NASA Astrophysics Data System (ADS)
Banks, Tom
2008-09-01
1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.
Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
Covariant Noncommutative Field Theory
Estrada-Jimenez, S.; Garcia-Compean, H.; Obregon, O.; Ramirez, C.
2008-07-02
The covariant approach to noncommutative field and gauge theories is revisited. In the process the formalism is applied to field theories invariant under diffeomorphisms. Local differentiable forms are defined in this context. The lagrangian and hamiltonian formalism is consistently introduced.
Beyond mean field theory: statistical field theory for neural networks
Buice, Michael A; Chow, Carson C
2014-01-01
Mean field theories have been a stalwart for studying the dynamics of networks of coupled neurons. They are convenient because they are relatively simple and possible to analyze. However, classical mean field theory neglects the effects of fluctuations and correlations due to single neuron effects. Here, we consider various possible approaches for going beyond mean field theory and incorporating correlation effects. Statistical field theory methods, in particular the Doi–Peliti–Janssen formalism, are particularly useful in this regard. PMID:25243014
Reverse engineering quantum field theory
NASA Astrophysics Data System (ADS)
Oeckl, Robert
2012-12-01
An approach to the foundations of quantum theory is advertised that proceeds by "reverse engineering" quantum field theory. As a concrete instance of this approach, the general boundary formulation of quantum theory is outlined.
Lectures on Matrix Field Theory
NASA Astrophysics Data System (ADS)
Ydri, Badis
The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.
Logarithmic conformal field theory
NASA Astrophysics Data System (ADS)
Gainutdinov, Azat; Ridout, David; Runkel, Ingo
2013-12-01
Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more
Computational quantum field theory
NASA Astrophysics Data System (ADS)
Grobe, Rainer
2006-05-01
I will give an overview on recent attempts to solve the time-dependent Dirac equation for the electron-positron field operator. These numerical solutions permit a first temporally and spatially resolved insight into the mechanisms of how an electron-positron pair can be created from vacuum in a very strong force field. This approach has helped to illuminate a wide range of controversial questions. Some of these questions arise for complicated physical situations such as how an electron scatters off a supercritical potential barrier (Klein paradox). This requires the application of quantum field theory to study the combined effect of the pair-production due to the supercriticality of the potential together with the scattering at the barrier involving the Pauli-principle. Other phenomena include Schr"odinger's Zitterbewegung and the localization problem for a relativistic particle. This work has been supported by the NSF and Research Corporation. P. Krekora, K. Cooley, Q. Su and R. Grobe, Phys. Rev. Lett. 95, 070403 (2005). P. Krekora, Q. Su and R. Grobe, Phys. Rev. Lett. 93, 043004 (2004). P. Krekora, Q. Su and R. Grobe, Phys. Rev. Lett. 92, 040406 (2004).
NASA Astrophysics Data System (ADS)
Gurau, Razvan
2011-05-01
Random matrix models generalize to Group Field Theories (GFT) whose Feynman graphs are dual to higher dimensional topological spaces. The perturbative development of the usual GFT's is rather involved combinatorially and plagued by topological singularities (which we discuss in great detail in this paper), thus very difficult to control and unsatisfactory. Both these problems simplify greatly for the "colored" GFT (CGFT) model we introduce in this paper. Not only this model is combinatorially simpler but also it is free from the worst topological singularities. We establish that the Feynman graphs of our model are combinatorial cellular complexes dual to manifolds or pseudomanifolds, and study their cellular homology. We also relate the amplitude of CGFT graphs to their fundamental group.
Kirby S. Chapman; Sarah R. Nuss-Warren
2007-02-01
The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly
Quantum field theory of fluids.
Gripaios, Ben; Sutherland, Dave
2015-02-20
The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.
Field theory and particle physics
Eboli, O.J.P.; Gomes, M.; Santoro, A.
1990-01-01
This book contains the proceedings of the topics covered during the fifth Jorge Andre Swieca Summer School. The first part of the book collects the material devoted to quantum field theory. There were four courses on methods in Field Theory; H. O. Girotti lectured on constrained dynamics, R. Jackiw on the Schrodinger representation in Field Theory, S.-Y. Pi on the application of this representation to quantum fields in a Robertson-Walker spacetime, and L. Vinet on Berry Connections. There were three courses on Conformal Field Theory: I. Todorov focused on the problem of construction and classification of conformal field theories. Lattice models, two-dimensional S matrices and conformal field theory were looked from the unifying perspective of the Yang-Baxter algebras in the lectures given by M. Karowski. Parasupersymmetric quantum mechanics was discussed in the lectures by L. Vinet. Besides those courses, there was an introduction to string field theory given by G. Horowitz. There were also three seminars: F. Schaposnik reported on recent applications of topological methods in field theory, P. Gerbert gave a seminar on three dimensional gravity and V. Kurak talked on two dimensional parafermionic models. The second part of this proceedings is devoted to phenomenology. There were three courses on Particle Physics: Dan Green lectured on collider physics, E. Predrazzi on strong interactions and G. Cohen-Tanoudji on the use of strings in strong interactions.
Algebraic orbifold conformal field theories
Xu, Feng
2000-01-01
The unitary rational orbifold conformal field theories in the algebraic quantum field theory and subfactor theory framework are formulated. Under general conditions, it is shown that the orbifold of a given unitary rational conformal field theory generates a unitary modular category. Many new unitary modular categories are obtained. It is also shown that the irreducible representations of orbifolds of rank one lattice vertex operator algebras give rise to unitary modular categories and determine the corresponding modular matrices, which has been conjectured for some time. PMID:11106383
Invariants from classical field theory
Diaz, Rafael; Leal, Lorenzo
2008-06-15
We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern-Simons, and two-dimensional Yang-Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss' and the second Milnor's invariant for links in S{sup 3}, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
The Nonlinear Field Space Theory
NASA Astrophysics Data System (ADS)
Mielczarek, Jakub; Trześniewski, Tomasz
2016-08-01
In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.
Quantum Field Theory, Revised Edition
NASA Astrophysics Data System (ADS)
Mandl, F.; Shaw, G.
1994-01-01
Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical
NASA Astrophysics Data System (ADS)
Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep
2016-11-01
Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.
The Theory of Conceptual Fields
ERIC Educational Resources Information Center
Vergnaud, Gerard
2009-01-01
The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…
Double field theory inspired cosmology
Wu, Houwen; Yang, Haitang E-mail: hyanga@scu.edu.cn
2014-07-01
Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.
String theory in electromagnetic fields
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Makeenko, Yuri M.; Semenoff, Gordon W.; Szabo, Richard J.
2003-02-01
A review of various aspects of superstrings in background electromagnetic fields is presented. Topics covered include the Born-Infeld action, spectrum of open strings in background gauge fields, the Schwinger mechanism, finite-temperature formalism and Hagedorn behaviour in external fields, Debye screening, D-brane scattering, thermodynamics of D-branes, and noncommutative field and string theories on D-branes. The electric field instabilities are emphasized throughout and contrasted with the case of magnetic fields. A new derivation of the velocity-dependent potential between moving D-branes is presented, as is a new result for the velocity corrections to the one-loop thermal effective potential.
On supersymmetric Lifshitz field theories
NASA Astrophysics Data System (ADS)
Chapman, Shira; Oz, Yaron; Raviv-Moshe, Avia
2015-10-01
We consider field theories that exhibit a supersymmetric Lifshitz scaling with two real supercharges. The theories can be formulated in the language of stochastic quan-tization. We construct the free field supersymmetry algebra with rotation singlet fermions for an even dynamical exponent z = 2 k in an arbitrary dimension. We analyze the classical and quantum z = 2 supersymmetric interactions in 2 + 1 and 3 + 1 spacetime dimensions and reveal a supersymmetry preserving quantum diagrammatic cancellation. Stochastic quantization indicates that Lifshitz scale invariance is broken in the (3 + 1)-dimensional quantum theory.
NASA Astrophysics Data System (ADS)
Weinberg, Steven
1996-08-01
In this second volume of The Quantum Theory of Fields, available for the first time in paperback, Nobel Laureate Steven Weinberg continues his masterly expoistion of quantum theory. Volume 2 provides an up-to-date and self-contained account of the methods of quantum field theory, and how they have led to an understanding of the weak, strong, and electromagnetic interactions of the elementary particles. The presentation of modern mathematical methods is throughout interwoven with accounts of the problems of elementary particle physics and condensed matter physics to which they have been applied. Exercises are included at the end of each chapter.
(Studies in quantum field theory)
Not Available
1990-01-01
During the period 4/1/89--3/31/90 the theoretical physics group supported by Department of Energy Contract No. AC02-78ER04915.A015 and consisting of Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Senior Research Associate Visser has made progress in many areas of theoretical and mathematical physics. Professors Bender and Shrauner, Associate Professor Papanicolaou, Assistant Professor Ogilvie, and Research Associate Visser are currently conducting research in many areas of high energy theoretical and mathematical physics. These areas include: strong-coupling approximation; classical solutions of non-Abelian gauge theories; mean-field approximation in quantum field theory; path integral and coherent state representations in quantum field theory; lattice gauge calculations; the nature of perturbation theory in large order; quark condensation in QCD; chiral symmetry breaking; the 1/N expansion in quantum field theory; effective potential and action in quantum field theories, including OCD; studies of the early universe and inflation, and quantum gravity.
Nonlocal and quasilocal field theories
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2015-12-01
We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.
Interfaces in supersymmetric field theories
NASA Astrophysics Data System (ADS)
Galakhov, Dmitrii
Supersymmetry has proven to be a valuable tool in the study of non-perturbative dynamics in quantum field theory, gravity and string theory. In this thesis we consider supersymmetric interfaces. Interfaces are defects defined by spatially changing coupling constants. Interfaces can be used to probe the non-perturbative low energy dynamics of an underlying supersymmetric quantum field theory. We study interfaces in a set of four-dimensional quantum field theories with N = 2 supersymmetry known as theories of class S. Using these defects we probe the spin content of the spectrum of quantum states saturating the Bogomolnyi-Prasad-Sommerfeld bound. We also apply supersymmetric defects to the construction of knot and link invariants via quantum field theory. We associate to a knot -- presented as a tangle -- an interface de ned by a spatially varying superpotential in a 2d supersymmetric Landau-Ginzburg model. We construct explicitly the Hilbert space of ground states on this interface as the cohomology of a nilpotent supercharge and prove that this Hilbert space is bi-graded by integers and is an invariant of the knot (or link). In explicit examples we show that the corresponding Poincare polynomial coincides with the Poincar e polynomial of the renowned Khovanov homology that categori es the Jones polynomial.
Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP
Andy Wu, Song Jin, Robert Rimmer, Xiang Yang Lu, K. Zhao, Laura MacIntyre, Robert Ike
2010-05-01
Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flat samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.
Field-theory methods in coagulation theory
Lushnikov, A. A.
2011-08-15
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Lectures on Crystal Field Theory
1982-11-01
used to calculate the electric dipole transition probabilities using the theory of Judd (1962) and Ofelt (1962)o As of 1970, all these objectives had...metry higher than C1 or C•. (4) The calculation of transltion probabilities, Zeeman splitting factors, Judd - Ofelt intensity parameters, branching ratios...INTERACTIONS ..................................... 37 4.1 Phenomenological Theory of Crystal Fields ................ 37 4.1.1 Matrix Elements of H in J States
Fornace, Mark E; Lee, Joonho; Miyamoto, Kaito; Manby, Frederick R; Miller, Thomas F
2015-02-10
We introduce embedded mean-field theory (EMFT), an approach that flexibly allows for the embedding of one mean-field theory in another without the need to specify or fix the number of particles in each subsystem. EMFT is simple, is well-defined without recourse to parameters, and inherits the simple gradient theory of the parent mean-field theories. In this paper, we report extensive benchmarking of EMFT for the case where the subsystems are treated using different levels of Kohn-Sham theory, using PBE or B3LYP/6-31G* in the high-level subsystem and LDA/STO-3G in the low-level subsystem; we also investigate different levels of density fitting in the two subsystems. Over a wide range of chemical problems, we find EMFT to perform accurately and stably, smoothly converging to the high-level of theory as the active subsystem becomes larger. In most cases, the performance is at least as good as that of ONIOM, but the advantages of EMFT are highlighted by examples that involve partitions across multiple bonds or through aromatic systems and by examples that involve more complicated electronic structure. EMFT is simple and parameter free, and based on the tests provided here, it offers an appealing new approach to a multiscale electronic structure.
Topics in Effective Field Theories
NASA Astrophysics Data System (ADS)
Kaplan, Lev
In recent years. our understanding of the structure of quantum field theories has benefitted greatly from the introduction and development of effective field theory (EFT) techniques. The EFT language allows for a systematic characterization of interactions between degrees of freedom relevant in a given energy range, even when some of these interactions are induced by new physics at a higher energy, whose details may be complicated or unknown. In situations where the higher energy theory is well understood, it is nevertheless very useful to be able to describe the behavior of fields that are of interest in a given energy regime, without making reference to degrees of freedom present at different energy scales. In particular, this allows for a relatively straightforward comparison of the effects on low energy modes of different high energy interactions. We present here two previously published papers, in each of which the EFT concept plays a central role. In Chapter 1, nonperturbative (instanton) contributions to EFT scattering amplitudes are studied. It is found that when the high energy theory requires all fermions (heavy and light) to participate in such tunneling processes, instantons involving only the light fields are naturally absent in the effective theory. This is true even though no explicit mention of the heavy fermions which have been "integrated out" is made in the effective theory description. The resolution of what had been an apparent paradox in the literature is testimony to the generality and consistency of EFT techniques. In Chapter 2. EFT methods are applied to a problem of immediate practical and experimental interest--the possibility of quark compositeness. Top quark substructure, associated with new interactions present at scales above the top quark mass, but unrelated to electroweak physics, is examined with regard to possible effects on experimentally accessible production and decay rates of known particles. It is found that such new physics
Unitarity of superstring field theory
NASA Astrophysics Data System (ADS)
Sen, Ashoke
2016-12-01
We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.
Variational methods for field theories
NASA Astrophysics Data System (ADS)
Ben-Menahem, Shahar
1986-09-01
The thesis is presented in four parts dealing with field theory models: Periodic Quantum Electrodynamics (PQED) in (2+1) dimensions, free scalar field theory in (1+1) dimensions, the Quantum XY model in (1+1) dimensions, and the (1+1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. Free field theory is used as a laboratory for a new variational blocking truncation approximation, in which the high frequency modes in a block are truncated to wave functions that depend on the slower background model (Born Oppenheimer approximation). For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. In the 4th part, the transfer matrix method is used to find a good (non blocking) trial ground state for the Ising model in a transverse magnetic field in (1+1) dimensions.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Variational methods for field theories
Ben-Menahem, S.
1986-09-01
Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.
Diffeomorphisms in group field theories
Baratin, Aristide; Girelli, Florian; Oriti, Daniele
2011-05-15
We study the issue of diffeomorphism symmetry in group field theories (GFT), using the noncommutative metric representation introduced by A. Baratin and D. Oriti [Phys. Rev. Lett. 105, 221302 (2010).]. In the colored Boulatov model for 3d gravity, we identify a field (quantum) symmetry which ties together the vertex translation invariance of discrete gravity, the flatness constraint of canonical quantum gravity, and the topological (coarse-graining) identities for the 6j symbols. We also show how, for the GFT graphs dual to manifolds, the invariance of the Feynman amplitudes encodes the discrete residual action of diffeomorphisms in simplicial gravity path integrals. We extend the results to GFT models for higher-dimensional BF theories and discuss various insights that they provide on the GFT formalism itself.
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-09-02
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro E-mail: mwhite@berkeley.edu
2015-09-01
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all of our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.
A Lagrangian effective field theory
Vlah, Zvonimir; White, Martin; Aviles, Alejandro
2015-09-02
We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less
Topics in Effective Field Theory
NASA Astrophysics Data System (ADS)
Chang, Hsi-Ming
This dissertation focuses on two aspects of high energy physics---quantum chromodynamics (QCD) and the effective field theory. On the QCD side, the double parton scattering has become an important background in new physics searches. Correlations in double parton distribution function including flavor, spin, momentum fractions, and transverse separation were studied under the framework of proton bag model. Pile-up contamination also affects new physics searches. One way to suppress this effect is to use observables that depend only on charged particles. A non-perturbative object, the track function, was defined to deal with calculations that only involved charged particles. The track function formalism was applied to calculate the thrust with charged particles only. Then, the focus shifts to the effective field theory. Soft-collinear effective theory was used to resum the large logarithms in the thrust calculation. The one-loop anomalous dimension matrix for the dimension-six baryon number violating operators is computed. Lastly, the Standard Model effective theory was used to study the semileptonic hyperon decays.
NASA Astrophysics Data System (ADS)
Karkheck, John; Stell, George
1981-08-01
A kinetic mean-field theory for the evolution of the one-particle distribution function is derived from maximizing the entropy. For a potential with a hard-sphere core plus tail, the resulting theory treats the hard-core part as in the revised Enskog theory. The tail, weighted by the hard-sphere pair distribution function, appears linearly in a mean-field term. The kinetic equation is accompanied by an entropy functional for which an H theorem was proven earlier. The revised Enskog theory is obtained by setting the potential tail to zero, the Vlasov equation is obtained by setting the hard-sphere diameter to zero, and an equation of the Enskog-Vlasov type is obtained by effecting the Kac limit on the potential tail. At equilibrium, the theory yields a radial distribution function that is given by the hard-sphere reference system and thus furnishes through the internal energy a thermodynamic description which is exact to first order in inverse temperature. A second natural route to thermodynamics (from the momentum flux which yields an approximate equation of state) gives somewhat different results; both routes coincide and become exact in the Kac limit. Our theory furnishes a conceptual basis for the association in the heuristically based modified Enskog theory (MET) of the contact value of the radial distribution function with the ''thermal pressure'' since this association follows from our theory (using either route to thermodynamics) and moreover becomes exact in the Kac limit. Our transport theory is readily extended to the general case of a soft repulsive core, e.g., as exhibited by the Lennard-Jones potential, via by-now-standard statistical-mechanical methods involving an effective hard-core potential, thus providing a self-contained statistical-mechanical basis for application to such potentials that is lacking in the standard versions of the MET. We obtain very good agreement with experiment for the thermal conductivity and shear viscosity of several
Symplectic Clifford Algebraic Field Theory.
NASA Astrophysics Data System (ADS)
Dixon, Geoffrey Moore
We develop a mathematical framework on which is built a theory of fermion, scalar, and gauge vector fields. This field theory is shown to be equivalent to the original Weinberg-Salam model of weak and electromagnetic interactions, but since the new framework is more rigid than that on which the original Weinberg-Salam model was built, a concomitant reduction in the number of assumptions lying outside of the framework has resulted. In particular, parity violation is actually hiding within our framework, and with little difficulty we are able to manifest it. The mathematical framework upon which we build our field theory is arrived at along two separate paths. The first is by the marriage of a Clifford algebra and a Lie superalgebra, the result being called a super Clifford algebra. The second is by providing a new characterization for a Clifford algebra employing its generators and a symmetric array of metric coefficients. Subsequently we generalize this characterization to the case of an antisymmetric array of metric coefficients, and we call the algebra which results a symplectic Clifford algebra. It is upon one of these that we build our field theory, and it is shown that this symplectic Clifford algebra is a particular subalgebra of a super Clifford algebra. The final ingredient is the operation of bracketing which involves treating the elements of our algebra as endomorphisms of a particular inner product space, and employing this space and its inner product to provide us with maps from our algebra to the reals. It is this operation which enables us to manifest the parity violation hiding in our algebra.
Symmetries in Lagrangian Field Theory
NASA Astrophysics Data System (ADS)
Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia
2015-06-01
By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.
Rearranging Pionless Effective Field Theory
Martin Savage; Silas Beane
2001-11-19
We point out a redundancy in the operator structure of the pionless effective field theory which dramatically simplifies computations. This redundancy is best exploited by using dibaryon fields as fundamental degrees of freedom. In turn, this suggests a new power counting scheme which sums range corrections to all orders. We explore this method with a few simple observables: the deuteron charge form factor, n p -> d gamma, and Compton scattering from the deuteron. Higher dimension operators involving electroweak gauge fields are not renormalized by the s-wave strong interactions, and therefore do not scale with inverse powers of the renormalization scale. Thus, naive dimensional analysis of these operators is sufficient to estimate their contribution to a given process.
Field theory of pattern identification
NASA Astrophysics Data System (ADS)
Agu, Masahiro
1988-06-01
Based on the psychological experimental fact that images in mental space are transformed into other images for pattern identification, a field theory of pattern identification of geometrical patterns is developed with the use of gauge field theory in Euclidean space. Here, the ``image'' or state function ψ[χ] of the brain reacting to a geometrical pattern χ is made to correspond to the electron's wave function in Minkowski space. The pattern identification of the pattern χ with the modified pattern χ+Δχ is assumed to be such that their images ψ[χ] and ψ[χ+Δχ] in the brain are transformable with each other through suitable transformation groups such as parallel transformation, dilatation, or rotation. The transformation group is called the ``image potential'' which corresponds to the vector potential of the gauge field. An ``image field'' derived from the image potential is found to be induced in the brain when the two images ψ[χ] and ψ[χ+Δχ] are not transformable through suitable transformation groups or gauge transformations. It is also shown that, when the image field exists, the final state of the image ψ[χ] is expected to be different, depending on the paths of modifications of the pattern χ leading to a final pattern. The above fact is interpreted as a version of the Aharonov and Bohm effect of the electron's wave function [A. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959)]. An excitation equation of the image field is also derived by postulating that patterns are identified maximally for the purpose of minimizing the number of memorized standard patterns.
Changing Views of Quantum Field Theory
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2010-03-01
The first part of this talk reviews changes in our views regarding quantum field theory since its beginnings, leading eventually to the modern view that our most successful field theories may in fact be effective field theories, valid only as low energy approximations to an underlying theory that may not be a field theory at all. In the second part, I reminisce about the early development of effective field theories of the strong interactions, comment briefly on some other applications of effective field theories, then take up the idea that the Standard Model and General Relativity are the leading terms in an effective field theory, and finally cite recent calculations that suggest that the effective field theory of gravitation and matter is asymptotically safe. The second part is substantially the same as a talk given a month earlier at the 6th International Workshop on Chiral Dynamics, at the University of Bern, which is reproduced here.
Variational Methods for Field Theories.
NASA Astrophysics Data System (ADS)
Ben-Menahem, Shahar
The thesis has four parts, dealing with four field theory models: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. In the second part, we use free field theory as a loboratory for a new variational blocking-tuncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes(Born-Oppenheimer approximation). This "adiabatic truncation" method gives very accurate results for ground -state energy density and correlation functions. Without the adiabatic method, a much larger number of state per block must be kept to get comparable results. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Eclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. This transition is a rudimentary version of the actual transition known to occur in the XY model, and is
HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents
NASA Astrophysics Data System (ADS)
Navratil, G. A.; Abler, M. C.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Rhodes, D. J.; Hansen, C. J.
2016-10-01
The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. A GPU-based low latency control system uses 96 inputs and 64 outputs to control the plasma boundary. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A quasi-linear sharp-boundary model is developed to study effects of toroidal curvature and plasma shaping on beta limits with resistive plasmas and walls. Measurement of currents between vessel sections reveals currents running from the plasma to the wall during wall-touching kink modes and disruptions. Asymmetries in plasma current are observed using segmented Rogowski coils. Biased electrodes in the plasma are used to control rotation of external kinks and drive currents in the SOL. An extensive array of SOL current monitors and edge drive electrodes will be installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Topics in low-dimensional field theory
Crescimanno, M.J.
1991-04-30
Conformal field theory is a natural tool for understanding two- dimensional critical systems. This work presents results in the lagrangian approach to conformal field theory. The first sections are chiefly about a particular class of field theories called coset constructions and the last part is an exposition of the connection between two-dimensional conformal theory and a three-dimensional gauge theory whose lagrangian is the Chern-Simons density.
Haag's theorem in noncommutative quantum field theory
Antipin, K. V.; Mnatsakanova, M. N.; Vernov, Yu. S.
2013-08-15
Haag's theorem was extended to the general case of noncommutative quantum field theory when time does not commute with spatial variables. It was proven that if S matrix is equal to unity in one of two theories related by unitary transformation, then the corresponding one in the other theory is equal to unity as well. In fact, this result is valid in any SO(1, 1)-invariant quantum field theory, an important example of which is noncommutative quantum field theory.
Effective field theory in nuclear physics
Martin J. Savage
2000-12-12
I review recent developments in the application of effective field theory to nuclear physics. Emphasis is placed on precision two-body calculations and efforts to formulate the nuclear shell model in terms of an effective field theory.
From operator algebras to superconformal field theory
Kawahigashi, Yasuyuki
2010-01-15
We survey operator algebraic approach to (super)conformal field theory. We discuss representation theory, classification results, full and boundary conformal field theories, relations to supervertex operator algebras and Moonshine, connections to subfactor theory of Jones, and certain aspects of noncommutative geometry of Connes.
Field Theory of Fundamental Interactions
NASA Astrophysics Data System (ADS)
Wang, Shouhong; Ma, Tian
2017-01-01
First, we present two basic principles, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action under energy-momentum conservation constraint. We show that the PID is the requirement of the presence of dark matter and dark energy, the Higgs field and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). It is clear that PRI is the logic requirement of any gauge theory. With PRI, we demonstrate that the coupling constants for the strong and the weak interactions are the main sources of these two interactions, reminiscent of the electric charge. Second, we emphasize that symmetry principles-the principle of general relativity and the principle of Lorentz invariance and gauge invariance-together with the simplicity of laws of nature, dictate the actions for the four fundamental interactions. Finally, we show that the PID and the PRI, together with the symmetry principles give rise to a unified field model for the fundamental interactions, which is consistent with current experimental observations and offers some new physical predictions. The research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Quantum Mechanics and Quantum Field Theory
NASA Astrophysics Data System (ADS)
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Field Analysis and Potential Theory
1985-06-01
ellipsoid of revolution defined by +• -1f where a and b are constants. Aans: 2w&2 + 2b sin-l . for b > a (bT) 211& + 2yb 1 & t2 \\2nh 7b2 - for a > b . b2 126...finite values of b? 214 FIELD ANALYSIS AND POTENTIAL THEORY Ans: b2 -a2 V bp’) aVn ds d " V ds + In’ (a r r rr vanishes when V+O and (R in R) L.V-0 as R...and 3-43. are imposed upon V, viz that VO and (R in R) .-0 as R-, it follows that V may be expressed either aso b,2 -a2 LV b2 -a 2 £;s 1 dS O-a ds or
Abstract class field theory (a finitary approach)
Ershov, Yu L
2003-02-28
A definition of the reciprocity homomorphism in Neukirch's abstract class field theory is given. This definition uses fairly large additional non-ramified extensions, but they are all finite. This will enable one to apply the theory thus constructed to the effectivization (algorithmization) of local and global class field theory alike. The combination of Neukirch's and Hazewinkel's approaches used in the paper clarifies class field theory even at the abstract level of exposition.
Supersymmetric extensions of K field theories
NASA Astrophysics Data System (ADS)
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Unusual signs in quantum field theory
NASA Astrophysics Data System (ADS)
O'Connell, Donal
Quantum field theory is by now a mature field. Nevertheless, certain physical phenomena remain difficult to understand. This occurs in some cases because well-established quantum field theories are strongly coupled and therefore difficult to solve; in other cases, our current understanding of quantum field theory seems to be inadequate. In this thesis, we will discuss various modifications of quantum field theory which can help to alleviate certain of these problems, either in their own right or as a component of a greater computational scheme. The modified theories we will consider all include unusual signs in some aspect of the theory. We will also discuss limitations on what we might expect to see in experiments, imposed by sign constraints in the customary formulation of quantum field theory.
On magnetohydrodynamic gauge field theory
NASA Astrophysics Data System (ADS)
Webb, G. M.; Anco, S. C.
2017-06-01
Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.
Toward a gauge field theory of gravity.
NASA Astrophysics Data System (ADS)
Yilmaz, H.
Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.
Kirby S. Chapman; Sarah R. Nuss-Warren
2006-12-31
This report highlights work done on a project intended to lower the cost of environmental compliance and expedite project permitting for Exploration and Production (E&P) operators by identifying, developing, testing, and commercializing emissions control and monitoring technologies. Promising technologies have already been identified and developed. Current work focuses on testing these promising technologies. Specifically, several technologies are being tested in the laboratory for application to lean-burn engines or fully characterized on-site for use with rich-burn engines. Upon completion of these tests, the most cost-effective and robust technologies will be tested in the field and commercialization will ensue. During this quarter, progress in laboratory testing for lean-burn engines was limited by maintenance issues on the KSU Ajax DP-115. The difficulties that required maintenance to be performed will likely require that the 180 psig prototype valve be tested in the future, if possible. The maintenance was performed, and it is expected that the Ajax will be available for testing in the coming quarter. Although laboratory testing was slowed as a result of maintenance issues, progress in experimental characterization of technologies has been significant. NSCR systems will be characterized as applied to rich-burn engines on-site. This characterization will ensure high-quality data in final field testing on rich-burn engines and is considered to be essential, despite that the work requires the delay of official field testing until 2008. Many preliminary and administrative tasks have been completed, including initial site selection, official proposal submittal, and beginning a process to approve necessary changes to installed field engines.
Conformal field theories from deformations of theories with Wn symmetry
NASA Astrophysics Data System (ADS)
Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash
2016-10-01
We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.
Unification Principle and a Geometric Field Theory
NASA Astrophysics Data System (ADS)
Wanas, Mamdouh I.; Osman, Samah N.; El-Kholy, Reham I.
2015-08-01
In the context of the geometrization philosophy, a covariant field theory is constructed. The theory satisfies the unification principle. The field equations of the theory are constructed depending on a general differential identity in the geometry used. The Lagrangian scalar used in the formalism is neither curvature scalar nor torsion scalar, but an alloy made of both, the W-scalar. The physical contents of the theory are explored depending on different methods. The analysis shows that the theory is capable of dealing with gravity, electromagnetism and material distribution with possible mutual interactions. The theory is shown to cover the domain of general relativity under certain conditions.
Remarks on superstring field theories (I)
Chen, W.; Guo, H.Y.; Hu, H.L.; Yu, Y.
1987-10-01
Based on BRST cohomology analysis, the authors proposed a gauge invariant interacting field theory for the open superstrings. The cohomology aspect of the theory does not depend on any ad hoc interacting pictures. And the Lagrangian is of the super Chern-Simons type. This theory is readily extended to the closed superstrings.
Boson formulation of fermion field theories
Ha, Y.K.
1984-04-15
The nonperturbative connection between a canonical Fermi field and a canonical Bose field in two dimensions is developed and its validity verified according to the tenets of quantum field theory. We advocate the point of view that a boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. Many features of the massless theory, such as dynamical mass generation with asymptotic-freedom behavior, hidden chiral symmetry, and connections with models of apparently different internal symmetries, are readily transparent through such fermion-boson metamorphosis.
Continuous point symmetries in group field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2017-03-01
We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them.
Noncommutative field theory and Lorentz violation.
Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T
2001-10-01
The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).
Quantum equivalence of dual field theories
NASA Astrophysics Data System (ADS)
Fradkin, E. S.; Tseytlin, A. A.
1985-06-01
Motivated by the study of ultraviolet properties of different versions of supergravities duality transformations at the quantum level are discussed. Using the background field method it is proven on shell quantum equivalence for several pairs of dual field theories known to be classically equivalent. The examples considered include duality in chiral model, duality of scalars and second rank antisymmetric gauge tensors, vector duality and duality of the Einstein theory with cosmological term and the Eddington-Schrödinger theory.
Pilot-wave theory and quantum fields
NASA Astrophysics Data System (ADS)
Struyve, Ward
2010-10-01
Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.
Field Equations for Space-Time Theory
NASA Astrophysics Data System (ADS)
Bejancu, Aurel
2013-05-01
In the present paper we obtain, in a covariant form, and in their full generality, the field equations in a relativistic general Kaluza-Klein space. This is done by using the Riemannian horizontal connection defined in [3], and some 4D horizontal tensor fields, as for instance: horizontal Ricci tensor, horizontal Einstein gravitational tensor field, horizontal electromagnetic energy-momentum tensor field, etc. Also, we present some inter-relations between STM theory and brane-world theory. This enables us to introduce in brane theory some electromagnetic potentials constructed by means of the warp function.
Holography for field theory solitons
NASA Astrophysics Data System (ADS)
Domokos, Sophia K.; Royston, Andrew B.
2017-07-01
We extend a well-known D-brane construction of the AdS/dCFT correspondence to non-abelian defects. We focus on the bulk side of the correspondence and show that there exists a regime of parameters in which the low-energy description consists of two approximately decoupled sectors. The two sectors are gravity in the ambient spacetime, and a six-dimensional supersymmetric Yang-Mills theory. The Yang-Mills theory is defined on a rigid AdS4 × S 2 background and admits sixteen supersymmetries. We also consider a one-parameter deformation that gives rise to a family of Yang-Mills theories on asymptotically AdS4 × S 2 spacetimes, which are invariant under eight supersymmetries. With future holographic applications in mind, we analyze the vacuum structure and perturbative spectrum of the Yang-Mills theory on AdS4 × S 2, as well as systems of BPS equations for finite-energy solitons. Finally, we demonstrate that the classical Yang-Mills theory has a consistent truncation on the two-sphere, resulting in maximally supersymmetric Yang-Mills on AdS4.
Introduction to conformal field theory and string theory
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
Keith Hohn; Sarah R. Nuss-Warren
2011-08-31
This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.
The facets of relativistic quantum field theory
NASA Astrophysics Data System (ADS)
Dosch, H. G.; Müller, V. F.
2011-04-01
Relativistic quantum field theory is generally recognized to form the adequate theoretical frame for subatomic physics, with the Standard Model of Particle Physics as a major achievement. We point out that quantum field theory in its present form is not a monolithic theory, but rather consists of distinct facets, which aim at a common ideal goal. We give a short overview of the strengths and limitations of these facets. We emphasize the theory-dependent relation between the quantum fields, and the basic objects in the empirical domain, the particles. Given the marked conceptual differences between the facets, we argue to view these, and therefore also the Standard Model, as symbolic constructions. We finally note that this view of physical theories originated in the 19th century and is related to the emergence of the classical field as an autonomous concept.
Fermion boson metamorphosis in field theory
Ha, Y.K.
1982-01-01
In two-dimensional field theories many features are especially transparent if the Fermi fields are represented by non-local expressions of the Bose fields. Such a procedure is known as boson representation. Bilinear quantities appear in the Lagrangian of a fermion theory transform, however, as simple local expressions of the bosons so that the resulting theory may be written as a theory of bosons. Conversely, a theory of bosons may be transformed into an equivalent theory of fermions. Together they provide a basis for generating many interesting equivalences between theories of different types. In the present work a consistent scheme for constructing a canonical Fermi field in terms of a real scalar field is developed and such a procedure is valid and consistent with the tenets of quantum field theory is verified. A boson formulation offers a unifying theme in understanding the structure of many theories. This is illustrated by the boson formulation of a multifermion theory with chiral and internal symmetries. The nature of dynamical generation of mass when the theory undergoes boson transmutation and the preservation of continuous chiral symmetry in the massive case are examined. The dynamics of the system depends to a great extent on the specific number of fermions and different models of the same system can have very different properties. Many unusual symmetries of the fermion theory, such as hidden symmetry, duality and triality symmetries, are only manifest in the boson formulation. The underlying connections between some models with U(N) internal symmetry and another class of fermion models built with Majorana fermions which have O(2N) internal symmetry are uncovered.
Understanding conformal field theory through parafermions and Chern Simons theory
Hotes, S.A.
1992-11-19
Conformal field theories comprise a vast class of exactly solvable two dimensional quantum field theories. Conformal theories with an enlarged symmetry group, the current algebra symmetry, axe a key ingredient to possible string compactification models. The following work explores a Lagrangian approach to these theories. In the first part of this thesis, a large class of conformal theories, the so-called coset models, are derived semi-classically from a gauged version Of the Wess-Zumino-Witten functional. A non-local field transformation to the parafermionic field description is employed in the quantization procedure. Classically, these parafermionic fields satisfy non-trivial Poisson brackets, providing insight into the fractional spin nature of the conformal theory. The W-algebra symmetry is shown to appear naturally in this approach. In the second part of this thesis, the connection between the fusion algebra structure of Wess-Zumino-Witten models and the quantization of the Chern-Simons action on the torus is made explicit. The modular properties of the conformal model are also derived in this context, giving a natural demonstration of the Verlinde conjecture. The effects of background gauge fields and monopoles are also discussed.
Understanding conformal field theory through parafermions and Chern Simons theory
Hotes, S.A.
1992-11-19
Conformal field theories comprise a vast class of exactly solvable two dimensional quantum field theories. Conformal theories with an enlarged symmetry group, the current algebra symmetry, axe a key ingredient to possible string compactification models. The following work explores a Lagrangian approach to these theories. In the first part of this thesis, a large class of conformal theories, the so-called coset models, are derived semi-classically from a gauged version Of the Wess-Zumino-Witten functional. A non-local field transformation to the parafermionic field description is employed in the quantization procedure. Classically, these parafermionic fields satisfy non-trivial Poisson brackets, providing insight into the fractional spin nature of the conformal theory. The W-algebra symmetry is shown to appear naturally in this approach. In the second part of this thesis, the connection between the fusion algebra structure of Wess-Zumino-Witten models and the quantization of the Chern-Simons action on the torus is made explicit. The modular properties of the conformal model are also derived in this context, giving a natural demonstration of the Verlinde conjecture. The effects of background gauge fields and monopoles are also discussed.
Quantum Field Theory and the Standard Model
NASA Astrophysics Data System (ADS)
Schwartz, Matthew D.
2014-03-01
Part I. Field Theory: 1. Microscopic theory of radiation; 2. Lorentz invariance and second quantization; 3. Classical Field Theory; 4. Old-fashioned perturbation theory; 5. Cross sections and decay rates; 6. The S-matrix and time-ordered products; 7. Feynman rules; Part II. Quantum Electrodynamics: 8. Spin 1 and gauge invariance; 9. Scalar QED; 10. Spinors; 11. Spinor solutions and CPT; 12. Spin and statistics; 13. Quantum electrodynamics; 14. Path integrals; Part III. Renormalization: 15. The Casimir effect; 16. Vacuum polarization; 17. The anomalous magnetic moment; 18. Mass renormalization; 19. Renormalized perturbation theory; 20. Infrared divergences; 21. Renormalizability; 22. Non-renormalizable theories; 23. The renormalization group; 24. Implications of Unitarity; Part IV. The Standard Model: 25. Yang-Mills theory; 26. Quantum Yang-Mills theory; 27. Gluon scattering and the spinor-helicity formalism; 28. Spontaneous symmetry breaking; 29. Weak interactions; 30. Anomalies; 31. Precision tests of the standard model; 32. QCD and the parton model; Part V. Advanced Topics: 33. Effective actions and Schwinger proper time; 34. Background fields; 35. Heavy-quark physics; 36. Jets and effective field theory; Appendices; References; Index.
Ostrogradsky in theories with multiple fields
Rham, Claudia de; Matas, Andrew
2016-06-23
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.
Ostrogradsky in theories with multiple fields
NASA Astrophysics Data System (ADS)
de Rham, Claudia; Matas, Andrew
2016-06-01
We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.
A New Theory of the Electromagnetic Field
NASA Astrophysics Data System (ADS)
Kriske, Richard
2017-01-01
This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.
Pure field theories and MACSYMA algorithms
NASA Technical Reports Server (NTRS)
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
Pure field theories and MACSYMA algorithms
NASA Technical Reports Server (NTRS)
Ament, W. S.
1977-01-01
A pure field theory attempts to describe physical phenomena through singularity-free solutions of field equations resulting from an action principle. The physics goes into forming the action principle and interpreting specific results. Algorithms for the intervening mathematical steps are sketched. Vacuum general relativity is a pure field theory, serving as model and providing checks for generalizations. The fields of general relativity are the 10 components of a symmetric Riemannian metric tensor; those of the Einstein-Straus generalization are the 16 components of a nonsymmetric. Algebraic properties are exploited in top level MACSYMA commands toward performing some of the algorithms of that generalization. The light cone for the theory as left by Einstein and Straus is found and simplifications of that theory are discussed.
From exceptional field theory to heterotic double field theory via K3
NASA Astrophysics Data System (ADS)
Malek, Emanuel
2017-03-01
In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.
Holographic applications of logarithmic conformal field theories
NASA Astrophysics Data System (ADS)
Grumiller, D.; Riedler, W.; Rosseel, J.; Zojer, T.
2013-12-01
We review the relations between Jordan cells in various branches of physics, ranging from quantum mechanics to massive gravity theories. Our main focus is on holographic correspondences between critically tuned gravity theories in anti-de Sitter space and logarithmic conformal field theories in various dimensions. We summarize the developments in the past five years, include some novel generalizations and provide an outlook on possible future developments.
Pion masses in quasiconformal gauge field theories
Dietrich, Dennis D.; Jaervinen, Matti
2009-03-01
We study modifications to Weinberg-like sum rules in quasiconformal gauge field theories. Beyond the two Weinberg sum rules and the oblique S parameter, we study the pion mass and the X parameter. Especially, we evaluate the pion mass for walking technicolor theories, in particular, minimal walking technicolor, and find contributions of the order of up to several hundred GeV.
Yang, Guang; Ren, Zhen; Mei, Yan-Ai
2015-01-01
Previous work from both our lab and others have indicated that exposure to 50 Hz magnetic fields (ELF-MF) was able to modify ion channel functions. However, very few studies have investigated the effects of MF on γ-aminobutyric acid (GABA) type A receptors (GABAARs) channel functioning, which are fundamental to overall neuronal excitability. Here, our major goal is to reveal the potential effects of ELF-MF on GABAARs activity in rat cerebellar granule neurons (CGNs). Our results indicated that exposing CGNs to 1 mT ELF-MF for 60 min. significantly increased GABAAR currents without modifying sensitivity to GABA. However, activation of PKA by db-cAMP failed to do so, but led to a slight decrease instead. On the other hand, PKC activation or inhibition by PMA or Bis and Docosahexaenoic acid (DHA) mimicked or eliminated the field-induced-increase of GABAAR currents. Western blot analysis indicated that the intracellular levels of phosphorylated PKC (pPKC) were significantly elevated after 60 min. of ELF-MF exposure, which was subsequently blocked by application of DHA or EP1 receptor-specific (prostaglandin E receptor 1) antagonist (SC19220), but not by EP2-EP4 receptor-specific antagonists. SC19220 also significantly inhibited the ELF-MF-induced elevation on GABAAR currents. Together, these data obviously demonstrated for the first time that neuronal GABAA currents are significantly increased by ELF-MF exposure, and also suggest that these effects are mediated via an EP1 receptor-mediated PKC pathway. Future work will focus on a more comprehensive analysis of the physiological and/or pathological consequences of these effects. PMID:26176998
Geometric continuum regularization of quantum field theory
Halpern, M.B. . Dept. of Physics)
1989-11-08
An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.
{N}=3 four dimensional field theories
NASA Astrophysics Data System (ADS)
García-Etxebarria, Iñaki; Regalado, Diego
2016-03-01
We introduce a class of four dimensional field theories constructed by quotienting ordinary {N}=4 U(N ) SYM by particular combinations of R-symmetry and SL(2, ℤ) automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions possess an unconventional large N limit described by a non-trivial F-theory fibration with base AdS 5 × (S 5/ ℤ k ). Upon reduction on a circle the {N}=3 theories flow to well-known {N}=6 ABJM theories.
Magnetic Catalysis in Graphene Effective Field Theory
NASA Astrophysics Data System (ADS)
DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas
2016-12-01
We report on the first calculation of magnetic catalysis at zero temperature in a fully nonperturbative simulation of the graphene effective field theory. Using lattice gauge theory, a nonperturbative analysis of the theory of strongly interacting, massless, (2 +1 )-dimensional Dirac fermions in the presence of an external magnetic field is performed. We show that in the zero-temperature limit, a nonzero value for the chiral condensate is obtained which signals the spontaneous breaking of chiral symmetry. This result implies a nonzero value for the dynamical mass of the Dirac quasiparticle.
Power counting in nuclear effective field theory
NASA Astrophysics Data System (ADS)
Valderrama, M. Pavon
2015-10-01
The effective field theory formulation of nuclear forces is able to provide a systematic and model independent description of nuclear physics, where all processes involving nucleons and pions can be described in terms of the same set of couplings, the theoretical errors are known in advance and the connection with QCD is present. These features are a consequence of renormalization group invariance, which in turn determines the power counting of the theory. Here we present a brief outline of how to determine the power counting of nuclear effective field theory, what does it looks like and what are the predictions for the two-nucleon sector at lowest orders.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
The Theory of Quantized Fields. II
DOE R&D Accomplishments Database
Schwinger, J.
1951-01-01
The arguments leading to the formulation of the Action Principle for a general field are presented. In association with the complete reduction of all numerical matrices into symmetrical and anti-symmetrical parts, the general field is decomposed into two sets, which are identified with Bose-Einstein and Fermi-Dirac fields. The spin restriction on the two kinds of fields is inferred from the time reflection invariance requirement. The consistency of the theory is verified in terms of a criterion involving the various generators of infinitesimal transformations. Following a discussion of charged fields, the electromagnetic field is introduced to satisfy the postulate of general gauge invariance. As an aspect of the latter, it is recognized that the electromagnetic field and charged fields are not kinematically independent. After a discussion of the field-strength commutation relations, the independent dynamical variable of the electromagnetic field are exhibited in terms of a special gauge.
"Quantum Field Theory and QCD"
Jaffe, Arthur M.
2006-02-25
This grant partially funded a meeting, "QFT & QCD: Past, Present and Future" held at Harvard University, Cambridge, MA on March 18-19, 2005. The participants ranged from senior scientists (including at least 9 Nobel Prize winners, and 1 Fields medalist) to graduate students and undergraduates. There were several hundred persons in attendance at each lecture. The lectures ranged from superlative reviews of past progress, lists of important, unsolved questions, to provocative hypotheses for future discovery. The project generated a great deal of interest on the internet, raising awareness and interest in the open questions of theoretical physics.
Lattice Methods and Effective Field Theory
NASA Astrophysics Data System (ADS)
Nicholson, Amy
Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of Endres et al. (Phys Rev A 84:043644, 2011; Phys Rev A 87:023615, 2013) for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final section.
Maverick Examples of Coset Conformal Field Theories
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Joshi, Keith G.
We present coset conformal field theories whose spectrum is not determined by the identification current method. In these "Maverick" cosets there is a larger symmetry identifying primary fields than under the identification current. We find an A-D-E classification of these Mavericks.
Phase-space quantization of field theory.
Curtright, T.; Zachos, C.
1999-04-20
In this lecture, a limited introduction of gauge invariance in phase-space is provided, predicated on canonical transformations in quantum phase-space. Exact characteristic trajectories are also specified for the time-propagating Wigner phase-space distribution function: they are especially simple--indeed, classical--for the quantized simple harmonic oscillator. This serves as the underpinning of the field theoretic Wigner functional formulation introduced. Scalar field theory is thus reformulated in terms of distributions in field phase-space. This is a pedagogical selection from work published and reported at the Yukawa Institute Workshop ''Gauge Theory and Integrable Models'', 26-29 January, 1999.
From theory to field experiments
NASA Astrophysics Data System (ADS)
de Vos, Bram
2016-04-01
Peter Raats' achievements in Haren (NL) 1986-1997 were based on a solid theoretical insight in hydrology and transport process in soil. However, Peter was also the driving force behind many experimental studies and applied research. This will be illustrated by a broad range of examples ranging from the dynamics of composting processes of organic material; modelling and monitoring nutrient leaching at field-scale; wind erosion; water and nutrient dynamics in horticultural production systems; oxygen diffusion in soils; and processes of water and nutrient uptake by plant roots. Peter's leadership led to may new approaches and the introduction of innovative measurement techniques in Dutch research; ranging from TDR to nutrient concentration measurements in closed fertigation systems. This presentation will give a brief overview how Peter's theoretical and mathematical insights accelerated this applied research.
Conformal field theory on affine Lie groups
Clubok, Kenneth Sherman
1996-04-01
Working directly on affine Lie groups, we construct several new formulations of the WZW model, the gauged WZW model, and the generic affine-Virasoro action. In one formulation each of these conformal field theories (CFTs) is expressed as a one-dimensional mechanical system whose variables are coordinates on the affine Lie group. When written in terms of the affine group element, this formulation exhibits a two-dimensional WZW term. In another formulation each CFT is written as a two-dimensional field theory, with a three- dimensional WZW term, whose fields are coordinates on the affine group. On the basis of these equivalent formulations, we develop a translation dictionary in which the new formulations on the affine Lie group are understood as mode formulations of the conventional formulations on the Lie group. Using this dictionary, we also express each CFT as a three-dimensional field theory on the Lie group with a four-dimensional WZW term. 36 refs.
Coadjoint orbits and conformal field theory
Taylor, IV, Washington
1993-08-01
This thesis is primarily a study of certain aspects of the geometric and algebraic structure of coadjoint orbit representations of infinite-dimensional Lie groups. The goal of this work is to use coadjoint orbit representations to construct conformal field theories, in a fashion analogous to the free-field constructions of conformal field theories. The new results which are presented in this thesis are as follows: First, an explicit set of formulae are derived giving an algebraic realization of coadjoint orbit representations in terms of differential operators acting on a polynomial Fock space. These representations are equivalent to dual Verma module representations. Next, intertwiners are explicitly constructed which allow the construction of resolutions for irreducible representations using these Fock space realizations. Finally, vertex operators between these irreducible representations are explicitly constructed as chain maps between the resolutions; these vertex operators allow the construction of rational conformal field theories according to an algebraic prescription.
Effective Field Theories, Reductionism and Scientific Explanation
NASA Astrophysics Data System (ADS)
Hartmann, Stephan
Effective field theories have been a very popular tool in quantum physics for almost two decades. And there are good reasons for this. I will argue that effective field theories share many of the advantages of both fundamental theories and phenomenological models, while avoiding their respective shortcomings. They are, for example, flexible enough to cover a wide range of phenomena, and concrete enough to provide a detailed story of the specific mechanisms at work at a given energy scale. So will all of physics eventually converge on effective field theories? This paper argues that good scientific research can be characterised by a fruitful interaction between fundamental theories, phenomenological models and effective field theories. All of them have their appropriate functions in the research process, and all of them are indispensable. They complement each other and hang together in a coherent way which I shall characterise in some detail. To illustrate all this I will present a case study from nuclear and particle physics. The resulting view about scientific theorising is inherently pluralistic, and has implications for the debates about reductionism and scientific explanation.
Cutkosky rules for superstring field theory
NASA Astrophysics Data System (ADS)
Pius, Roji; Sen, Ashoke
2016-10-01
Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky rules in ordinary quantum field theories.
On space of integrable quantum field theories
NASA Astrophysics Data System (ADS)
Smirnov, F. A.; Zamolodchikov, A. B.
2017-02-01
We study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as "effective field theories", with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field (T T bar) built from the components of the energy-momentum tensor. The deformations of quantum field theories generated by X1 are "solvable" in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. We also make some remarks on the problem of UV completeness of such integrable deformations.
Weak gravity conjecture and effective field theory
NASA Astrophysics Data System (ADS)
Saraswat, Prashant
2017-01-01
The weak gravity conjecture (WGC) is a proposed constraint on theories with gauge fields and gravity, requiring the existence of light charged particles and/or imposing an upper bound on the field theory cutoff Λ . If taken as a consistency requirement for effective field theories (EFTs), it rules out possibilities for model building including some models of inflation. I demonstrate simple models which satisfy all forms of the WGC, but which through Higgsing of the original gauge fields produce low-energy EFTs with gauge forces that badly violate the WGC. These models illustrate specific loopholes in arguments that motivate the WGC from a bottom-up perspective; for example the arguments based on magnetic monopoles are evaded when the magnetic confinement that occurs in a Higgs phase is accounted for. This indicates that the WGC should not be taken as a veto on EFTs, even if it turns out to be a robust property of UV quantum gravity theories. However, if the latter is true, then parametric violation of the WGC at low energy comes at the cost of nonminimal field content in the UV. I propose that only a very weak constraint is applicable to EFTs, Λ ≲(log 1/g )-1 /2Mpl , where g is the gauge coupling, motivated by entropy bounds. Remarkably, EFTs produced by Higgsing a theory that satisfies the WGC can saturate but not violate this bound.
Nonequilibrium statistical field theory for classical particles: Basic kinetic theory.
Viermann, Celia; Fabis, Felix; Kozlikin, Elena; Lilow, Robert; Bartelmann, Matthias
2015-06-01
Recently Mazenko and Das and Mazenko [Phys. Rev. E 81, 061102 (2010); J. Stat. Phys. 149, 643 (2012); J. Stat. Phys. 152, 159 (2013); Phys. Rev. E 83, 041125 (2011)] introduced a nonequilibrium field-theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
Quantum field theory based on birefringent modified Maxwell theory
NASA Astrophysics Data System (ADS)
Schreck, M.
2014-04-01
In the current paper the properties of a birefringent Lorentz-violating extension of quantum electrodynamics is considered. The theory results from coupling modified Maxwell theory, which is a CPT-even Lorentz-violating extension of the photon sector, to a Dirac theory of standard spin-1/2 particles. It is then restricted to a special birefringent case with one nonzero Lorentz-violating coefficient. The modified dispersion laws of electromagnetic waves are obtained plus their phase and group velocities are considered. After deriving the photon propagator and the polarization vectors for a special momentum configuration we prove both unitarity at tree level and microcausality for the quantum field theory based on this Lorentz-violating modification. These analytical proofs are done for a spatial momentum with two vanishing components and the proof of unitarity is supported by numerical investigations in case all components are nonvanishing. The upshot is that the theory is well behaved within the framework of our assumptions where there is a possible issue for negative Lorentz-violating coefficients. The paper shall provide a basis for the future analysis of alternative birefringent quantum field theories.
Large Spin Perturbation Theory for Conformal Field Theories
NASA Astrophysics Data System (ADS)
Alday, Luis F.
2017-09-01
We consider conformal field theories around points of large twist degeneracy. Examples of this are theories with weakly broken higher spin symmetry and perturbations around generalized free fields. At the degenerate point we introduce twist conformal blocks. These are eigenfunctions of certain quartic operators and encode the contribution, to a given four-point correlator, of the whole tower of intermediate operators with a given twist. As we perturb around the degenerate point, the twist degeneracy is lifted. In many situations this breaking is controlled by inverse powers of the spin. In such cases the twist conformal blocks can be decomposed into a sequence of functions which we systematically construct. Decomposing the four-point correlator in this basis turns crossing symmetry into an algebraic problem. Our method can be applied to a wide spectrum of conformal field theories in any number of dimensions and at any order in the breaking parameter. As an example, we compute the spectrum of various theories around generalized free fields.
Interacting scale invariant but nonconformal field theories
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2017-03-01
There is a dilemma in constructing interacting scale invariant Euclidean field theories that are not conformal invariant. On one hand, scale invariance without conformal invariance seems more generic by requiring only a smaller symmetry. On the other hand, the existence of a nonconserved current with exact scaling dimension d -1 in d dimensions seems to require extra fine-tuning. To understand the competition better, we explore some examples without the reflection positivity. We show that a theory of elasticity (also known as Riva-Cardy theory) coupled with massless fermions in d =4 -ɛ dimensions does not possess an interacting scale invariant fixed point except for an unstable (and unphysical) one with an infinite coefficient of compression. We do, however, find interacting scale invariant but nonconformal field theories in gauge fixed versions of the Banks-Zaks fixed points in d =4 dimensions.
Field Theory for Multi-Particle System
NASA Astrophysics Data System (ADS)
Wang, Shouhong; Ma, Tian
2016-03-01
The main objectives of this talk are 1) to introduce some basic postulates for quantum multi-particle systems, and 2) to develop a universal field theory for interacting multi-particle systems coupling both particle fields and interacting fields. By carefully examining the nature of interactions between multi-particles, we conclude that multi-particle systems must obey i) the gauge symmetry, ii) the principle of interaction dynamics (PID), and iii) the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action functional under energy-momentum conservation constraint, offers a different and natural way of introducing Higgs fields, and is also required by the presence of dark matter and dark energy and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). Based on these principles, a few basic postulates for multi-particle systems are introduced in this talk, leading to a field theory for interacting multi-particle systems. A direct consequence of the field theory is the derivation of general atomic spectrum equations. Supported in Part by the Office of Naval Research, by the US National Science Foundation, and by the Chinese National Science Foundation.
Quantum field theory of treasury bonds
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.
2001-07-01
The Heath-Jarrow-Morton (HJM) formulation of treasury bonds in terms of forward rates is recast as a problem in path integration. The HJM model is generalized to the case where all the forward rates are allowed to fluctuate independently. The resulting theory is shown to be a two-dimensional Gaussian quantum field theory. The no arbitrage condition is obtained and a functional integral derivation is given for the price of a futures and an options contract.
Magnetic monopoles in field theory and cosmology.
Rajantie, Arttu
2012-12-28
The existence of magnetic monopoles is predicted by many theories of particle physics beyond the standard model. However, in spite of extensive searches, there is no experimental or observational sign of them. I review the role of magnetic monopoles in quantum field theory and discuss their implications for particle physics and cosmology. I also highlight their differences and similarities with monopoles found in frustrated magnetic systems.
Quantum field theory of treasury bonds.
Baaquie, B E
2001-07-01
The Heath-Jarrow-Morton (HJM) formulation of treasury bonds in terms of forward rates is recast as a problem in path integration. The HJM model is generalized to the case where all the forward rates are allowed to fluctuate independently. The resulting theory is shown to be a two-dimensional Gaussian quantum field theory. The no arbitrage condition is obtained and a functional integral derivation is given for the price of a futures and an options contract.
Effective field theory for magnetic compactifications
NASA Astrophysics Data System (ADS)
Buchmuller, Wilfried; Dierigl, Markus; Dudas, Emilian; Schweizer, Julian
2017-04-01
Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N = 1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.
String field theory in the temporal gauge
NASA Astrophysics Data System (ADS)
Ikehara, M.; Ishibashi, N.; Kawai, H.; Mogami, T.; Nakayama, R.; Sasakura, N.
1994-12-01
We construct the string field Hamiltonian for c=1-[6/m(m+1)] string theory in the temporal gauge. In order to do so, we first examine the Schwinger-Dyson equations of the matrix chain models and propose the continuum version of them. The results of boundary conformal field theory are useful in making a connection between the discrete and continuum pictures. The W constraints are derived from the continuum Schwinger-Dyson equations. We also check that these equations are consistent with other known results about noncritical string theory. The string field Hamiltonian is easily obtained from the continuum Schwinger-Dyson equations. It looks similar to the Kaku-Kikkawa Hamiltonian and may readily be generalized to c>1 cases.
Charge transfer in algebraic quantum field theory
NASA Astrophysics Data System (ADS)
Wright, Jill Dianne
We discuss aspects of the algebraic structure of quantum field theory. We take the view that the superselection structure of a theory should be determinable from the vacuum representation of the observable algebra, and physical properties of the charge. Hence one determines the nature of the charge transfer operations: the automorphisms of the observable algebra corresponding to the movement of charge along space-time paths. New superselection sectors are obtained from the vacuum sector by an automorphism which is a limit of charge transfer operations along paths with an endpoint tending to spacelike infinity. Roberts has shown that for a gauge theory of the first kind, the charge transfer operations for a given charge form a certain kind of 1-cocycle over Minkowski space. The local 1-cohomology group of their equivalence classes corresponds to the superselection structure. The exact definition of the cohomology group depends on the properties of the charge. Using displaced Fock representations of free fields, we develop model field theories which illustrate this structure. The cohomological classification of displaced Fock representations has been elucidated by Araki. For more general representations, explicit determination of the cohomology group is a hard problem. Using our models, we can illustrate ways in which fields with reasonable physical properties depart fromthe abovementioned structure. In 1+1 dimensions, we use the Streater-Wilde model to illustrate explicitly the representation-dependence of the cohomology structure, and the direction-dependence of the limiting charge transfer operation. The cohomology structure may also be representation-dependent in higher-dimensional theories without strict localization of charge, for example the electromagnetic field. The algebraic structure of the electromagnetic field has many other special features, which we discuss in relation to the concept of charge transfer. We also give some indication of the modifications
Diagrammar in classical scalar field theory
Cattaruzza, E.; Gozzi, E.; Francisco Neto, A.
2011-09-15
In this paper we analyze perturbatively a g{phi}{sup 4}classical field theory with and without temperature. In order to do that, we make use of a path-integral approach developed some time ago for classical theories. It turns out that the diagrams appearing at the classical level are many more than at the quantum level due to the presence of extra auxiliary fields in the classical formalism. We shall show that a universal supersymmetry present in the classical path-integral mentioned above is responsible for the cancelation of various diagrams. The same supersymmetry allows the introduction of super-fields and super-diagrams which considerably simplify the calculations and make the classical perturbative calculations almost 'identical' formally to the quantum ones. Using the super-diagrams technique, we develop the classical perturbation theory up to third order. We conclude the paper with a perturbative check of the fluctuation-dissipation theorem. - Highlights: > We provide the Feynman diagrams of perturbation theory for a classical field theory. > We give a super-formalism which links the quantum diagrams to the classical ones. > We check perturbatively the fluctuation-dissipation theorem.
Counting operators in effective field theories
NASA Astrophysics Data System (ADS)
Lehman, Landon
The Standard Model is now viewed as an effective field theory (EFT), a theory that is valid only up to some high energy scale Lambda ≥ TeV, at which point it is subsumed into its ultraviolet (UV) completion. Given this, it is of both theoretical and phenomonological interest to enumerate a minimal basis for the operators in this EFT at various mass dimensions. This problem can be extended beyond the Standard Model effective field theory to encompass generic effective field theories and the question of writing down a minimal Lagrangian at some desired mass order. I approach this problem from two angles. First, I calculate the set of dimension-7 operators in the Standard Model effective field theory "by hand." Even though there are relatively few operators at dimension-7 as compared to dimension-8, this calculation is somewhat lengthy and thus illustrates the desirability of a more automated method. Second, I introduce a mathematical structure known as the Hilbert series. After providing some mathematical background on the Hilbert series, I illustrate how it can be used to attack the problem of finding a minimal operator basis through several examples. Finally, the Hilbert series as initially presented does not deal with the twin problems introduced by derivatives: integration by parts and equations of motion. I present a conjecture for the correct method to deal with these problems, and then, in my conclusion, discuss how this conjecture fell short of the correct method.
Recent progress in irrational conformal field theory
Halpern, M.B.
1993-09-01
In this talk, I will review the foundations of irrational conformal field theory (ICFT), which includes rational conformal field theory as a small subspace. Highlights of the review include the Virasoro master equation, the Ward identities for the correlators of ICFT and solutions of the Ward identities. In particular, I will discuss the solutions for the correlators of the g/h coset construction and the correlators of the affine-Sugawara nests on g {contains} h{sub 1} {contains} {hor_ellipsis} {contains} h{sub n}. Finally, I will discuss the recent global solution for the correlators of all the ICFT`s in the master equation.
Arrival time in quantum field theory
NASA Astrophysics Data System (ADS)
Wang, Zhi-Yong; Xiong, Cai-Dong; He, Bing
2008-09-01
Via the proper-time eigenstates (event states) instead of the proper-mass eigenstates (particle states), free-motion time-of-arrival theory for massive spin-1/2 particles is developed at the level of quantum field theory. The approach is based on a position-momentum dual formalism. Within the framework of field quantization, the total time-of-arrival is the sum of the single event-of-arrival contributions, and contains zero-point quantum fluctuations because the clocks under consideration follow the laws of quantum mechanics.
Effective field theory for deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2016-04-13
In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Effective field theory for deformed atomic nuclei
Papenbrock, Thomas F.; Weidenmüller, H. A.
2016-04-13
In this paper, we present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. Finally, for rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
Dual field theory of strong interactions
Akers, D.
1987-07-01
A dual field theory of strong interactions is derived from a Lagrangian of the Yang-Mills and Higgs fields. The existence of a magnetic monopole of mass 2397 MeV and Dirac charge g = (137/2)e is incorporated into the theory. Unification of the strong, weak, and electromagnetic forces is shown to converge at the mass of the intermediate vector boson W/sup +/-/. The coupling constants of the strong and weak interactions are derived in terms of the fine-structure constant ..cap alpha.. = 1/137.
Global anomalies and effective field theory
Golkar, Siavash; Sethi, Savdeep
2016-05-17
Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.
Effective field theory for deformed atomic nuclei
NASA Astrophysics Data System (ADS)
Papenbrock, T.; Weidenmüller, H. A.
2016-05-01
We present an effective field theory (EFT) for a model-independent description of deformed atomic nuclei. In leading order this approach recovers the well-known results from the collective model by Bohr and Mottelson. When higher-order corrections are computed, the EFT accounts for finer details such as the variation of the moment of inertia with the band head and the small magnitudes of interband E2 transitions. For rotational bands with a finite spin of the band head, the EFT is equivalent to the theory of a charged particle on the sphere subject to a magnetic monopole field.
A geometric formulation of exceptional field theory
NASA Astrophysics Data System (ADS)
du Bosque, Pascal; Hassler, Falk; Lüst, Dieter; Malek, Emanuel
2017-03-01
We formulate the full bosonic SL(5) exceptional field theory in a coordinateinvariant manner. Thereby we interpret the 10-dimensional extended space as a manifold with SL(5) × ℝ +-structure. We show that the algebra of generalised diffeomorphisms closes subject to a set of closure constraints which are reminiscent of the quadratic and linear constraints of maximal seven-dimensional gauged supergravities, as well as the section condition. We construct an action for the full bosonic SL(5) exceptional field theory, even when the SL(5) × ℝ +-structure is not locally flat.
Kirby S. Chapman; Allen J. Adriani
2004-01-01
For the period of the 8th reporting period high-impact control technologies were identified during the meeting at Cooper in Oklahoma City. The technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas where engine controls and ignition systems, but still included were other alternatives to reduce emissions. The most exhilarating item for this quarter was when Ajax engine was delivered to the test bed at the NGML.
Noncommutative Geometry in M-Theory and Conformal Field Theory
Morariu, Bogdan
1999-05-01
In the first part of the thesis I will investigate in the Matrix theory framework, the subgroup of dualities of the Discrete Light Cone Quantization of M-theory compactified on tori, which corresponds to T-duality in the auxiliary Type II string theory. After a review of matrix theory compactification leading to noncommutative supersymmetric Yang-Mills gauge theory, I will present solutions for the fundamental and adjoint sections on a two-dimensional twisted quantum torus and generalize to three-dimensional twisted quantum tori. After showing how M-theory T-duality is realized in supersymmetric Yang-Mills gauge theories on dual noncommutative tori I will relate this to the mathematical concept of Morita equivalence of C*-algebras. As a further generalization, I consider arbitrary Ramond-Ramond backgrounds. I will also discuss the spectrum of the toroidally compactified Matrix theory corresponding to quantized electric fluxes on two and three tori. In the second part of the thesis I will present an application to conformal field theory involving quantum groups, another important example of a noncommutative space. First, I will give an introduction to Poisson-Lie groups and arrive at quantum groups using the Feynman path integral. I will quantize the symplectic leaves of the Poisson-Lie group SU(2)*. In this way we obtain the unitary representations of U_{q}(SU(2)). I discuss the X-structure of SU(2)* and give a detailed description of its leaves using various parametrizations. Then, I will introduce a new reality structure on the Heisenberg double of Fun_{q} (SL(N,C)) for q phase, which can be interpreted as the quantum phase space of a particle on the q-deformed mass-hyperboloid. I also present evidence that the above real form describes zero modes of certain non-compact WZNW-models.
Near-field optical thin microcavity theory
NASA Astrophysics Data System (ADS)
Wu, Jiu Hui; Hou, Jiejie
2016-01-01
The thin microcavity theory for near-field optics is proposed in this study. By applying the power flow theorem and the variable theorem,the bi-harmonic differential governing equation for electromagnetic field of a three-dimensional thin microcavity is derived for the first time. Then by using the Hankel transform, this governing equation is solved exactly and all the electromagnetic components inside and outside the microcavity can be obtained accurately. According to the above theory, the near-field optical diffraction from a subwavelength aperture embedded in a thin conducting film is investigated, and numerical computations are performed to illustrate the edge effect by an enhancement factor of 1.8 and the depolarization phenomenon of the near-field transmission in terms of the distance from the film surface. This thin microcavity theory is verified by the good agreement between our results and those in the previous literatures. The thin microcavity theory presented in the study should be useful in the possible applications of the thin microcavities in near-field optics and thin-film optics.
On space of integrable quantum field theories
Smirnov, F. A.; Zamolodchikov, A. B.
2016-12-21
Here, we study deformations of 2D Integrable Quantum Field Theories (IQFT) which preserve integrability (the existence of infinitely many local integrals of motion). The IQFT are understood as “effective field theories”, with finite ultraviolet cutoff. We show that for any such IQFT there are infinitely many integrable deformations generated by scalar local fields Xs, which are in one-to-one correspondence with the local integrals of motion; moreover, the scalars Xs are built from the components of the associated conserved currents in a universal way. The first of these scalars, X1, coincides with the composite field View the MathML source(TT¯) built frommore » the components of the energy–momentum tensor. The deformations of quantum field theories generated by X1 are “solvable” in a certain sense, even if the original theory is not integrable. In a massive IQFT the deformations Xs are identified with the deformations of the corresponding factorizable S-matrix via the CDD factor. The situation is illustrated by explicit construction of the form factors of the operators Xs in sine-Gordon theory. Lastly, we also make some remarks on the problem of UV completeness of such integrable deformations.« less
NASA Astrophysics Data System (ADS)
Chung, Stephen-Wei
We first construct new parafermions in two-dimensional conformal field theory, generalizing the Z_ {L} parafermion theories from integer L to rational L. These non-unitary parafermions have some novel features: an infinite number of currents with negative conformal dimensions for most (if not all) of them. String functions of these new parafermion theories are calculated. We also construct new representations of N = 2 superconformal field theories, whose characters are obtained in terms of these new string functions. We then generalize Felder's BRST cohomology method to construct the characters and branching functions of the SU(2)_{L} times SU(2)_{K}/SU(2)_{K+L } coset theories, where one of the (K, L) is an integer. This method of obtaining the branching functions also serves as a check of our new Z_{L } parafermion theories. The next topic is the Lagrangian formulation of conformal field theory. We construct a chiral gauged WZW theory where the gauge fields are chiral and belong to the subgroups H_{L} and H_{R}, which can be different groups. This new construction is beyond the ordinary vector gauged WZW theory, whose gauge group H is a subgroup of both G_{L} and G _{R}. In the special case where H_{L} = H_{R}, the quantum theory of chiral gauged WZW theory is equivalent to that of the vector gauged WZW theory. It can be further shown that the chiral gauged WZW theory is equivalent to [ G_{L }/H_{L}] (z)otimes [ G_{R}/H_{R} ] (|{z}) coset models in conformal field theory. In the second half of this thesis, we construct topological lattice field theories in three dimensions. After defining a general class of local lattice field theories, we impose invariance under arbitrary topology-preserving deformations of the underlying lattice, which are generated by two local lattice moves. Invariant solutions are in one-to-one correspondence with Hopf algebras satisfying a certain constraint. As an example, we study in detail the topological lattice field theory
Astrophysical data analysis with information field theory
Enßlin, Torsten
2014-12-05
Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.
On the History of Unified Field Theories
NASA Astrophysics Data System (ADS)
Goenner, Hubert F. M.
2004-02-01
This article is intended to give a review of the history of the classical aspects of unified field theories in the 20th century. It includes brief technical descriptions of the theories suggested, short biographical notes concerning the scientists involved, and an extensive bibliography. The present first installment covers the time span between 1914 and 1933, i.e., when Einstein was living and working in Berlin — with occasional digressions into other periods. Thus, the main theme is the unification of the electromagnetic and gravitational fields augmented by short-lived attempts to include the matter field described by Schrödinger's or Dirac's equations. While my focus lies on the conceptual development of the field, by also paying attention to the interaction of various schools of mathematicians with the research done by physicists, some prosopocraphical remarks are included.
Natural discretization in noncommutative field theory
Acatrinei, Ciprian Sorin
2015-12-07
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Natural discretization in noncommutative field theory
NASA Astrophysics Data System (ADS)
Acatrinei, Ciprian Sorin
2015-12-01
A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.
Symmetry analysis for anisotropic field theories
Parra, Lorena; Vergara, J. David
2012-08-24
The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.
Integrable structures in quantum field theory
NASA Astrophysics Data System (ADS)
Negro, Stefano
2016-08-01
This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q-operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only.
Euclidean quantum field theory: Curved spacetimes and gauge fields
NASA Astrophysics Data System (ADS)
Ritter, William Gordon
This thesis presents a new formulation of quantum field theory (QFT) on curved spacetimes, with definite advantages over previous formulations, and an introduction to the millennium prize problem on four-dimensional gauge theory. Our constructions are completely rigorous, making QFT on curved spacetimes into a subfield of mathematics, and we achieve the first analytic control over nonperturbative aspects of interacting theories on curved spacetimes. The success of Euclidean path integrals to capture nonperturbative aspects of QFT has been striking. The Euclidean path integral is the most accurate method of calculating strong-coupling effects in gauge theory (such as glueball masses). Euclidean methods are also useful in the study of black holes, as evidenced by the Hartle-Hawking calculation of black-hole radiance. From a mathematical point of view, on flat spacetimes the Euclidean functional integral provides the most elegant method of constructing examples of interacting relativistic field theories. Yet until now, the incredibly-useful Euclidean path integral had never been given a definitive mathematical treatment on curved backgrounds. It is our aim to rectify this situation. Along the way, we discover that the Dirac operator on an arbitrary Clifford bundle has a resolvent kernel which is the Laplace transform of a positive measure. In studying spacetime symmetries, we discover a new way of constructing unitary representations of noncompact Lie groups. We also define and explore an interesting notion of convergence for Laplacians. The same mathematical framework applies to scalar fields, fermions, and gauge fields. The later chapters are devoted to gauge theory. We present a rigorous, self-contained introduction to the subject, aimed at mathematicians and using the language of modern mathematics, with a view towards nonperturbative renormalization in four dimensions. The latter ideas are unfinished. A completion of the final chapter would imply the construction
Dual field theories of quantum computation
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2016-06-01
Given two quantum states of N q-bits we are interested to find the shortest quantum circuit consisting of only one- and two- q-bit gates that would transfer one state into another. We call it the quantum maze problem for the reasons described in the paper. We argue that in a large N limit the quantum maze problem is equivalent to the problem of finding a semiclassical trajectory of some lattice field theory (the dual theory) on an N +1 dimensional space-time with geometrically flat, but topologically compact spatial slices. The spatial fundamental domain is an N dimensional hyper-rhombohedron, and the temporal direction describes transitions from an arbitrary initial state to an arbitrary target state and so the initial and final dual field theory conditions are described by these two quantum computational states. We first consider a complex Klein-Gordon field theory and argue that it can only be used to study the shortest quantum circuits which do not involve generators composed of tensor products of multiple Pauli Z matrices. Since such situation is not generic we call it the Z-problem. On the dual field theory side the Z-problem corresponds to massless excitations of the phase (Goldstone modes) that we attempt to fix using Higgs mechanism. The simplest dual theory which does not suffer from the massless excitation (or from the Z-problem) is the Abelian-Higgs model which we argue can be used for finding the shortest quantum circuits. Since every trajectory of the field theory is mapped directly to a quantum circuit, the shortest quantum circuits are identified with semiclassical trajectories. We also discuss the complexity of an actual algorithm that uses a dual theory prospective for solving the quantum maze problem and compare it with a geometric approach. We argue that it might be possible to solve the problem in sub-exponential time in 2 N , but for that we must consider the Klein-Gordon theory on curved spatial geometry and/or more complicated (than N -torus
Logarithmic conformal field theory: beyond an introduction
NASA Astrophysics Data System (ADS)
Creutzig, Thomas; Ridout, David
2013-12-01
This article aims to review a selection of central topics and examples in logarithmic conformal field theory. It begins with the remarkable observation of Cardy that the horizontal crossing probability of critical percolation may be computed analytically within the formalism of boundary conformal field theory. Cardy’s derivation relies on certain implicit assumptions which are shown to lead inexorably to indecomposable modules and logarithmic singularities in correlators. For this, a short introduction to the fusion algorithm of Nahm, Gaberdiel and Kausch is provided. While the percolation logarithmic conformal field theory is still not completely understood, there are several examples for which the formalism familiar from rational conformal field theory, including bulk partition functions, correlation functions, modular transformations, fusion rules and the Verlinde formula, has been successfully generalized. This is illustrated for three examples: the singlet model \\mathfrak {M} (1,2), related to the triplet model \\mathfrak {W} (1,2), symplectic fermions and the fermionic bc ghost system; the fractional level Wess-Zumino-Witten model based on \\widehat{\\mathfrak {sl}} \\left( 2 \\right) at k=-\\frac{1}{2}, related to the bosonic βγ ghost system; and the Wess-Zumino-Witten model for the Lie supergroup \\mathsf {GL} \\left( 1 {\\mid} 1 \\right), related to \\mathsf {SL} \\left( 2 {\\mid} 1 \\right) at k=-\\frac{1}{2} and 1, the Bershadsky-Polyakov algebra W_3^{(2)} and the Feigin-Semikhatov algebras W_n^{(2)}. These examples have been chosen because they represent the most accessible, and most useful, members of the three best-understood families of logarithmic conformal field theories. The logarithmic minimal models \\mathfrak {W} (q,p), the fractional level Wess-Zumino-Witten models, and the Wess-Zumino-Witten models on Lie supergroups (excluding \\mathsf {OSP} \\left( 1 {\\mid} 2n \\right)). In this review, the emphasis lies on the representation theory
Cross Sections From Scalar Field Theory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel
2008-01-01
A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.
Dirac-Kaehler Theory and Massless Fields
Pletyukhov, V. A.; Strazhev, V. I.
2010-03-24
Three massless limits of the Dirac-Kaehler theory are considered. It is shown that the Dirac-Kaehler equation for massive particles can be represented as a result of the gauge-invariant mixture (topological interaction) of the above massless fields.
Prequantum Classical Statistical Field Theory: Fundamentals
Khrennikov, Andrei
2011-03-28
We present fundamentals of a prequantum model with hidden variables of the classical field type. In some sense this is the comeback of classical wave mechanics. Our approach also can be considered as incorporation of quantum mechanics into classical signal theory. All quantum averages (including correlations of entangled systems) can be represented as classical signal averages and correlations.
Perturbative quantum gravity in double field theory
NASA Astrophysics Data System (ADS)
Boels, Rutger H.; Horst, Christoph
2016-04-01
We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.
Effective Field Theories of Nuclear Structure
NASA Astrophysics Data System (ADS)
Furnstahl, Richard
1996-10-01
Traditional nuclear structure calculations have been pushed to new heights recently by exploiting new methods and increased computational power.(B. Pudliner et al)., Phys. Rev. Lett. 74, 4396 (1995); S.E. Koonin et al., nucl-th/9602006 (1996). Nevertheless, these developments have been made without direct input from quantum chromodynamics (QCD), the basic theory of strong interactions. Effective Field Theory provides a framework for connecting the energy scales and degrees of freedom appropriate for nuclear structure with those in the underlying QCD. Recent work shows how spontaneously broken chiral symmetry constrains the systematics of few-body nuclei.(See, for example, J.L. Friar, Few-Body Systems Suppl. 99), 1 (1996). Important ingredients are dimensional power counting and the assumption of naturalness,(A. Manohar and H. Georgi, Nucl. Phys. B234), 189 (1984). which allow estimates of the sizes of terms in effective lagrangians and imply the hierarchy of nuclear many-body forces. The delicacies of nuclear saturation introduce formidable obstacles to the systematic extension of effective chiral field theory to finite densities. For heavier nuclei, however, the successes of relativistic mean-field phenomenology can be understood in terms of nonrenormalizable effective field theories that are consistent with the symmetries of QCD. This framework provides new insight into issues of relativistic versus nonrelativistic formulations, nucleon compositeness, vacuum contributions, and extrapolations to high density.
An Introduction to Effective Field Theory
NASA Astrophysics Data System (ADS)
Burgess, C. P.
2007-11-01
This review summarizes effective field theory techniques, which are the modern theoretical tools for exploiting the existence of hierarchies of scale in a physical problem. The general theoretical framework is described and evaluated explicitly for a simple model. Power-counting results are illustrated for a few cases of practical interest, and several applications to quantum electrodynamics are described.
Causality constraints in conformal field theory
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan
2016-05-17
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (Φ)^{4} coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators
Double field theory at SL(2) angles
NASA Astrophysics Data System (ADS)
Ciceri, Franz; Dibitetto, Giuseppe; Fernandez-Melgarejo, J. J.; Guarino, Adolfo; Inverso, Gianluca
2017-05-01
An extended field theory is presented that captures the full SL(2) × O(6, 6 + n) duality group of four-dimensional half-maximal supergravities. The theory has section constraints whose two inequivalent solutions correspond to minimal D = 10 supergravity and chiral half-maximal D = 6 supergravity, respectively coupled to vector and tensor multiplets. The relation with O(6, 6 + n) (heterotic) double field theory is thoroughly discussed. Non-Abelian interactions as well as background fluxes are captured by a deformation of the generalised diffeomorphisms. Finally, making use of the SL(2) duality structure, it is shown how to generate gaugings with non-trivial de Roo-Wagemans angles via generalised Scherk-Schwarz ansätze. Such gaugings allow for moduli stabilisation including the SL(2) dilaton.
Physical properties of quantum field theory measures
NASA Astrophysics Data System (ADS)
Mourão, J. M.; Thiemann, T.; Velhinho, J. M.
1999-05-01
Well known methods of measure theory on infinite dimensional spaces are used to study physical properties of measures relevant to quantum field theory. The difference of typical configurations of free massive scalar field theories with different masses is studied. We apply the same methods to study the Ashtekar-Lewandowski (AL) measure on spaces of connections. In particular we prove that the diffeomorphism group acts ergodically, with respect to the AL measure, on the Ashtekar-Isham space of quantum connections modulo gauge transformations. We also prove that a typical, with respect to the AL measure, quantum connection restricted to a (piecewise analytic) curve leads to a parallel transport discontinuous at every point of the curve.
Mean-field kinetic nucleation theory
NASA Astrophysics Data System (ADS)
Kalikmanov, V. I.
2006-03-01
A new semiphenomenological model of homogeneous vapor-liquid nucleation is proposed in which the cluster kinetics follows the "kinetic approach to nucleation" and the thermodynamic part is based on the revised Fisher droplet model with the mean-field argument for the cluster configuration integral. The theory is nonperturbative in a cluster size and as such is valid for all clusters down to monomers. It contains two surface tensions: macroscopic (planar) and microscopic. The latter is a temperature dependent quantity related to the vapor compressibility factor at saturation. For Lennard-Jones fluids the microscopic surface tension possesses a universal behavior with the parameters found from the mean-field density functional calculations. The theory is verified against nucleation experiments for argon, nitrogen, water, and mercury, demonstrating very good agreement with experimental data. Classical nucleation theory fails to predict experimental results when a critical cluster becomes small.
Causality constraints in conformal field theory
NASA Astrophysics Data System (ADS)
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan
2016-05-01
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well known sign constraint on the (∂ ϕ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. Our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators.
Mean Field Theory for Collective Motion of Quantum Meson Fields
NASA Astrophysics Data System (ADS)
Tsue, Y.; Vautherin, D.; Matsui, T.
1999-08-01
Mean field theory for the time evolution of quantum meson fields is studied in terms of the functional Schrödinger picture with a time-dependent Gaussian variational wave functional. We first show that the equations of motion for the variational wavefunctional can be rewritten in a compact form similar to the Hartree-Bogoliubov equations in quantum many-body theory and this result is used to recover the covariance of the theory. We then apply this method to the O(N) model and present analytic solutions of the mean field evolution equations for an N-component scalar field. These solutions correspond to quantum rotations in isospin space and represent generalizations of the classical solutions obtained earlier by Anselm and Ryskin. As compared to classical solutions new effects arise because of the coupling between the average value of the field and its quantum fluctuations. We show how to generalize these solutions to the case of mean field dynamics at finite temperature. The relevance of these solutions for the observation of a coherent collective state or a disoriented chiral condensate in ultra-relativistic nuclear collisions is discussed.
A periodic table of effective field theories
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav
2017-02-01
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.
A periodic table of effective field theories
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; ...
2017-02-06
We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTsmore » with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Finally, our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.« less
A computational theory of visual receptive fields.
Lindeberg, Tony
2013-12-01
A receptive field constitutes a region in the visual field where a visual cell or a visual operator responds to visual stimuli. This paper presents a theory for what types of receptive field profiles can be regarded as natural for an idealized vision system, given a set of structural requirements on the first stages of visual processing that reflect symmetry properties of the surrounding world. These symmetry properties include (i) covariance properties under scale changes, affine image deformations, and Galilean transformations of space-time as occur for real-world image data as well as specific requirements of (ii) temporal causality implying that the future cannot be accessed and (iii) a time-recursive updating mechanism of a limited temporal buffer of the past as is necessary for a genuine real-time system. Fundamental structural requirements are also imposed to ensure (iv) mutual consistency and a proper handling of internal representations at different spatial and temporal scales. It is shown how a set of families of idealized receptive field profiles can be derived by necessity regarding spatial, spatio-chromatic, and spatio-temporal receptive fields in terms of Gaussian kernels, Gaussian derivatives, or closely related operators. Such image filters have been successfully used as a basis for expressing a large number of visual operations in computer vision, regarding feature detection, feature classification, motion estimation, object recognition, spatio-temporal recognition, and shape estimation. Hence, the associated so-called scale-space theory constitutes a both theoretically well-founded and general framework for expressing visual operations. There are very close similarities between receptive field profiles predicted from this scale-space theory and receptive field profiles found by cell recordings in biological vision. Among the family of receptive field profiles derived by necessity from the assumptions, idealized models with very good qualitative
Gauge Field Theories, 2nd Edition
NASA Astrophysics Data System (ADS)
Frampton, Paul H.
2000-08-01
The first edition of Gauge Field Theories, published in 1985, quickly became widely used in universities and other institutions of higher learning around the world. Written by well-known physicist Paul Frampton, the new edition continues to offer a first-rate mathematical treatment of gauge field theories, while thoroughly updating all chapters to keep pace with developments in the field. Frampton emphasizes formalism rather than experiments and provides sufficient detail for readers wishing to do their own calculations or pursue theoretical physics research. Special features of the Second Edition include: * Improved, logical organization of the material on gauge invariance, quantization, and renormalization * Major revision of the chapter on electroweak interactions, incorporating the latest precision data and discovery of the top quark * Discussions of renormalization group and quantum chromodynamics * A completely new chapter on model building
Extending Gurwitsch's field theory of consciousness.
Yoshimi, Jeff; Vinson, David W
2015-07-01
Aron Gurwitsch's theory of the structure and dynamics of consciousness has much to offer contemporary theorizing about consciousness and its basis in the embodied brain. On Gurwitsch's account, as we develop it, the field of consciousness has a variable sized focus or "theme" of attention surrounded by a structured periphery of inattentional contents. As the field evolves, its contents change their status, sometimes smoothly, sometimes abruptly. Inner thoughts, a sense of one's body, and the physical environment are dominant field contents. These ideas can be linked with (and help unify) contemporary theories about the neural correlates of consciousness, inattention, the small world structure of the brain, meta-stable dynamics, embodied cognition, and predictive coding in the brain. Published by Elsevier Inc.
Intracardiac electrophysiology study (EPS)
... called catheter ablation ) Watch this video about: Cardiac conduction system How to Prepare for the Test You ... EPS; Heart block - EPS Images Heart, front view Conduction system of the heart References Miller JM, Zipes ...
(Non-)decoupled supersymmetric field theories
NASA Astrophysics Data System (ADS)
Di Pietro, Lorenzo; Dine, Michael; Komargodski, Zohar
2014-04-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M . We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism [1-3], we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed = 4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB).
Kirby S. Chapman
2004-01-01
During the fourth reporting period, the project team investigated the Non-Selective Catalytic Reduction technologies that are in use on rich-burn four-stroke cycle engines. Several engines were instrumented and data collected to obtain a rich set of engine emissions and performance data. During the data collection, the performance of the catalyst under a variety of operating conditions was measured. This information will be necessary to specify a set of sensors that can then be used to reliably implement NSCRs as plausible technologies to reduce NOx emissions for four-stroke cycle engines used in the E&P industry. A complete summary all the technologies investigated to data is included in the report. For each technology, the summary includes a description of the process, the emission reduction that is to be expected, information on the cost of the technology, development status, practical considerations, compatibility with other air pollutant control technologies, and any references used to obtain the information.
Kirby S. Chapman; Allen J. Adriani
2005-04-01
During the eighth reporting period, high-impact monitoring and control technologies were identified during a series of meetings at Ajax/Cooper in Oklahoma City. Many of the technologies that were identified will be tested on the Ajax DP-115 engine and are capable of being widely utilized by the E&P industry. Two major areas were engine controls and ignition systems but still included other alternatives to reduce emissions. Another major advance was the completion of setting the Ajax DP-115 engine. This includes anchoring and leveling the engine. Shortly after the engine was prepared, all the necessary utilities were installed. Once the utilities were installed the engine was successfully operated over its normal operating range at the end of the reporting period.
Inflation and deformation of conformal field theory
Garriga, Jaume; Urakawa, Yuko E-mail: yurakawa@ffn.ub.es
2013-07-01
It has recently been suggested that a strongly coupled phase of inflation may be described holographically in terms of a weakly coupled quantum field theory (QFT). Here, we explore the possibility that the wave function of an inflationary universe may be given by the partition function of a boundary QFT. We consider the case when the field theory is a small deformation of a conformal field theory (CFT), by the addition of a relevant operator O, and calculate the primordial spectrum predicted in the corresponding holographic inflation scenario. Using the Ward-Takahashi identity associated with Weyl rescalings, we derive a simple relation between correlators of the curvature perturbation ζ and correlators of the deformation operator O at the boundary. This is done without specifying the bulk theory of gravitation, so that the result would also apply to cases where the bulk dynamics is strongly coupled. We comment on the validity of the Suyama-Yamaguchi inequality, relating the bi-spectrum and tri-spectrum of the curvature perturbation.
Thermal Field Theory in Small Systems
NASA Astrophysics Data System (ADS)
Horowitz, W. A.
2017-09-01
We compute the finite size corrections to the partition function in a Cartesian space of finite extent in M directions and of infinite extent in D – M directions for a massless, non-interacting scalar field theory. We then use this partition function to compute numerically the energy density, pressure, entropy density, and speed of sound for this theory for M = 1, 2, and 3 for D = 3 total spatial dimensions. The finite size corrections for the speed of sound are ∼ 600%, which indicates the need to consider these corrections in hydrodynamic simulations of small collision systems in high energy nuclear physics.
Alpha particles in effective field theory
Caniu, C.
2014-11-11
Using an effective field theory for alpha (α) particles at non-relativistic energies, we calculate the strong scattering amplitude modified by Coulomb corrections for a system of two αs. For the strong interaction, we consider a momentum-dependent interaction which, in contrast to an energy dependent interaction alone [1], could be more useful in extending the theory to systems with more than two α particles. We will present preliminary results of our EFT calculations for systems with two alpha particles.
Recursion equations in gauge field theories
NASA Astrophysics Data System (ADS)
Migdal, A. A.
An approximate recursion equation is formulated, describing the scale transformation of the effective action of a gauge field. In two-dimensional space-time the equation becomes exact. In four-dimensional theories it reproduces asymptotic freedom to an accuracy of 30% in the coefficients of the β-function. In the strong-coupling region the β-function remains negative and this results in an asymptotic prison in the infrared region. Possible generalizations and applications to the quark-gluon gauge theory are discussed.
Nonlinear quantum equations: Classical field theory
Rego-Monteiro, M. A.; Nobre, F. D.
2013-10-15
An exact classical field theory for nonlinear quantum equations is presented herein. It has been applied recently to a nonlinear Schrödinger equation, and it is shown herein to hold also for a nonlinear generalization of the Klein-Gordon equation. These generalizations were carried by introducing nonlinear terms, characterized by exponents depending on an index q, in such a way that the standard, linear equations, are recovered in the limit q→ 1. The main characteristic of this field theory consists on the fact that besides the usual Ψ(x(vector sign),t), a new field Φ(x(vector sign),t) needs to be introduced in the Lagrangian, as well. The field Φ(x(vector sign),t), which is defined by means of an additional equation, becomes Ψ{sup *}(x(vector sign),t) only when q→ 1. The solutions for the fields Ψ(x(vector sign),t) and Φ(x(vector sign),t) are found herein, being expressed in terms of a q-plane wave; moreover, both field equations lead to the relation E{sup 2}=p{sup 2}c{sup 2}+m{sup 2}c{sup 4}, for all values of q. The fact that such a classical field theory works well for two very distinct nonlinear quantum equations, namely, the Schrödinger and Klein-Gordon ones, suggests that this procedure should be appropriate for a wider class nonlinear equations. It is shown that the standard global gauge invariance is broken as a consequence of the nonlinearity.
A master functional for quantum field theory
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2013-04-01
We study a new generating functional of one-particle irreducible diagrams in quantum field theory, called master functional, which is invariant under the most general perturbative changes of field variables. The usual functional Γ does not behave as a scalar under the transformation law inherited from its very definition as the Legendre transform of W=ln Z, although it does behave as a scalar under an unusual transformation law. The master functional, on the other hand, is the Legendre transform of an improved functional W with respect to the sources coupled to both elementary and composite fields. The inclusion of certain improvement terms in W and Z is necessary to make this new Legendre transform well defined. The master functional behaves as a scalar under the transformation law inherited from its very definition. Moreover, it admits a proper formulation, obtained extending the set of integrated fields to so-called proper fields, which allows us to work without passing through Z, W or Γ. In the proper formulation the classical action coincides with the classical limit of the master functional, and correlation functions and renormalization are calculated applying the usual diagrammatic rules to the proper fields. Finally, the most general change of field variables, including the map relating bare and renormalized fields, is a linear redefinition of the proper fields.
Nonassociative Snyder ϕ4 quantum field theory
NASA Astrophysics Data System (ADS)
Meljanac, Stjepan; Mignemi, Salvatore; Trampetic, Josip; You, Jiangyang
2017-08-01
In this article, we define and quantize a truncated form of the nonassociative and noncommutative Snyder ϕ4 field theory using the functional method in momentum space. More precisely, the action is approximated by expanding up to the linear order in the Snyder deformation parameter β , producing an effective model on commutative spacetime for the computation of the two-, four- and six-point functions. The two- and four-point functions at one loop have the same structure as at the tree level, with UV divergences faster than in the commutative theory. The same behavior appears in the six-point function, with a logarithmic UV divergence and renders the theory unrenormalizable at β1 order except for the special choice of free parameters s1=-s2. We expect effects from nonassociativity on the correlation functions at β1 order, but these are cancelled due to the average over permutations.
Free □ k scalar conformal field theory
NASA Astrophysics Data System (ADS)
Brust, Christopher; Hinterbichler, Kurt
2017-02-01
We consider the generalizations of the free U( N ) and O( N ) scalar conformal field theories to actions with higher powers of the Laplacian □ k , in general dimension d. We study the spectra, Verma modules, anomalies and OPE of these theories. We argue that in certain d and k, the spectrum contains zero norm operators which are both primary and descendant, as well as extension operators which are neither primary nor descendant. In addition, we argue that in even dimensions d ≤ 2 k, there are well-defined operator algebras which are related to the □ k theories and are novel in that they have a finite number of single-trace states.
Quantitative field theory of the glass transition
Franz, Silvio; Jacquin, Hugo; Parisi, Giorgio; Urbani, Pierfrancesco; Zamponi, Francesco
2012-01-01
We develop a full microscopic replica field theory of the dynamical transition in glasses. By studying the soft modes that appear at the dynamical temperature, we obtain an effective theory for the critical fluctuations. This analysis leads to several results: we give expressions for the mean field critical exponents, and we analytically study the critical behavior of a set of four-points correlation functions, from which we can extract the dynamical correlation length. Finally, we can obtain a Ginzburg criterion that states the range of validity of our analysis. We compute all these quantities within the hypernetted chain approximation for the Gibbs free energy, and we find results that are consistent with numerical simulations. PMID:23112202
Magnetic fields and density functional theory
Salsbury Jr., Freddie
1999-02-01
A major focus of this dissertation is the development of functionals for the magnetic susceptibility and the chemical shielding within the context of magnetic field density functional theory (BDFT). These functionals depend on the electron density in the absence of the field, which is unlike any other treatment of these responses. There have been several advances made within this theory. The first of which is the development of local density functionals for chemical shieldings and magnetic susceptibilities. There are the first such functionals ever proposed. These parameters have been studied by constructing functionals for the current density and then using the Biot-Savart equations to obtain the responses. In order to examine the advantages and disadvantages of the local functionals, they were tested numerically on some small molecules.
Effective Field Theory for Rydberg Polaritons
NASA Astrophysics Data System (ADS)
Gullans, M. J.; Thompson, J. D.; Wang, Y.; Liang, Q.-Y.; Vuletić, V.; Lukin, M. D.; Gorshkov, A. V.
2016-09-01
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one-dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a nonequilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N -body interactions between Rydberg polaritons. These results pave the way towards studying nonperturbative effects in quantum field theories using Rydberg polaritons.
Effective Field Theory for Rydberg Polaritons
Gullans, M. J.; Thompson, J. D.; Wang, Y.; Liang, Q.-Y.; Vuletić, V.; Lukin, M. D.; Gorshkov, A. V.
2016-01-01
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a non-equilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying non-perturbative effects in quantum field theories using Rydberg polaritons. PMID:27661685
Gravity duals for nonrelativistic conformal field theories.
Balasubramanian, Koushik; McGreevy, John
2008-08-08
We attempt to generalize the anti-de Sitter/conformal field theory correspondence to nonrelativistic conformal field theories which are invariant under Galilean transformations. Such systems govern ultracold atoms at unitarity, nucleon scattering in some channels, and, more generally, a family of universality classes of quantum critical behavior. We construct a family of metrics which realize these symmetries as isometries. They are solutions of gravity with a negative cosmological constant coupled to pressureless dust. We discuss realizations of the dust, which include a bulk superconductor. We develop the holographic dictionary and find two-point correlators of the correct form. A strange aspect of the correspondence is that the bulk geometry has two extra noncompact dimensions.
Global anomalies and effective field theory
Golkar, Siavash; Sethi, Savdeep
2016-05-17
Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functionsmore » rather than eta invariants.« less
Superconformal field theories from M-theory crystal lattices
NASA Astrophysics Data System (ADS)
Lee, Sangmin
2007-05-01
We propose a brane configuration for the (2+1)d, N=2 superconformal theories (CFT3) arising from M2 branes probing toric Calabi-Yau 4-fold cones, using a T-duality transformation of M theory. We obtain intersections of M5-branes on a three-torus which form a 3d bipartite crystal lattice in a way similar to the 2d dimer models for CFT4. The fundamental fields of the CFT3 are M2-brane discs localized around the intersections, and the superpotential terms are identified with the atoms of the crystal. The model correctly reproduces the Bogomol’nyi-Prasad-Sommerfield (BPS) spectrum of mesons.
Higher spin double field theory: a proposal
NASA Astrophysics Data System (ADS)
Bekaert, Xavier; Park, Jeong-Hyuck
2016-07-01
We construct a double field theory coupled to the fields present in Vasiliev's equations. Employing the "semi-covariant" differential geometry, we spell a functional in which each term is completely covariant with respect to O(4, 4) T-duality, doubled diffeomorphisms, Spin(1, 3) local Lorentz symmetry and, separately, HS(4) higher spin gauge symmetry. We identify a minimal set of BPS-like conditions whose solutions automatically satisfy the full Euler-Lagrange equations. As such a solution, we derive a linear dilaton vacuum. With extra algebraic constraints further supplemented, the BPS-like conditions reduce to the bosonic Vasiliev equations.
Generalized IIB supergravity from exceptional field theory
NASA Astrophysics Data System (ADS)
Baguet, Arnaud; Magro, Marc; Samtleben, Henning
2017-03-01
The background underlying the η-deformed AdS 5 × S 5 sigma-model is known to satisfy a generalization of the IIB supergravity equations. Their solutions are related by T-duality to solutions of type IIA supergravity with non-isometric linear dilaton. We show how the generalized IIB supergravity equations can be naturally obtained from exceptional field theory. Within this manifestly duality covariant formulation of maximal supergravity, the generalized IIB supergravity equations emerge upon imposing on the fields a simple Scherk-Schwarz ansatz which respects the section constraint.
The Supersymmetric Effective Field Theory of Inflation
NASA Astrophysics Data System (ADS)
Delacrétaz, Luca V.; Gorbenko, Victor; Senatore, Leonardo
2017-03-01
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f NL equil., orthog. ˜ 1 or, for particular operators, even ≫ 1. The non-degenerate contribution from modes of order H is estimated to be very small.
Consistency relations in effective field theory
NASA Astrophysics Data System (ADS)
Munshi, Dipak; Regan, Donough
2017-06-01
The consistency relations in large scale structure relate the lower-order correlation functions with their higher-order counterparts. They are direct outcome of the underlying symmetries of a dynamical system and can be tested using data from future surveys such as Euclid. Using techniques from standard perturbation theory (SPT), previous studies of consistency relation have concentrated on continuity-momentum (Euler)-Poisson system of an ideal fluid. We investigate the consistency relations in effective field theory (EFT) which adjusts the SPT predictions to account for the departure from the ideal fluid description on small scales. We provide detailed results for the 3D density contrast δ as well as the scaled divergence of velocity bar theta. Assuming a ΛCDM background cosmology, we find the correction to SPT results becomes important at k gtrsim 0.05 h/Mpc and that the suppression from EFT to SPT results that scales as square of the wave number k, can reach 40% of the total at k ≈ 0.25 h/Mpc at z = 0. We have also investigated whether effective field theory corrections to models of primordial non-Gaussianity can alter the squeezed limit behaviour, finding the results to be rather insensitive to these counterterms. In addition, we present the EFT corrections to the squeezed limit of the bispectrum in redshift space which may be of interest for tests of theories of modified gravity.
Backreacted axion field ranges in string theory
NASA Astrophysics Data System (ADS)
Baume, Florent; Palti, Eran
2016-08-01
String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.
Effective Particles in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Głazek, Stanisław D.; Trawiński, Arkadiusz P.
2017-03-01
The concept of effective particles is introduced in the Minkowski space-time Hamiltonians in quantum field theory using a new kind of the relativistic renormalization group procedure that does not integrate out high-energy modes but instead integrates out the large changes of invariant mass. The new procedure is explained using examples of known interactions. Some applications in phenomenology, including processes measurable in colliders, are briefly presented.
Closed string field theory from polyhedra
NASA Astrophysics Data System (ADS)
Saadi, Maha; Zwiebach, Barton
1989-05-01
A fully nonpolynomial framework for closed string field theory is studied. All interactions are geometrical, the pattern of string overlaps gives polyhedra with equal perimeter faces and three edges at each vertex. All interactions are cubic in the sense that at most three strings can coincide at a point. The three point vertex used is that of Witten which is seen to be quite natural in the framework of quadratic differentials and to induce a very symmetric decomposition of moduli space.
Hamiltonian formulation of string field theory
NASA Astrophysics Data System (ADS)
Siopsis, George
1987-09-01
Witten's string field theory is quantized in the hamiltonian formalism. The constraints are solved and the hamiltonian is expressed in terms of only physical degrees of freedom. Thus, no Faddeev-Popov ghosts are introduced. Instead, the action contains terms of arbitrarily high order in the string functionals. Agreement with the standard results is demonstrated by an explicit calculation of the residues of the first few poles of the four-tachyon tree amplitude.
Conformal field theory, anomalies and superstrings
Baaquie, B.E.; Chew, C.H.; Oh, C.H.; Phua, K.K. . Dept. of Physics)
1988-01-01
This workshop was the first of a planned series of workshops on high energy physics. The emphasis that t was on the theoretical and mathematical of high energy physics; the next workshop to be held in Beijing in 1988 will have emphasis on the experimental and phenomenological aspects. The workshop was intended to introduce in a pedagogical manner the recent advances in superstrings, anomalies and field theory.
Fermionic ghosts in Moyal string field theory
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Kishimoto, Isao; Matsuo, Yutaka
2003-07-01
We complete the construction of the Moyal star formulation of bosonic open string field theory (MSFT) by providing a detailed study of the fermionic ghost sector. In particular, as in the case of the matter sector, (1) we construct a map from Witten's star product to the Moyal product, (2) we propose a regularization scheme which is consistent with the matter sector and (3) as a check of the formalism, we derive the ghost Neumann coefficients algebraically directly from the Moyal product. The latter satisfy the Gross-Jevicki nonlinear relations even in the presence of the regulator, and when the regulator is removed they coincide numerically with the expression derived from conformal field theory. After this basic construction, we derive a regularized action of string field theory in the Siegel gauge and define the Feynman rules. We give explicitly the analytic expression of the off-shell four point function for tachyons, including the ghost contribution. Some of the results in this paper have already been used in our previous publications. This paper provides the technical details of the computations which were omitted there.
Superconformal partial waves in Grassmannian field theories
NASA Astrophysics Data System (ADS)
Doobary, Reza; Heslop, Paul
2015-12-01
We derive superconformal partial waves for all scalar four-point functions on a super Grassmannian space Gr( m| n, 2 m|2 n) for all m, n. This family of four-point functions includes those of all (arbitrary weight) half BPS operators in both N=4 SYM ( m = n = 2) and in N = 2 superconformal field theories in four dimensions ( m = 2 , n = 1) on analytic superspace. It also includes four-point functions of all (arbitrary dimension) scalar fields in non-supersymmetric conformal field theories ( m = 2 , n = 0) on Minkowski space, as well as those of a certain class of representations of the compact SU(2 n) coset spaces. As an application we then specialise to N=4 SYM and use these results to perform a detailed superconformal partial wave analysis of the four-point functions of arbitrary weight half BPS operators. We discuss the non-trivial separation of protected and unprotected sectors for the <2222>, <2233> and <3333> cases in an SU( N) gauge theory at finite N. The <2233> correlator predicts a non-trivial protected twist four sector for <3333> which we can completely determine using the knowledge that there is precisely one such protected twist four operator for each spin.
Nonperturbative studies in quantum field theory
Abada, A.
1992-01-01
This dissertation is composed of three different research topics. The first part deals with the Study of the so-called local lattice Yukawa theory. The motivation for this study is to investigate the interior of the phase diagram of this theory. A strong y expansion (y being the bare Yukawa coupling) is performed of the partition function and show that within the (finite) range of convergence of the series expansion, the lattice Yukawa theory is equivalent to a purely bosonic theory, with a shifted action. The author explicitly calculated the shifted action to the fourth order in 1/y and find that it is composed of competing interactions. This suggests that away from y = [infinity] towards the interior of the phase diagram, there is a more complicated ordering than simple ferromagnetic or antiferromagnetic. In the second part, the question is addressed of formation of bound states out of constituent fields in an exactly soluble theory, i.e. multifermion electro-dynamics in two space-time dimensions. The author exactly calculates the correlation function corresponding to a neutral composite fermion operator and discuss the pole structure of its Fourier transform. It does not exhibit a simple pole in p[sup 2], hence the corresponding neutral composite operator does not create an asymptotic state in the spectrum of the theory. In part three, the author puts multifermion QED[sub 2] in a heat bath and address the same question as in part two. The author first exactly calculates a bosonic correlation function at finite temperature and density, and discuss its behavior. The author then exactly calculates the correlation function corresponding to the neutral composite fermion operator at finite temperature and density and discusses its behavior. It is concluded that the temperature does not help the composite fermion operator create a particle in the spectrum of the theory.
String theory, supergravity and four-dimensional field theories
NASA Astrophysics Data System (ADS)
Burrington, Benjamin A.
In this dissertation I present some of the basic computations in string theory and supergravity with an eye for their use in AdS/CFT. I then go on to present several investigations centering around the framework of dualities between gauge theory and gravity systems. In chapters 2, 3, and 4 we consider several 10D solutions. Chapter 2 deals with the inclusion of D7 branes in a D3 brane background, which amounts to adding fundamental matter in the gauge theory dual. We consider including the gravitational backreaction of the D7 branes in these solutions. In chapter 3, we consider modifications to the 6D space transverse to a stack of D3 branes. The 6D spaces that we consider are cones over the so called Y p,q geometries. We consider a geometric deformation for each of these spaces which explicitly breaks a U(1) isometry. In chapter 4, the leading Regge behavior string states are examined. We calculate the effective coupling of such string states to the five form and metric in a flat space background, and obtain an effective Lagrangian. Using this Lagrangian, we examine the energy, spin and angular momentum of these states in the AdS 5 x S5 background which is then compared to the semiclassical analysis of the literature. In chapters 5 and 6, we turn to discussions of the AdS5 factor. The Karch Randall scenario, a brane world scenario based oil AdS4 slices of AdS5 naturally suggests considering transparent boundary conditions for the field theory in AdS4. In chapter 5 we show that with these boundary conditions, a mass is induced for the graviphoton, and that this mass is in the correct proportion to the graviton mass (studied in the literature) to preserve supersymmetry. In chapter 6 we examine black hole solutions in AdS5. The presence of the black hole breaks some of the global supersymmetries (present in pure AdS5) which we use to generate the superpartners to these black holes. Using boundary counter term techniques, we find the mass, angular momentum, and charge
Emergent coherent structures in nonequilibrium field theory
NASA Astrophysics Data System (ADS)
Thorarinson, Joel Larus Marvin
2008-10-01
In this thesis we study the properties of time-dependent, nontopological configurations and their effect on the macroscopic properties of a system described by a nonlinear field theory. These structures seem to be ubiquitous in relativistic field theories with symmetry breaking scenarios and since they drastically change the power spectrum, understanding their properties and lifetimes is essential for characterization of the equilibration time scales of a given system. To understand the mechanisms of their creation we rely on large scale computations to solve the fully nonlinear equations of motion. By using both Langevin thermalization techniques and various ansatz we find information about both the individual formation and stability properties of these structures and their effect on global observables such as the decay rate of a metastable vacuum. Each of these aspects contains surprises and radical departures from the linearized theories. We also show examples of how these structures can be examined in momentum space from computing several correlation functions. We extend 2d results on the effect of these emergent structures to the decay rate of a false vacuum to 3d and confirm that these time-dependent structures modify the decay, after a quench, to a power law in pure scalar theories. Adding gauge fields, we present new time dependent nontopological solutions in the 2d Abelian Higgs model which show the creation of oscillons from vortex antivortex annihilations. A phase transition in configuration space is then constructed from the stability properties of these oscillons in parameter space. Similarly, in 3 d we show that oscillons may be formed through toroidal ux-tube annihilations. Finally, these properties are shown to also apply to more complex situations, such as the condensed proton-neutron system, which exhibits all the previous oscillon results as well as a new nontrivial vortex-vortex bound state.
Haag's Theorem and Parameterized Quantum Field Theory
NASA Astrophysics Data System (ADS)
Seidewitz, Edwin
2017-01-01
``Haag's theorem is very inconvenient; it means that the interaction picture exists only if there is no interaction''. In traditional quantum field theory (QFT), Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. But the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field, but which must still account for interactions. So, the usual derivation of the scattering matrix in QFT is mathematically ill defined. Nevertheless, perturbative QFT is currently the only practical approach for addressing realistic scattering, and it has been very successful in making empirical predictions. This success can be understood through an alternative derivation of the Dyson series in a covariant formulation of QFT using an invariant, fifth path parameter in addition to the usual four position parameters. The parameterization provides an additional degree of freedom that allows Haag's Theorem to be avoided, permitting the consistent use of a form of interaction picture in deriving the Dyson expansion. The extra symmetry so introduced is then broken by the choice of an interacting vacuum.
Causality constraints in conformal field theory
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan
2016-05-17
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ)4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less
Inhomogeneous field theory inside the arctic circle
NASA Astrophysics Data System (ADS)
Allegra, Nicolas; Dubail, Jérôme; Stéphan, Jean-Marie; Viti, Jacopo
2016-05-01
Motivated by quantum quenches in spin chains, a one-dimensional toy-model of fermionic particles evolving in imaginary-time from a domain-wall initial state is solved. The main interest of this toy-model is that it exhibits the arctic circle phenomenon, namely a spatial phase separation between a critically fluctuating region and a frozen region. Large-scale correlations inside the critical region are expressed in terms of correlators in a (euclidean) two-dimensional massless Dirac field theory. It is observed that this theory is inhomogenous: the metric is position-dependent, so it is in fact a Dirac theory in curved space. The technique used to solve the toy-model is then extended to deal with the transfer matrices of other models: dimers on the honeycomb and square lattice, and the six-vertex model at the free fermion point (Δ =0 ). In all cases, explicit expressions are given for the long-range correlations in the critical region, as well as for the underlying Dirac action. Although the setup developed here is heavily based on fermionic observables, the results can be translated into the language of height configurations and of the gaussian free field, via bosonization. Correlations close to the phase boundary and the generic appearance of Airy processes in all these models are also briefly revisited in the appendix.
Scalar field theory on noncommutative Snyder spacetime
Battisti, Marco Valerio; Meljanac, Stjepan
2010-07-15
We construct a scalar field theory on the Snyder noncommutative space-time. The symmetry underlying the Snyder geometry is deformed at the co-algebraic level only, while its Poincare algebra is undeformed. The Lorentz sector is undeformed at both the algebraic and co-algebraic level, but the coproduct for momenta (defining the star product) is non-coassociative. The Snyder-deformed Poincare group is described by a non-coassociative Hopf algebra. The definition of the interacting theory in terms of a nonassociative star product is thus questionable. We avoid the nonassociativity by the use of a space-time picture based on the concept of the realization of a noncommutative geometry. The two main results we obtain are (i) the generic (namely, for any realization) construction of the co-algebraic sector underlying the Snyder geometry and (ii) the definition of a nonambiguous self-interacting scalar field theory on this space-time. The first-order correction terms of the corresponding Lagrangian are explicitly computed. The possibility to derive Noether charges for the Snyder space-time is also discussed.
Gravitational Goldstone fields from affine gauge theory
NASA Astrophysics Data System (ADS)
Tresguerres, Romualdo; Mielke, Eckehard W.
2000-08-01
In order to facilitate the application of standard renormalization techniques, gravitation should be described, in the pure connection formalism, as a Yang-Mills theory of a certain spacetime group, say the Poincaré or the affine group. This embodies the translational as well as the linear connection. However, the coframe is not the standard Yang-Mills-type gauge field of the translations, since it lacks the inhomogeneous gradient term in the gauge transformations. By explicitly restoring this ``hidden'' piece within the framework of nonlinear realizations, the usual geometrical interpretation of the dynamical theory becomes possible, and in addition one can avoid the metric or coframe degeneracy which would otherwise interfere with the integrations within the path integral. We claim that nonlinear realizations provide the general mathematical scheme for the foundation of gauge theories of spacetime symmetries. When applied to construct the Yang-Mills theory of the affine group, tetrads become identified with nonlinear translational connections; the anholonomic metric no longer constitutes an independent gravitational potential, since its degrees of freedom reveal a correspondence to eliminateable Goldstone bosons. This may be an important advantage for quantization.
Theory of Metal Surface Field Evaporation.
NASA Astrophysics Data System (ADS)
McMullen, Edward Richard
This work addresses the effects of intense positive electric fields applied to two metal surfaces. In particular, the outward shifting of the surface layer in response to the fields, the redistribution of electronic charge within the metal initiated by the fields, and prediction of the minimum field strength which will produce evaporation of the surface monolayer of positive charge and attendant electrons are investigated. Density functional theory, a powerful method of treating the inhomogeneous electron gas, is the theoretical approach taken in this work. Its utility and success within the local density approximation have been proven for many systems, diverse in size and nature, including the metal surface. By positioning the surface monolayer at a particular separation measured along the surface normal and calculating the surface energy from the semi-self-consistent electronic density generated via the Schrodinger equation with a one -electron effective potential, and repeating the procedure for other separations, an energy-displacement curve for a particular applied field can be mapped. A minimum in the curve for fields less than the least required for field evaporation locates the equilibrium position of the surface layer. The minimum will just disappear for the critical field. In this way, the critical field for the uniform positive-background-charge metal, herein named sodium-jellium (NaJ), is found to be 1.8 V/(ANGSTROM); that for Al (lll) is found to be 4.5 V/(ANGSTROM). The zero-field energies for both metals are found to map onto a curve obtained from a universal binding energy expression. This expression, which scales according to two parameters which can be related to known empirical quantities, is extended by a simple method to predict the critical fields for surface layer evaporation of a range of metals. Comparison is made of the predicted values with experimentally available critical fields for field evaporating atoms/ions singly from rounded
Mean-field theory for inhomogeneous electrolytes.
Yeh, Shin-Shing; Chen, Peilong
2005-09-01
We calculate the free energy density for inhomogeneous electrolytes based on the mean-field Debye-Hückel theory. Derived are the contributions of (1) the differential term for the electrolyte density being slow varying in one direction and (2) the boundary term for an electrolyte confined to one side of a planar interface. These contributions are shown to cause an electrolyte depletion near the air-water interfaces, which makes the surface tension increase, to be significantly larger than those predicted by previous theories. Nonuniform electrolyte densities are also computed near the water-electrolyte and electrolyte-electrolyte interfaces. Finally we calculate the interaction of two uncharged macrospheres due to the electrolyte depletion.
Working Group Report: Lattice Field Theory
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Bayesian parameter estimation for effective field theories
NASA Astrophysics Data System (ADS)
Wesolowski, S.; Klco, N.; Furnstahl, R. J.; Phillips, D. R.; Thapaliya, A.
2016-07-01
We present procedures based on Bayesian statistics for estimating, from data, the parameters of effective field theories (EFTs). The extraction of low-energy constants (LECs) is guided by theoretical expectations in a quantifiable way through the specification of Bayesian priors. A prior for natural-sized LECs reduces the possibility of overfitting, and leads to a consistent accounting of different sources of uncertainty. A set of diagnostic tools is developed that analyzes the fit and ensures that the priors do not bias the EFT parameter estimation. The procedures are illustrated using representative model problems, including the extraction of LECs for the nucleon-mass expansion in SU(2) chiral perturbation theory from synthetic lattice data.
The effective field theory of dark energy
Gubitosi, Giulia; Vernizzi, Filippo; Piazza, Federico E-mail: fpiazza@apc.univ-paris7.fr
2013-02-01
We propose a universal description of dark energy and modified gravity that includes all single-field models. By extending a formalism previously applied to inflation, we consider the metric universally coupled to matter fields and we write in terms of it the most general unitary gauge action consistent with the residual unbroken symmetries of spatial diffeomorphisms. Our action is particularly suited for cosmological perturbation theory: the background evolution depends on only three operators. All other operators start at least at quadratic order in the perturbations and their effects can be studied independently and systematically. In particular, we focus on the properties of a few operators which appear in non-minimally coupled scalar-tensor gravity and galileon theories. In this context, we study the mixing between gravity and the scalar degree of freedom. We assess the quantum and classical stability, derive the speed of sound of fluctuations and the renormalization of the Newton constant. The scalar can always be de-mixed from gravity at quadratic order in the perturbations, but not necessarily through a conformal rescaling of the metric. We show how to express covariant field-operators in our formalism and give several explicit examples of dark energy and modified gravity models in our language. Finally, we discuss the relation with the covariant EFT methods recently appeared in the literature.
Towards a quantum field theory of primitive string fields
Ruehl, W.
2012-10-15
We denote generating functions of massless even higher-spin fields 'primitive string fields' (PSF's). In an introduction we present the necessary definitions and derive propagators and currents of these PDF's on flat space. Their off-shell cubic interaction can be derived after all off-shell cubic interactions of triplets of higher-spin fields have become known. Then we discuss four-point functions of any quartet of PSF's. In subsequent sections we exploit the fact that higher-spin field theories in AdS{sub d+1} are determined by AdS/CFT correspondence from universality classes of critical systems in d-dimensional flat spaces. The O(N) invariant sectors of the O(N) vector models for 1 {<=} N {<=}{infinity} play for us the role of 'standard models', for varying N, they contain, e.g., the Ising model for N = 1 and the spherical model for N = {infinity}. A formula for the masses squared that break gauge symmetry for these O(N) classes is presented for d = 3. For the PSF on AdS space it is shown that it can be derived by lifting the PSF on flat space by a simple kernel which contains the sum over all spins. Finally we use an algorithm to derive all symmetric tensor higher-spin fields. They arise from monomials of scalar fields by derivation and selection of conformal (quasiprimary) fields. Typically one monomial produces a multiplet of spin s conformal higher-spin fields for all s {>=} 4, they are distinguished by their anomalous dimensions (in CFT{sub 3}) or by theirmass (in AdS{sub 4}). We sum over these multiplets and the spins to obtain 'string type fields', one for each such monomial.
The Supersymmetric Effective Field Theory of Inflation
Delacrétaz, Luca V.; Gorbenko, Victor; Senatore, Leonardo
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelbergmore » transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to fNLequil.,orthog.~1 or, for particular operators, even >> 1. The non-degenerate contribution from modes of order H is estimated to be very small.« less
Point-form quantum field theory
Biernat, E.P. Klink, W.H. Schweiger, W. Zelzer, S.
2008-06-15
We examine canonical quantization of relativistic field theories on the forward hyperboloid, a Lorentz-invariant surface of the form x{sub {mu}}x{sup {mu}} = {tau}{sup 2}. This choice of quantization surface implies that all components of the 4-momentum operator are affected by interactions (if present), whereas rotation and boost generators remain interaction free-a feature characteristic of Dirac's 'point-form' of relativistic dynamics. Unlike previous attempts to quantize fields on space-time hyperboloids, we keep the usual plane-wave expansion of the field operators and consider evolution of the system generated by the 4-momentum operator. We verify that the Fock-space representations of the Poincare generators for free scalar and spin-1/2 fields look the same as for equal-time quantization. Scattering is formulated for interacting fields in a covariant interaction picture and it is shown that the familiar perturbative expansion of the S-operator is recovered by our approach. An appendix analyzes special distributions, integrals over the forward hyperboloid, that are used repeatedly in the paper.
Pauli-Villars regulatization of supergravity and field theory anomalies
Gaillard, M.K.
1995-06-01
A procedure for Pauli-Villars regularization of locally and globally supersymmetric theories is described. Implications for specific theories, especially those obtained from superstrings, are discussed with emphasis on the role of field theory anomalies.
A simple proof of orientability in colored group field theory
2012-01-01
Background Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. Findings In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Conclusions Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory. PMID:23984224
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Exact integrability in quantum field theory
Thacker, H.B.
1980-08-01
The treatment of exactly integrable systems in various branches of two-dimensional classical and quantum physics has recently been placed in a unified framework by the development of the quantum inverse method. This method consolidates a broad range of developments in classical nonlinear wave (soliton) physics, statistical mechanics, and quantum field theory. The essential technique for analyzing exactly integrable quantum systems was invested by Bethe in 1931. The quantum-mechanical extension of the inverse scattering method and its relationship to the methods associated with Bethe's ansatz are examined here. (RWR)
Theory of microemulsions in a gravitational field
NASA Technical Reports Server (NTRS)
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
Theory of microemulsions in a gravitational field
NASA Technical Reports Server (NTRS)
Jeng, J. F.; Miller, Clarence A.
1989-01-01
A theory of microemulsions developed previously is extended to include the effect of a gravitational field. It predicts variation with position of drop size, drop volume fraction, and area per molecule in the surfactant films within a microemulsion phase. Variation in volume fraction is greatest and occurs in such a way that oil content increases with increasing elevation, as has been found experimentally. Large composition variations are predicted within a middle phase microemulsion near optimal conditions because inversion from the water-continuous to the oil-continuous arrangement occurs with increasing elevation. Generally speaking, gravity reduces solubilization within microemulsions and promotes separation of excess phases.
Lattice topological field theory on nonorientable surfaces
NASA Astrophysics Data System (ADS)
Karimipour, V.; Mostafazadeh, A.
1997-01-01
The lattice definition of the two-dimensional topological quantum field theory [Fukuma et al., Commun. Math. Phys. 161, 157 (1994)] is generalized to arbitrary (not necessarily orientable) compact surfaces. It is shown that there is a one-to-one correspondence between real associative *-algebras and the topological state sum invariants defined on such surfaces. The partition and n-point functions on all two-dimensional surfaces (connected sums of the Klein bottle or projective plane and g-tori) are defined and computed for arbitrary *-algebras in general, and for the group ring A=R[G] of discrete groups G, in particular.
Constructing Parton Convolution in Effective Field Theory
Chen, Jiunn-Wei; Ji, Xiangdong
2001-10-08
Parton convolution models have been used extensively in describing the sea quarks in the nucleon and explaining quark distributions in nuclei (the EMC effect). From the effective field theory point of view, we construct the parton convolution formalism which has been the underlying conception of all convolution models. We explain the significance of scheme and scale dependence of the auxiliary quantities such as the pion distributions in a nucleon. As an application, we calculate the complete leading nonanalytic chiral contribution to the isovector component of the nucleon sea.
Matrix product approximations to conformal field theories
NASA Astrophysics Data System (ADS)
König, Robert; Scholz, Volkher B.
2017-07-01
We establish rigorous error bounds for approximating correlation functions of conformal field theories (CFTs) by certain finite-dimensional tensor networks. For chiral CFTs, the approximation takes the form of a matrix product state. For full CFTs consisting of a chiral and an anti-chiral part, the approximation is given by a finitely correlated state. We show that the bond dimension scales polynomially in the inverse of the approximation error and sub-exponentially in inverse of the minimal distance between insertion points. We illustrate our findings using Wess-Zumino-Witten models, and show that there is a one-to-one correspondence between group-covariant MPS and our approximation.
The Effective Field Theory of nonsingular cosmology
NASA Astrophysics Data System (ADS)
Cai, Yong; Wan, Youping; Li, Hai-Guang; Qiu, Taotao; Piao, Yun-Song
2017-01-01
In this paper, we explore the nonsingular cosmology within the framework of the Effective Field Theory (EFT) of cosmological perturbations. Due to the recently proved no-go theorem, any nonsingular cosmological models based on the cubic Galileon suffer from pathologies. We show how the EFT could help us clarify the origin of the no-go theorem, and offer us solutions to break the no-go. Particularly, we point out that the gradient instability can be removed by using some spatial derivative operators in EFT. Based on the EFT description, we obtain a realistic healthy nonsingular cosmological model, and show the perturbation spectrum can be consistent with the observations.
A matrix model from string field theory
NASA Astrophysics Data System (ADS)
Zeze, Syoji
2016-09-01
We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N) vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large N matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.
Temperature Gradient Field Theory of Nucleation
NASA Astrophysics Data System (ADS)
Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.
2016-02-01
According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.
Examples of Subfactors from Conformal Field Theory
NASA Astrophysics Data System (ADS)
Xu, Feng
2017-07-01
Conformal field theory (CFT) in two dimensions provides a rich source of subfactors. The fact that there are so many subfactors coming from CFT have led people to conjecture that perhaps all finite depth subfactors are related to CFT. In this paper we examine classes of subfactors from known CFT. In particular we identify the so called 3^{Z}_2× {Z}_2 subfactor with an intermediate subfactor from conformal inclusion, and construct new subfactors from recent work on holomorphic CFT with central charge 24.
Feynman-Schwinger technique in field theories
NASA Astrophysics Data System (ADS)
Şavkli, Çetin
2001-02-01
In these lectures we introduce the Feynman-Schwinger representation method for solying nonperturbative problems in field theory. As an introduction we first give a brief overview of integral equations and path integral methods for solving nonperturbative problems. Then we discuss the Feynman-Schwinger (FSR) representation method with applications to scalar interactions. The FSR approach is a continuum path integral integral approach in terms of covariant trajectories of particles. Using the exact results provided by the FSR approach we test the reliability of commonly used approximations for nonperturbative summation of interactions for few body systems.
Supersymmetry in open superstring field theory
NASA Astrophysics Data System (ADS)
Erler, Theodore
2017-05-01
We realize the 16 unbroken supersymmetries on a BPS D-brane as invariances of the action of the corresponding open superstring field theory. We work in the small Hilbert space approach, where a symmetry of the action translates into a symmetry of the associated cyclic A ∞ structure. We compute the supersymmetry algebra, being careful to disentangle the components which produce a translation, a gauge transformation, and a symmetry transformation which vanishes on-shell. Via the minimal model theorem, we illustrate how supersymmetry of the action implies supersymmetry of the tree level open string scattering amplitudes.
Characters for Coset Conformal Field Theories and Maverick Examples
NASA Astrophysics Data System (ADS)
Dunbar, David C.; Joshi, Keith G.
We present an example of a coset conformal field theory which cannot be described by the identification current method. To study such examples we determine formulae for the characters of coset conformal field theories.
Causality Is Inconsistent With Quantum Field Theory
Wolf, Fred Alan
2011-11-29
Causality in quantum field theory means the vanishing of commutators for spacelike separated fields (VCSSF). I will show that VCSSF is not tenable. For VCSSF to be tenable, and therefore, to have both retarded and advanced propagators vanish in the elsewhere, a superposition of negative energy antiparticle and positive energy particle propagators, traveling forward in time, and a superposition of negative energy particle and positive energy antiparticle propagators, traveling backward in time, are required. Hence VCSSF predicts non-vanishing probabilities for both negative energy particles in the forward-through-time direction and positive energy antiparticles in the backwards-through-time direction. Therefore, since VCSSF is unrealizable in a stable universe, tachyonic propagation must occur in denial of causality.
Bondi Mass in Classical Field Theory
NASA Astrophysics Data System (ADS)
Jezierski, J.
1998-03-01
We discuss three classical field theories based on the wave equation: scalar field, electrodynamics and linearized gravity. Certain generating formula on a hyperboloid and on a null surface are derived for them. The linearized Einstein equations are analyzed around the null infinity. It is shown how the dynamics can be reduced to gauge invariant quanitities in a quasi-local way. The quasi-local gauge-invariant ``density'' of the Hamiltonian is derived on the hyperboloid and on the future null infinity cal J+. The result gives a new interpretation of the Bondi mass loss formula. We show also how to define the angular momentum. Starting from an affine approach for Einstein equations we obtain variational formulae for Bondi--Sachs type metrics related to energy and angular momentum generators. The original van der Burg asymptotic hierarchy is revisited and the relations between linearized and asymptotic nonlinear situations are established. We discuss also supertranslations, Newman--Penrose charges and Janis solutions.
The effective field theory treatment of quantum gravity
Donoghue, John F.
2012-09-24
This is a pedagogical introduction to the treatment of quantum general relativity as an effective field theory. It starts with an overview of the methods of effective field theory and includes an explicit example. Quantum general relativity matches this framework and I discuss gravitational examples as well as the limits of the effective field theory. I also discuss the insights from effective field theory on the gravitational effects on running couplings in the perturbative regime.
Continuum regularization of quantum field theory
Bern, Z.
1986-04-01
Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.
Thermal field theories and shifted boundary conditions
NASA Astrophysics Data System (ADS)
Giusti, L.; Meyer, H.
The analytic continuation to an imaginary velocity of the canonical partition function of a thermal system expressed in a moving frame has a natural implementation in the Euclidean path-integral formulation in terms of shifted boundary conditions. The Poincare' invariance underlying a relativistic theory implies a dependence of the free-energy on the compact length L_0 and the shift xi only through the combination beta=L_0(1+xi^2)^(1/2). This in turn implies that the energy and the momentum distributions of the thermal theory are related, a fact which is encoded in a set of Ward identities among the correlators of the energy-momentum tensor. The latter have interesting applications in lattice field theory: they offer novel ways to compute thermodynamic potentials, and a set of identities to renormalize non-perturbatively the energy-momentum tensor. At fixed bare parameters the shifted boundary conditions also provide a simple method to vary the temperature in much smaller steps than with the standard procedure.
Space-time resolved quantum field theory
NASA Astrophysics Data System (ADS)
Grobe, R.
2009-11-01
We have solved simplified model versions of the time-dependent Dirac and Yukawa equation numerically to study the time evolution of electrons, positrons and photons with full spatial resolution. The goal is to better understand how various particle creation and annihilation processes that require quantum field theory can be visualized. There are many open ended questions that we will address. Are particles and their antimatter companions created instantly, or do they require a certain minimum amount of time? Are they created at precisely the same location? What is the difference between a bare and a physical particle? Forces between two particles are usually understood on a microscopic level as the result of an exchange of bosonic particles. How can the same microscopic exchange mechanism lead to a repulsion as well as an attraction? Do these force intermediating particles ``know'' about the charges of the two interacting particles? How can one visualize this exchange? Does it really make sense to distinguish between virtual and real particles? We also examine how a bare electron can trigger the creation of a cloud of virtual photons around it.[4pt] In collaboration with R. Wagner, Intense Laser Physics Theory Unit, Illinois State University; C. Gerry, Lehman College and ILP-ISU; T. Cheng and Q. Su, Intense Laser Physics Theory Unit, Illinois State University.
Entanglement negativity in quantum field theory.
Calabrese, Pasquale; Cardy, John; Tonni, Erik
2012-09-28
We develop a systematic method to extract the negativity in the ground state of a 1+1 dimensional relativistic quantum field theory, using a path integral formalism to construct the partial transpose ρ(A)(T(2) of the reduced density matrix of a subsystem [formula: see text], and introducing a replica approach to obtain its trace norm which gives the logarithmic negativity E=ln//ρ(A)(T(2))//. This is shown to reproduce standard results for a pure state. We then apply this method to conformal field theories, deriving the result E~(c/4)ln[ℓ(1)ℓ(2)/(ℓ(1)+ℓ(2))] for the case of two adjacent intervals of lengths ℓ(1), ℓ(2) in an infinite system, where c is the central charge. For two disjoint intervals it depends only on the harmonic ratio of the four end points and so is manifestly scale invariant. We check our findings against exact numerical results in the harmonic chain.
Homogeneous cosmologies as group field theory condensates
NASA Astrophysics Data System (ADS)
Gielen, Steffen; Oriti, Daniele; Sindoni, Lorenzo
2014-06-01
We give a general procedure, in the group field theory (GFT) formalism for quantum gravity, for constructing states that describe macroscopic, spatially homogeneous universes. These states are close to coherent (condensate) states used in the description of Bose-Einstein condensates. The condition on such states to be (approximate) solutions to the quantum equations of motion of GFT is used to extract an effective dynamics for homogeneous cosmologies directly from the underlying quantum theory. The resulting description in general gives nonlinear and nonlocal equations for the `condensate wavefunction' which are analogous to the Gross-Pitaevskii equation in Bose-Einstein condensates. We show the general form of the effective equations for current quantum gravity models, as well as some concrete examples. We identify conditions under which the dynamics becomes linear, admitting an interpretation as a quantum-cosmological Wheeler-DeWitt equation, and give its semiclassical (WKB) approximation in the case of a kinetic term that includes a Laplace-Beltrami operator. For isotropic states, this approximation reproduces the classical Friedmann equation in vacuum with positive spatial curvature. We show how the formalism can be consistently extended from Riemannian signature to Lorentzian signature models, and discuss the addition of matter fields, obtaining the correct coupling of a massless scalar in the Friedmann equation from the most natural extension of the GFT action. We also outline the procedure for extending our condensate states to include cosmological perturbations. Our results form the basis of a general programme for extracting effective cosmological dynamics directly from a microscopic non-perturbative theory of quantum gravity.
Refringence, field theory and normal modes
NASA Astrophysics Data System (ADS)
Barceló, Carlos; Liberati, Stefano; Visser, Matt
2002-06-01
In a previous paper [Barceló C et al 2001 Class. Quantum Grav. 18 3595-610 (Preprint gr-qc/0104001)] we have shown that the occurrence of curved spacetime 'effective Lorentzian geometries' is a generic result of linearizing an arbitrary classical field theory around some nontrivial background configuration. This observation explains the ubiquitous nature of the 'analogue models' for general relativity that have recently been developed based on condensed matter physics. In the simple (single scalar field) situation analysed in our previous paper, there is a single unique effective metric; more complicated situations can lead to bi-metric and multi-metric theories. In the present paper we will investigate the conditions required to keep the situation under control and compatible with experiment - either by enforcing a unique effective metric (as would be required to be strictly compatible with the Einstein equivalence principle), or at the worst by arranging things so that there are multiple metrics that are all 'close' to each other (in order to be compatible with the Eötvös experiment). The algebraically most general situation leads to a physical model whose mathematical description requires an extension of the usual notion of Finsler geometry to a Lorentzian-signature pseudo-Finsler geometry; while this is possibly of some interest in its own right, this particular case does not seem to be immediately relevant for either particle physics or gravitation. The key result is that wide classes of theories lend themselves to an effective metric description. This observation provides further evidence that the notion of 'analogue gravity' is rather generic.
Aspects of integrable and conformal field theories
NASA Astrophysics Data System (ADS)
Moriconi, Marco
1997-08-01
In this thesis we study integrable N = 1 supersymmetric theories in two dimensions that are described as deformations of certain superconformal field theories. These superconformal field theories are non-unitary minimal models of central charges given by cn = [- ]3n(4n + 3)/(2n + 2)/ (cn models) where n = 1,2,/.... These models are the supersymmetrization of the generalized Yang-Lee model and can be obtained as reductions of the supersymmetric sine-Gordon model at some specific values of the coupling constant. After an introduction where we review some of the main aspects of two-dimensional CFT and factorizable scattering we study the thermodynamics of the supersymmetric generalized Yang-Lee models and diagonalize the transfer matrix, obtaining the Thermodynamic Bethe Ansatz (TBA) equations. These equations allow us to compute the ground state energy for a system of N particles in a circle of radius R and we compare the results against the predictions from CFT. This check rules out the necessity of CDD factors and confirms the conjectured S-matrix. We prove a conjecture put forward by E. Melzer relating some TBA systems of N = 2 models and the ones we study. We study the supersymmetric generalized Yang-Lee models on a half-line and find their exact reflection matrix. We prove that the ratio of the amplitudes of reflection for bosons and fermions in the same super-multiplet is universal and extend these results to systems with topological charges. We also find the reflection matrices fur the breathers in the susy sine-Gordon model. Based on a semiclassical analysis we relate the reflection matrices to the actions that preserve integrability and supersymmetry proposed by Inami, Odake and Zhang.
Quantum Field Theory in Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Tsvelik, Alexei M.
2007-01-01
Preface; Acknowledgements; Part I. Introduction to Methods: 1. QFT: language and goals; 2. Connection between quantum and classical: path integrals; 3. Definitions of correlation functions: Wick's theorem; 4. Free bosonic field in an external field; 5. Perturbation theory: Feynman diagrams; 6. Calculation methods for diagram series: divergences and their elimination; 7. Renormalization group procedures; 8. O(N)-symmetric vector model below the transition point; 9. Nonlinear sigma models in two dimensions: renormalization group and 1/N-expansion; 10. O(3) nonlinear sigma model in the strong coupling limit; Part II. Fermions: 11. Path integral and Wick's theorem for fermions; 12. Interaction electrons: the Fermi liquid; 13. Electrodynamics in metals; 14. Relativistic fermions: aspects of quantum electrodynamics; 15. Aharonov-Bohm effect and transmutation of statistics; Part III. Strongly Fluctuating Spin Systems: Introduction; 16. Schwinger-Wigner quantization procedure: nonlinear sigma models; 17. O(3) nonlinear sigma model in (2+1) dimensions: the phase diagram; 18. Order from disorder; 19. Jordan-Wigner transformations for spin S=1/2 models in D=1, 2, 3; 20. Majorana representation for spin S=1/2 magnets: relationship to Z2 lattice gauge theories; 21. Path integral representations for a doped antiferromagnet; Part IV. Physics in the World of One Spatial Dimension: Introduction; 22. Model of the free bosonic massless scalar field; 23. Relevant and irrelevant fields; 24. Kosterlitz-Thouless transition; 25. Conformal symmetry; 26. Virasoro algebra; 27. Differential equations for the correlation functions; 28. Ising model; 29. One-dimensional spinless fermions: Tomonaga-Luttinger liquid; 30. One-dimensional fermions with spin: spin-charge separation; 31. Kac-Moody algebras: Wess-Zumino-Novikov-Witten model; 32. Wess-Zumino-Novikov-Witten model in the Lagrangian form: non-Abelian bosonization; 33. Semiclassical approach to Wess-Zumino-Novikov-Witten models; 34
Geomagnetic Field -- From Paleomagnetism to Dynamo Theory
NASA Astrophysics Data System (ADS)
Kono, M.
2008-05-01
Since 1995, self-consistent models of the geodynamo became available. There are certain problems, but some of these models have shown behaviors quite similar to those observed by paleomagnetism, including polarity reversals (Kono and Roberts, 2002). There is thus a hope that the combination of paleomagnetism and dynamo theory may provide us a very comprehensive understanding of the geomagnetic field. In this paper, I will try to highlight the possibilities and limitations in such studies. From satellite observations, it was shown that the power of the magnetic field contained in each degree is nearly the same if measured at the core-mantle boundary (CMB). The core field can be seen only to degree 13 or 14 where the field power is about (10 nT)2. Beyond that, the crustal magnetization dominates and the core signal is lost. The value of 10 nT is far larger than the accuracy of the present-day instruments, but much smaller than the resolution obtainable by paleomagnetic observations. We may safely assume that the error in paleomagnetic measurements (in direction) is of the order of 10 degrees. This error corresponds to the resolution of about 1/5. The relative powers of the low degree terms in the magnetic field at the surface are 1.0, 0.033, 0.019, 0.0055 (Langel and Estes, 1982). This means that only the degrees 1 to 3 terms may be distinguished by paleomagnetic data. From the combination of dipole, quadrupole, and octupole, what we can deduce about the fundamental properties of the geomagnetic field? Here are some of the possibilities, which may give important clues when we compare with dynamo simulation results. (1) The current dipole power is several times larger than the value expected from the trend line produced by degrees 2--13. Is this a persistent feature or transient? (2) In PSV analysis, the angular standard deviation increases with latitude. Kono and Tanaka (1995) showed that it is possible only if the (2,1) (degree, order) or (3,2) term is very large
Topological field theory and matrix product states
NASA Astrophysics Data System (ADS)
Kapustin, Anton; Turzillo, Alex; You, Minyoung
2017-08-01
It is believed that most (perhaps all) gapped phases of matter can be described at long distances by topological quantum field theory (TQFT). On the other hand, it has been rigorously established that in 1+1d ground states of gapped Hamiltonians can be approximated by matrix product states (MPS). We show that the state-sum construction of 2d TQFT naturally leads to MPS in their standard form. In the case of systems with a global symmetry G , this leads to a classification of gapped phases in 1+1d in terms of Morita-equivalence classes of G -equivariant algebras. Nonuniqueness of the MPS representation is traced to the freedom of choosing an algebra in a particular Morita class. In the case of short-range entangled phases, we recover the group cohomology classification of SPT phases.
Spontaneous symmetry breaking in replica field theory
NASA Astrophysics Data System (ADS)
Diaz, R. Acosta; Menezes, G.; Svaiter, N. F.; Zarro, C. A. D.
2017-09-01
In this paper we discuss a disordered d -dimensional Euclidean λ φ4 model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica partition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-N Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of N instantons in the model.
Takiff superalgebras and conformal field theory
NASA Astrophysics Data System (ADS)
Babichenko, Andrei; Ridout, David
2013-03-01
A class of non-semisimple extensions of Lie superalgebras is studied. They are obtained by adjoining to the superalgebra its adjoint representation as an Abelian ideal. When the superalgebra is of affine Kac-Moody type, a generalization of Sugawara’s construction is shown to give rise to a copy of the Virasoro algebra and so, presumably, to a conformal field theory. Evidence for this is detailed for the extension of the affinization of the superalgebra \\mathfrak {gl} ( 1 \\vert 1): its highest weight irreducible modules are classified using spectral flow, the irreducible supercharacters are computed and a continuum version of the Verlinde formula is verified to give non-negative integer structure coefficients. Interpreting these coefficients as those of the Grothendieck ring of fusion, partial results on the true fusion ring and its indecomposable structures are deduced.
Machine Learning for Dynamical Mean Field Theory
NASA Astrophysics Data System (ADS)
Arsenault, Louis-Francois; Lopez-Bezanilla, Alejandro; von Lilienfeld, O. Anatole; Littlewood, P. B.; Millis, Andy
2014-03-01
Machine Learning (ML), an approach that infers new results from accumulated knowledge, is in use for a variety of tasks ranging from face and voice recognition to internet searching and has recently been gaining increasing importance in chemistry and physics. In this talk, we investigate the possibility of using ML to solve the equations of dynamical mean field theory which otherwise requires the (numerically very expensive) solution of a quantum impurity model. Our ML scheme requires the relation between two functions: the hybridization function describing the bare (local) electronic structure of a material and the self-energy describing the many body physics. We discuss the parameterization of the two functions for the exact diagonalization solver and present examples, beginning with the Anderson Impurity model with a fixed bath density of states, demonstrating the advantages and the pitfalls of the method. DOE contract DE-AC02-06CH11357.
Star democracy in open string field theory
NASA Astrophysics Data System (ADS)
Maccaferri, Carlo; Mamone, Davide
2003-09-01
We study three types of star products in SFT: the ghosts, the twisted ghosts and the matter. We find that their Neumann coefficients are related to each other in a compact way which includes the Gross-Jevicki relation between matter and ghost sector: we explicitly show that the same relation, with a minus sign, holds for the twisted and nontwisted ghosts (which are different but define the same solution). In agreement with this, we prove that matter and twisted ghost coefficients just differ by a minus sign. As a consistency check, we also compute the spectrum of the twisted ghost vertices from conformal field theory and, using equality of twisted and reduced slivers, we derive the spectrum of the non twisted ghost star.
Effective field theory for cold atoms
Hammer, H.-W.
2005-05-06
Effective Field Theory (EFT) provides a powerful framework that exploits a separation of scales in physical systems to perform systematically improvable, model-independent calculations. Particularly interesting are few-body systems with short-range interactions and large two-body scattering length. Such systems display remarkable universal features. In systems with more than two particles, a three-body force with limit cycle behavior is required for consistent renormalization already at leading order. We will review this EFT and some of its applications in the physics of cold atoms. Recent extensions of this approach to the four-body system and N-boson droplets in two spatial dimensions will also be discussed.
Effective field theory analysis of Higgs naturalness
Bar-Shalom, Shaouly; Soni, Amarjit; Wudka, Jose
2015-07-20
Assuming the presence of physics beyond the Standard Model ( SM) with a characteristic scale M ~ O (10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an effective field theory (EFT) approach. We obtain the leading 1 -loop EFT contributions to the Higgs mass with a Wilsonian-like hard cutoff, and determine t he constraints on the corresponding operator coefficients for these effects to alleviate the little hierarchy problem up to the scale of the effective action Λ < M , a condition we denote by “EFT-naturalness”. We also determine the types of physics that can lead to EFT-naturalness and show that these types of new physics are best probed in vector-boson and multiple-Higgs production. The current experimental constraints on these coefficients are also discussed.
Matrix product states for gauge field theories.
Buyens, Boye; Haegeman, Jutho; Van Acoleyen, Karel; Verschelde, Henri; Verstraete, Frank
2014-08-29
The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study (1+1)-dimensional one flavor quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground-state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study full quantum nonequilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.
Mean field theory of charged dendrimer molecules
NASA Astrophysics Data System (ADS)
Lewis, Thomas; Pryamitsyn, Victor; Ganesan, Venkat
2011-11-01
Using self-consistent field theory (SCFT), we study the conformational properties of polyelectrolyte dendrimers. We compare results for three different models of charge distributions on the polyelectrolytes: (1) a smeared, quenched charge distribution characteristic of strong polyelectrolytes; (2) a smeared, annealed charge distribution characteristic of weak polyelectrolytes; and (3) an implicit counterion model with Debye-Huckel interactions between the charged groups. Our results indicate that an explicit treatment of counterions is crucial for the accurate characterization of the conformations of polyelectrolyte dendrimers. In comparing the quenched and annealed models of charge distributions, annealed dendrimers were observed to modulate their charges in response to the density of polymer monomers, counterions, and salt ions. Such phenomena is not accommodated within the quenched model of dendrimers and is shown to lead to significant differences between the predictions of quenched and annealed model of dendrimers. In this regard, our results indicate that the average dissociated charge bar{α } inside the dendrimer serves as a useful parameter to map the effects of different parametric conditions and models onto each other. We also present comparisons to the scaling results proposed to explain the behavior of polyelectrolyte dendrimers. Inspired by the trends indicated by our results, we develop a strong segregation theory model whose predictions are shown to be in very good agreement with the numerical SCFT calculations.
Mean field theory of charged dendrimer molecules.
Lewis, Thomas; Pryamitsyn, Victor; Ganesan, Venkat
2011-11-28
Using self-consistent field theory (SCFT), we study the conformational properties of polyelectrolyte dendrimers. We compare results for three different models of charge distributions on the polyelectrolytes: (1) a smeared, quenched charge distribution characteristic of strong polyelectrolytes; (2) a smeared, annealed charge distribution characteristic of weak polyelectrolytes; and (3) an implicit counterion model with Debye-Huckel interactions between the charged groups. Our results indicate that an explicit treatment of counterions is crucial for the accurate characterization of the conformations of polyelectrolyte dendrimers. In comparing the quenched and annealed models of charge distributions, annealed dendrimers were observed to modulate their charges in response to the density of polymer monomers, counterions, and salt ions. Such phenomena is not accommodated within the quenched model of dendrimers and is shown to lead to significant differences between the predictions of quenched and annealed model of dendrimers. In this regard, our results indicate that the average dissociated charge α inside the dendrimer serves as a useful parameter to map the effects of different parametric conditions and models onto each other. We also present comparisons to the scaling results proposed to explain the behavior of polyelectrolyte dendrimers. Inspired by the trends indicated by our results, we develop a strong segregation theory model whose predictions are shown to be in very good agreement with the numerical SCFT calculations.
The $\\hbar$ Expansion in Quantum Field Theory
Brodsky, Stanley J.; Hoyer, Paul; /Southern Denmark U., CP3-Origins /Helsinki U. /Helsinki Inst. of Phys.
2010-10-27
We show how expansions in powers of Planck's constant {h_bar} = h = 2{pi} can give new insights into perturbative and nonperturbative properties of quantum field theories. Since {h_bar} is a fundamental parameter, exact Lorentz invariance and gauge invariance are maintained at each order of the expansion. The physics of the {h_bar} expansion depends on the scheme; i.e., different expansions are obtained depending on which quantities (momenta, couplings and masses) are assumed to be independent of {h_bar}. We show that if the coupling and mass parameters appearing in the Lagrangian density are taken to be independent of {h_bar}, then each loop in perturbation theory brings a factor of {h_bar}. In the case of quantum electrodynamics, this scheme implies that the classical charge e, as well as the fine structure constant are linear in {h_bar}. The connection between the number of loops and factors of {h_bar} is more subtle for bound states since the binding energies and bound-state momenta themselves scale with {h_bar}. The {h_bar} expansion allows one to identify equal-time relativistic bound states in QED and QCD which are of lowest order in {h_bar} and transform dynamically under Lorentz boosts. The possibility to use retarded propagators at the Born level gives valence-like wave-functions which implicitly describe the sea constituents of the bound states normally present in its Fock state representation.
Quantum spectral dimension in quantum field theory
NASA Astrophysics Data System (ADS)
Calcagni, Gianluca; Modesto, Leonardo; Nardelli, Giuseppe
2016-03-01
We reinterpret the spectral dimension of spacetimes as the scaling of an effective self-energy transition amplitude in quantum field theory (QFT), when the system is probed at a given resolution. This picture has four main advantages: (a) it dispenses with the usual interpretation (unsatisfactory in covariant approaches) where, instead of a transition amplitude, one has a probability density solving a nonrelativistic diffusion equation in an abstract diffusion time; (b) it solves the problem of negative probabilities known for higher-order and nonlocal dispersion relations in classical and quantum gravity; (c) it clarifies the concept of quantum spectral dimension as opposed to the classical one. We then consider a class of logarithmic dispersion relations associated with quantum particles and show that the spectral dimension dS of spacetime as felt by these quantum probes can deviate from its classical value, equal to the topological dimension D. In particular, in the presence of higher momentum powers it changes with the scale, dropping from D in the infrared (IR) to a value dSUV ≤ D in the ultraviolet (UV). We apply this general result to Stelle theory of renormalizable gravity, which attains the universal value dSUV = 2 for any dimension D.
Hamiltonian constraint in polymer parametrized field theory
NASA Astrophysics Data System (ADS)
Laddha, Alok; Varadarajan, Madhavan
2011-01-01
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type “polymer” representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Hamiltonian constraint in polymer parametrized field theory
Laddha, Alok; Varadarajan, Madhavan
2011-01-15
Recently, a generally covariant reformulation of two-dimensional flat spacetime free scalar field theory known as parametrized field theory was quantized using loop quantum gravity (LQG) type ''polymer'' representations. Physical states were constructed, without intermediate regularization structures, by averaging over the group of gauge transformations generated by the constraints, the constraint algebra being a Lie algebra. We consider classically equivalent combinations of these constraints corresponding to a diffeomorphism and a Hamiltonian constraint, which, as in gravity, define a Dirac algebra. Our treatment of the quantum constraints parallels that of LQG and obtains the following results, expected to be of use in the construction of the quantum dynamics of LQG: (i) the (triangulated) Hamiltonian constraint acts only on vertices, its construction involves some of the same ambiguities as in LQG and its action on diffeomorphism invariant states admits a continuum limit, (ii) if the regulating holonomies are in representations tailored to the edge labels of the state, all previously obtained physical states lie in the kernel of the Hamiltonian constraint, (iii) the commutator of two (density weight 1) Hamiltonian constraints as well as the operator correspondent of their classical Poisson bracket converge to zero in the continuum limit defined by diffeomorphism invariant states, and vanish on the Lewandowski-Marolf habitat, (iv) the rescaled density 2 Hamiltonian constraints and their commutator are ill-defined on the Lewandowski-Marolf habitat despite the well-definedness of the operator correspondent of their classical Poisson bracket there, (v) there is a new habitat which supports a nontrivial representation of the Poisson-Lie algebra of density 2 constraints.
Greg Beshouri; Kirby S. Chapman; Jim McCarthy; Sarah R. Nuss-Warren; Mike Whelan
2006-03-01
This quarterly report re-evaluates current market objectives in the exploration and production industry, discusses continuing progress in testing that evaluates emission control technologies applied to a two-stroke cycle natural gas-fueled engine, and presents a scheme for enacting remote monitoring and control of engines during upcoming field tests. The examination of current market objectives takes into account technological developments and changing expectations for environmental permitting which may have occurred over the last year. This demonstrates that the continuing work in controlled testing and toward field testing is on track Market pressures currently affecting the gas exploration and production industry are shown to include a push for increased production, as well as an increasing cost for environmental compliance. This cost includes the direct cost of adding control technologies to field engines as well as the indirect cost of difficulty obtaining permits. Environmental regulations continue to require lower emissions targets, and some groups of engines which had not previously been regulated will be required to obtain permits in the future. While the focus remains on NOx and CO, some permits require reporting of additional emissions chemicals. Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOx emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing
Topological field theory of dynamical systems
Ovchinnikov, Igor V.
2012-09-15
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the 'edge of chaos.' Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Neural field theory with variance dynamics.
Robinson, P A
2013-06-01
Previous neural field models have mostly been concerned with prediction of mean neural activity and with second order quantities such as its variance, but without feedback of second order quantities on the dynamics. Here the effects of feedback of the variance on the steady states and adiabatic dynamics of neural systems are calculated using linear neural field theory to estimate the neural voltage variance, then including this quantity in the total variance parameter of the nonlinear firing rate-voltage response function, and thus into determination of the fixed points and the variance itself. The general results further clarify the limits of validity of approaches with and without inclusion of variance dynamics. Specific applications show that stability against a saddle-node bifurcation is reduced in a purely cortical system, but can be either increased or decreased in the corticothalamic case, depending on the initial state. Estimates of critical variance scalings near saddle-node bifurcation are also found, including physiologically based normalizations and new scalings for mean firing rate and the position of the bifurcation.
Topological field theory of dynamical systems.
Ovchinnikov, Igor V
2012-09-01
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the "edge of chaos." Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Propagation in polymer parameterised field theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2017-01-01
The Hamiltonian constraint operator in loop quantum gravity acts ultralocally. Smolin has argued that this ultralocality seems incompatible with the existence of a quantum dynamics which propagates perturbations between macroscopically seperated regions of quantum geometry. We present evidence to the contrary within an LQG type ‘polymer’ quantization of two dimensional parameterised field theory (PFT). PFT is a generally covariant reformulation of free field propagation on flat spacetime. We show explicitly that while, as in LQG, the Hamiltonian constraint operator in PFT acts ultralocally, states in the joint kernel of the Hamiltonian and diffeomorphism constraints of PFT necessarily describe propagation effects. The particular structure of the finite triangulation Hamiltonian constraint operator plays a crucial role, as does the necessity of imposing (the continuum limit of) its kinematic adjoint as a constraint. Propagation is seen as a property encoded by physical states in the kernel of the constraints rather than that of repeated actions of the finite triangulation Hamiltonian constraint on kinematic states. The analysis yields robust structural lessons for putative constructions of the Hamiltonian constraint in LQG for which ultralocal action co-exists with a description of propagation effects by physical states.
Topological field theory of dynamical systems
NASA Astrophysics Data System (ADS)
Ovchinnikov, Igor V.
2012-09-01
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the "edge of chaos." Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Kirby S. Chapman; Sarah R. Nuss-Warren
2006-07-01
Continuing work in controlled testing uses a one cylinder Ajax DP-115 (a 13.25 in bore x 16 in stroke, 360 rpm engine) to assess a sequential analysis and evaluation of a series of engine upgrades. As with most of the engines used in the natural gas industry, the Ajax engine is a mature engine with widespread usage throughout the gas gathering industry. The end point is an assessment of these technologies that assigns a cost per unit reduction in NOX emissions. Technologies including one pre-combustion chamber, in-cylinder sensors, the means to adjust the air-to-fuel ratio, and modification of the air filter housing have been evaluated in previous reports. Current work focuses on final preparations for testing pre-combustion chambers with different characteristics and using mid-to-high-pressure fuel valves and initial runs of these tests. By using the Ajax DP-115 these tests are completed in a low-cost and efficient manner. The various technologies can be quickly exchanged with different hardware, and it is inexpensive to run the engine. Progress in moving toward field testing is discussed, and changes to the first planned field test are presented. Although changes have been made to the previous plan, it is expected that several new sites will be selected soon. Field tests will begin in the next quarter.
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure
Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.
2015-01-01
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.
Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D
2015-10-09
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.
Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure
NASA Astrophysics Data System (ADS)
Roth, Caleb C.; Barnes, Ronald A., Jr.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.
2015-10-01
The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.
The field theory of specific heat
NASA Astrophysics Data System (ADS)
Gusev, Yu. V.
2016-01-01
Finite temperature quantum field theory in the heat kernel method is used to study the heat capacity of condensed matter. The lattice heat is treated à la P. Debye as energy of the elastic (sound) waves. The dimensionless functional of free energy is re-derived with a cut-off parameter and used to obtain the specific heat of crystal lattices. The new dimensionless thermodynamical variable is formed as Planck's inverse temperature divided by the lattice constant. The dimensionless constant, universal for the class of crystal lattices, which determines the low temperature region of molar specific heat, is introduced and tested with the data for diamond lattice crystals. The low temperature asymptotics of specific heat is found to be the fourth power in temperature instead of the cubic power law of the Debye theory. Experimental data for the carbon group elements (silicon, germanium) and other materials decisively confirm the quartic law. The true low temperature regime of specific heat is defined by the surface heat, therefore, it depends on the geometrical characteristics of the body, while the absolute zero temperature limit is geometrically forbidden. The limit on the growth of specific heat at temperatures close to critical points, known as the Dulong-Petit law, appears from the lattice constant cut-off. Its value depends on the lattice type and it is the same for materials with the same crystal lattice. The Dulong-Petit values of compounds are equal to those of elements with the same crystal lattice type, if one mole of solid state matter were taken as the Avogadro number of the composing atoms. Thus, the Neumann-Kopp law is valid only in some special cases.
The Physical Renormalization of Quantum Field Theories
Binger, Michael William.; /Stanford U., Phys. Dept. /SLAC
2007-02-20
The profound revolutions in particle physics likely to emerge from current and future experiments motivates an improved understanding of the precise predictions of the Standard Model and new physics models. Higher order predictions in quantum field theories inevitably requires the renormalization procedure, which makes sensible predictions out of the naively divergent results of perturbation theory. Thus, a robust understanding of renormalization is crucial for identifying and interpreting the possible discovery of new physics. The results of this thesis represent a broad set of investigations in to the nature of renormalization. The author begins by motivating a more physical approach to renormalization based on gauge-invariant Green's functions. The resulting effective charges are first applied to gauge coupling unification. This approach provides an elegant formalism for understanding all threshold corrections, and the gauge couplings unify in a more physical manner compared to the usual methods. Next, the gauge-invariant three-gluon vertex is studied in detail, revealing an interesting and rich structure. The effective coupling for the three-gluon vertex, {alpha}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}), depends on three momentum scales and gives rise to an effective scale Q{sub eff}{sup 2}(k{sub 1}{sup 2}, k{sub 2}{sup 2}, k{sub 3}{sup 2}) which governs the (sometimes surprising) behavior of the vertex. The effects of nonzero internal masses are important and have a complicated threshold and pseudo-threshold structure. The pinch-technique effective charge is also calculated to two-loops and several applications are discussed. The Higgs boson mass in Split Supersymmetry is calculated to two-loops, including all one-loop threshold effects, leading to a downward shift in the Higgs mass of a few GeV. Finally, the author discusses some ideas regarding the overall structure of perturbation theory. This thesis lays the foundation for a comprehensive multi
Mean Field Theories of Icosahedral Quasicrystals.
NASA Astrophysics Data System (ADS)
Troian, Sandra Marina
studied. We also rederive and generalize a model free energy presented by Kalugin et al. to show that their original conclusion of a metastable quasicrystal is invalidated by the inclusion of a local quartic term in the free energy. Lastly, we review three other mean field theories recently proposed to explain the existence of quasicrystals.
Recent Developments in D=2 String Field Theory
NASA Astrophysics Data System (ADS)
Kaku, Michio
This review article is dedicated to the memory of Robert Marshak, who was a colleague and friend for the past 20 years. Prof. Marshak was an inspiration for all who knew him, especially at CCNY, both for this vision and insight into the fundamental interactions of matter, but also for his concern for social issues. Not only was Prof. Marshak the president of our college in a crucial time in its history, he was also a productive member of our high energy group. It will be hard to replace someone who could combine his many interests so well. He will be sorely missed. We review the recent developments in constructing string field theory in two-dimensions. We analyze the bewildering number of string field theories that have been proposed, all of which correctly reproduce the correlation functions of two-dimensional string theory. We will analyze discrete states, the w(∞) symmetry, and correlation functions in terms of these different string field theories. We will also comment on the relationship between these various field theories, which is still not well understood. (This article is a shortened version of a longer article to appear in the International Journal of Modern Physics.) These string field theories include: • free fermion field theory • collective string field theory • temporal gauge string field theory • non-polynomial string field theory
Flemming, Hans-Curt
2016-11-18
"Slime" played a brief and spectacular role in the 19th century founded by the theory of primordial slime by Ernst Haeckel. However, that substance was never found and eventually abandoned. Further scientific attention slowly began in the 1930s referring to slime as a microbial product and then was inspired by "How bacteria stick" by Costerton et al. in 1978, and the matrix material was considered to be polysaccharides. Later, it turned out that proteins, nucleic acids and lipids were major other constituents of the extracellular polymeric substances (EPS), an acronym which was highly discussed. The role of the EPS matrix turns out to be fundamental for biofilms, in terms of keeping cells in proximity and allowing for extended interaction, resource capture, mechanical strength and other properties, which emerge from the life of biofilm organisms, including enhanced tolerance to antimicrobials and other stress. The EPS components are extremely complex and dynamic and fulfil many functional roles, turning biofilms into the most ubiquitous and successful form of life on Earth.
Gravitational consequences of modern field theories
NASA Technical Reports Server (NTRS)
Horowitz, Gary T.
1989-01-01
Some gravitational consequences of certain extensions of Einstein's general theory of relativity are discussed. These theories are not alternative theories of gravity in the usual sense. It is assumed that general relativity is the appropriate description of all gravitational phenomena which were observed to date.
Collinear factorization violation and effective field theory
NASA Astrophysics Data System (ADS)
Schwartz, Matthew D.; Yan, Kai; Zhu, Hua Xing
2017-09-01
The factorization of amplitudes into hard, soft and collinear parts is known to be violated in situations where incoming particles are collinear to outgoing ones. This result was first derived by studying limits where noncollinear particles become collinear. We show that through an effective field theory framework with Glauber operators, these factorization-violating effects can be reproduced from an amplitude that is factorized before the splitting occurs. We confirm results at one loop, through single Glauber exchange, and at two loops, through double Glauber exchange. To approach the calculation, we begin by reviewing the importance of Glauber scaling for factorization. We show that for any situation where initial-state and final-state particles are not collinear, the Glauber contribution is entirely contained in the soft contribution. The contributions coming from Glauber operators are necessarily nonanalytic functions of external momentum, with the nonanalyticity arising from the rapidity regulator. The nonanalyticity is critical so that Glauber operators can both preserve factorization when it holds and produce factorization-violating effects when they are present.
Protected gates for topological quantum field theories
NASA Astrophysics Data System (ADS)
Beverland, Michael E.; Buerschaper, Oliver; Koenig, Robert; Pastawski, Fernando; Preskill, John; Sijher, Sumit
2016-02-01
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Quarkonium hybrids with nonrelativistic effective field theories
NASA Astrophysics Data System (ADS)
Berwein, Matthias; Brambilla, Nora; Tarrús Castellà, Jaume; Vairo, Antonio
2015-12-01
We construct a nonrelativistic effective field theory description of heavy quarkonium hybrids from QCD. We identify the symmetries of the system made of a heavy quark, a heavy antiquark, and glue in the static limit. Corrections to this limit can be obtained order by order in an expansion in the inverse of the mass m of the heavy quark. At order 1 /m in the expansion, we obtain, at the level of potential nonrelativistic QCD, a system of coupled Schrödinger equations that describes hybrid spin-symmetry multiplets, including the mixing of different static energies into the hybrid states, an effect known as Λ doubling in molecular physics. In the short distance, the static potentials depend on two nonperturbative parameters, the gluelump mass and the quadratic slope, which can be determined from lattice calculations. We adopt a renormalon subtraction scheme for the calculation of the perturbative part of the potential. We numerically solve the coupled Schrödinger equations and obtain the masses for the lowest lying spin-symmetry multiplets for c c ¯, b c ¯, and b b ¯ hybrids. The Λ -doubling effect breaks the degeneracy between opposite-parity spin-symmetry multiplets and lowers the mass of the multiplets that get mixed contributions of different static energies. We compare our findings to the experimental data, direct lattice computations, and sum rule calculations, and discuss the relation to the Born-Oppenheimer approximation.
Superconformal field theory and Jack superpolynomials
NASA Astrophysics Data System (ADS)
Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre
2012-09-01
We uncover a deep connection between the {N} = {1} superconformal field theory in 2 D and eigenfunctions of the supersymmetric Sutherland model known as Jack super-polynomials (sJacks). Specifically, the singular vector at level rs/2 of the Kac module labeled by the two integers r and s are given explicitly as a sum of sJacks whose indexing diagrams are contained in a rectangle with r columns and s rows. As a second compelling evidence for the distinguished status of the sJack-basis in SCFT, we find that the degenerate Whittaker vectors (Gaiotto states) can be expressed as a remarkably simple linear combination of sJacks. As a consequence, we are able to reformulate the supersymmetric version of the (degenerate) AGT conjecture in terms of the combinatorics of sJacks. The closed-form formulas for the singular vectors and the degenerate Whittaker vectors, although only conjectured in general, have been heavily tested (in some cases, up to level 33/2). Both the Neveu-Schwarz and Ramond sectors are treated.
Logarithmic conformal field theory: a lattice approach
NASA Astrophysics Data System (ADS)
Gainutdinov, A. M.; Jacobsen, J. L.; Read, N.; Saleur, H.; Vasseur, R.
2013-12-01
Logarithmic conformal field theories (LCFT) play a key role, for instance, in the description of critical geometrical problems (percolation, self-avoiding walks, etc), or of critical points in several classes of disordered systems (transition between plateaux in the integer and spin quantum Hall effects). Much progress in their understanding has been obtained by studying algebraic features of their lattice regularizations. For reasons which are not entirely understood, the non-semi-simple associative algebras underlying these lattice models—such as the Temperley-Lieb algebra or the blob algebra—indeed exhibit, in finite size, properties that are in full correspondence with those of their continuum limits. This applies not only to the structure of indecomposable modules, but also to fusion rules, and provides an ‘experimental’ way of measuring couplings, such as the ‘number b’ quantifying the logarithmic coupling of the stress-energy tensor with its partner. Most results obtained so far have concerned boundary LCFTs and the associated indecomposability in the chiral sector. While the bulk case is considerably more involved (mixing in general left and right moving sectors), progress has also recently been made in this direction, uncovering fascinating structures. This study provides a short general review of our work in this area.
Protected gates for topological quantum field theories
Beverland, Michael E.; Pastawski, Fernando; Preskill, John; Buerschaper, Oliver; Koenig, Robert; Sijher, Sumit
2016-02-15
We study restrictions on locality-preserving unitary logical gates for topological quantum codes in two spatial dimensions. A locality-preserving operation is one which maps local operators to local operators — for example, a constant-depth quantum circuit of geometrically local gates, or evolution for a constant time governed by a geometrically local bounded-strength Hamiltonian. Locality-preserving logical gates of topological codes are intrinsically fault tolerant because spatially localized errors remain localized, and hence sufficiently dilute errors remain correctable. By invoking general properties of two-dimensional topological field theories, we find that the locality-preserving logical gates are severely limited for codes which admit non-abelian anyons, in particular, there are no locality-preserving logical gates on the torus or the sphere with M punctures if the braiding of anyons is computationally universal. Furthermore, for Ising anyons on the M-punctured sphere, locality-preserving gates must be elements of the logical Pauli group. We derive these results by relating logical gates of a topological code to automorphisms of the Verlinde algebra of the corresponding anyon model, and by requiring the logical gates to be compatible with basis changes in the logical Hilbert space arising from local F-moves and the mapping class group.
Thermality of eigenstates in conformal field theories
NASA Astrophysics Data System (ADS)
Basu, Pallab; Das, Diptarka; Datta, Shouvik; Pal, Sridip
2017-08-01
The eigenstate thermalization hypothesis (ETH) provides a way to understand how an isolated quantum mechanical system can be approximated by a thermal density matrix. We find a class of operators in (1+1)-dimensional conformal field theories, consisting of quasiprimaries of the identity module, which satisfy the hypothesis only at the leading order in large central charge. In the context of subsystem ETH, this plays a role in the deviation of the reduced density matrices, corresponding to a finite energy density eigenstate from its hypothesized thermal approximation. The universal deviation in terms of the square of the trace-square distance goes as the eighth power of the subsystem fraction and is suppressed by powers of inverse central charge (c ). Furthermore, the nonuniversal deviations from subsystem ETH are found to be proportional to the heavy-light-heavy structure constants which are typically exponentially suppressed in √{h /c }, where h is the conformal scaling dimension of the finite energy density state. We also examine the effects of the leading finite-size corrections.
Gravitational radiative corrections from effective field theory
Goldberger, Walter D.; Ross, Andreas
2010-06-15
In this paper we construct an effective field theory (EFT) that describes long wavelength gravitational radiation from compact systems. To leading order, this EFT consists of the multipole expansion, which we describe in terms of a diffeomorphism invariant point particle Lagrangian. The EFT also systematically captures 'post-Minkowskian' corrections to the multipole expansion due to nonlinear terms in general relativity. Specifically, we compute long distance corrections from the coupling of the (mass) monopole moment to the quadrupole moment, including up to two mass insertions. Along the way, we encounter both logarithmic short distance (UV) and long wavelength (IR) divergences. We show that the UV divergences can be (1) absorbed into a renormalization of the multipole moments and (2) resummed via the renormalization group. The IR singularities are shown to cancel from properly defined physical observables. As a concrete example of the formalism, we use this EFT to reproduce a number of post-Newtonian corrections to the gravitational wave energy flux from nonrelativistic binaries, including long distance effects up to 3 post-Newtonian (v{sup 6}) order. Our results verify that the factorization of scales proposed in the NRGR framework of Goldberger and Rothstein is consistent up to order 3PN.
Field Theories from the Relativistic Law of Motion
NASA Astrophysics Data System (ADS)
Singh, Parampreet; Dadhich, Naresh
From the relativistic law of motion we attempt to deduce the field theories corresponding to the force law being linear and quadratic in four-velocity of the particle. The linear law leads to the vector gauge theory which could be the Abelian Maxwell electrodynamics or the non-Abelian Yang-Mills theory. On the other hand, the quadratic law demands space-time metric as its potential which is equivalent to demanding the principle of equivalence. It leads to the tensor theory of gravitational field - general relativity. It is remarkable that a purely dynamical property of the force law leads uniquely to the corresponding field theories.
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture
2014-10-01
A Geometrically Nonlinear Phase Field Theory of Brittle Fracture by JD Clayton and J Knap ARL-RP-0511 October 2014...21005-5069 ARL-RP-0511 October 2014 A Geometrically Nonlinear Phase Field Theory of Brittle Fracture JD Clayton and J Knap Weapons and...Nonlinear Phase Field Theory of Brittle Fracture 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) JD Clayton
Quantum Hall Physics Equals Noncommutive Field Theory
Rammsdonk , Mark van
2001-08-09
In this note, we study a matrix-regularized version of non-commutative U(1) Chern-Simons theory proposed recently by Polychronakos. We determine a complete minimal basis of exact wavefunctions for the theory at arbitrary level k and rank N and show that these are in one-to-one correspondence with Laughlin-type wavefunctions describing excitations of a quantum Hall droplet composed of N electrons at filling fraction 1/k. The finite matrix Chern-Simons theory is shown to be precisely equivalent to the theory of composite fermions in the lowest Landau level, believed to provide an accurate description of the filling fraction 1/k fractional quantum Hall state. In the large N limit, this implies that level k noncommutative U(1) Chern-Simons theory is equivalent to the Laughlin theory of the filling fraction 1k quantum Hall fluid, as conjectured recently by Susskind.
Effective field theories for muonic hydrogen
NASA Astrophysics Data System (ADS)
Peset, Clara
2017-03-01
Experimental measurements of muonic hydrogen bound states have recently started to take place and provide a powerful setting in which to study the properties of QCD. We profit from the power of effective field theories (EFTs) to provide a theoretical framework in which to study muonic hydrogen in a model independent fashion. In particular, we compute expressions for the Lamb shift and the hyperfine splitting. These expressions include the leading logarithmic O(mμα6) terms, as well as the leading {\\cal O}≤ft( {{m_μ }{α ^5}{{m_μ ^2} \\over {Λ {{QCD}}^2}}} \\right) hadronic effects. Most remarkably, our analyses include the determination of the spin-dependent and spin-independent structure functions of the forward virtualphoton Compton tensor of the proton to O(p3) in HBET and including the Delta particle. Using these results we obtain the leading hadronic contributions to the Wilson coeffcients of the lepton-proton four fermion operators in NRQED. The spin-independent coeffcient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, which is the main source of uncertainty in our computation. The spindependent coeffcient yields the prediction of the hyperfine splitting. The use of EFTs crucially helps us organizing the computation, in such a way that we can clearly address the parametric accuracy of our result. Furthermore, we review in the context of NRQED all the contributions to the energy shift of O(mμα5, as well as those that scale like mrα6× logarithms.
Effective field theory description of halo nuclei
NASA Astrophysics Data System (ADS)
Hammer, H.-W.; Ji, C.; Phillips, D. R.
2017-10-01
Nuclear halos emerge as new degrees of freedom near the neutron and proton driplines. They consist of a core and one or a few nucleons which spend most of their time in the classically-forbidden region outside the range of the interaction. Individual nucleons inside the core are thus unresolved in the halo configuration, and the low-energy effective interactions are short-range forces between the core and the valence nucleons. Similar phenomena occur in clusters of 4He atoms, cold atomic gases near a Feshbach resonance, and some exotic hadrons. In these weakly-bound quantum systems universal scaling laws for s-wave binding emerge that are independent of the details of the interaction. Effective field theory (EFT) exposes these correlations and permits the calculation of non-universal corrections to them due to short-distance effects, as well as the extension of these ideas to systems involving the Coulomb interaction and/or binding in higher angular-momentum channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo nuclei, has been used to compute the properties of single-neutron, two-neutron, and single-proton halos of s-wave and p-wave type. This review summarizes these results for halo binding energies, radii, Coulomb dissociation, and radiative capture, as well as the connection of these properties to scattering parameters, thereby elucidating the universal correlations between all these observables. We also discuss how Halo EFT's encoding of the long-distance physics of halo nuclei can be used to check and extend ab initio calculations that include detailed modeling of their short-distance dynamics.
Variational principles for multisymplectic second-order classical field theories
NASA Astrophysics Data System (ADS)
Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso
2015-06-01
We state a unified geometrical version of the variational principles for second-order classical field theories. The standard Lagrangian and Hamiltonian variational principles and the corresponding field equations are recovered from this unified framework.
Field theory on R× S 3 topology. VI: Gravitation
NASA Astrophysics Data System (ADS)
Carmeli, M.; Malin, S.
1987-04-01
We extend to curved space-time the field theory on R×S3 topology in which field equations were obtained for scalar particles, spin one-half particles, the electromagnetic field of magnetic moments, an SU2 gauge theory, and a Schrödinger-type equation, as compared to ordinary field equations that are formulated on a Minkowskian metric. The theory obtained is an angular-momentum representation of gravitation. Gravitational field equations are presented and compared to the Einstein field equations, and the mathematical and physical similarity and differences between them are pointed out. The problem of motion is discussed, and the equations of motion of a rigid body are developed and given explicitly. One result which is worth emphazing is that while general relativity theory yields Newton's law of motion in the lowest approximation, our theory gives Euler's equations of motion for a rigid body in its lowest approximation.
The State of the Field: Interdisciplinary Theory
ERIC Educational Resources Information Center
Newell, William H.
2013-01-01
This chronological overview of the development of interdisciplinary theory starts with the pre-cursors of theory: the development and elaboration of the definition of interdisciplinary studies, influential but problematic images of interdisciplinary studies proposed by Donald Campbell and Erich Jantsch, and best practices in interdisciplinary…
NASA Astrophysics Data System (ADS)
Bershtein, Mikhail; Bonelli, Giulio; Ronzani, Massimiliano; Tanzini, Alessandro
2017-08-01
We show that equivariant Donaldson polynomials of compact toric surfaces can be calculated as residues of suitable combinations of Virasoro conformal blocks, by building on AGT correspondence between N = 2 supersymmetric gauge theories and two-dimensional conformal field theory.
Parastatistics and conformal field theories in two dimensions
NASA Astrophysics Data System (ADS)
Mansouri, Freydoon; Wu, Xizeng
1989-04-01
The relation between parafermion field theories of order Q and the corresponding fermion field theories with SO(Q) symmetry is studied. It is shown that these theories are related but not identical. The explicit relation between the states and the observables of the two classes of theories are given without using the Klein transformations. The formalism is applied to the free conformally invariant parafermion theories in two dimensions. Their Virasoro algebra and SO(N) Kac-Moody algebra are given. The equivalence of their canonical form of the energy-momentum tensor with the Sugawara-Sommerfield form is also elucidated.
On ramification theory in the imperfect residue field case
Zhukov, I B
2003-12-31
This paper is devoted to the ramification theory of complete discrete valuation fields such that the residue field has prime characteristic p and the cardinality of a p-base is 1. This class contains two-dimensional local and local-global fields. A new definition of ramification filtration for such fields is given. It turns out that Hasse-Herbrand type functions can be defined with all the usual properties. Thanks to this, a theory of upper ramification groups and the ramification theory of infinite extensions can be developed. The case of two-dimensional local fields of equal characteristic is studied in detail. A filtration on the second K-group of the field in question is introduced that is different from the one induced by the standard filtration on the multiplicative group. The reciprocity map of two-dimensional local class field theory is proved to identify this filtration with the ramification filtration.
Towards a double field theory on para-Hermitian manifolds
NASA Astrophysics Data System (ADS)
Vaisman, Izu
2013-12-01
In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.
Towards a double field theory on para-Hermitian manifolds
Vaisman, Izu
2013-12-15
In a previous paper, we have shown that the geometry of double field theory has a natural interpretation on flat para-Kähler manifolds. In this paper, we show that the same geometric constructions can be made on any para-Hermitian manifold. The field is interpreted as a compatible (pseudo-)Riemannian metric. The tangent bundle of the manifold has a natural, metric-compatible bracket that extends the C-bracket of double field theory. In the para-Kähler case, this bracket is equal to the sum of the Courant brackets of the two Lagrangian foliations of the manifold. Then, we define a canonical connection and an action of the field that correspond to similar objects of double field theory. Another section is devoted to the Marsden-Weinstein reduction in double field theory on para-Hermitian manifolds. Finally, we give examples of fields on some well-known para-Hermitian manifolds.
Notes on the Verlinde formula in nonrational conformal field theories
Jego, Charles; Troost, Jan
2006-11-15
We review and extend evidence for the validity of a generalized Verlinde formula, in particular, nonrational conformal field theories. We identify a subset of representations of the chiral algebra in nonrational conformal field theories that give rise to an analogue of the relation between modular S-matrices and fusion coefficients in rational conformal field theories. To that end we review and extend the Cardy-type brane calculations in bosonic and supersymmetric Liouville theory (and its duals) as well as in H{sub 3}{sup +}. We analyze the three-point functions of Liouville theory and of H{sub 3}{sup +} in detail to directly identify the fusion coefficients from the operator product expansion. Moreover, we check the validity of a proposed generic formula for localized brane one-point functions in nonrational conformal field theories.
GravitoMagnetic Field in Tensor-Vector-Scalar Theory
Exirifard, Qasem
2013-04-01
We study the gravitomagnetism in the TeVeS theory. We compute the gravitomagnetic field that a slow moving mass distribution produces in its Newtonian regime. We report that the consistency between the TeVeS gravitomagnetic field and that predicted by the Einstein-Hilbert theory leads to a relation between the vector and scalar coupling constants of the theory. We translate the Lunar Laser Ranging measurement's data into a constraint on the deviation from this relation.
Stability in higher-derivative matter fields theories
NASA Astrophysics Data System (ADS)
Tretyakov, Petr V.
2016-09-01
We discuss possible instabilities in higher-derivative matter field theories. These theories have two free parameters β _1 and β _4. By using a dynamical system approach we explicitly demonstrate that for the stability of Minkowski space in an expanding universe we need the condition β _4<0. By using the quantum field theory approach we also find an additional restriction for the parameters, β _1>-1/3β _4, which is needed to avoid a tachyon-like instability.
Effective field theory of broken spatial diffeomorphisms
NASA Astrophysics Data System (ADS)
Lin, Chunshan; Labun, Lance Z.
2016-03-01
We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. We discuss several examples relevant to theories of massive gravity.
Effective field theory of broken spatial diffeomorphisms
Lin, Chunshan; Labun, Lance Z.
2016-03-17
We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constant for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. In conclusion, we discuss several examples relevant to theories of massive gravity.
Effective field theory of broken spatial diffeomorphisms
Lin, Chunshan; Labun, Lance Z.
2016-03-17
We study the low energy effective theory describing gravity with broken spatial diffeomorphism invariance. In the unitary gauge, the Goldstone bosons associated with broken diffeomorphisms are eaten and the graviton becomes a massive spin-2 particle with 5 well-behaved degrees of freedom. In this gauge, the most general theory is built with the lowest dimension operators invariant under only temporal diffeomorphisms. Imposing the additional shift and SO(3) internal symmetries, we analyze the perturbations on a FRW background. At linear perturbation level, the observables of this theory are characterized by five parameters, including the usual cosmological parameters and one additional coupling constantmore » for the symmetry-breaking scalars. In the de Sitter and Minkowski limit, the three Goldstone bosons are supermassive and can be integrated out, leaving two massive tensor modes as the only propagating degrees of freedom. In conclusion, we discuss several examples relevant to theories of massive gravity.« less
Topological field theories on manifolds with Wu structures
NASA Astrophysics Data System (ADS)
Monnier, Samuel
We construct invertible field theories generalizing abelian prequantum spin Chern-Simons theory to manifolds of dimension 4ℓ + 3 endowed with a Wu structure of degree 2ℓ + 2. After analyzing the anomalies of a certain discrete symmetry, we gauge it, producing topological field theories whose path integral reduces to a finite sum, akin to Dijkgraaf-Witten theories. We take a general point of view where the Chern-Simons gauge group and its couplings are encoded in a local system of integral lattices. The Lagrangian of these theories has to be interpreted as a class in a generalized cohomology theory in order to obtain a gauge invariant action. We develop a computationally friendly cochain model for this generalized cohomology and use it in a detailed study of the properties of the Wu Chern-Simons action. In the 3-dimensional spin case, the latter provides a definition of the “fermionic correction” introduced recently in the literature on fermionic symmetry protected topological phases. In order to construct the state space of the gauged theories, we develop an analogue of geometric quantization for finite abelian groups endowed with a skew-symmetric pairing. The physical motivation for this work comes from the fact that in the ℓ = 1 case, the gauged 7-dimensional topological field theories constructed here are essentially the anomaly field theories of the 6-dimensional conformal field theories with (2, 0) supersymmetry, as will be discussed elsewhere.
Mean-field theory for Bose-Hubbard model under a magnetic field
Oktel, M. Oe.; Tanatar, B.; Nita, M.
2007-01-15
We consider the superfluid-insulator transition for cold bosons under an effective magnetic field. We investigate how the applied magnetic field affects the Mott transition within mean-field theory and find that the critical hopping strength (t/U){sub c} increases with the applied field. The increase in the critical hopping follows the bandwidth of the Hofstadter butterfly at the given value of the magnetic field. We also calculate the magnetization and superfluid density within mean-field theory.
Crossing symmetry and modular invariance in conformal field theory and S duality in gauge theory
Nanopoulos, Dimitri V.; Xie, Dan
2009-11-15
In this paper, we explore the relation between crossing symmetry and modular invariance in conformal field theory and S duality in gauge theory. It is shown that partition functions of different S dual theories of N=2 SU(2) gauge theory with four fundamentals can be derived from the crossing symmetry of the Liouville four-point function. We also show that the partition function of N=4 SU(2) gauge theory can be derived from the Liouville partition function on torus.
Scattering matrix theory for stochastic scalar fields.
Korotkova, Olga; Wolf, Emil
2007-05-01
We consider scattering of stochastic scalar fields on deterministic as well as on random media, occupying a finite domain. The scattering is characterized by a generalized scattering matrix which transforms the angular correlation function of the incident field into the angular correlation function of the scattered field. Within the accuracy of the first Born approximation this matrix can be expressed in a simple manner in terms of the scattering potential of the scatterer. Apart from determining the angular distribution of the spectral intensity of the scattered field, the scattering matrix makes it possible also to determine the changes in the state of coherence of the field produced on scattering.
Flat holography: aspects of the dual field theory
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Basu, Rudranil; Kakkar, Ashish; Mehra, Aditya
2016-12-01
Assuming the existence of a field theory in D dimensions dual to ( D + 1)-dimensional flat space, governed by the asymptotic symmetries of flat space, we make some preliminary remarks about the properties of this field theory. We review briefly some successes of the 3d bulk - 2d boundary case and then focus on the 4d bulk - 3d boundary example, where the symmetry in question is the infinite dimensional BMS4 algebra. We look at the constraints imposed by this symmetry on a 3d field theory by constructing highest weight representations of this algebra. We construct two and three point functions of BMS primary fields and surprisingly find that symmetries constrain these correlators to be identical to those of a 2d relativistic conformal field theory. We then go one dimension higher and construct prototypical examples of 4d field theories which are putative duals of 5d Minkowski spacetimes. These field theories are ultra-relativistic limits of electrodynamics and Yang-Mills theories which exhibit invariance under the conformal Carroll group in D = 4. We explore the different sectors within these Carrollian gauge theories and investigate the symmetries of the equations of motion to find that an infinite ultra-relativistic conformal structure arises in each case.
Comparisons and connections between mean field dynamo theory and accretion disc theory
NASA Astrophysics Data System (ADS)
Blackman, E. G.
2010-01-01
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.
Theory of Near-Field Scanning with a Probe Array
2014-01-01
AFRL-RY-WP-TR-2013-0239 THEORY OF NEAR-FIELD SCANNING WITH A PROBE ARRAY Kristopher T. Kim and Bradley A. Kramer Antennas...Final 15 March 2010 – 30 September 2013 4. TITLE AND SUBTITLE THEORY OF NEAR-FIELD SCANNING WITH A PROBE ARRAY 5a. CONTRACT NUMBER IN-HOUSE 5b...December 2013. Report contains color. 14. ABSTRACT In near-field scanning , as the electrical size of a device under test increases, it becomes
Quantum field theory of the Casimir effect for real media
Mostepanenko, V.M.; Trunov, N.N.
1985-11-01
The quantum field theory is developed for the corrections to the Casimir force arising when the field penetrates the material of the plates. A new type of divergence arising from the corresponding modification of the boundary conditions is analyzed. General expressions are obtained for the vacuum energy of the electromagnetic field in the space between nonideal plates, and the actual corrections to the Casimir force are calculated in first-order perturbation theory in the penetration depth.
Heavy Quarks, QCD, and Effective Field Theory
Thomas Mehen
2012-10-09
The research supported by this OJI award is in the area of heavy quark and quarkonium production, especially the application Soft-Collinear E ective Theory (SCET) to the hadronic production of quarkonia. SCET is an e ffective theory which allows one to derive factorization theorems and perform all order resummations for QCD processes. Factorization theorems allow one to separate the various scales entering a QCD process, and in particular, separate perturbative scales from nonperturbative scales. The perturbative physics can then be calculated using QCD perturbation theory. Universal functions with precise fi eld theoretic de nitions describe the nonperturbative physics. In addition, higher order perturbative QCD corrections that are enhanced by large logarithms can be resummed using the renormalization group equations of SCET. The applies SCET to the physics of heavy quarks, heavy quarkonium, and similar particles.
On the stability of the asymptotically free scalar field theories
Shalaby, A M.
2015-03-30
Asymptotic freedom plays a vital role in our understanding of the theory of particle interactions. To have this property, one has to resort to a Non-abelian gauge theory with the number of colors equal to or greater than three (QCD). However, recent studies have shown that simple scalar field theories can possess this interesting property. These theories have non-Hermitian effective field forms but their classical potentials are bounded from above. In this work, we shall address the stability of the vacua of the bounded from above (−Φ{sup 4+n}) scalar field theories. Moreover, we shall cover the effect of the distribution of the Stokes wedges in the complex Φ-plane on the features of the vacuum condensate within these theories.
Splitting fields and general differential Galois theory
Trushin, Dmitry V
2010-11-11
An algebraic technique is presented that does not use results of model theory and makes it possible to construct a general Galois theory of arbitrary nonlinear systems of partial differential equations. The algebraic technique is based on the search for prime differential ideals of special form in tensor products of differential rings. The main results demonstrating the work of the technique obtained are the theorem on the constructedness of the differential closure and the general theorem on the Galois correspondence for normal extensions. Bibliography: 14 titles.
Semiclassical theory of unimolecular dissociation induced by a laser field
NASA Technical Reports Server (NTRS)
Yuan, J.-M.; George, T. F.
1978-01-01
A semiclassical nonperturbative theory of direct photodissociation in a laser field is developed in which photon absorption and dissociation are treated in a unified fashion. This is achieved by visualizing nuclear dynamics as a representative particle moving on electronic-field surfaces. Methods are described for calculating dissociation rates and probabilities by Monte Carlo selection of initial conditions and integration of classical trajectories on these surfaces. This unified theory reduces to the golden rule expression in the weak-field and short-time limits, and predicts nonlinear behavior, i.e., breakdown of the golden rule expression in intense fields. Field strengths above which lowest-order perturbation theory fails to work have been estimated for some systems. Useful physical insights provided by the electronic-field representation have been illustrated. Intense field effects are discussed which are amenable to experimental observation. The semiclassical methods used here are also applicable to multiple-surface dynamics in fieldfree unimolecular and bimolecular reactions.
Higher derivative field theories: degeneracy conditions and classes
NASA Astrophysics Data System (ADS)
Crisostomi, Marco; Klein, Remko; Roest, Diederik
2017-06-01
We provide a full analysis of ghost free higher derivative field theories with coupled degrees of freedom. Assuming the absence of gauge symmetries, we derive the degeneracy conditions in order to evade the Ostrogradsky ghosts, and analyze which (non)trivial classes of solutions this allows for. It is shown explicitly how Lorentz invariance avoids the propagation of "half" degrees of freedom. Moreover, for a large class of theories, we construct the field redefinitions and/or (extended) contact transformations that put the theory in a manifestly first order form. Finally, we identify which class of theories cannot be brought to first order form by such transformations.
Second order higher-derivative corrections in Double Field Theory
NASA Astrophysics Data System (ADS)
Lescano, Eric; Marqués, Diego
2017-06-01
HSZ Double Field Theory is a higher-derivative theory of gravity with exact and manifest T-duality symmetry. The first order corrections in the massless sector were shown to be governed solely by Chern-Simons deformations of the three-form field strength. We compute the full action with up to six derivatives O({α}^' 2}) for the universal sector containing the metric, two-form and dilaton fields. The Green-Schwarz transformation of the two-form field remains uncorrected to second order. In addition to the expected Chern-Simons-squared and Riemann-cubed terms the theory contains a cubic Gauss-Bonnet interaction, plus other six-derivative unambiguous terms involving the three-form field strength whose presence indicates that the theory must contain further higher-derivative corrections.
The tensor hierarchy of 8-dimensional field theories
NASA Astrophysics Data System (ADS)
Andino, Óscar Lasso; Ortín, Tomás
2016-10-01
We construct the tensor hierarchy of generic, bosonic, 8-dimensional field theories. We first study the form of the most general 8-dimensional bosonic theory with Abelian gauge symmetries only and no massive deformations. This study determines the tensors that occur in the Chern-Simons terms of the (electric and magnetic) field strengths and the action for the electric fields, which we determine. Having constructed the most general Abelian theory we study the most general gaugings of its global symmetries and the possible massive deformations using the embedding tensor formalism, constructing the complete tensor hierarchy using the Bianchi identities. We find the explicit form of all the field strengths of the gauged theory up to the 6-forms. Finally, we find the equations of motion comparing the Noether identities with the identities satisfied by the Bianchi identities themselves. We find that some equations of motion are not simply the Bianchi identities of the dual fields, but combinations of them.
Unambiguous formalism for higher order Lagrangian field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David; Vankerschaver, Joris
2009-11-01
The aim of this paper is to propose an unambiguous intrinsic formalism for higher order field theories which avoids the arbitrariness in the generalization of the conventional description of field theories, and implies the existence of different Cartan forms and Legendre transformations. We propose a differential-geometric setting for the dynamics of a higher order field theory, based on the Skinner and Rusk formalism for mechanics. This approach incorporates aspects of both the Lagrangian and the Hamiltonian description, since the field equations are formulated using the Lagrangian on a higher order jet bundle and the canonical multisymplectic form on its affine dual. As both of these objects are uniquely defined, the Skinner-Rusk approach has the advantage that it does not suffer from the arbitrariness in conventional descriptions. The result is that we obtain a unique and global intrinsic version of the Euler-Lagrange equations for higher order field theories. Several examples illustrate our construction.
2015-12-01
0603432F Project Name 644052 Polar Satellite Communications (Sunk) Air Force 3600 05 0605432F Project Name 657105 Polar Satellite ...provides continuous protected communication (low probability of interception and detection) over the north polar region using two communications ...payloads on classified host satellites in highly elliptical Molniya orbits. EPS is composed of four segments: the eXtended Data Rate (XDR) Payload
Avoiding Haag's Theorem with Parameterized Quantum Field Theory
NASA Astrophysics Data System (ADS)
Seidewitz, Ed
2017-03-01
Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that Haag's Theorem can be avoided when quantum field theory is formulated using an invariant, fifth path parameter in addition to the usual four position parameters, such that the Dyson perturbation expansion for the scattering matrix can still be reproduced. As a result, the parameterized formalism provides a consistent foundation for the interpretation of quantum field theory as used in practice and, perhaps, for better dealing with other mathematical issues.
Quantum Simulation of Quantum Field Theories in Trapped Ions
Casanova, J.; Lamata, L.; Egusquiza, I. L.; Gerritsma, R.; Roos, C. F.; Garcia-Ripoll, J. J.; Solano, E.
2011-12-23
We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.
A new generalized Wick theorem in conformal field theory
NASA Astrophysics Data System (ADS)
Takagi, T.
2017-08-01
We describe a new generalized Wick theorem for interacting fields in two-dimensional conformal field theory and briefly discuss its relation to the Borcherds identity and its derivation by an analytic method. We give examples of calculating operator product expansions using the generalized Wick theorem including fermionic fields.
Quantum simulation of quantum field theories in trapped ions.
Casanova, J; Lamata, L; Egusquiza, I L; Gerritsma, R; Roos, C F; García-Ripoll, J J; Solano, E
2011-12-23
We propose the quantum simulation of fermion and antifermion field modes interacting via a bosonic field mode, and present a possible implementation with two trapped ions. This quantum platform allows for the scalable add up of bosonic and fermionic modes, and represents an avenue towards quantum simulations of quantum field theories in perturbative and nonperturbative regimes.
Incorporation of generalized uncertainty principle into Lifshitz field theories
Faizal, Mir; Majumder, Barun
2015-06-15
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Incorporation of generalized uncertainty principle into Lifshitz field theories
NASA Astrophysics Data System (ADS)
Faizal, Mir; Majumder, Barun
2015-06-01
In this paper, we will incorporate the generalized uncertainty principle into field theories with Lifshitz scaling. We will first construct both bosonic and fermionic theories with Lifshitz scaling based on generalized uncertainty principle. After that we will incorporate the generalized uncertainty principle into a non-abelian gauge theory with Lifshitz scaling. We will observe that even though the action for this theory is non-local, it is invariant under local gauge transformations. We will also perform the stochastic quantization of this Lifshitz fermionic theory based generalized uncertainty principle.
Toward a quantum theory of tachyon fields
NASA Astrophysics Data System (ADS)
Schwartz, Charles
2016-03-01
We construct momentum space expansions for the wave functions that solve the Klein-Gordon and Dirac equations for tachyons, recognizing that the mass shell for such fields is very different from what we are used to for ordinary (slower than light) particles. We find that we can postulate commutation or anticommutation rules for the operators that lead to physically sensible results: causality, for tachyon fields, means that there is no connection between space-time points separated by a timelike interval. Calculating the conserved charge and four-momentum for these fields allows us to interpret the number operators for particles and antiparticles in a consistent manner; and we see that helicity plays a critical role for the spinor field. Some questions about Lorentz invariance are addressed and some remain unresolved; and we show how to handle the group representation for tachyon spinors.
Quantum Yang-Mills field theory
NASA Astrophysics Data System (ADS)
Frasca, Marco
2017-01-01
We show that the Dyson-Schwinger set of equations for the Yang-Mills theory can be exactly solved till the two-point function. This is obtained given a set of nonlinear waves solving the classical equations of motion. Translation invariance is maintained by the proper choice of the solution of the equation for the two-point function as devised by Coleman. The computation of the Dyson-Schwinger equations is performed in the same way as devised by Bender, Milton and Savage providing a set of partial differential equations whose proof of existence of the solutions is standard. So, the correlation functions of the theory could be proved to exist and the two-point function manifests a mass gap.
Killing vector fields and harmonic superfield theories
Groeger, Josua
2014-09-15
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Killing vector fields and harmonic superfield theories
NASA Astrophysics Data System (ADS)
Groeger, Josua
2014-09-01
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, also referred to as harmonic, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of this harmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
Quantum Algorithms for Fermionic Quantum Field Theories
2014-04-28
preskill@theory.caltech.edu 1 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is...NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98...operators of momentum modes. (The choice between these forms of measurement depends on the application.) 2.3 Complexity In this section we bound the
Hydrodynamic transport functions from quantum kinetic field theory
NASA Astrophysics Data System (ADS)
Calzetta, E. A.; Hu, B. L.; Ramsey, S. A.
2000-06-01
Starting from the quantum kinetic field theory [E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988)] constructed from the closed-time-path (CTP), two-particle-irreducible (2PI) effective action we show how to compute from first principles the shear and bulk viscosity functions in the hydrodynamic-thermodynamic regime. For a real scalar field with λΦ4 self-interaction we need to include four-loop graphs in the equation of motion. This work provides a microscopic field-theoretical basis to the ``effective kinetic theory'' proposed by Jeon and Yaffe [S. Jeon and L. G. Yaffe, Phys. Rev. D 53, 5799 (1996)], while our result for the bulk viscosity reproduces their expression derived from linear-response theory and the imaginary-time formalism of thermal field theory. Though unavoidably involved in calculations of this sort, we feel that the approach using fundamental quantum kinetic field theory is conceptually clearer and methodically simpler than the effective kinetic theory approach, as the success of the latter requires a clever rendition of diagrammatic resummations which is neither straightforward nor fail-safe. Moreover, the method based on the CTP-2PI effective action illustrated here for a scalar field can be formulated entirely in terms of functional integral quantization, which makes it an appealing method for a first-principles calculation of transport functions of a thermal non-Abelian gauge theory, e.g., QCD quark-gluon plasma produced from heavy ion collisions.
Quantum cellular automata and free quantum field theory
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo Mauro; Perinotti, Paolo
2017-02-01
In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
Lattice Study of Magnetic Catalysis in Graphene Effective Field Theory
NASA Astrophysics Data System (ADS)
Winterowd, Christopher; Detar, Carleton; Zafeiropoulos, Savvas
2016-03-01
The discovery of graphene ranks as one of the most important developments in condensed matter physics in recent years. As a strongly interacting system whose low-energy excitations are described by the Dirac equation, graphene has many similarities with other strongly interacting field theories, particularly quantum chromodynamics (QCD). Graphene, along with other relativistic field theories, have been predicted to exhibit spontaneous symmetry breaking (SSB) when an external magnetic field is present. Using nonperturbative methods developed to study QCD, we study the low-energy effective field theory (EFT) of graphene subject to an external magnetic field. We find strong evidence supporting the existence of SSB at zero-temperature and characterize the dependence of the chiral condensate on the external magnetic field. We also present results for the mass of the Nambu-Goldstone boson and the dynamically generated quasiparticle mass that result from the SSB.
Screening of scalar fields in Dirac-Born-Infeld theory
NASA Astrophysics Data System (ADS)
Burrage, Clare; Khoury, Justin
2014-07-01
We study a new screening mechanism which is present in Dirac-Born-Infeld (DBI)-like theories. A scalar field with a DBI-like Lagrangian is minimally coupled to matter. In the vicinity of sufficiently dense sources, nonlinearities in the scalar dominate and result in an approximately constant acceleration on a test particle, thereby suppressing the scalar force relative to gravity. Unlike generic P(X) or chameleon theories, screening happens within the regime of validity of the effective field theory thanks to the DBI symmetry. We derive an exact form for the field profile around multiple sources and determine the constraints on the theory parameters from tests of gravity. Perturbations around the spherically-symmetric background propagate superluminally, but we argue for a chronology protection analogous to Galileons. This is the first example of a screening mechanism for which quantum corrections to the theory are under control and exact solutions to cosmological N-body problems can be found.
New class of effective field theories from embedded branes.
Goon, Garrett L; Hinterbichler, Kurt; Trodden, Mark
2011-06-10
We present a new general class of four-dimensional effective field theories with interesting global symmetry groups. These theories arise from purely gravitational actions for (3+1)-dimensional branes embedded in higher dimensional spaces with induced gravity terms. The simplest example is the well known Galileon theory, with its associated Galilean symmetry, arising as the limit of a DGP brane world. However, we demonstrate that this is a special case of a much wider range of theories, with varying structures, but with the same attractive features such as second order equations. In some circumstances, these new effective field theories allow potentials for the scalar fields on curved space, with small masses protected by nonlinear symmetries. Such models may prove relevant to the cosmology of both the early and late universe.
Topological Field Theory of Time-Reversal Invariant Insulators
Qi, Xiao-Liang; Hughes, Taylor; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-19
We show that the fundamental time reversal invariant (TRI) insulator exists in 4 + 1 dimensions, where the effective field theory is described by the 4 + 1 dimensional Chern-Simons theory and the topological properties of the electronic structure is classified by the second Chern number. These topological properties are the natural generalizations of the time reversal breaking (TRB) quantum Hall insulator in 2 + 1 dimensions. The TRI quantum spin Hall insulator in 2 + 1 dimensions and the topological insulator in 3 + 1 dimension can be obtained as descendants from the fundamental TRI insulator in 4 + 1 dimensions through a dimensional reduction procedure. The effective topological field theory, and the Z{sub 2} topological classification for the TRI insulators in 2+1 and 3+1 dimensions are naturally obtained from this procedure. All physically measurable topological response functions of the TRI insulators are completely described by the effective topological field theory. Our effective topological field theory predicts a number of novel and measurable phenomena, the most striking of which is the topological magneto-electric effect, where an electric field generates a magnetic field in the same direction, with an universal constant of proportionality quantized in odd multiples of the fine structure constant {alpha} = e{sup 2}/hc. Finally, we present a general classification of all topological insulators in various dimensions, and describe them in terms of a unified topological Chern-Simons field theory in phase space.
A New Lorentz Violating Nonlocal Field Theory From String-Theory
Ganor, Ori J.
2007-10-04
A four-dimensional field theory with a qualitatively new type of nonlocality is constructed from a setting where Kaluza-Klein particles probe toroidally compactified string theory with twisted boundary conditions. In this theory fundamental particles are not pointlike and occupy a volume proportional to their R-charge. The theory breaks Lorentz invariance but appears to preserve spatial rotations. At low energies, it is approximately N=4 Super Yang-Mills theory, deformed by an operator of dimension seven. The dispersion relation of massless modes in vacuum is unchanged, but under certain conditions in this theory, particles can travel at superluminal velocities.
Conceptual Developments of 20th Century Field Theories
NASA Astrophysics Data System (ADS)
Cao, Tian Yu
1998-06-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
Conceptual Developments of 20th Century Field Theories
NASA Astrophysics Data System (ADS)
Cao, Tian Yu
1997-02-01
This volume provides a broad synthesis of conceptual developments of twentieth century field theories, from the general theory of relativity to quantum field theory and gauge theory. The book traces the foundations and evolution of these theories within a historio-critical context. Theoretical physicists and students of theoretical physics will find this a valuable account of the foundational problems of their discipline that will help them understand the internal logic and dynamics of theoretical physics. It will also provide professional historians and philosophers of science, particularly philosophers of physics, with a conceptual basis for further historical, cultural and sociological analysis of the theories discussed. Finally, the scientifically qualified general reader will find in this book a deeper analysis of contemporary conceptions of the physical world than can be found in popular accounts of the subject.
Using Self Consistent Field Theory on Polymeric Mixtures
NASA Astrophysics Data System (ADS)
von Konigslow, Kier; Park, Chul; Thompson, Russell
The ability to predict the solubility of a particular solvent in a polymer fluid is essential to the production of polymer foams. For the past 40 years, the primary model employed to this end has been an expansion of Flory-Huggins lattice fluid theory developed by Sanchez and Lacombe (S-L theory). S-L theory, while useful in the uniform limit, is limited to homogeneous systems. Self-Consistent Field Theory (SCFT), which has long been in use in polymer physics, is a mean-field theory capable of modeling the equilibrium behaviour of both homogeneous and inhomogeneous systems. We are investigating whether SCFT, applied to polymer-solvent mixtures, is in agreement with SL-theory in the homogeneous limit. Should this prove successful, we hope to use SCFT to model more general mixtures, including inhomogeneous nanocellular polymer foam systems.
On the global symmetries of 6D superconformal field theories
NASA Astrophysics Data System (ADS)
Bertolini, Marco; Merkx, Peter R.; Morrison, David R.
2016-07-01
We study global symmetry groups of six-dimensional superconformal field theories (SCFTs). In the Coulomb branch we use field theoretical arguments to predict an upper bound for the global symmetry of the SCFT. We then analyze global symmetry groups of F-theory constructions of SCFTs with a one-dimensional Coulomb branch. While in the vast majority of cases, all of the global symmetries allowed by our Coulomb branch analysis can be realized in F-theory, in a handful of cases we find that F-theory models fail to realize the full symmetry of the theory on the Coulomb branch. In one particularly mysterious case, F-theory models realize several distinct maximal subgroups of the predicted group, but not the predicted group itself.
Towards an effective field theory on the light-shell
NASA Astrophysics Data System (ADS)
Georgi, Howard; Kestin, Greg; Sajjad, Aqil
2016-03-01
We discuss our work toward the construction of a light-shell effective theory (LSET), an effective field theory for describing the matter emerging from high-energy collisions and the accompanying radiation. We work in the highly simplified venue of 0-flavor scalar quantum electrodynamics, with a gauge invariant product of scalar fields at the origin of space-time as the source of high-energy charged particles. Working in this simple gauge theory allows us to focus on the essential features of LSET. We describe how the effective theory is constructed and argue that it can reproduce the full theory tree-level amplitude. We study the 1-loop radiative corrections in the LSET and suggest how the leading double-logs in the full theory at 1-loop order can be reproduced by a purely angular integral in the LSET.
The Theory of Quantized Fields. III
DOE R&D Accomplishments Database
Schwinger, J.
1953-05-01
In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.
BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Mann, Robert
2013-02-01
Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is
Relativistic Quantum Mechanics and Introduction to Field Theory
NASA Astrophysics Data System (ADS)
Yndurain, Francisco J.
This is an advanced textbook meant as a primer in quantum theory for graduate students. A full relativistic treatment of particle dynamics needs to be based on quantum field theory. However, there exists a variety of processes that can be discussed with concepts like potentials, classical current distributions, prescribed external fields dealt with in the framework of relativistic quantum mechanics. Then, in an introduction to field theory the author emphasizes the deduction of the said potentials or currents. The unique feature of this book is the modern presentation of the subject together with many exercises and furthermore the underlying concept to combine a reference book on relativistic quantum mechanics with an introduction into quantum field theory.
An Extremely Brief Introduction to Quantum Field Theory
NASA Astrophysics Data System (ADS)
Horowitz, W. A.
2017-01-01
We provide a very brief introduction to n-dimensional scalar field theory, with an eye to renormalization and expectation values of operators. We assume the audience already has some experience with QFT.
Exotic dual of type II double field theory
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric A.; Hohm, Olaf; Riccioni, Fabio
2017-04-01
We perform an exotic dualization of the Ramond-Ramond fields in type II double field theory, in which they are encoded in a Majorana-Weyl spinor of O (D , D). Starting from a first-order master action, the dual theory in terms of a tensor-spinor of O (D , D) is determined. This tensor-spinor is subject to an exotic version of the (self-)duality constraint needed for a democratic formulation. We show that in components, reducing O (D , D) to GL (D), one obtains the expected exotically dual theory in terms of mixed Young tableaux fields. To this end, we generalize exotic dualizations to self-dual fields, such as the 4-form in type IIB string theory.
Three level constraints on conformal field theories and string models
Lewellen, D.C.
1989-05-01
Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs.
Theory of back-surface-field solar cells
NASA Technical Reports Server (NTRS)
Vonroos, O.
1979-01-01
Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.
Mutual information after a local quench in conformal field theory
NASA Astrophysics Data System (ADS)
Asplund, Curtis T.; Bernamonti, Alice
2014-03-01
We compute the entanglement entropy and mutual information for two disjoint intervals in two-dimensional conformal field theories as a function of time after a local quench, using the replica trick and boundary conformal field theory. We obtain explicit formulas for the universal contributions, which are leading in the regimes of, for example, close or well-separated intervals of fixed length. The results are largely consistent with the quasiparticle picture, in which entanglement above that present in the ground state is carried by pairs of entangled freely propagating excitations. We also calculate the mutual information for two disjoint intervals in a proposed holographic local quench, whose holographic energy-momentum tensor matches the conformal field theory one. We find that the holographic mutual information shows qualitative differences from the conformal field theory results and we discuss possible interpretations of this.
Theory of back-surface-field solar cells
NASA Technical Reports Server (NTRS)
Vonroos, O.
1979-01-01
Report describes simple concise theory of back-surface-field (BSF) solar cells (npp + junctions) based on Shockley's depletion-layer approximation and cites superiority of two-junction devices over conventional unijunction cells.
Torque anomaly in quantum field theory
NASA Astrophysics Data System (ADS)
Fulling, S. A.; Mera, F. D.; Trendafilova, C. S.
2013-02-01
The expectation values of energy density and pressure of a quantum field inside a wedge-shaped region appear to violate the expected relationship between torque and total energy as a function of angle. In particular, this is true of the well-known Deutsch-Candelas stress tensor for the electromagnetic field, whose definition requires no regularization except possibly at the vertex. Unlike a similar anomaly in the pressure exerted by a reflecting boundary against a perpendicular wall, this problem cannot be dismissed as an artifact of an ad hoc regularization.
Constrained field theories on spherically symmetric spacetimes with horizons
NASA Astrophysics Data System (ADS)
Fernandes, Karan; Lahiri, Amitabha; Ghosh, Suman
2017-02-01
We apply the Dirac-Bergmann algorithm for the analysis of constraints to gauge theories defined on spherically symmetric black hole backgrounds. We find that the constraints for a given theory are modified on such spacetimes through the presence of additional contributions from the horizon. As a concrete example, we consider the Maxwell field on a black hole background, and determine the role of the horizon contributions on the dynamics of the theory.
Quantum field theory on timelike hypersurfaces in Rindler space
NASA Astrophysics Data System (ADS)
Colosi, Daniele; Rätzel, Dennis
2013-06-01
The general boundary formulation of quantum field theory is applied to a massive scalar field in two-dimensional Rindler space. The field is quantized according to both the Schrödinger-Feynman quantization prescription and the holomorphic one in two different spacetime regions: a region bounded by two Cauchy surfaces and a region bounded by one timelike curve. An isomorphism is constructed between the Hilbert spaces associated with these two boundaries. This isomorphism preserves the probabilities that can be extracted from the free and the interacting quantum field theories, proving the equivalence of the S-matrices defined in the two settings, when both apply.
Field theories and exact stochastic equations for interacting particle systems
Andreanov, Alexei; Lefevre, Alexandre; Biroli, Giulio; Bouchaud, Jean-Philippe
2006-09-15
We consider the dynamics of interacting particles with reaction and diffusion. Starting from the underlying discrete stochastic jump process we derive a general field theory describing the dynamics of the density field, which we relate to an exact stochastic equation on the density field. We show how our field theory maps onto the original Doi-Peliti formalism, allowing us to clarify further the issue of the 'imaginary' Langevin noise that appears in the context of reaction-diffusion processes. Our procedure applies to a wide class of problems and is related to large deviation functional techniques developed recently to describe fluctuations of nonequilibrium systems in the hydrodynamic limit.
Post Modernity Theory and Its Educational Applications in School Fields
ERIC Educational Resources Information Center
El-Baz, Maaly Bent Mohamed Saleh
2017-01-01
This paper aims to identify the fundamental principles on which the post modernity theory is based and to notice this in the field of Education, since this theory deals with two basic rules on which the postmodernist orientation is based, one of them denies on the absolute truth on Ontology level (related to the existence nature), and the other…
A Guided Inquiry Activity for Teaching Ligand Field Theory
ERIC Educational Resources Information Center
Johnson, Brian J.; Graham, Kate J.
2015-01-01
This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…
Perturbation Theory of Massive Yang-Mills Fields
DOE R&D Accomplishments Database
Veltman, M.
1968-08-01
Perturbation theory of massive Yang-Mills fields is investigated with the help of the Bell-Treiman transformation. Diagrams containing one closed loop are shown to be convergent if there are more than four external vector boson lines. The investigation presented does not exclude the possibility that the theory is renormalizable.
An extremal ${\\mathcal{N}}=2$ superconformal field theory
Benjamin, Nathan; Dyer, Ethan; Fitzpatrick, A. Liam; Kachru, Shamit
2015-11-16
Here, we provide an example of an extremal chiral ${\\mathcal{N}}$ = 2 superconformal field theory at c = 24. The construction is based on a ${{\\mathbb{Z}}}_{2}$ orbifold of the theory associated to the ${A}_{1}^{24}$ Niemeier lattice. The statespace is governed by representations of the sporadic group M 23.
A Guided Inquiry Activity for Teaching Ligand Field Theory
ERIC Educational Resources Information Center
Johnson, Brian J.; Graham, Kate J.
2015-01-01
This paper will describe a guided inquiry activity for teaching ligand field theory. Previous research suggests the guided inquiry approach is highly effective for student learning. This activity familiarizes students with the key concepts of molecular orbital theory applied to coordination complexes. Students will learn to identify factors that…
An extremal $${\\mathcal{N}}=2$$ superconformal field theory
Benjamin, Nathan; Dyer, Ethan; Fitzpatrick, A. Liam; ...
2015-11-16
Here, we provide an example of an extremal chiralmore » $${\\mathcal{N}}$$ = 2 superconformal field theory at c = 24. The construction is based on a $${{\\mathbb{Z}}}_{2}$$ orbifold of the theory associated to the $${A}_{1}^{24}$$ Niemeier lattice. The statespace is governed by representations of the sporadic group M 23.« less
Constrained variational calculus for higher order classical field theories
NASA Astrophysics Data System (ADS)
Campos, Cédric M.; de León, Manuel; Martín de Diego, David
2010-11-01
We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.
Non-perturbative methods in relativistic field theory
Franz Gross
2013-03-01
This talk reviews relativistic methods used to compute bound and low energy scattering states in field theory, with emphasis on approaches that John Tjon and I discussed (and argued about) together. I compare the Bethe–Salpeter and Covariant Spectator equations, show some applications, and then report on some of the things we have learned from the beautiful Feynman–Schwinger technique for calculating the exact sum of all ladder and crossed ladder diagrams in field theory.
Effective Field Theory of Interactions on the Lattice
NASA Astrophysics Data System (ADS)
Valiente, Manuel; Zinner, Nikolaj Thomas
2015-12-01
We consider renormalization of effective field theory interactions by discretizing the continuum on a tight-binding lattice. After studying the one-dimensional problem, we address s-wave collisions in three dimensions and relate the bare lattice coupling constants to the continuum coupling constants. Our method constitutes a very simple avenue for the systematic renormalization in effective field theory, and is especially useful as the number of interaction parameters increases.
The Lagrangian-Hamiltonian formalism for higher order field theories
NASA Astrophysics Data System (ADS)
Vitagliano, Luca
2010-06-01
We generalize the Lagrangian-Hamiltonian formalism of Skinner and Rusk to higher order field theories on fiber bundles. As a byproduct we solve the long standing problem of defining, in a coordinate free manner, a Hamiltonian formalism for higher order Lagrangian field theories. Namely, our formalism does only depend on the action functional and, therefore, unlike previously proposed ones, is free from any relevant ambiguity.
Localization and Dualities in Three-dimensional Superconformal Field Theories
NASA Astrophysics Data System (ADS)
Willett, Brian
In this thesis we apply the technique of localization to three-dimensional N = 2 superconformal field theories. We consider both theories which are exactly superconformal, and those which are believed to flow to nontrivial superconformal fixed points, for which we consider implicitly these fixed points. We find that in such theories, the partition function and certain supersymmetric observables, such as Wilson loops, can be computed exactly by a matrix model. This matrix model consists of an integral over g , the Lie algebra of the gauge group of the theory, of a certain product of 1-loop factors and classical contributions. One can also consider a space of supersymmetric deformations of the partition function corresponding to the set of abelian global symmetries. In the second part of the thesis we apply these results to test dualities. We start with the case of ABJM theory, which is dual to M-theory on an asymptotically AdS4 x S7 background. We extract strong coupling results in the field theory, which can be compared to semiclassical, weak coupling results in the gravity theory, and a nontrivial agreement is found. We also consider several classes of dualities between two three-dimensional field theories, namely, 3D mirror symmetry, Aharony duality, and Giveon-Kutasov duality. Here the dualities are typically between the IR limits of two Yang-Mills theories, which are strongly coupled in three dimensions since Yang-Mills theory is asymptotically free here. Thus the comparison is again very nontrivial, and relies on the exactness of the localization computation. We also compare the deformed partition functions, which tests the mapping of global symmetries of the dual theories. Finally, we discuss some recent progress in the understanding of general three-dimensional theories in the form of the F-theorem, a conjectured analogy to the a-theorem in four dimensions and c-theorem in two dimensions, which is closely related to the localization computation.
Holographic thermal field theory on curved spacetimes
NASA Astrophysics Data System (ADS)
Marolf, Donald; Rangamani, Mukund; Wiseman, Toby
2014-03-01
The AdS/CFT correspondence relates certain strongly-coupled CFTs with large effective central charge ceff to semi-classical gravitational theories with AdS asymptotics. We describe recent progress in understanding gravity duals for CFTs on non-trivial spacetimes at finite temperature, both in and out of equilibrium. Such gravity methods provide powerful new tools to access the physics of these strongly-coupled theories, which often differs qualitatively from that found at weak coupling. Our discussion begins with basic aspects of AdS/CFT and progresses through thermal CFTs on the Einstein Static Universe and on periodically identified Minkowski spacetime. In the latter context we focus on states describing so-called plasma-balls, which become stable at large ceff. We then proceed to out-of-equilibrium situations associated with dynamical bulk black holes. In particular, the non-compact nature of these bulk black holes allows stationary solutions with non-Killing horizons that describe time-independent flows of CFT plasma. As final a topic we consider CFTs on black hole spacetimes. This discussion provides insight into how the CFT transports heat between general heat sources and sinks of finite size. In certain phases the coupling to small sources can be strongly suppressed, resulting in negligible heat transport despite the presence of a deconfined plasma with sizeable thermal conductivity. We also present a new result, explaining how this so-called droplet behaviour is related to confinement via a change of conformal frame.
Abelian Chern{endash}Simons theory. I. A topological quantum field theory
Manoliu, M.
1998-01-01
We give a construction of the Abelian Chern{endash}Simons gauge theory from the point of view of a 2+1-dimensional topological quantum field theory. The definition of the quantum theory relies on geometric quantization ideas that have been previously explored in connection to the non-Abelian Chern{endash}Simons theory [J. Diff. Geom. {bold 33}, 787{endash}902 (1991); Topology {bold 32}, 509{endash}529 (1993)]. We formulate the topological quantum field theory in terms of the category of extended 2- and 3-manifolds introduced in a preprint by Walker in 1991 and prove that it satisfies the axioms of unitary topological quantum field theories formulated by Atiyah [Publ. Math. Inst. Hautes Etudes Sci. Pans {bold 68}, 175{endash}186 (1989)]. {copyright} {ital 1998 American Institute of Physics.}
Free Quantum Field Theory from Quantum Cellular Automata
NASA Astrophysics Data System (ADS)
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo; Tosini, Alessandro
2015-10-01
After leading to a new axiomatic derivation of quantum theory (see D'Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).
X(3872) in Effective Field Theory
Fleming, S.; Mehen, T.
2009-12-17
If the X(3872) resonance is a shallow boundstate of a the charm mesons D{sup 0}D-bar*{sup 0} and D*{sup 0}D-bar{sup 0}, it can be described by an effective theory of nonrelativistic D mesons coupled to nonrelativistic pions (X-EFT). In this talk, I give a brief overview of the X(3872), followed by a short review of X-EFT. I end my talk with results from calculations of the the next-to-leading-order correction to the partial decay width {gamma}[X{yields}D{sup 0}D-bar{sup 0}{pi}{sup 0}], and the decay of X(3872) to P-wave quarkonia.
Lorentz violation in supersymmetric field theories.
Nibbelink, Stefan Groot; Pospelov, Maxim
2005-03-04
We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies thereby escaping constraints from astrophysical searches for Lorentz violation.
Democracy of internal symmetries in supersymmetrical quantum field theory
Lopuszanski, J.T.
1981-12-01
The freedom of choice of some discrete and internal symmetries in the supersymmetric, massive, interacting quantum field theory is discussed. It is shown that the discrete symmetry consisting of changing the sign of some (not all) scalar fields is incompatible with the supersymmetric structure of the theory. It is further demonstrated that an internal symmetry which transforms only some of the fields of fixed spin leaving the other fields invariant and which acts nontrivially on the supercharges can not be admitted as a symmetry; although it can be a good internal symmetry in absence of supersymmetric covariance. Moreover, in case of a model consisting of scalar, spinor and vector fields even a symmetry which transforms all of the scalar (vector) fields leaving spinor and vector (scalar) fields unaffected is ruled out provided it acts nontrivially on some of the supercharges.
Statistical field theory description of inhomogeneous polarizable soft matter
NASA Astrophysics Data System (ADS)
Martin, Jonathan M.; Li, Wei; Delaney, Kris T.; Fredrickson, Glenn H.
2016-10-01
We present a new molecularly informed statistical field theory model of inhomogeneous polarizable soft matter. The model is based on fluid elements, referred to as beads, that can carry a net monopole of charge at their center of mass and a fixed or induced dipole through a Drude-type distributed charge approach. The beads are thus polarizable and naturally manifest attractive van der Waals interactions. Beyond electrostatic interactions, beads can be given soft repulsions to sustain fluid phases at arbitrary densities. Beads of different types can be mixed or linked into polymers with arbitrary chain models and sequences of charged and uncharged beads. By such an approach, it is possible to construct models suitable for describing a vast range of soft-matter systems including electrolyte and polyelectrolyte solutions, ionic liquids, polymerized ionic liquids, polymer blends, ionomers, and block copolymers, among others. These bead models can be constructed in virtually any ensemble and converted to complex-valued statistical field theories by Hubbard-Stratonovich transforms. One of the fields entering the resulting theories is a fluctuating electrostatic potential; other fields are necessary to decouple non-electrostatic interactions. We elucidate the structure of these field theories, their consistency with macroscopic electrostatic theory in the absence and presence of external electric fields, and the way in which they embed van der Waals interactions and non-uniform dielectric properties. Their suitability as a framework for computational studies of heterogeneous soft matter systems using field-theoretic simulation techniques is discussed.
The energy-momentum multiplet of supersymmetric defect field theories
NASA Astrophysics Data System (ADS)
Drukker, Nadav; Martelli, Dario; Shamir, Itamar
2017-08-01
Defects in field theories break translation invariance, resulting in the non-conservation of the energy-momentum tensor in the directions normal to the defect. This violation is known as the displacement operator. We study 4d N=1 theories with 3d defects preserving 3d N=1 supersymmetry by analyzing the embedding of the 3d superspace in the 4d superspace. We use this to construct the energy-momentum multiplet of such defect field theories, which we call the defect multiplet and show how it incorporates the displacement operator. We also derive the defect multiplet by using a superspace Noether procedure.
Fundamental string solutions in open string field theories
Michishita, Yoji
2006-02-15
In Witten's open cubic bosonic string field theory and Berkovits' superstring field theory we investigate solutions of the equations of motion with appropriate source terms, which correspond to Callan-Maldacena solution in Born-Infeld theory representing fundamental strings ending on the D-branes. The solutions are given in order by order manner, and we show some full order properties in the sense of {alpha}{sup '} expansion. In superstring case we show that the solution is 1/2 BPS in full order.
Towards field theory in spaces with multivolume junctions
NASA Astrophysics Data System (ADS)
Fomin, P. I.; Shtanov, Yu V.
2002-06-01
We consider a spacetime formed by several pieces with common timelike boundary which plays the role of a junction between them. We establish junction conditions for fields of various spins and derive the resulting laws of wave propagation through the junction, which turn out to be quite similar for fields of all spins. As an application, we consider the case of multivolume junctions in four-dimensional spacetime that may arise in the context of the theory of quantum creation of a closed universe on the background of a big mother universe. The theory developed can also be applied to braneworld models and to the superstring theory.
Very special relativity as a background field theory
NASA Astrophysics Data System (ADS)
Ilderton, Anton
2016-08-01
We consider violation of Lorentz invariance in QED induced by a very high frequency background wave. An effective theory is obtained by averaging observables over the rapid field oscillations. This preserves Ward identities and restores translation invariance below the high-frequency scale, but only partial Lorentz invariance: we show that the effective theory is C-invariant SIM(2)-QED in very special relativity. Averaging leads to the nonlocal terms familiar from SIM(2) theories, while the short-distance behavior of the background field fermion propagator generates the infinite number of higher-order vertices of SIM(2)-QED.
Field theory on R×S 3 topology. V: SU 2 gauge theory
NASA Astrophysics Data System (ADS)
Carmeli, M.; Malin, S.
1987-02-01
A gauge theory on R×S 3 topology is developed. It is a generalization to the previously obtained field theory on R×S 3 topology and in which equations of motion were obtained for a scalar particle, a spin one-half particle, the electromagnetic field of magnetic moments, and a Shrödinger-type equation, as compared to ordinary field equations defined on a Minkowskian manifold. The new gauge field equations are presented and compared to the ordinary Yang-Mills field equations, and the mathematical and physical differences between them are discussed.
An action for F-theory: {SL}(2){{{R}}}^{+} exceptional field theory
NASA Astrophysics Data System (ADS)
Berman, David S.; Blair, Chris D. A.; Malek, Emanuel; Rudolph, Felix J.
2016-10-01
We construct the 12-dimensional exceptional field theory (EFT) associated to the group {SL}(2)× {{{R}}}+. Demanding the closure of the algebra of local symmetries leads to a constraint, known as the section condition, that must be imposed on all fields. This constraint has two inequivalent solutions, one giving rise to 11-dimensional supergravity and the other leading to F-theory. Thus {SL}(2)× {{{R}}}+ EFT contains both F-theory and M-theory in a single 12-dimensional formalism.
Effective Field Theories from Soft Limits of Scattering Amplitudes.
Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Trnka, Jaroslav
2015-06-05
We derive scalar effective field theories-Lagrangians, symmetries, and all-from on-shell scattering amplitudes constructed purely from Lorentz invariance, factorization, a fixed power counting order in derivatives, and a fixed order at which amplitudes vanish in the soft limit. These constraints leave free parameters in the amplitude which are the coupling constants of well-known theories: Nambu-Goldstone bosons, Dirac-Born-Infeld scalars, and Galilean internal shift symmetries. Moreover, soft limits imply conditions on the Noether current which can then be inverted to derive Lagrangians for each theory. We propose a natural classification of all scalar effective field theories according to two numbers which encode the derivative power counting and soft behavior of the corresponding amplitudes. In those cases where there is no consistent amplitude, the corresponding theory does not exist.
Comments on conformal Killing vector fields and quantum field theory
Brown, M.R.; Ottewill, A.C.; Siklos, S.T.C.
1982-10-15
We give a comprehensive analysis of those vacuums for flat and conformally flat space-times which can be defined by timelike, hypersurface-orthogonal, conformal Killing vector fields. We obtain formulas for the difference in stress-energy density between any two such states and display the correspondence with the renormalized stress tensors. A brief discussion is given of the relevance of these results to quantum-mechanical measurements made by noninertial observers moving through flat space.
The field theory of intersecting D3-branes
NASA Astrophysics Data System (ADS)
Mintun, Eric; Polchinski, Joseph; Sun, Sichun
2015-08-01
We examine the defect gauge theory on two perpendicular D3-branes with a 1+1 dimensional intersection, consisting of U(1) fields on the D3-branes and charged hypermultiplets on the intersection. We argue that this gauge theory must have a magnetically charged soliton corresponding to the D-string stretched between the branes. We show that the hypermultiplets actually source magnetic as well as electric fields. The magnetic charges are confined if the hypermultiplet action is canonical, but considerations of periodicity of the hypermultiplet space in string theory imply a nontrivial Gibbons-Hawking metric, and we show that there is then the expected magnetic kink solution. The hypermultiplet metric has a singularity, which we argue must be resolved by embedding in the full string theory. Another interesting feature is that the classical field equations have logarithmic divergences at the intersection, which lead to a classical renormalization group flow in the action.
On classification of extremal non-holomorphic conformal field theories
NASA Astrophysics Data System (ADS)
Tener, James E.; Wang, Zhenghan
2017-03-01
Rational chiral conformal field theories are organized according to their genus, which consists of a modular tensor category C and a central charge c. A long-term goal is to classify unitary rational conformal field theories based on a classification of unitary modular tensor categories. We conjecture that for any unitary modular tensor category C , there exists a unitary chiral conformal field theory V so that its modular tensor category {{C}V} is C . In this paper, we initiate a mathematical program in and around this conjecture. We define a class of extremal vertex operator algebras with minimal conformal dimensions as large as possible for their central charge, and non-trivial representation theory. We show that there are finitely many different characters of extremal vertex operator algebras V possessing at most three different irreducible modules. Moreover, we list all of the possible characters for such vertex operator algebras with c≤slant 48 .
Emergent geometry from field theory: Wilson's renormalization group revisited
NASA Astrophysics Data System (ADS)
Kim, Ki-Seok; Park, Chanyong
2016-06-01
We find a geometrical description from a field theoretical setup based on Wilson's renormalization group in real space. We show that renormalization group equations of coupling parameters encode the metric structure of an emergent curved space, regarded to be an Einstein equation for the emergent gravity. Self-consistent equations of local order-parameter fields with an emergent metric turn out to describe low-energy dynamics of a strongly coupled field theory, analogous to the Maxwell equation of the Einstein-Maxwell theory in the AdSd +2 /CFTd +1 duality conjecture. We claim that the AdS3 /CFT2 duality may be interpreted as Landau-Ginzburg theory combined with Wilson's renormalization group, which introduces vertex corrections into the Landau-Ginzburg theory in the large-Ns limit, where Ns is the number of fermion flavors.
Graphene, Lattice Field Theory and Symmetries
Drissi, L. B.; Bousmina, M.; Saidi, E. H.
2011-02-15
Borrowing ideas from tight binding model, we propose a board class of lattice field models that are classified by non simply laced Lie algebras. In the case of A{sub N-1{approx_equal}}su(N) series, we show that the couplings between the quantum states living at the first nearest neighbor sites of the lattice L{sub suN} are governed by the complex fundamental representations N-bar and N of su(N) and the second nearest neighbor interactions are described by its adjoint N-bar x N. The lattice models associated with the leading su(2), su(3), and su(4) cases are explicitly studied and their fermionic field realizations are given. It is also shown that the su(2) and su(3) models describe the electronic properties of the acetylene chain and the graphene, respectively. It is established as well that the energy dispersion of the first nearest neighbor couplings is completely determined by the A{sub N} roots {alpha} through the typical dependence N/2+{Sigma}{sub roots} cos(k.{alpha} with k the wave vector.Other features such as the SO(2N) extension and other applications are also discussed.
DBI scalar field theory for QGP hydrodynamics
NASA Astrophysics Data System (ADS)
Nastase, Horatiu
2016-07-01
A way to describe the hydrodynamics of the quark-gluon plasma using a Dirac-Born-Infeld (DBI) action is proposed, based on the model found by Heisenberg for high energy scattering of nucleons. The expanding plasma is described as a shockwave in a DBI model for a real scalar standing in for the pion, and I show that one obtains a fluid description in terms of a relativistic fluid that near the shock is approximately ideal (η ≃0 ) and conformal. One can introduce an extra term inside the square root of the DBI action that generates a shear viscosity term in the energy-momentum tensor near the shock, as well as a bulk viscosity, and regulates the behavior of the energy density at the shock, making it finite. The resulting fluid satisfies the relativistic Navier-Stokes equation with uμ,ρ ,P ,η defined in terms of ϕ and its derivatives. One finds a relation between the parameters of the theory and the quark-gluon plasma thermodynamics, α /β2=η /(s T ), and by fixing α and β from usual (low multiplicity) particle scattering, one finds T ∝mπ.
Topics in lattice QCD and effective field theory
NASA Astrophysics Data System (ADS)
Buchoff, Michael I.
Quantum Chromodynamics (QCD) is the fundamental theory that governs hadronic physics. However, due to its non-perturbative nature at low-energy/long distances, QCD calculations are difficult. The only method for performing these calculations is through lattice QCD. These computationally intensive calculations approximate continuum physics with a discretized lattice in order to extract hadronic phenomena from first principles. However, as in any approximation, there are multiple systematic errors between lattice QCD calculation and actual hardronic phenomena. Developing analytic formulae describing the systematic errors due to the discrete lattice spacings is the main focus of this work. To account for these systematic effects in terms of hadronic interactions, effective field theory proves to be useful. Effective field theory (EFT) provides a formalism for categorizing low-energy effects of a high-energy fundamental theory as long as there is a significant separation in scales. An example of this is in chiral perturbation theory (chiPT), where the low-energy effects of QCD are contained in a mesonic theory whose applicability is a result of a pion mass smaller than the chiral breaking scale. In a similar way, lattice chiPT accounts for the low-energy effects of lattice QCD, where a small lattice spacing acts the same way as the quark mass. In this work, the basics of this process are outlined, and multiple original calculations are presented: effective field theory for anisotropic lattices, I=2 pipi scattering for isotropic, anisotropic, and twisted mass lattices. Additionally, a combination of effective field theory and an isospin chemical potential on the lattice is proposed to extract several computationally difficult scattering parameters. Lastly, recently proposed local, chiral lattice actions are analyzed in the framework of effective field theory, which illuminates various challenges in simulating such actions.
3D quantum gravity and effective noncommutative quantum field theory.
Freidel, Laurent; Livine, Etera R
2006-06-09
We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.
Spinor field theory at finite temperature in the early Universe
NASA Astrophysics Data System (ADS)
Banerjee, N.; Mallik, S.
1992-01-01
We consider the Dirac field on a spatially flat Robertson-Walker space-time. We find the exact expression for the Dirac propagator for an arbitrary scale factor in the real-time formulation of finite-temperature field theory. The mode functions used in the construction satisfy uncoupled ordinary differential equations.
Medical Argument and Field Theory: The Laetrile Case.
ERIC Educational Resources Information Center
Dunbar, Nancy R.
One approach to field theory in argumentation begins with a description of argumentation and, by identifying similarities or regularities in discursive practice, attempts to induce the nature and characteristics of a field. The controversy surrounding the use of Laetrile, a proposed cancer treatment, provides an example of this approach. Assuming…
From scalar field theories to supersymmetric quantum mechanics
NASA Astrophysics Data System (ADS)
Bazeia, D.; Bemfica, F. S.
2017-04-01
In this work, we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here, we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.
Hermeneutical Field Theory and the Structural Character of Understanding.
NASA Astrophysics Data System (ADS)
Whitehouse, William Leonard
Through a series of exploratory case studies focusing on hermeneutics, phenomenology, relativity, field theory, quantum mechanics, chronobiology, chaos theory, holographic theory and various aspects of mathematics, a set of hermeneutical constraints and degrees of freedom are generated. There are a set of eight field equations given in the thesis which give qualitative symbolic expression to the aforementioned spectrum of constraints and degrees of freedom that constitute the structural character of understanding. However, as is sometimes the case with their quantitative mathematical counterparts, the hermeneutical field equations are capable of giving a variety of descriptions or solutions for one and the same set of conditions. The task, therefore, is to try to sort out those solutions which have reflective properties with respect to the structural character of reality from those which do not have such properties. The thesis addresses this task by introducing the idea of hermeneutical field theory. In this theory the notion of a semiotic operator or semiotic quantum plays a central role. More specifically, this quantum is considered to be the carrier of hermeneutical force. It arises as a field property at the complex, horizontal membrane-manifold linking human consciousness with different levels of scale of reality. When taken collectively, the aforementioned set of equations gives expression to the structural character of hermeneutical field theory. Therefore, when one begins to run concrete variables through the theory underlying these equations, one encounters various kinds of hermeneutical constraints and degrees of freedom. These constraints and degrees of freedom characterize the dialectical engagement of consciousness and reality as one seeks to acquire understanding concerning the above mentioned variables and the context which gives rise to them. Hermeneutical field theory is really the study of the factors that affect the state of the six internal
On principal admissible representations and conformal field theory
NASA Astrophysics Data System (ADS)
Mathieu, P.; Walton, M. A.
1999-08-01
The principal admissible representations of affine Kac-Moody algebras are studied, with a view to their use in conformal field theory. We discuss the generation of the set of principal admissible highest weights, concentrating mainly on Ar(1) at rational level k. A related algorithm is described that produces the Malikov-Feigen-Fuchs null vectors of these representations. With the principal admissible description of the highest weights, we are able to prove that field identifications (including maverick ones) lead to the canonical description of the primary fields of the nonunitary diagonal coset theories.
New dynamical mean-field dynamo theory and closure approach.
Blackman, Eric G; Field, George B
2002-12-23
We develop a new nonlinear mean field dynamo theory that couples field growth to the time evolution of the magnetic helicity and the turbulent electromotive force, E. We show that the difference between kinetic and current helicities emerges naturally as the growth driver when the time derivative of E is coupled into the theory. The solutions predict significant field growth in a kinematic phase and a saturation rate/strength that is magnetic Reynolds number dependent/independent in agreement with numerical simulations. The amplitude of early time oscillations provides a diagnostic for the closure.
Cold atom simulation of interacting relativistic quantum field theories.
Cirac, J Ignacio; Maraner, Paolo; Pachos, Jiannis K
2010-11-05
We demonstrate that Dirac fermions self-interacting or coupled to dynamic scalar fields can emerge in the low energy sector of designed bosonic and fermionic cold atom systems. We illustrate this with two examples defined in two spacetime dimensions. The first one is the self-interacting Thirring model. The second one is a model of Dirac fermions coupled to a dynamic scalar field that gives rise to the Gross-Neveu model. The proposed cold atom experiments can be used to probe spectral or correlation properties of interacting quantum field theories thereby presenting an alternative to lattice gauge theory simulations.
ALPs effective field theory and collider signatures
NASA Astrophysics Data System (ADS)
Brivio, I.; Gavela, M. B.; Merlo, L.; Mimasu, K.; No, J. M.; del Rey, R.; Sanz, V.
2017-08-01
We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo-) Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono- Z, mono- W, W-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realisations.
Long-range interactions in lattice field theory
Rabin, J.M.
1981-06-01
Lattice quantum field theories containing fermions can be formulated in a chirally invariant way provided long-range interactions are introduced. It is established that in weak-coupling perturbation theory such a lattice theory is renormalizable when the corresponding continuum theory is, and that the continuum theory is indeed recovered in the perturbative continuum limit. In the strong-coupling limit of these theories one is led to study an effective Hamiltonian describing a Heisenberg antiferromagnet with long-range interactions. Block-spin renormalization group methods are used to find a critical rate of falloff of the interactions, approximately as inverse distance squared, which separates a nearest-neighbor-antiferromagnetic phase from a phase displaying identifiable long-range effects. A duality-type symmetry is present in some block-spin calculations.
Dualities among one-time field theories with spin, emerging from a unifying two-time field theory
NASA Astrophysics Data System (ADS)
Bars, Itzhak; Quélin, Guillaume
2008-06-01
The relation between two-time physics (2T-physics) and the ordinary one-time formulation of physics (1T-physics) is similar to the relation between a 3-dimensional object moving in a room and its multiple shadows moving on walls when projected from different perspectives. The multiple shadows as seen by observers stuck on the wall are analogous to the effects of the 2T-universe as experienced in ordinary 1T spacetime. In this paper we develop some of the quantitative aspects of this 2T to 1T relationship in the context of field theory. We discuss 2T field theory in d+2 dimensions and its shadows in the form of 1T field theories when the theory contains Klein-Gordon, Dirac and Yang-Mills fields, such as the standard model of particles and forces. We show that the shadow 1T field theories must have hidden relations among themselves. These relations take the form of dualities and hidden spacetime symmetries. A subset of the shadows are 1T field theories in different gravitational backgrounds (different space-times) such as the flat Minkowski spacetime, the Robertson-Walker expanding universe, AdSd-k×Sk, and others, including singular ones. We explicitly construct the duality transformations among this conformally flat subset, and build the generators of their hidden SO(d,2) symmetry. The existence of such hidden relations among 1T field theories, which can be tested by both theory and experiment in 1T-physics, is part of the evidence for the underlying d+2 dimensional spacetime and the unifying 2T-physics structure.
Prime Numbers, Quantum Field Theory and the Goldbach Conjecture
NASA Astrophysics Data System (ADS)
Sanchis-Lozano, Miguel-Angel; Barbero G., J. Fernando; Navarro-Salas, José
2012-09-01
Motivated by the Goldbach conjecture in number theory and the Abelian bosonization mechanism on a cylindrical two-dimensional space-time, we study the reconstruction of a real scalar field as a product of two real fermion (so-called prime) fields whose Fourier expansion exclusively contains prime modes. We undertake the canonical quantization of such prime fields and construct the corresponding Fock space by introducing creation operators bp\\dag — labeled by prime numbers p — acting on the vacuum. The analysis of our model, based on the standard rules of quantum field theory and the assumption of the Riemann hypothesis, allows us to prove that the theory is not renormalizable. We also comment on the potential consequences of this result concerning the validity or breakdown of the Goldbach conjecture for large integer numbers.
Generalized conservation laws in non-local field theories
NASA Astrophysics Data System (ADS)
Kegeles, Alexander; Oriti, Daniele
2016-04-01
We propose a geometrical treatment of symmetries in non-local field theories, where the non-locality is due to a lack of identification of field arguments in the action. We show that the existence of a symmetry of the action leads to a generalized conservation law, in which the usual conserved current acquires an additional non-local correction term, obtaining a generalization of the standard Noether theorem. We illustrate the general formalism by discussing the specific physical example of complex scalar field theory of the type describing the hydrodynamic approximation of Bose-Einstein condensates. We expect our analysis and results to be of particular interest for the group field theory formulation of quantum gravity.
Symmetries in Three-Dimensional Superconformal Quantum Field Theories
NASA Astrophysics Data System (ADS)
Bashkirov, Denis
Many examples of gauge-gravity duality and quantum equivalences of different-looking three-dimensional Quantum Field Theories indicate the existence of continuous symmetries whose currents are not built from elementary, or perturbative, fields used to write down the Lagrangian. These symmetries are called hidden or nonperturbative. We describe a method for studying continuous symmetries in a large class of three-dimensional supersymmetric gauge theories which, in particular, enables one to explore nonperturbative global symmetries and supersymmetries. As an application of the method, we prove conjectured supersymmetry enhancement in strongly coupled ABJM theory from N = 6 to N = 8 and find additional nonperturbative evidence for its duality to the N = 8 U(N) SYM theory for the minimal value of the Chern-Simons coupling. Hidden supersymmetry is also shown to occur in N = 4 d = 3 SQCD with one fundamental and one adjoint hypermultiplets. An infinite family of N = 6 d = 3 ABJ theories is proved to have hidden N = 8 superconformal symmetry and hidden parity on the quantum level. We test several conjectural dualities between ABJ theories and theories proposed by Bagger and Lambert, and Gustavsson by comparing superconformal indices of these theories. Comparison of superconformal indices is also used to test dualities between N = 2 d = 3 theories proposed by Aharony, the analysis of whose chiral rings teaches some general lessons about nonperturbative chiral operators of strongly coupled 3d supersymmetric gauge theories. As another application of our method we consider examples of hidden global symmetries in a class of quiver three-dimensional N = 4 superconformal gauge theories. Finally, we point out to the relations between some basic propeties of superconformal N ≥ 6 theories and their symmetries. The results presented in this thesis were obtained in a series of papers [1, 2, 3, 4, 5].
Massive basketball diagram for a thermal scalar field theory
NASA Astrophysics Data System (ADS)
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-01
The ``basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a φ4 interaction to three-loop order.
Renormalization and non-linear symmetries in quantum field theory
NASA Astrophysics Data System (ADS)
Velenich, Andrea
Most of the phenomena we experience, from the microscopic world to the universe at its largest scales, are out of equilibrium and their comprehensive formalization is one of the open problems in theoretical physics. Fluids of interacting particles cooled down or compressed quickly enough to become amorphous solids are an example of rich out-of-equilibrium systems with very slow relaxation dynamics. Even though the equilibrium phases are ordered, these systems remain trapped in glassy metastable states, with disordered microscopic structures. As a realistic model of this phenomenology, in the first part of this work I focused on a field theory of particles obeying a Brownian dynamics. The field-theoretic action displays a time-reversal symmetry leading to Fluctuation-Dissipation relations. For non-interacting particles I solved the field theory exactly, providing the explicit form of all the correlation functions, with their space and time dependence. As a non-perturbative result, the distribution of the density field has been proven to be Poissonian and not Gaussian. For interacting particles the field theory presents two major challenges: its apparent non-renormalizability and a non-linear implementation of the time-reversal symmetry. Non-linear field redefinitions can be used to make the symmetry linear and might even lead to the solution of the interacting equations of motion. However they also alter the renormalizability properties of a field theory. These challenges inspired the second part of the work, where a more abstract approach was taken. Using algebraic methods I investigated the effect of non-linear field redefinitions both on symmetry and on renormalization by focusing on simple scalar field theories as toy models. In the formal setting of the Hopf algebra of Feynman diagrams, symmetries take the form of Hopf ideals and enforce relations among scattering amplitudes; such relations can drastically reduce the number of independent couplings in a field
EPS (Electric Particulate Suspension) Microgravity Technology Provides NASA with New Tools
NASA Technical Reports Server (NTRS)
Colver, Gerald M.; Greene, Nate; Xu, Hua
2004-01-01
The Electric Particulate Suspension is a fire safety ignition test system being developed at Iowa State University with NASA support for evaluating combustion properties of powders, powder-gas mixtures, and pure gases in microgravity and gravitational atmospheres (quenching distance, ignition energy, flammability limits). A separate application is the use of EPS technology to control heat transfer in vacuum and space environment enclosures. In combustion testing, ignitable powders (aluminum, magnesium) are introduced in the EPS test cell and ignited by spark, while the addition of inert particles act as quenching media. As a combustion research tool, the EPS method has potential as a benchmark design for quenching powder flames that would provide NASA with a new fire safety standard for powder ignition testing. The EPS method also supports combustion modeling by providing accurate measurement of flame-quenching distance as an important parameter in laminar flame theory since it is closely related to characteristic flame thickness and flame structure. In heat transfer applications, inert powder suspensions (copper, steel) driven by electric fields regulate heat flow between adjacent surfaces enclosures both in vacuum (or gas) and microgravity. This simple E-field control can be particularly useful in space environments where physical separation is a requirement between heat exchange surfaces.
Quantum field theory constrains traversable wormhole geometries
Ford, L.H. |; Roman, T.A. |
1996-05-01
Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of an uncertainty-principle-type constraint on the magnitude and duration of the negative energy density seen by a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhole must be only a little larger than Planck size or that there is a large discrepancy in the length scales which characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin band many orders of magnitude smaller than the throat size. These results would seem to make the existence of macroscopic traversable wormholes very improbable. {copyright} {ital 1996 The American Physical Society.}
Relating the archetypes of logarithmic conformal field theory
NASA Astrophysics Data System (ADS)
Creutzig, Thomas; Ridout, David
2013-07-01
Logarithmic conformal field theory is a rich and vibrant area of modern mathematical physics with well-known applications to both condensed matter theory and string theory. Our limited understanding of these theories is based upon detailed studies of various examples that one may regard as archetypal. These include the c=-2 triplet model, the Wess-Zumino-Witten model on SL(2;R) at level k=-1/2 >, and its supergroup analogue on GL(1|1). Here, the latter model is studied algebraically through representation theory, fusion and modular invariance, facilitating a subsequent investigation of its cosets and extended algebras. The results show that the archetypes of logarithmic conformal field theory are in fact all very closely related, as are many other examples including, in particular, the SL(2|1) models at levels 1 and -1/2 >. The conclusion is then that the archetypal examples of logarithmic conformal field theory are practically all the same, so we should not expect that their features are in any way generic. Further archetypal examples must be sought.
Chiral orbifold construction of field theories with extra dimensions
NASA Astrophysics Data System (ADS)
Hailu, Girma
We build higher dimensional field theories which have chiral fermion zero-modes on orbifolds. We show that orbifold boundary conditions and scalar vacuum expectation values interplay to produce chiral fermions localized on fat three branes. We develop a scheme for computing field propagators in higher dimensional theories obeying chiral orbifold boundary conditions. Using this scheme we compute the loop corrections to an effective field theory in five dimensions. We find that the renormalization group running of the higher dimensional bulk theory leads to a running of the four dimensional brane couplings. We generalize an argument to verify that the chiral anomaly that arises in these chiral orbifold theories is entirely confined on and uniformly distributed over the fixed points of the orbifold, independent of the shape of the chiral zero-modes. We construct a setup in which a scalar field with appropriate profile in the extra dimension is used to address the hierarchy problem and also localize both chiral fermions and zero-mode gravitons on the same three brane in five dimensions. We construct exact and nonpetrurbative quantum moduli spaces and dynamical superpotentials of an infinite set of linear and ring N = 1 supersymmetric moose theories with SU(2) gauge group at each node and link chiral superfields in the fundamental representation.
Conformal field theory out of equilibrium: a review
NASA Astrophysics Data System (ADS)
Bernard, Denis; Doyon, Benjamin
2016-06-01
We provide a pedagogical review of the main ideas and results in non-equilibrium conformal field theory and connected subjects. These concern the understanding of quantum transport and its statistics at and near critical points. Starting with phenomenological considerations, we explain the general framework, illustrated by the example of the Heisenberg quantum chain. We then introduce the main concepts underlying conformal field theory (CFT), the emergence of critical ballistic transport, and the CFT scattering construction of non-equilibrium steady states. Using this we review the theory for energy transport in homogeneous one-dimensional critical systems, including the complete description of its large deviations and the resulting (extended) fluctuation relations. We generalize some of these ideas to one-dimensional critical charge transport and to the presence of defects, as well as beyond one-dimensional criticality. We describe non-equilibrium transport in free-particle models, where connections are made with generalized Gibbs ensembles, and in higher-dimensional and non-integrable quantum field theories, where the use of the powerful hydrodynamic ideas for non-equilibrium steady states is explained. We finish with a list of open questions. The review does not assume any advanced prior knowledge of conformal field theory, large-deviation theory or hydrodynamics.
Selected engineering properties and applications of EPS geofoam
NASA Astrophysics Data System (ADS)
Elragi, Ahmed Fouad
Expanded polystyrene (EPS) geofoam is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of soil. It has good thermal insulation properties with stiffness and compression strength comparable to medium clay. It is utilized in reducing settlement below embankments, sound and vibration damping, reducing lateral pressure on substructures, reducing stresses on rigid buried conduits and related applications. This study starts with an overview on EPS geofoam. EPS manufacturing processes are described followed by a review of engineering properties found in previous research work done so far. Standards and design manuals applicable to EPS are presented. Selected EPS geofoam-engineering applications are discussed with examples. State-of-the-art of experimental work is done on different sizes of EPS specimens under different loading rates for better understanding of the behavior of the material. The effects of creep, sample size, strain rate and cyclic loading on the stress strain response are studied. Equations for the initial modulus and the strength of the material under compression for different strain rates are presented. The initial modulus and Poisson's ratio are discussed in detail. Sample size effect on creep behavior is examined. Three EPS projects are shown in this study. The creep behavior of the largest EPS geofoam embankment fill is shown. Results from laboratory tests, mathematical modeling and field records are compared to each other. Field records of a geofoam-stabilized slope are compared to finite difference analysis results. Lateral stress reduction on an EPS backfill retaining structure is analyzed. The study ends with a discussion on two promising properties of EPS geofoam. These are the damping ability and the compressibility of this material. Finite element analysis, finite difference analysis and lab results are included in this discussion. The discussion with the
Quantum Field Theory in Curved Spacetime
NASA Astrophysics Data System (ADS)
Reynolds, Sally C.; Gallagher, Andrew
2012-03-01
List of contributors; Foreword J. T. Francis Thackeray; 1. African genesis: an evolving paradigm Sally C. Reynolds; 2. Academic genealogy Peter Ungar and Phillip V. Tobias; Part I. In Search of Origins: Evolutionary Theory, New Species, and Paths into the Past: 3. Speciation in hominin evolution Colin Groves; 4. Searching for a new paradigm for hominid origins in Chad (Central Africa) Michel Brunet; 5. From hominoid arboreality to hominid bipedalism Brigitte Senut; 6. Orrorin and the African ape/hominid dichotomy Martin Pickford; 7. A brief history and results of 40 years of Sterkfontein excavations Ronald J. Clarke; Part II. Hominin Morphology Through Time: Brains, Bodies and Teeth: 8. Hominin brain evolution, 1925-2011: an emerging overview Dean Falk; 9. The issue of brain reorganisation in Australopithecus and early hominids: Dart had it right Ralph L. Holloway; 10. The mass of the human brain: is it a spandrel? Paul R. Manger, Jason Hemingway, Muhammad Spocter and Andrew Gallagher; 11. Origin and diversity of early hominin bipedalism Henry M. McHenry; 12. Forelimb adaptations in Australopithecus afarensis Michelle S. M. Drapeau; 13. Hominin proximal femur morphology from the Tugen Hills to Flores Brian G. Richmond and William L. Jungers; 14. Daily rates of dentine formation and root extension rates in Paranthropus boisei, KNM-ER 1817, from Koobi Fora, Kenya M. Christopher Dean; 15. On the evolutionary development of early hominid molar teeth and the Gondolin Paranthropus molar Kevin L. Kuykendall; 16. Digital South African fossils: morphological studies using reference-based reconstruction and electronic preparation Gerhard W. Weber, Philipp Gunz, Simon Neubauer, Philipp Mitteroecker and Fred L. Bookstein; Part III. Modern Human Origins: Patterns, and Processes: 17. Body size in African Middle Pleistocene Homo Steven E. Churchill, Lee R. Berger, Adam Hartstone-Rose and Headman Zondo; 18. The African origin of recent humanity Milford H. Wolpoff and Sang-Hee Lee
Janiszewski, Stefan; Karch, Andreas
2013-02-22
We argue that generic nonrelativistic quantum field theories with a holographic description are dual to Hořava gravity. We construct explicit examples of this duality embedded in string theory by starting with relativistic dual pairs and taking a nonrelativistic scaling limit.
Thermofield dynamics extension of the open string field theory
NASA Astrophysics Data System (ADS)
Botta Cantcheff, M.; Scherer Santos, R. J.
2016-03-01
We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.
Quantum field theory in spaces with closed timelike curves
NASA Astrophysics Data System (ADS)
Boulware, David G.
1992-11-01
Gott spacetime has closed timelike curves, but no locally anomalous stress energy. A complete orthonormal set of eigenfunctions of the wave operator is found in the special case of a spacetime in which the total deficit angle is 2π. A scalar quantum field theory is constructed using these eigenfunctions. The resultant interacting quantum field theory is not unitary because the field operators can create real, on-shell, particles in the noncausal region. These particles propagate for finite proper time accumulating an arbitrary phase before being annihilated at the same spacetime point as that at which they were created. As a result, the effective potential within the noncausal region is complex, and probability is not conserved. The stress tensor of the scalar field is evaluated in the neighborhood of the Cauchy horizon; in the case of a sufficiently small Compton wavelength of the field, the stress tensor is regular and cannot prevent the formation of the Cauchy horizon.
World sheet commuting {beta}{gamma} conformal field theory and nonrelativistic string theories
Kim, Bom Soo
2007-11-15
We construct a sigma model in two dimensions with Galilean symmetry in flat target space similar to the sigma model of the critical string theory with Lorentz symmetry in 10 flat spacetime dimensions. This is motivated by the works of Gomis and Ooguri [J. Math. Phys. (N.Y.) 42, 3127 (2001)] and Danielsson et al. [J. High Energy Phys. 10 (2000) 020; J. High Energy Phys. 03 (2001) 041.]. Our theory is much simpler than their theory and does not assume a compact coordinate. This nonrelativistic string theory has a bosonic matter {beta}{gamma} conformal field theory with the conformal weight of {beta} as 1. It is natural to identify time as a linear combination of {gamma} and {gamma} through an explicit realization of the Galilean boost symmetry. The angle between {gamma} and {gamma} parametrizes one parameter family of selection sectors. These selection sectors are responsible for having a nonrelativistic dispersion relation without a nontrivial topology in the nonrelativistic setup, which is one of the major differences from the previous works of Gomis and Ooguri and of Danielsson and co-workers. This simple theory is the nonrelativistic analogue of the critical string theory, and there are many different avenues ahead to be investigated. We mention a possible consistent generalization of this theory with different conformal weights for the {beta}{gamma} conformal field theory. We also mention supersymmetric generalizations of these theories.
2009-09-23
ISS020-E-041819 (23 Sept. 2009) --- Canadian Space Agency astronaut Robert Thirsk and NASA astronaut Nicole Stott, both Expedition 20 flight engineers, work the controls of the Canadarm2 in the Destiny laboratory of the International Space Station. Thirsk and Stott used the station?s robotic arm to release and extract the Exposed Pallet (EP) from the Unpressurized Logistics Carrier (ULC) to hand over to the JEM Robotic Manipulator System (JEM-RMS) and berth to the JEM Exposed Facility / Exposed Facility Unit 10 (JEF EFU10).
Inductive approach towards a phenomenologically more satisfactory unififed field theory
Rayski, J.; Rayski J.M. Jnr.
1985-11-01
A unified field theory constituting a fusion of the ideas of supersymmetries with general relativity and gauge theory is investigated. A Lagrangian formalism is constructed step by step; the last step consists in a marriage with Kaluza's idea of a multidimensional space-time. Our aim is not to achieve a full local supersymmetry in eleven dimensions, but rather to attain a compromise with the symmetries of the fundamental interactions either known phenomenologically, or only suspected to exist in nature.
Quantum field theory on curved spacetimes: Axiomatic framework and examples
NASA Astrophysics Data System (ADS)
Fredenhagen, Klaus; Rejzner, Kasia
2016-03-01
In this review article, we want to expose a systematic development of quantum field theory on curved spacetimes. The leading principle is the emphasis on local properties. It turns out that this requires a reformulation of the QFT framework which also yields a new perspective for the theories on Minkowski space. The aim of the present work is to provide an almost self-contained introduction into the framework, which should be accessible for both mathematical physicists and mathematicians.
Quantum field theory on curved spacetimes: Axiomatic framework and examples
Fredenhagen, Klaus; Rejzner, Kasia
2016-03-15
In this review article, we want to expose a systematic development of quantum field theory on curved spacetimes. The leading principle is the emphasis on local properties. It turns out that this requires a reformulation of the QFT framework which also yields a new perspective for the theories on Minkowski space. The aim of the present work is to provide an almost self-contained introduction into the framework, which should be accessible for both mathematical physicists and mathematicians.
Algebras in tensor categories and coset conformal field theories
NASA Astrophysics Data System (ADS)
Fröhlich, J.; Fuchs, J.; Runkel, I.; Schweigert, C.
2004-06-01
The coset construction is the most important tool to construct rational conformal field theories with known chiral data. For some cosets at small level, so-called maverick cosets, the familiar analysis using selection and identification rules breaks down. Intriguingly, this phenomenon is linked to the existence of exceptional modular invariants. Recent progress in CFT, based on studying algebras in tensor categories, allows for a universal construction of the chiral data of coset theories which in particular also applies to maverick cosets.
Chiral Effective Field Theory in the Δ-RESONANCE Region
NASA Astrophysics Data System (ADS)
Pascalutsa, Vladimir
2007-10-01
I discuss the problem of constructing an effective low-energy theory in the vicinity of a resonance or a bound state. The focus is on the example of the Δ(1232), the lightest resonance in the nucleon sector. Recent developments of the chiral effective-field theory in the Δ-resonance region are briefly reviewed. I conclude with a comment on the merits of the manifestly covariant formulation of chiral EFT in the baryon sector.
Chiral Effective Field Theory in the $\\Delta$-resonance region
Vladimir Pascalutsa
2006-09-18
I discuss the problem of constructing an effective low-energy theory in the vicinity of a resonance or a bound state. The focus is on the example of the $\\Delta(1232)$, the lightest resonance in the nucleon sector. Recent developments of the chiral effective-field theory in the $\\Delta$-resonance region are briefly reviewed. I conclude with a comment on the merits of the manifestly covariant formulation of chiral EFT in the baryon sector.
Large field inflation models from higher-dimensional gauge theories
NASA Astrophysics Data System (ADS)
Furuuchi, Kazuyuki; Koyama, Yoji
2015-02-01
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante's Inferno model turns out to be the most preferred model in this framework.
Large field inflation models from higher-dimensional gauge theories
Furuuchi, Kazuyuki; Koyama, Yoji
2015-02-23
Motivated by the recent detection of B-mode polarization of CMB by BICEP2 which is possibly of primordial origin, we study large field inflation models which can be obtained from higher-dimensional gauge theories. The constraints from CMB observations on the gauge theory parameters are given, and their naturalness are discussed. Among the models analyzed, Dante’s Inferno model turns out to be the most preferred model in this framework.
Motion of small bodies in classical field theory
Gralla, Samuel E.
2010-04-15
I show how prior work with R. Wald on geodesic motion in general relativity can be generalized to classical field theories of a metric and other tensor fields on four-dimensional spacetime that (1) are second-order and (2) follow from a diffeomorphism-covariant Lagrangian. The approach is to consider a one-parameter-family of solutions to the field equations satisfying certain assumptions designed to reflect the existence of a body whose size, mass, and various charges are simultaneously scaled to zero. (That such solutions exist places a further restriction on the class of theories to which our results apply.) Assumptions are made only on the spacetime region outside of the body, so that the results apply independent of the body's composition (and, e.g., black holes are allowed). The worldline 'left behind' by the shrinking, disappearing body is interpreted as its lowest-order motion. An equation for this worldline follows from the 'Bianchi identity' for the theory, without use of any properties of the field equations beyond their being second-order. The form of the force law for a theory therefore depends only on the ranks of its various tensor fields; the detailed properties of the field equations are relevant only for determining the charges for a particular body (which are the ''monopoles'' of its exterior fields in a suitable limiting sense). I explicitly derive the force law (and mass-evolution law) in the case of scalar and vector fields, and give the recipe in the higher-rank case. Note that the vector force law is quite complicated, simplifying to the Lorentz force law only in the presence of the Maxwell gauge symmetry. Example applications of the results are the motion of 'chameleon' bodies beyond the Newtonian limit, and the motion of bodies in (classical) non-Abelian gauge theory. I also make some comments on the role that scaling plays in the appearance of universality in the motion of bodies.
Quantum entanglement of local operators in conformal field theories.
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-21
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.
Quantum Entanglement of Local Operators in Conformal Field Theories
NASA Astrophysics Data System (ADS)
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-01
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.
Quantum Lifshitz Field Theory of a Frustrated Ferromagnet.
Balents, Leon; Starykh, Oleg A
2016-04-29
We propose a universal nonlinear sigma model field theory for one-dimensional frustrated ferromagnets, which applies in the vicinity of a "quantum Lifshitz point," at which the ferromagnetic state develops a spin wave instability. We investigate the phase diagram resulting from perturbations of the exchange and of magnetic field away from the Lifshitz point, and uncover a rich structure with two distinct regimes of different properties, depending upon the value of a marginal, dimensionless, parameter of the theory. In the regime relevant for one-dimensional systems with low spin, we find a metamagnetic transition line to a vector chiral phase. This line terminates in a critical end point, beyond which there is at least one multipolar or "spin nematic" phase. We show that the field theory is asymptotically exactly soluble near the Lifshitz point.
Quantum field theory on a cosmological, quantum space-time
Ashtekar, Abhay; Kaminski, Wojciech; Lewandowski, Jerzy
2009-03-15
In loop quantum cosmology, Friedmann-LeMaitre-Robertson-Walker space-times arise as well-defined approximations to specific quantum geometries. We initiate the development of a quantum theory of test scalar fields on these quantum geometries. Emphasis is on the new conceptual ingredients required in the transition from classical space-time backgrounds to quantum space-times. These include a ''relational time''a la Leibniz, the emergence of the Hamiltonian operator of the test field from the quantum constraint equation, and ramifications of the quantum fluctuations of the background geometry on the resulting dynamics. The familiar quantum field theory on classical Friedmann-LeMaitre-Robertson-Walker models arises as a well-defined reduction of this more fundamental theory.
Luckhurst, Geoffrey R; Naemura, Shohei; Sluckin, Timothy J; Thomas, Kenneth S; Turzi, Stefano S
2012-03-01
Nematic liquid crystal phase diagrams in temperature-biaxiality space are usually complex. We construct a Landau theory based on the analogous molecular-field theory for orthorhombic biaxial nematic fluids. A formal procedure yields coefficients (some of which, unusually, can be tensorial) in this Landau expansion, correctly predicts the complete set of invariants formed from the ordering tensors, and avoids ad hoc parametrization of the molecular biaxiality. By regularizing the Landau expansion to avoid unwanted order parameter divergences at low temperatures, we predict phase behavior over the whole range of biaxiality. The resulting phase diagrams have the same topology as those of molecular-field theory.
Continuous-spin particle field theory with helicity correspondence
NASA Astrophysics Data System (ADS)
Schuster, Philip; Toro, Natalia
2015-01-01
We propose the first covariant local action describing the propagation of a single free continuous-spin degree of freedom. The theory is simply formulated as a gauge theory in a "vector superspace," but can also be formulated in terms of a tower of symmetric tensor gauge fields. When the spin invariant ρ vanishes, the helicity correspondence is manifest—familiar gauge theory actions are recovered and couplings to conserved currents can easily be introduced. For nonzero ρ , a tower of tensor currents must be present, of which only the lowest rank is exactly conserved. A paucity of local gauge-invariant operators for nonzero ρ suggests that the equations of motion in any interacting theory should be covariant, not invariant, under a generalization of the free theory's gauge symmetry.
A Variational Statistical-Field Theory for Polar Liquid Mixtures
NASA Astrophysics Data System (ADS)
Zhuang, Bilin; Wang, Zhen-Gang
Using a variational field-theoretic approach, we derive a molecularly-based theory for polar liquid mixtures. The resulting theory consists of simple algebraic expressions for the free energy of mixing and the dielectric constant as functions of mixture composition. Using only the dielectric constants and the molar volumes of the pure liquid constituents, the theory evaluates the mixture dielectric constants in good agreement with the experimental values for a wide range of liquid mixtures, without using adjustable parameters. In addition, the theory predicts that liquids with similar dielectric constants and molar volumes dissolve well in each other, while sufficient disparity in these parameters result in phase separation. The calculated miscibility map on the dielectric constant-molar volume axes agrees well with known experimental observations for a large number of liquid pairs. Thus the theory provides a quantification for the well-known empirical ``like-dissolves-like'' rule. Bz acknowledges the A-STAR fellowship for the financial support.
Noncommutative Gravity and Quantum Field Theory on Noncommutative Curved Spacetimes
NASA Astrophysics Data System (ADS)
Schenkel, Alexander
2012-10-01
The focus of this PhD thesis is on applications, new developments and extensions of the noncommutative gravity theory proposed by Julius Wess and his group. In part one we propose an extension of the usual symmetry reduction procedure to noncommutative gravity. We classify in the case of abelian Drinfel'd twists all consistent deformations of spatially flat Friedmann-Robertson-Walker cosmologies and of the Schwarzschild black hole. The deformed symmetry structure allows us to obtain exact solutions of the noncommutative Einstein equations in many of our models. In part two we develop a new formalism for quantum field theory on noncommutative curved spacetimes by combining methods from the algebraic approach to quantum field theory with noncommutative differential geometry. We also study explicit examples of deformed wave operators and find that there can be noncommutative corrections even on the level of free field theories. The convergent deformation of simple toy models is investigated and it is found that these theories have an improved behaviour at short distances, i.e. in the ultraviolet. In part three we study homomorphisms between and connections on noncommutative vector bundles. We prove that all homomorphisms and connections of the deformed theory can be obtained by applying a quantization isomorphism to undeformed homomorphisms and connections. The extension of homomorphisms and connections to tensor products of bimodules is clarified. As a nontrivial application of the new mathematical formalism we extend our studies of exact noncommutative gravity solutions to more general deformations.
Master functional and proper formalism for quantum gauge field theory
NASA Astrophysics Data System (ADS)
Anselmi, Damiano
2013-03-01
We develop a general field-covariant approach to quantum gauge theories. Extending the usual set of integrated fields and external sources to "proper" fields and sources, which include partners of the composite fields, we define the master functional Ω, which collects one-particle irreducible diagrams and upgrades the usual Γ-functional in several respects. The functional Ω is determined from its classical limit applying the usual diagrammatic rules to the proper fields. Moreover, it behaves as a scalar under the most general perturbative field redefinitions, which can be expressed as linear transformations of the proper fields. We extend the Batalin-Vilkovisky formalism and the master equation. The master functional satisfies the extended master equation and behaves as a scalar under canonical transformations. The most general perturbative field redefinitions and changes of gauge-fixing can be encoded in proper canonical transformations, which are linear and do not mix integrated fields and external sources. Therefore, they can be applied as true changes of variables in the functional integral, instead of mere replacements of integrands. This property overcomes a major difficulty of the functional Γ. Finally, the new approach allows us to prove the renormalizability of gauge theories in a general field-covariant setting. We generalize known cohomological theorems to the master functional and show that when there are no gauge anomalies all divergences can be subtracted by means of parameter redefinitions and proper canonical transformations.
New Phenomena in NC Field Theory and Emergent Spacetime Geometry
Ydri, Badis
2010-10-31
We give a brief review of two nonperturbative phenomena typical of noncommutative field theory which are known to lead to the perturbative instability known as the UV-IR mixing. The first phenomena concerns the emergence/evaporation of spacetime geometry in matrix models which describe perturbative noncommutative gauge theory on fuzzy backgrounds. In particular we show that the transition from a geometrical background to a matrix phase makes the description of noncommutative gauge theory in terms of fields via the Weyl map only valid below a critical value g*. The second phenomena concerns the appearance of a nonuniform ordered phase in noncommutative scalar {phi}{sup 4} field theory and the spontaneous symmetry breaking of translational/rotational invariance which happens even in two dimensions. We argue that this phenomena also originates in the underlying matrix degrees of freedom of the noncommutative field theory. Furthermore it is conjectured that in addition to the usual WF fixed point at {theta} = 0 there must exist a novel fixed point at {theta} = {infinity} corresponding to the quartic hermitian matrix model.
Global Symmetries, Volume Independence, and Continuity in Quantum Field Theories.
Sulejmanpasic, Tin
2017-01-06
We discuss quantum field theories with global SU(N) and O(N) symmetries for which temporal direction is compactified on a circle of size L with periodicity of fields up to a global symmetry transformation, i.e., twisted boundary conditions. Such boundary conditions correspond to an insertion of the global symmetry operator in the partition function. We argue in general and prove in particular for CP(N-1) and O(N) nonlinear sigma models that large-N volume independence holds. Further we show that the CP(N-1) theory is free from the Affleck phase transition confirming the Ünsal-Dunne continuity conjecture.
On the CJT formalism in multi-field theories
NASA Astrophysics Data System (ADS)
Amelino-Camelia, Giovanni
1996-02-01
The issues that arise when using the Cornwall-Jackiw-Tomboulis formalism in multi-field theories are investigated. Particular attention is devoted to the interplay between temperature effects, ultraviolet structure, and the interdependence of the gap equations. Results are presented explicitly in the case of the evaluation of the finite temperature effective potential of a theory with two scalar fields which has attracted interest as a toy model for symmetry nonrestoration at high temperatures. The lowest nontrivial order of approximation of the Cornwall-Jackiw-Tomboulis effective potential is shown to lead to consistent results, which are relevant for recent studies of symmetry nonrestoration by Bimonte and Lozano.
Holographic Dual of a Boundary Conformal Field Theory
Takayanagi, Tadashi
2011-09-02
We propose a holographic dual of a conformal field theory defined on a manifold with boundaries, i.e., boundary conformal field theory (BCFT). Our new holography, which may be called anti-de Sitter BCFT, successfully calculates the boundary entropy or g function in two-dimensional BCFTs and it agrees with the finite part of the holographic entanglement entropy. Moreover, we can naturally derive a holographic g theorem. We also analyze the holographic dual of an interval at finite temperature and show that there is a first order phase transition.
Holographic dual of a boundary conformal field theory.
Takayanagi, Tadashi
2011-09-02
We propose a holographic dual of a conformal field theory defined on a manifold with boundaries, i.e., boundary conformal field theory (BCFT). Our new holography, which may be called anti-de Sitter BCFT, successfully calculates the boundary entropy or g function in two-dimensional BCFTs and it agrees with the finite part of the holographic entanglement entropy. Moreover, we can naturally derive a holographic g theorem. We also analyze the holographic dual of an interval at finite temperature and show that there is a first order phase transition.
Entanglement entropy of non-unitary conformal field theory
NASA Astrophysics Data System (ADS)
Bianchini, D.; Castro-Alvaredo, O.; Doyon, B.; Levi, E.; Ravanini, F.
2015-01-01
Here we show that the Rényi entanglement entropy of a region of large size ℓ in a one-dimensional critical model whose ground state breaks conformal invariance (such as in those described by non-unitary conformal field theories), behaves as {{S}n}˜ \\frac{{{c}eff}(n+1)}{6n}log \\ell , where {{c}eff}=c-24Δ \\gt 0 is the effective central charge, c (which may be negative) is the central charge of the conformal field theory and Δ \
Canonical formulation and conserved charges of double field theory
Naseer, Usman
2015-10-26
We provide the canonical formulation of double field theory. It is shown that this dynamics is subject to primary and secondary constraints. The Poisson bracket algebra of secondary constraints is shown to close on-shell according to the C-bracket. We also give a systematic way of writing boundary integrals in doubled geometry. Finally, by including appropriate boundary terms in the double field theory Hamiltonian, expressions for conserved energy and momentum of an asymptotically flat doubled space-time are obtained and applied to a number of solutions.
Mapping a Massless Scalar Field Theory on a Yang-Mills Theory:. Classical Case
NASA Astrophysics Data System (ADS)
Frasca, Marco
We analyze a recent proposal to map a massless scalar field theory onto a Yang-Mills theory at classical level. It is seen that this mapping exists at a perturbative level when the expansion is a gradient expansion. In this limit the theories share the spectrum, at the leading order, that is the one of a harmonic oscillator. Gradient expansion is exploited maintaining Lorentz covariance by introducing a fifth coordinate and turning the theory to Euclidean space. These expansions give common solutions to scalar and Yang-Mills field equations that are so proved to exist by construction, confirming that the selected components of the Yang-Mills field are indeed an extremum of the corresponding action functional.
A field theory of piezoelectric media containing dislocations
Taupin, V. Fressengeas, C.; Ventura, P.; Lebyodkin, M.
2014-04-14
A field theory is proposed to extend the standard piezoelectric framework for linear elastic solids by accounting for the presence and motion of dislocation fields and assessing their impact on the piezoelectric properties. The proposed theory describes the incompatible lattice distortion and residual piezoelectric polarization fields induced by dislocation ensembles, as well as the dynamic evolution of these fields through dislocation motion driven by coupled electro-mechanical loading. It is suggested that (i) dislocation mobility may be enhanced or inhibited by the electric field, depending on the polarity of the latter, (ii) plasticity mediated by dislocation motion allows capturing long-term time-dependent properties of piezoelectric polarization. Due to the continuity of the proposed electro-mechanical framework, the stress/strain and polarization fields are smooth even in the dislocation core regions. The theory is applied to gallium nitride layers for validation. The piezoelectric polarization fields associated with bulk screw/edge dislocations are retrieved and surface potential modulations are predicted. The results are extended to dislocation loops.
Preheating in an asymptotically safe quantum field theory
NASA Astrophysics Data System (ADS)
Svendsen, Ole; Moghaddam, Hossein Bazrafshan; Brandenberger, Robert
2016-10-01
We consider reheating in a class of asymptotically safe quantum field theories recently studied in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J. High Energy Phys. 01 (2016) 081]. These theories allow for an inflationary phase in the very early universe. Inflation ends with a period of reheating. Since the models contain many scalar fields which are intrinsically coupled to the inflaton there is the possibility of parametric resonance instability in the production of these fields, and the danger that the induced curvature fluctuations will become too large. Here we show that the parametric instability indeed arises, and that hence the energy transfer from the inflaton condensate to fluctuating fields is rapid. Demanding that the curvature fluctuations induced by the parametrically amplified entropy modes do not exceed the upper observational bounds puts a lower bound on the number of fields which the model followed in [D. F. Litim and F. Sannino, Asymptotic safety guaranteed, J. High Energy Phys. 12 (2014) 178; D. F. Litim, M. Mojaza, and F. Sannino, Vacuum stability of asymptotically safe gauge-Yukawa theories, J. High Energy Phys. 01 (2016) 081] must contain. This bound also depends on the total number of e -foldings of the inflationary phase.
Lattice field theory studies of magnetic catalysis in graphene
NASA Astrophysics Data System (ADS)
Winterowd, Christopher R.
Consisting of a single two-dimensional layer of Carbon atoms arranged in a hexagonal lattice, graphene represents one of the most exciting recent developments in condensed matter physics. With novel electronic and mechancial properties, graphene not only has great potential with respect to technological applications, but also displays phenomena that typically appear in relativistic quantum field theory. The low-energy electronic excitations of graphene consist of two identical species of massless Dirac particles. Due to the small Fermi velocity, these particles are strongly coupled through the Coulomb interaction. Although various perturbative approaches have succeeded in elucidating many of the electronic properties of graphene, one would still like a nonperturbative study to address various questions. In particular, the spontaneous breaking of chiral symmetry in the presence of an external magnetic field, commonly known as magnetic catalysis, is one of these questions. Early studies of this phenomenon in model relativistic field theories have posited the mechanism to be universal. More recently, this mechanism of spontaneous symmetry breaking has been studied in low-dimensional condensed matter systems. Due to the strongly-coupled nature of the low-energy effective field theory of graphene, nonperturbative methods of lattice gauge theory can be used which are well suited to studying chiral symmetry breaking. Most notably used to study the theory of the strong interactions, quantum chromodynamics, these methods have proven successful in elucidating nonperturbative phenomena in cases where perturbative methods fail. In this thesis, using these methods, evidence in favor of magnetic catalysis in the graphene effective field theory will be presented.
Fuzzy Field Theory as a Random Matrix Model
NASA Astrophysics Data System (ADS)
Tekel, Juraj
This dissertation considers the theory of scalar fields on fuzzy spaces from the point of view of random matrices. First we define random matrix ensembles, which are natural description of such theory. These ensembles are new and the novel feature is a presence of kinetic term in the probability measure, which couples the random matrix to a set of external matrices and thus breaks the original symmetry. Considering the case of a free field ensemble, which is generalization of a Gaussian matrix ensemble, we develop a technique to compute expectation values of the observables of the theory based on explicit Wick contractions and we write down recursion rules for these. We show that the eigenvalue distribution of the random matrix follows the Wigner semicircle distribution with a rescaled radius. We also compute distributions of the matrix Laplacian of the random matrix given by the new term and demonstrate that the eigenvalues of these two matrices are correlated. We demonstrate the robustness of the method by computing expectation values and distributions for more complicated observables. We then consider the ensemble corresponding to an interacting field theory, with a quartic interaction. We use the same method to compute the distribution of the eigenvalues and show that the presence of the kinetic terms rescales the distribution given by the original theory, which is a polynomially deformed Wigner semicircle. We compute the eigenvalue distribution of the matrix Laplacian and the joint distribution up to second order in the correlation and we show that the correlation between the two changes from the free field case. Finally, as an application of these results, we compute the phase diagram of the fuzzy scalar field theory, we find multiscaling which stabilizes this diagram in the limit of large matrices and compare it with the results obtained numerically and by considering the kinetic part as a perturbation.
Soto, Ana M.; Sonnenschein, Carlos
2014-01-01
The somatic mutation theory (SMT) of cancer has been and remains the prevalent theory attempting to explain how neoplasms arise and progress. This theory proposes that cancer is a clonal, cell-based disease, and implicitly assumes that quiescence is the default state of cells in multicellular organisms. The SMT has not been rigorously tested, and several lines of evidence raise questions that are not addressed by this theory. Herein, we propose experimental strategies that may validate the SMT. We also call attention to an alternative theory of carcinogenesis, the tissue organization field theory (TOFT), which posits that cancer is a tissue-based disease and that proliferation is the default state of all cells. Based on epistemological and experimental evidence, we argue that the TOFT compellingly explains carcinogenesis, while placing it within an evolutionarily relevant context. PMID:21503935
Field theory of propagating reaction-diffusion fronts
Escudero, C.
2004-10-01
The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at results already confirmed by numerical simulations.
Topological BF field theory description of topological insulators
Cho, Gil Young; Moore, Joel E.
2011-06-15
Research Highlights: > We show that a BF theory is the effective theory of 2D and 3D topological insulators. > The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. > The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. > Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a {pi} flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Group field theory for quantum gravity minimally coupled to a scalar field
NASA Astrophysics Data System (ADS)
Li, Yang; Oriti, Daniele; Zhang, Mingyi
2017-10-01
We construct a group field theory model for quantum gravity minimally coupled to relativistic scalar fields, defining as well a corresponding discrete gravity path integral (and, implicitly, a coupled spin foam model) in its Feynman expansion. We also analyze a number of variations of the same model, the corresponding discrete gravity path integrals, its generalization to the coupling of multiple scalar fields and discuss its possible applications to the extraction of effective cosmological dynamics from the full quantum gravity formalism, in the context of group field theory condensate cosmology.
Aspects of Supersymmetric Field Theories and Complex Geometry
NASA Astrophysics Data System (ADS)
Crichigno, Patricio Marcos
In this dissertation we study various aspects of Supersymmetric Quantum Field Theory and Complex Geometry. We focus on three main aspects. The first is general N = (2, 2) gauged linear sigma models involving semichiral fields. We show that integrating out the semichiral vector multiplet leads to the generalized potential for a hyperkahler manifold, providing a formulation of the hyperkahler quotient in a generalized setting. We then discuss a new quotient construction which leads to non-Kahler manifolds. The second problem we study is motivated by recent developments in the study of the Coulomb branch of supersymmetric theories with a hyperkahler moduli space. A crucial element in these developments is the expression for Darboux coordinates in the hyperkahler manifold. We give a simple derivation of this expression by using projective superspace techniques and we apply this to the study of the moduli space of theories with eight supercharges on R3 x S¹ and R3 x T². Finally, we study the partition function of three-dimensional Chern-Simons theories on S³ with affine ADE quivers. We give a general formula for the partition function of affine D-type quivers in terms of the Chern-Simons levels, providing a prediction for the volume of an infinite family of tri-Sasaki Einstein manifolds corresponding to the gravitational duals of such field theories.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
ERIC Educational Resources Information Center
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
ERIC Educational Resources Information Center
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
Dirac's equation and the nature of quantum field theory
NASA Astrophysics Data System (ADS)
Plotnitsky, Arkady
2012-11-01
This paper re-examines the key aspects of Dirac's derivation of his relativistic equation for the electron in order advance our understanding of the nature of quantum field theory. Dirac's derivation, the paper argues, follows the key principles behind Heisenberg's discovery of quantum mechanics, which, the paper also argues, transformed the nature of both theoretical and experimental physics vis-à-vis classical physics and relativity. However, the limit theory (a crucial consideration for both Dirac and Heisenberg) in the case of Dirac's theory was quantum mechanics, specifically, Schrödinger's equation, while in the case of quantum mechanics, in Heisenberg's version, the limit theory was classical mechanics. Dirac had to find a new equation, Dirac's equation, along with a new type of quantum variables, while Heisenberg, to find new theory, was able to use the equations of classical physics, applied to different, quantum-mechanical variables. In this respect, Dirac's task was more similar to that of Schrödinger in his work on his version of quantum mechanics. Dirac's equation reflects a more complex character of quantum electrodynamics or quantum field theory in general and of the corresponding (high-energy) experimental quantum physics vis-à-vis that of quantum mechanics and the (low-energy) experimental quantum physics. The final section examines this greater complexity and its implications for fundamental physics.
Positive Energy Conditions in 4D Conformal Field Theory
NASA Astrophysics Data System (ADS)
Farnsworth, Kara; Luty, Markus; Prilepina, Valentina
2016-03-01
We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality avgT00 >= - C /L4 , where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the ``conformal collider'' constraints of Hofman and Maldacena. We speculate that there may be theories that violate the Hofman-Maldacena bounds, but satisfy our bounds. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.
NASA Astrophysics Data System (ADS)
Goncharov, Yu. P.
This survey is devoted to possible manifestations of remarkable topological duality between real scalar and spinor fields (TDSS) existing on a great number of manifolds important in physical applications. The given manifestations are demonstrated to occur within the framework of miscellaneous branches in ordinary and supersymmetric quantum field theories, supergravity, Kaluza-Klein type theories, cosmology, strings, membranes and p-branes. All this allows one to draw the condusion that the above duality will seem to be an essential ingredient in many questions of present and future investigations.
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
NASA Astrophysics Data System (ADS)
Ko, Sung Moon; Melby-Thompson, Charles M.; Meyer, René; Park, Jeong-Hyuck
2015-12-01
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (`non-geometry'), but even locally (`non-Riemannian'). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri [1] arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of [2] on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
Decoherence in an interacting quantum field theory: The vacuum case
Koksma, Jurjen F.; Prokopec, Tomislav; Schmidt, Michael G.
2010-03-15
We apply the decoherence formalism to an interacting scalar field theory. In the spirit of the decoherence literature, we consider a 'system field' and an 'environment field' that interact via a cubic coupling. We solve for the propagator of the system field, where we include the self-energy corrections due to the interaction with the environment field. In this paper, we consider an environment in the vacuum state (T=0). We show that neglecting inaccessible non-Gaussian correlators increases the entropy of the system as perceived by the observer. Moreover, we consider the effect of a changing mass of the system field in the adiabatic regime, and we find that at late times no additional entropy has been generated.
Sketch of J. R. Kantor's Psychological Interbehavioral Field Theory
ERIC Educational Resources Information Center
Delprato, Dennis J.; Smith, Noel W.
2009-01-01
We provide a sketch of J. R. Kantor's (1959, 1971) psychological interbehavioral field (IBF) theory by identifying 9 essential points and briefly discussing each. The main emphasis of this sketch is on the foundation of Kantor's thinking, the IBF. Suggestions for further study are provided.
Chiral field theories as models for hadron substructure
Kahana, S.H.
1987-03-01
A model for the nucleon as soliton of quarks interacting with classical meson fields is described. The theory, based on the linear sigma model, is renormalizable and capable of including sea quarks straightforwardly. Application to nuclear matter is made in a Wigner-Seitz approximation.
Schr"odinger's Unified Field Theory: Physics by Public Relations
NASA Astrophysics Data System (ADS)
Halpern, Paul
2009-05-01
We will explore the circumstances surrounding Erwin Schr"odinger's announcement in January 1947 that he had developed a comprehensive unified field theory of gravitation and electromagnetism. We will speculate on Schr"odinger's motivations for the mode and tone of his statements, consider the reaction of the international press within the context of the postwar era, and examine Einstein's response.
Quantum Corrections and Effective Action in Field Theory
NASA Astrophysics Data System (ADS)
Dalvit, Diego A. R.
1998-07-01
In this Thesis we study quantum corrections to the classical dynamics for mean values in field theory. To that end we make use of the formalism of the closed time path effective action to get real and causal equations of motion. We introduce a coarse grained effective action, which is useful in the study of phase transitions in field theory. We derive an exact renormalization group equation that describes how this action varies with the coarse graining scale. We develop different approximation methods to solve that equation, and we obtain non perturbative improvements to the effective potential for a self interacting scalar field theory. We also discuss the stochastic aspects contained in this action. On the other hand, using the effective action, we find low energy and large distance quantum corrections for the gravitational potential, treating relativity as an effective low energy theory. We include the effect of scalar fields, fermions and gravitons. The inclusion of metric fluctuations causes Einstein semiclassical equations to depend on the gauge fixing parameters, and they are therefore non physical. We solve this problem identifying as a physical observable the trayectory of a test particle. We explicitly show that the geodesic equation for such particle is independent of the arbitrary parameters of the gauge fixing.
The effective field theory of K-mouflage
Brax, Philippe; Valageas, Patrick E-mail: patrick.valageas@cea.fr
2016-01-01
We describe K-mouflage models of modified gravity using the effective field theory of dark energy. We show how the Lagrangian density K defining the K-mouflage models appears in the effective field theory framework, at both the exact fully nonlinear level and at the quadratic order of the effective action. We find that K-mouflage scenarios only generate the operator (δg{sup 00}{sub (u)}){sup n} at each order n. We also reverse engineer K-mouflage models by reconstructing the whole effective field theory, and the full cosmological behaviour, from two functions of the Jordan-frame scale factor in a tomographic manner. This parameterisation is directly related to the implementation of the K-mouflage screening mechanism: screening occurs when K' is large in a dense environment such as the deep matter and radiation eras. In this way, K-mouflage can be easily implemented as a calculable subclass of models described by the effective field theory of dark energy which could be probed by future surveys.
Recent Progress in Nuclear Lattice Simulations with Effective Field Theory
NASA Astrophysics Data System (ADS)
Lee, D.
2007-10-01
This proceedings article summarizes recent work presented at Chiral Dynamics 2006 on nuclear lattice simulations with chiral effective field theory for light nuclei. This work has been done in collaboration with Bubar {gra} Borasoy , Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meißner.
Constructive field theory and applications: Perspectives and open problems
NASA Astrophysics Data System (ADS)
Rivasseau, V.
2000-06-01
In this paper we review many interesting open problems in mathematical physics which may be attacked with the help of tools from constructive field theory. They could give work for future mathematical physicists trained with constructive methods well into the 21st century.
Dynamical mean-field theory from a quantum chemical perspective.
Zgid, Dominika; Chan, Garnet Kin-Lic
2011-03-07
We investigate the dynamical mean-field theory (DMFT) from a quantum chemical perspective. Dynamical mean-field theory offers a formalism to extend quantum chemical methods for finite systems to infinite periodic problems within a local correlation approximation. In addition, quantum chemical techniques can be used to construct new ab initio Hamiltonians and impurity solvers for DMFT. Here, we explore some ways in which these things may be achieved. First, we present an informal overview of dynamical mean-field theory to connect to quantum chemical language. Next, we describe an implementation of dynamical mean-field theory where we start from an ab initio Hartree-Fock Hamiltonian that avoids double counting issues present in many applications of DMFT. We then explore the use of the configuration interaction hierarchy in DMFT as an approximate solver for the impurity problem. We also investigate some numerical issues of convergence within DMFT. Our studies are carried out in the context of the cubic hydrogen model, a simple but challenging test for correlation methods. Finally, we finish with some conclusions for future directions.
The effective field theory of K-mouflage
NASA Astrophysics Data System (ADS)
Brax, Philippe; Valageas, Patrick
2016-01-01
We describe K-mouflage models of modified gravity using the effective field theory of dark energy. We show how the Lagrangian density K defining the K-mouflage models appears in the effective field theory framework, at both the exact fully nonlinear level and at the quadratic order of the effective action. We find that K-mouflage scenarios only generate the operator (δg00(u))n at each order n. We also reverse engineer K-mouflage models by reconstructing the whole effective field theory, and the full cosmological behaviour, from two functions of the Jordan-frame scale factor in a tomographic manner. This parameterisation is directly related to the implementation of the K-mouflage screening mechanism: screening occurs when K' is large in a dense environment such as the deep matter and radiation eras. In this way, K-mouflage can be easily implemented as a calculable subclass of models described by the effective field theory of dark energy which could be probed by future surveys.
Sketch of J. R. Kantor's Psychological Interbehavioral Field Theory
ERIC Educational Resources Information Center
Delprato, Dennis J.; Smith, Noel W.
2009-01-01
We provide a sketch of J. R. Kantor's (1959, 1971) psychological interbehavioral field (IBF) theory by identifying 9 essential points and briefly discussing each. The main emphasis of this sketch is on the foundation of Kantor's thinking, the IBF. Suggestions for further study are provided.
A note on large gauge transformations in double field theory
Naseer, Usman
2015-06-01
We give a detailed proof of the conjecture by Hohm and Zwiebach in double field theory. This result implies that their proposal for large gauge transformations in terms of the Jacobian matrix for coordinate transformations is, as required, equivalent to the standard exponential map associated with the generalized Lie derivative along a suitable parameter.
Information channel capacity in the field theory estimation
NASA Astrophysics Data System (ADS)
Sładkowski, J.; Syska, J.
2012-12-01
The construction of the information capacity for the vector position parameter in the Minkowskian space-time is presented. This lays the statistical foundations of the kinematical term of the Lagrangian of the physical action for many field theory models, derived by the extremal physical information method of Frieden and Soffer.
Effective field theory for plasmas at all temperatures and densities
NASA Astrophysics Data System (ADS)
Braaten, Eric
1993-05-01
The solution of the plasmon problem and the subsequent development of an effective field-theory approach to ultrarelativistic plasmas are reviewed. The effective Lagrangians that summarize collective effects in ultrarelativistic quark-gluon and electron-photon plasmas are presented. A generalization that describes an electromagnetic plasma at all temperatures and densities is proposed.
On the exotic Higgs decays in effective field theory.
Bélusca-Maïto, Hermès; Falkowski, Adam
2016-01-01
We discuss exotic Higgs decays in an effective field theory where the Standard Model is extended by dimension-6 operators. We review and update the status of two-body lepton- and quark-flavor-violating decays involving the Higgs boson. We also comment on the possibility of observing three-body flavor-violating Higgs decays in this context.
Morse theory for vector fields and the Witten Laplacian
Enciso, Alberto; Peralta-Salas, Daniel
2009-05-06
In this paper we informally review some recent developments on the analytical approach to Morse-type inequalities for vector fields. Throughout this work we focus on the main ideas of this approach and emphasize the application of the theory to concrete examples.
An alternative topological field theory of generalized complex geometry
NASA Astrophysics Data System (ADS)
Ikeda, Noriaki; Tokunaga, Tatsuya
2007-09-01
We propose a new topological field theory on generalized complex geometry in two dimension using AKSZ formulation. Zucchini's model is A model in the case that the generalized complex structure depends on only a symplectic structure. Our new model is B model in the case that the generalized complex structure depends on only a complex structure.
Holographic Duals for Five-Dimensional Superconformal Quantum Field Theories.
D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F
2017-03-10
We construct global solutions to type IIB supergravity with 16 residual supersymmetries whose space-time is AdS_{6}×S^{2} warped over a Riemann surface. Families of solutions are labeled by an arbitrary number L≥3 of asymptotic regions, in each of which the supergravity fields match those of a (p,q) five-brane, and may therefore be viewed as near-horizon limits of fully localized intersections of five-branes in type IIB string theory. These solutions provide compelling candidates for holographic duals to a large class of five-dimensional superconformal quantum field theories which arise as nontrivial UV fixed points of perturbatively nonrenormalizable Yang-Mills theories, thereby making them more directly accessible to quantitative analysis.
Holographic Duals for Five-Dimensional Superconformal Quantum Field Theories
NASA Astrophysics Data System (ADS)
D'Hoker, Eric; Gutperle, Michael; Uhlemann, Christoph F.
2017-03-01
We construct global solutions to type IIB supergravity with 16 residual supersymmetries whose space-time is AdS6×S2 warped over a Riemann surface. Families of solutions are labeled by an arbitrary number L ≥3 of asymptotic regions, in each of which the supergravity fields match those of a (p ,q ) five-brane, and may therefore be viewed as near-horizon limits of fully localized intersections of five-branes in type IIB string theory. These solutions provide compelling candidates for holographic duals to a large class of five-dimensional superconformal quantum field theories which arise as nontrivial UV fixed points of perturbatively nonrenormalizable Yang-Mills theories, thereby making them more directly accessible to quantitative analysis.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
Geometric and Topological Methods for Quantum Field Theory
NASA Astrophysics Data System (ADS)
Cardona, Alexander; Contreras, Iván.; Reyes-Lega, Andrés. F.
2013-05-01
Introduction; 1. A brief introduction to Dirac manifolds Henrique Bursztyn; 2. Differential geometry of holomorphic vector bundles on a curve Florent Schaffhauser; 3. Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles Sylvie Paycha; 4. Introduction to Feynman integrals Stefan Weinzierl; 5. Iterated integrals in quantum field theory Francis Brown; 6. Geometric issues in quantum field theory and string theory Luis J. Boya; 7. Geometric aspects of the standard model and the mysteries of matter Florian Scheck; 8. Absence of singular continuous spectrum for some geometric Laplacians Leonardo A. Cano García; 9. Models for formal groupoids Iván Contreras; 10. Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity Andrés Vargas; 11. Regularized traces and the index formula for manifolds with boundary Alexander Cardona and César Del Corral; Index.
On gradient field theories: gradient magnetostatics and gradient elasticity
NASA Astrophysics Data System (ADS)
Lazar, Markus
2014-09-01
In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
Unified Topological Field Theory for Gapped and Gapless Systems
NASA Astrophysics Data System (ADS)
Bulmash, Daniel; Hosur, Pavan; Zhang, Shou-Cheng; Qi, Xiao-Liang
2015-03-01
We present a scheme for systematically enumerating the responses of gapped as well as gapless systems of free fermions to electromagnetic and strain fields starting from a common parent theory. Using the fact that position operators in the lowest Landau level of a quantum Hall state are canonically conjugate, we consider a massive Dirac fermion in 2 n spatial dimensions under n mutually orthogonal magnetic fields and reinterpret physical space in the resulting zeroth Landau level as phase space in n spatial dimensions. The bulk topological responses of the parent Dirac fermion, given by a Chern-Simons theory, translate into quantized insulator responses, while its edge anomalies characterize the response of gapless systems. Moreover, various physically different responses are seen to be related by the interchange of position and momentum variables. We derive many well-known responses, and demonstrate the utility of our theory by predicting spectral flow along dislocations in Weyl semimetals.
Quantum processes: A Whiteheadian interpretation of quantum field theory
NASA Astrophysics Data System (ADS)
Bain, Jonathan
Quantum processes: A Whiteheadian interpretation of quantum field theory is an ambitious and thought-provoking exercise in physics and metaphysics, combining an erudite study of the very complex metaphysics of A.N. Whitehead with a well-informed discussion of contemporary issues in the philosophy of algebraic quantum field theory. Hättich's overall goal is to construct an interpretation of quantum field theory. He does this by translating key concepts in Whitehead's metaphysics into the language of algebraic quantum field theory. In brief, this Hättich-Whitehead (H-W, hereafter) interpretation takes "actual occasions" as the fundamental ontological entities of quantum field theory. An actual occasion is the result of two types of processes: a "transition process" in which a set of initial possibly-possessed properties for the occasion (in the form of "eternal objects") is localized to a space-time region; and a "concrescence process" in which a subset of these initial possibly-possessed properties is selected and actualized to produce the occasion. Essential to these processes is the "underlying activity", which conditions the way in which properties are initially selected and subsequently actualized. In short, under the H-W interpretation of quantum field theory, an initial set of possibly-possessed eternal objects is represented by a Boolean sublattice of the lattice of projection operators determined by a von Neumann algebra R (O) associated with a region O of Minkowski space-time, and the underlying activity is represented by a state on R (O) obtained by conditionalizing off of the vacuum state. The details associated with the H-W interpretation involve imposing constraints on these representations motivated by principles found in Whitehead's metaphysics. These details are spelled out in the three sections of the book. The first section is a summary and critique of Whitehead's metaphysics, the second section introduces the formalism of algebraic quantum field
Using Perturbation theory to reduce noise in diffusion tensor fields.
Bansal, Ravi; Staib, Lawrence H; Xu, Dongrong; Laine, Andrew F; Liu, Jun; Peterson, Bradley S
2009-08-01
We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive definite, 3 x 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor
Massive basketball diagram for a thermal scalar field theory
Andersen, Jens O.; Braaten, Eric; Strickland, Michael
2000-08-15
The ''basketball diagram'' is a three-loop vacuum diagram for a scalar field theory that cannot be expressed in terms of one-loop diagrams. We calculate this diagram for a massive scalar field at nonzero temperature, reducing it to expressions involving three-dimensional integrals that can be easily evaluated numerically. We use this result to calculate the free energy for a massive scalar field with a {phi}{sup 4} interaction to three-loop order. (c) 2000 The American Physical Society.
Finite temperature scalar field theory in the early universe
Leutwyler, H.; Mallik, S. )
1991-01-01
The authors study a scalar Higgs field in an expanding Robertson-Walker geometry, using the real time formulation of Semenoff and Weiss. It is shown that the density matrix associated with the Hamiltonian at a sharp time describes a state for which perturbation theory is not renormalizable and an alternative, renormalizable characterization of thermal equilibrium is given. They calculate the thermal quantum fluctuations surrounding a classical field and discuss the characteristic time scales occurring in the evolution of a scalar field from an initial radiation dominated phase of thermal equilibrium to an unstable, inflationary de Sitter phase.
Field theory on R× S 3 topology: Lagrangian formulation
NASA Astrophysics Data System (ADS)
Carmeli, M.; Malka, A.
1990-01-01
A brief description of the ordinary field theory, from the variational and Noether's theorem point of view, is outlined. A discussion is then given of the field equations of Klein-Gordon, Schrödinger, Dirac, Weyl, and Maxwell in their ordinary form on the Minkowskian space-time manifold as well as on the topological space-time manifold R × S3 as they were formulated by Carmeli and Malin, including the latter's most general solutions. We then formulate the general variational principle in the R × S3 topological space, from which we derive the field equations in this space.
New symbolic tools for differential geometry, gravitation, and field theory
NASA Astrophysics Data System (ADS)
Anderson, I. M.; Torre, C. G.
2012-01-01
DifferentialGeometry is a Maple software package which symbolically performs fundamental operations of calculus on manifolds, differential geometry, tensor calculus, spinor calculus, Lie algebras, Lie groups, transformation groups, jet spaces, and the variational calculus. These capabilities, combined with dramatic recent improvements in symbolic approaches to solving algebraic and differential equations, have allowed for development of powerful new tools for solving research problems in gravitation and field theory. The purpose of this paper is to describe some of these new tools and present some advanced applications involving: Killing vector fields and isometry groups, Killing tensors, algebraic classification of solutions of the Einstein equations, and symmetry reduction of field equations.
Denisov, V.I.; Eliseev, V.A.
1986-05-01
This paper studies the interaction of a weak gravitational wave and the electromagnetic field of a neutron star from the point of view of two theories: the linear variant of the field theory of gravitation and the general theory of relativity. The obtained solutions are used to analyze the possibilities of establishing experimentally which of the two theories describes reality adequately.
Conformal field theories with infinitely many conservation laws
NASA Astrophysics Data System (ADS)
Todorov, Ivan
2013-02-01
Globally conformal invariant quantum field theories in a D-dimensional space-time (D even) have rational correlation functions and admit an infinite number of conserved (symmetric traceless) tensor currents. In a theory of a scalar field of dimension D-2 they were demonstrated to be generated by bilocal normal products of free massless scalar fields with an O(N), U(N), or Sp(2N) (global) gauge symmetry [B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, "Unitary positive energy representations of scalar bilocal fields," Commun. Math. Phys. 271, 223-246 (2007), 10.1007/s00220-006-0182-2; e-print arXiv:math-ph/0604069v3; B. Bakalov, N. M. Nikolov, K.-H. Rehren, and I. Todorov, "Infinite dimensional Lie algebras in 4D conformal quantum field theory," J. Phys. A Math Theor. 41, 194002 (2008), 10.1088/1751-8113/41/19/194002; e-print arXiv:0711.0627v2 [hep-th
Universal entanglement spectra of gapped one-dimensional field theories
NASA Astrophysics Data System (ADS)
Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei
2017-03-01
We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the
Topologically stratified energy minimizers in a product Abelian field theory
NASA Astrophysics Data System (ADS)
Han, Xiaosen; Yang, Yisong
2015-09-01
We study a recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities. We first obtain a necessary and sufficient condition for the existence of a unique solution realizing such impurities in the form of multiple vortices. We next reformulate the theory into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from Ns vortices and Ps anti-vortices (s = 1, 2) realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface S which states that a solution with prescribed N1, N2 vortices and P1, P2 anti-vortices of two designated species exists if and only if the inequalities
Pomeron-Odderon interactions in a Reggeon field theory
NASA Astrophysics Data System (ADS)
Bartels, Jochen; Contreras, Carlos; Vacca, Gian Paolo
2017-01-01
In this paper we extend our recent nonperturbative functional renormalization group analysis of Reggeon field theory to the interactions of Pomeron and Odderon fields. We establish the existence of a fixed point and its universal properties, which exhibits a novel symmetry structure in the space of Odderon-Pomeron interactions. As in our previous analysis, this part of our program aims at the investigation of the IR limit of Reggeon field theory (the limit of high energies and large transverse distances). It should be seen in the broader context of trying to connect the nonperturbative infrared region (large transverse distances) with the UV region of small transverse distances where the high energy limit of perturbative QCD applies. We briefly discuss the implications of our findings for the existence of an Odderon in high energy scattering.
Entanglement spectrum in cluster dynamical mean-field theory
NASA Astrophysics Data System (ADS)
Udagawa, Masafumi; Motome, Yukitoshi
2015-01-01
We study the entanglement spectrum of the Hubbard model at half filling on a kagome lattice. The entanglement spectrum is defined by the set of eigenvalues of a reduced thermal density matrix, which is naturally obtained in the framework of the dynamical mean-field theory. Adopting the cluster dynamical mean-field theory combined with continuous-time auxiliary-field Monte Carlo method, we calculate the entanglement spectrum for a three-site triangular cluster in the kagome Hubbard model. We find that the results at the three-particle sector well capture the qualitative nature of the system. In particular, the eigenvalue of the reduced density matrix, corresponding to the chiral degrees of freedom, exhibits a characteristic temperature scale Tchiral, below which a metallic state with large quasiparticle mass is stabilized. The entanglement spectra at different particle number sectors also exhibit characteristic changes around Tchiral, implying the development of inter-triangular ferromagnetic correlations in the correlated metallic regime.
Quantum field theory for condensation of bosons and fermions
De Souza, Adriano N.; Filho, Victo S.
2013-03-25
In this brief review, we describe the formalism of the quantum field theory for the analysis of the condensation phenomenon in bosonic systems, by considering the cases widely verified in laboratory of trapped gases as condensate states, either with attractive or with repulsive two-body interactions. We review the mathematical formulation of the quantum field theory for many particles in the mean-field approximation, by adopting contact interaction potential. We also describe the phenomenon of condensation in the case of fermions or the degenerate Fermi gas, also verified in laboratory in the crossover BEC-BCS limit. We explain that such a phenomenon, equivalent to the bosonic condensation, can only occur if we consider the coupling of particles in pairs behaving like bosons, as occurs in the case of Cooper's pairs in superconductivity.
The Role of Healthcare Providers in the Roll-Out of PrEP
Krakower, Douglas S.; Mayer, Kenneth H.
2015-01-01
Purpose of Review To review the most recent studies assessing the preparedness of healthcare practitioners to provide anti-HIV pre-exposure prophylaxis (PrEP) and to suggest areas for future implementation research. Recent Findings As PrEP is a bio-behavioral intervention, healthcare providers are likely to play a critical role in implementing PrEP in care settings. Studies suggest that many specialized providers are aware of PrEP and support its provision as a public health intervention, though knowledge and acceptance are less among generalists. Therefore, utilization of PrEP by clinicians has been limited to a few early adopters. Concerns about the efficacy and long-term safety of PrEP, and perceived barriers to prescribing PrEP, could limit prescribing behaviors and intentions. Resistance to performing routine HIV risk assessments by clinicians is an additional barrier to implementing PrEP, though innovative tools to help clinicians routinely perform risk assessments are being developed. Summary Interventions are needed to engage a broader array of healthcare providers in PrEP provision. Utilizing a framework based on diffusion of innovation theory, this review proposes strategies that can be implemented and evaluated to increase PrEP prescribing by healthcare providers. If resources are invested in training clinicians to provide PrEP, then these stakeholders could enhance the use of PrEP as part of a prevention package by primary providers. PMID:26417953
Kriz, Igor; Loebl, Martin; Somberg, Petr
2013-05-15
We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.
Positive energy conditions in 4D conformal field theory
Farnsworth, Kara; Luty, Markus A.; Prilepina, Valentina
2016-10-03
Here, we argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality < T00 > ≥ –C/L4, where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than themore » “conformal collider” constraints of Hofman and Maldacena. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.« less
Positive energy conditions in 4D conformal field theory
Farnsworth, Kara; Luty, Markus A.; Prilepina, Valentina
2016-10-03
Here, we argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality < T^{00} > ≥ –C/L^{4}, where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the “conformal collider” constraints of Hofman and Maldacena. In _{3}D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.
The unitary conformal field theory behind 2D Asymptotic Safety
NASA Astrophysics Data System (ADS)
Nink, Andreas; Reuter, Martin
2016-02-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.
Spectral sum rules for conformal field theories in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Chowdhury, Subham Dutta; David, Justin R.; Prakash, Shiroman
2017-07-01
We derive spectral sum rules in the shear channel for conformal field theories at finite temperature in general d ≥ 3 dimensions. The sum rules result from the OPE of the stress tensor at high frequency as well as the hydrodynamic behaviour of the theory at low frequencies. The sum rule states that a weighted integral of the spectral density over frequencies is proportional to the energy density of the theory. We show that the proportionality constant can be written in terms the Hofman-Maldacena variables t 2 , t 4 which determine the three point function of the stress tensor. For theories which admit a two derivative gravity dual this proportionality constant is given by d/2(d+1) . We then use causality constraints and obtain bounds on the sum rule which are valid in any conformal field theory. Finally we demonstrate that the high frequency behaviour of the spectral function in the vector and the tensor channel are also determined by the Hofman-Maldacena variables.
Positive energy conditions in 4D conformal field theory
NASA Astrophysics Data System (ADS)
Farnsworth, Kara; Luty, Markus A.; Prilepina, Valentina
2016-10-01
We argue that all consistent 4D quantum field theories obey a spacetime-averaged weak energy inequality < T 00> ≥ - C/L 4, where L is the size of the smearing region, and C is a positive constant that depends on the theory. If this condition is violated, the theory has states that are indistinguishable from states of negative total energy by any local measurement, and we expect instabilities or other inconsistencies. We apply this condition to 4D conformal field theories, and find that it places constraints on the OPE coefficients of the theory. The constraints we find are weaker than the "conformal collider" constraints of Hofman and Maldacena. In 3D CFTs, the only constraint we find is equivalent to the positivity of 2-point function of the energy-momentum tensor, which follows from unitarity. Our calculations are performed using momentum-space Wightman functions, which are remarkably simple functions of momenta, and may be of interest in their own right.
Axiomatics of Galileo-invariant quantum field theory
Dadashev, L.A.
1986-03-01
The aim of this paper is to construct the axiomatics of Galileo-invariant quantum field theory. The importance of this problem is demonstrated from various points of view: general properties that the fields and observables must satisfy are considered; S-matrix nontriviality of one such model is proved; and the differences from the relativistic case are discussed. The proposed system of axioms is in many respects analogous to Wightman axiomatics, but is less general. The main result is contained in theorems which describe the admissible set of initial fields and total Hamiltonians, i.e., precisely the two entities that completely determine interacting fields. The author considers fields that prove the independence of some axioms.
Double metric, generalized metric, and α' -deformed double field theory
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-03-01
We relate the unconstrained "double metric" of the "α' -geometry" formulation of double field theory to the constrained generalized metric encoding the spacetime metric and b -field. This is achieved by integrating out auxiliary field components of the double metric in an iterative procedure that induces an infinite number of higher-derivative corrections. As an application, we prove that, to first order in α' and to all orders in fields, the deformed gauge transformations are Green-Schwarz-deformed diffeomorphisms. We also prove that to first order in α' the spacetime action encodes precisely the Green-Schwarz deformation with Chern-Simons forms based on the torsionless gravitational connection. This seems to be in tension with suggestions in the literature that T-duality requires a torsionful connection, but we explain that these assertions are ambiguous since actions that use different connections are related by field redefinitions.
A tracer-kinetic field theory for medical imaging.
Sourbron, Steven
2014-04-01
Dynamic imaging data are currently analyzed with a tracer-kinetic theory developed for individual time curves measured over whole organs. The assumption is that voxels represent isolated systems which all receive indicator through the same arterial inlet. This leads to well-known systematic errors, but also fails to exploit the spatial structure of the data. In this study, a more general theoretical framework is developed which makes full use of the specific structure of image data. The theory encodes the fact that voxels receive indicator from their immediate neighbors rather than from an upstream arterial input. This results in a tracer-kinetic field theory where the tissue parameters are functions of space which can be measured by analyzing the temporal and spatial patterns in the concentrations. The implications are evaluated through a number of field models for common tissue types. The key benefits of a tracer-kinetic field theory are that: 1) long-standing systematic errors can be corrected, specifically the issue of bolus dispersion and the contamination of large-vessel blood flow on tissue perfusion measurements; 2) additional tissue parameters can be measured that characterize convective or diffusive exchange between voxels; 3) the need to measure a separate arterial input function can be eliminated.
Power counting and Wilsonian renormalization in nuclear effective field theory
NASA Astrophysics Data System (ADS)
Valderrama, Manuel Pavón
2016-05-01
Effective field theories are the most general tool for the description of low energy phenomena. They are universal and systematic: they can be formulated for any low energy systems we can think of and offer a clear guide on how to calculate predictions with reliable error estimates, a feature that is called power counting. These properties can be easily understood in Wilsonian renormalization, in which effective field theories are the low energy renormalization group evolution of a more fundamental — perhaps unknown or unsolvable — high energy theory. In nuclear physics they provide the possibility of a theoretically sound derivation of nuclear forces without having to solve quantum chromodynamics explicitly. However there is the problem of how to organize calculations within nuclear effective field theory: the traditional knowledge about power counting is perturbative but nuclear physics is not. Yet power counting can be derived in Wilsonian renormalization and there is already a fairly good understanding of how to apply these ideas to non-perturbative phenomena and in particular to nuclear physics. Here we review a few of these ideas, explain power counting in two-nucleon scattering and reactions with external probes and hint at how to extend the present analysis beyond the two-body problem.
Gravitation: Field theory par excellence Newton, Einstein, and beyond
Yilmaz, H.
1984-09-01
Newtonian gravity satifies the two principles of equivalence m/sub i/ = m/sub p/ (the passive principle) and m/sub a/ = m/sub p/ (the active principle). A relativistic gauge field concept in D = s+1 dimensional curved-space will, in general, violate these two principles as in m/sub p/ = ..cap alpha..m/sub i/, m/sub a/ = lambdam/sub p/ where ..cap alpha.. = D: 3 and lambda measures the presence of the field stress-energy t/sup ..nu..//sub ..mu../ in the field equations. It is shown that ..cap alpha.. = 1, lambda = 0 corresponds to general relativity and ..cap alpha.. = 1, lambda = 1 to the theory of the author. It is noted that the correspondence limit of general relativity is not Newton's theory but a theory suggested by Robert Hooke a few years before Newton published his in Principia. The gauge is independent of the two principles but had to do with local special relativistic correspondence and compatibility with quantum mechanics. It is shown that unless ..cap alpha.. = 1, lambda = 1 the generalized theory cannot predict correctly many observables effects, including the 532'' per century Newtonian part in Mercury's perihelion advance.
Non-Abelian gauge field theory in scale relativity
Nottale, Laurent; Celerier, Marie-Noeelle; Lehner, Thierry
2006-03-15
Gauge field theory is developed in the framework of scale relativity. In this theory, space-time is described as a nondifferentiable continuum, which implies it is fractal, i.e., explicitly dependent on internal scale variables. Owing to the principle of relativity that has been extended to scales, these scale variables can themselves become functions of the space-time coordinates. Therefore, a coupling is expected between displacements in the fractal space-time and the transformations of these scale variables. In previous works, an Abelian gauge theory (electromagnetism) has been derived as a consequence of this coupling for global dilations and/or contractions. We consider here more general transformations of the scale variables by taking into account separate dilations for each of them, which yield non-Abelian gauge theories. We identify these transformations with the usual gauge transformations. The gauge fields naturally appear as a new geometric contribution to the total variation of the action involving these scale variables, while the gauge charges emerge as the generators of the scale transformation group. A generalized action is identified with the scale-relativistic invariant. The gauge charges are the conservative quantities, conjugates of the scale variables through the action, which find their origin in the symmetries of the ''scale-space.'' We thus found in a geometric way and recover the expression for the covariant derivative of gauge theory. Adding the requirement that under the scale transformations the fermion multiplets and the boson fields transform such that the derived Lagrangian remains invariant, we obtain gauge theories as a consequence of scale symmetries issued from a geometric space-time description.
Nucleon propagation through nuclear matter in chiral effective field theory
NASA Astrophysics Data System (ADS)
Mallik, S.; Mishra, H.
2007-05-01
We treat the propagation of a nucleon in nuclear matter by evaluating the ensemble average of the two-point function of the nucleon currents in the framework of chiral effective field theory. We first derive the effective parameters of the nucleon to one loop. The resulting formula for the effective mass has been known since before and gives an absurd value at normal nuclear density. We then modify it following Weinberg’s method for the two-nucleon system in the effective theory. Our results for the effective mass and the width of the nucleon are compared with those in the literature.
Lagrangian-Hamiltonian unified formalism for field theory
NASA Astrophysics Data System (ADS)
Echeverría-Enríquez, Arturo; López, Carlos; Marín-Solano, Jesús; Muñoz-Lecanda, Miguel C.; Román-Roy, Narciso
2004-01-01
The Rusk-Skinner formalism was developed in order to give a geometrical unified formalism for describing mechanical systems. It incorporates all the characteristics of Lagrangian and Hamiltonian descriptions of these systems (including dynamical equations and solutions, constraints, Legendre map, evolution operators, equivalence, etc.). In this work we extend this unified framework to first-order classical field theories, and show how this description comprises the main features of the Lagrangian and Hamiltonian formalisms, both for the regular and singular cases. This formulation is a first step toward further applications in optimal control theory for partial differential equations.
Heavy dark matter annihilation from effective field theory.
Ovanesyan, Grigory; Slatyer, Tracy R; Stewart, Iain W
2015-05-29
We formulate an effective field theory description for SU(2)_{L} triplet fermionic dark matter by combining nonrelativistic dark matter with gauge bosons in the soft-collinear effective theory. For a given dark matter mass, the annihilation cross section to line photons is obtained with 5% precision by simultaneously including Sommerfeld enhancement and the resummation of electroweak Sudakov logarithms at next-to-leading logarithmic order. Using these results, we present more accurate and precise predictions for the gamma-ray line signal from annihilation, updating both existing constraints and the reach of future experiments.
Advanced mean-field theory of the restricted Boltzmann machine
NASA Astrophysics Data System (ADS)
Huang, Haiping; Toyoizumi, Taro
2015-05-01
Learning in restricted Boltzmann machine is typically hard due to the computation of gradients of log-likelihood function. To describe the network state statistics of the restricted Boltzmann machine, we develop an advanced mean-field theory based on the Bethe approximation. Our theory provides an efficient message-passing-based method that evaluates not only the partition function (free energy) but also its gradients without requiring statistical sampling. The results are compared with those obtained by the computationally expensive sampling-based method.
The principle of stationary variance in quantum field theory
NASA Astrophysics Data System (ADS)
Siringo, Fabio
2014-02-01
The principle of stationary variance is advocated as a viable variational approach to quantum field theory (QFT). The method is based on the principle that the variance of energy should be at its minimum when the state of a quantum system reaches its best approximation for an eigenstate. While not too much popular in quantum mechanics (QM), the method is shown to be valuable in QFT and three special examples are given in very different areas ranging from Heisenberg model of antiferromagnetism (AF) to quantum electrodynamics (QED) and gauge theories.
Nuclear axial currents in chiral effective field theory
Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; Schiavilla, Rocco; Viviani, Michele
2016-01-11
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed.
Nuclear axial currents in chiral effective field theory
Baroni, Alessandro; Girlanda, Luca; Pastore, Saori; ...
2016-01-11
Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory and accounts for cancellations between the contributions of irreducible diagrams and the contributions owing to nonstatic corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. As a result, a complete set of contact terms for the axial charge up to the relevant order in the power countingmore » is constructed.« less