructing entanglement wedges for Lifshitz spacetimes with Lifshitz gravity

    NASA Astrophysics Data System (ADS)

    Cheyne, Jonathan; Mattingly, David

    2018-03-01

    Holographic relationships between entanglement entropy on the boundary of a spacetime and the area of minimal surfaces in the bulk provide an important entry in the bulk/boundary dictionary. While constructing the necessary causal and entanglement wedges is well understood in asymptotically AdS spacetimes, less is known about the equivalent constructions in spacetimes with different asymptotics. In particular, recent attempts to construct entanglement and causal wedges for asymptotically Lifshitz solutions in relativistic gravitational theories have proven problematic. We note a simple observation, that a Lifshitz bulk theory, specifically a covariant formulation of Hořava-Lifshitz gravity coupled to matter, has causal propagation defined by Lifshitz modes. We use these modes to construct causal and entanglement wedges and compute the geometric entanglement entropy, which in such a construction matches the field theory prescription.

  9. Code subspaces for LLM geometries

    NASA Astrophysics Data System (ADS)

    Berenstein, David; Miller, Alexandra

    2018-03-01

    We consider effective field theory around classical background geometries with a gauge theory dual, specifically those in the class of LLM geometries. These are dual to half-BPS states of N= 4 SYM. We find that the language of code subspaces is natural for discussing the set of nearby states, which are built by acting with effective fields on these backgrounds. This work extends our previous work by going beyond the strict infinite N limit. We further discuss how one can extract the topology of the state beyond N→∞ and find that, as before, uncertainty and entanglement entropy calculations provide a useful tool to do so. Finally, we discuss obstructions to writing down a globally defined metric operator. We find that the answer depends on the choice of reference state that one starts with. Therefore, within this setup, there is ambiguity in trying to write an operator that describes the metric globally.

  10. Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum.

    PubMed

    Fradkin, Eduardo; Moore, Joel E

    2006-08-04

    The entanglement entropy of a pure quantum state of a bipartite system A union or logical sumB is defined as the von Neumann entropy of the reduced density matrix obtained by tracing over one of the two parts. In one dimension, the entanglement of critical ground states diverges logarithmically in the subsystem size, with a universal coefficient that for conformally invariant critical points is related to the central charge of the conformal field theory. We find that the entanglement entropy of a standard class of z=2 conformal quantum critical points in two spatial dimensions, in addition to a nonuniversal "area law" contribution linear in the size of the AB boundary, generically has a universal logarithmically divergent correction, which is completely determined by the geometry of the partition and by the central charge of the field theory that describes the critical wave function.

  11. Braided Categories of Endomorphisms as Invariants for Local Quantum Field Theories

    NASA Astrophysics Data System (ADS)

    Giorgetti, Luca; Rehren, Karl-Henning

    2018-01-01

    We want to establish the "braided action" (defined in the paper) of the DHR category on a universal environment algebra as a complete invariant for completely rational chiral conformal quantum field theories. The environment algebra can either be a single local algebra, or the quasilocal algebra, both of which are model-independent up to isomorphism. The DHR category as an abstract structure is captured by finitely many data (superselection sectors, fusion, and braiding), whereas its braided action encodes the full dynamical information that distinguishes models with isomorphic DHR categories. We show some geometric properties of the "duality pairing" between local algebras and the DHR category that are valid in general (completely rational) chiral CFTs. Under some additional assumptions whose status remains to be settled, the braided action of its DHR category completely classifies a (prime) CFT. The approach does not refer to the vacuum representation, or the knowledge of the vacuum state.

  12. Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems

    NASA Astrophysics Data System (ADS)

    Tonni, Erik; Rodríguez-Laguna, Javier; Sierra, Germán

    2018-04-01

    Inhomogeneous quantum critical systems in one spatial dimension have been studied by using conformal field theory in static curved backgrounds. Two interesting examples are the free fermion gas in the harmonic trap and the inhomogeneous XX spin chain called rainbow chain. For conformal field theories defined on static curved spacetimes characterised by a metric which is Weyl equivalent to the flat metric, with the Weyl factor depending only on the spatial coordinate, we study the entanglement hamiltonian and the entanglement spectrum of an interval adjacent to the boundary of a segment where the same boundary condition is imposed at the endpoints. A contour function for the entanglement entropies corresponding to this configuration is also considered, being closely related to the entanglement hamiltonian. The analytic expressions obtained by considering the curved spacetime which characterises the rainbow model have been checked against numerical data for the rainbow chain, finding an excellent agreement.

  13. Classical phase space and Hadamard states in the BRST formalism for gauge field theories on curved spacetime

    NASA Astrophysics Data System (ADS)

    Wrochna, Michał; Zahn, Jochen

    We investigate linearized gauge theories on globally hyperbolic spacetimes in the BRST formalism. A consistent definition of the classical phase space and of its Cauchy surface analogue is proposed. We prove that it is isomorphic to the phase space in the ‘subsidiary condition’ approach of Hack and Schenkel in the case of Maxwell, Yang-Mills, and Rarita-Schwinger fields. Defining Hadamard states in the BRST formalism in a standard way, their existence in the Maxwell and Yang-Mills case is concluded from known results in the subsidiary condition (or Gupta-Bleuler) formalism. Within our framework, we also formulate criteria for non-degeneracy of the phase space in terms of BRST cohomology and discuss special cases. These include an example in the Yang-Mills case, where degeneracy is not related to a non-trivial topology of the Cauchy surface.

  14. Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity

    NASA Astrophysics Data System (ADS)

    Simonton, Dean Keith

    2010-06-01

    Campbell (1960) proposed that creative thought should be conceived as a blind-variation and selective-retention process (BVSR). This article reviews the developments that have taken place in the half century that has elapsed since his proposal, with special focus on the use of combinatorial models as formal representations of the general theory. After defining the key concepts of blind variants, creative thought, and disciplinary context, the combinatorial models are specified in terms of individual domain samples, variable field size, ideational combination, and disciplinary communication. Empirical implications are then derived with respect to individual, domain, and field systems. These abstract combinatorial models are next provided substantive reinforcement with respect to findings concerning the cognitive processes, personality traits, developmental factors, and social contexts that contribute to creativity. The review concludes with some suggestions regarding future efforts to explicate creativity according to BVSR theory.

  15. Partition functions for heterotic WZW conformal field theories

    NASA Astrophysics Data System (ADS)

    Gannon, Terry

    1993-08-01

    Thus far in the search for, and classification of, "physical" modular invariant partition functions ΣN LRχ Lχ R∗ the attention has been focused on the symmetric case where the holomorphic and anti-holomorphic sectors, and hence the characters χLand χR, are associated with the same Kac-Moody algebras ĝL = ĝR and levels κ L = κ R. In this paper we consider the more general possibility where ( ĝL, κ L) may not equal ( ĝR, κ R). We discuss which choices of algebras and levels may correspond to well-defined conformal field theories, we find the "smallest" such heterotic (i.e. asymmetric) partition functions, and we give a method, generalizing the Roberts-Terao-Warner lattice method, for explicitly constructing many other modular invariants. We conclude the paper by proving that this new lattice method will succeed in generating all the heterotic partition functions, for all choices of algebras and levels.

  16. Fishing the Fermi sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canfield, P.

    2008-03-01

    Sophocles had it right, the Rolling Stones made a friendly amendment and Linus Pauling detailed the conceptual mechanism for finding novel materials that will define and revolutionize the future. Within the field of solid-state physics, the discovery of remarkable phases and transitions is often tightly coupled to the design, discovery and growth of novel materials. The past several decades of work in the field of correlated electron physics - that is, the study of materials in which the interactions are sufficiently strong that conventional single-electron theories don't apply - can be described by a list of materials that have definedmore » new extremes, be it extremes of temperature, field, pressure, complexity or, even better, simplicity.« less

  17. The Strange (Hi)story of Particles and Waves

    NASA Astrophysics Data System (ADS)

    Zeh, H. Dieter

    2016-03-01

    This is an attempt of a non-technical but conceptually consistent presentation of quantum theory in a historical context. While the first part is written for a general readership, Section 5 may appear a bit provocative to some quantum physicists. I argue that the single-particle wave functions of quantum mechanics have to be correctly interpreted as field modes that are "occupied once" (i.e. first excited states of the corresponding quantum oscillators in the case of boson fields). Multiple excitations lead to apparent many-particle wave functions, while the quantum states proper are defined by wave function(al)s on the "configuration" space of fundamental fields, or on another, as yet elusive, fundamental local basis.

  18. Coexistence of magnetic and charge order in a two-component order parameter description of the layered superconductors

    NASA Astrophysics Data System (ADS)

    Doria, Mauro M.; Vargas-Paredes, Alfredo A.; Cariglia, Marco

    2014-12-01

    We consider an effective theory of superconductivity for layered superconductors using a two-component order parameter, and show that it allows the formation of a condensate with magnetic and charge degrees of freedom. This condensate is an inhomogeneous state, topologically stable, that exists without the presence of an applied magnetic field. In particular, it is associated to a charge density in the superconducting layers. We show that well defined angular momentum states have for their lowest moment an hexadecapole charge distribution, i.e. quartic in the momenta. Our approach is based on solving first order equations (FOE) that generalize the Abrikosov-Bogomolny equations of the Ginzburg-Landau theory with one order parameter. The FOE solve the variational equations of the theory in the limit of a small order parameter, which is achieved for the special temperature that corresponds to the crossing of the superconducting dome and the pseudogap transition line. This topologically stable state is a condensate of skyrmions that breaks time reversal symmetry and produces a weak local magnetic field below the threshold of experimental observation.

  19. Testing quantum gravity

    NASA Astrophysics Data System (ADS)

    Hansson, Johan; Francois, Stephane

    The search for a theory of quantum gravity is the most fundamental problem in all of theoretical physics, but there are as yet no experimental results at all to guide this endeavor. What seems to be needed is a pragmatic way to test if gravitation really occurs between quantum objects or not. In this paper, we suggest such a potential way out of this deadlock, utilizing macroscopic quantum systems; superfluid helium, gaseous Bose-Einstein condensates and “macroscopic” molecules. It turns out that true quantum gravity effects — here defined as observable gravitational interactions between truly quantum objects — could and should be seen (if they occur in nature) using existing technology. A falsification of the low-energy limit in the accessible weak-field regime would also falsify the full theory of quantum gravity, making it enter the realm of testable, potentially falsifiable theories, i.e. becoming real physics after almost a century of pure theorizing. If weak-field gravity between quantum objects is shown to be absent (in the regime where the approximation should apply), we know that gravity then is a strictly classical phenomenon absent at the quantum level.

  20. Unifying the field: developing an integrative paradigm for behavior therapy.

    PubMed

    Eifert, G H; Forsyth, J P; Schauss, S L

    1993-06-01

    The limitations of early conditioning models and treatments have led many behavior therapists to abandon conditioning principles and replace them with loosely defined cognitive theories and treatments. Systematic theory extensions to human behavior, using new concepts and processes derived from and built upon the basic principles, could have prevented the divisive debates over whether psychological dysfunctions are the results of conditioning or cognition and whether they should be treated with conditioning or cognitive techniques. Behavior therapy could also benefit from recent advances in experimental cognitive psychology that provide objective behavioral methods of studying dysfunctional processes. We suggest a unifying paradigm for explaining abnormal behavior that links and integrates different fields of study and processes that are frequently believed to be incompatible or antithetical such as biological vulnerability variables, learned behavioral repertoires, and that also links historical and current antecedents of the problem. An integrative paradigmatic behavioral approach may serve a unifying function in behavior therapy (a) by promoting an understanding of the dysfunctional processes involved in different disorders and (b) by helping clinicians conduct functional analyses that lead to theory-based, individualized, and effective treatments.

  1. A holographic model for black hole complementarity

    DOE PAGES

    Lowe, David A.; Thorlacius, Larus

    2016-12-07

    Here, we explore a version of black hole complementarity, where an approximate semiclassical effective field theory for interior infalling degrees of freedom emerges holo-graphically from an exact evolution of exterior degrees of freedom. The infalling degrees of freedom have a complementary description in terms of outgoing Hawking radiation and must eventually decohere with respect to the exterior Hamiltonian, leading to a breakdown of the semiclassical description for an infaller. Trace distance is used to quantify the difference between the complementary time evolutions, and to define a decoherence time. We propose a dictionary where the evolution with respect to the bulkmore » effective Hamiltonian corresponds to mean field evolution in the holographic theory. In a particular model for the holographic theory, which exhibits fast scrambling, the decoherence time coincides with the scrambling time. The results support the hypothesis that decoherence of the infalling holographic state and disruptive bulk effects near the curvature singularity are comple-mentary descriptions of the same physics, which is an important step toward resolving the black hole information paradox.« less

  2. Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor

    NASA Astrophysics Data System (ADS)

    Szcześniak, R.; Jarosik, M. W.; Tarasewicz, P.; Durajski, A. P.

    2018-05-01

    The thermodynamic properties of MgB2 superconductor can be explained using the multi-band models. In the present paper we have examined the experimental data available in literature and we have found out that it is possible to reproduce the measured values of the superconducting energy gaps, the thermodynamic critical magnetic field and specific heat jump within the framework of two-band Eliashberg formalism and appropriate defined free energy difference between superconducting and normal state. Moreover, we found that the obtained results differ significantly from the predictions of the conventional Bardeen-Cooper-Schrieffer theory.

  3. Effective action for stochastic partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hochberg, David; Centro de Astrobiologia, INTA, Carratera Ajalvir, Km. 4, 28850 Torrejon, Madrid,; Molina-Paris, Carmen

    Stochastic partial differential equations (SPDEs) are the basic tool for modeling systems where noise is important. SPDEs are used for models of turbulence, pattern formation, and the structural development of the universe itself. It is reasonably well known that certain SPDEs can be manipulated to be equivalent to (nonquantum) field theories that nevertheless exhibit deep and important relationships with quantum field theory. In this paper we systematically extend these ideas: We set up a functional integral formalism and demonstrate how to extract all the one-loop physics for an arbitrary SPDE subject to arbitrary Gaussian noise. It is extremely important tomore » realize that Gaussian noise does not imply that the field variables undergo Gaussian fluctuations, and that these nonquantum field theories are fully interacting. The limitation to one loop is not as serious as might be supposed: Experience with quantum field theories (QFTs) has taught us that one-loop physics is often quite adequate to give a good description of the salient issues. The limitation to one loop does, however, offer marked technical advantages: Because at one loop almost any field theory can be rendered finite using zeta function technology, we can sidestep the complications inherent in the Martin-Siggia-Rose formalism (the SPDE analog of the Becchi-Rouet-Stora-Tyutin formalism used in QFT) and instead focus attention on a minimalist approach that uses only the physical fields (this ''direct approach'' is the SPDE analog of canonical quantization using physical fields). After setting up the general formalism for the characteristic functional (partition function), we show how to define the effective action to all loops, and then focus on the one-loop effective action and its specialization to constant fields: the effective potential. The physical interpretation of the effective action and effective potential for SPDEs is addressed and we show that key features carry over from QFT to the case of SPDEs. An important result is that the amplitude of the two-point function governing the noise acts as the loop-counting parameter and is the analog of Planck's constant ({Dirac_h}/2{pi}) in this SPDE context. We derive a general expression for the one-loop effective potential of an arbitrary SPDE subject to translation-invariant Gaussian noise, and compare this with the one-loop potential for QFT. (c) 1999 The American Physical Society.« less

  4. Forest-fire model with natural fire resistance.

    PubMed

    Yoder, Mark R; Turcotte, Donald L; Rundle, John B

    2011-04-01

    Observations suggest that contemporary wildfire suppression practices in the United States have contributed to conditions that facilitate large, destructive fires. We introduce a forest-fire model with natural fire resistance that supports this theory. Fire resistance is defined with respect to the size and shape of clusters; the model yields power-law frequency-size distributions of model fires that are consistent with field observations in the United States, Canada, and Australia.

  5. Quantification of correlations in quantum many-particle systems.

    PubMed

    Byczuk, Krzysztof; Kuneš, Jan; Hofstetter, Walter; Vollhardt, Dieter

    2012-02-24

    We introduce a well-defined and unbiased measure of the strength of correlations in quantum many-particle systems which is based on the relative von Neumann entropy computed from the density operator of correlated and uncorrelated states. The usefulness of this general concept is demonstrated by quantifying correlations of interacting electrons in the Hubbard model and in a series of transition-metal oxides using dynamical mean-field theory.

  6. Revisiting competition in a classic model system using formal links between theory and data.

    PubMed

    Hart, Simon P; Burgin, Jacqueline R; Marshall, Dustin J

    2012-09-01

    Formal links between theory and data are a critical goal for ecology. However, while our current understanding of competition provides the foundation for solving many derived ecological problems, this understanding is fractured because competition theory and data are rarely unified. Conclusions from seminal studies in space-limited benthic marine systems, in particular, have been very influential for our general understanding of competition, but rely on traditional empirical methods with limited inferential power and compatibility with theory. Here we explicitly link mathematical theory with experimental field data to provide a more sophisticated understanding of competition in this classic model system. In contrast to predictions from conceptual models, our estimates of competition coefficients show that a dominant space competitor can be equally affected by interspecific competition with a poor competitor (traditionally defined) as it is by intraspecific competition. More generally, the often-invoked competitive hierarchies and intransitivities in this system might be usefully revisited using more sophisticated empirical and analytical approaches.

  7. Developing a Domain Theory Defining and Exemplifying a Learning Theory of Progressive Attainments

    ERIC Educational Resources Information Center

    Bunderson, C. Victor

    2011-01-01

    This article defines the concept of Domain Theory, or, when educational measurement is the goal, one might call it a "Learning Theory of Progressive Attainments in X Domain". The concept of Domain Theory is first shown to be rooted in validity theory, then the concept of domain theory is expanded to amplify its necessary but long neglected…

  8. Exploring the Potential of TanDEM-X Data in Rice Monitoring

    NASA Astrophysics Data System (ADS)

    Erten, E.

    2015-12-01

    In this work, phenological parameters such as growth stage, calendar estimation, crop density and yield estimation for rice fields are estimated employing TanDEM-X data. Currently, crop monitoring is country-dependent. Most countries have databases based on cadastral information and annual farmer inputs. Inaccuracies are coming from wrong or missing farmer declarations and/or coarsely updated cadastral boundary definitions. This leads to inefficient regulation of the market, frauds as well as to ecological risks. An accurate crop calendar is also missing, since farmers provide estimations in advance and there is no efficient way to know the growth status over large plantations. SAR data is of particular interest for these purposes. The proposed method includes two step approach including field detection and phenological state estimation. In the context of precise farming it is substantial to define field borders which are usually changing every cultivation period. Linking the SAR inherit properties to transplanting practice such as irrigation, the spatial database of rice-planted agricultural crops can be updated. Boundaries of agricultural fields will be defined in the database, and assignments of crops and sowing dates will be continuously updated by our monitoring system considering that sowing practice variously changes depending on the field owner decision. To define and segment rice crops, the system will make use of the fact that rice fields are characterized as flooded parcels separated by path networks composed by soil or rare grass. This natural segmentation is well detectable by inspecting low amplitude and coherence values of bistatic acquisitions. Once the field borders are defined, the phenology estimation of crops monitored at any time is the key point of monitoring. In this aspect the wavelength and the polarization option of TanDEM-X are enough to characterize the small phenological changes. The combination of bistatic interferometry and Radiative Transfer Theory (RTT) with different polarization provides a realistic description of plants including their full morphology (stalks, tillers, leaves and panicles).

  9. The persistent cosmic web and its filamentary structure - I. Theory and implementation

    NASA Astrophysics Data System (ADS)

    Sousbie, T.

    2011-06-01

    We present DisPerSE, a novel approach to the coherent multiscale identification of all types of astrophysical structures, in particular the filaments, in the large-scale distribution of the matter in the Universe. This method and the corresponding piece of software allows for a genuinely scale-free and parameter-free identification of the voids, walls, filaments, clusters and their configuration within the cosmic web, directly from the discrete distribution of particles in N-body simulations or galaxies in sparse observational catalogues. To achieve that goal, the method works directly over the Delaunay tessellation of the discrete sample and uses the Delaunay tessellation field estimator density computed at each tracer particle; no further sampling, smoothing or processing of the density field is required. The idea is based on recent advances in distinct subdomains of the computational topology, namely the discrete Morse theory which allows for a rigorous application of topological principles to astrophysical data sets, and the theory of persistence, which allows us to consistently account for the intrinsic uncertainty and Poisson noise within data sets. Practically, the user can define a given persistence level in terms of robustness with respect to noise (defined as a 'number of σ') and the algorithm returns the structures with the corresponding significance as sets of critical points, lines, surfaces and volumes corresponding to the clusters, filaments, walls and voids - filaments, connected at cluster nodes, crawling along the edges of walls bounding the voids. From a geometrical point of view, the method is also interesting as it allows for a robust quantification of the topological properties of a discrete distribution in terms of Betti numbers or Euler characteristics, without having to resort to smoothing or having to define a particular scale. In this paper, we introduce the necessary mathematical background and describe the method and implementation, while we address the application to 3D simulated and observed data sets in the companion paper (Sousbie, Pichon & Kawahara, Paper II).

  10. From complexity to reality: providing useful frameworks for defining systems of care.

    PubMed

    Levison-Johnson, Jody; Wenz-Gross, Melodie

    2010-02-01

    Because systems of care are not uniform across communities, there is a need to better document the process of system development, define the complexity, and describe the development of the structures, processes, and relationships within communities engaged in system transformation. By doing so, we begin to identify the necessary and sufficient components that, at minimum, move us from usual care within a naturally occurring system to a true system of care. Further, by documenting and measuring the degree to which key components are operating, we may be able to identify the most successful strategies in creating system reform. The theory of change and logic model offer a useful framework for communities to begin the adaptive work necessary to effect true transformation. Using the experience of two system of care communities, this new definition and the utility of a theory of change and logic model framework for defining local system transformation efforts will be discussed. Implications for the field, including the need to further examine the natural progression of systems change and to create quantifiable measures of transformation, will be raised as new challenges for the evolving system of care movement.

  11. The role of stabilizing and communicating symptoms given overlapping communities in psychopathology networks.

    PubMed

    Blanken, Tessa F; Deserno, Marie K; Dalege, Jonas; Borsboom, Denny; Blanken, Peter; Kerkhof, Gerard A; Cramer, Angélique O J

    2018-04-11

    Network theory, as a theoretical and methodological framework, is energizing many research fields, among which clinical psychology and psychiatry. Fundamental to the network theory of psychopathology is the role of specific symptoms and their interactions. Current statistical tools, however, fail to fully capture this constitutional property. We propose community detection tools as a means to evaluate the complex network structure of psychopathology, free from its original boundaries of distinct disorders. Unique to this approach is that symptoms can belong to multiple communities. Using a large community sample and spanning a broad range of symptoms (Symptom Checklist-90-Revised), we identified 18 communities of interconnected symptoms. The differential role of symptoms within and between communities offers a framework to study the clinical concepts of comorbidity, heterogeneity and hallmark symptoms. Symptoms with many and strong connections within a community, defined as stabilizing symptoms, could be thought of as the core of a community, whereas symptoms that belong to multiple communities, defined as communicating symptoms, facilitate the communication between problem areas. We propose that defining symptoms on their stabilizing and/or communicating role within and across communities accelerates our understanding of these clinical phenomena, central to research and treatment of psychopathology.

  12. Quantum gravity from noncommutative spacetime

    NASA Astrophysics Data System (ADS)

    Lee, Jungjai; Yang, Hyun Seok

    2014-12-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative ★-algebra) of quantum gravity.

  13. A theory of pragmatic information and its application to the quasi-species model of biological evolution.

    PubMed

    Weinberger, Edward D

    2002-01-01

    'Standard' information theory says nothing about the semantic content of information. Nevertheless, applications such as evolutionary theory demand consideration of precisely this aspect of information, a need that has motivated a largely unsuccessful search for a suitable measure of an 'amount of meaning'. This paper represents an attempt to move beyond this impasse, based on the observation that the meaning of a message can only be understood relative to its receiver. Positing that the semantic value of information is its usefulness in making an informed decision, we define pragmatic information as the information gain in the probability distributions of the receiver's actions, both before and after receipt of a message in some pre-defined ensemble. We then prove rigorously that our definition is the only one that satisfies obvious desiderata, such as the additivity of information from logically independent messages. This definition, when applied to the information 'learned' by the time evolution of a process, defies the intuitions of the few previous researchers thinking along these lines by being monotonic in the uncertainty that remains after receipt of the message, but non-monotonic in the Shannon entropy of the input ensemble. It also follows that the pragmatic information of the genetic 'messages' in an evolving population is a global Lyapunov function for Eigen's quasi-species model of biological evolution. A concluding section argues that a theory such as ours must explicitly acknowledge purposeful action, or 'agency', in such diverse fields as evolutionary theory and finance.

  14. Alternative definitions of the frozen energy in energy decomposition analysis of density functional theory calculations.

    PubMed

    Horn, Paul R; Head-Gordon, Martin

    2016-02-28

    In energy decomposition analysis (EDA) of intermolecular interactions calculated via density functional theory, the initial supersystem wavefunction defines the so-called "frozen energy" including contributions such as permanent electrostatics, steric repulsions, and dispersion. This work explores the consequences of the choices that must be made to define the frozen energy. The critical choice is whether the energy should be minimized subject to the constraint of fixed density. Numerical results for Ne2, (H2O)2, BH3-NH3, and ethane dissociation show that there can be a large energy lowering associated with constant density orbital relaxation. By far the most important contribution is constant density inter-fragment relaxation, corresponding to charge transfer (CT). This is unwanted in an EDA that attempts to separate CT effects, but it may be useful in other contexts such as force field development. An algorithm is presented for minimizing single determinant energies at constant density both with and without CT by employing a penalty function that approximately enforces the density constraint.

  15. Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields

    NASA Astrophysics Data System (ADS)

    Gelfer, E. G.; Fedotov, A. M.; Weber, S.

    2018-06-01

    We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.

  16. Properties of field functionals and characterization of local functionals

    NASA Astrophysics Data System (ADS)

    Brouder, Christian; Dang, Nguyen Viet; Laurent-Gengoux, Camille; Rejzner, Kasia

    2018-02-01

    Functionals (i.e., functions of functions) are widely used in quantum field theory and solid-state physics. In this paper, functionals are given a rigorous mathematical framework and their main properties are described. The choice of the proper space of test functions (smooth functions) and of the relevant concept of differential (Bastiani differential) are discussed. The relation between the multiple derivatives of a functional and the corresponding distributions is described in detail. It is proved that, in a neighborhood of every test function, the support of a smooth functional is uniformly compactly supported and the order of the corresponding distribution is uniformly bounded. Relying on a recent work by Dabrowski, several spaces of functionals are furnished with a complete and nuclear topology. In view of physical applications, it is shown that most formal manipulations can be given a rigorous meaning. A new concept of local functionals is proposed and two characterizations of them are given: the first one uses the additivity (or Hammerstein) property, the second one is a variant of Peetre's theorem. Finally, the first step of a cohomological approach to quantum field theory is carried out by proving a global Poincaré lemma and defining multi-vector fields and graded functionals within our framework.

  17. Holography for field theory solitons

    NASA Astrophysics Data System (ADS)

    Domokos, Sophia K.; Royston, Andrew B.

    2017-07-01

    We extend a well-known D-brane construction of the AdS/dCFT correspondence to non-abelian defects. We focus on the bulk side of the correspondence and show that there exists a regime of parameters in which the low-energy description consists of two approximately decoupled sectors. The two sectors are gravity in the ambient spacetime, and a six-dimensional supersymmetric Yang-Mills theory. The Yang-Mills theory is defined on a rigid AdS4 × S 2 background and admits sixteen supersymmetries. We also consider a one-parameter deformation that gives rise to a family of Yang-Mills theories on asymptotically AdS4 × S 2 spacetimes, which are invariant under eight supersymmetries. With future holographic applications in mind, we analyze the vacuum structure and perturbative spectrum of the Yang-Mills theory on AdS4 × S 2, as well as systems of BPS equations for finite-energy solitons. Finally, we demonstrate that the classical Yang-Mills theory has a consistent truncation on the two-sphere, resulting in maximally supersymmetric Yang-Mills on AdS4.

  18. On D-brane -anti D-brane effective actions and their all order bulk singularity structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatefi, Ehsan; Institute for Theoretical Physics, TU Wien,Wiedner Hauptstrasse 8-10/136, A-1040 Vienna

    All four point functions of brane anti brane system including their correct all order α{sup ′} corrections have been addressed. All five point functions of one closed string Ramond-Ramond (RR), two real tachyons and either one gauge field or the scalar field in both symmetric and asymmetric pictures have also been explored. The entire analysis of is carried out. Not only does it fix the vertex operator of RR in asymmetric picture and in higher point functions of string theory amplitudes but also it confirms the fact that there is no issue of picture dependence of the mixed closed RR,more » gauge fields, tachyons and fermion fields in all symmetric or anti symmetric ones. We compute S-matrix in the presence of a transverse scalar field, two real tachyons and that reveals two different kinds of bulk singularity structures, involving an infinite number of u-channel gauge field and (u+s{sup ′}+t{sup ′})-channel scalar bulk poles. In order to produce all those bulk singularity structures, we define various couplings at the level of the effective field theory that involve the mixing term of Chern-Simons coupling (with C-potential field) and a covariant derivative of the scalar field that comes from the pull-back of brane. Eventually we explore their all order α{sup ′} corrections in the presence of brane anti brane system where various remarks will be also pointed out.« less

  19. Variations on the seventh route to relativity

    NASA Astrophysics Data System (ADS)

    Anderson, Edward

    2003-11-01

    Wheeler asked how one might derive the Einstein-Hamilton-Jacobi equation from plausible first principles without any use of the Einstein field equations themselves. In addition to Hojman, Kuchař and Teitelboim’s “seventh route to relativity” partial answer to this, there is now a “3-space” partial answer due to Barbour, Foster and Ó Murchadha (BFÓ) which principally differs in that general covariance is no longer presupposed. BFÓ’s formulation of the 3-space approach is based on best-matched actions such as the lapse-eliminated Baierlein-Sharp-Wheeler (BSW) action of general relativity (GR). These give rise to several branches of gravitational theories including GR on superspace and a theory of gravity on conformal superspace. This paper investigates the 3-space approach further, motivated both by the hierarchies of increasingly well-defined and weakened simplicity postulates present in all routes to relativity, and by the requirement that all the known fundamental matter fields be included. We further the study of configuration spaces of gravity-matter systems upon which BFÓ’s formulation leans. We note that in further developments the lapse-eliminated BSW actions used by BFÓ become impractical and require generalization. We circumvent many of these problems by the equivalent use of lapse-uneliminated actions, which furthermore permit us to interpret BFÓ’s formulation within Kuchař’s generally covariant hypersurface framework. This viewpoint provides alternative reasons to BFÓ’s as to why the inclusion of bosonic fields in the 3-space approach gives rise to minimally coupled scalar fields, electromagnetism and Yang-Mills theory. This viewpoint also permits us to quickly exhibit further GR-matter theories admitted by the 3-space formulation. In particular, we show that the spin-1/2 fermions of the theories of Dirac, Maxwell-Dirac and Yang-Mills-Dirac, all coupled to GR, are admitted by the generalized 3-space formulation we present. Thus all the known fundamental matter fields can be accommodated. This corresponds to being able to pick actions for all these theories which have less kinematics than suggested by the generally covariant hypersurface framework. For all these theories, Wheeler’s thin sandwich conjecture may be posed, rendering them timeless in Barbour’s sense.

  20. Finsler geometry of nonlinear elastic solids with internal structure

    NASA Astrophysics Data System (ADS)

    Clayton, J. D.

    2017-02-01

    Concepts from Finsler differential geometry are applied towards a theory of deformable continua with internal structure. The general theory accounts for finite deformation, nonlinear elasticity, and various kinds of structural features in a solid body. The general kinematic structure of the theory includes macroscopic and microscopic displacement fields-i.e., a multiscale representation-whereby the latter are represented mathematically by the director vector of pseudo-Finsler space, not necessarily of unit magnitude. A physically appropriate fundamental (metric) tensor is introduced, leading to affine and nonlinear connections. A deformation gradient tensor is defined via differentiation of the macroscopic motion field, and another metric indicative of strain in the body is a function of this gradient. A total energy functional of strain, referential microscopic coordinates, and horizontal covariant derivatives of the latter is introduced. Variational methods are applied to derive Euler-Lagrange equations and Neumann boundary conditions. The theory is shown to encompass existing continuum physics models such as micromorphic, micropolar, strain gradient, phase field, and conventional nonlinear elasticity models, and it can reduce to such models when certain assumptions on geometry, kinematics, and energy functionals are imposed. The theory is applied to analyze two physical problems in crystalline solids: shear localization/fracture in a two-dimensional body and cavitation in a spherical body. In these examples, a conformal or Weyl-type transformation of the fundamental tensor enables a description of dilatation associated, respectively, with cleavage surface roughness and nucleation of voids or vacancies. For the shear localization problem, the Finsler theory is able to accurately reproduce the surface energy of Griffith's fracture mechanics, and it predicts dilatation-induced toughening as observed in experiments on brittle crystals. For the cavitation problem, the Finsler theory is able to accurately reproduce the vacancy formation energy at a nanoscale resolution, and various solutions describe localized cavitation at the core of the body and/or distributed dilatation and softening associated with amorphization as observed in atomic simulations, with relative stability of solutions depending on the regularization length.

  1. Self-adjointness of deformed unbounded operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Much, Albert

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  2. The DOZZ formula from the path integral

    NASA Astrophysics Data System (ADS)

    Kupiainen, Antti; Rhodes, Rémi; Vargas, Vincent

    2018-05-01

    We present a rigorous proof of the Dorn, Otto, Zamolodchikov, Zamolodchikov formula (the DOZZ formula) for the 3 point structure constants of Liouville Conformal Field Theory (LCFT) starting from a rigorous probabilistic construction of the functional integral defining LCFT given earlier by the authors and David. A crucial ingredient in our argument is a probabilistic derivation of the reflection relation in LCFT based on a refined tail analysis of Gaussian multiplicative chaos measures.

  3. Electromagnetics. Volume 1, Number 4, October-December 1981.

    DTIC Science & Technology

    1981-01-01

    terms. 1.6 Matrix and Operator Theory Integral equations have been cast in approximate numerical form by the moment method (MoM). In this numerical...introduced the eigenmode expansion method to find more properties of the SEM [3.4]. One defines eigenvalues and eigenmodes for the integral operator (kernel...exterior surface of the system. Mechanisms that play a role in the penetration are (1) diffusion through metal skins , (2) field leakage through

  4. Subcritical Multiplicative Chaos for Regularized Counting Statistics from Random Matrix Theory

    NASA Astrophysics Data System (ADS)

    Lambert, Gaultier; Ostrovsky, Dmitry; Simm, Nick

    2018-05-01

    For an {N × N} Haar distributed random unitary matrix U N , we consider the random field defined by counting the number of eigenvalues of U N in a mesoscopic arc centered at the point u on the unit circle. We prove that after regularizing at a small scale {ɛN > 0}, the renormalized exponential of this field converges as N \\to ∞ to a Gaussian multiplicative chaos measure in the whole subcritical phase. We discuss implications of this result for obtaining a lower bound on the maximum of the field. We also show that the moments of the total mass converge to a Selberg-like integral and by taking a further limit as the size of the arc diverges, we establish part of the conjectures in Ostrovsky (Nonlinearity 29(2):426-464, 2016). By an analogous construction, we prove that the multiplicative chaos measure coming from the sine process has the same distribution, which strongly suggests that this limiting object should be universal. Our approach to the L 1-phase is based on a generalization of the construction in Berestycki (Electron Commun Probab 22(27):12, 2017) to random fields which are only asymptotically Gaussian. In particular, our method could have applications to other random fields coming from either random matrix theory or a different context.

  5. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory

    DOE PAGES

    Johnston, David C.

    2017-12-26

    Here, a comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T, magnetic field H, and anisotropy field parameter h A1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,more » again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature T N, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and h A1. Phase diagrams at T=0 in the H z– h A1 plane and at T > 0 in the H z– T plane are constructed for spins S=1/2. For h A1=0, the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As h A1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in h A1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Furthermore, applications of the theory to extract h A1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.« less

  6. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory

    NASA Astrophysics Data System (ADS)

    Johnston, David C.

    2017-12-01

    A comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T , magnetic field H , and anisotropy field parameter hA 1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z -axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the x y plane, again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature TN, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the x y plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z -axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T ,H , and hA 1. Phase diagrams at T =0 in the Hz-hA 1 plane and at T >0 in the Hz-T plane are constructed for spins S =1 /2 . For hA 1=0 , the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As hA 1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in hA 1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Applications of the theory to extract hA 1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.

  7. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, David C.

    Here, a comprehensive study of the influence of classical anisotropy fields on the magnetic properties of Heisenberg antiferromagnets within unified molecular field theory versus temperature T, magnetic field H, and anisotropy field parameter h A1 is presented for systems comprised of identical crystallographically-equivalent local moments. The anisotropy field for collinear z-axis antiferromagnetic (AFM) ordering is constructed so that it is aligned in the direction of each ordered and/or field-induced thermal-average moment with a magnitude proportional to the moment, whereas that for XY anisotropy is defined to be in the direction of the projection of the moment onto the xy plane,more » again with a magnitude proportional to the moment. Properties studied include the zero-field Néel temperature T N, ordered moment, heat capacity, and anisotropic magnetic susceptibility of the AFM phase versus T with moments aligned either along the z axis or in the xy plane. Also determined are the high-field magnetization perpendicular to the axis or plane of collinear or planar noncollinear AFM ordering, the high-field magnetization along the z axis of a collinear z-axis AFM, spin-flop (SF), and paramagnetic (PM) phases, and the free energies of these phases versus T, H, and h A1. Phase diagrams at T=0 in the H z– h A1 plane and at T > 0 in the H z– T plane are constructed for spins S=1/2. For h A1=0, the SF phase is stable at low field and the PM phase at high field with no AFM phase present. As h A1 increases, the phase diagram contains the AFM, SF, and PM phases. Further increases in h A1 lead to the disappearance of the SF phase and the appearance of a tricritical point on the AFM-PM transition curve. Furthermore, applications of the theory to extract h A1 from experimental low-field magnetic susceptibility data and high-field magnetization versus field isotherms for single crystals of AFMs are discussed.« less

  8. Riemannian and Lorentzian flow-cut theorems

    NASA Astrophysics Data System (ADS)

    Headrick, Matthew; Hubeny, Veronika E.

    2018-05-01

    We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut (MFMC) theorem for boundary regions, applied recently to develop a ‘bit-thread’ interpretation of holographic entanglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous MFMC theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworth’s theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.

  9. Philosophy and conceptual framework: collectively structuring nursing care systematization.

    PubMed

    Schmitz, Eudinéia Luz; Gelbcke, Francine Lima; Bruggmann, Mario Sérgio; Luz, Susian Cássia Liz

    2017-03-30

    To build the Nursing Philosophy and Conceptual Framework that will support the Nursing Care Systematization in a hospital in southern Brazil with the active participation of the institution's nurses. Convergent Care Research Data collection took place from July to October 2014, through two workshops and four meetings, with 42 nurses. As a result, the nursing philosophy and conceptual framework were created and the theory was chosen. Data analysis was performed based on Morse and Field. The philosophy involves the following beliefs: team nursing; team work; holistic care; service excellence; leadership/coordination; interdisciplinary team commitment. The conceptual framework brings concepts such as: human being; nursing; nursing care, safe care. The nursing theory defined was that of Wanda de Aguiar Horta. As a contribution, it brought the construction of the institutions' nursing philosophy and conceptual framework, and the definition of a nursing theory.

  10. Tackling higher derivative ghosts with the Euclidean path integral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanini, Michele; Department of Physics, Syracuse University, Syracuse, New York 13244; Trodden, Mark

    2011-05-15

    An alternative to the effective field theory approach to treat ghosts in higher derivative theories is to attempt to integrate them out via the Euclidean path integral formalism. It has been suggested that this method could provide a consistent framework within which we might tolerate the ghost degrees of freedom that plague, among other theories, the higher derivative gravity models that have been proposed to explain cosmic acceleration. We consider the extension of this idea to treating a class of terms with order six derivatives, and find that for a general term the Euclidean path integral approach works in themore » most trivial background, Minkowski. Moreover we see that even in de Sitter background, despite some difficulties, it is possible to define a probability distribution for tensorial perturbations of the metric.« less

  11. A Tour Through Shape Dynamic Black Holes

    NASA Astrophysics Data System (ADS)

    Herczeg, Gabriel

    Shape dynamics is a classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Despite these differences, shape dynamics and general relativity generically predict the same dynamics--there exist gauge-fixings of each theory that ensure agreement with the other. However, these gauge-fixing conditions are not necessarily globally well-defined and it is therefore possible to find solutions of the shape dynamics equations of motion that agree with general relativity on some open neighborhoods, but which have different global structures. In particular, the black hole solutions of the two theories disagree globally. Understanding these novel "shape dynamic black holes" is the primary goal of this thesis.

  12. Thermodynamics of hairy black holes in Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Hennigar, Robie A.; Tjoa, Erickson; Mann, Robert B.

    2017-02-01

    We perform a thorough study of the thermodynamic properties of a class of Lovelock black holes with conformal scalar hair arising from coupling of a real scalar field to the dimensionally extended Euler densities. We study the linearized equations of motion of the theory and describe constraints under which the theory is free from ghosts/tachyons. We then consider, within the context of black hole chemistry, the thermodynamics of the hairy black holes in the Gauss-Bonnet and cubic Lovelock theories. We clarify the connection between isolated critical points and thermodynamic singularities, finding a one parameter family of these critical points which occur for well-defined thermodynamic parameters. We also report on a number of novel results, including `virtual triple points' and the first example of a `λ-line' — a line of second order phase transitions — in black hole thermodynamics.

  13. Factorization of chiral string amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  14. Factorization of chiral string amplitudes

    DOE PAGES

    Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye

    2016-09-16

    We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less

  15. AGT/ℤ2

    NASA Astrophysics Data System (ADS)

    Le Floch, Bruno; Turiaci, Gustavo J.

    2017-12-01

    We relate Liouville/Toda CFT correlators on Riemann surfaces with boundaries and cross-cap states to supersymmetric observables in four-dimensional N=2 gauge theories. Our construction naturally involves four-dimensional theories with fields defined on different ℤ2 quotients of the sphere (hemisphere and projective space) but nevertheless interacting with each other. The six-dimensional origin is a ℤ2 quotient of the setup giving rise to the usual AGT correspondence. To test the correspondence, we work out the ℝℙ4 partition function of four-dimensional N=2 theories by combining a 3d lens space and a 4d hemisphere partition functions. The same technique reproduces known ℝℙ2 partition functions in a form that lets us easily check two-dimensional Seiberg-like dualities on this nonorientable space. As a bonus we work out boundary and cross-cap wavefunctions in Toda CFT.

  16. Strong field QED in lepton colliders and electron/laser interactions

    NASA Astrophysics Data System (ADS)

    Hartin, Anthony

    2018-05-01

    The studies of strong field particle physics processes in electron/laser interactions and lepton collider interaction points (IPs) are reviewed. These processes are defined by the high intensity of the electromagnetic fields involved and the need to take them into account as fully as possible. Thus, the main theoretical framework considered is the Furry interaction picture within intense field quantum field theory. In this framework, the influence of a background electromagnetic field in the Lagrangian is calculated nonperturbatively, involving exact solutions for quantized charged particles in the background field. These “dressed” particles go on to interact perturbatively with other particles, enabling the background field to play both macroscopic and microscopic roles. Macroscopically, the background field starts to polarize the vacuum, in effect rendering it a dispersive medium. Particles encountering this dispersive vacuum obtain a lifetime, either radiating or decaying into pair particles at a rate dependent on the intensity of the background field. In fact, the intensity of the background field enters into the coupling constant of the strong field quantum electrodynamic Lagrangian, influencing all particle processes. A number of new phenomena occur. Particles gain an intensity-dependent rest mass shift that accounts for their presence in the dispersive vacuum. Multi-photon events involving more than one external field photon occur at each vertex. Higher order processes which exchange a virtual strong field particle resonate via the lifetimes of the unstable strong field states. Two main arenas of strong field physics are reviewed; those occurring in relativistic electron interactions with intense laser beams, and those occurring in the beam-beam physics at the interaction point of colliders. This review outlines the theory, describes its significant novel phenomenology and details the experimental schema required to detect strong field effects and the simulation programs required to model them.

  17. Supersymmetric Renyi entropy in CFT 2 and AdS 3

    DOE PAGES

    Giveon, Amit; Kutasov, David

    2016-01-01

    We show that in any two dimensional conformal field theory with (2, 2) super-symmetry one can define a supersymmetric analog of the usual Renyi entropy of a spatial region A. It differs from the Renyi entropy by a universal function (which we compute) of the central charge, Renyi parameter n and the geometric parameters of A. In the limit n → 1 it coincides with the entanglement entropy. Thus, it contains the same information as the Renyi entropy but its computation only involves correlation functions of chiral and anti-chiral operators. We also show that this quantity appears naturally in stringmore » theory on AdS3.« less

  18. Parameterised post-Newtonian expansion in screened regions

    NASA Astrophysics Data System (ADS)

    McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge

    2017-12-01

    The parameterised post-Newtonian (PPN) formalism has enabled stringent tests of static weak-field gravity in a theory-independent manner. Here we incorporate screening mechanisms of modified gravity theories into the framework by introducing an effective gravitational coupling and defining the PPN parameters as functions of position. To determine these functions we develop a general method for efficiently performing the post-Newtonian expansion in screened regimes. For illustration, we derive all the PPN functions for a cubic galileon and a chameleon model. We also analyse the Shapiro time delay effect for these two models and find no deviations from General Relativity insofar as the signal path and the perturbing mass reside in a screened region of space.

  19. Thermospheric dynamics - A system theory approach

    NASA Technical Reports Server (NTRS)

    Codrescu, M.; Forbes, J. M.; Roble, R. G.

    1990-01-01

    A system theory approach to thermospheric modeling is developed, based upon a linearization method which is capable of preserving nonlinear features of a dynamical system. The method is tested using a large, nonlinear, time-varying system, namely the thermospheric general circulation model (TGCM) of the National Center for Atmospheric Research. In the linearized version an equivalent system, defined for one of the desired TGCM output variables, is characterized by a set of response functions that is constructed from corresponding quasi-steady state and unit sample response functions. The linearized version of the system runs on a personal computer and produces an approximation of the desired TGCM output field height profile at a given geographic location.

  20. The virtues of evidence.

    PubMed

    Zarkovich, Erica; Upshur, R E G

    2002-01-01

    Evidence-based medicine has been defined as the conscientious and judicious use of current best evidence in making clinical decisions. This paper will attempt to explicate the terms "conscientious" and "judicious" within the evidence-based medicine definition. It will be argued that "conscientious" and "judicious" represent virtue terms derived from virtue ethics and virtue epistemology. The identification of explicit virtue components in the definition and therefore conception of evidence-based medicine presents an important starting point in the connection between virtue theories and medicine itself. In addition, a unification of virtue theories and evidence-based medicine will illustrate the need for future research in order to combine the fields of virtue-based approaches and clinical practice.

  1. Estimating permeability from quasi-static deformation: Temporal variations and arrival time inversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasco, D.W.; Ferretti, Alessandro; Novali, Fabrizio

    2008-05-01

    Transient pressure variations within a reservoir can be treated as a propagating front and analyzed using an asymptotic formulation. From this perspective one can define a pressure 'arrival time' and formulate solutions along trajectories, in the manner of ray theory. We combine this methodology and a technique for mapping overburden deformation into reservoir volume change as a means to estimate reservoir flow properties, such as permeability. Given the entire 'travel time' or phase field, obtained from the deformation data, we can construct the trajectories directly, there-by linearizing the inverse problem. A numerical study indicates that, using this approach, we canmore » infer large-scale variations in flow properties. In an application to Interferometric Synthetic Aperture (InSAR) observations associated with a CO{sub 2} injection at the Krechba field, Algeria, we image pressure propagation to the northwest. An inversion for flow properties indicates a linear trend of high permeability. The high permeability correlates with a northwest trending fault on the flank of the anticline which defines the field.« less

  2. String in AdS black hole: A thermo field dynamic approach

    NASA Astrophysics Data System (ADS)

    Cantcheff, M. Botta; Gadelha, Alexandre L.; Marchioro, Dáfni F. Z.; Nedel, Daniel Luiz

    2012-10-01

    Based on Maldacena’s description of an eternal anti-de Sitter (AdS) black hole, we reassess the thermo field dynamics (TFD) formalism in the context of the AdS/CFT correspondence. The model studied here involves the maximally extended AdS-Schwarschild solution and two (noninteracting) copies of the conformal field theory (CFT) associated to the global AdS spacetime, along with an extension of the string by imposing natural gluing conditions in the horizon. We show that the gluing conditions in the horizon define a string boundary state which is identified with the TFD thermal vacuum, globally defined in the Kruskal extension of the AdS black hole. We emphasize the connection of this picture with unitary SU(1,1) TFD formulation, and we show that information about the bulk and the conformal boundary is present in the SU(1,1) parameters. Using the unitary SU(1,1) TFD formulation, a canonical prescription for calculating the world sheet real time thermal Green’s function is made, and the entropy associated with the entanglement of the two CFT’s is calculated.

  3. Some current views on the origins and prospects of correlation optics.

    PubMed

    Angelsky, O V; Felde, Ch V; Polyanskii, P V

    2016-04-20

    The state of the art modern branch of optics and photonics now referred to as correlation optics is discussed in connection with both its origins and promising prospects. We use here the term "correlation" not only as a synonym of the term "coherence," but also for emphasizing the necessity of taking into account fine, sometimes enigmatic, phase relations among the components of complex optical fields, even if such fields are conventionally defined as completely coherent. Selection of topics for this brief review of correlation optics outlooks was not dictated by intention of comprehensive representation of this field of research, but rather by the scientific interests of the authors, ranging from classical theory of diffraction, holography, and light-scattering to modern singular optics.

  4. Liapunov stability analysis of hybrid dynamical systems in the neighborhood of nontrivial equilibrium

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.

    1973-01-01

    This paper is concerned with the stability of a hybrid dynamical system in the neighborhood of a nontrivial equilibrium, where the system consists of one rigid part and n elastic members. The body moves in a central-force field with its mass center describing a circular orbit. The nontrivial equilibrium is defined by steady rotation of the system at an angular velocity equal to the orbital velocity, with the elastic members being in deformed state. A Liapunov stability analysis is performed by assuming small perturbations about the nontrivial equilibrium, where the latter is generally defined by nonlinear differential equations. The theory is applied to a gravity-gradient stabilized satellite with flexible appendages.

  5. Stochastic Gravity: Theory and Applications.

    PubMed

    Hu, Bei Lok; Verdaguer, Enric

    2004-01-01

    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.

  6. 2d affine XY-spin model/4d gauge theory duality and deconfinement

    NASA Astrophysics Data System (ADS)

    Anber, Mohamed M.; Poppitz, Erich; Ünsal, Mithat

    2012-04-01

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2)/ {{Z}_2} gauge theories, compactified on a small spatial circle {{R}^{{^{{{1},{2}}}}}} × {{S}^{{^{{1}}}}} , and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on {{R}^{{^{{2}}}}} × {{T}^{{^{{2}}}}} . Similarly, thermal gauge theories of higher rank are dual to new families of "affine" XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU( N c ) gauge theories with n f ≥1 adjoint Weyl fermions.

  7. Communication: Nanoscale electrostatic theory of epistructural fields at the protein-water interface

    NASA Astrophysics Data System (ADS)

    Fernández, Ariel

    2012-12-01

    Nanoscale solvent confinement at the protein-water interface promotes dipole orientations that are not aligned with the internal electrostatic field of a protein, yielding what we term epistructural polarization. To quantify this effect, an equation is derived from first principles relating epistructural polarization with the magnitude of local distortions in water coordination causative of interfacial tension. The equation defines a nanoscale electrostatic model of water and enables an estimation of protein denaturation free energies and the inference of hot spots for protein associations. The theoretical results are validated vis-à-vis calorimetric data, revealing the destabilizing effect of epistructural polarization and its molecular origin.

  8. Communication: Nanoscale electrostatic theory of epistructural fields at the protein-water interface.

    PubMed

    Fernández, Ariel

    2012-12-21

    Nanoscale solvent confinement at the protein-water interface promotes dipole orientations that are not aligned with the internal electrostatic field of a protein, yielding what we term epistructural polarization. To quantify this effect, an equation is derived from first principles relating epistructural polarization with the magnitude of local distortions in water coordination causative of interfacial tension. The equation defines a nanoscale electrostatic model of water and enables an estimation of protein denaturation free energies and the inference of hot spots for protein associations. The theoretical results are validated vis-à-vis calorimetric data, revealing the destabilizing effect of epistructural polarization and its molecular origin.

  9. Toward microscale flow control using non-uniform electro-osmotic flow

    NASA Astrophysics Data System (ADS)

    Paratore, Federico; Boyko, Evgeniy; Gat, Amir D.; Kaigala, Govind V.; Bercovici, Moran

    2018-02-01

    We present a novel method that allows establishing desired flow patterns in a Hele-Shaw cell, solely by controlling the surface chemistry, without the use of physical walls. Using weak electrolytes, we locally pattern the chamber's ceiling and/or floor, thus defining a spatial distribution of surface charge. This translates to a non-uniform electric double layer which when subjected to an external electric field applied along the chamber, gives rise to non-uniform electroosmotic flow (EOF). We present the theory that allows prediction and design of such flows fields, as well as experimental demonstrations opening the door to configurable microfluidic devices.

  10. On some properties of force-free magnetic fields in infinite regions of space

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1984-01-01

    Techniques for solving boundary value problems (BVP) for a force free magnetic field (FFF) in infinite space are presented. A priori inequalities are defined which must be satisfied by the force-free equations. It is shown that upper bounds may be calculated for the magnetic energy of the region provided the value of the magnetic normal component at the boundary of the region can be shown to decay sufficiently fast at infinity. The results are employed to prove a nonexistence theorem for the BVP for the FFF in the spatial region. The implications of the theory for modeling the origins of solar flares are discussed.

  11. Hamiltonian Anomalies from Extended Field Theories

    NASA Astrophysics Data System (ADS)

    Monnier, Samuel

    2015-09-01

    We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.

  12. A simple proof of orientability in colored group field theory.

    PubMed

    Caravelli, Francesco

    2012-01-01

    Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.

  13. On the unification of nuclear-structure theory: A response to Bortignon and Broglia

    NASA Astrophysics Data System (ADS)

    Cook, Norman D.

    2016-09-01

    Nuclear-structure theory is unusual among the diverse fields of quantum physics. Although it provides a coherent description of all known isotopes on the basis of a quantum-mechanical understanding of nucleon states, nevertheless, in the absence of a fundamental theory of the nuclear force acting between nucleons, the prediction of all ground-state and excited-state nuclear binding energies is inherently semi-empirical. I suggest that progress can be made by returning to the foundational work of Eugene Wigner from 1937, where the mathematical symmetries of nucleon states were first defined. Those symmetries were later successfully exploited in the development of the independent-particle model ( IPM ˜ shell model , but the geometrical implications noted by Wigner were neglected. Here I review how the quantum-mechanical, but remarkably easy-to-understand geometrical interpretation of the IPM provides constraints on the parametrization of the nuclear force. The proposed "geometrical IPM" indicates a way forward toward the unification of nuclear-structure theory that Bortignon and Broglia have called for.

  14. Quantum trilogy: discrete Toda, Y-system and chaos

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2018-02-01

    We discuss a discretization of the quantum Toda field theory associated with a semisimple finite-dimensional Lie algebra or a tamely-laced infinite-dimensional Kac-Moody algebra G, generalizing the previous construction of discrete quantum Liouville theory for the case G  =  A 1. The model is defined on a discrete two-dimensional lattice, whose spatial direction is of length L. In addition we also find a ‘discretized extra dimension’ whose width is given by the rank r of G, which decompactifies in the large r limit. For the case of G  =  A N or AN-1(1) , we find a symmetry exchanging L and N under appropriate spatial boundary conditions. The dynamical time evolution rule of the model is quantizations of the so-called Y-system, and the theory can be well described by the quantum cluster algebra. We discuss possible implications for recent discussions of quantum chaos, and comment on the relation with the quantum higher Teichmüller theory of type A N .

  15. Thrust at N{sup 3}LL with power corrections and a precision global fit for {alpha}{sub s}(m{sub Z})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbate, Riccardo; Stewart, Iain W.; Fickinger, Michael

    2011-04-01

    We give a factorization formula for the e{sup +}e{sup -} thrust distribution d{sigma}/d{tau} with {tau}=1-T based on the soft-collinear effective theory. The result is applicable for all {tau}, i.e. in the peak, tail, and far-tail regions. The formula includes O({alpha}{sub s}{sup 3}) fixed-order QCD results, resummation of singular partonic {alpha}{sub s}{sup j}ln{sup k}({tau})/{tau} terms with N{sup 3}LL accuracy, hadronization effects from fitting a universal nonperturbative soft function defined with field theory, bottom quark mass effects, QED corrections, and the dominant top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators to determine nonperturbative effectsmore » since they are not compatible with higher order perturbative analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory, which are moments {Omega}{sub i} of a nonperturbative soft function. We present a global analysis of all available thrust data measured at center-of-mass energies Q=35-207 GeV in the tail region, where a two-parameter fit to {alpha}{sub s}(m{sub Z}) and the first moment {Omega}{sub 1} suffices. We use a short-distance scheme to define {Omega}{sub 1}, called the R-gap scheme, thus ensuring that the perturbative d{sigma}/d{tau} does not suffer from an O({Lambda}{sub QCD}) renormalon ambiguity. We find {alpha}{sub s}(m{sub Z})=0.1135{+-}(0.0002){sub expt{+-}}(0.0005){sub hadr{+-}}(0.0009){sub pert}, with {chi}{sup 2}/dof=0.91, where the displayed 1-sigma errors are the total experimental error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The hadronization uncertainty in {alpha}{sub s} is significantly decreased compared to earlier analyses by our two-parameter fit, which determines {Omega}{sub 1}=0.323 GeV with 16% uncertainty.« less

  16. Asymptotic behavior of Nambu-Bethe-Salpeter wave functions for multiparticles in quantum field theories

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Ikeda, Yoichi; Inoue, Takashi

    2013-07-01

    We derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than two particles in quantum field theories. To deal with n particles in the center-of-mass frame coherently, we introduce the Jacobi coordinates of n particles and then combine their 3(n-1) coordinates into the one spherical coordinate in D=3(n-1) dimensions. We parametrize the on-shell T matrix for n scalar particles at low energy using the unitarity constraint of the S matrix. We then express asymptotic behaviors of the NBS wave function for n particles at low energy in terms of parameters of the T matrix and show that the NBS wave function carries information of the T matrix such as phase shifts and mixing angles of the n-particle system in its own asymptotic behavior, so that the NBS wave function can be considered as the scattering wave of n particles in quantum mechanics. This property is one of the essential ingredients of the HAL QCD scheme to define “potential” from the NBS wave function in quantum field theories such as QCD. Our results, together with an extension to systems with spin 1/2 particles, justify the HAL QCD’s definition of potentials for three or more nucleons (or baryons) in terms of the NBS wave functions.

  17. Domain wall fermion and CP symmetry breaking

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo; Suzuki, Hiroshi

    2003-02-01

    We examine the CP properties of chiral gauge theory defined by a formulation of the domain wall fermion, where the light field variables q and q¯ together with Pauli-Villars fields Q and Q¯ are utilized. It is shown that this domain wall representation in the infinite flavor limit N=∞ is valid only in the topologically trivial sector, and that the conflict among lattice chiral symmetry, strict locality and CP symmetry still persists for finite lattice spacing a. The CP transformation generally sends one representation of lattice chiral gauge theory into another representation of lattice chiral gauge theory, resulting in the inevitable change of propagators. A modified form of lattice CP transformation motivated by the domain wall fermion, which keeps the chiral action in terms of the Ginsparg-Wilson fermion invariant, is analyzed in detail; this provides an alternative way to understand the breaking of CP symmetry at least in the topologically trivial sector. We note that the conflict with CP symmetry could be regarded as a topological obstruction. We also discuss the issues related to the definition of Majorana fermions in connection with the supersymmetric Wess-Zumino model on the lattice.

  18. String-theoretic breakdown of effective field theory near black hole horizons

    NASA Astrophysics Data System (ADS)

    Dodelson, Matthew; Silverstein, Eva

    2017-09-01

    We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.

  19. Characterisation of High Grazing Angle X-band Sea-clutter Doppler Spectra

    DTIC Science & Technology

    2013-08-01

    0397 2 Background The ocean surface is a highly complex dynamical system and relating Doppler spectra to surface conditions is a difficult problem...1966] then extended this theory to water and classified it as a ‘slightly rough’ surface. He showed that the scattering elements of primary importance...incidence field. This is the definition for the Bragg water -wave propagation number defined in the spatial frequency domain as kw = 2k0 cos θ, where

  20. Energy conversion in the coronal plasma

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1986-01-01

    Solar and stellar X-ray emission are the observed waste products of the interplay between magnetic fields and the motion of stellar plasma. Theoretical understanding of the process of coronal heating is of utmost importance, since the high temperature is what defines the corona in the first place. Most of the research described deals with the aspects of the several rivalling theories for coronal heating. The rest of the papers deal with processes of energy conversion related to flares.

  1. Loop quantum cosmology with self-dual variables

    NASA Astrophysics Data System (ADS)

    Wilson-Ewing, Edward

    2015-12-01

    Using the complex-valued self-dual connection variables, the loop quantum cosmology of a closed Friedmann space-time coupled to a massless scalar field is studied. It is shown how the reality conditions can be imposed in the quantum theory by choosing a particular inner product for the kinematical Hilbert space. While holonomies of the self-dual Ashtekar connection are not well defined in the kinematical Hilbert space, it is possible to introduce a family of generalized holonomylike operators of which some are well defined; these operators in turn are used in the definition of the Hamiltonian constraint operator where the scalar field can be used as a relational clock. The resulting quantum theory is closely related, although not identical, to standard loop quantum cosmology constructed from the Ashtekar-Barbero variables with a real Immirzi parameter. Effective Friedmann equations are derived which provide a good approximation to the full quantum dynamics for sharply peaked states whose volume remains much larger than the Planck volume, and they show that for these states quantum gravity effects resolve the big-bang and big-crunch singularities and replace them by a nonsingular bounce. Finally, the loop quantization in self-dual variables of a flat Friedmann space-time is recovered in the limit of zero spatial curvature and is identical to the standard loop quantization in terms of the real-valued Ashtekar-Barbero variables.

  2. Open-ended formulation of self-consistent field response theory with the polarizable continuum model for solvation.

    PubMed

    Di Remigio, Roberto; Beerepoot, Maarten T P; Cornaton, Yann; Ringholm, Magnus; Steindal, Arnfinn Hykkerud; Ruud, Kenneth; Frediani, Luca

    2016-12-21

    The study of high-order absorption properties of molecules is a field of growing importance. Quantum-chemical studies can help design chromophores with desirable characteristics. Given that most experiments are performed in solution, it is important to devise a cost-effective strategy to include solvation effects in quantum-chemical studies of these properties. We here present an open-ended formulation of self-consistent field (SCF) response theory for a molecular solute coupled to a polarizable continuum model (PCM) description of the solvent. Our formulation relies on the open-ended, density matrix-based quasienergy formulation of SCF response theory of Thorvaldsen, et al., [J. Chem. Phys., 2008, 129, 214108] and the variational formulation of the PCM, as presented by Lipparini et al., [J. Chem. Phys., 2010, 133, 014106]. Within the PCM approach to solvation, the mutual solute-solvent polarization is represented by means of an apparent surface charge (ASC) spread over the molecular cavity defining the solute-solvent boundary. In the variational formulation, the ASC is an independent, variational degree of freedom. This allows us to formulate response theory for molecular solutes in the fixed-cavity approximation up to arbitrary order and with arbitrary perturbation operators. For electric dipole perturbations, pole and residue analyses of the response functions naturally lead to the identification of excitation energies and transition moments. We document the implementation of this approach in the Dalton program package using a recently developed open-ended response code and the PCMSolver libraries and present results for one-, two-, three-, four- and five-photon absorption processes of three small molecules in solution.

  3. Holography as a highly efficient renormalization group flow. I. Rephrasing gravity

    NASA Astrophysics Data System (ADS)

    Behr, Nicolas; Kuperstein, Stanislav; Mukhopadhyay, Ayan

    2016-07-01

    We investigate how the holographic correspondence can be reformulated as a generalization of Wilsonian renormalization group (RG) flow in a strongly interacting large-N quantum field theory. We first define a highly efficient RG flow as one in which the Ward identities related to local conservation of energy, momentum and charges preserve the same form at each scale. To achieve this, it is necessary to redefine the background metric and external sources at each scale as functionals of the effective single-trace operators. These redefinitions also absorb the contributions of the multitrace operators to these effective Ward identities. Thus, the background metric and external sources become effectively dynamical, reproducing the dual classical gravity equations in one higher dimension. Here, we focus on reconstructing the pure gravity sector as a highly efficient RG flow of the energy-momentum tensor operator, leaving the explicit constructive field theory approach for generating such RG flows to the second part of the work. We show that special symmetries of the highly efficient RG flows carry information through which we can decode the gauge fixing of bulk diffeomorphisms in the corresponding gravity equations. We also show that the highly efficient RG flow which reproduces a given classical gravity theory in a given gauge is unique provided the endpoint can be transformed to a nonrelativistic fixed point with a finite number of parameters under a universal rescaling. The results obtained here are used in the second part of this work, where we do an explicit field-theoretic construction of the RG flow and obtain the dual classical gravity theory.

  4. Rubber elasticity for percolation network consisting of Gaussian chains.

    PubMed

    Nishi, Kengo; Noguchi, Hiroshi; Sakai, Takamasa; Shibayama, Mitsuhiro

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G0, must be equal to G/G0 = (p - 2/f)/(1 - 2/f) if the position of sites can be determined so as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.

  5. Rubber elasticity for percolation network consisting of Gaussian chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishi, Kengo, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp; Noguchi, Hiroshi; Shibayama, Mitsuhiro, E-mail: kengo.nishi@phys.uni-goettingen.de, E-mail: sakai@tetrapod.t.u-tokyo.ac.jp, E-mail: sibayama@issp.u-tokyo.ac.jp

    2015-11-14

    A theory describing the elastic modulus for percolation networks of Gaussian chains on general lattices such as square and cubic lattices is proposed and its validity is examined with simulation and mechanical experiments on well-defined polymer networks. The theory was developed by generalizing the effective medium approximation (EMA) for Hookian spring network to Gaussian chain networks. From EMA theory, we found that the ratio of the elastic modulus at p, G to that at p = 1, G{sub 0}, must be equal to G/G{sub 0} = (p − 2/f)/(1 − 2/f) if the position of sites can be determined somore » as to meet the force balance, where p is the degree of cross-linking reaction. However, the EMA prediction cannot be applicable near its percolation threshold because EMA is a mean field theory. Thus, we combine real-space renormalization and EMA and propose a theory called real-space renormalized EMA, i.e., REMA. The elastic modulus predicted by REMA is in excellent agreement with the results of simulations and experiments of near-ideal diamond lattice gels.« less

  6. Control-value theory: using achievement emotions to improve understanding of motivation, learning, and performance in medical education: AMEE Guide No. 64.

    PubMed

    Artino, Anthony R; Holmboe, Eric S; Durning, Steven J

    2012-01-01

    In this AMEE Guide, we consider the emergent theoretical and empirical work on human emotion and how this work can inform the theory, research, and practice of medical education. In the Guide, we define emotion, in general, and achievement emotions, more specifically. We describe one of the leading contemporary theories of achievement emotions, control-value theory (Pekrun 2006), and we distinguish between different types of achievement emotions, their proximal antecedents, and their consequences for motivation, learning, and performance. Next, we review the empirical support for control-value theory from non-medical fields and suggest several important implications for educational practice. In this section, we highlight the importance of designing learning environments that foster a high degree of control and value for students. Finally, we end with a discussion of the need for more research on achievement emotions in medical education, and we propose several key research questions we believe will facilitate our understanding of achievement emotions and their impact on important educational outcomes.

  7. Defining, illustrating and reflecting on logic analysis with an example from a professional development program.

    PubMed

    Tremblay, Marie-Claude; Brousselle, Astrid; Richard, Lucie; Beaudet, Nicole

    2013-10-01

    Program designers and evaluators should make a point of testing the validity of a program's intervention theory before investing either in implementation or in any type of evaluation. In this context, logic analysis can be a particularly useful option, since it can be used to test the plausibility of a program's intervention theory using scientific knowledge. Professional development in public health is one field among several that would truly benefit from logic analysis, as it appears to be generally lacking in theorization and evaluation. This article presents the application of this analysis method to an innovative public health professional development program, the Health Promotion Laboratory. More specifically, this paper aims to (1) define the logic analysis approach and differentiate it from similar evaluative methods; (2) illustrate the application of this method by a concrete example (logic analysis of a professional development program); and (3) reflect on the requirements of each phase of logic analysis, as well as on the advantages and disadvantages of such an evaluation method. Using logic analysis to evaluate the Health Promotion Laboratory showed that, generally speaking, the program's intervention theory appeared to have been well designed. By testing and critically discussing logic analysis, this article also contributes to further improving and clarifying the method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Local subsystems in gauge theory and gravity

    DOE PAGES

    Donnelly, William; Freidel, Laurent

    2016-09-16

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  9. Higher-Order Interference in Extensions of Quantum Theory

    NASA Astrophysics Data System (ADS)

    Lee, Ciarán M.; Selby, John H.

    2017-01-01

    Quantum interference, manifest in the two slit experiment, lies at the heart of several quantum computational speed-ups and provides a striking example of a quantum phenomenon with no classical counterpart. An intriguing feature of quantum interference arises in a variant of the standard two slit experiment, in which there are three, rather than two, slits. The interference pattern in this set-up can be written in terms of the two and one slit patterns obtained by blocking one, or more, of the slits. This is in stark contrast with the standard two slit experiment, where the interference pattern cannot be written as a sum of the one slit patterns. This was first noted by Rafael Sorkin, who raised the question of why quantum theory only exhibits irreducible interference in the two slit experiment. One approach to this problem is to compare the predictions of quantum theory to those of operationally-defined `foil' theories, in the hope of determining whether theories that do exhibit higher-order interference suffer from pathological—or at least undesirable—features. In this paper two proposed extensions of quantum theory are considered: the theory of Density Cubes proposed by Dakić, Paterek and Brukner, which has been shown to exhibit irreducible interference in the three slit set-up, and the Quartic Quantum Theory of Życzkowski. The theory of Density Cubes will be shown to provide an advantage over quantum theory in a certain computational task and to posses a well-defined mechanism which leads to the emergence of quantum theory—analogous to the emergence of classical physics from quantum theory via decoherence. Despite this, the axioms used to define Density Cubes will be shown to be insufficient to uniquely characterise the theory. In comparison, Quartic Quantum Theory is a well-defined theory and we demonstrate that it exhibits irreducible interference to all orders. This feature of Życzkowski's theory is argued not to be a genuine phenomenon, but to arise from an ambiguity in the current definition of higher-order interference in operationally-defined theories. Thus, to begin to understand why quantum theory is limited to a certain kind of interference, a new definition of higher-order interference is needed that is applicable to, and makes good operational sense in, arbitrary operationally-defined theories.

  10. On covariant Poisson brackets in classical field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forger, Michael; Salles, Mário O.; Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Campus Universitário – Lagoa Nova, BR–59078-970 Natal, RN

    2015-10-15

    How to give a natural geometric definition of a covariant Poisson bracket in classical field theory has for a long time been an open problem—as testified by the extensive literature on “multisymplectic Poisson brackets,” together with the fact that all these proposals suffer from serious defects. On the other hand, the functional approach does provide a good candidate which has come to be known as the Peierls–De Witt bracket and whose construction in a geometrical setting is now well understood. Here, we show how the basic “multisymplectic Poisson bracket” already proposed in the 1970s can be derived from the Peierls–De Witt bracket,more » applied to a special class of functionals. This relation allows to trace back most (if not all) of the problems encountered in the past to ambiguities (the relation between differential forms on multiphase space and the functionals they define is not one-to-one) and also to the fact that this class of functionals does not form a Poisson subalgebra.« less

  11. On the divergences of inflationary superhorizon perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enqvist, K; Nurmi, S; Podolsky, D

    2008-04-15

    We discuss the infrared divergences that appear to plague cosmological perturbation theory. We show that, within the stochastic framework, they are regulated by eternal inflation so that the theory predicts finite fluctuations. Using the {Delta}N formalism to one loop, we demonstrate that the infrared modes can be absorbed into additive constants and the coefficients of the diagrammatic expansion for the connected parts of two-and three-point functions of the curvature perturbation. As a result, the use of any infrared cutoff below the scale of eternal inflation is permitted, provided that the background fields are appropriately redefined. The natural choice for themore » infrared cutoff would, of course, be the present horizon; other choices manifest themselves in the running of the correlators. We also demonstrate that it is possible to define observables that are renormalization-group-invariant. As an example, we derive a non-perturbative, infrared finite and renormalization point-independent relation between the two-point correlators of the curvature perturbation for the case of the free single field.« less

  12. What is an integrable quench?

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; Pozsgay, Balázs; Vernier, Eric

    2017-12-01

    Inspired by classical results in integrable boundary quantum field theory, we propose a definition of integrable initial states for quantum quenches in lattice models. They are defined as the states which are annihilated by all local conserved charges that are odd under space reflection. We show that this class includes the states which can be related to integrable boundary conditions in an appropriate rotated channel, in loose analogy with the picture in quantum field theory. Furthermore, we provide an efficient method to test integrability of given initial states. We revisit the recent literature of global quenches in several models and show that, in all of the cases where closed-form analytical results could be obtained, the initial state is integrable according to our definition. In the prototypical example of the XXZ spin-s chains we show that integrable states include two-site product states but also larger families of matrix product states with arbitrary bond dimension. We argue that our results could be practically useful for the study of quantum quenches in generic integrable models.

  13. Kinetic study of ion acoustic twisted waves with kappa distributed electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman, E-mail: amansadiq@gmail.com; Mahmood, Shahzad, E-mail: shahzadm100@gmail.com

    2016-05-15

    The kinetic theory of Landau damping of ion acoustic twisted modes is developed in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons and Maxwellian ions. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the ion acoustic twisted waves in a non-thermal plasma. The strong damping effects of ion acoustic twisted waves at low values of temperature ratio of electrons and ions aremore » also obtained by using exact numerical method and illustrated graphically, where the weak damping wave theory fails to explain the phenomenon properly. The obtained results of Landau damping rates of the twisted ion acoustic wave are discussed at different values of azimuthal wave number and non-thermal parameter kappa for electrons.« less

  14. Renormalized charge in a two-dimensional model of colloidal suspension from hypernetted chain approach.

    PubMed

    Camargo, Manuel; Téllez, Gabriel

    2008-04-07

    The renormalized charge of a simple two-dimensional model of colloidal suspension was determined by solving the hypernetted chain approximation and Ornstein-Zernike equations. At the infinite dilution limit, the asymptotic behavior of the correlation functions is used to define the effective interactions between the components of the system and these effective interactions were compared to those derived from the Poisson-Boltzmann theory. The results we obtained show that, in contrast to the mean-field theory, the renormalized charge does not saturate, but exhibits a maximum value and then decays monotonically as the bare charge increases. The results also suggest that beyond the counterion layer near to the macroion surface, the ionic cloud is not a diffuse layer which can be handled by means of the linearized theory, as the two-state model claims, but a more complex structure is settled by the correlations between microions.

  15. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE PAGES

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    2016-02-09

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  16. Infinite index extensions of local nets and defects

    NASA Astrophysics Data System (ADS)

    Del Vecchio, Simone; Giorgetti, Luca

    The subfactor theory provides a tool to analyze and construct extensions of Quantum Field Theories, once the latter are formulated as local nets of von Neumann algebras. We generalize some of the results of [62] to the case of extensions with infinite Jones index. This case naturally arises in physics, the canonical examples are given by global gauge theories with respect to a compact (non-finite) group of internal symmetries. Building on the works of Izumi-Longo-Popa [44] and Fidaleo-Isola [30], we consider generalized Q-systems (of intertwiners) for a semidiscrete inclusion of properly infinite von Neumann algebras, which generalize ordinary Q-systems introduced by Longo [58] to the infinite index case. We characterize inclusions which admit generalized Q-systems of intertwiners and define a braided product among the latter, hence we construct examples of QFTs with defects (phase boundaries) of infinite index, extending the family of boundaries in the grasp of [7].

  17. Quantum Mechanics: Myths and Facts

    NASA Astrophysics Data System (ADS)

    Nikolić, Hrvoje

    2007-11-01

    A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.

  18. Bridging experiment and theory: A template for unifying NMR data and electronic structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, David M. L.; Cho, Herman; de Jong, Wibe A.

    Here, the testing of theoretical models with experimental data is an integral part of the scientific method, and a logical place to search for new ways of stimulating scientific productivity. Often experiment/theory comparisons may be viewed as a workflow comprised of well-defined, rote operations distributed over several distinct computers, as exemplified by the way in which predictions from electronic structure theories are evaluated with results from spectroscopic experiments. For workflows such as this, which may be laborious and time consuming to perform manually, software that could orchestrate the operations and transfer results between computers in a seamless and automated fashionmore » would offer major efficiency gains. Such tools also promise to alter how researchers interact with data outside their field of specialization by, e.g., making raw experimental results more accessible to theorists, and the outputs of theoretical calculations more readily comprehended by experimentalists.« less

  19. Realist explanatory theory building method for social epidemiology: a protocol for a mixed method multilevel study of neighbourhood context and postnatal depression.

    PubMed

    Eastwood, John G; Jalaludin, Bin B; Kemp, Lynn A

    2014-01-01

    A recent criticism of social epidemiological studies, and multi-level studies in particular has been a paucity of theory. We will present here the protocol for a study that aims to build a theory of the social epidemiology of maternal depression. We use a critical realist approach which is trans-disciplinary, encompassing both quantitative and qualitative traditions, and that assumes both ontological and hierarchical stratification of reality. We describe a critical realist Explanatory Theory Building Method comprising of an: 1) emergent phase, 2) construction phase, and 3) confirmatory phase. A concurrent triangulated mixed method multilevel cross-sectional study design is described. The Emergent Phase uses: interviews, focus groups, exploratory data analysis, exploratory factor analysis, regression, and multilevel Bayesian spatial data analysis to detect and describe phenomena. Abductive and retroductive reasoning will be applied to: categorical principal component analysis, exploratory factor analysis, regression, coding of concepts and categories, constant comparative analysis, drawing of conceptual networks, and situational analysis to generate theoretical concepts. The Theory Construction Phase will include: 1) defining stratified levels; 2) analytic resolution; 3) abductive reasoning; 4) comparative analysis (triangulation); 5) retroduction; 6) postulate and proposition development; 7) comparison and assessment of theories; and 8) conceptual frameworks and model development. The strength of the critical realist methodology described is the extent to which this paradigm is able to support the epistemological, ontological, axiological, methodological and rhetorical positions of both quantitative and qualitative research in the field of social epidemiology. The extensive multilevel Bayesian studies, intensive qualitative studies, latent variable theory, abductive triangulation, and Inference to Best Explanation provide a strong foundation for Theory Construction. The study will contribute to defining the role that realism and mixed methods can play in explaining the social determinants and developmental origins of health and disease.

  20. Further Development of HS Field Theory

    NASA Astrophysics Data System (ADS)

    Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud

    2006-04-01

    We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.

  1. Scale invariance of the η-deformed AdS5 × S5 superstring, T-duality and modified type II equations

    NASA Astrophysics Data System (ADS)

    Arutyunov, G.; Frolov, S.; Hoare, B.; Roiban, R.; Tseytlin, A. A.

    2016-02-01

    We consider the ABF background underlying the η-deformed AdS5 ×S5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that has 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R-R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R-R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS3 ×S3 ×T4and AdS2 ×S2 ×T6models.

  2. Scale invariance of the η-deformed AdS 5 × S 5 superstring, T-duality and modified type II equations

    DOE PAGES

    Arutyunov, G.; Frolov, S.; Hoare, B.; ...

    2015-12-23

    We consider the ABF background underlying the η-deformed AdS 5 × S 5 sigma model. This background fails to satisfy the standard IIB supergravity equations which indicates that the corresponding sigma model is not Weyl invariant, i.e. does not define a critical string theory in the usual sense. We argue that the ABF background should still define a UV finite theory on a flat 2d world-sheet implying that the η-deformed model is scale invariant. This property follows from the formal relation via T-duality between the η-deformed model and the one defined by an exact type IIB supergravity solution that hasmore » 6 isometries albeit broken by a linear dilaton. We find that the ABF background satisfies candidate type IIB scale invariance conditions which for the R–R field strengths are of the second order in derivatives. Surprisingly, we also find that the ABF background obeys an interesting modification of the standard IIB supergravity equations that are first order in derivatives of R–R fields. These modified equations explicitly depend on Killing vectors of the ABF background and, although not universal, they imply the universal scale invariance conditions. Moreover, we show that it is precisely the non-isometric dilaton of the T-dual solution that leads, after T-duality, to modification of type II equations from their standard form. We conjecture that the modified equations should follow from κ-symmetry of the η-deformed model. All our observations apply also to η-deformations of AdS 3 × S 3 × T 4 and AdS 2 × S 2 × T 6 models.« less

  3. Quantum field theory on toroidal topology: Algebraic structure and applications

    NASA Astrophysics Data System (ADS)

    Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.

    2014-05-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus ΓDd=(S1)d×RD-d is developed from a Lie-group representation and c*c*-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ41. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space-time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy-momentum tensor. Self interacting four-fermion systems, described by the Gross-Neveu and Nambu-Jona-Lasinio models, are considered. Then finite size effects on the hadronic phase structure are investigated, taking into account density and temperature. As a final application, effects of extra spatial dimensions are addressed, by developing a quantum electrodynamics in a five-dimensional space-time, where the fifth-dimension is compactified on a torus. The formalism, initially developed for particle physics, provides results compatible with other trials of probing the existence of extra-dimensions.

  4. Managing crises through organisational development: a conceptual framework.

    PubMed

    Lalonde, Carole

    2011-04-01

    This paper presents a synthesis of the guiding principles in crisis management in accordance with the four configurational imperatives (strategy, structure, leadership and environment) defined by Miller (1987) and outlines interventions in organisational development (OD) that may contribute to their achievement. The aim is to build a conceptual framework at the intersection of these two fields that could help to strengthen the resilient capabilities of individuals, organisations and communities to face crises. This incursion into the field of OD--to generate more efficient configurations of practices in crisis management--seems particularly fruitful considering the system-wide application of OD, based on open-systems theory (Burke, 2008). Various interventions proposed by OD in terms of human processes, structural designs and human resource management, as well as strategy, may help leaders, members of organisations and civil society apply effectively, and in a more sustainable way, the crisis management guiding principles defined by researchers. © 2011 The Author(s). Disasters © Overseas Development Institute, 2011.

  5. Beyond E 11

    NASA Astrophysics Data System (ADS)

    Bossard, Guillaume; Kleinschmidt, Axel; Palmkvist, Jakob; Pope, Christopher N.; Sezgin, Ergin

    2017-05-01

    We study the non-linear realisation of E 11 originally proposed by West with particular emphasis on the issue of linearised gauge invariance. Our analysis shows even at low levels that the conjectured equations can only be invariant under local gauge transformations if a certain section condition that has appeared in a different context in the E 11 literature is satisfied. This section condition also generalises the one known from exceptional field theory. Even with the section condition, the E 11 duality equation for gravity is known to miss the trace component of the spin connection. We propose an extended scheme based on an infinite-dimensional Lie superalgebra, called the tensor hierarchy algebra, that incorporates the section condition and resolves the above issue. The tensor hierarchy algebra defines a generalised differential complex, which provides a systematic description of gauge invariance and Bianchi identities. It furthermore provides an E 11 representation for the field strengths, for which we define a twisted first order self-duality equation underlying the dynamics.

  6. Two Theories Are Better Than One

    NASA Astrophysics Data System (ADS)

    Jones, Robert

    2008-03-01

    All knowledge is of an approximate character (B. Russell, Human Knowledge, 1948, pg 497 and 507). Our formalisms abstract, idealize, and simplify (R. L. Epstein, Propositional Logics, 2001, Ch XI and E. Bender, An Intro. to Math. Modeling, 1978, pg v and 2). Each formalism is an idealization, often times approximating in its own DIFFERENT ways, each offering somewhat different coverage of the domain. Having MULTIPLE overlaping theories of a knowledge domain is then better than having just one theory (R. Jones, APS general meeting, April 2004). Theories are not unique (T. M. Mitchell, Machine Learning, 1997, pg 65-66 and Cooper, Machine Learning, vol. 9, 1992, pg 319). In the future every field will possess multiple theories of its domain and scientific work and engineering will be performed based on the ensemble predictions of ALL of these. In some cases the theories may be quite divergent, differing greatly one from the other. This idea can be considered an extension of Bohr's notion of complementarity, ``...different experimental arrangements...described by different physical concepts...together and only together exhaust the definable information we can obtain about the object.'' (H. J. Folse, The Philosophy of Neils Bohr, 1985, pg 238)

  7. Generalized Legendre transformations and symmetries of the WDVV equations

    NASA Astrophysics Data System (ADS)

    Strachan, Ian A. B.; Stedman, Richard

    2017-03-01

    The Witten-Dijkgraaf-Verlinde-Verlinde (or WDVV) equations, as one would expect from an integrable system, has many symmetries, both continuous and discrete. One class—the so-called Legendre transformations—were introduced by Dubrovin. They are a discrete set of symmetries between the stronger concept of a Frobenius manifold, and are generated by certain flat vector fields. In this paper this construction is generalized to the case where the vector field (called here the Legendre field) is non-flat but satisfies a certain set of defining equations. One application of this more general theory is to generate the induced symmetry between almost-dual Frobenius manifolds whose underlying Frobenius manifolds are related by a Legendre transformation. This also provides a map between rational and trigonometric solutions of the WDVV equations.

  8. Higher-order gravity in higher dimensions: geometrical origins of four-dimensional cosmology?

    NASA Astrophysics Data System (ADS)

    Troisi, Antonio

    2017-03-01

    Determining the cosmological field equations is still very much debated and led to a wide discussion around different theoretical proposals. A suitable conceptual scheme could be represented by gravity models that naturally generalize Einstein theory like higher-order gravity theories and higher-dimensional ones. Both of these two different approaches allow one to define, at the effective level, Einstein field equations equipped with source-like energy-momentum tensors of geometrical origin. In this paper, the possibility is discussed to develop a five-dimensional fourth-order gravity model whose lower-dimensional reduction could provide an interpretation of cosmological four-dimensional matter-energy components. We describe the basic concepts of the model, the complete field equations formalism and the 5-D to 4-D reduction procedure. Five-dimensional f( R) field equations turn out to be equivalent, on the four-dimensional hypersurfaces orthogonal to the extra coordinate, to an Einstein-like cosmological model with three matter-energy tensors related with higher derivative and higher-dimensional counter-terms. By considering the gravity model with f(R)=f_0R^n the possibility is investigated to obtain five-dimensional power law solutions. The effective four-dimensional picture and the behaviour of the geometrically induced sources are finally outlined in correspondence to simple cases of such higher-dimensional solutions.

  9. Configurational entropy of polar glass formers and the effect of electric field on glass transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyushov, Dmitry V., E-mail: dmitrym@asu.edu

    2016-07-21

    A model of low-temperature polar liquids is constructed that accounts for the configurational heat capacity, entropy, and the effect of a strong electric field on the glass transition. The model is based on the Padé-truncated perturbation expansions of the liquid state theory. Depending on parameters, it accommodates an ideal glass transition of vanishing configurational entropy and its avoidance, with a square-root divergent enumeration function at the point of its termination. A composite density-temperature parameter ρ{sup γ}/T, often used to represent combined pressure and temperature data, follows from the model. The theory is in good agreement with the experimental data formore » excess (over the crystal state) thermodynamics of molecular glass formers. We suggest that the Kauzmann entropy crisis might be a signature of vanishing configurational entropy of a subset of degrees of freedom, multipolar rotations in our model. This scenario has observable consequences: (i) a dynamical crossover of the relaxation time and (ii) the fragility index defined by the ratio of the excess heat capacity and excess entropy at the glass transition. The Kauzmann temperature of vanishing configurational entropy and the corresponding glass transition temperature shift upward when the electric field is applied. The temperature shift scales quadratically with the field strength.« less

  10. Conserved currents in the six-vertex and trigonometric solid-on-solid models

    NASA Astrophysics Data System (ADS)

    Ikhlef, Yacine; Weston, Robert

    2017-04-01

    We construct quasi-local conserved currents in the six-vertex model with anisotropy parameter η by making use of the quantum-group approach of Bernard and Felder. From these currents, we construct parafermionic operators with spin 1+\\text{i}η /π that obey a discrete-integral condition around lattice plaquettes embedded into the complex plane. These operators are identified with primary fields in a c  =  1 compactified free Boson conformal field theory. We then consider a vertex-face correspondence that takes the six-vertex model to a trigonometric SOS model, and construct SOS operators that are the image of the six-vertex currents under this correspondence. We define corresponding SOS parafermionic operators with spins s  =  1 and s=1+2\\text{i}η /π that obey discrete integral conditions around SOS plaquettes embedded into the complex plane. We consider in detail the cyclic-SOS case corresponding to the choice η =\\text{i}π ≤ft( p-{{p}\\prime}\\right)/p , with {{p}\\prime} coprime. We identify our SOS parafermionic operators in terms of the screening operators and primary fields of the associated c=1-6≤ft( p-{{p}\\prime}\\right){{}2}/p{{p}\\prime} conformal field theory.

  11. An arena for model building in the Cohen-Glashow very special relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh-Jabbari, M. M., E-mail: jabbari@theory.ipm.ac.i; Tureanu, A., E-mail: anca.tureanu@helsinki.f

    2010-02-15

    The Cohen-Glashow Very Special Relativity (VSR) algebra is defined as the part of the Lorentz algebra which upon addition of CP or T invariance enhances to the full Lorentz group, plus the space-time translations. We show that noncommutative space-time, in particular noncommutative Moyal plane, with light- like noncommutativity provides a robust mathematical setting for quantum field theories which are VSR invariant and hence set the stage for building VSR invariant particle physics models. In our setting the VSR invariant theories are specified with a single deformation parameter, the noncommutativity scale {Lambda}{sub NC}. Preliminary analysis with the available data leads tomore » {Lambda}{sub NC} {>=} 1-10 TeV.« less

  12. Quasistatic Evolution in Perfect Plasticity for General Heterogeneous Materials

    NASA Astrophysics Data System (ADS)

    Solombrino, Francesco

    2014-04-01

    Inspired by some recent developments in the theory of small-strain heterogeneous elastoplasticity, we both revisit and generalize the formulation of the quasistatic evolutionary problem in perfect plasticity given by Francfort and Giacomini (Commun Pure Appl Math, 65:1185-1241, 2012). We show that their definition of the plastic dissipation measure is equivalent to an abstract one, where it is defined as the supremum of the dualities between the deviatoric parts of admissible stress fields and the plastic strains. By means of this abstract definition, a viscoplastic approximation and variational techniques from the theory of rate-independent processes give the existence of an evolution satisfying an energy-dissipation balance and consequently Hill's maximum plastic work principle for an abstract and very large class of yield conditions.

  13. Millimeter radio evidence for containment mechanisms in solar flares

    NASA Technical Reports Server (NTRS)

    Mayfield, E. B.; White, K. P., III; Shimabukuro, F. I.

    1974-01-01

    Recent theories of solar flares are reviewed with emphasis on the aspects of pre-flare heating. The heating evident at 3.3-mm wavelength is analyzed in the form of daily maps of the solar disk and synoptic maps compiled from the daily maps. It is found that isotherms defining antenna temperature enhancements of 340 K correspond in shape and location to facular areas reported by Waldmeier. Maximum enhancements occur over sunspots or near neutral lines of the longitudinal magnetic fields which indicates heating associated with chromospheric currents. These enhancements are correlated with flare importance number and are observed to increase during several days preceding flaring. This evidence for a containment mechanism in the chromosphere is collated with current theories of solar flares.

  14. Conceptualisation of patient satisfaction: a systematic narrative literature review.

    PubMed

    Batbaatar, Enkhjargal; Dorjdagva, Javkhlanbayar; Luvsannyam, Ariunbat; Amenta, Pietro

    2015-09-01

    Patient satisfaction concept is widely measured due to its appropriateness to health service; however, evidence suggests that it is a poorly developed concept. This article is a first part of a two-part series of research with a goal to review a current conceptual framework of patient satisfaction and to bring the concept for further operationalisation procedures. The current article aimed to review a theoretical framework that helps the next article to review determinants of patient satisfaction for designing a measurement system. The study used a systematic review method, meta-narrative review, based on the RAMESES guideline with the phases of screening evidence, appraisal evidence, data extraction and synthesis. Patient satisfaction theoretical articles were searched on the two databases MEDLINE and CINAHL. Inclusion criteria were articles published between 1980 and 2014, and English language papers only. There were 36 articles selected for the synthesis. Results showed that most of the patient satisfaction theories and formulations are based on marketing theories and defined as how well health service fulfils patient expectations. However, review demonstrated that a relationship between expectation and satisfaction is unclear and the concept expectation itself is not distinctly theorised as well. Researchers brought satisfaction theories from other fields to the current healthcare literature without much adaptation. Thus, there is a need to attempt to define the patient satisfaction concept from other perspectives or to learn how patients evaluate the care rather than struggling to describe it by consumerist theories. © Royal Society for Public Health 2015.

  15. On a canonical quantization of 3D Anti de Sitter pure gravity

    NASA Astrophysics Data System (ADS)

    Kim, Jihun; Porrati, Massimo

    2015-10-01

    We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.

  16. Constraining the physical state by symmetries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatibene, L., E-mail: lorenzo.fatibene@unito.it; INFN - Sezione Torino - IS QGSKY; Ferraris, M.

    After reviewing the hole argument and its relations with initial value problem and general covariance, we shall discuss how much freedom one has to define the physical state in a generally covariant field theory (with or without internal gauge symmetries). Our analysis relies on Cauchy problems, thus it is restricted to globally hyperbolic spacetimes. We shall show that in generally covariant theories on a compact space (as well as for internal gauge symmetries on any spacetime) one has no freedom and one is forced to declare as physically equivalent two configurations which differ by a global spacetime diffeomorphism (or bymore » an internal gauge transformation) as it is usually prescribed. On the contrary, when space is not compact, the result does not hold true and one may have different options to define physically equivalent configurations, still preserving determinism. - Highlights: • Investigate the relation between the hole argument, covariance, determinism and physical state. • Show that if space is compact then any diffeomorphism is a gauge symmetry. • Show that if space is not compact then there may be more freedom in choosing gauge group.« less

  17. Incompatible Systems of Logic: Why Design Should Integrate the Mechanistic, Reductionist, and Linear Logic of Military Detailed Planning

    DTIC Science & Technology

    2011-05-19

    24 Eva Boxenbaum, Linda Rouleau, New Knowledge Products as Bricolage : Metaphors and Scripts in Organizational Theory, (Academy of Management Review...marginalize it by reducing it into a supplement to detailed planning methodology. This process of knowledge production, defined as “ bricolage ” in...Boxenbaum, Rouleau, 280-281. A ‘bricoleur’ is a person that conducts ‘ bricolage ’ with new knowledge production. 48 Field Manual 5-0. 1-5, 1-6, 3-1

  18. Euclidean scalar field theory in the bilocal approximation

    NASA Astrophysics Data System (ADS)

    Nagy, S.; Polonyi, J.; Steib, I.

    2018-04-01

    The blocking step of the renormalization group method is usually carried out by restricting it to fluctuations and to local blocked action. The tree-level, bilocal saddle point contribution to the blocking, defined by the infinitesimal decrease of the sharp cutoff in momentum space, is followed within the three dimensional Euclidean ϕ6 model in this work. The phase structure is changed, new phases and relevant operators are found, and certain universality classes are restricted by the bilocal saddle point.

  19. DecisionMaker software and extracting fuzzy rules under uncertainty

    NASA Technical Reports Server (NTRS)

    Walker, Kevin B.

    1992-01-01

    Knowledge acquisition under uncertainty is examined. Theories proposed in deKorvin's paper 'Extracting Fuzzy Rules Under Uncertainty and Measuring Definability Using Rough Sets' are discussed as they relate to rule calculation algorithms. A data structure for holding an arbitrary number of data fields is described. Limitations of Pascal for loops in the generation of combinations are also discussed. Finally, recursive algorithms for generating all possible combination of attributes and for calculating the intersection of an arbitrary number of fuzzy sets are presented.

  20. Singular growth shapes in turbulent field theories

    NASA Astrophysics Data System (ADS)

    Conrado, Claudine V.; Bohr, Tomas

    1994-05-01

    In this work we study deterministic, turbulent partial differential equations (the Kuramoto-Sivashinsky equation and generalizations) with initial conditions which are nonzero only in a small region. We demonstrate that the asymptotic state has a well-defined growth shape, which can be determined by the combination of nonlinear growth velocities, and front propagation governed by the linear instabilities. We show that the growth shapes are, in general, singular and that a new type of instability occurs when the growth shape becomes discontinuous.

  1. To Issue of Mathematical Management Methods Applied for Investment-Building Complex under Conditions of Economic Crisis

    NASA Astrophysics Data System (ADS)

    Novikova, V.; Nikolaeva, O.

    2017-11-01

    In the article the authors consider a cognitive management method of the investment-building complex in the crisis conditions. The factors influencing the choice of an investment strategy are studied, the basic lines of the activity in the field of crisis-management from a position of mathematical modelling are defined. The general approach to decision-making on investment in real assets on the basis of the discrete systems based on the optimum control theory is offered. With the use of a discrete maximum principle the task in view of the decision is found. The numerical algorithm to define the optimum control is formulated by investments. Analytical decisions for the case of constant profitability of the basic means are obtained.

  2. Tsallis’ quantum q-fields

    NASA Astrophysics Data System (ADS)

    Plastino, A.; Rocca, M. C.

    2018-05-01

    We generalize several well known quantum equations to a Tsallis’ q-scenario, and provide a quantum version of some classical fields associated with them in the recent literature. We refer to the q-Schródinger, q-Klein-Gordon, q-Dirac, and q-Proca equations advanced in, respectively, Phys. Rev. Lett. 106, 140601 (2011), EPL 118, 61004 (2017) and references therein. We also introduce here equations corresponding to q-Yang-Mills fields, both in the Abelian and non-Abelian instances. We show how to define the q-quantum field theories corresponding to the above equations, introduce the pertinent actions, and obtain equations of motion via the minimum action principle. These q-fields are meaningful at very high energies (TeV scale) for q = 1.15, high energies (GeV scale) for q = 1.001, and low energies (MeV scale) for q = 1.000001 [Nucl. Phys. A 955 (2016) 16 and references therein]. (See the ALICE experiment at the LHC). Surprisingly enough, these q-fields are simultaneously q-exponential functions of the usual linear fields’ logarithms.

  3. Low-derivative operators of the Standard Model effective field theory via Hilbert series methods

    NASA Astrophysics Data System (ADS)

    Lehman, Landon; Martin, Adam

    2016-02-01

    In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N f = 1 operators.

  4. Transverse relaxation in the rotating frame induced by chemical exchange.

    PubMed

    Michaeli, Shalom; Sorce, Dennis J; Idiyatullin, Djaudat; Ugurbil, Kamil; Garwood, Michael

    2004-08-01

    In the presence of radiofrequency irradiation, relaxation of magnetization aligned with the effective magnetic field is characterized by the time constant T1rho. On the other hand, the time constant T2rho characterizes the relaxation of magnetization that is perpendicular to the effective field. Here, it is shown that T2rho can be measured directly with Carr-Purcell sequences composed of a train of adiabatic full-passage (AFP) pulses. During adiabatic rotation, T2rho characterizes the relaxation of the magnetization, which under adiabatic conditions remains approximately perpendicular to the time-dependent effective field. Theory is derived to describe the influence of chemical exchange on T2rho relaxation in the fast-exchange regime, with time constant defined as T2rho,ex. The derived theory predicts the rate constant R2rho,ex (= 1/T2rho,ex) to be dependent on the choice of amplitude- and frequency-modulation functions used in the AFP pulses. Measurements of R2rho,ex of the water/ethanol exchanging system confirm the predicted dependence on modulation functions. The described theoretical framework and adiabatic methods represent new tools to probe exchanging systems. Copyright 2004 Elsevier Inc.

  5. Deep learning beyond Lefschetz thimbles

    NASA Astrophysics Data System (ADS)

    Alexandru, Andrei; Bedaque, Paulo F.; Lamm, Henry; Lawrence, Scott

    2017-11-01

    The generalized thimble method to treat field theories with sign problems requires repeatedly solving the computationally expensive holomorphic flow equations. We present a machine learning technique to bypass this problem. The central idea is to obtain a few field configurations via the flow equations to train a feed-forward neural network. The trained network defines a new manifold of integration which reduces the sign problem and can be rapidly sampled. We present results for the 1 +1 dimensional Thirring model with Wilson fermions on sizable lattices. In addition to the gain in speed, the parametrization of the integration manifold we use avoids the "trapping" of Monte Carlo chains which plagues large-flow calculations, a considerable shortcoming of the previous attempts.

  6. USING ENERGY SYSTEMS THEORY TO DEFINE, MEASURE AND INTERPRET ECOLOGICAL INTEGRITY AND ECOSYSTEM HEALTH

    EPA Science Inventory

    Energy systems theory provides a theoretical basis for defining, measuring, and interpreting the concepts of ecological integrity and ecosystem health. Ecological integrity is defined as an emergent property of ecosystems operating at maximum power that can be quantified using va...

  7. Fractal boundary basins in spherically symmetric ϕ4 theory

    NASA Astrophysics Data System (ADS)

    Honda, Ethan

    2010-07-01

    Results are presented from numerical simulations of the flat-space nonlinear Klein-Gordon equation with an asymmetric double-well potential in spherical symmetry. Exit criteria are defined for the simulations that are used to help understand the boundaries of the basins of attraction for Gaussian “bubble” initial data. The first exit criterion, based on the immediate collapse or expansion of bubble radius, is used to observe the departure of the scalar field from a static intermediate attractor solution. The boundary separating these two behaviors in parameter space is smooth and demonstrates a time-scaling law with an exponent that depends on the asymmetry of the potential. The second exit criterion differentiates between the creation of an expanding true-vacuum bubble and dispersion of the field leaving the false vacuum; the boundary separating these basins of attraction is shown to demonstrate fractal behavior. The basins are defined by the number of bounces that the field undergoes before inducing a phase transition. A third, hybrid exit criterion is used to determine the location of the boundary to arbitrary precision and to characterize the threshold behavior. The possible effects this behavior might have on cosmological phase transitions are briefly discussed.

  8. Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2018-01-01

    We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.

  9. Density functional plus dynamical mean-field theory of the metal-insulator transition in early transition-metal oxides

    NASA Astrophysics Data System (ADS)

    Dang, Hung T.; Ai, Xinyuan; Millis, Andrew J.; Marianetti, Chris A.

    2014-09-01

    The combination of density functional theory and single-site dynamical mean-field theory, using both Hartree and full continuous-time quantum Monte Carlo impurity solvers, is used to study the metal-insulator phase diagram of perovskite transition-metal oxides of the form ABO3 with a rare-earth ion A =Sr, La, Y and transition metal B =Ti, V, Cr. The correlated subspace is constructed from atomiclike d orbitals defined using maximally localized Wannier functions derived from the full p-d manifold; for comparison, results obtained using a projector method are also given. Paramagnetic DFT + DMFT computations using full charge self-consistency along with the standard "fully localized limit" (FLL) double counting are shown to incorrectly predict that LaTiO3, YTiO3, LaVO3, and SrMnO3 are metals. A more general examination of the dependence of physical properties on the mean p-d energy splitting, the occupancy of the correlated d states, the double-counting correction, and the lattice structure demonstrates the importance of charge-transfer physics even in the early transition-metal oxides and elucidates the factors underlying the failure of the standard approximations. If the double counting is chosen to produce a p-d splitting consistent with experimental spectra, single-site dynamical mean-field theory provides a reasonable account of the materials properties. The relation of the results to those obtained from "d-only" models in which the correlation problem is based on the frontier orbital p-d antibonding bands is determined. It is found that if an effective interaction U is properly chosen the d-only model provides a good account of the physics of the d1 and d2 materials.

  10. Logarithmic M(2,p) minimal models, their logarithmic couplings, and duality

    NASA Astrophysics Data System (ADS)

    Mathieu, Pierre; Ridout, David

    2008-10-01

    A natural construction of the logarithmic extension of the M(2,p) (chiral) minimal models is presented, which generalises our previous model of percolation ( p=3). Its key aspect is the replacement of the minimal model irreducible modules by reducible ones obtained by requiring that only one of the two principal singular vectors of each module vanish. The resulting theory is then constructed systematically by repeatedly fusing these building block representations. This generates indecomposable representations of the type which signify the presence of logarithmic partner fields in the theory. The basic data characterising these indecomposable modules, the logarithmic couplings, are computed for many special cases and given a new structural interpretation. Quite remarkably, a number of them are presented in closed analytic form (for general p). These are the prime examples of "gauge-invariant" data—quantities independent of the ambiguities present in defining the logarithmic partner fields. Finally, mere global conformal invariance is shown to enforce strong constraints on the allowed spectrum: It is not possible to include modules other than those generated by the fusion of the model's building blocks. This generalises the statement that there cannot exist two effective central charges in a c=0 model. It also suggests the existence of a second "dual" logarithmic theory for each p. Such dual models are briefly discussed.

  11. Multifractal vector fields and stochastic Clifford algebra.

    PubMed

    Schertzer, Daniel; Tchiguirinskaia, Ioulia

    2015-12-01

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge up the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.

  12. A tutorial on dynamical systems concepts applied to Lagrangian transport in oceanic flows defined as finite time data sets: Theoretical and computational issues

    NASA Astrophysics Data System (ADS)

    Mancho, Ana M.; Small, Des; Wiggins, Stephen

    2006-12-01

    In the past 15 years the framework and ideas from dynamical systems theory have been applied to a variety of transport and mixing problems in oceanic flows. The motivation for this approach comes directly from advances in observational capabilities in oceanography (e.g., drifter deployments, remote sensing capabilities, satellite imagery, etc.) which reveal space-time structures that are highly suggestive of the structures one visualizes in the global, geometrical study of dynamical systems theory. In this tutorial, we motivate this approach by showing the relationship between fluid transport in two-dimensional time-periodic incompressible flows and the geometrical structures that exist for two-dimensional area-preserving maps, such as hyperbolic periodic orbits, their stable and unstable manifolds and KAM (Kolmogorov-Arnold-Moser) tori. This serves to set the stage for the attempt to “transfer” this approach to more realistic flows modelling the ocean. However, in order to accomplish this several difficulties must be overcome. The first difficulty that confronts us that any attempt to carry out a dynamical systems approach to transport requires us to obtain the appropriate “dynamical system”, which is the velocity field describing the fluid flow. In general, adequate model velocity fields are obtained by numerical solution of appropriate partial differential equations describing the dynamical evolution of the velocity field. Numerical solution of the partial differential equations can only be done for a finite time interval, and since the ocean is generally not time-periodic, this leads to a new type of dynamical system: a finite-time, aperiodically time-dependent velocity field defined as a data set on a space-time grid. The global, geometrical analysis of transport in such dynamical systems requires both new concepts and new analytical and computational tools, as well as the necessity to discard some of the standard ideas and results from dynamical systems theory. The purpose of this tutorial is to describe these new concepts and analytical tools first using simple dynamical systems where quantities can be computed exactly. We then discuss their computational implications and implementation in the context of a model geophysical flow: a turbulent wind-driven double-gyre in the quasigeostrophic approximation.

  13. Surface field theories of point group symmetry protected topological phases

    NASA Astrophysics Data System (ADS)

    Huang, Sheng-Jie; Hermele, Michael

    2018-02-01

    We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.

  14. Continuous Time in Consistent Histories

    NASA Astrophysics Data System (ADS)

    Savvidou, Konstantina

    1999-12-01

    We discuss the case of histories labelled by a continuous time parameter in the History Projection Operator consistent-histories quantum theory. We describe how the appropriate representation of the history algebra may be chosen by requiring the existence of projection operators that represent propositions about time averages of the energy. We define the action operator for the consistent histories formalism, as the quantum analogue of the classical action functional, for the simple harmonic oscillator case. We show that the action operator is the generator of two types of time transformations that may be related to the two laws of time-evolution of the standard quantum theory: the `state-vector reduction' and the unitary time-evolution. We construct the corresponding classical histories and demonstrate the relevance with the quantum histories; we demonstrate how the requirement of the temporal logic structure of the theory is sufficient for the definition of classical histories. Furthermore, we show the relation of the action operator to the decoherence functional which describes the dynamics of the system. Finally, the discussion is extended to give a preliminary account of quantum field theory in this approach to the consistent histories formalism.

  15. Nonequilibrium Phase Transitions and a Nonequilibrium Critical Point from Anti-de Sitter Space and Conformal Field Theory Correspondence

    NASA Astrophysics Data System (ADS)

    Nakamura, Shin

    2012-09-01

    We find novel phase transitions and critical phenomena that occur only outside the linear-response regime of current-driven nonequilibrium states. We consider the strongly interacting (3+1)-dimensional N=4 large-Nc SU(Nc) supersymmetric Yang-Mills theory with a single flavor of fundamental N=2 hypermultiplet as a microscopic theory. We compute its nonlinear nonballistic quark-charge conductivity by using the AdS/CFT correspondence. We find that the system exhibits a novel nonequilibrium first-order phase transition where the conductivity jumps and the sign of the differential conductivity flips at finite current density. A nonequilibrium critical point is discovered at the end point of the first-order regime. We propose a nonequilibrium steady-state analogue of thermodynamic potential in terms of the gravity-dual theory in order to define the transition point. Nonequilibrium analogues of critical exponents are proposed as well. The critical behavior of the conductivity is numerically confirmed on the basis of these proposals. The present work provides a new example of nonequilibrium phase transitions and nonequilibrium critical points.

  16. Recent Developments in Non-Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2018-03-01

    Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.

  17. Modeling sound propagation in a waveguide with a gas-saturated sedimentary layer

    NASA Astrophysics Data System (ADS)

    Yarina, M. V.

    2017-11-01

    There was developed an acoustic wave propagation model in a waveguide, where the bottom is represented as a gas-saturated layer. This study uses the ray theory because the investigation of shallow reservoirs with a gas-saturated bottom requires modeling the sound field on short distances. The theory takes into account the rays passing through a gas-saturated layer. The obtained model was used in order to define the distance and the depth of the receiving array (in a horizontal position) elements. The experiment was carried out in the Klyazma reservoir in 2014. In accordance with the peculiarities of the experiment (short distance between receiving array and radiator; irregular array of the radiated signal) there was designed an algorithm agreed with the processing environment in the time domain.

  18. Holonomy of a principal composite bundle connection, non-Abelian geometric phases, and gauge theory of gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viennot, David

    We show that the holonomy of a connection defined on a principal composite bundle is related by a non-Abelian Stokes theorem to the composition of the holonomies associated with the connections of the component bundles of the composite. We apply this formalism to describe the non-Abelian geometric phase (when the geometric phase generator does not commute with the dynamical phase generator). We find then an assumption to obtain a new kind of separation between the dynamical and the geometric phases. We also apply this formalism to the gauge theory of gravity in the presence of a Dirac spinor field inmore » order to decompose the holonomy of the Lorentz connection into holonomies of the linear connection and of the Cartan connection.« less

  19. Fundamentals of Polarized Light

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael

    2003-01-01

    The analytical and numerical basis for describing scattering properties of media composed of small discrete particles is formed by the classical electromagnetic theory. Although there are several excellent textbooks outlining the fundamentals of this theory, it is convenient for our purposes to begin with a summary of those concepts and equations that are central to the subject of this book and will be used extensively in the following chapters. We start by formulating Maxwell's equations and constitutive relations for time- harmonic macroscopic electromagnetic fields and derive the simplest plane-wave solution that underlies the basic optical idea of a monochromatic parallel beam of light. This solution naturally leads to the introduction of such fundamental quantities as the refractive index and the Stokes parameters. Finally, we define the concept of a quasi-monochromatic beam of light and discuss its implications.

  20. Toward a common theory for learning from reward, affect, and motivation: the SIMON framework.

    PubMed

    Madan, Christopher R

    2013-10-07

    While the effects of reward, affect, and motivation on learning have each developed into their own fields of research, they largely have been investigated in isolation. As all three of these constructs are highly related, and use similar experimental procedures, an important advance in research would be to consider the interplay between these constructs. Here we first define each of the three constructs, and then discuss how they may influence each other within a common framework. Finally, we delineate several sources of evidence supporting the framework. By considering the constructs of reward, affect, and motivation within a single framework, we can develop a better understanding of the processes involved in learning and how they interplay, and work toward a comprehensive theory that encompasses reward, affect, and motivation.

  1. Self-defeating behaviors in organizations: the relationship between thwarted belonging and interpersonal work behaviors.

    PubMed

    Thau, Stefan; Aquino, Karl; Poortvliet, P Marijn

    2007-05-01

    This multisource field study applied belongingness theory to examine whether thwarted belonging, defined as the perceived discrepancy between one's desired and actual levels of belonging with respect to one's coworkers, predicts interpersonal work behaviors that are self-defeating. Controlling for demographic variables, job type, justice constructs, and trust in organization in a multilevel regression analysis using data from 130 employees of a clinical chemical laboratory and their supervisors, the authors found that employees who perceive greater levels of desired coworker belonging than actual levels of coworker belonging were more likely to engage in interpersonally harmful and less likely to engage in interpersonally helpful behaviors. Implications for the application of belongingness theory to explain self-defeating behaviors in organizations are discussed. 2007 APA, all rights reserved

  2. Classical Field Theory and the Stress-Energy Tensor

    NASA Astrophysics Data System (ADS)

    Swanson, Mark S.

    2015-09-01

    This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory. The variational form of classical mechanics and continuum field theory are both developed in the time-honored graduate level text by Goldstein et al (2001). An introduction to classical field theory from a somewhat different perspective is available in Soper (2008). Basic classical field theory is often treated in books on quantum field theory. Two excellent texts where this is done are Greiner and Reinhardt (1996) and Peskin and Schroeder (1995). Green's function techniques are presented in Arfken et al (2013).

  3. Noncommutative Field Theories and (super)string Field Theories

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.

    2002-11-01

    In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.

  4. A Symplectic Instanton Homology via Traceless Character Varieties

    NASA Astrophysics Data System (ADS)

    Horton, Henry T.

    Since its inception, Floer homology has been an important tool in low-dimensional topology. Floer theoretic invariants of 3-manifolds tend to be either gauge theoretic or symplecto-geometric in nature, and there is a general philosophy that each gauge theoretic Floer homology should have a corresponding symplectic Floer homology and vice-versa. In this thesis, we construct a Lagrangian Floer invariant for any closed, oriented 3-manifold Y (called the symplectic instanton homology of Y and denoted SI(Y)) which is conjecturally equivalent to a Floer homology defined using a certain variant of Yang-Mills gauge theory. The crucial ingredient for defining SI( Y) is the use of traceless character varieties in the symplectic setting, which allow us to avoid the debilitating technical hurdles present when one attempts to define a symplectic version of instanton Floer homologies. Floer theories are also expected to roughly satisfy the axioms of a topological quantum field theory (TQFT), and furthermore Dehn surgeries on knots should induce exact triangles of Floer homologies. Following a strategy used by Ozsvath and Szabo in the context of Heegaard Floer homology, we prove that our theory is functorial with respect to connected 4-dimensional cobordisms, so that cobordisms induce homomorphisms between symplectic instanton homologies. By studying the effect of Dehn surgeries on traceless character varieties, we establish a surgery exact triangle using work of Seidel that relates the geometry of Lefschetz fibrations with exact triangles in Lagrangian Floer theory. We further prove that Dehn surgeries on a link L in a 3-manifold Y induce a spectral sequence of symplectic instanton homologies - the E2-page is isomorphic to a direct sum of symplectic instanton homologies of all possible combinations of 0- and 1-surgeries on the components of L, and the spectral sequence converges to SI(Y). For the branched double cover Sigma(L) of a link L in S3, we show there is a link surgery spectral sequence whose E 2-page is isomorphic to the reduced Khovanov homology of L and which converges to the symplectic instanton homology of Sigma( L).

  5. Ensemble Solute Transport in 2-D Operator-Stable Random Fields

    NASA Astrophysics Data System (ADS)

    Monnig, N. D.; Benson, D. A.

    2006-12-01

    The heterogeneous velocity field that exists at many scales in an aquifer will typically cause a dissolved solute plume to grow at a rate faster than Fick's Law predicts. Some statistical model must be adopted to account for the aquifer structure that engenders the velocity heterogeneity. A fractional Brownian motion (fBm) model has been shown to create the long-range correlation that can produce continually faster-than-Fickian plume growth. Previous fBm models have assumed isotropic scaling (defined here by a scalar Hurst coefficient). Motivated by field measurements of aquifer hydraulic conductivity, recent techniques were developed to construct random fields with anisotropic scaling with a self-similarity parameter that is defined by a matrix. The growth of ensemble plumes is analyzed for transport through 2-D "operator- stable" fBm hydraulic conductivity (K) fields. Both the longitudinal and transverse Hurst coefficients are important to both plume growth rates and the timing and duration of breakthrough. Smaller Hurst coefficients in the transverse direction lead to more "continuity" or stratification in the direction of transport. The result is continually faster-than-Fickian growth rates, highly non-Gaussian ensemble plumes, and a longer tail early in the breakthrough curve. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rate never exceeds Mercado's [1967] purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-Mercado growth must be the result of other factors, such as larger plumes corresponding to either a larger initial plume size or greater variance of the ln(K) field.

  6. Review: Hamiltonian Linearization of the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge: A Radiation Gauge for Background-Independent Gravitational Waves in a Post-Minkowskian Einstein Spacetime

    NASA Astrophysics Data System (ADS)

    Agresti, Juri; De Pietri, Roberto; Lusanna, Luca; Martucci, Luca

    2004-05-01

    In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy {\\hat E}ADM, we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) r_{\\bar a}(\\tau ,\\vec \\sigma ), \\pi_{\\bar a}(\\tau ,\\vec \\sigma ), \\bar a = 1,2. We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in {\\hat E}ADM. We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's r_{\\bar a}(\\tau ,\\vec \\sigma ), which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.

  7. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo.

    PubMed

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-11-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed.

  8. Finding and defining the natural automata acting in living plants: Toward the synthetic biology for robotics and informatics in vivo

    PubMed Central

    Kawano, Tomonori; Bouteau, François; Mancuso, Stefano

    2012-01-01

    The automata theory is the mathematical study of abstract machines commonly studied in the theoretical computer science and highly interdisciplinary fields that combine the natural sciences and the theoretical computer science. In the present review article, as the chemical and biological basis for natural computing or informatics, some plants, plant cells or plant-derived molecules involved in signaling are listed and classified as natural sequential machines (namely, the Mealy machines or Moore machines) or finite state automata. By defining the actions (states and transition functions) of these natural automata, the similarity between the computational data processing and plant decision-making processes became obvious. Finally, their putative roles as the parts for plant-based computing or robotic systems are discussed. PMID:23336016

  9. End-anchored polymers in good solvents from the single chain limit to high anchoring densities.

    PubMed

    Whitmore, Mark D; Grest, Gary S; Douglas, Jack F; Kent, Michael S; Suo, Tongchuan

    2016-11-07

    An increasing number of applications utilize grafted polymer layers to alter the interfacial properties of solid substrates, motivating refinement in our theoretical understanding of such layers. To assess existing theoretical models of them, we have investigated end-anchored polymer layers over a wide range of grafting densities, σ, ranging from a single chain to high anchoring density limits, chain lengths ranging over two orders of magnitude, for very good and marginally good solvent conditions. We compare Monte Carlo and molecular dynamics simulations, numerical self-consistent field calculations, and experimental measurements of the average layer thickness, h, with renormalization group theory, the Alexander-de Gennes mushroom theory, and the classical brush theory. Our simulations clearly indicate that appreciable inter-chain interactions exist at all simulated areal anchoring densities so that there is no mushroom regime in which the layer thickness is independent of σ. Moreover, we find that there is no high coverage regime in which h follows the predicted scaling, h ∼ Nσ 1/3 , for classical polymer brushes either. Given that no completely adequate analytic theory seems to exist that spans wide ranges of N and σ, we applied scaling arguments for h as a function of a suitably defined reduced anchoring density, defined in terms of the solution radius of gyration of the polymer chains and N. We find that such a scaling approach enables a smooth, unified description of h in very good solvents over the full range of anchoring density and chain lengths, although this type of data reduction does not apply to marginal solvent quality conditions.

  10. Analytical and experimental studies of an optimum multisegment phased liner noise suppression concept

    NASA Technical Reports Server (NTRS)

    Sawdy, D. T.; Beckemeyer, R. J.; Patterson, J. D.

    1976-01-01

    Results are presented from detailed analytical studies made to define methods for obtaining improved multisegment lining performance by taking advantage of relative placement of each lining segment. Properly phased liner segments reflect and spatially redistribute the incident acoustic energy and thus provide additional attenuation. A mathematical model was developed for rectangular ducts with uniform mean flow. Segmented acoustic fields were represented by duct eigenfunction expansions, and mode-matching was used to ensure continuity of the total field. Parametric studies were performed to identify attenuation mechanisms and define preliminary liner configurations. An optimization procedure was used to determine optimum liner impedance values for a given total lining length, Mach number, and incident modal distribution. Optimal segmented liners are presented and it is shown that, provided the sound source is well-defined and flow environment is known, conventional infinite duct optimum attenuation rates can be improved. To confirm these results, an experimental program was conducted in a laboratory test facility. The measured data are presented in the form of analytical-experimental correlations. Excellent agreement between theory and experiment verifies and substantiates the analytical prediction techniques. The results indicate that phased liners may be of immediate benefit in the development of improved aircraft exhaust duct noise suppressors.

  11. A generalized theory of thin film growth

    NASA Astrophysics Data System (ADS)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  12. Democratic Superstring Field Theory and Its Gauge Fixing

    NASA Astrophysics Data System (ADS)

    Kroyter, M.

    This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.

  13. Shared decision-making in the paediatric field: a literature review and concept analysis.

    PubMed

    Park, Eun Sook; Cho, In Young

    2017-09-13

    The concept of shared decision-making is poorly defined and often used interchangeably with related terms. The aim of this study was to delineate and clarify the concept of shared decision-making in the paediatric field. Rodgers and Knafl's evolutionary concept analysis was used to delineate and clarify the concept. Following a search of the CINAHL, PubMed and MEDLINE databases and online journals between 1995 and 2016, we included a total of 42 articles that referred to shared decision-making in the paediatric field. The attributes included active participation of the three: parents, children and health professionals; collaborative partnership; reaching a compromise; and common goal for child's health. Antecedents were existing several options with different possible outcomes; substantial decisional conflict; recognising child's health situations that decision-making is needed; and willingness to participate in decision-making. Finally, the consequences included decreased decisional conflict; mutual empowerment; improved child health status; and improved quality of paediatric health care. This study provides a theoretical understanding of the concept of shared decision-making in the paediatric field; furthermore, by integrating this concept into paediatric practice, it may help to reduce the gap between theory and practice. The analysis could also provide nursing researchers with insight into paediatric decision-making and establish a foundation to develop future interventions and situation-specific theory for promoting high-quality decision-making in the paediatric field. © 2017 Nordic College of Caring Science.

  14. Behavioural ecology cannot turn its back on Lévy walk research. Comment on "Liberating Lévy walk research from the shackles of optimal foraging" by A.M. Reynolds

    NASA Astrophysics Data System (ADS)

    Bartumeus, Frederic

    2015-09-01

    Interdisciplinary research on Lévy walks at the intersection between physics and biology is here to stay, albeit the scope of its role and utility in different areas of biology, including animal foraging, are still to be defined. After a decade, the field is still sorting out relevant questions from misleading interpretations, separating the wheat from the chaff. This task should be easy but it is not. Some reasons are the interdisciplinarity of the subject (maths, physics, biology), which multiplies semantic problems and the questions of interest, and the tight combination of theory and data that is needed to advance in the field.

  15. Marriage in the 20th century: A feminist perspective.

    PubMed

    Rampage, Cheryl

    2002-01-01

    A defining feature of the 20th century in Western civilization was a profound change in the roles women play in both private and public life. The field of couple therapy was influenced by that change and, to a limited extent, participated in it. I will argue that the field has avoided fully embracing the principles of feminism that generated the social changes in gender and marital roles, settling instead for a more token acknowledgment that gender means something, without wanting to specify what that something is. In responding to the other articles in this issue, I make the case that the connection between gender and power in marriage needs to be more fully integrated, in the theory, research, and treatment of couples.

  16. Conformal correlation functions in the Brownian loop soup

    NASA Astrophysics Data System (ADS)

    Camia, Federico; Gandolfi, Alberto; Kleban, Matthew

    2016-01-01

    We define and study a set of operators that compute statistical properties of the Brownian loop soup, a conformally invariant gas of random Brownian loops (Brownian paths constrained to begin and end at the same point) in two dimensions. We prove that the correlation functions of these operators have many of the properties of conformal primaries in a conformal field theory, and compute their conformal dimension. The dimensions are real and positive, but have the novel feature that they vary continuously as a periodic function of a real parameter. We comment on the relation of the Brownian loop soup to the free field, and use this relation to establish that the central charge of the loop soup is twice its intensity.

  17. Neo-Symbiosis: The Next Stage in the Evolution of Human Information Interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Griffith, Douglas; Greitzer, Frank L.

    Abstract--The purpose of this paper is to re-address the vision of human-computer symbiosis as originally expressed by J.C.R. Licklider nearly a half-century ago. We describe this vision, place it in some historical context relating to the evolution of human factors research, and we observe that the field is now in the process of re-invigorating Licklider’s vision. We briefly assess the state of the technology within the context of contemporary theory and practice, and we describe what we regard as this emerging field of neo-symbiosis. We offer some initial thoughts on requirements to define functionality of neo-symbiotic systems and discuss researchmore » challenges associated with their development and evaluation.« less

  18. Quantum stopping times stochastic integral in the interacting Fock space

    NASA Astrophysics Data System (ADS)

    Kang, Yuanbao

    2015-08-01

    Following the ideas of Hudson [J. Funct. Anal. 34(2), 266-281 (1979)] and Parthasarathy and Sinha [Probab. Theory Relat. Fields 73, 317-349 (1987)], we define a quantum stopping time (QST, for short) τ in the interacting Fock space (IFS, for short), Γ, over L2(ℝ+), which is actually a spectral measure in [0, ∞] such that τ([0, t]) is an adapted process. Motivated by Parthasarathy and Sinha [Probab. Theory Relat. Fields 73, 317-349 (1987)] and Applebaum [J. Funct. Anal. 65, 273-291 (1986)], we also develop a corresponding quantum stopping time stochastic integral (QSTSI, for abbreviations) on the IFS over a subspace of L2(ℝ+) equipped with a filtration. As an application, such integral provides a useful tool for proving that Γ admits a strong factorisation, i.e., Γ = Γτ] ⊗ Γ[τ, where Γτ] and Γ[τ stand for the part "before τ" and the part "after τ," respectively. Additionally, this integral also gives rise to a natural composition operation among QST to make the space of all QSTs a semigroup.

  19. Singular perturbations with boundary conditions and the Casimir effect in the half space

    NASA Astrophysics Data System (ADS)

    Albeverio, S.; Cognola, G.; Spreafico, M.; Zerbini, S.

    2010-06-01

    We study the self-adjoint extensions of a class of nonmaximal multiplication operators with boundary conditions. We show that these extensions correspond to singular rank 1 perturbations (in the sense of Albeverio and Kurasov [Singular Perturbations of Differential Operaters (Cambridge University Press, Cambridge, 2000)]) of the Laplace operator, namely, the formal Laplacian with a singular delta potential, on the half space. This construction is the appropriate setting to describe the Casimir effect related to a massless scalar field in the flat space-time with an infinite conducting plate and in the presence of a pointlike "impurity." We use the relative zeta determinant (as defined in the works of Müller ["Relative zeta functions, relative determinants and scattering theory," Commun. Math. Phys. 192, 309 (1998)] and Spreafico and Zerbini ["Finite temperature quantum field theory on noncompact domains and application to delta interactions," Rep. Math. Phys. 63, 163 (2009)]) in order to regularize the partition function of this model. We study the analytic extension of the associated relative zeta function, and we present explicit results for the partition function and for the Casimir force.

  20. Marxism, social psychology, and the sociology of mental health.

    PubMed

    Brown, P

    1984-01-01

    The political activism of the 1960s brought with it activism in the mental health field, broadly defined as antipsychiatry. Included in this social phenomenon are R.D. Laing and his colleagues, mental patients' rights activists, movements against psycho-technological abuses such as psychosurgery, Marxist and radical critiques of mainstream psychiatric practices, and feminist therapy. Some aspects of this broad movement have been influenced or even directed by Marxist perspectives. When Marxist influences have not predominated, antipsychiatric points of view still have much affinity with Marxism. This broad-based criticism of mental health practices and ideologies not only influences the mental health field, but also affects general Marxist social theory, adding to traditional Marxism a concern with feminist issues and the politics of personal and family life. This article explores the progress made by these antipsychiatric perspectives, and examines their limitations as well. Four schools of thought in Marxist psychology--Freudo-Marxism, orthodox-economist Marxism, see Marxist medical model, and "ideology-critique"--are explored to see how they can contribute to the further production of Marxist psychological theory and practice.

  1. Extension of the HAL QCD approach to inelastic and multi-particle scatterings in lattice QCD

    NASA Astrophysics Data System (ADS)

    Aoki, S.

    We extend the HAL QCD approach, with which potentials between two hadrons can be obtained in QCD at energy below inelastic thresholds, to inelastic and multi-particle scatterings. We first derive asymptotic behaviors of the Nambu-Bethe-Salpeter (NBS) wave function at large space separations for systems with more than 2 particles, in terms of the one-shell $T$-matrix consrainted by the unitarity of quantum field theories. We show that its asymptotic behavior contains phase shifts and mixing angles of $n$ particle scatterings. This property is one of the essential ingredients of the HAL QCD scheme to define "potential" from the NBS wave function in quantum field theories such as QCD. We next construct energy independent but non-local potentials above inelastic thresholds, in terms of these NBS wave functions. We demonstrate an existence of energy-independent coupled channel potentials with a non-relativistic approximation, where momenta of all particles are small compared with their own masses. Combining these two results, we can employ the HAL QCD approach also to investigate inelastic and multi-particle scatterings.

  2. Introduction to quantized LIE groups and algebras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tjin, T.

    1992-10-10

    In this paper, the authors give a self-contained introduction to the theory of quantum groups according to Drinfeld, highlighting the formal aspects as well as the applications to the Yang-Baxter equation and representation theory. Introductions to Hopf algebras, Poisson structures and deformation quantization are also provided. After defining Poisson Lie groups the authors study their relation to Lie bialgebras and the classical Yang-Baxter equation. Then the authors explain in detail the concept of quantization for them. As an example the quantization of sl[sub 2] is explicitly carried out. Next, the authors show how quantum groups are related to the Yang-Baxtermore » equation and how they can be used to solve it. Using the quantum double construction, the authors explicitly construct the universal R matrix for the quantum sl[sub 2] algebra. In the last section, the authors deduce all finite-dimensional irreducible representations for q a root of unity. The authors also give their tensor product decomposition (fusion rules), which is relevant to conformal field theory.« less

  3. AGT relations for abelian quiver gauge theories on ALE spaces

    NASA Astrophysics Data System (ADS)

    Pedrini, Mattia; Sala, Francesco; Szabo, Richard J.

    2016-05-01

    We construct level one dominant representations of the affine Kac-Moody algebra gl̂k on the equivariant cohomology groups of moduli spaces of rank one framed sheaves on the orbifold compactification of the minimal resolution Xk of the Ak-1 toric singularity C2 /Zk. We show that the direct sum of the fundamental classes of these moduli spaces is a Whittaker vector for gl̂k, which proves the AGT correspondence for pure N = 2 U(1) gauge theory on Xk. We consider Carlsson-Okounkov type Ext-bundles over products of the moduli spaces and use their Euler classes to define vertex operators. Under the decomposition gl̂k ≃ h ⊕sl̂k, these vertex operators decompose as products of bosonic exponentials associated to the Heisenberg algebra h and primary fields of sl̂k. We use these operators to prove the AGT correspondence for N = 2 superconformal abelian quiver gauge theories on Xk.

  4. Hamiltonian analysis for linearly acceleration-dependent Lagrangians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz, Miguel, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Gómez-Cortés, Rosario, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx; Rojas, Efraín, E-mail: miguelcruz02@uv.mx, E-mail: roussjgc@gmail.com, E-mail: molgado@fc.uaslp.mx, E-mail: efrojas@uv.mx

    2016-06-15

    We study the constrained Ostrogradski-Hamilton framework for the equations of motion provided by mechanical systems described by second-order derivative actions with a linear dependence in the accelerations. We stress out the peculiar features provided by the surface terms arising for this type of theories and we discuss some important properties for this kind of actions in order to pave the way for the construction of a well defined quantum counterpart by means of canonical methods. In particular, we analyse in detail the constraint structure for these theories and its relation to the inherent conserved quantities where the associated energies togethermore » with a Noether charge may be identified. The constraint structure is fully analyzed without the introduction of auxiliary variables, as proposed in recent works involving higher order Lagrangians. Finally, we also provide some examples where our approach is explicitly applied and emphasize the way in which our original arrangement results in propitious for the Hamiltonian formulation of covariant field theories.« less

  5. Geometry and physics of pseudodifferential operators on manifolds

    NASA Astrophysics Data System (ADS)

    Esposito, Giampiero; Napolitano, George M.

    2016-09-01

    A review is made of the basic tools used in mathematics to define a calculus for pseudodifferential operators on Riemannian manifolds endowed with a connection: existence theorem for the function that generalizes the phase; analogue of Taylor's theorem; torsion and curvature terms in the symbolic calculus; the two kinds of derivative acting on smooth sections of the cotangent bundle of the Riemannian manifold; the concept of symbol as an equivalence class. Physical motivations and applications are then outlined, with emphasis on Green functions of quantum field theory and Parker's evaluation of Hawking radiation.

  6. Continuous theory of active matter systems with metric-free interactions.

    PubMed

    Peshkov, Anton; Ngo, Sandrine; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco

    2012-08-31

    We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones-a situation advocated recently to be relevant for bird flocks, fish schools, and crowds-we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.

  7. Aspects of the Antisymmetric Tensor Field

    NASA Astrophysics Data System (ADS)

    Lahiri, Amitabha

    1991-02-01

    With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.

  8. On the self-force in Bopp-Podolsky electrodynamics

    NASA Astrophysics Data System (ADS)

    Gratus, Jonathan; Perlick, Volker; Tucker, Robin W.

    2015-10-01

    In the classical vacuum Maxwell-Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham-Lorentz-Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp-Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities.

  9. The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.

    ERIC Educational Resources Information Center

    Miller, James G.

    General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…

  10. Coherent launch-site atmospheric wind sounder - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Hawley, James G.; Targ, Russell; Henderson, Sammy W.; Hale, Charley P.; Kavaya, Michael J.; Moerder, Daniel

    1993-01-01

    The coherent launch-site atmospheric wind sounder (CLAWS) is a lidar atmospheric wind sensor designed to measure the winds above space launch facilities to an altitude of 20 km. In our development studies, lidar sensor requirements are defined, a system to meet those requirements is defined and built, and the concept is evaluated, with recommendations for the most feasible and cost-effective lidar system for use as an input to a guidance and control system for missile or spacecraft launches. The ability of CLAWS to meet NASA goals for increased safety and launch/mission flexibility is evaluated in a field test program at Kennedy Space Center (KSC) in which we investigate maximum detection range, refractive turbulence, and aerosol backscattering efficiency. The Nd:YAG coherent lidar operating at 1.06 micron with 1-J energy per pulse is able to make real-time measurements of the 3D wind field at KSC to an altitude of 26 km, in good agreement with our performance simulations. It also shows the height and thickness of the volcanic layer caused by the volcanic eruption of Mount Pinatubo in the Philippines.

  11. Group field theory with noncommutative metric variables.

    PubMed

    Baratin, Aristide; Oriti, Daniele

    2010-11-26

    We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.

  12. The impact of mass communication campaigns in the health field.

    PubMed

    Alcalay, R

    1983-01-01

    This article analyzes a series of health education projects that used the mass media to change behavior. First, the article describes how persuasion theories are used to maximize impact in mass communication campaigns. Second, this paper discusses theories of social psychology used in such campaigns. One such theory, cognitive dissonance, explains changes at the level of attitudes, beliefs and opinion. Another theory, social learning, defines strategies of behavior changes. A third theory, concerning diffusion of innovations, helps understand the network of interpersonal relationships essential for the adoption of any innovation. McGuire's inoculation theory suggests strategies to aid resistance to harmful environmental influences (e.g. smoking, excessive drinking, etc.). Third, this work reviews public health campaigns that have used one or more of these theories of social psychology. The first project, dealing with smoking behavior cessation and prevention, mainly used strategies of interpersonal communication for inoculating and modeling useful behavior in order to resist social pressures favorable to smoking. The second project, designed to prevent alcoholism, used the mass media primarily. The objective of this campaign was to obtain changes in knowledge, attitude and behavior in the public through modeling desirable behaviors over public service announcements. The third campaign, a heart disease prevention program, used a combination of mass media and interpersonal communication to achieve changes in lifestyle of the population. Finally, this article describes limitations in using mass media in behavior change health programs.

  13. Effective Field Theory on Manifolds with Boundary

    NASA Astrophysics Data System (ADS)

    Albert, Benjamin I.

    In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.

  14. Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields.

    PubMed

    Soba, Alejandro; González, Graciela; Calivar, Lucas; Marshall, Guillermo

    2012-11-01

    Electrochemical deposition (ECD) in thin cells in a vertical position relative to gravity, subject to an external uniform magnetic field, yields a growth pattern formation with dense branched morphology with branches tilted in the direction of the magnetic force. We study the nature of the inclined growth through experiments and theory. Experiments in ECD, in the absence of magnetic forces, reveal that a branch grows by allowing fluid to penetrate its tip and to be ejected from the sides through a pair of symmetric vortices attached to the tip. The upper vortices zone defines an arch separating an inner zone ion depleted and an outer zone in a funnel-like form with a concentrated solution through which metal ions are carried into the tip. When a magnetic field is turned on, vortex symmetry is broken, one vortex becoming weaker than the other, inducing an inclination of the funnel. Consequently, particles entering the funnel give rise to branch growth tilted in the same direction. Theory predicts, in the absence of a magnetic force, funnel symmetry induced through symmetric vortices driven by electric and gravitational forces; when the magnetic force is on, it is composed with the pair of clockwise and counterclockwise vortices, reducing or amplifying one or the other. In turn, funnel tilting modifies particle trajectories, thus, growth orientation.

  15. Characterizing the collapse of a cavitation bubble cloud in a focused ultrasound field

    NASA Astrophysics Data System (ADS)

    Maeda, Kazuki; Colonius, Tim

    2017-11-01

    We study the coherent collapse of clouds of cavitation bubbles generated by the passage of a pulse of ultrasound. In order to characterize such collapse, we conduct a parametric study on the dynamics of a spherical bubble cloud with a radius of r = O(1) mm interacting with traveling ultrasound waves with an amplitude of pa = O(102 -106) Pa and a wavelength of λ = O(1 - 10) mm in water. Bubbles with a radius of O(10) um are treated as spherical, radially oscillating cavities dispersed in continuous liquid phase. The volume of Lagrangian point bubbles is mapped with a regularization kernel as void fraction onto Cartesian grids that defines the Eulerian liquid phase. The flow field is solved using a WENO-based compressible flow solver. We identified that coherent collapse occurs when λ >> r , regardless of the value of pa, while it only occurs for sufficiently high pa when λ r . For the long wavelength case, the results agree with the theory on linearized dynamics of d'Agostino and Brennen (1989). We extend the theory to short wave length case. Finally, we analyze the far-field acoustics scattered by individual bubbles and correlate them with the cloud collapse, for applications to acoustic imaging of bubble cloud dynamics. Funding supported by NIH P01-DK043881.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donnelly, William; Freidel, Laurent

    We consider the problem of defining localized subsystems in gauge theory and gravity. Such systems are associated to spacelike hypersurfaces with boundaries and provide the natural setting for studying entanglement entropy of regions of space. We present a general formalism to associate a gauge-invariant classical phase space to a spatial slice with boundary by introducing new degrees of freedom on the boundary. In Yang-Mills theory the new degrees of freedom are a choice of gauge on the boundary, transformations of which are generated by the normal component of the nonabelian electric field. In general relativity the new degrees of freedommore » are the location of a codimension-2 surface and a choice of conformal normal frame. These degrees of freedom transform under a group of surface symmetries, consisting of diffeomorphisms of the codimension-2 boundary, and position-dependent linear deformations of its normal plane. We find the observables which generate these symmetries, consisting of the conformal normal metric and curvature of the normal connection. We discuss the implications for the problem of defining entanglement entropy in quantum gravity. Finally, our work suggests that the Bekenstein-Hawking entropy may arise from the different ways of gluing together two partial Cauchy surfaces at a cross-section of the horizon.« less

  17. Ensemble solute transport in two-dimensional operator-scaling random fields

    NASA Astrophysics Data System (ADS)

    Monnig, Nathan D.; Benson, David A.; Meerschaert, Mark M.

    2008-02-01

    Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these two-dimensional "operator-scaling" fractional Brownian motion ln(K) fields. Both the longitudinal and transverse Hurst coefficients, as well as the "radius of isotropy" are important to both plume growth rates and the timing and duration of breakthrough. It is possible to create operator-scaling fractional Brownian motion fields that have more "continuity" or stratification in the direction of transport. The effects on a conservative solute plume are continually faster-than-Fickian growth rates, highly non-Gaussian shapes, and a heavier tail early in the breakthrough curve. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed A. Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent superstratified growth must be the result of other demonstrable factors, such as initial plume size.

  18. Higher-spin theory and holography

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias; Vasiliev, Mikhail

    2013-05-01

    This special issue of Journal of Physics A: Mathematical and Theoretical reviews recent developments in higher-spin gauge theories and their applications to holographic dualities. The analysis of higher-spin theories has a very long history, but it took until the mid 1980s for the first consistent higher-spin interactions to be constructed by Bengtsson, Bengtsson and Brink [1] and Berends, Burgers and van Dam [2]. Somewhat later it was shown by Fradkin and Vasiliev [3] that consistent higher-spin gauge theories that involve gravity should necessarily be defined on a curved background. The first consistent interacting higher-spin theories were then formulated at the classical level by Vasiliev in the early 1990s [4]. These higher-spin theories involve an infinite number of massless higher-spin fields that support higher-spin gauge symmetries, and indeed, are largely characterized by this underlying gauge symmetry. The simplest examples are provided by higher-spin theories on (anti)-de Sitter spaces, and in a sense, this anticipated the AdS/CFT correspondence. Indeed, in the tensionless limit of string theory, the massive excitations of string theory become massless, and hence define higher-spin gauge fields. On the other hand, from the dual gauge theory perspective, this is the limit in which the field theory becomes free, and therefore has many conserved higher-spin currents. By the usual AdS/CFT dictionary, these are dual to the higher-spin gauge symmetries of the bulk description. Following this line of argument, Sundborg [5] and Witten [6] suggested in 2001 that a duality relating a higher-spin theory on AdSd to a weakly coupled (d - 1)-dimensional conformal field theory should exist. A concrete proposal was then made by Klebanov and Polyakov [7] who conjectured that the simplest version of a higher-spin gauge theory on AdS4 should be dual to the 3d O(N ) vector model. Recently, much support for this conjecture was obtained by Giombi and Yin [8], and in turn, this has triggered a significant amount of activity in this general area. Among other things, the constraints that are implied by the higher-spin symmetries were analysed (see the paper by Maldacena and Zhiboedov in this issue [9]), and a fairly concrete proposal for how higher-spin theories are related to string theory was made (see the paper by Chang, Minwalla, Sharma and Yin in this issue [10]). Furthermore, a lower dimensional version of the conjecture was put forward by Gaberdiel and Gopakumar [11] that was subsequently also checked in some detail. These dualities hold the promise of offering insights into the inner workings of the AdS/CFT correspondence since they are complex enough to capture the essence of the duality, while at the same time being sufficiently simple in order to allow for a detailed analysis. Moreover, the methods specifically developed in higher-spin theory may be useful for understanding a general mechanism underlying holography, both in higher-spin models and beyond (see the paper by Vasiliev in this issue [12]). Another fascinating aspect of these higher-spin theories lies in the fact that the higher-spin symmetries mix generically fields of different spin, and in particular, the spin-2 metric and higher-spin excitations are related to one another by gauge transformations. As a result, higher-spin theories require a modification of the standard framework of Riemannian geometry since the usual diffeomorphism-invariant tensors are not gauge invariant any longer. In particular, higher-spin theories may therefore open the way towards understanding fundamental concepts of space-time geometry; for example, they may well have key lessons in store for how string theory resolves space-time singularities. In this issue we have collected together a number of review papers, summarizing the aforementioned recent developments, as well as research papers indicating current directions of interest in the study of higher-spin gauge theories. We hope that it will be useful, both for beginners interested in an introduction to the subject, and for experts already working in the field. Three of the reviews deal with the holographic dualities mentioned above: the paper by Giombi and Yin [13] reviews the situation for AdS4/CFT3, while the review by Gaberdiel and Gopakumar [14] deals with the lower-dimensional AdS3/CFT2 version. In addition, the review by Jevicki, Jin and Ye [15] explains a possible way of proving the duality using collective fields. There are two reviews on the construction of black holes in higher-spin gauge theories: the review by Iazeolla and Sundell [16] reviews the situation for 4d higher-spin theories, while the review by Ammon, Gutperle, Kraus and Perlmutter [17] deals with the three-dimensional case for which much progress has been made recently. Finally, the review of Sagnotti [18] explains various general aspects of higher-spin gauge theories. The research papers deal with different aspects of current developments; some are concerned with the holographic duality, while others develop the general theory of higher-spin fields. References [1] Bengtsson A K H, Bengtsson I and Brink L 1983 Cubic interaction terms for arbitrarily extended supermultiplets Nucl. Phys. B 227 41 [2] Berends F A, Burgers G J H Van Dam H 1984 On spin three self interactions Z. Phys. C 24 247 [3] Fradkin E S Vasiliev M A 1987 On the gravitational interaction of massless higher-spin fields Phys. Lett. B 189 89 [4] Vasiliev M A 1992 More on equations of motion for interacting massless fields of all spins in 3+1 dimensions Phys. Lett. B 285 225 [5] Sundborg B 2001 Stringy gravity, interacting tensionless strings and massless higher spins Nucl. Phys. Proc. Suppl. 102 113 (arXiv:hep-th/0103247) [6] Witten E 2001 Spacetime reconstruction Talk at the John Schwarz 60th Birthday Symp. (http://theory.caltech.edu/jhs60/witten/1.html) [7] Klebanov I R Polyakov A M 2002 AdS dual of the critical O (N ) vector model Phys. Lett. B 550 213 (arXiv:hep-th/0210114) [8] Giombi S Yin X 2010 Higher spin gauge theory and holography: the three-point functions J. High Energy Phys. JHEP09(2010)115 (arXiv:0912.3462 [hep-th]) [9] Maldacena J Zhiboedov A 2013 Constraining conformal field theories with a higher spin symmetry J. Phys. A: Math. Theor. 46 214011 (arXiv:1204.3882 [hep-th]) [10] Chang C-M, Minwalla A, Sharma T Yin X 2013 ABJ triality: from higher spin fields to strings J. Phys. A: Math. Theor. 46 214009 (arXiv:1207.4485 [hep-th]) [11] Gaberdiel M R Gopakumar R 2011 An AdS3 dual for minimal model CFTs Phys. Rev. D 83 066007 (arXiv:1011.2986 [hep-th]) [12] Vasiliev M A 2013 Holography, unfolding and higher-spin theory J. Phys. A: Math. Theor. 46 214013 (arXiv:1203.5554 [hep-th]) [13] Giombi S Yin X 2013 The higher spin/vector model duality J. Phys. A: Math. Theor. 46 214003 (arXiv:1208.4036 [hep-th]) [14] Gaberdiel M R Gopakumar R 2013 Minimal model holography J. Phys. A: Math. Theor. 46 214002 (arXiv:1207.6697 [hep-th]) [15] Jevicki A, Jin K Ye Q 2013 Perturbative and non-perturbative aspects in vector model/higher spin duality J. Phys. A: Math. Theor. 46 214005 (arXiv:1212.5215 [hep-th]) [16] Iazeolla C Sundell P 2013 Biaxially symmetric solutions to 4D higher-spin gravity J. Phys. A: Math. Theor. 46 214004 (arXiv:1208.4077 [hep-th]) [17] Ammon M, Gutperle M, Kraus P Perlmutter E 2013 Black holes in three dimensional higher spin gravity: a review J. Phys. A: Math. Theor. 46 214001 (arXiv:1208.5182 [hep-th]) [18] Sagnotti A 2013 Notes on strings and higher spins J. Phys. A: Math. Theor. 46 214006 (arXiv:1112.4285 [hep-th])

  19. One-loop gravitational wave spectrum in de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Fröb, Markus B.; Roura, Albert; Verdaguer, Enric

    2012-08-01

    The two-point function for tensor metric perturbations around de Sitter spacetime including one-loop corrections from massless conformally coupled scalar fields is calculated exactly. We work in the Poincaré patch (with spatially flat sections) and employ dimensional regularization for the renormalization process. Unlike previous studies we obtain the result for arbitrary time separations rather than just equal times. Moreover, in contrast to existing results for tensor perturbations, ours is manifestly invariant with respect to the subgroup of de Sitter isometries corresponding to a simultaneous time translation and rescaling of the spatial coordinates. Having selected the right initial state for the interacting theory via an appropriate iepsilon prescription is crucial for that. Finally, we show that although the two-point function is a well-defined spacetime distribution, the equal-time limit of its spatial Fourier transform is divergent. Therefore, contrary to the well-defined distribution for arbitrary time separations, the power spectrum is strictly speaking ill-defined when loop corrections are included.

  20. Recent progress in Lagrangian field theory and applications. Proceedings of the colloquium held at Marseille, France, June 24--28, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korthals-Altes, C.P.; de Rafael, E.; Stora, R.

    1975-07-01

    This Colloquium was devoted to recent developments in the study of Lagrangian models of quantum field theory: renormalized pertubation theories; supergauge fields; asymptotic freedom and infrared slavery in gauge field models involving quarks; gauge fields on lattices; and theory of critical exponents. Papers were abstracted separately for the database.

  1. Quantum corrections to the generalized Proca theory via a matter field

    NASA Astrophysics Data System (ADS)

    Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab

    2017-09-01

    We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.

  2. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.

    2018-05-01

    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.

  3. On the energy-momentum tensor in Moyal space

    DOE PAGES

    Balasin, Herbert; Blaschke, Daniel N.; Gieres, François; ...

    2015-06-26

    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another starproduct. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the latter two procedures are incompatible with each other if couplings of gaugemore » fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice-versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line.« less

  4. More on the scalar-tensor BF theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Harvendra

    2009-09-15

    This work is based on an earlier proposal [H. Singh, Phys. Lett. B 673, 68 (2009)] that the membrane BF theory consists of matter fields along with Chern-Simons fields as well as the auxiliary pairs of scalar and tensor fields. In particular, we discuss the supersymmetry aspects of such a membrane theory. It is concluded that the theory possesses maximal supersymmetry, and it is related to the L-BLG theory via a field map. We obtain fuzzy-sphere solution, and corresponding tensor field configuration is given.

  5. Galilean field theories and conformal structure

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Chakrabortty, Joydeep; Mehra, Aditya

    2018-04-01

    We perform a detailed analysis of Galilean field theories, starting with free theories and then interacting theories. We consider non-relativistic versions of massless scalar and Dirac field theories before we go on to review our previous construction of Galilean Electrodynamics and Galilean Yang-Mills theory. We show that in all these cases, the field theories exhibit non-relativistic conformal structure (in appropriate dimensions). The surprising aspect of the analysis is that the non-relativistic conformal structure exhibited by these theories, unlike relativistic conformal invariance, becomes infinite dimensional even in spacetime dimensions greater than two. We then couple matter with Galilean gauge theories and show that there is a myriad of different sectors that arise in the non-relativistic limit from the parent relativistic theories. In every case, if the parent relativistic theory exhibited conformal invariance, we find an infinitely enhanced Galilean conformal invariance in the non-relativistic case. This leads us to suggest that infinite enhancement of symmetries in the non-relativistic limit is a generic feature of conformal field theories in any dimension.

  6. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow

    PubMed Central

    Moore, Lee R.; Williams, P. Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J.; Zborowski, Maciej

    2013-01-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation. PMID:24141316

  7. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    PubMed

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  8. When is a theory a theory? A case example.

    PubMed

    Alkin, Marvin C

    2017-08-01

    This discussion comments on the approximately 20years history of writings on the prescriptive theory called Empowerment Evaluation. To do so, involves examining how "Empowerment Evaluation Theory" has been defined at various points of time (particularly 1996 and now in 2015). Defining a theory is different from judging the success of a theory. This latter topic has been addressed elsewhere by Michael Scriven, Michael Patton, and Brad Cousins. I am initially guided by the work of Robin Miller (2010) who has written on the issue of how to judge the success of a theory. In doing so, she provided potential standards for judging the adequacy of theories. My task is not judging the adequacy or success of the Empowerment Evaluation prescriptive theory in practice, but determining how well the theory is delineated. That is, to what extent do the writings qualify as a prescriptive theory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory

    NASA Astrophysics Data System (ADS)

    Maurice, Olivier; Reineix, Alain; Lalléchère, Sébastien

    2014-10-01

    A complex system involves events coming from natural behaviors. Whatever is the complicated face of machines, they are still far from the complexity of natural systems. Currently, economy is one of the rare science trying to find out some ways to model human behavior. These attempts involve game theory and psychology. Our purpose is to develop a formalism able to take in charge both game and hardware modeling. We first present the Tensorial Analysis of Networks, used for the material part of the system. Then, we detail the mathematical objects defined in order to describe the evolution of the system and its gaming side. To illustrate the discussion we consider the case of a drone whose electronic can be disturbed by a radar field, but this drone must fly as near as possible close to this radar.

  10. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE PAGES

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    2016-12-02

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  11. Thermalization of oscillator chains with onsite anharmonicity and comparison with kinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mendl, Christian B.; Lu, Jianfeng; Lukkarinen, Jani

    We perform microscopic molecular dynamics simulations of particle chains with an onsite anharmonicity to study relaxation of spatially homogeneous states to equilibrium, and directly compare the simulations with the corresponding Boltzmann-Peierls kinetic theory. The Wigner function serves as a common interface between the microscopic and kinetic level. We demonstrate quantitative agreement after an initial transient time interval. In particular, besides energy conservation, we observe the additional quasiconservation of the phonon density, defined via an ensemble average of the related microscopic field variables and exactly conserved by the kinetic equations. On superkinetic time scales, density quasiconservation is lost while energy remainsmore » conserved, and we find evidence for eventual relaxation of the density to its canonical ensemble value. Furthermore, the precise mechanism remains unknown and is not captured by the Boltzmann-Peierls equations.« less

  12. THE TWO-WAVELENGTH METHOD OF MICROSPECTROPHOTOMETRY

    PubMed Central

    Mendelsohn, Mortimer L.

    1961-01-01

    In connection with the potential development of automatic two-wavelength microspectrophotometry, a new version of the two-wavelength method has been formulated. Unlike its predecessors, the Ornstein and Patau versions, the new method varies the area of the photometric field seeking to maximize a relationship between distributional errors at the two wavelengths. Stating this distributional error relationship in conventional photometric terms, the conditions at the maximum are defined by taking the first derivative with respect to field size and setting it equal to zero. This operation supplies two equations; one relates the transmittances at the two wavelengths, and a second states the relative amount of chromophore in the field in terms of transmittance at one wavelength. With the first equation to drive a servomechanism which sets the appropriate field size, the desired answer can then be obtained directly and continuously from the second equation. The result is identical in theory with those of the earlier methods, but the technique is more suitable for electronic computing. PMID:14472536

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schertzer, Daniel, E-mail: Daniel.Schertzer@enpc.fr; Tchiguirinskaia, Ioulia, E-mail: Ioulia.Tchiguirinskaia@enpc.fr

    In the mid 1980s, the development of multifractal concepts and techniques was an important breakthrough for complex system analysis and simulation, in particular, in turbulence and hydrology. Multifractals indeed aimed to track and simulate the scaling singularities of the underlying equations instead of relying on numerical, scale truncated simulations or on simplified conceptual models. However, this development has been rather limited to deal with scalar fields, whereas most of the fields of interest are vector-valued or even manifold-valued. We show in this paper that the combination of stable Lévy processes with Clifford algebra is a good candidate to bridge upmore » the present gap between theory and applications. We show that it indeed defines a convenient framework to generate multifractal vector fields, possibly multifractal manifold-valued fields, based on a few fundamental and complementary properties of Lévy processes and Clifford algebra. In particular, the vector structure of these algebra is much more tractable than the manifold structure of symmetry groups while the Lévy stability grants a given statistical universality.« less

  14. Polarisation of the Balmer-α emission in crossed electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Thorman, Alex

    2018-03-01

    An analysis of the polarisation structure of the Balmer-α emission in the presence of electric and magnetic fields is presented, with an emphasis on motional Stark effect polarimetry for fusion plasma diagnostics. When the fields are orthogonal, as is the case for neutral heating beams injected into a magnetised plasma, some degeneracy remains in the Stark-Zeeman energy levels and the magnetic quantum number is not well defined. The polarisation structure from the degenerate states is underdetermined and therefore volatile to weaker interactions that resolve this degeneracy, a critical subtlety that has previously been overlooked. A perturbation theory analysis finds distinct polarisation structures for the σ emission that apply when the fine-structure and microscopic electric fields are considered. It is found that only the σ ± 1 polarisation orientation is sensitive to upper-state populations (which are non-statistically weighted for neutral beam injection into a target gas), but with appropriate viewing geometries and beam injection directions the effect can be made negligible.

  15. Supersymmetric extensions of K field theories

    NASA Astrophysics Data System (ADS)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2012-02-01

    We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.

  16. Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge

    NASA Astrophysics Data System (ADS)

    Lee, Taejin

    2017-12-01

    We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.

  17. Quantum Field Theory Approach to Condensed Matter Physics

    NASA Astrophysics Data System (ADS)

    Marino, Eduardo C.

    2017-09-01

    Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.

  18. Modern Quantum Field Theory II - Proceeeings of the International Colloquium

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.

    1995-08-01

    The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)

  19. Dynamics of polymers: A mean-field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredrickson, Glenn H.; Materials Research Laboratory, University of California, Santa Barbara, California 93106; Department of Materials, University of California, Santa Barbara, California 93106

    2014-02-28

    We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamicsmore » involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.« less

  20. Quantum Field Theory in (0 + 1) Dimensions

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  1. Evaluating theories of bird song learning: implications for future directions.

    PubMed

    Margoliash, D

    2002-12-01

    Studies of birdsong learning have stimulated extensive hypotheses at all levels of behavioral and physiological organization. This hypothesis building is valuable for the field and is consistent with the remarkable range of issues that can be rigorously addressed in this system. The traditional instructional (template) theory of song learning has been challenged on multiple fronts, especially at a behavioral level by evidence consistent with selectional hypotheses. In this review I highlight the caveats associated with these theories to better define the limits of our knowledge and identify important experiments for the future. The sites and representational forms of the various conceptual entities posited by the template theory are unknown. The distinction between instruction and selection in vocal learning is not well established at a mechanistic level. There is as yet insufficient neurophysiological data to choose between competing mechanisms of error-driven learning and reinforcement learning. Both may obtain for vocal learning. The possible role of sleep in acoustic or procedural memory consolidation, while supported by some physiological observations, does not yet have support in the behavioral literature. The remarkable expansion of knowledge in the past 20 years and the recent development of new technologies for physiological and behavioral experiments should permit direct tests of these theories in the coming decade.

  2. Framework based on communicability and flow to analyze complex network dynamics

    NASA Astrophysics Data System (ADS)

    Gilson, M.; Kouvaris, N. E.; Deco, G.; Zamora-López, G.

    2018-05-01

    Graph theory constitutes a widely used and established field providing powerful tools for the characterization of complex networks. The intricate topology of networks can also be investigated by means of the collective dynamics observed in the interactions of self-sustained oscillations (synchronization patterns) or propagationlike processes such as random walks. However, networks are often inferred from real-data-forming dynamic systems, which are different from those employed to reveal their topological characteristics. This stresses the necessity for a theoretical framework dedicated to the mutual relationship between the structure and dynamics in complex networks, as the two sides of the same coin. Here we propose a rigorous framework based on the network response over time (i.e., Green function) to study interactions between nodes across time. For this purpose we define the flow that describes the interplay between the network connectivity and external inputs. This multivariate measure relates to the concepts of graph communicability and the map equation. We illustrate our theory using the multivariate Ornstein-Uhlenbeck process, which describes stable and non-conservative dynamics, but the formalism can be adapted to other local dynamics for which the Green function is known. We provide applications to classical network examples, such as small-world ring and hierarchical networks. Our theory defines a comprehensive framework that is canonically related to directed and weighted networks, thus paving a way to revise the standards for network analysis, from the pairwise interactions between nodes to the global properties of networks including community detection.

  3. A micromorphic model for steel fiber reinforced concrete.

    PubMed

    Oliver, J; Mora, D F; Huespe, A E; Weyler, R

    2012-10-15

    A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenomenon is contemplated by including, in the macroscopic description, a micromorphic field representing the relative fiber-cement displacement. Then, the theoretical framework, from which the governing equations of the problem are derived, can be assimilated to a specific case of the material multifield theory. The balance equation derived for this model, connecting the micro stresses with the micromorphic forces, has a physical meaning related with the fiber-matrix bond slip mechanism. Differently to previous procedures in the literature, addressed to model fiber reinforced composites, where this equation has been added as an additional independent ingredient of the methodology, in the present approach it arises as a natural result derived from the multifield theory. Every component of the composite is defined with a specific free energy and constitutive relation. The mixture theory is adopted to define the overall free energy of the composite, which is assumed to be homogeneously constituted, in the sense that every infinitesimal volume is occupied by all the components in a proportion given by the corresponding volume fraction. The numerical model is assessed by means of a selected set of experiments that prove the viability of the present approach.

  4. On the emergence of classical gravity

    NASA Astrophysics Data System (ADS)

    Larjo, Klaus

    In this thesis I will discuss how certain black holes arise as an effective, thermodynamical description from non-singular microstates in string theory. This provides a possible solution to the information paradox, and strengthens the case for treating black holes as thermodynamical objects. I will characterize the data defining a microstate of a black hole in several settings, and demonstrate that most of the data is unmeasurable for a classical observer. I will further show that the data that is measurable is universal for nearly all microstates, making it impossible for a classical observer to distinguish between microstates, thus giving rise to an effective statistical description for the black hole. In the first half of the thesis I will work with two specific systems: the half-BPS sector of [Special characters omitted.] = 4 super Yang-Mills the and the conformal field theory corresponding to the D1/D5 system; in both cases the high degree of symmetry present provides great control over potentially intractable computations. For these systems, I will further specify the conditions a quantum mechanical microstate must satisfy in order to have a classical description in terms of a unique metric, and define a 'metric operator' whose eigenstates correspond to classical geometries. In the second half of the thesis I will consider a much broader setting, general [Special characters omitted.] = I superconformal quiver gauge the= ories and their dual gravity theories, and demonstrate that a similar effective description arises also in this setting.

  5. The evolving concept of "patient-centeredness" in patient-physician communication research.

    PubMed

    Ishikawa, Hirono; Hashimoto, Hideki; Kiuchi, Takahiro

    2013-11-01

    Over the past few decades, the concept of "patient-centeredness" has been intensively studied in health communication research on patient-physician interaction. Despite its popularity, this concept has often been criticized for lacking a unified definition and operationalized measurement. This article reviews how health communication research on patient-physician interaction has conceptualized and operationalized patient-centered communication based on four major theoretical perspectives in sociology (i.e., functionalism, conflict theory, utilitarianism, and social constructionism), and discusses the agenda for future research in this field. Each theory addresses different aspects of the patient-physician relationship and communication from different theoretical viewpoints. Patient-centeredness is a multifaceted construct with no single theory that can sufficiently define the whole concept. Different theoretical perspectives of patient-centered communication can be selectively adopted according to the context and nature of problems in the patient-physician relationship that a particular study aims to explore. The present study may provide a useful framework: it offers an overview of the differing models of patient-centered communication and the expected roles and goals in each model; it does so toward identifying a communication model that fits the patient and the context and toward theoretically reconstructing existing measures of patient-centered communication. Furthermore, although patient-centered communication has been defined mainly from the viewpoint of physician's behaviors aimed at achieving patient-centered care, patient competence is also required for patient-centered communication. This needs to be examined in current medical practice. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Nondimensional Parameters and Equations for Nonlinear and Bifurcation Analyses of Thin Anisotropic Quasi-Shallow Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.

    2010-01-01

    A comprehensive development of nondimensional parameters and equations for nonlinear and bifurcations analyses of quasi-shallow shells, based on the Donnell-Mushtari-Vlasov theory for thin anisotropic shells, is presented. A complete set of field equations for geometrically imperfect shells is presented in terms general of lines-of-curvature coordinates. A systematic nondimensionalization of these equations is developed, several new nondimensional parameters are defined, and a comprehensive stress-function formulation is presented that includes variational principles for equilibrium and compatibility. Bifurcation analysis is applied to the nondimensional nonlinear field equations and a comprehensive set of bifurcation equations are presented. An extensive collection of tables and figures are presented that show the effects of lamina material properties and stacking sequence on the nondimensional parameters.

  7. Energy bounds in designer gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amsel, Aaron J.; Marolf, Donald

    We consider asymptotically anti-de Sitter gravity coupled to tachyonic scalar fields with mass at or slightly above the Breitenlohner-Freedman bound in d{>=}4 spacetime dimensions. The boundary conditions in these ''designer gravity'' theories are defined in terms of an arbitrary function W. We give a general argument that the Hamiltonian generators of asymptotic symmetries for such systems will be finite, and proceed to construct these generators using the covariant phase space method. The direct calculation confirms that the generators are finite and shows that they take the form of the pure gravity result plus additional contributions from the scalar fields. Bymore » comparing the generators to the spinor charge, we derive a lower bound on the gravitational energy when W has a global minimum and the Breitenlohner-Freedman bound is not saturated.« less

  8. Measurements of long-wavelength spin waves for the magnetic field in the Damon-Eshbach, backward-volume and forward-volume geometries of an yttrium iron garnet film

    DOE PAGES

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; ...

    2018-03-23

    In this paper, we report systematic measurements of the dispersion of long wavelength spin waves for a wide range of wave vectors for the magnetic field along the three principal directions defining the forward volume, backward volume and Damon-Eshbach modes of a 9.72 μm thick film of an yttrium iron garnet obtained using lithographically patterned, multi-element, spatially resonant, antennas. Overall good agreement is found between the experimental data for the backward volume and Damon-Eshbach modes and the magnetostatic theory of Damon and Eshbach. Also, good agreement is found between the experimental data for the forward volume mode and the theorymore » of Damon and van de Vaart.« less

  9. Measurements of long-wavelength spin waves for the magnetic field in the Damon-Eshbach, backward-volume and forward-volume geometries of an yttrium iron garnet film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan

    In this paper, we report systematic measurements of the dispersion of long wavelength spin waves for a wide range of wave vectors for the magnetic field along the three principal directions defining the forward volume, backward volume and Damon-Eshbach modes of a 9.72 μm thick film of an yttrium iron garnet obtained using lithographically patterned, multi-element, spatially resonant, antennas. Overall good agreement is found between the experimental data for the backward volume and Damon-Eshbach modes and the magnetostatic theory of Damon and Eshbach. Also, good agreement is found between the experimental data for the forward volume mode and the theorymore » of Damon and van de Vaart.« less

  10. The Ponzano-Regge Model and Parametric Representation

    NASA Astrophysics Data System (ADS)

    Li, Dan

    2014-04-01

    We give a parametric representation of the effective noncommutative field theory derived from a -deformation of the Ponzano-Regge model and define a generalized Kirchhoff polynomial with -correction terms, obtained in a -linear approximation. We then consider the corresponding graph hypersurfaces and the question of how the presence of the correction term affects their motivic nature. We look in particular at the tetrahedron graph, which is the basic case of relevance to quantum gravity. With the help of computer calculations, we verify that the number of points over finite fields of the corresponding hypersurface does not fit polynomials with integer coefficients, hence the hypersurface of the tetrahedron is not polynomially countable. This shows that the correction term can change significantly the motivic properties of the hypersurfaces, with respect to the classical case.

  11. Resonant fluorescence for multilevel systems in intense nonmonochromatic fields: possibilities for applications in laser medicine

    NASA Astrophysics Data System (ADS)

    Karagodova, Tamara Y.

    1999-03-01

    The theory of resonant fluorescence of multilevel system in two monochromatic intense laser fields has been applied for investigating the temporal decay of magnetic sublevels of an atom. As for two-level system the triplet of resonant fluorescence is observed, for real atom being the multilevel system the multiplet of resonant fluorescence can be observed. The excitation spectra, defining the intensities of lines in the multiplet of resonant fluorescence, and shifts of components of spectra are shown. Typical temporal dependence of fluorescence intensity for magnetic sublevels of an atom having different relaxation constants is shown. The computer simulation of resonant fluorescence for simple systems can help to understand the regularities in temporal decay curves of atherosclerotic plaque, malignant tumor compared to normal surrounding tissue.

  12. Chern-Simons, Wess-Zumino and other cocycles from Kashiwara-Vergne and associators

    NASA Astrophysics Data System (ADS)

    Alekseev, Anton; Naef, Florian; Xu, Xiaomeng; Zhu, Chenchang

    2018-03-01

    Descent equations play an important role in the theory of characteristic classes and find applications in theoretical physics, e.g., in the Chern-Simons field theory and in the theory of anomalies. The second Chern class (the first Pontrjagin class) is defined as p= < F, F> where F is the curvature 2-form and < \\cdot , \\cdot > is an invariant scalar product on the corresponding Lie algebra g. The descent for p gives rise to an element ω =ω _3+ω _2+ω _1+ω _0 of mixed degree. The 3-form part ω _3 is the Chern-Simons form. The 2-form part ω _2 is known as the Wess-Zumino action in physics. The 1-form component ω _1 is related to the canonical central extension of the loop group LG. In this paper, we give a new interpretation of the low degree components ω _1 and ω _0. Our main tool is the universal differential calculus on free Lie algebras due to Kontsevich. We establish a correspondence between solutions of the first Kashiwara-Vergne equation in Lie theory and universal solutions of the descent equation for the second Chern class p. In more detail, we define a 1-cocycle C which maps automorphisms of the free Lie algebra to one forms. A solution of the Kashiwara-Vergne equation F is mapped to ω _1=C(F). Furthermore, the component ω _0 is related to the associator Φ corresponding to F. It is surprising that while F and Φ satisfy the highly nonlinear twist and pentagon equations, the elements ω _1 and ω _0 solve the linear descent equation.

  13. Perturbation theory for cosmologies with nonlinear structure

    NASA Astrophysics Data System (ADS)

    Goldberg, Sophia R.; Gallagher, Christopher S.; Clifton, Timothy

    2017-11-01

    The next generation of cosmological surveys will operate over unprecedented scales, and will therefore provide exciting new opportunities for testing general relativity. The standard method for modelling the structures that these surveys will observe is to use cosmological perturbation theory for linear structures on horizon-sized scales, and Newtonian gravity for nonlinear structures on much smaller scales. We propose a two-parameter formalism that generalizes this approach, thereby allowing interactions between large and small scales to be studied in a self-consistent and well-defined way. This uses both post-Newtonian gravity and cosmological perturbation theory, and can be used to model realistic cosmological scenarios including matter, radiation and a cosmological constant. We find that the resulting field equations can be written as a hierarchical set of perturbation equations. At leading-order, these equations allow us to recover a standard set of Friedmann equations, as well as a Newton-Poisson equation for the inhomogeneous part of the Newtonian energy density in an expanding background. For the perturbations in the large-scale cosmology, however, we find that the field equations are sourced by both nonlinear and mode-mixing terms, due to the existence of small-scale structures. These extra terms should be expected to give rise to new gravitational effects, through the mixing of gravitational modes on small and large scales—effects that are beyond the scope of standard linear cosmological perturbation theory. We expect our formalism to be useful for accurately modeling gravitational physics in universes that contain nonlinear structures, and for investigating the effects of nonlinear gravity in the era of ultra-large-scale surveys.

  14. Introduction to Generalized Functions with Applications in Aerodynamics and Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1994-01-01

    Generalized functions have many applications in science and engineering. One useful aspect is that discontinuous functions can be handled as easily as continuous or differentiable functions and provide a powerful tool in formulating and solving many problems of aerodynamics and acoustics. Furthermore, generalized function theory elucidates and unifies many ad hoc mathematical approaches used by engineers and scientists. We define generalized functions as continuous linear functionals on the space of infinitely differentiable functions with compact support, then introduce the concept of generalized differentiation. Generalized differentiation is the most important concept in generalized function theory and the applications we present utilize mainly this concept. First, some results of classical analysis, are derived with the generalized function theory. Other applications of the generalized function theory in aerodynamics discussed here are the derivations of general transport theorems for deriving governing equations of fluid mechanics, the interpretation of the finite part of divergent integrals, the derivation of the Oswatitsch integral equation of transonic flow, and the analysis of velocity field discontinuities as sources of vorticity. Applications in aeroacoustics include the derivation of the Kirchhoff formula for moving surfaces, the noise from moving surfaces, and shock noise source strength based on the Ffowcs Williams-Hawkings equation.

  15. On the local well-posedness of Lovelock and Horndeski theories

    NASA Astrophysics Data System (ADS)

    Papallo, Giuseppe; Reall, Harvey S.

    2017-08-01

    We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.

  16. An ecological framework of place: situating environmental gerontology within a life course perspective.

    PubMed

    Moore, Keith Diaz

    2014-01-01

    This article presents an emergent heuristic framework for the core environmental gerontology concept of "place." Place has been a central concern in the field since the 1970s (Gubrium, 1978) for its hypothesized direct relationship to identity, the self, and agency--suggestive of the appropriateness of lateral theoretical linkages with developmental science. The Ecological Framework of Place (EFP) defines place as a socio-physical milieu involving people, the physical setting, and the program of the place, all catalyzed by situated human activity and fully acknowledging that all four may change over time. The article begins with a concise overview of the EFP before moving on to consider it within three theoretical terrains: place theory, developmental science theory, and environmental gerontology theory. The EFP will be argued to be a place theory which subsumes themes of emergent environmental gerontology theories within a developmental science perspective. Implications for theory, method and practice are discussed. One of the strengths of the model is its ability to serve both research and practice, as is exhibited in its ability to incorporate applied design research and inform architectural decision-making so often lacking in other environmental gerontology models. Place should be viewed as an integrative concept providing opportunities for both environmental gerontology and developmental science to more critically concern the profound role places have in terms of agency, identity and sense of self over the life course.

  17. Some considerations on the definition of risk based on concepts of systems theory and probability.

    PubMed

    Andretta, Massimo

    2014-07-01

    The concept of risk has been applied in many modern science and technology fields. Despite its successes in many applicative fields, there is still not a well-established vision and universally accepted definition of the principles and fundamental concepts of the risk assessment discipline. As emphasized recently, the risk fields suffer from a lack of clarity on their scientific bases that can define, in a unique theoretical framework, the general concepts in the different areas of application. The aim of this article is to make suggestions for another perspective of risk definition that could be applied and, in a certain sense, generalize some of the previously known definitions (at least in the fields of technical and scientific applications). By drawing on my experience of risk assessment in different applicative situations (particularly in the risk estimation for major industrial accidents, and in the health and ecological risk assessment for contaminated sites), I would like to revise some general and foundational concepts of risk analysis in as consistent a manner as possible from the axiomatic/deductive point of view. My proposal is based on the fundamental concepts of the systems theory and of the probability. In this way, I try to frame, in a single, broad, and general theoretical context some fundamental concepts and principles applicable in many different fields of risk assessment. I hope that this article will contribute to the revitalization and stimulation of useful discussions and new insights into the key issues and theoretical foundations of risk assessment disciplines. © 2013 Society for Risk Analysis.

  18. Kinematic assumptions and their consequences on the structure of field equations in continuum dislocation theory

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2016-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.

  19. Toroidal regularization of the guiding center Lagrangian

    DOE PAGES

    Burby, J. W.; Ellison, C. L.

    2017-11-22

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  20. Developing the Precision Magnetic Field for the E989 Muon g{2 Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Matthias W.

    The experimental value ofmore » $$(g\\hbox{--}2)_\\mu$$ historically has been and contemporarily remains an important probe into the Standard Model and proposed extensions. Previous measurements of $$(g\\hbox{--}2)_\\mu$$ exhibit a persistent statistical tension with calculations using the Standard Model implying that the theory may be incomplete and constraining possible extensions. The Fermilab Muon g-2 experiment, E989, endeavors to increase the precision over previous experiments by a factor of four and probe more deeply into the tension with the Standard Model. The $$(g\\hbox{--}2)_\\mu$$ experimental implementation measures two spin precession frequencies defined by the magnetic field, proton precession and muon precession. The value of $$(g\\hbox{--}2)_\\mu$$ is derived from a relationship between the two frequencies. The precision of magnetic field measurements and the overall magnetic field uniformity achieved over the muon storage volume are then two undeniably important aspects of the e xperiment in minimizing uncertainty. The current thesis details the methods employed to achieve magnetic field goals and results of the effort.« less

  1. Toward a unifying framework for evolutionary processes.

    PubMed

    Paixão, Tiago; Badkobeh, Golnaz; Barton, Nick; Çörüş, Doğan; Dang, Duc-Cuong; Friedrich, Tobias; Lehre, Per Kristian; Sudholt, Dirk; Sutton, Andrew M; Trubenová, Barbora

    2015-10-21

    The theory of population genetics and evolutionary computation have been evolving separately for nearly 30 years. Many results have been independently obtained in both fields and many others are unique to its respective field. We aim to bridge this gap by developing a unifying framework for evolutionary processes that allows both evolutionary algorithms and population genetics models to be cast in the same formal framework. The framework we present here decomposes the evolutionary process into its several components in order to facilitate the identification of similarities between different models. In particular, we propose a classification of evolutionary operators based on the defining properties of the different components. We cast several commonly used operators from both fields into this common framework. Using this, we map different evolutionary and genetic algorithms to different evolutionary regimes and identify candidates with the most potential for the translation of results between the fields. This provides a unified description of evolutionary processes and represents a stepping stone towards new tools and results to both fields. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Toroidal regularization of the guiding center Lagrangian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burby, J. W.; Ellison, C. L.

    In the Lagrangian theory of guiding center motion, an effective magnetic field B* = B+ (m/e)v ∥∇ x b appears prominently in the equations of motion. Because the parallel component of this field can vanish, there is a range of parallel velocities where the Lagrangian guiding center equations of motion are either ill-defined or very badly behaved. Moreover, the velocity dependence of B* greatly complicates the identification of canonical variables and therefore the formulation of symplectic integrators for guiding center dynamics. Here, this letter introduces a simple coordinate transformation that alleviates both these problems simultaneously. In the new coordinates, themore » Liouville volume element is equal to the toroidal contravariant component of the magnetic field. Consequently, the large-velocity singularity is completely eliminated. Moreover, passing from the new coordinate system to canonical coordinates is extremely simple, even if the magnetic field is devoid of flux surfaces. We demonstrate the utility of this approach in regularizing the guiding center Lagrangian by presenting a new and stable one-step variational integrator for guiding centers moving in arbitrary time-dependent electromagnetic fields.« less

  3. The modeling of attraction characteristics regarding passenger flow in urban rail transit network based on field theory

    PubMed Central

    Jia, Limin

    2017-01-01

    Aimed at the complicated problems of attraction characteristics regarding passenger flow in urban rail transit network, the concept of the gravity field of passenger flow is proposed in this paper. We establish the computation methods of field strength and potential energy to reveal the potential attraction relationship among stations from the perspective of the collection and distribution of passenger flow and the topology of network. As for the computation methods of field strength, an optimum path concept is proposed to define betweenness centrality parameter. Regarding the computation of potential energy, Compound Simpson’s Rule Formula is applied to get a solution to the function. Taking No. 10 Beijing Subway as a practical example, an analysis of simulation and verification is conducted, and the results shows in the following ways. Firstly, the bigger field strength value between two stations is, the stronger passenger flow attraction is, and the greater probability of the formation of the largest passenger flow of section is. Secondly, there is the greatest passenger flow volume and circulation capacity between two zones of high potential energy. PMID:28863175

  4. Realization theory and quadratic optimal controllers for systems defined over Banach and Frechet algebras

    NASA Technical Reports Server (NTRS)

    Byrnes, C. I.

    1980-01-01

    It is noted that recent work by Kamen (1979) on the stability of half-plane digital filters shows that the problem of the existence of a feedback law also arises for other Banach algebras in applications. This situation calls for a realization theory and stabilizability criteria for systems defined over Banach for Frechet algebra A. Such a theory is developed here, with special emphasis placed on the construction of finitely generated realizations, the existence of coprime factorizations for T(s) defined over A, and the solvability of the quadratic optimal control problem and the associated algebraic Riccati equation over A.

  5. Self-assembled microstructures of confined rod-coil diblock copolymers by self-consistent field theory.

    PubMed

    Yang, Guang; Tang, Ping; Yang, Yuliang; Wang, Qiang

    2010-11-25

    We employ the self-consistent field theory (SCFT) incorporating Maier-Saupe orientational interactions between rods to investigate the self-assembly of rod-coil diblock copolymers (RC DBC) in bulk and especially confined into two flat surfaces in 2D space. A unit vector defined on a spherical surface for describing the orientation of rigid blocks in 3D Euclidean space is discretized with an icosahedron triangular mesh to numerically integrate over rod orientation, which is confirmed to have numerical accuracy and stability higher than that of the normal Gaussian quadrature. For the hockey puck-shaped phases in bulk, geometrical confinement, i.e., the film thickness, plays an important role in the self-assembled structures' transitions for the neutral walls. However, for the lamellar phase (monolayer smectic-C) in bulk, the perpendicular lamellae are always stable, less dependent on the film thicknesses because they can relax to the bulk spacing with less-paid coil-stretching in thin films. In particular, a very thin rod layer near the surfaces is formed even in a very thin film. When the walls prefer rods, parallel lamellae are obtained, strongly dependent on the competition between the degree of the surface fields and film geometrical confinement, and the effect of surface field on lamellar structure as a function of film thickness is investigated. Our simulation results provide a guide to understanding the self-assembly of the rod-coil films with desirable application prospects in the fabrication of organic light emitting devices.

  6. Constructive tensorial group field theory I: The {U(1)} -{T^4_3} model

    NASA Astrophysics Data System (ADS)

    Lahoche, Vincent

    2018-05-01

    The loop vertex expansion (LVE) is a constructive technique using canonical combinatorial tools. It works well for quantum field theories without renormalization, which is the case of the field theory studied in this paper. Tensorial group field theories (TGFTs) are a new class of field theories proposed to quantize gravity. This paper is devoted to a very simple TGFT for rank three tensors with U(1) group and quartic interactions, hence nicknamed -. It has no ultraviolet divergence, and we show, with the LVE, that it is Borel summable in its coupling constant.

  7. Geometry of the theory space in the exact renormalization group formalism

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Sonoda, H.

    2018-01-01

    We consider the theory space as a manifold whose coordinates are given by the couplings appearing in the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing connection can be defined directly from the solution of the exact renormalization group (ERG) equation. We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities invariant under the changes of a renormalization scheme.

  8. On the formulation of D=11 supergravity and the composite nature of its three-form gauge field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandos, Igor A.; Institute for Theoretical Physics, NSC 'Kharkov Institute of Physics and Technology', UA61108, Kharkov; Azcarraga, Jose A. de

    2005-05-01

    The underlying gauge group structure of the D=11 Cremmer-Julia-Scherk supergravity becomes manifest when its three-form field A{sub 3} is expressed through a set of one-form gauge fields, B1a1a2, B1a1...a5, {eta}{sub 1{alpha}}, and E{sup a}, {psi}{sup {alpha}}. These are associated with the generators of the elements of a family of enlarged supersymmetry algebras E-bar (528 vertical bar 32+32)(s) parametrized by a real number s. We study in detail the composite structure of A{sub 3} extending previous results by D'Auria and Fre, stress the equivalence of the above problem to the trivialization of a standard supersymmetry algebra E(11 vertical bar 32) cohomologymore » four-cocycle on the enlarged E-bar (528 vertical bar 32+32)(s) superalgebras, and discuss its possible dynamical consequences. To this aim we consider the properties of the first order supergravity action with a composite A{sub 3} field and find the set of extra gauge symmetries that guarantee that the field theoretical degrees of freedom of the theory remain the same as with a fundamental A{sub 3}. The extra gauge symmetries are also present in the so-called rheonomic treatment of the first order D=11 supergravity action when A{sub 3} is composite. Our considerations on the composite structure of A{sub 3} provide one more application of the idea that there exists an extended superspace coordinates/fields correspondence. They also suggest that there is a possible embedding of D=11 supergravity into a theory defined on the enlarged superspace {sigma}-bar (528 vertical bar 32+32)(s)« less

  9. Broken Symmetry

    ScienceCinema

    Englert, Francois

    2018-05-24

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of “massless” modes (here spin-waves), which are the ancestors of the NG bosons discussed below. Fluctuations of the order parameter (the magnetization) are described by a “massive” SBS mode. - In field theory, Nambu showed that broken chiral symmetry from a spontaneous generation of hadron masses induces massless pseudoscalar modes (identified with a massless limit of pion fields). This illustrates a general phenomenon made explicit by Goldstone: massless Nambu-Goldstone (NG) bosons are a necessary concomitant of spontaneously broken continuous symmetries. Massive SBS scalars bosons describe, as in phase transitions, the fluctuations of the SBS order parameters. - In 1964, with Robert Brout, we discovered a mechanism based on SBS by which short range interactions are generated from long range ones. A similar proposal was then made independently by Higgs in a different approach. Qualitatively, our mechanism works as follows. The long range fundamental electromagnetic and gravitational interactions are governed by extended symmetries,called gauge symmetries, which were supposed to guarantee that the elementary field constituents which transmit the forces, photons or gravitons, be massless. We considered a generalization of the electromagnetic “vector” field, known as Yang-Mills fields, and coupled them to fields which acquire from SBS constant values in the vacuum. These fields pervade space, as did magnetization, but they have no spatial orientation: they are “scalar’’ fields. The vector Yang-Mills fields which interact with the scalar fields become massive and hence the forces they mediate become short ranged. We also showed that the mechanism can survive in absence of elementary scalar fields. - Because of the extended symmetries, the nature of SBS is profoundly altered: the NG fields are absorbed into the massive vector Yang-Mills fields and restore the gauge symmetry. This has a dramatic consequence. To confront precision experiments, the mechanism should be consistent at the quantum mechanical level, or in technical terms, should yield a “renormalizable” theory. From our analysis of the preserved gauge symmetry, we suggested in 1966 that this is indeed the case, in contradistinction to the aforementioned earlier theories of charged massive vector fields. The full proof of “renormalizability” is subtle and was achieved in the impressive work of ‘t Hooft and Veltman. One gains some insight into the subtleties by making explicit the equivalence of Higgs’ approach with ours. - To a large extend, the LHC was build to detect the massive SBS scalar boson, i.e. the fluctuations of the scalar field. More elaborate realizations of the mechanism without elementary scalars are possible, but their experimental confirmation may (or may not) be outside the scope of present available technology. - The mechanism of Brout, Englert and Higgs unified in the same theoretical framework short- and long-range forces. It became the cornerstone of the electroweak theory and opened the way to a modern view on unified laws of nature.

  10. D term and the structure of pointlike and composed spin-0 particles

    NASA Astrophysics Data System (ADS)

    Hudson, Jonathan; Schweitzer, Peter

    2017-12-01

    This work deals with form factors of the energy-momentum tensor (EMT) of spin-0 particles and the unknown particle property D term related to the EMT, and it is divided into three parts. The first part explores free, weakly and strongly interacting theories to study EMT form factors with the following findings. (i) The free Klein-Gordon theory predicts for the D term D =-1 . (ii) Even infinitesimally small interactions can drastically impact D . (iii) In strongly interacting theories one can encounter large negative D though notable exceptions exist, which include Goldstone bosons of chiral symmetry breaking. (iv) Contrary to common belief one cannot arbitrarily add "total derivatives" to the EMT. Rather the EMT must be defined in an unambiguous way. The second part deals with the interpretation of the information content of EMT form factors in terms of 3D densities with the following results. (i) The 3D-density formalism is internally consistent. (ii) The description is subject to relativistic corrections but those are acceptably small in phenomenologically relevant situations including nucleons and nuclei. (iii) The free-field result D =-1 persists when a spin-0 boson is not pointlike but "heuristically given some internal structure." The third part investigates the question of whether such "giving of an extended structure" can be implemented dynamically, and it has the following insights. (i) We construct a consistent microscopic theory which, in a certain parametric limit, interpolates between extended and pointlike solutions. (ii) This theory is exactly solvable which is rare in 3 +1 dimensions, admits nontopological solitons of Q -ball type, and has a Gaussian field amplitude. (iii) The interaction of this theory belongs to a class of logarithmic potentials which were discussed in the literature, albeit in different contexts including beyond-standard-model phenomenology, cosmology, and Higgs physics.

  11. Conformal field theories from deformations of theories with Wn symmetry

    NASA Astrophysics Data System (ADS)

    Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash

    2016-10-01

    We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.

  12. Perturbative quantum field theory in the framework of the fermionic projector

    NASA Astrophysics Data System (ADS)

    Finster, Felix

    2014-04-01

    We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.

  13. Training - Behavioral and motivational solutions?

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1983-01-01

    Psychological factors which govern interpersonal activities in the cockpit are examined. It is suggested that crew members should be selected based on personality characteristics required for the position and that training does not cause long lasting personality changes, it only teaches and improves task performance skills. The effects of mindlessness as defined by Langer (1978) and the attribution theory of Jones and Nisbett (1971) on flight deck communications and cockpit management are described. The needs for a new system of training crew members, with emphasis on strategies that induce cognitive processes and awareness, and for field investigations of pilots are discussed.

  14. Defining applied behavior analysis: An historical analogy

    PubMed Central

    Deitz, Samuel M.

    1982-01-01

    This article examines two criteria for a definition of applied behavior analysis. The criteria are derived from a 19th century attempt to establish medicine as a scientific field. The first criterion, experimental determinism, specifies the methodological boundaries of an experimental science. The second criterion, philosophic doubt, clarifies the tentative nature of facts and theories derived from those facts. Practices which will advance the science of behavior are commented upon within each criteria. To conclude, the problems of a 19th century form of empiricism in medicine are related to current practices in applied behavior analysis. PMID:22478557

  15. Study of electrical resistivity on the location and identification of contamination

    NASA Astrophysics Data System (ADS)

    McCarty, B. D.

    1985-12-01

    Electrical resistance studies were conducted in two laboratory models to determine electrical resistivity relationships and to use those defined relationships to identify contamination spikes. A good correlation was established between resistance data and the composition of leachate and copper spiked leachate gelatin blocks under study. The major variable that could not be eliminated from this study which had the greatest effect on data was moisture content. This thesis contains a review of the theory and field application of electrical resistivity, a description of the experimental approach used, and a summary of the data collected.

  16. Role of condenser iris in optical tweezer detection system.

    PubMed

    Samadi, Akbar; Reihani, S Nader S

    2011-10-15

    Optical tweezers have proven to be very useful in various scientific fields, from biology to nanotechnology. In this Letter we show, both by theory and experiment, that the interference intensity pattern at the back focal plane of the condenser consists of two distinguishable areas with anticorrelated intensity changes when the bead is moved in the axial direction. We show that the space angle defining the border of two areas linearly depends on the NA of the objective. We also propose a new octant photodiode, which could significantly improve the axial resolution compared to the commonly used quadrant photodiode technique.

  17. Error in Airspeed Measurement Due to the Static-Pressure Field Ahead of an Airplane at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    O'Bryan, Thomas C; Danforth, Edward C B; Johnston, J Ford

    1955-01-01

    The magnitude and variation of the static-pressure error for various distances ahead of sharp-nose bodies and open-nose air inlets and for a distance of 1 chord ahead of the wing tip of a swept wing are defined by a combination of experiment and theory. The mechanism of the error is discussed in some detail to show the contributing factors that make up the error. The information presented provides a useful means for choosing a proper location for measurement of static pressure for most purposes.

  18. No-Ghost Theorem for Neveu-Schwarz String in 0-Picture

    NASA Astrophysics Data System (ADS)

    Kohriki, M.; Kunitomo, H.; Murata, M.

    2010-12-01

    The no-ghost theorem for Neveu-Schwarz string is directly proved in 0-picture. The one-to-one correspondence between physical states in 0-picture and in the conventional (-1)-picture is confirmed. It is shown that a nontrivial metric consistent with the BRST cohomology is needed to define a positive semidefinite norm in the physical Hilbert space. As a by-product, we find a new inverse picture-changing operator, which is noncovariant but has a nonsingular operator product with itself. A possibility to construct a new gauge-invariant superstring field theory is discussed.

  19. Deformed twistors and higher spin conformal (super-)algebras in four dimensions

    DOE PAGES

    Govil, Karan; Gunaydin, Murat

    2015-03-05

    Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govil, Karan; Gunaydin, Murat

    Massless conformal scalar field in d = 4 corresponds to the minimal unitary representation (minrep) of the conformal group SU(2, 2) which admits a one-parameter family of deformations that describe massless fields of arbitrary helicity. The minrep and its deformations were obtained by quantization of the nonlinear realization of SU(2, 2) as a quasiconformal group in arXiv:0908.3624. We show that the generators of SU(2,2) for these unitary irreducible representations can be written as bilinears of deformed twistorial oscillators which transform nonlinearly under the Lorentz group and apply them to define and study higher spin algebras and superalgebras in AdS 5.more » The higher spin (HS) algebra of Fradkin-Vasiliev type in AdS 5 is simply the enveloping algebra of SU(2, 2) quotiented by a two-sided ideal (Joseph ideal) which annihilates the minrep. We show that the Joseph ideal vanishes identically for the quasiconformal realization of the minrep and its enveloping algebra leads directly to the HS algebra in AdS 5. Furthermore, the enveloping algebras of the deformations of the minrep define a one parameter family of HS algebras in AdS 5 for which certain 4d covariant deformations of the Joseph ideal vanish identically. These results extend to superconformal algebras SU(2, 2|N) and we find a one parameter family of HS superalgebras as enveloping algebras of the minimal unitary supermultiplet and its deformations. Our results suggest the existence of a family of (supersymmetric) HS theories in AdS 5 which are dual to free (super)conformal field theories (CFTs) or to interacting but integrable (supersymmetric) CFTs in 4d. We also discuss the corresponding picture in HS algebras in AdS 4 where the corresponding 3d conformal group Sp(4,R) admits only two massless representations (minreps), namely the scalar and spinor singletons.« less

Top