Using Wavelet Bases to Separate Scales in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Michlin, Tracie L.
This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.
Electric-magnetic dualities in non-abelian and non-commutative gauge theories
NASA Astrophysics Data System (ADS)
Ho, Jun-Kai; Ma, Chen-Te
2016-08-01
Electric-magnetic dualities are equivalence between strong and weak coupling constants. A standard example is the exchange of electric and magnetic fields in an abelian gauge theory. We show three methods to perform electric-magnetic dualities in the case of the non-commutative U (1) gauge theory. The first method is to use covariant field strengths to be the electric and magnetic fields. We find an invariant form of an equation of motion after performing the electric-magnetic duality. The second method is to use the Seiberg-Witten map to rewrite the non-commutative U (1) gauge theory in terms of abelian field strength. The third method is to use the large Neveu Schwarz-Neveu Schwarz (NS-NS) background limit (non-commutativity parameter only has one degree of freedom) to consider the non-commutative U (1) gauge theory or D3-brane. In this limit, we introduce or dualize a new one-form gauge potential to get a D3-brane in a large Ramond-Ramond (R-R) background via field redefinition. We also use perturbation to study the equivalence between two D3-brane theories. Comparison of these methods in the non-commutative U (1) gauge theory gives different physical implications. The comparison reflects the differences between the non-abelian and non-commutative gauge theories in the electric-magnetic dualities. For a complete study, we also extend our studies to the simplest abelian and non-abelian p-form gauge theories, and a non-commutative theory with the non-abelian structure.
Non-perturbative background field calculations
NASA Astrophysics Data System (ADS)
Stephens, C. R.
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.
Lattice Methods and the Nuclear Few- and Many-Body Problem
NASA Astrophysics Data System (ADS)
Lee, Dean
This chapter builds upon the review of lattice methods and effective field theory of the previous chapter. We begin with a brief overview of lattice calculations using chiral effective field theory and some recent applications. We then describe several methods for computing scattering on the lattice. After that we focus on the main goal, explaining the theory and algorithms relevant to lattice simulations of nuclear few- and many-body systems. We discuss the exact equivalence of four different lattice formalisms, the Grassmann path integral, transfer matrix operator, Grassmann path integral with auxiliary fields, and transfer matrix operator with auxiliary fields. Along with our analysis we include several coding examples and a number of exercises for the calculations of few- and many-body systems at leading order in chiral effective field theory.
NASA Astrophysics Data System (ADS)
Yang, Zhichun; Zhou, Jian; Gu, Yingsong
2014-10-01
A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.
Heat kernel and Weyl anomaly of Schrödinger invariant theory
NASA Astrophysics Data System (ADS)
Pal, Sridip; Grinstein, Benjamín
2017-12-01
We propose a method inspired by discrete light cone quantization to determine the heat kernel for a Schrödinger field theory (Galilean boost invariant with z =2 anisotropic scaling symmetry) living in d +1 dimensions, coupled to a curved Newton-Cartan background, starting from a heat kernel of a relativistic conformal field theory (z =1 ) living in d +2 dimensions. We use this method to show that the Schrödinger field theory of a complex scalar field cannot have any Weyl anomalies. To be precise, we show that the Weyl anomaly Ad+1 G for Schrödinger theory is related to the Weyl anomaly of a free relativistic scalar CFT Ad+2 R via Ad+1 G=2 π δ (m )Ad+2 R , where m is the charge of the scalar field under particle number symmetry. We provide further evidence of the vanishing anomaly by evaluating Feynman diagrams in all orders of perturbation theory. We present an explicit calculation of the anomaly using a regulated Schrödinger operator, without using the null cone reduction technique. We generalize our method to show that a similar result holds for theories with a single time-derivative and with even z >2 .
Testing strong-segregation theory against self-consistent-field theory for block copolymer melts
NASA Astrophysics Data System (ADS)
Matsen, M. W.
2001-06-01
We introduce a highly efficient self-consistent-field theory (SCFT) method for examining the cylindrical and spherical block copolymer morphologies using a standard unit cell approximation (UCA). The method is used to calculate the classical diblock copolymer phase boundaries deep into the strong-segregation regime, where they can be compared with recent improvements to strong-segregation theory (SST). The comparison suggests a significant discrepancy between the two theories indicating that our understanding of strongly stretched polymer brushes is still incomplete.
Noncommutative Field Theories and (super)string Field Theories
NASA Astrophysics Data System (ADS)
Aref'eva, I. Ya.; Belov, D. M.; Giryavets, A. A.; Koshelev, A. S.; Medvedev, P. B.
2002-11-01
In this lecture notes we explain and discuss some ideas concerning noncommutative geometry in general, as well as noncommutative field theories and string field theories. We consider noncommutative quantum field theories emphasizing an issue of their renormalizability and the UV/IR mixing. Sen's conjectures on open string tachyon condensation and their application to the D-brane physics have led to wide investigations of the covariant string field theory proposed by Witten about 15 years ago. We review main ingredients of cubic (super)string field theories using various formulations: functional, operator, conformal and the half string formalisms. The main technical tools that are used to study conjectured D-brane decay into closed string vacuum through the tachyon condensation are presented. We describe also methods which are used to study the cubic open string field theory around the tachyon vacuum: construction of the sliver state, "comma" and matrix representations of vertices.
Martin, James E.; Solis, Kyle Jameson
2015-08-07
We recently reported two methods of inducing vigorous fluid vorticity in magnetic particle suspensions. The first method employs symmetry-breaking rational fields. These fields are comprised of two orthogonal ac components whose frequencies form a rational number and an orthogonal dc field that breaks the symmetry of the biaxial ac field to create the parity required to induce deterministic vorticity. The second method is based on rational triads, which are fields comprised of three orthogonal ac components whose frequency ratios are rational (e.g., 1 : 2 : 3). For each method a symmetry theory has been developed that enables the predictionmore » of the direction and sign of vorticity as functions of the field frequencies and phases. However, this theory has its limitations. It only applies to those particular phase angles that give rise to fields whose Lissajous plots, or principal 2-d projections thereof, have a high degree of symmetry. Nor can symmetry theory provide a measure of the magnitude of the torque density induced by the field. In this paper a functional of the multiaxial magnetic field is proposed that not only is consistent with all of the predictions of the symmetry theories, but also quantifies the torque density. This functional can be applied to fields whose Lissajous plots lack symmetry and can thus be used to predict a variety of effects and trends that cannot be predicted from the symmetry theories. These trends include the dependence of the magnitude of the torque density on the various frequency ratios, the unexpected reversal of flow with increasing dc field amplitude for certain symmetry-breaking fields, and the existence of off-axis vorticity for rational triads, such as 1 : 3 : 5, that do not have the symmetry required to analyze by symmetry theory. As a result, experimental data are given that show the degree to which this functional is successful in predicting observed trends.« less
Dynamics of polymers: A mean-field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fredrickson, Glenn H.; Materials Research Laboratory, University of California, Santa Barbara, California 93106; Department of Materials, University of California, Santa Barbara, California 93106
2014-02-28
We derive a general mean-field theory of inhomogeneous polymer dynamics; a theory whose form has been speculated and widely applied, but not heretofore derived. Our approach involves a functional integral representation of a Martin-Siggia-Rose (MSR) type description of the exact many-chain dynamics. A saddle point approximation to the generating functional, involving conditions where the MSR action is stationary with respect to a collective density field ρ and a conjugate MSR response field ϕ, produces the desired dynamical mean-field theory. Besides clarifying the proper structure of mean-field theory out of equilibrium, our results have implications for numerical studies of polymer dynamicsmore » involving hybrid particle-field simulation techniques such as the single-chain in mean-field method.« less
BRST Formalism in Self-Dual Chern-Simons Theory with Matter Fields
NASA Astrophysics Data System (ADS)
Dai, Jialiang; Fan, Engui
2018-04-01
We apply BRST method to the self-dual Chern-Simons gauge theory with matter fields and the generators of symmetries of the system from an elegant Lie algebra structure under the operation of Poisson bracket. We discuss four different cases: abelian, nonabelian, relativistic, and nonrelativistic situations and extend the system to the whole phase space including ghost fields. In addition, we obtain the BRST charge of the field system and check its nilpotence of the BRST transformation which plays an important role such as in topological quantum field theory and string theory.
NASA Astrophysics Data System (ADS)
Matsubara, Takahiko
2003-02-01
We formulate a general method for perturbative evaluations of statistics of smoothed cosmic fields and provide useful formulae for application of the perturbation theory to various statistics. This formalism is an extensive generalization of the method used by Matsubara, who derived a weakly nonlinear formula of the genus statistic in a three-dimensional density field. After describing the general method, we apply the formalism to a series of statistics, including genus statistics, level-crossing statistics, Minkowski functionals, and a density extrema statistic, regardless of the dimensions in which each statistic is defined. The relation between the Minkowski functionals and other geometrical statistics is clarified. These statistics can be applied to several cosmic fields, including three-dimensional density field, three-dimensional velocity field, two-dimensional projected density field, and so forth. The results are detailed for second-order theory of the formalism. The effect of the bias is discussed. The statistics of smoothed cosmic fields as functions of rescaled threshold by volume fraction are discussed in the framework of second-order perturbation theory. In CDM-like models, their functional deviations from linear predictions plotted against the rescaled threshold are generally much smaller than that plotted against the direct threshold. There is still a slight meatball shift against rescaled threshold, which is characterized by asymmetry in depths of troughs in the genus curve. A theory-motivated asymmetry factor in the genus curve is proposed.
Hamiltonian lattice field theory: Computer calculations using variational methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zako, Robert L.
1991-12-03
I develop a variational method for systematic numerical computation of physical quantities -- bound state energies and scattering amplitudes -- in quantum field theory. An infinite-volume, continuum theory is approximated by a theory on a finite spatial lattice, which is amenable to numerical computation. I present an algorithm for computing approximate energy eigenvalues and eigenstates in the lattice theory and for bounding the resulting errors. I also show how to select basis states and choose variational parameters in order to minimize errors. The algorithm is based on the Rayleigh-Ritz principle and Kato`s generalizations of Temple`s formula. The algorithm could bemore » adapted to systems such as atoms and molecules. I show how to compute Green`s functions from energy eigenvalues and eigenstates in the lattice theory, and relate these to physical (renormalized) coupling constants, bound state energies and Green`s functions. Thus one can compute approximate physical quantities in a lattice theory that approximates a quantum field theory with specified physical coupling constants. I discuss the errors in both approximations. In principle, the errors can be made arbitrarily small by increasing the size of the lattice, decreasing the lattice spacing and computing sufficiently long. Unfortunately, I do not understand the infinite-volume and continuum limits well enough to quantify errors due to the lattice approximation. Thus the method is currently incomplete. I apply the method to real scalar field theories using a Fock basis of free particle states. All needed quantities can be calculated efficiently with this basis. The generalization to more complicated theories is straightforward. I describe a computer implementation of the method and present numerical results for simple quantum mechanical systems.« less
NASA Astrophysics Data System (ADS)
Ayral, Thomas; Lee, Tsung-Han; Kotliar, Gabriel
2017-12-01
We present a unified perspective on dynamical mean-field theory (DMFT), density-matrix embedding theory (DMET), and rotationally invariant slave bosons (RISB). We show that DMET can be regarded as a simplification of the RISB method where the quasiparticle weight is set to unity. This relation makes it easy to transpose extensions of a given method to another: For instance, a temperature-dependent version of RISB can be used to derive a temperature-dependent free-energy formula for DMET.
PE Metrics: Background, Testing Theory, and Methods
ERIC Educational Resources Information Center
Zhu, Weimo; Rink, Judy; Placek, Judith H.; Graber, Kim C.; Fox, Connie; Fisette, Jennifer L.; Dyson, Ben; Park, Youngsik; Avery, Marybell; Franck, Marian; Raynes, De
2011-01-01
New testing theories, concepts, and psychometric methods (e.g., item response theory, test equating, and item bank) developed during the past several decades have many advantages over previous theories and methods. In spite of their introduction to the field, they have not been fully accepted by physical educators. Further, the manner in which…
Nonperturbative light-front Hamiltonian methods
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2016-09-01
We examine the current state-of-the-art in nonperturbative calculations done with Hamiltonians constructed in light-front quantization of various field theories. The language of light-front quantization is introduced, and important (numerical) techniques, such as Pauli-Villars regularization, discrete light-cone quantization, basis light-front quantization, the light-front coupled-cluster method, the renormalization group procedure for effective particles, sector-dependent renormalization, and the Lanczos diagonalization method, are surveyed. Specific applications are discussed for quenched scalar Yukawa theory, ϕ4 theory, ordinary Yukawa theory, supersymmetric Yang-Mills theory, quantum electrodynamics, and quantum chromodynamics. The content should serve as an introduction to these methods for anyone interested in doing such calculations and as a rallying point for those who wish to solve quantum chromodynamics in terms of wave functions rather than random samplings of Euclidean field configurations.
Unification of field theory and maximum entropy methods for learning probability densities
NASA Astrophysics Data System (ADS)
Kinney, Justin B.
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Unification of field theory and maximum entropy methods for learning probability densities.
Kinney, Justin B
2015-09-01
The need to estimate smooth probability distributions (a.k.a. probability densities) from finite sampled data is ubiquitous in science. Many approaches to this problem have been described, but none is yet regarded as providing a definitive solution. Maximum entropy estimation and Bayesian field theory are two such approaches. Both have origins in statistical physics, but the relationship between them has remained unclear. Here I unify these two methods by showing that every maximum entropy density estimate can be recovered in the infinite smoothness limit of an appropriate Bayesian field theory. I also show that Bayesian field theory estimation can be performed without imposing any boundary conditions on candidate densities, and that the infinite smoothness limit of these theories recovers the most common types of maximum entropy estimates. Bayesian field theory thus provides a natural test of the maximum entropy null hypothesis and, furthermore, returns an alternative (lower entropy) density estimate when the maximum entropy hypothesis is falsified. The computations necessary for this approach can be performed rapidly for one-dimensional data, and software for doing this is provided.
Reconstruction of Vectorial Acoustic Sources in Time-Domain Tomography
Xia, Rongmin; Li, Xu; He, Bin
2009-01-01
A new theory is proposed for the reconstruction of curl-free vector field, whose divergence serves as acoustic source. The theory is applied to reconstruct vector acoustic sources from the scalar acoustic signals measured on a surface enclosing the source area. It is shown that, under certain conditions, the scalar acoustic measurements can be vectorized according to the known measurement geometry and subsequently be used to reconstruct the original vector field. Theoretically, this method extends the application domain of the existing acoustic reciprocity principle from a scalar field to a vector field, indicating that the stimulating vectorial source and the transmitted acoustic pressure vector (acoustic pressure vectorized according to certain measurement geometry) are interchangeable. Computer simulation studies were conducted to evaluate the proposed theory, and the numerical results suggest that reconstruction of a vector field using the proposed theory is not sensitive to variation in the detecting distance. The present theory may be applied to magnetoacoustic tomography with magnetic induction (MAT-MI) for reconstructing current distribution from acoustic measurements. A simulation on MAT-MI shows that, compared to existing methods, the present method can give an accurate estimation on the source current distribution and a better conductivity reconstruction. PMID:19211344
NASA Technical Reports Server (NTRS)
Slemp, Wesley C. H.; Kapania, Rakesh K.; Tessler, Alexander
2010-01-01
Computation of interlaminar stresses from the higher-order shear and normal deformable beam theory and the refined zigzag theory was performed using the Sinc method based on Interpolation of Highest Derivative. The Sinc method based on Interpolation of Highest Derivative was proposed as an efficient method for determining through-the-thickness variations of interlaminar stresses from one- and two-dimensional analysis by integration of the equilibrium equations of three-dimensional elasticity. However, the use of traditional equivalent single layer theories often results in inaccuracies near the boundaries and when the lamina have extremely large differences in material properties. Interlaminar stresses in symmetric cross-ply laminated beams were obtained by solving the higher-order shear and normal deformable beam theory and the refined zigzag theory with the Sinc method based on Interpolation of Highest Derivative. Interlaminar stresses and bending stresses from the present approach were compared with a detailed finite element solution obtained by ABAQUS/Standard. The results illustrate the ease with which the Sinc method based on Interpolation of Highest Derivative can be used to obtain the through-the-thickness distributions of interlaminar stresses from the beam theories. Moreover, the results indicate that the refined zigzag theory is a substantial improvement over the Timoshenko beam theory due to the piecewise continuous displacement field which more accurately represents interlaminar discontinuities in the strain field. The higher-order shear and normal deformable beam theory more accurately captures the interlaminar stresses at the ends of the beam because it allows transverse normal strain. However, the continuous nature of the displacement field requires a large number of monomial terms before the interlaminar stresses are computed as accurately as the refined zigzag theory.
NASA Technical Reports Server (NTRS)
Chiu, Huei-Huang
1989-01-01
A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.
Higher-derivative operators and effective field theory for general scalar-tensor theories
NASA Astrophysics Data System (ADS)
Solomon, Adam R.; Trodden, Mark
2018-02-01
We discuss the extent to which it is necessary to include higher-derivative operators in the effective field theory of general scalar-tensor theories. We explore the circumstances under which it is correct to restrict to second-order operators only, and demonstrate this using several different techniques, such as reduction of order and explicit field redefinitions. These methods are applied, in particular, to the much-studied Horndeski theories. The goal is to clarify the application of effective field theory techniques in the context of popular cosmological models, and to explicitly demonstrate how and when higher-derivative operators can be cast into lower-derivative forms suitable for numerical solution techniques.
Ayral, Thomas; Lee, Tsung-Han; Kotliar, Gabriel
2017-12-26
In this paper, we present a unified perspective on dynamical mean-field theory (DMFT), density-matrix embedding theory (DMET), and rotationally invariant slave bosons (RISB). We show that DMET can be regarded as a simplification of the RISB method where the quasiparticle weight is set to unity. Finally, this relation makes it easy to transpose extensions of a given method to another: For instance, a temperature-dependent version of RISB can be used to derive a temperature-dependent free-energy formula for DMET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayral, Thomas; Lee, Tsung-Han; Kotliar, Gabriel
In this paper, we present a unified perspective on dynamical mean-field theory (DMFT), density-matrix embedding theory (DMET), and rotationally invariant slave bosons (RISB). We show that DMET can be regarded as a simplification of the RISB method where the quasiparticle weight is set to unity. Finally, this relation makes it easy to transpose extensions of a given method to another: For instance, a temperature-dependent version of RISB can be used to derive a temperature-dependent free-energy formula for DMET.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
NASA Astrophysics Data System (ADS)
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Unification Principle and a Geometric Field Theory
NASA Astrophysics Data System (ADS)
Wanas, Mamdouh I.; Osman, Samah N.; El-Kholy, Reham I.
2015-08-01
In the context of the geometrization philosophy, a covariant field theory is constructed. The theory satisfies the unification principle. The field equations of the theory are constructed depending on a general differential identity in the geometry used. The Lagrangian scalar used in the formalism is neither curvature scalar nor torsion scalar, but an alloy made of both, the W-scalar. The physical contents of the theory are explored depending on different methods. The analysis shows that the theory is capable of dealing with gravity, electromagnetism and material distribution with possible mutual interactions. The theory is shown to cover the domain of general relativity under certain conditions.
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.
2006-07-01
We use the method of stochastic quantization in a topological field theory defined in an Euclidean space, assuming a Langevin equation with a memory kernel. We show that our procedure for the Abelian Chern-Simons theory converges regardless of the nature of the Chern-Simons coefficient.
Quantum Field Theory Approach to Condensed Matter Physics
NASA Astrophysics Data System (ADS)
Marino, Eduardo C.
2017-09-01
Preface; Part I. Condensed Matter Physics: 1. Independent electrons and static crystals; 2. Vibrating crystals; 3. Interacting electrons; 4. Interactions in action; Part II. Quantum Field Theory: 5. Functional formulation of quantum field theory; 6. Quantum fields in action; 7. Symmetries: explicit or secret; 8. Classical topological excitations; 9. Quantum topological excitations; 10. Duality, bosonization and generalized statistics; 11. Statistical transmutation; 12. Pseudo quantum electrodynamics; Part III. Quantum Field Theory Approach to Condensed Matter Systems: 13. Quantum field theory methods in condensed matter; 14. Metals, Fermi liquids, Mott and Anderson insulators; 15. The dynamics of polarons; 16. Polyacetylene; 17. The Kondo effect; 18. Quantum magnets in 1D: Fermionization, bosonization, Coulomb gases and 'all that'; 19. Quantum magnets in 2D: nonlinear sigma model, CP1 and 'all that'; 20. The spin-fermion system: a quantum field theory approach; 21. The spin glass; 22. Quantum field theory approach to superfluidity; 23. Quantum field theory approach to superconductivity; 24. The cuprate high-temperature superconductors; 25. The pnictides: iron based superconductors; 26. The quantum Hall effect; 27. Graphene; 28. Silicene and transition metal dichalcogenides; 29. Topological insulators; 30. Non-abelian statistics and quantum computation; References; Index.
Adaptive-Grid Methods for Phase Field Models of Microstructure Development
NASA Technical Reports Server (NTRS)
Provatas, Nikolas; Goldenfeld, Nigel; Dantzig, Jonathan A.
1999-01-01
In this work the authors show how the phase field model can be solved in a computationally efficient manner that opens a new large-scale simulational window on solidification physics. Our method uses a finite element, adaptive-grid formulation, and exploits the fact that the phase and temperature fields vary significantly only near the interface. We illustrate how our method allows efficient simulation of phase-field models in very large systems, and verify the predictions of solvability theory at intermediate undercooling. We then present new results at low undercoolings that suggest that solvability theory may not give the correct tip speed in that regime. We model solidification using the phase-field model used by Karma and Rappel.
Coarse-Graining Polymer Field Theory for Fast and Accurate Simulations of Directed Self-Assembly
NASA Astrophysics Data System (ADS)
Liu, Jimmy; Delaney, Kris; Fredrickson, Glenn
To design effective manufacturing processes using polymer directed self-assembly (DSA), the semiconductor industry benefits greatly from having a complete picture of stable and defective polymer configurations. Field-theoretic simulations are an effective way to study these configurations and predict defect populations. Self-consistent field theory (SCFT) is a particularly successful theory for studies of DSA. Although other models exist that are faster to simulate, these models are phenomenological or derived through asymptotic approximations, often leading to a loss of accuracy relative to SCFT. In this study, we employ our recently-developed method to produce an accurate coarse-grained field theory for diblock copolymers. The method uses a force- and stress-matching strategy to map output from SCFT simulations into parameters for an optimized phase field model. This optimized phase field model is just as fast as existing phenomenological phase field models, but makes more accurate predictions of polymer self-assembly, both in bulk and in confined systems. We study the performance of this model under various conditions, including its predictions of domain spacing, morphology and defect formation energies. Samsung Electronics.
Hamilton-Jacobi theory in multisymplectic classical field theories
NASA Astrophysics Data System (ADS)
de León, Manuel; Prieto-Martínez, Pedro Daniel; Román-Roy, Narciso; Vilariño, Silvia
2017-09-01
The geometric framework for the Hamilton-Jacobi theory developed in the studies of Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Cariñena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de León et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.
Extending methods: using Bourdieu's field analysis to further investigate taste
NASA Astrophysics Data System (ADS)
Schindel Dimick, Alexandra
2015-06-01
In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article Signs of taste for science, I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution of taste within science education classrooms. Nevertheless, because the authors' socially situated methodology draws upon Bourdieu's theories, it seems equally important to extend these methods to consider how and why students make particular distinctions within a relational context—a key aspect of Bourdieu's theory of cultural production. By situating the constitution of taste within Bourdieu's field analysis, researchers can explore the ways in which students' tastes and social positionings are established and transformed through time, space, place, and their ability to navigate the field. I describe the process of field analysis in relation to the authors' paper and suggest that combining the authors' methods with a field analysis can provide a strong methodological and analytical framework in which theory and methods combine to create a detailed understanding of students' interest in relation to their context.
On the local well-posedness of Lovelock and Horndeski theories
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
The Threat of Common Method Variance Bias to Theory Building
ERIC Educational Resources Information Center
Reio, Thomas G., Jr.
2010-01-01
The need for more theory building scholarship remains one of the pressing issues in the field of HRD. Researchers can employ quantitative, qualitative, and/or mixed methods to support vital theory-building efforts, understanding however that each approach has its limitations. The purpose of this article is to explore common method variance bias as…
JOURNAL SCOPE GUIDELINES: Paper classification scheme
NASA Astrophysics Data System (ADS)
2005-06-01
This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas
Teaching Methods Utilizing a Field Theory Viewpoint in the Elementary Reading Program.
ERIC Educational Resources Information Center
LeChuga, Shirley; Lowry, Heath
1980-01-01
Suggests and lists sources of information on reading instruction that discuss the promotion and enrichment of the interactive learning process between children and their environment based on principles underlying the cognitive-field theory of learning. (MKM)
Gravity from entanglement and RG flow in a top-down approach
NASA Astrophysics Data System (ADS)
Kwon, O.-Kab; Jang, Dongmin; Kim, Yoonbai; Tolla, D. D.
2018-05-01
The duality between a d-dimensional conformal field theory with relevant deformation and a gravity theory on an asymptotically AdS d+1 geometry, has become a suitable tool in the investigation of the emergence of gravity from quantum entanglement in field theory. Recently, we have tested the duality between the mass-deformed ABJM theory and asymptotically AdS4 gravity theory, which is obtained from the KK reduction of the 11-dimensional supergravity on the LLM geometry. In this paper, we extend the KK reduction procedure beyond the linear order and establish non-trivial KK maps between 4-dimensional fields and 11-dimensional fluctuations. We rely on this gauge/gravity duality to calculate the entanglement entropy by using the Ryu-Takayanagi holographic formula and the path integral method developed by Faulkner. We show that the entanglement entropies obtained using these two methods agree when the asymptotically AdS4 metric satisfies the linearized Einstein equation with nonvanishing energy-momentum tensor for two scalar fields. These scalar fields encode the information of the relevant deformation of the ABJM theory. This confirms that the asymptotic limit of LLM geometry is the emergent gravity of the quantum entanglement in the mass-deformed ABJM theory with a small mass parameter. We also comment on the issue of the relative entropy and the Fisher information in our setup.
Counting the number of Feynman graphs in QCD
NASA Astrophysics Data System (ADS)
Kaneko, T.
2018-05-01
Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.
Perturbative reduction of derivative order in EFT
NASA Astrophysics Data System (ADS)
Glavan, Dražen
2018-02-01
Higher derivative corrections are ubiquitous in effective field theories, which seemingly introduces new degrees of freedom at successive orders. This is actually an artefact of the implicit local derivative expansion defining effective field theories. We argue that higher derivative corrections that introduce additional degrees of freedom should be removed and their effects captured either by lower derivative corrections, or special combinations of higher derivative corrections not propagating extra degrees of freedom. Three methods adapted for this task are examined and field redefinitions are found to be most appropriate. First order higher derivative corrections in a scalar tensor theory are removed by field redefinition and it is found that their effects are captured by a subset of Horndeski theories. A case is made for restricting the effective field theory expansions in principle to only terms not introducing additional degrees of freedom.
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
NASA Astrophysics Data System (ADS)
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
Zero Dimensional Field Theory of Tachyon Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, D. D.; Djordjevic, G. S.
2007-04-23
The first issue about the object (now) called tachyons was published almost one century ago. Even though there is no experimental evidence of tachyons there are several reasons why tachyons are still of interest today, in fact interest in tachyons is increasing. Many string theories have tachyons occurring as some of the particles in the theory. In this paper we consider the zero dimensional version of the field theory of tachyon matter proposed by A. Sen. Using perturbation theory and ideas of S. Kar, we demonstrate how this tachyon field theory can be connected with a classical mechanical system, suchmore » as a massive particle moving in a constant field with quadratic friction. The corresponding Feynman path integral form is proposed using a perturbative method. A few promising lines for further applications and investigations are noted.« less
Anti-gravity with present technology - Implementation and theoretical foundation
NASA Astrophysics Data System (ADS)
Alzofon, F. E.
1981-07-01
This paper proposes a semi-empirical model of the processes leading to the gravitational field based on accepted features of subatomic processes. Through an analogy with methods of cryogenics, a method of decreasing (or increasing) the gravitational force on a vehicle, using presently-known technology, is suggested. Various ways of ultilizing this effect in vehicle propulsion are described. A unified field theory is then detailed which provides a more formal foundation for the gravitational field model first introduced. In distinction to the general theory of relativity, it features physical processes which generate the gravitational field.
An application of the Braunbeck method to the Maggi-Rubinowicz field representation
NASA Technical Reports Server (NTRS)
Meneghini, R.
1982-01-01
The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.
An application of the Braunbeck method to the Maggi-Rubinowicz field representation
NASA Astrophysics Data System (ADS)
Meneghini, R.
1982-06-01
The Braunbek method is applied to the generalized vector potential associated with the Maggi-rubinowicz representation. Under certain approximations, an asymptotic evaluation of the vector potential is obtained. For observation points away from caustics or shadow boundaries, the field derived from this quantity is the same as that determined from the geometrical theory of diffraction on a singly diffracted edge ray. An evaluation of the field for the simple case of a plane wave normally incident on a circular aperture is presented showing that the field predicted by the Maggi-Rubinowicz theory is continuous across the shadow boundary.
ERIC Educational Resources Information Center
Parker, Elizabeth Cassidy; Bond, Vanessa L.; Powell, Sean R.
2017-01-01
The purpose of this grounded theory study was to understand the process of field experience lesson planning for preservice music educators enrolled in choral, general, and instrumental music education courses within three university contexts. Data sources included multiple interviews, written responses, and field texts from 42 participants. Four…
Canonical field anticommutators in the extended gauged Rarita-Schwinger theory
NASA Astrophysics Data System (ADS)
Adler, Stephen L.; Henneaux, Marc; Pais, Pablo
2017-10-01
We reexamine canonical quantization of the gauged Rarita-Schwinger theory using the extended theory, incorporating a dimension 1/2 auxiliary spin-1/2 field Λ , in which there is an exact off-shell gauge invariance. In Λ =0 gauge, which reduces to the original unextended theory, our results agree with those found by Johnson and Sudarshan, and later verified by Velo and Zwanziger, which give a canonical Rarita-Schwinger field Dirac bracket that is singular for small gauge fields. In gauge covariant radiation gauge, the Dirac bracket of the Rarita-Schwinger fields is nonsingular, but does not correspond to a positive semidefinite anticommutator, and the Dirac bracket of the auxiliary fields has a singularity of the same form as found in the unextended theory. These results indicate that gauged Rarita-Schwinger theory is somewhat pathological, and cannot be canonically quantized within a conventional positive semidefinite metric Hilbert space. We leave open the questions of whether consistent quantizations can be achieved by using an indefinite metric Hilbert space, by path integral methods, or by appropriate couplings to conventional dimension 3/2 spin-1/2 fields.
NASA Technical Reports Server (NTRS)
Isaacson, D.; Marchesin, D.; Paes-Leme, P. J.
1980-01-01
This paper is an expanded version of a talk given at the 1979 T.I.C.O.M. conference. It is a self-contained introduction, for applied mathematicians and numerical analysts, to quantum mechanics and quantum field theory. It also contains a brief description of the authors' numerical approach to the problems of quantum field theory, which may best be summarized by the question; Can we compute the eigenvalues and eigenfunctions of Schrodinger operators in infinitely many variables.
The gravitational wave stress–energy (pseudo)-tensor in modified gravity
NASA Astrophysics Data System (ADS)
Saffer, Alexander; Yunes, Nicolás; Yagi, Kent
2018-03-01
The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.
Quarks, Symmetries and Strings - a Symposium in Honor of Bunji Sakita's 60th Birthday
NASA Astrophysics Data System (ADS)
Kaku, M.; Jevicki, A.; Kikkawa, K.
1991-04-01
The Table of Contents for the full book PDF is as follows: * Preface * Evening Banquet Speech * I. Quarks and Phenomenology * From the SU(6) Model to Uniqueness in the Standard Model * A Model for Higgs Mechanism in the Standard Model * Quark Mass Generation in QCD * Neutrino Masses in the Standard Model * Solar Neutrino Puzzle, Horizontal Symmetry of Electroweak Interactions and Fermion Mass Hierarchies * State of Chiral Symmetry Breaking at High Temperatures * Approximate |ΔI| = 1/2 Rule from a Perspective of Light-Cone Frame Physics * Positronium (and Some Other Systems) in a Strong Magnetic Field * Bosonic Technicolor and the Flavor Problem * II. Strings * Supersymmetry in String Theory * Collective Field Theory and Schwinger-Dyson Equations in Matrix Models * Non-Perturbative String Theory * The Structure of Non-Perturbative Quantum Gravity in One and Two Dimensions * Noncritical Virasoro Algebra of d < 1 Matrix Model and Quantized String Field * Chaos in Matrix Models ? * On the Non-Commutative Symmetry of Quantum Gravity in Two Dimensions * Matrix Model Formulation of String Field Theory in One Dimension * Geometry of the N = 2 String Theory * Modular Invariance form Gauge Invariance in the Non-Polynomial String Field Theory * Stringy Symmetry and Off-Shell Ward Identities * q-Virasoro Algebra and q-Strings * Self-Tuning Fields and Resonant Correlations in 2d-Gravity * III. Field Theory Methods * Linear Momentum and Angular Momentum in Quaternionic Quantum Mechanics * Some Comments on Real Clifford Algebras * On the Quantum Group p-adics Connection * Gravitational Instantons Revisited * A Generalized BBGKY Hierarchy from the Classical Path-Integral * A Quantum Generated Symmetry: Group-Level Duality in Conformal and Topological Field Theory * Gauge Symmetries in Extended Objects * Hidden BRST Symmetry and Collective Coordinates * Towards Stochastically Quantizing Topological Actions * IV. Statistical Methods * A Brief Summary of the s-Channel Theory of Superconductivity * Neural Networks and Models for the Brain * Relativistic One-Body Equations for Planar Particles with Arbitrary Spin * Chiral Property of Quarks and Hadron Spectrum in Lattice QCD * Scalar Lattice QCD * Semi-Superconductivity of a Charged Anyon Gas * Two-Fermion Theory of Strongly Correlated Electrons and Charge-Spin Separation * Statistical Mechanics and Error-Correcting Codes * Quantum Statistics
Aspects Topologiques de la Theorie des Champs et leurs Applications
NASA Astrophysics Data System (ADS)
Caenepeel, Didier
This thesis is dedicated to the study of various topological aspects of field theory, and is divided in three parts. In two space dimensions the possibility of fractional statistics can be implemented by adding an appropriate "fictitious" electric charge and magnetic flux to each particle (after which they are known as anyons). Since the statistical interaction is rather difficult to handle, a mean-field approximation is used in order to describe a gas of anyons. We derive a criterion for the validity of this approximation using the inherent feature of parity violation in the scattering of anyons. We use this new method in various examples of anyons and show both analytically and numerically that the approximation is justified if the statistical interaction is weak, and that it must be more weak for boson-based than for fermion-based anyons. Chern-Simons theories give an elegant implementation of anyonic properties in field theories, which permits the emergence of new mechanisms for anyon superconductivity. Since it is reasonable to think that superconductivity is a low energy phenomenon, we have been interested in non-relativistic C-S systems. We present the scalar field effective potential for non-relativistic matter coupled to both Abelian and non-Abelian C-S gauge fields. We perform the calculations using functional methods in background fields. Finally, we compute the scalar effective potential in various gauges and treat divergences with various regularization schemes. In three space dimensions, a generalization of Chern-Simons theory may be achieved by introducing an antisymmetric tensor gauge field. We use these theories, called B wedge F theories, to present an alternative to the Higgs mechanism to generate masses for non-Abelian gauge fields. The initial Lagrangian is composed of a fermion with current-current and dipole-dipole type self -interactions minimally coupled to non-Abelian gauge fields. The mass generation occurs upon the fermionic functional integration. We show that by suitably adjusting the coupling constants the effective theory contains massive non-Abelian gauge fields without any residual scalars or other degrees of freedom.
Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields
Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.
2009-01-01
We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor field. PMID:19540791
On the Dynamical Foundations of the Lidov-Kozai Theory
NASA Astrophysics Data System (ADS)
Prokhorenko, V. I.
2018-01-01
The Lidov-Kozai theory developed by each of the authors independently in 1961-1962 is based on qualitative methods of studying the evolution of orbits for the satellite version of the restricted three-body problem (Hill's problem). At present, this theory is in demand in various fields of science: in the field of planetary research within the Solar system, the field of exoplanetary systems, and the field of high-energy physics in interstellar and intergalactic space. This has prompted me to popularize the ideas that underlie the Lidov-Kozai theory based on the experience of using this theory as an efficient tool for solving various problems related to the study of the secular evolution of the orbits of artificial planetary satellites under the influence of external gravitational perturbations with allowance made for the perturbations due to the polar planetary oblateness.
String scattering amplitudes and deformed cubic string field theory
NASA Astrophysics Data System (ADS)
Lai, Sheng-Hong; Lee, Jen-Chi; Lee, Taejin; Yang, Yi
2018-01-01
We study string scattering amplitudes by using the deformed cubic string field theory which is equivalent to the string field theory in the proper-time gauge. The four-string scattering amplitudes with three tachyons and an arbitrary string state are calculated. The string field theory yields the string scattering amplitudes evaluated on the world sheet of string scattering whereas the conventional method, based on the first quantized theory brings us the string scattering amplitudes defined on the upper half plane. For the highest spin states, generated by the primary operators, both calculations are in perfect agreement. In this case, the string scattering amplitudes are invariant under the conformal transformation, which maps the string world sheet onto the upper half plane. If the external string states are general massive states, generated by non-primary field operators, we need to take into account carefully the conformal transformation between the world sheet and the upper half plane. We show by an explicit calculation that the string scattering amplitudes calculated by using the deformed cubic string field theory transform into those of the first quantized theory on the upper half plane by the conformal transformation, generated by the Schwarz-Christoffel mapping.
The finite ground plane effect on the microstrip antenna radiation patterns
NASA Technical Reports Server (NTRS)
Huang, J.
1983-01-01
The uniform geometrical theory of diffraction (GTD) is employed for calculating the edge diffracted fields from the finite ground plane of a microstrip antenna. The source field from the radiating patch is calculated by two different methods: the slot theory and the modal expansion theory. Many numerical and measured results are presented to demonstrate the accuracy of the calculations and the finite ground plane edge effect.
GEOSTATISTICAL SAMPLING DESIGNS FOR HAZARDOUS WASTE SITES
This chapter discusses field sampling design for environmental sites and hazardous waste sites with respect to random variable sampling theory, Gy's sampling theory, and geostatistical (kriging) sampling theory. The literature often presents these sampling methods as an adversari...
Magnetic probing of the solar interior
NASA Technical Reports Server (NTRS)
Benton, E. R.; Estes, R. H.
1985-01-01
The magnetic field patterns in the region beneath the solar photosphere is determined. An approximate method for downward extrapolation of line of sight magnetic field measurements taken at the solar photosphere was developed. It utilizes the mean field theory of electromagnetism in a form thought to be appropriate for the solar convection zone. A way to test that theory is proposed. The straightforward application of the lowest order theory with the complete model fit to these data does not indicate the existence of any reasonable depth at which flux conservation is achieved.
Staying theoretically sensitive when conducting grounded theory research.
Reay, Gudrun; Bouchal, Shelley Raffin; A Rankin, James
2016-09-01
Background Grounded theory (GT) is founded on the premise that underlying social patterns can be discovered and conceptualised into theories. The method and need for theoretical sensitivity are best understood in the historical context in which GT was developed. Theoretical sensitivity entails entering the field with no preconceptions, so as to remain open to the data and the emerging theory. Investigators also read literature from other fields to understand various ways to construct theories. Aim To explore the concept of theoretical sensitivity from a classical GT perspective, and discuss the ontological and epistemological foundations of GT. Discussion Difficulties in remaining theoretically sensitive throughout research are discussed and illustrated with examples. Emergence - the idea that theory and substance will emerge from the process of comparing data - and staying open to the data are emphasised. Conclusion Understanding theoretical sensitivity as an underlying guiding principle of GT helps the researcher make sense of important concepts, such as delaying the literature review, emergence and the constant comparative method (simultaneous collection, coding and analysis of data). Implications for practice Theoretical sensitivity and adherence to the GT research method allow researchers to discover theories that can bridge the gap between theory and practice.
Spin waves, vortices, fermions, and duality in the Ising and Baxter models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogilvie, M.C.
1981-10-15
Field-theoretic methods are applied to a number of two-dimensional lattice models with Abelian symmetry groups. It is shown, using a vortex+spin-wave decomposition, that the Z/sub p/-Villain models are related to a class of continuum field theories with analogous duality properties. Fermion operators for these field theories are discussed. In the case of the Ising model, the vortices and spin-waves conspire to produce a free, massive Majorana field theory in the continuum limit. The continuum limit of the Baxter model is also studied, and the recent results of Kadanoff and Brown are rederived and extended.
Multi-scale Methods in Quantum Field Theory
NASA Astrophysics Data System (ADS)
Polyzou, W. N.; Michlin, Tracie; Bulut, Fatih
2018-05-01
Daubechies wavelets are used to make an exact multi-scale decomposition of quantum fields. For reactions that involve a finite energy that take place in a finite volume, the number of relevant quantum mechanical degrees of freedom is finite. The wavelet decomposition has natural resolution and volume truncations that can be used to isolate the relevant degrees of freedom. The application of flow equation methods to construct effective theories that decouple coarse and fine scale degrees of freedom is examined.
On HQET and NRQCD operators of dimension 8 and above
Gunawardana, Ayesh; Paz, Gil
2017-07-27
Effective field theories such as Heavy Quark Effective Theory (HQET) and Non Relativistic Quantum Chromo-(Electro-) dynamics NRQCD (NRQED) are indispensable tools in controlling the effects of the strong interaction. The increasing experimental precision requires the knowledge of higher dimensional operators. We present a general method that allows for an easy construction of HQET or NRQCD (NRQED) operators that contain two heavy quark or non-relativistic fields and any number of covariant derivatives. As an application of our method, we list these terms in the 1/M 4 NRQCD Lagrangian, where M is the mass of of the spin-half field.
Operator Approach to the Master Equation for the One-Step Process
NASA Astrophysics Data System (ADS)
Hnatič, M.; Eferina, E. G.; Korolkova, A. V.; Kulyabov, D. S.; Sevastyanov, L. A.
2016-02-01
Background. Presentation of the probability as an intrinsic property of the nature leads researchers to switch from deterministic to stochastic description of the phenomena. The kinetics of the interaction has recently attracted attention because it often occurs in the physical, chemical, technical, biological, environmental, economic, and sociological systems. However, there are no general methods for the direct study of this equation. The expansion of the equation in a formal Taylor series (the so called Kramers-Moyal's expansion) is used in the procedure of stochastization of one-step processes. Purpose. However, this does not eliminate the need for the study of the master equation. Method. It is proposed to use quantum field perturbation theory for the statistical systems (the so-called Doi method). Results: This work is a methodological material that describes the principles of master equation solution based on quantum field perturbation theory methods. The characteristic property of the work is that it is intelligible for non-specialists in quantum field theory. Conclusions: We show the full equivalence of the operator and combinatorial methods of obtaining and study of the one-step process master equation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar, E-mail: eugeny.babichev@th.u-psud.fr, E-mail: christos.charmousis@th.u-psud.fr, E-mail: hassaine@inst-mat.utalca.cl
We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrommore » black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.« less
Cinderella Syndrome: A Philosophical View of Supervision as a Field of Study.
ERIC Educational Resources Information Center
Smyth, W. John
The theory and practice of supervision developed during a period in which the legitimization of any enterprise was most effectively sought through appeals to science and scientific methods for problem-solving. The failure of scientific discipline to develop conclusively effective theories in many social fields, including supervision, suggests that…
Adiabatic regularization for gauge fields and the conformal anomaly
NASA Astrophysics Data System (ADS)
Chu, Chong-Sun; Koyama, Yoji
2017-03-01
Adiabatic regularization for quantum field theory in conformally flat spacetime is known for scalar and Dirac fermion fields. In this paper, we complete the construction by establishing the adiabatic regularization scheme for the gauge field. We show that the adiabatic expansion for the mode functions and the adiabatic vacuum can be defined in a similar way using Wentzel-Kramers-Brillouin-type (WKB-type) solutions as the scalar fields. As an application of the adiabatic method, we compute the trace of the energy momentum tensor and reproduce the known result for the conformal anomaly obtained by the other regularization methods. The availability of the adiabatic expansion scheme for the gauge field allows one to study various renormalized physical quantities of theories coupled to (non-Abelian) gauge fields in conformally flat spacetime, such as conformal supersymmetric Yang Mills, inflation, and cosmology.
Lattice field theory study of magnetic catalysis in graphene
DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas
2017-04-15
We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. Our fully nonperturbative calculation uses methods of lattice gauge theory to study the theory using a hybrid Monte Carlo approach. We investigate the phenomenon of magnetic catalysis in the context of graphene by studying the chiral condensate which is the order parameter characterizing the spontaneous breaking of chiral symmetry. In the EFT, the symmetry breaking pattern is given bymore » $$U(4) \\to U(2) \\times U(2)$$. We also comment on the difficulty, in this lattice formalism, of studying the time-reversal-odd condensate characterizing the ground state in the presence of a magnetic field. Lastly, we study the mass spectrum of the theory, in particular the Nambu-Goldstone (NG) mode as well as the Dirac quasiparticle, which is predicted to obtain a dynamical mass.« less
NASA Technical Reports Server (NTRS)
Heedy, D. J.; Burnside, W. D.
1984-01-01
The moment method and the uniform geometrical theory of diffraction are utilized to obtain two separate solutions for the E-plane field pattern of an aperture-matched horn antenna. This particular horn antenna consists of a standard pyramidal horn with the following modifications: a rolled edge section attached to the aperture edges and a curved throat section. The resulting geometry provides significantly better performance in terms of the pattern, impedance, and frequency characteristics than normally obtainable. The moment method is used to calculate the E-plane pattern and BSWR of the antenna. However, at higher frequencies, large amounts of computation time are required. The uniform geometrical theory of diffraction provides a quick and efficient high frequency solution for the E-plane field pattern. In fact, the uniform geometrical theory of diffraction may be used to initially design the antenna; then, the moment method may be applied to fine tune the design. This procedure has been successfully applied to a compact range feed design.
Optical absorption spectra and g factor of MgO: Mn2+explored by ab initio and semi empirical methods
NASA Astrophysics Data System (ADS)
Andreici Eftimie, E.-L.; Avram, C. N.; Brik, M. G.; Avram, N. M.
2018-02-01
In this paper we present a methodology for calculations of the optical absorption spectra, ligand field parameters and g factor for the Mn2+ (3d5) ions doped in MgO host crystal. The proposed technique combines two methods: the ab initio multireference (MR) and the semi empirical ligand field (LF) in the framework of the exchange charge model (ECM) respectively. Both methods of calculations are applied to the [MnO6]10-cluster embedded in an extended point charge field of host matrix ligands based on Gellé-Lepetit procedure. The first step of such investigations was the full optimization of the cubic structure of perfect MgO crystal, followed by the structural optimization of the doped of MgO:Mn2+ system, using periodic density functional theory (DFT). The ab initio MR wave functions approaches, such as complete active space self-consistent field (CASSCF), N-electron valence second order perturbation theory (NEVPT2) and spectroscopy oriented configuration interaction (SORCI), are used for the calculations. The scalar relativistic effects have also been taken into account through the second order Douglas-Kroll-Hess (DKH2) procedure. Ab initio ligand field theory (AILFT) allows to extract all LF parameters and spin-orbit coupling constant from such calculations. In addition, the ECM of ligand field theory (LFT) has been used for modelling theoptical absorption spectra. The perturbation theory (PT) was employed for the g factor calculation in the semi empirical LFT. The results of each of the aforementioned types of calculations are discussed and the comparisons between the results obtained and the experimental results show a reasonable agreement, which justifies this new methodology based on the simultaneous use of both methods. This study establishes fundamental principles for the further modelling of larger embedded cluster models of doped metal oxides.
A note on powers in finite fields
NASA Astrophysics Data System (ADS)
Aabrandt, Andreas; Lundsgaard Hansen, Vagn
2016-08-01
The study of solutions to polynomial equations over finite fields has a long history in mathematics and is an interesting area of contemporary research. In recent years, the subject has found important applications in the modelling of problems from applied mathematical fields such as signal analysis, system theory, coding theory and cryptology. In this connection, it is of interest to know criteria for the existence of squares and other powers in arbitrary finite fields. Making good use of polynomial division in polynomial rings over finite fields, we have examined a classical criterion of Euler for squares in odd prime fields, giving it a formulation that is apt for generalization to arbitrary finite fields and powers. Our proof uses algebra rather than classical number theory, which makes it convenient when presenting basic methods of applied algebra in the classroom.
NASA Technical Reports Server (NTRS)
Liu, Gao-Lian
1991-01-01
Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.
Phenomenography and Grounded Theory as Research Methods in Computing Education Research Field
ERIC Educational Resources Information Center
Kinnunen, Paivi; Simon, Beth
2012-01-01
This paper discusses two qualitative research methods, phenomenography and grounded theory. We introduce both methods' data collection and analysis processes and the type or results you may get at the end by using examples from computing education research. We highlight some of the similarities and differences between the aim, data collection and…
NASA Astrophysics Data System (ADS)
Sǎraru, Silviu-Constantin
Topological field theories originate in the papers of Schwarz and Witten. Initially, Schwarz shown that one of the topological invariants, namely the Ray-Singer torsion, can be represented as the partition function of a certain quantum field theory. Subsequently, Witten constructed a framework for understanding Morse theory in terms of supersymmetric quantum mechanics. These two constructions represent the prototypes of all topological field theories. The model used by Witten has been applied to classical index theorems and, moreover, suggested some generalizations that led to new mathematical results on holomorphic Morse inequalities. Starting with these results, further developments in the domain of topological field theories have been achieved. The Becchi-Rouet-Stora-Tyutin (BRST) symmetry allowed for a new definition of topological ...eld theories as theories whose BRST-invariant Hamiltonian is also BRST-exact. An important class of topological theories of Schwarz type is the class of BF models. This type of models describes three-dimensional quantum gravity and is useful at the study of four-dimensional quantum gravity in Ashtekar-Rovelli-Smolin formulation. Two-dimensional BF models are correlated to Poisson sigma models from various two-dimensional gravities. The analysis of Poisson sigma models, including their relationship to two-dimensional gravity and the study of classical solutions, has been intensively studied in the literature. In this thesis we approach the problem of construction of some classes of interacting BF models in the context of the BRST formalism. In view of this, we use the method of the deformation of the BRST charge and BRST-invariant Hamiltonian. Both methods rely on specific techniques of local BRST cohomology. The main hypotheses in which we construct the above mentioned interactions are: space-time locality, Poincare invariance, smoothness of deformations in the coupling constant and the preservation of the number of derivatives on each field. The first two hypotheses implies that the resulting interacting theory must be local in space-time and Poincare invariant. The smoothness of deformations means that the deformed objects that contribute to the construction of interactions must be smooth in the coupling constant and reduce to the objects corresponding to the free theory in the zero limit of the coupling constant. The preservation of the number of derivatives on each field imp! lies two aspects that must be simultaneously fulfilled: (i) the differential order of each free field equation must coincide with that of the corresponding interacting field equation; (ii) the maximum number of space-time derivatives from the interacting vertices cannot exceed the maximum number of derivatives from the free Lagrangian. The main results obtained can be synthesized into: obtaining self-interactions for certain classes of BF models; generation of couplings between some classes of BF theories and matter theories; construction of interactions between a class of BF models and a system of massless vector fields.
Single-scale renormalisation group improvement of multi-scale effective potentials
NASA Astrophysics Data System (ADS)
Chataignier, Leonardo; Prokopec, Tomislav; Schmidt, Michael G.; Świeżewska, Bogumiła
2018-03-01
We present a new method for renormalisation group improvement of the effective potential of a quantum field theory with an arbitrary number of scalar fields. The method amounts to solving the renormalisation group equation for the effective potential with the boundary conditions chosen on the hypersurface where quantum corrections vanish. This hypersurface is defined through a suitable choice of a field-dependent value for the renormalisation scale. The method can be applied to any order in perturbation theory and it is a generalisation of the standard procedure valid for the one-field case. In our method, however, the choice of the renormalisation scale does not eliminate individual logarithmic terms but rather the entire loop corrections to the effective potential. It allows us to evaluate the improved effective potential for arbitrary values of the scalar fields using the tree-level potential with running coupling constants as long as they remain perturbative. This opens the possibility of studying various applications which require an analysis of multi-field effective potentials across different energy scales. In particular, the issue of stability of the scalar potential can be easily studied beyond tree level.
Dynamical mean field theory equations on nearly real frequency axis
NASA Astrophysics Data System (ADS)
Fathi, M. B.; Jafari, S. A.
2010-03-01
The iterated perturbation theory (IPT) equations of the dynamical mean field theory (DMFT) for the half-filled Hubbard model are solved on nearly real frequencies at various values of the Hubbard parameters, U, to investigate the nature of metal-insulator transition (MIT) at finite temperatures. This method avoids the instabilities associated with the infamous Padé analytic continuation and reveals fine structures across the MIT at finite temperatures, which cannot be captured by conventional methods for solving DMFT-IPT equations on Matsubara frequencies. Our method suggests that at finite temperatures, there is a crossover from a bad metal to a bad insulator in which the height of the quasi-particle (Kondo) peak decreases to a non-zero small bump, which gradually suppresses as one moves deeper into the bad insulating regime.
6D fractional quantum Hall effect
NASA Astrophysics Data System (ADS)
Heckman, Jonathan J.; Tizzano, Luigi
2018-05-01
We present a 6D generalization of the fractional quantum Hall effect involving membranes coupled to a three-form potential in the presence of a large background four-form flux. The low energy physics is governed by a bulk 7D topological field theory of abelian three-form potentials with a single derivative Chern-Simons-like action coupled to a 6D anti-chiral theory of Euclidean effective strings. We derive the fractional conductivity, and explain how continued fractions which figure prominently in the classification of 6D superconformal field theories correspond to a hierarchy of excited states. Using methods from conformal field theory we also compute the analog of the Laughlin wavefunction. Compactification of the 7D theory provides a uniform perspective on various lower-dimensional gapped systems coupled to boundary degrees of freedom. We also show that a supersymmetric version of the 7D theory embeds in M-theory, and can be decoupled from gravity. Encouraged by this, we present a conjecture in which IIB string theory is an edge mode of a 10 + 2-dimensional bulk topological theory, thus placing all twelve dimensions of F-theory on a physical footing.
Stochastic quantization of (λϕ4)d scalar theory: Generalized Langevin equation with memory kernel
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.
2007-02-01
The method of stochastic quantization for a scalar field theory is reviewed. A brief survey for the case of self-interacting scalar field, implementing the stochastic perturbation theory up to the one-loop level, is presented. Then, it is introduced a colored random noise in the Einstein's relations, a common prescription employed by one of the stochastic regularizations, to control the ultraviolet divergences of the theory. This formalism is extended to the case where a Langevin equation with a memory kernel is used. It is shown that, maintaining the Einstein's relations with a colored noise, there is convergence to a non-regularized theory.
Gravitational energy in the framework of embedding and splitting theories
NASA Astrophysics Data System (ADS)
Grad, D. A.; Ilin, R. V.; Paston, S. A.; Sheykin, A. A.
We study various definitions of the gravitational field energy based on the usage of isometric embeddings in the Regge-Teitelboim approach. For the embedding theory, we consider the coordinate translations on the surface as well as the coordinate translations in the flat bulk. In the latter case, the independent definition of gravitational energy-momentum tensor appears as a Noether current corresponding to global inner symmetry. In the field-theoretic form of this approach (splitting theory), we consider Noether procedure and the alternative method of energy-momentum tensor defining by varying the action of the theory with respect to flat bulk metric. As a result, we obtain energy definition in field-theoretic form of embedding theory which, among the other features, gives a nontrivial result for the solutions of embedding theory which are also solutions of Einstein equations. The question of energy localization is also discussed.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2002-08-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
Methods of Contemporary Gauge Theory
NASA Astrophysics Data System (ADS)
Makeenko, Yuri
2005-11-01
Preface; Part I. Path Integrals: 1. Operator calculus; 2. Second quantization; 3. Quantum anomalies from path integral; 4. Instantons in quantum mechanics; Part II. Lattice Gauge Theories: 5. Observables in gauge theories; 6. Gauge fields on a lattice; 7. Lattice methods; 8. Fermions on a lattice; 9. Finite temperatures; Part III. 1/N Expansion: 10. O(N) vector models; 11. Multicolor QCD; 12. QCD in loop space; 13. Matrix models; Part IV. Reduced Models: 14. Eguchi-Kawai model; 15. Twisted reduced models; 16. Non-commutative gauge theories.
1989-09-28
Introduction source. The near field part N has an integrand which is in terms of the higher order derived exponential integral func- For a number of...Methods for potential produced improved results near the flow calculations including first and stern, but none of them could accura- higher order theories ...method Naghdi method applied to the nonlinear free- in laminar boundary layer theory . I think the surface flow problems. higher theory Green-Naghdi
Condition for a Bounded System of Klein-Gordon Particles in Electric and Magnetic Fields
NASA Astrophysics Data System (ADS)
Kisoglu, Hasan Fatih; Sogut, Kenan
2018-07-01
We investigate the motion of relativistic spinless particles in an external electromagnetic field that is considered to has a constant magnetic field and a time-dependent electric field. For such a system, we obtain analytical eigenfunctions through Asymptotic Iteration Method. We also obtain a condition of choosing the external magnetic field for which the system is bounded with usage of the method in perturbation theory.
Symplectic Quantization of a Vector-Tensor Gauge Theory with Topological Coupling
NASA Astrophysics Data System (ADS)
Barcelos-Neto, J.; Silva, M. B. D.
We use the symplectic formalism to quantize a gauge theory where vectors and tensors fields are coupled in a topological way. This is an example of reducible theory and a procedure like of ghosts-of-ghosts of the BFV method is applied but in terms of Lagrange multipliers. Our final results are in agreement with the ones found in the literature by using the Dirac method.
Theory of a ring laser. [electromagnetic field and wave equations
NASA Technical Reports Server (NTRS)
Menegozzi, L. N.; Lamb, W. E., Jr.
1973-01-01
Development of a systematic formulation of the theory of a ring laser which is based on first principles and uses a well-known model for laser operation. A simple physical derivation of the electromagnetic field equations for a noninertial reference frame in uniform rotation is presented, and an attempt is made to clarify the nature of the Fox-Li modes for an open polygonal resonator. The polarization of the active medium is obtained by using a Fourier-series method which permits the formulation of a strong-signal theory, and solutions are given in terms of continued fractions. It is shown that when such a continued fraction is expanded to third order in the fields, the familiar small-signal ring-laser theory is obtained.
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1976-01-01
The theory, results and user instructions for an aerodynamic computer program are presented. The theory is based on linear lifting surface theory, and the method is the kernel function. The program is applicable to multiple interfering surfaces which may be coplanar or noncoplanar. Local linearization was used to treat nonuniform flow problems without shocks. For cases with imbedded shocks, the appropriate boundary conditions were added to account for the flow discontinuities. The data describing nonuniform flow fields must be input from some other source such as an experiment or a finite difference solution. The results are in the form of small linear perturbations about nonlinear flow fields. The method was applied to a wide variety of problems for which it is demonstrated to be significantly superior to the uniform flow method. Program user instructions are given for easy access.
Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali
2009-10-29
The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.
Holographic free energy and thermodynamic geometry
NASA Astrophysics Data System (ADS)
Ghorai, Debabrata; Gangopadhyay, Sunandan
2016-12-01
We obtain the free energy and thermodynamic geometry of holographic superconductors in 2+1 dimensions. The gravitational theory in the bulk dual to this 2+1-dimensional strongly coupled theory lives in the 3+1 dimensions and is that of a charged AdS black hole together with a massive charged scalar field. The matching method is applied to obtain the nature of the fields near the horizon using which the holographic free energy is computed through the gauge/gravity duality. The critical temperature is obtained for a set of values of the matching point of the near horizon and the boundary behaviour of the fields in the probe limit approximation which neglects the back reaction of the matter fields on the background spacetime geometry. The thermodynamic geometry is then computed from the free energy of the boundary theory. From the divergence of the thermodynamic scalar curvature, the critical temperature is obtained once again. We then compare this result for the critical temperature with that obtained from the matching method.
Nonperturbative dynamics of scalar field theories through the Feynman-Schwinger representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cetin Savkli; Franz Gross; John Tjon
2004-04-01
In this paper we present a summary of results obtained for scalar field theories using the Feynman-Schwinger (FSR) approach. Specifically, scalar QED and {chi}{sup 2}{phi} theories are considered. The motivation behind the applications discussed in this paper is to use the FSR method as a rigorous tool for testing the quality of commonly used approximations in field theory. Exact calculations in a quenched theory are presented for one-, two-, and three-body bound states. Results obtained indicate that some of the commonly used approximations, such as Bethe-Salpeter ladder summation for bound states and the rainbow summation for one body problems, producemore » significantly different results from those obtained from the FSR approach. We find that more accurate results can be obtained using other, simpler, approximation schemes.« less
Hamiltonian methods: BRST, BFV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, J. Antonio
2006-09-25
The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in Mexico in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.
Hamiltonian methods: BRST, BFV
NASA Astrophysics Data System (ADS)
García, J. Antonio
2006-09-01
The range of applicability of Hamiltonian methods to gauge theories is very diverse and cover areas of research from phenomenology to mathematical physics. We review some of the areas developed in México in the last decades. They cover the study of symplectic methods, BRST-BFV and BV approaches, Klauder projector program, and non perturbative technics used in the study of bound states in relativistic field theories.
Sociocultural Learning Theory in Practice: Implications for Athletic Training Educators
Peer, Kimberly S.; McClendon, Ronald C.
2002-01-01
Objective: To discuss cognitive and sociocultural learning theory literature related to athletic training instructional and evaluation strategies while providing support for the application of these practices in the didactic and clinical components of athletic training education programs. Data Sources: We searched Educational Resources Information Center (ERIC) and Education Abstracts from 1975–2001 using the key words social cognitive, sociocultural learning theory, constructivism, and athletic training education. Current literature in the fields of educational psychology and athletic training education provides the foundation for applying theory to practice with specific emphasis on the theoretic framework and application of sociocultural learning theory strategies in athletic training education. Data Synthesis: Athletic training educators must have a strong fundamental knowledge of learning theory and a commitment to incorporate theory into educational practice. We integrate literature from both fields to generate practical strategies for using sociocultural learning theory in athletic training education. Conclusions/Recommendations: Social cognitive and sociocultural learning theory advocates a constructive, self-regulated, and goal-oriented environment with the student at the center of the educational process. Although a shift exists in athletic training education toward more active instructional strategies with the implementation of competency-based education, many educational environments are still dominated by traditional didactic instructional methods promoting student passivity. As athletic training education programs strive to increase accountability, educators in the field must critically analyze teaching and evaluation methods and integrate new material to ensure that learning is maximized. PMID:12937534
ERIC Educational Resources Information Center
Humbel, Stephane
2007-01-01
A simple method is proposed based on energies obtained with the Huckel theory to compute the weights of the structures. The Huckel-Lewis CI technique extends to the Huckel theory the field of the resonance between Lewis structures.
Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł
2007-04-21
A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.
A Safari Through Density Functional Theory
NASA Astrophysics Data System (ADS)
Dreizler, Reiner M.; Lüdde, Cora S.
Density functional theory is widely used to treat quantum many body problems in many areas of physics and related fields. A brief survey of this method covering foundations, functionals and applications is presented here.
NASA Astrophysics Data System (ADS)
Bykov, Andrei M.; Toptygin, Igor'N.
1993-11-01
This review presents methods available for calculating transport coefficients for impurity particles in plasmas with strong long-wave MHD-type velocity and magnetic-field fluctuations, and random ensembles of strong shock fronts. The renormalization of the coefficients of the mean-field equation of turbulent dynamo theory is also considered. Particular attention is devoted to the renormalization method developed by the authors in which the renormalized transport coefficients are calculated from a nonlinear transcendental equation (or a set of such equations) and are expressed in the form of explicit functions of pair correlation tensors describing turbulence. Numerical calculations are reproduced for different turbulence spectra. Spatial transport in a magnetic field and particle acceleration by strong turbulence are investigated. The theory can be used in a wide range of practical problems in plasma physics, atmospheric physics, ocean physics, astrophysics, cosmic-ray physics, and so on.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Partha
2007-06-01
We discuss a universality property of any covariant field theory in space-time expanded around pp-wave backgrounds. According to this property the space-time lagrangian density evaluated on a restricted set of field configurations, called universal sector, turns out to be same around all the pp-waves, even off-shell, with same transverse space and same profiles for the background scalars. In this paper we restrict our discussion to tensorial fields only. In the context of bosonic string theory we consider on-shell pp-waves and argue that universality requires the existence of a universal sector of world-sheet operators whose correlation functions are insensitive to the pp-wave nature of the metric and the background gauge flux. Such results can also be reproduced using the world-sheet conformal field theory. We also study such pp-waves in non-polynomial closed string field theory (CSFT). In particular, we argue that for an off-shell pp-wave ansatz with flat transverse space and dilaton independent of transverse coordinates the field redefinition relating the low energy effective field theory and CSFT with all the massive modes integrated out is at most quadratic in fields. Because of this simplification it is expected that the off-shell pp-waves can be identified on the two sides. Furthermore, given the massless pp-wave field configurations, an iterative method for computing the higher massive modes using the CSFT equations of motion has been discussed. All our bosonic string theory analyses can be generalised to the common Neveu-Schwarz sector of superstrings.
Global anomalies and effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golkar, Siavash; Sethi, Savdeep
2016-05-17
Here, we show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functionsmore » rather than eta invariants.« less
One-loop β-function for an infinite-parameter family of gauge theories
NASA Astrophysics Data System (ADS)
Krasnov, Kirill
2015-03-01
We continue to study an infinite-parametric family of gauge theories with an arbitrary function of the self-dual part of the field strength as the Lagrangian. The arising one-loop divergences are computed using the background field method. We show that they can all be absorbed by a local redefinition of the gauge field, as well as multiplicative renormalisations of the couplings. Thus, this family of theories is one-loop renormalisable. The infinite set of β-functions for the couplings is compactly stored in a renormalisation group flow for a single function of the curvature. The flow is obtained explicitly.
A duality web in condensed matter systems
NASA Astrophysics Data System (ADS)
Ma, Chen-Te
2018-03-01
We study various dualities in condensed matter systems. The dualities in three dimensions can be derived from a conjecture of a duality between a Dirac fermion theory and an interacting scalar field theory at a Wilson-Fisher fixed point and zero temperature in three dimensions. We show that the dualities are not affected by non-trivial holonomy, use a mean-field method to study the dualities, and discuss the dualities at a finite temperature. Finally, we combine a bulk theory, which is an Abelian p-form theory with a theta term in 2 p + 2 dimensions, and a boundary theory, which is a 2 p + 1 dimensional theory, to discuss constraints and difficulties of a 2 p + 1 dimensional duality web.
Vacuum polarization and Hawking radiation
NASA Astrophysics Data System (ADS)
Rahmati, Shohreh
Quantum gravity is one of the interesting fields in contemporary physics which is still in progress. The purpose of quantum gravity is to present a quantum description for spacetime at 10-33cm or find the 'quanta' of gravitational interaction.. At present, the most viable theory to describe gravitational interaction is general relativity which is a classical theory. Semi-classical quantum gravity or quantum field theory in curved spacetime is an approximation to a full quantum theory of gravity. This approximation considers gravity as a classical field and matter fields are quantized. One interesting phenomena in semi-classical quantum gravity is Hawking radiation. Hawking radiation was derived by Stephen Hawking as a thermal emission of particles from the black hole horizon. In this thesis we obtain the spectrum of Hawking radiation using a new method. Vacuum is defined as the possible lowest energy state which is filled with pairs of virtual particle-antiparticle. Vacuum polarization is a consequence of pair creation in the presence of an external field such as an electromagnetic or gravitational field. Vacuum polarization in the vicinity of a black hole horizon can be interpreted as the cause of the emission from black holes known as Hawking radiation. In this thesis we try to obtain the Hawking spectrum using this approach. We re-examine vacuum polarization of a scalar field in a quasi-local volume that includes the horizon. We study the interaction of a scalar field with the background gravitational field of the black hole in the desired quasi-local region. The quasi-local volume is a hollow cylinder enclosed by two membranes, one inside the horizon and one outside the horizon. The net rate of particle emission can be obtained as the difference of the vacuum polarization from the outer boundary and inner boundary of the cylinder. Thus we found a new method to derive Hawking emission which is unitary and well defined in quantum field theory.
General design method for three-dimensional potential flow fields. 1: Theory
NASA Technical Reports Server (NTRS)
Stanitz, J. D.
1980-01-01
A general design method was developed for steady, three dimensional, potential, incompressible or subsonic-compressible flow. In this design method, the flow field, including the shape of its boundary, was determined for arbitrarily specified, continuous distributions of velocity as a function of arc length along the boundary streamlines. The method applied to the design of both internal and external flow fields, including, in both cases, fields with planar symmetry. The analytic problems associated with stagnation points, closure of bodies in external flow fields, and prediction of turning angles in three dimensional ducts were reviewed.
The Contributions and Prospects of Goal Orientation Theory
ERIC Educational Resources Information Center
Kaplan, Avi; Maehr, Martin L.
2007-01-01
In the last two decades, goal orientation theory has become an important perspective in the field of achievement motivation, and particularly in academic motivation. However, as research in the theory has proliferated, the use of multiple methods to assess goal orientations seems to have contributed to theoretical vagueness, especially with regard…
Nonlinear Field Equations and Solitons as Particles
NASA Astrophysics Data System (ADS)
Maccari, Attilio
2006-05-01
Profound advances have recently interested nonlinear field theories and their exact or approximate solutions. We review the last results and point out some important unresolved questions. It is well known that quantum field theories are based upon Fourier series and the identification of plane waves with free particles. On the contrary, nonlinear field theories admit the existence of coherent solutions (dromions, solitons and so on). Moreover, one can construct lower dimensional chaotic patterns, periodic-chaotic patterns, chaotic soliton and dromion patterns. In a similar way, fractal dromion and lump patterns as well as stochastic fractal excitations can appear in the solution. We discuss in some detail a nonlinear Dirac field and a spontaneous symmetry breaking model that are reduced by means of the asymptotic perturbation method to a system of nonlinear evolution equations integrable via an appropriate change of variables. Their coherent, chaotic and fractal solutions are examined in some detail. Finally, we consider the possible identification of some types of coherent solutions with extended particles along the de Broglie-Bohm theory. However, the last findings suggest an inadequacy of the particle concept that appears only as a particular case of nonlinear field theories excitations.
What Goes Up... Gravity and Scientific Method
NASA Astrophysics Data System (ADS)
Kosso, Peter
2017-02-01
Preface; 1. Introduction; 2. Forces and fields; 3. Basic Newtonian theory; 4. Gravity before Newton; 5. Early modern astronomy; 6. Connecting physics and astronomy; 7. Connecting kinematics and dynamics; 8. Testing the Newtonian theory; 9. Challenging the Newtonian theory; 10. Geometry and equivalence; 11. The general theory of relativity; 12. Testing the general theory of relativity; 13. Using the theory to explore the universe; 14. Dark matter; 15. The structure of scientific knowledge; Glossary; Bibliography.
A four-dimensional model with the fermionic determinant exactly evaluated
NASA Astrophysics Data System (ADS)
Mignaco, J. A.; Rego Monteiro, M. A.
1986-07-01
A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.
Genetic Epidemiology and Public Health: The Evolution From Theory to Technology.
Fallin, M Daniele; Duggal, Priya; Beaty, Terri H
2016-03-01
Genetic epidemiology represents a hybrid of epidemiologic designs and statistical models that explicitly consider both genetic and environmental risk factors for disease. It is a relatively new field in public health; the term was first coined only 35 years ago. In this short time, the field has been through a major evolution, changing from a field driven by theory, without the technology for genetic measurement or computational capacity to apply much of the designs and methods developed, to a field driven by rapidly expanding technology in genomic measurement and computational analyses while epidemiologic theory struggles to keep up. In this commentary, we describe 4 different eras of genetic epidemiology, spanning this evolution from theory to technology, what we have learned, what we have added to the broader field of public health, and what remains to be done. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An introduction to the theory of ptychographic phase retrieval methods
NASA Astrophysics Data System (ADS)
Konijnenberg, Sander
2017-12-01
An overview of several ptychographic phase retrieval methods and the theory behind them is presented. By looking into the theory behind more basic single-intensity pattern phase retrieval methods, a theoretical framework is provided for analyzing ptychographic algorithms. Extensions of ptychographic algorithms that deal with issues such as partial coherence, thick samples, or uncertainties of the probe or probe positions are also discussed. This introduction is intended for scientists and students without prior experience in the field of phase retrieval or ptychography to quickly get introduced to the theory, so that they can put the more specialized literature in context more easily.
Plant Taxonomy as a Field Study
ERIC Educational Resources Information Center
Dalby, D. H.
1970-01-01
Suggests methods of teaching plant identification and taxonomic theory using keys, statistical analyses, and biometrics. Population variation, genotype- environment interaction and experimental taxonomy are used in laboratory and field. (AL)
Simple recursion relations for general field theories
Cheung, Clifford; Shen, Chia -Hsien; Trnka, Jaroslav
2015-06-17
On-shell methods offer an alternative definition of quantum field theory at tree-level, replacing Feynman diagrams with recursion relations and interaction vertices with a handful of seed scattering amplitudes. In this paper we determine the simplest recursion relations needed to construct a general four-dimensional quantum field theory of massless particles. For this purpose we define a covering space of recursion relations which naturally generalizes all existing constructions, including those of BCFW and Risager. The validity of each recursion relation hinges on the large momentum behavior of an n-point scattering amplitude under an m-line momentum shift, which we determine solely from dimensionalmore » analysis, Lorentz invariance, and locality. We show that all amplitudes in a renormalizable theory are 5-line constructible. Amplitudes are 3-line constructible if an external particle carries spin or if the scalars in the theory carry equal charge under a global or gauge symmetry. Remarkably, this implies the 3-line constructibility of all gauge theories with fermions and complex scalars in arbitrary representations, all supersymmetric theories, and the standard model. Moreover, all amplitudes in non-renormalizable theories without derivative interactions are constructible; with derivative interactions, a subset of amplitudes is constructible. We illustrate our results with examples from both renormalizable and non-renormalizable theories. In conclusion, our study demonstrates both the power and limitations of recursion relations as a self-contained formulation of quantum field theory.« less
Böttrich, Marcel; Tanskanen, Jarno M A; Hyttinen, Jari A K
2017-06-26
Our aim is to introduce a method to enhance the design process of microelectrode array (MEA) based electric bioimpedance measurement systems for improved detection and viability assessment of living cells and tissues. We propose the application of electromagnetic lead field theory and reciprocity for MEA design and measurement result interpretation. Further, we simulated impedance spectroscopy (IS) with two- and four-electrode setups and a biological cell to illustrate the tool in the assessment of the capabilities of given MEA electrode constellations for detecting cells on or in the vicinity of the microelectrodes. The results show the power of the lead field theory in electromagnetic simulations of cell-microelectrode systems depicting the fundamental differences of two- and four-electrode IS measurement configurations to detect cells. Accordingly, the use in MEA system design is demonstrated by assessing the differences between the two- and four-electrode IS configurations. Further, our results show how cells affect the lead fields in these MEA system, and how we can utilize the differences of the two- and four-electrode setups in cell detection. The COMSOL simulator model is provided freely in public domain as open source. Lead field theory can be successfully applied in MEA design for the IS based assessment of biological cells providing the necessary visualization and insight for MEA design. The proposed method is expected to enhance the design and usability of automated cell and tissue manipulation systems required for bioreactors, which are intended for the automated production of cell and tissue grafts for medical purposes. MEA systems are also intended for toxicology to assess the effects of chemicals on living cells. Our results demonstrate that lead field concept is expected to enhance also the development of such methods and devices.
Probing Inflation Using Galaxy Clustering On Ultra-Large Scales
NASA Astrophysics Data System (ADS)
Dalal, Roohi; de Putter, Roland; Dore, Olivier
2018-01-01
A detailed understanding of curvature perturbations in the universe is necessary to constrain theories of inflation. In particular, measurements of the local non-gaussianity parameter, flocNL, enable us to distinguish between two broad classes of inflationary theories, single-field and multi-field inflation. While most single-field theories predict flocNL ≈ ‑5/12 (ns -1), in multi-field theories, flocNL is not constrained to this value and is allowed to be observably large. Achieving σ(flocNL) = 1 would give us discovery potential for detecting multi-field inflation, while finding flocNL=0 would rule out a good fraction of interesting multi-field models. We study the use of galaxy clustering on ultra-large scales to achieve this level of constraint on flocNL. Upcoming surveys such as Euclid and LSST will give us galaxy catalogs from which we can construct the galaxy power spectrum and hence infer a value of flocNL. We consider two possible methods of determining the galaxy power spectrum from a catalog of galaxy positions: the traditional Feldman Kaiser Peacock (FKP) Power Spectrum Estimator, and an Optimal Quadratic Estimator (OQE). We implemented and tested each method using mock galaxy catalogs, and compared the resulting constraints on flocNL. We find that the FKP estimator can measure flocNL in an unbiased way, but there remains room for improvement in its precision. We also find that the OQE is not computationally fast, but remains a promising option due to its ability to isolate the power spectrum at large scales. We plan to extend this research to study alternative methods, such as pixel-based likelihood functions. We also plan to study the impact of general relativistic effects at these scales on our ability to measure flocNL.
Spectral methods in edge-diffraction theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, J.M.
Spectral methods for the construction of uniform asymptotic representations of the field diffracted by an aperture in a plane screen are reviewed. These are separated into contrasting approaches, roughly described as physical and geometrical. It is concluded that the geometrical methods provide a direct route to the construction of uniform representations that are formally identical to the equivalent-edge-current concept. Some interpretive and analytical difficulties that complicate the physical methods of obtaining uniform representations are analyzed. Spectral synthesis proceeds directly from the ray geometry and diffraction coefficients, without any intervening current representation, and the representation is uniform at shadow boundaries andmore » caustics of the diffracted field. The physical theory of diffraction postulates currents on the diffracting screen that give rise to the diffracted field. The difficulties encountered in evaluating the current integrals are throughly examined, and it is concluded that the additional data provided by the physical theory of diffraction (diffraction coefficients off the Keller diffraction cone) are not actually required for obtaining uniform asymptotics at the leading order. A new diffraction representation that generalizes to arbitrary plane-convex apertures a formula given by Knott and Senior [Proc. IEEE 62, 1468 (1974)] for circular apertures is deduced. 34 refs., 1 fig.« less
How Cultural Evolutionary Theory Can Inform Social Psychology and Vice Versa
ERIC Educational Resources Information Center
Mesoudi, Alex
2009-01-01
Cultural evolutionary theory is an interdisciplinary field in which human culture is viewed as a Darwinian process of variation, competition, and inheritance, and the tools, methods, and theories developed by evolutionary biologists to study genetic evolution are adapted to study cultural change. It is argued here that an integration of the…
Sample Size for Estimation of G and Phi Coefficients in Generalizability Theory
ERIC Educational Resources Information Center
Atilgan, Hakan
2013-01-01
Problem Statement: Reliability, which refers to the degree to which measurement results are free from measurement errors, as well as its estimation, is an important issue in psychometrics. Several methods for estimating reliability have been suggested by various theories in the field of psychometrics. One of these theories is the generalizability…
From 6D superconformal field theories to dynamic gauged linear sigma models
NASA Astrophysics Data System (ADS)
Apruzzi, Fabio; Hassler, Falk; Heckman, Jonathan J.; Melnikov, Ilarion V.
2017-09-01
Compactifications of six-dimensional (6D) superconformal field theories (SCFTs) on four- manifolds generate a large class of novel two-dimensional (2D) quantum field theories. We consider in detail the case of the rank-one simple non-Higgsable cluster 6D SCFTs. On the tensor branch of these theories, the gauge group is simple and there are no matter fields. For compactifications on suitably chosen Kähler surfaces, we present evidence that this provides a method to realize 2D SCFTs with N =(0 ,2 ) supersymmetry. In particular, we find that reduction on the tensor branch of the 6D SCFT yields a description of the same 2D fixed point that is described in the UV by a gauged linear sigma model (GLSM) in which the parameters are promoted to dynamical fields, that is, a "dynamic GLSM" (DGLSM). Consistency of the model requires the DGLSM to be coupled to additional non-Lagrangian sectors obtained from reduction of the antichiral two-form of the 6D theory. These extra sectors include both chiral and antichiral currents, as well as spacetime filling noncritical strings of the 6D theory. For each candidate 2D SCFT, we also extract the left- and right-moving central charges in terms of data of the 6D SCFT and the compactification manifold.
Research on early-warning index of the spatial temperature field in concrete dams.
Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan
2016-01-01
Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.
THEORETICAL METHODS FOR COMPUTING ELECTRICAL CONDITIONS IN WIRE-PLATE ELECTROSTATIC PRECIPITATORS
The paper describes a new semi-empirical, approximate theory for predicting electrical conditions. In the approximate theory, analytical expressions are derived for calculating voltage-current characteristics and electric potential, electric field, and space charge density distri...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Existence of topological multi-string solutions in Abelian gauge field theories
NASA Astrophysics Data System (ADS)
Han, Jongmin; Sohn, Juhee
2017-11-01
In this paper, we consider a general form of self-dual equations arising from Abelian gauge field theories coupled with the Einstein equations. By applying the super/subsolution method, we prove that topological multi-string solutions exist for any coupling constant, which improves previously known results. We provide two examples for application: the self-dual Einstein-Maxwell-Higgs model and the gravitational Maxwell gauged O(3) sigma model.
Quantum Mechanics, Path Integrals and Option Pricing:. Reducing the Complexity of Finance
NASA Astrophysics Data System (ADS)
Baaquie, Belal E.; Corianò, Claudio; Srikant, Marakani
2003-04-01
Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear systems is also briefly overviewed. More general models, for exotic or path-dependent options are discussed.
Theoretical studies of electronically excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besley, Nicholas A.
2014-10-06
Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.
Tackling non-linearities with the effective field theory of dark energy and modified gravity
NASA Astrophysics Data System (ADS)
Frusciante, Noemi; Papadomanolakis, Georgios
2017-12-01
We present the extension of the effective field theory framework to the mildly non-linear scales. The effective field theory approach has been successfully applied to the late time cosmic acceleration phenomenon and it has been shown to be a powerful method to obtain predictions about cosmological observables on linear scales. However, mildly non-linear scales need to be consistently considered when testing gravity theories because a large part of the data comes from those scales. Thus, non-linear corrections to predictions on observables coming from the linear analysis can help in discriminating among different gravity theories. We proceed firstly by identifying the necessary operators which need to be included in the effective field theory Lagrangian in order to go beyond the linear order in perturbations and then we construct the corresponding non-linear action. Moreover, we present the complete recipe to map any single field dark energy and modified gravity models into the non-linear effective field theory framework by considering a general action in the Arnowitt-Deser-Misner formalism. In order to illustrate this recipe we proceed to map the beyond-Horndeski theory and low-energy Hořava gravity into the effective field theory formalism. As a final step we derived the 4th order action in term of the curvature perturbation. This allowed us to identify the non-linear contributions coming from the linear order perturbations which at the next order act like source terms. Moreover, we confirm that the stability requirements, ensuring the positivity of the kinetic term and the speed of propagation for scalar mode, are automatically satisfied once the viability of the theory is demanded at linear level. The approach we present here will allow to construct, in a model independent way, all the relevant predictions on observables at mildly non-linear scales.
Quasi-phase-matching of high-order harmonics in plasma plumes: theory and experiment.
Strelkov, V V; Ganeev, R A
2017-09-04
We theoretically analyze the phase-matching of high-order harmonic generation (HHG) in multi-jet plasmas and find the harmonic orders for which the quasi-phase-matching (QPM) is achieved depending on the parameters of the plasma and the generating beam. HHG by single- and two-color generating fields is analyzed. The QMP is studied experimentally for silver, indium and manganese plasmas using near IR and mid-IR laser fields. The theory is validated by comparison with our experimental observations, as well as published experimental data. In particular, the plasma densities and the harmonic phase coefficients reconstructed from the observed harmonic spectra using our theory agree with the corresponding parameters found using other methods. Our theory allows defining the plasma jet and the generating field properties, which can maximize the HHG efficiency due to QPM.
Gravitation. [consideration of black holes in gravity theories
NASA Technical Reports Server (NTRS)
Fennelly, A. J.
1978-01-01
Investigations of several problems of gravitation are discussed. The question of the existence of black holes is considered. While black holes like those in Einstein's theory may not exist in other gravity theories, trapped surfaces implying such black holes certainly do. The theories include those of Brans-Dicke, Lightman-Lee, Rosen, and Yang. A similar two-tensor theory of Yilmaz is investigated and found inconsistent and nonviable. The Newman-Penrose formalism for Riemannian geometries is adapted to general gravity theories and used to implement a search for twisting solutions of the gravity theories for empty and nonempty spaces. The method can be used to find the gravitational fields for all viable gravity theories. The rotating solutions are of particular importance for strong field interpretation of the Stanford/Marshall gyroscope experiment. Inhomogeneous cosmologies are examined in Einstein's theory as generalizations of homogeneous ones by raising the dimension of the invariance groups by one more parameter. The nine Bianchi classifications are extended to Rosen's theory of gravity for homogeneous cosmological models.
T-duality constraints on higher derivatives revisited
NASA Astrophysics Data System (ADS)
Hohm, Olaf; Zwiebach, Barton
2016-04-01
We ask to what extent are the higher-derivative corrections of string theory constrained by T-duality. The seminal early work by Meissner tests T-duality by reduction to one dimension using a distinguished choice of field variables in which the bosonic string action takes a Gauss-Bonnet-type form. By analyzing all field redefinitions that may or may not be duality covariant and may or may not be gauge covariant we extend the procedure to test T-duality starting from an action expressed in arbitrary field variables. We illustrate the method by showing that it determines uniquely the first-order α' corrections of the bosonic string, up to terms that vanish in one dimension. We also use the method to glean information about the O({α}^' 2}) corrections in the double field theory with Green-Schwarz deformation.
Theory's role in shaping behavioral health research for population health.
King, Abby C
2015-11-26
The careful application of theory often is used in the behavioral health field to enhance our understanding of how the world currently works. But theory also can help us visualize what the world can become, particularly through its potential impacts on population-wide health. Applying a multi-level ecological perspective can help in expanding the field's focus upward toward the population at large. While ecological frameworks have become increasingly popular, arguably such perspectives have fallen short of their potential to actively bridge conceptual constructs and, by extension, intervention approaches, across different levels of population impact. Theoretical and conceptual perspectives that explicitly span levels of impact offer arguably the greatest potential for achieving scientific insights that may in turn produce the largest population health effects. Examples of such "bridging" approaches include theories and models that span behavioral + micro-environment, behavioral + social/cultural, and social + physical environment constructs. Several recommendations are presented related to opportunities for leveraging theories to attain the greatest impact in the population health science field. These include applying the evidence obtained from person-level theories to inform methods for positively impacting the behaviors of community gatekeepers and decision-makers for greater population change and reach; leveraging the potential of residents as "citizen scientists"--a resource for enacting behavioral health changes at the individual, environmental, and policy levels; using empirical observations and theory in equal parts to build more robust, relevant, and solution-oriented behavior change programs; exploring moderators and mediators of change at levels of impact that go beyond the individual; and considering the circumstances in which applying conceptual methods that embrace a "complexity" as opposed to "causality" perspective may lead to more flexible and agile scientific approaches that could accelerate both population-relevant discoveries and applications in the field. The commentary closes with suggestions concerning additional areas to be considered to facilitate continued advances in the health behavior field more generally to attain the greatest impacts on population health.
Where's the emotion? How sport psychology can inform research on emotion in human factors.
Eccles, David W; Ward, Paul; Woodman, Tim; Janelle, Christopher M; Le Scanff, Christine; Ehrlinger, Joyce; Castanier, Carole; Coombes, Stephen A
2011-04-01
The aim of this study was to demonstrate how research on emotion in sport psychology might inform the field of human factors. Human factors historically has paid little attention to the role of emotion within the research on human-system relations. The theories, methods, and practices related to research on emotion within sport psychology might be informative for human factors because fundamentally, sport psychology and human factors are applied fields concerned with enhancing performance in complex, real-world domains. Reviews of three areas of theory and research on emotion in sport psychology are presented, and the relevancy of each area for human factors is proposed: (a) emotional preparation and regulation for performance, (b) an emotional trait explanation for risk taking in sport, and (c) the link between emotion and motor behavior. Finally, there are suggestions for how to continue cross-talk between human factors and sport psychology about research on emotion and related topics in the future. The relevance of theory and research on emotion in sport psychology for human factors is demonstrated. The human factors field and, in particular, research on human-system relations may benefit from a consideration of theory and research on emotion in sport psychology. Theories, methods, and practices from sport psychology might be applied usefully to human factors.
ERIC Educational Resources Information Center
Zeedick, Danielle Marie
2010-01-01
During the past several decades, the field of instructional design theory has experienced changes in what is mostly applied to traditional, on-ground education. While instructional design theory has been (and still is being) discussed, constructed, and deconstructed, there has been no agreement among prominent instructional design theory…
Constructing a Grounded Theory of E-Learning Assessment
ERIC Educational Resources Information Center
Alonso-Díaz, Laura; Yuste-Tosina, Rocío
2015-01-01
This study traces the development of a grounded theory of assessment in e-learning environments, a field in need of research to establish the parameters of an assessment that is both reliable and worthy of higher learning accreditation. Using grounded theory as a research method, we studied an e-assessment model that does not require physical…
Molecular polarizability of water from local dielectric response theory
Ge, Xiaochuan; Lu, Deyu
2017-08-08
Here, we propose a fully ab initio theory to compute the electron density response under the perturbation in the local field. This method is based on our recently developed local dielectric response theory [Phys. Rev. B 92, 241107(R), 2015], which provides a rigorous theoretical framework to treat local electronic excitations in both nite and extended systems beyond the commonly employed dipole approximation. We have applied this method to study the electronic part of the molecular polarizability of water in ice Ih and liquid water. Our results reveal that the crystal field of the hydrogen-bond network has strong anisotropic effects, whichmore » significantly enhance the out-of-plane component and suppress the in-plane component perpendicular to the bisector direction. The contribution from the charge transfer is equally important, which increases the isotropic molecular polarizability by 5-6%. Our study provides new insights into the dielectric properties of water, which form the basis to understand electronic excitations in water and to develop accurate polarizable force fields of water.« less
Mathematical correlation of modal-parameter-identification methods via system-realization theory
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan
1987-01-01
A unified approach is introduced using system-realization theory to derive and correlate modal-parameter-identification methods for flexible structures. Several different time-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal-parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research toward the unification of the many possible approaches for modal-parameter identification.
Differential form representation of stochastic electromagnetic fields
NASA Astrophysics Data System (ADS)
Haider, Michael; Russer, Johannes A.
2017-09-01
In this work, we revisit the theory of stochastic electromagnetic fields using exterior differential forms. We present a short overview as well as a brief introduction to the application of differential forms in electromagnetic theory. Within the framework of exterior calculus we derive equations for the second order moments, describing stochastic electromagnetic fields. Since the resulting objects are continuous quantities in space, a discretization scheme based on the Method of Moments (MoM) is introduced for numerical treatment. The MoM is applied in such a way, that the notation of exterior calculus is maintained while we still arrive at the same set of algebraic equations as obtained for the case of formulating the theory using the traditional notation of vector calculus. We conclude with an analytic calculation of the radiated electric field of two Hertzian dipole, excited by uncorrelated random currents.
NASA Astrophysics Data System (ADS)
Beltran, J.; Maia, N. T.; Pimentel, B. M.
2018-04-01
Scalar Quantum Electrodynamics is investigated in the Heisenberg picture via the Duffin-Kemmer-Petiau gauge theory. On this framework, a perturbative method is used to compute the vacuum polarization tensor and its corresponding induced current for the case of a charged scalar field in the presence of an external electromagnetic field. Charge renormalization is brought into discussion for the interpretation of the results for the vacuum polarization.
Exact solution of matricial Φ23 quantum field theory
NASA Astrophysics Data System (ADS)
Grosse, Harald; Sako, Akifumi; Wulkenhaar, Raimar
2017-12-01
We apply a recently developed method to exactly solve the Φ3 matrix model with covariance of a two-dimensional theory, also known as regularised Kontsevich model. Its correlation functions collectively describe graphs on a multi-punctured 2-sphere. We show how Ward-Takahashi identities and Schwinger-Dyson equations lead in a special large- N limit to integral equations that we solve exactly for all correlation functions. The solved model arises from noncommutative field theory in a special limit of strong deformation parameter. The limit defines ordinary 2D Schwinger functions which, however, do not satisfy reflection positivity.
Tsuchimochi, Takashi; Henderson, Thomas M; Scuseria, Gustavo E; Savin, Andreas
2010-10-07
Our previously developed constrained-pairing mean-field theory (CPMFT) is shown to map onto an unrestricted Hartree-Fock (UHF) type method if one imposes a corresponding pair constraint to the correlation problem that forces occupation numbers to occur in pairs adding to one. In this new version, CPMFT has all the advantages of standard independent particle models (orbitals and orbital energies, to mention a few), yet unlike UHF, it can dissociate polyatomic molecules to the correct ground-state restricted open-shell Hartree-Fock atoms or fragments.
Thellamurege, Nandun M; Si, Dejun; Cui, Fengchao; Li, Hui
2014-05-07
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths of the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.
Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
Liu, Da; Li, Jianxun
2016-12-16
Classification is a significant subject in hyperspectral remote sensing image processing. This study proposes a spectral-spatial feature fusion algorithm for the classification of hyperspectral images (HSI). Unlike existing spectral-spatial classification methods, the influences and interactions of the surroundings on each measured pixel were taken into consideration in this paper. Data field theory was employed as the mathematical realization of the field theory concept in physics, and both the spectral and spatial domains of HSI were considered as data fields. Therefore, the inherent dependency of interacting pixels was modeled. Using data field modeling, spatial and spectral features were transformed into a unified radiation form and further fused into a new feature by using a linear model. In contrast to the current spectral-spatial classification methods, which usually simply stack spectral and spatial features together, the proposed method builds the inner connection between the spectral and spatial features, and explores the hidden information that contributed to classification. Therefore, new information is included for classification. The final classification result was obtained using a random forest (RF) classifier. The proposed method was tested with the University of Pavia and Indian Pines, two well-known standard hyperspectral datasets. The experimental results demonstrate that the proposed method has higher classification accuracies than those obtained by the traditional approaches.
Underwater electric field detection system based on weakly electric fish
NASA Astrophysics Data System (ADS)
Xue, Wei; Wang, Tianyu; Wang, Qi
2018-04-01
Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.
A model of the open magnetosphere. [with field configuration based on Chapman-Ferraro theory
NASA Technical Reports Server (NTRS)
Kan, J. R.; Akasofu, S.-I.
1974-01-01
The Chapman-Ferraro image method is extended to construct an idealized model of the open magnetosphere that responds to a change of the interplanetary field direction as well as to a change of the field magnitude or of the solar wind momentum flux. The magnetopause of the present model is an infinite plane surface having a normal field component distribution that is consistent with the merging theory. An upper limit on the inward displacement of the magnetopause following a southward turning of the interplanetary field is obtained. The results are in fair agreement with a single event reported by Aubry et al. (1971). The model determines the field configuration and the total magnetic flux connecting the magnetosphere to interplanetary space.
Zoning of agricultural field using a fuzzy indicators model
USDA-ARS?s Scientific Manuscript database
Zoning of agricultural fields is an important task for utilization of precision farming technology. One method for deciding how to subdivide a field into a few relatively homogenous zones is using applications of fuzzy sets theory. Data collected from a precision agriculture study in central Texas...
Researchers and the Rural Poor: Asking Questions in the Third World.
ERIC Educational Resources Information Center
Adams, William M.; Megaw, Charles C.
1997-01-01
Discusses the theory and practice of rural socioeconomic surveys in developing nations. Highlights the close links between choice of research topic, field area and research methods, and the ethics of field research. Offers a personal commentary on some practical problems concerning field research. (MJP)
Wilbraham, Liam; Verma, Pragya; Truhlar, Donald G; Gagliardi, Laura; Ciofini, Ilaria
2017-05-04
The spin-state orderings in nine Fe(II) and Fe(III) complexes with ligands of diverse ligand-field strength were investigated with multiconfiguration pair-density functional theory (MC-PDFT). The performance of this method was compared to that of complete active space second-order perturbation theory (CASPT2) and Kohn-Sham density functional theory. We also investigated the dependence of CASPT2 and MC-PDFT results on the size of the active-space. MC-PDFT reproduces the CASPT2 spin-state ordering, the dependence on the ligand field strength, and the dependence on active space at a computational cost that is significantly reduced as compared to CASPT2.
Classical nucleation theory in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Classical nucleation theory in the phase-field crystal model.
Jreidini, Paul; Kocher, Gabriel; Provatas, Nikolas
2018-04-01
A full understanding of polycrystalline materials requires studying the process of nucleation, a thermally activated phase transition that typically occurs at atomistic scales. The numerical modeling of this process is problematic for traditional numerical techniques: commonly used phase-field methods' resolution does not extend to the atomic scales at which nucleation takes places, while atomistic methods such as molecular dynamics are incapable of scaling to the mesoscale regime where late-stage growth and structure formation takes place following earlier nucleation. Consequently, it is of interest to examine nucleation in the more recently proposed phase-field crystal (PFC) model, which attempts to bridge the atomic and mesoscale regimes in microstructure simulations. In this work, we numerically calculate homogeneous liquid-to-solid nucleation rates and incubation times in the simplest version of the PFC model, for various parameter choices. We show that the model naturally exhibits qualitative agreement with the predictions of classical nucleation theory (CNT) despite a lack of some explicit atomistic features presumed in CNT. We also examine the early appearance of lattice structure in nucleating grains, finding disagreement with some basic assumptions of CNT. We then argue that a quantitatively correct nucleation theory for the PFC model would require extending CNT to a multivariable theory.
Causality constraints in conformal field theory
Hartman, Thomas; Jain, Sachin; Kundu, Sandipan
2016-05-17
Causality places nontrivial constraints on QFT in Lorentzian signature, for example fixing the signs of certain terms in the low energy Lagrangian. In d dimensional conformal field theory, we show how such constraints are encoded in crossing symmetry of Euclidean correlators, and derive analogous constraints directly from the conformal bootstrap (analytically). The bootstrap setup is a Lorentzian four-point function corresponding to propagation through a shockwave. Crossing symmetry fixes the signs of certain log terms that appear in the conformal block expansion, which constrains the interactions of low-lying operators. As an application, we use the bootstrap to rederive the well knownmore » sign constraint on the (Φ) 4 coupling in effective field theory, from a dual CFT. We also find constraints on theories with higher spin conserved currents. As a result, our analysis is restricted to scalar correlators, but we argue that similar methods should also impose nontrivial constraints on the interactions of spinning operators« less
Quasi-local conserved charges in the Einstein-Maxwell theory
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2017-05-01
In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ
Geometric and Topological Methods for Quantum Field Theory
NASA Astrophysics Data System (ADS)
Cardona, Alexander; Contreras, Iván.; Reyes-Lega, Andrés. F.
2013-05-01
Introduction; 1. A brief introduction to Dirac manifolds Henrique Bursztyn; 2. Differential geometry of holomorphic vector bundles on a curve Florent Schaffhauser; 3. Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles Sylvie Paycha; 4. Introduction to Feynman integrals Stefan Weinzierl; 5. Iterated integrals in quantum field theory Francis Brown; 6. Geometric issues in quantum field theory and string theory Luis J. Boya; 7. Geometric aspects of the standard model and the mysteries of matter Florian Scheck; 8. Absence of singular continuous spectrum for some geometric Laplacians Leonardo A. Cano García; 9. Models for formal groupoids Iván Contreras; 10. Elliptic PDEs and smoothness of weakly Einstein metrics of Hölder regularity Andrés Vargas; 11. Regularized traces and the index formula for manifolds with boundary Alexander Cardona and César Del Corral; Index.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeTar, Carleton; Winterowd, Christopher; Zafeiropoulos, Savvas
We discuss the simulation of the low-energy effective field theory (EFT) for graphene in the presence of an external magnetic field. Our fully nonperturbative calculation uses methods of lattice gauge theory to study the theory using a hybrid Monte Carlo approach. We investigate the phenomenon of magnetic catalysis in the context of graphene by studying the chiral condensate which is the order parameter characterizing the spontaneous breaking of chiral symmetry. In the EFT, the symmetry breaking pattern is given bymore » $$U(4) \\to U(2) \\times U(2)$$. We also comment on the difficulty, in this lattice formalism, of studying the time-reversal-odd condensate characterizing the ground state in the presence of a magnetic field. Lastly, we study the mass spectrum of the theory, in particular the Nambu-Goldstone (NG) mode as well as the Dirac quasiparticle, which is predicted to obtain a dynamical mass.« less
Sissay, Adonay; Abanador, Paul; Mauger, François; Gaarde, Mette; Schafer, Kenneth J; Lopata, Kenneth
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagating the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sissay, Adonay; Abanador, Paul; Mauger, François
2016-09-07
Strong-field ionization and the resulting electronic dynamics are important for a range of processes such as high harmonic generation, photodamage, charge resonance enhanced ionization, and ionization-triggered charge migration. Modeling ionization dynamics in molecular systems from first-principles can be challenging due to the large spatial extent of the wavefunction which stresses the accuracy of basis sets, and the intense fields which require non-perturbative time-dependent electronic structure methods. In this paper, we develop a time-dependent density functional theory approach which uses a Gaussian-type orbital (GTO) basis set to capture strong-field ionization rates and dynamics in atoms and small molecules. This involves propagatingmore » the electronic density matrix in time with a time-dependent laser potential and a spatial non-Hermitian complex absorbing potential which is projected onto an atom-centered basis set to remove ionized charge from the simulation. For the density functional theory (DFT) functional we use a tuned range-separated functional LC-PBE*, which has the correct asymptotic 1/r form of the potential and a reduced delocalization error compared to traditional DFT functionals. Ionization rates are computed for hydrogen, molecular nitrogen, and iodoacetylene under various field frequencies, intensities, and polarizations (angle-dependent ionization), and the results are shown to quantitatively agree with time-dependent Schrödinger equation and strong-field approximation calculations. This tuned DFT with GTO method opens the door to predictive all-electron time-dependent density functional theory simulations of ionization and ionization-triggered dynamics in molecular systems using tuned range-separated hybrid functionals.« less
Challenges in Computational Social Modeling and Simulation for National Security Decision Making
2011-06-01
This study is grounded within a system-activity theory , a logico-philosophical model of interdisciplinary research [13, 14], the concepts of social...often a difficult challenge. Ironically, social science research methods , such as ethnography , may be tremendously helpful in designing these...social sciences. Moreover, CSS projects draw on knowledge and methods from other fields of study , including graph theory , information visualization
[Client centered psychotherapy].
Werthmann, H V
1979-01-01
In the discussion concerning which psychotherapeutic methods should come under the auspices of the medical health system in West Germany, the question is raised regarding the client-centered therapy of Carl Rogers. Can it be considered a distinct psychotherapeutic method? A review of the scientific literature dealing with this method shows that it provides neither a theory of mental illness nor a theory of clinical application based on individual cases or specific neurotic disturbances, Therefore it should be categorized as a useful method of communication in the field of psychology and not as a therapeutic method for treating mental illness.
ERIC Educational Resources Information Center
Patel, Kamna
2015-01-01
Development studies employs theories, tools and methods often found in geography, including the international field trip to a "developing" country. In 2013 and 2014, I led a two-week trip to Ethiopia. To better comprehend the effects of "the field" on students' learning, I introduced an assessed reflexive field diary to…
Retrieving Storm Electric Fields from Aircraft Field Mill Data. Part 1; Theory
NASA Technical Reports Server (NTRS)
Koshak, W. J.
2006-01-01
It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers) and also helps improve absolute calibration. Additionally, this paper introduces an alternate way of performing the absolute calibration of an aircraft that has some benefits over conventional analyses. It is accomplished by using the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.
Retrieving Storm Electric Fields From Aircraft Field Mill Data. Part I: Theory
NASA Technical Reports Server (NTRS)
Koshak, W. J.
2005-01-01
It is shown that the problem of retrieving storm electric fields from an aircraft instrumented with several electric field mill sensors can be expressed in terms of a standard Lagrange multiplier optimization problem. The method naturally removes aircraft charge from the retrieval process without having to use a high voltage stinger and linearly combined mill data values. It also allows a variety of user-supplied physical constraints (the so-called side constraints in the theory of Lagrange multipliers). Additionally, this paper introduces a novel way of performing the absolute calibration of an aircraft that has several benefits over conventional analyses. In the new approach, absolute calibration is completed by inspecting the time derivatives of mill and pitch data for a pitch down maneuver performed at high (greater than 1 km) altitude. In Part II of this study, the above methods are tested and then applied to complete a full calibration of a Citation aircraft.
Noar, Seth M; Mehrotra, Purnima
2011-03-01
Traditional theory testing commonly applies cross-sectional (and occasionally longitudinal) survey research to test health behavior theory. Since such correlational research cannot demonstrate causality, a number of researchers have called for the increased use of experimental methods for theory testing. We introduce the multi-methodological theory-testing (MMTT) framework for testing health behavior theory. The MMTT framework introduces a set of principles that broaden the perspective of how we view evidence for health behavior theory. It suggests that while correlational survey research designs represent one method of testing theory, the weaknesses of this approach demand that complementary approaches be applied. Such approaches include randomized lab and field experiments, mediation analysis of theory-based interventions, and meta-analysis. These alternative approaches to theory testing can demonstrate causality in a much more robust way than is possible with correlational survey research methods. Such approaches should thus be increasingly applied in order to more completely and rigorously test health behavior theory. Greater application of research derived from the MMTT may lead researchers to refine and modify theory and ultimately make theory more valuable to practitioners. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Light Scattering by Fractal Dust Aggregates. II. Opacity and Asymmetry Parameter
NASA Astrophysics Data System (ADS)
Tazaki, Ryo; Tanaka, Hidekazu
2018-06-01
Optical properties of dust aggregates are important at various astrophysical environments. To find a reliable approximation method for optical properties of dust aggregates, we calculate the opacity and the asymmetry parameter of dust aggregates by using a rigorous numerical method, the T-Matrix Method, and then the results are compared to those obtained by approximate methods: the Rayleigh–Gans–Debye (RGD) theory, the effective medium theory (EMT), and the distribution of hollow spheres method (DHS). First of all, we confirm that the RGD theory breaks down when multiple scattering is important. In addition, we find that both EMT and DHS fail to reproduce the optical properties of dust aggregates with fractal dimensions of 2 when the incident wavelength is shorter than the aggregate radius. In order to solve these problems, we test the mean field theory (MFT), where multiple scattering can be taken into account. We show that the extinction opacity of dust aggregates can be well reproduced by MFT. However, it is also shown that MFT is not able to reproduce the scattering and absorption opacities when multiple scattering is important. We successfully resolve this weak point of MFT, by newly developing a modified mean field theory (MMF). Hence, we conclude that MMF can be a useful tool to investigate radiative transfer properties of various astrophysical environments. We also point out an enhancement of the absorption opacity of dust aggregates in the Rayleigh domain, which would be important to explain the large millimeter-wave opacity inferred from observations of protoplanetary disks.
Novel analytical approach for strongly coupled waveguide arrays
NASA Astrophysics Data System (ADS)
Kohli, Niharika; Srivastava, Sangeeta; Sharma, Enakshi K.
2018-02-01
Coupled Mode theory and Variational methods are the most extensively used analytical methods for the study of coupled optical waveguides. In this paper we have discussed a variation of the Ritz Galerkin Variational method (RGVM) wherein the trial field is a superposition of an orthogonal basis set which in turn is generated from superposition of the individual waveguide modal fields using Gram Schmidt Orthogonalization Procedure (GSOP). The conventional coupled mode theory (CCMT), a modified coupled mode theory (MCMT) incorporating interaction terms that are neglected in CCMT, and an RGVM using orthogonal basis set (RG-GSOP) are compared for waveguide arrays of different materials. The exact effective indices values for these planar waveguide arrays are also studied. The different materials have their index-contrasts ranging between the GaAs/ AlGaAs system to Si/SiO2 system. It has been shown that the error in the effective indices values obtained from MCMT and CCMT is higher than RGVM-GSOP especially in the case of higher index-contrast. Therefore, for accurate calculations of the modal characteristics of planar waveguide arrays, even at higher index-contrasts, RGVM-GSOP is the best choice. Moreover, we obtain obviously orthogonal supermode fields and Hermitian matrix from RGVM-GSOP.
Symmetry restoration and quantumness reestablishment.
Zeng, Guo-Mo; Wu, Lian-Ao; Xing, Hai-Jun
2014-09-18
A realistic quantum many-body system, characterized by a generic microscopic Hamiltonian, is accessible only through approximation methods. The mean field theories, as the simplest practices of approximation methods, commonly serve as a powerful tool, but unfortunately often violate the symmetry of the Hamiltonian. The conventional BCS theory, as an excellent mean field approach, violates the particle number conservation and completely erases quantumness characterized by concurrence and quantum discord between different modes. We restore the symmetry by using the projected BCS theory and the exact numerical solution and find that the lost quantumness is synchronously reestablished. We show that while entanglement remains unchanged with the particle numbers, quantum discord behaves as an extensive quantity with respect to the system size. Surprisingly, discord is hardly dependent on the interaction strengths. The new feature of discord offers promising applications in modern quantum technologies.
Inverse Scattering and Local Observable Algebras in Integrable Quantum Field Theories
NASA Astrophysics Data System (ADS)
Alazzawi, Sabina; Lechner, Gandalf
2017-09-01
We present a solution method for the inverse scattering problem for integrable two-dimensional relativistic quantum field theories, specified in terms of a given massive single particle spectrum and a factorizing S-matrix. An arbitrary number of massive particles transforming under an arbitrary compact global gauge group is allowed, thereby generalizing previous constructions of scalar theories. The two-particle S-matrix S is assumed to be an analytic solution of the Yang-Baxter equation with standard properties, including unitarity, TCP invariance, and crossing symmetry. Using methods from operator algebras and complex analysis, we identify sufficient criteria on S that imply the solution of the inverse scattering problem. These conditions are shown to be satisfied in particular by so-called diagonal S-matrices, but presumably also in other cases such as the O( N)-invariant nonlinear {σ}-models.
Study on transport properties of silicene monolayer under external field using NEGF method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syaputra, Marhamni, E-mail: marhamni@students.itb.ac.id; Wella, Sasfan Arman; Wungu, Triati Dewi Kencana
2015-09-30
We investigate the current-voltage (I-V) characteristics of a pristine monolayer silicene using non-equilibrium Green function (NEGF) method combining with density functional theory (DFT). This method succeeded in showing the relationship of I and V on silicene corresponding to the electronic characteristics such as density of states. The external field perpendicular to the silicene monolayer affects in increasing of the current. Under 0.2 eV external field, the current reaches the maximum peak at Vb = 0.3 eV with the increase is about 60% from what it is in zero external field.
Application of Canonical Effective Methods to Background-Independent Theories
NASA Astrophysics Data System (ADS)
Buyukcam, Umut
Effective formalisms play an important role in analyzing phenomena above some given length scale when complete theories are not accessible. In diverse exotic but physically important cases, the usual path-integral techniques used in a standard Quantum Field Theory approach seldom serve as adequate tools. This thesis exposes a new effective method for quantum systems, called the Canonical Effective Method, which owns particularly wide applicability in backgroundindependent theories as in the case of gravitational phenomena. The central purpose of this work is to employ these techniques to obtain semi-classical dynamics from canonical quantum gravity theories. Application to non-associative quantum mechanics is developed and testable results are obtained. Types of non-associative algebras relevant for magnetic-monopole systems are discussed. Possible modifications of hypersurface deformation algebra and the emergence of effective space-times are presented. iii.
A multi-species exchange model for fully fluctuating polymer field theory simulations.
Düchs, Dominik; Delaney, Kris T; Fredrickson, Glenn H
2014-11-07
Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complex Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1989-01-01
A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a 'multilayer' theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.
NASA Technical Reports Server (NTRS)
Ko, William L.; Jackson, Raymond H.
1989-01-01
A composite test specimen in the shape of a semicircular curved bar subjected to bending offers an excellent stress field for studying the open-mode delamination behavior of laminated composite materials. This is because the open-mode delamination nucleates at the midspan of the curved bar. The classical anisotropic elasticity theory was used to construct a multilayer theory for the calculations of the stress and deformation fields induced in the multilayered composite semicircular curved bar subjected to end forces and end moments. The radial location and intensity of the open-mode delamination stress were calculated and were compared with the results obtained from the anisotropic continuum theory and from the finite element method. The multilayer theory gave more accurate predictions of the location and the intensity of the open-mode delamination stress than those calculated from the anisotropic continuum theory.
Limiting cases in relativistic field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitney, C.K.
1988-05-01
For nearly ninety years, electromagnetic fields caused by relativistically moving sources have been modeled according to formulas derived at the turn of the present century by Lienard and Wiechert. Recently, questions have started to surface about the Lienard-Wiechert derivation method, about all the subsequent modern rederivation methods, and about the results themselves. The present paper continues this critique. The field results in various idealized limiting cases are examined for plausibility and absurdities are revealed.
Extensions of the Einstein-Schrodinger non-symmetric theory of gravity
NASA Astrophysics Data System (ADS)
Shifflett, James A.
We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.
Grassmann phase space methods for fermions. II. Field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, B.J., E-mail: bdalton@swin.edu.au; Jeffers, J.; Barnett, S.M.
In both quantum optics and cold atom physics, the behaviour of bosonic photons and atoms is often treated using phase space methods, where mode annihilation and creation operators are represented by c-number phase space variables, with the density operator equivalent to a distribution function of these variables. The anti-commutation rules for fermion annihilation, creation operators suggests the possibility of using anti-commuting Grassmann variables to represent these operators. However, in spite of the seminal work by Cahill and Glauber and a few applications, the use of Grassmann phase space methods in quantum-atom optics to treat fermionic systems is rather rare, thoughmore » fermion coherent states using Grassmann variables are widely used in particle physics. This paper presents a phase space theory for fermion systems based on distribution functionals, which replace the density operator and involve Grassmann fields representing anti-commuting fermion field annihilation, creation operators. It is an extension of a previous phase space theory paper for fermions (Paper I) based on separate modes, in which the density operator is replaced by a distribution function depending on Grassmann phase space variables which represent the mode annihilation and creation operators. This further development of the theory is important for the situation when large numbers of fermions are involved, resulting in too many modes to treat separately. Here Grassmann fields, distribution functionals, functional Fokker–Planck equations and Ito stochastic field equations are involved. Typical applications to a trapped Fermi gas of interacting spin 1/2 fermionic atoms and to multi-component Fermi gases with non-zero range interactions are presented, showing that the Ito stochastic field equations are local in these cases. For the spin 1/2 case we also show how simple solutions can be obtained both for the untrapped case and for an optical lattice trapping potential.« less
Scattering from a cylindrical reflector: modified theory of physical optics solution.
Yalçin, Ugur
2007-02-01
The problem of scattering from a perfectly conducting cylindrical reflector is examined with the method of the modified theory of physical optics. In this technique the physical optics currents are modified by using a variable unit vector on the scatterer's surface. These current components are obtained for the reflector, which is fed by an offset electric line source. The scattering integral is expressed by using these currents and evaluated asymptotically with the stationary phase method. The results are compared numerically by using physical optics theory, geometrical optics diffraction theory, and the exact solution of the Helmholtz equation. It is found that the modified theory of physical optics scattering field equations agrees with the geometrical optics diffraction theory and the exact solution of the Helmholtz equation.
Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.
Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K
2018-03-13
Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thellamurege, Nandun M.; Si, Dejun; Cui, Fengchao
A combined quantum mechanical/molecular mechanical/continuum (QM/MM/C) style second order Møller-Plesset perturbation theory (MP2) method that incorporates induced dipole polarizable force field and induced surface charge continuum solvation model is established. The Z-vector method is modified to include induced dipoles and induced surface charges to determine the MP2 response density matrix, which can be used to evaluate MP2 properties. In particular, analytic nuclear gradient is derived and implemented for this method. Using the Assisted Model Building with Energy Refinement induced dipole polarizable protein force field, the QM/MM/C style MP2 method is used to study the hydrogen bonding distances and strengths ofmore » the photoactive yellow protein chromopore in the wild type and the Glu46Gln mutant.« less
Covariant conserved currents for scalar-tensor Horndeski theory
NASA Astrophysics Data System (ADS)
Schmidt, J.; Bičák, J.
2018-04-01
The scalar-tensor theories have become popular recently in particular in connection with attempts to explain present accelerated expansion of the universe, but they have been considered as a natural extension of general relativity long time ago. The Horndeski scalar-tensor theory involving four invariantly defined Lagrangians is a natural choice since it implies field equations involving at most second derivatives. Following the formalisms of defining covariant global quantities and conservation laws for perturbations of spacetimes in standard general relativity, we extend these methods to the general Horndeski theory and find the covariant conserved currents for all four Lagrangians. The current is also constructed in the case of linear perturbations involving both metric and scalar fields. As a specific illustration, we derive a superpotential that leads to the covariantly conserved current in the Branse-Dicke theory.
NASA Astrophysics Data System (ADS)
Shuler, Robert
2018-04-01
The goal of this paper is to take a completely fresh approach to metric gravity, in which the metric principle is strictly adhered to but its properties in local space-time are derived from conservation principles, not inferred from a global field equation. The global field strength variation then gains some flexibility, but only in the regime of very strong fields (2nd-order terms) whose measurement is now being contemplated. So doing provides a family of similar gravities, differing only in strong fields, which could be developed into meaningful verification targets for strong fields after the manner in which far-field variations were used in the 20th century. General Relativity (GR) is shown to be a member of the family and this is demonstrated by deriving the Schwarzschild metric exactly from a suitable field strength assumption. The method of doing so is interesting in itself because it involves only one differential equation rather than the usual four. Exact static symmetric field solutions are also given for one pedagogical alternative based on potential, and one theoretical alternative based on inertia, and the prospects of experimentally differentiating these are analyzed. Whether the method overturns the conventional wisdom that GR is the only metric theory of gravity and that alternatives must introduce additional interactions and fields is somewhat semantical, depending on whether one views the field strength assumption as a field and whether the assumption that produces GR is considered unique in some way. It is of course possible to have other fields, and the local space-time principle can be applied to field gravities which usually are weak-field approximations having only time dilation, giving them the spatial factor and promoting them to full metric theories. Though usually pedagogical, some of them are interesting from a quantum gravity perspective. Cases are noted where mass measurement errors, or distributions of dark matter, can cause one theory to mimic another implying that such estimates or distributions should be first obtained from weakfield measurements before being used to discriminate verification candidates. By this method theorists gain insight into the local constraints on space-time, and GR verification gains strong-field comparative objectives.
NASA Astrophysics Data System (ADS)
Cheng, J. L.; Guo, C.
2018-05-01
Graphene exhibits extremely strong optical nonlinearity in a perpendicular magnetic field, the optical conductivities show complicated field dependence at a moderate light intensity, and the perturbation theory fails. The full optical currents induced by a periodic field are nonperturbatively investigated in an equation-of-motion framework based on the Floquet theorem, with the scattering described phenomenologically. The nonlinear responses are understood in terms of the dressed electronic states, or Floquet states, which could be characterized by a weak probe light field. The method is illustrated for a magnetic field at 5 T and a driving field with photon energy 0.05 eV. Our results show that the perturbation theory works for weak fields <3 kV/cm, confirming the unusual strong light-matter interaction for Landau levels of graphene. Our approach can be easily extended to other systems.
Category's analysis and operational project capacity method of transformation in design
NASA Astrophysics Data System (ADS)
Obednina, S. V.; Bystrova, T. Y.
2015-10-01
The method of transformation is attracting widespread interest in fields such contemporary design. However, in theory of design little attention has been paid to a categorical status of the term "transformation". This paper presents the conceptual analysis of transformation based on the theory of form employed in the influential essays by Aristotle and Thomas Aquinas. In the present work the transformation as a method of shaping design has been explored as well as potential application of this term in design has been demonstrated.
Wave field restoration using three-dimensional Fourier filtering method.
Kawasaki, T; Takai, Y; Ikuta, T; Shimizu, R
2001-11-01
A wave field restoration method in transmission electron microscopy (TEM) was mathematically derived based on a three-dimensional (3D) image formation theory. Wave field restoration using this method together with spherical aberration correction was experimentally confirmed in through-focus images of amorphous tungsten thin film, and the resolution of the reconstructed phase image was successfully improved from the Scherzer resolution limit to the information limit. In an application of this method to a crystalline sample, the surface structure of Au(110) was observed in a profile-imaging mode. The processed phase image showed quantitatively the atomic relaxation of the topmost layer.
Classical field configurations and infrared slavery
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
1987-09-01
The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.
Electromagnetic Compatibility in the Defense Systems of Future Years
2002-06-01
Technology activities. Its mission is to conduct and promote cooperative research and information exchange . The objective is to support the development...testing CLEARANCE PRODUCTION AND IN-SERVICE SUPPORT Modelling in support of conceptual design (structure & installation design) EMH Design guides for the... marketed by Advanced Electromagnetics [6-1]. Transmission Line Matrix Method The link between field theory and circuit theory, the major theories on
On the equivalence of LIST and DIIS methods for convergence acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Scuseria, Gustavo E.
2015-04-28
Self-consistent field extrapolation methods play a pivotal role in quantum chemistry and electronic structure theory. We, here, demonstrate the mathematical equivalence between the recently proposed family of LIST methods [Wang et al., J. Chem. Phys. 134, 241103 (2011); Y. K. Chen and Y. A. Wang, J. Chem. Theory Comput. 7, 3045 (2011)] and the general form of Pulay’s DIIS [Chem. Phys. Lett. 73, 393 (1980); J. Comput. Chem. 3, 556 (1982)] with specific error vectors. Our results also explain the differences in performance among the various LIST methods.
Mathematical correlation of modal parameter identification methods via system realization theory
NASA Technical Reports Server (NTRS)
Juang, J. N.
1986-01-01
A unified approach is introduced using system realization theory to derive and correlate modal parameter identification methods for flexible structures. Several different time-domain and frequency-domain methods are analyzed and treated. A basic mathematical foundation is presented which provides insight into the field of modal parameter identification for comparison and evaluation. The relation among various existing methods is established and discussed. This report serves as a starting point to stimulate additional research towards the unification of the many possible approaches for modal parameter identification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasa, Takeshi, E-mail: tiwasa@mail.sci.hokudai.ac.jp; Takenaka, Masato; Taketsugu, Tetsuya
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems.more » The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.« less
Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya
2016-03-28
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.
Direct Simulation of Extinction in a Slab of Spherical Particles
NASA Technical Reports Server (NTRS)
Mackowski, D.W.; Mishchenko, Michael I.
2013-01-01
The exact multiple sphere superposition method is used to calculate the coherent and incoherent contributions to the ensemble-averaged electric field amplitude and Poynting vector in systems of randomly positioned nonabsorbing spherical particles. The target systems consist of cylindrical volumes, with radius several times larger than length, containing spheres with positional configurations generated by a Monte Carlo sampling method. Spatially dependent values for coherent electric field amplitude, coherent energy flux, and diffuse energy flux, are calculated by averaging of exact local field and flux values over multiple configurations and over spatially independent directions for fixed target geometry, sphere properties, and sphere volume fraction. Our results reveal exponential attenuation of the coherent field and the coherent energy flux inside the particulate layer and thereby further corroborate the general methodology of the microphysical radiative transfer theory. An effective medium model based on plane wave transmission and reflection by a plane layer is used to model the dependence of the coherent electric field on particle packing density. The effective attenuation coefficient of the random medium, computed from the direct simulations, is found to agree closely with effective medium theories and with measurements. In addition, the simulation results reveal the presence of a counter-propagating component to the coherent field, which arises due to the internal reflection of the main coherent field component by the target boundary. The characteristics of the diffuse flux are compared to, and found to be consistent with, a model based on the diffusion approximation of the radiative transfer theory.
The Split Coefficient Matrix method for hyperbolic systems of gasdynamic equations
NASA Technical Reports Server (NTRS)
Chakravarthy, S. R.; Anderson, D. A.; Salas, M. D.
1980-01-01
The Split Coefficient Matrix (SCM) finite difference method for solving hyperbolic systems of equations is presented. This new method is based on the mathematical theory of characteristics. The development of the method from characteristic theory is presented. Boundary point calculation procedures consistent with the SCM method used at interior points are explained. The split coefficient matrices that define the method for steady supersonic and unsteady inviscid flows are given for several examples. The SCM method is used to compute several flow fields to demonstrate its accuracy and versatility. The similarities and differences between the SCM method and the lambda-scheme are discussed.
Local existence of N=1 supersymmetric gauge theory in four Dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbar, Fiki T.; Gunara, Bobby E.; Zen, Freddy P.
2015-04-16
In this paper, we shall prove the local existence of N=1 supersymmetry gauge theory in 4 dimension. We start from the Lagrangian for coupling chiral and vector multiplets with constant gauge kinetic function and only considering a bosonic part by setting all fermionic field to be zero at level equation of motion. We consider a U(n) model as isometry for scalar field internal geometry. And we use a nonlinear semigroup method to prove the local existence.
Lorentz symmetry violation with higher-order operators and renormalization
NASA Astrophysics Data System (ADS)
Nascimento, J. R.; Petrov, A. Yu; Reyes, C. M.
2018-01-01
Effective field theory has shown to be a powerful method in searching for quantum gravity effects and in particular for CPT and Lorentz symmetry violation. In this work we study an effective field theory with higher-order Lorentz violation, specifically we consider a modified model with scalars and modified fermions interacting via the Yukawa coupling. We study its renormalization properties, that is, its radiative corrections and renormalization conditions in the light of the requirements of having a finite and unitary S-matrix.
Understanding Radiation Thermometry. Part II
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2015-01-01
This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.
Understanding Radiation Thermometry. Part I
NASA Technical Reports Server (NTRS)
Risch Timothy K.
2015-01-01
This document is a two-part course on the theory and practice of radiation thermometry. Radiation thermometry is the technique for determining the temperature of a surface or a volume by measuring the electromagnetic radiation it emits. This course covers the theory and practice of radiative thermometry and emphasizes the modern application of the field using commercially available electronic detectors and optical components. The course covers the historical development of the field, the fundamental physics of radiative surfaces, along with modern measurement methods and equipment.
The Divided Self: The Double Consciousness of Faculty of Color in Community Colleges
ERIC Educational Resources Information Center
Levin, John S.; Walker, Laurencia; Haberler, Zachary; Jackson-Boothby, Adam
2013-01-01
Through qualitative field methods research addressing faculty of color in four California community colleges, this investigation examines and explains faculty experiences and professional sense making. By combining critical race theory with social identity theory, our perspective underlines the potential social and ethnic identity conflicts…
Symplectic Quantization of a Reducible Theory
NASA Astrophysics Data System (ADS)
Barcelos-Neto, J.; Silva, M. B. D.
We use the symplectic formalism to quantize the Abelian antisymmetric tensor gauge field. It is related to a reducible theory in the sense that all of its constraints are not independent. A procedure like ghost-of-ghost of the BFV method has to be used, but in terms of Lagrange multipliers.
Calculation of far-field scattering from nonspherical particles using a geometrical optics approach
NASA Technical Reports Server (NTRS)
Hovenac, Edward A.
1991-01-01
A numerical method was developed using geometrical optics to predict far-field optical scattering from particles that are symmetric about the optic axis. The diffractive component of scattering is calculated and combined with the reflective and refractive components to give the total scattering pattern. The phase terms of the scattered light are calculated as well. Verification of the method was achieved by assuming a spherical particle and comparing the results to Mie scattering theory. Agreement with the Mie theory was excellent in the forward-scattering direction. However, small-amplitude oscillations near the rainbow regions were not observed using the numerical method. Numerical data from spheroidal particles and hemispherical particles are also presented. The use of hemispherical particles as a calibration standard for intensity-type optical particle-sizing instruments is discussed.
Grounded theory in music therapy research.
O'Callaghan, Clare
2012-01-01
Grounded theory is one of the most common methodologies used in constructivist (qualitative) music therapy research. Researchers use the term "grounded theory" when denoting varying research designs and theoretical outcomes. This may be challenging for novice researchers when considering whether grounded theory is appropriate for their research phenomena. This paper examines grounded theory within music therapy research. Grounded theory is briefly described, including some of its "contested" ideas. A literature search was conducted using the descriptor "music therapy and grounded theory" in Pubmed, CINAHL PsychlNFO, SCOPUS, ERIC (CSA), Web of Science databases, and a music therapy monograph series. A descriptive analysis was performed on the uncovered studies to examine researched phenomena, grounded theory methods used, and how findings were presented, Thirty music therapy research projects were found in refereed journals and monographs from 1993 to "in press." The Strauss and Corbin approach to grounded theory dominates the field. Descriptors to signify grounded theory components in the studies greatly varied. Researchers have used partial or complete grounded theory methods to examine clients', family members', staff, music therapy "overhearers," music therapists', and students' experiences, as well as music therapy creative products and professional views, issues, and literature. Seven grounded theories were offered. It is suggested that grounded theory researchers clarify what and who inspired their design, why partial grounded theory methods were used (when relevant), and their ontology. By elucidating assumptions underpinning the data collection, analysis, and findings' contribution, researchers will continue to improve music therapy research using grounded theory methods.
Current matrix element in HAL QCD's wavefunction-equivalent potential method
NASA Astrophysics Data System (ADS)
Watanabe, Kai; Ishii, Noriyoshi
2018-04-01
We give a formula to calculate a matrix element of a conserved current in the effective quantum mechanics defined by the wavefunction-equivalent potentials proposed by the HAL QCD collaboration. As a first step, a non-relativistic field theory with two-channel coupling is considered as the original theory, with which a wavefunction-equivalent HAL QCD potential is obtained in a closed analytic form. The external field method is used to derive the formula by demanding that the result should agree with the original theory. With this formula, the matrix element is obtained by sandwiching the effective current operator between the left and right eigenfunctions of the effective Hamiltonian associated with the HAL QCD potential. In addition to the naive one-body current, the effective current operator contains an additional two-body term emerging from the degrees of freedom which has been integrated out.
Perspective: Ring-polymer instanton theory
NASA Astrophysics Data System (ADS)
Richardson, Jeremy O.
2018-05-01
Since the earliest explorations of quantum mechanics, it has been a topic of great interest that quantum tunneling allows particles to penetrate classically insurmountable barriers. Instanton theory provides a simple description of these processes in terms of dominant tunneling pathways. Using a ring-polymer discretization, an efficient computational method is obtained for applying this theory to compute reaction rates and tunneling splittings in molecular systems. Unlike other quantum-dynamics approaches, the method scales well with the number of degrees of freedom, and for many polyatomic systems, the method may provide the most accurate predictions which can be practically computed. Instanton theory thus has the capability to produce useful data for many fields of low-temperature chemistry including spectroscopy, atmospheric and astrochemistry, as well as surface science. There is however still room for improvement in the efficiency of the numerical algorithms, and new theories are under development for describing tunneling in nonadiabatic transitions.
NASA Astrophysics Data System (ADS)
Chibani, Wael; Ren, Xinguo; Scheffler, Matthias; Rinke, Patrick
2016-04-01
We present an embedding scheme for periodic systems that facilitates the treatment of the physically important part (here a unit cell or a supercell) with advanced electronic structure methods, that are computationally too expensive for periodic systems. The rest of the periodic system is treated with computationally less demanding approaches, e.g., Kohn-Sham density-functional theory, in a self-consistent manner. Our scheme is based on the concept of dynamical mean-field theory formulated in terms of Green's functions. Our real-space dynamical mean-field embedding scheme features two nested Dyson equations, one for the embedded cluster and another for the periodic surrounding. The total energy is computed from the resulting Green's functions. The performance of our scheme is demonstrated by treating the embedded region with hybrid functionals and many-body perturbation theory in the GW approach for simple bulk systems. The total energy and the density of states converge rapidly with respect to the computational parameters and approach their bulk limit with increasing cluster (i.e., computational supercell) size.
Zevenhoven, Koos C J; Busch, Sarah; Hatridge, Michael; Oisjöen, Fredrik; Ilmoniemi, Risto J; Clarke, John
2014-03-14
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field-applied before each signal acquisition sequence to increase the signal-induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures.
NASA Astrophysics Data System (ADS)
Foroutan, Shahin; Haghshenas, Amin; Hashemian, Mohammad; Eftekhari, S. Ali; Toghraie, Davood
2018-03-01
In this paper, three-dimensional buckling behavior of nanowires was investigated based on Eringen's Nonlocal Elasticity Theory. The electric current-carrying nanowires were affected by a longitudinal magnetic field based upon the Lorentz force. The nanowires (NWs) were modeled based on Timoshenko beam theory and the Gurtin-Murdoch's surface elasticity theory. Generalized Differential Quadrature (GDQ) method was used to solve the governing equations of the NWs. Two sets of boundary conditions namely simple-simple and clamped-clamped were applied and the obtained results were discussed. Results demonstrated the effect of electric current, magnetic field, small-scale parameter, slenderness ratio, and nanowires diameter on the critical compressive buckling load of nanowires. As a key result, increasing the small-scale parameter decreased the critical load. By the same token, increasing the electric current, magnetic field, and slenderness ratio resulted in a decrease in the critical load. As the slenderness ratio increased, the effect of nonlocal theory decreased. In contrast, by expanding the NWs diameter, the nonlocal effect increased. Moreover, in the present article, the critical values of the magnetic field of strength and slenderness ratio were revealed, and the roles of the magnetic field, slenderness ratio, and NWs diameter on higher buckling loads were discussed.
Separation of the Magnetic Field into Parts Produced by Internal and External Sources
NASA Astrophysics Data System (ADS)
Lazanja, David
2005-10-01
Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The decomposition exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method does not assume toroidal symmetry, and it is partly based on Merkel's 1986 work on vacuum field computations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response.
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
On the extraction of pressure fields from PIV velocity measurements in turbines
NASA Astrophysics Data System (ADS)
Villegas, Arturo; Diez, Fancisco J.
2012-11-01
In this study, the pressure field for a water turbine is derived from particle image velocimetry (PIV) measurements. Measurements are performed in a recirculating water channel facility. The PIV measurements include calculating the tangential and axial forces applied to the turbine by solving the integral momentum equation around the airfoil. The results are compared with the forces obtained from the Blade Element Momentum theory (BEMT). Forces are calculated by using three different methods. In the first method, the pressure fields are obtained from PIV velocity fields by solving the Poisson equation. The boundary conditions are obtained from the Navier-Stokes momentum equations. In the second method, the pressure at the boundaries is determined by spatial integration of the pressure gradients along the boundaries. In the third method, applicable only to incompressible, inviscid, irrotational, and steady flow, the pressure is calculated using the Bernoulli equation. This approximated pressure is known to be accurate far from the airfoil and outside of the wake for steady flows. Additionally, the pressure is used to solve for the force from the integral momentum equation on the blade. From the three methods proposed to solve for pressure and forces from PIV measurements, the first one, which is solved by using the Poisson equation, provides the best match to the BEM theory calculations.
Hamiltonian Anomalies from Extended Field Theories
NASA Astrophysics Data System (ADS)
Monnier, Samuel
2015-09-01
We develop a proposal by Freed to see anomalous field theories as relative field theories, namely field theories taking value in a field theory in one dimension higher, the anomaly field theory. We show that when the anomaly field theory is extended down to codimension 2, familiar facts about Hamiltonian anomalies can be naturally recovered, such as the fact that the anomalous symmetry group admits only a projective representation on the Hilbert space, or that the latter is really an abelian bundle gerbe over the moduli space. We include in the discussion the case of non-invertible anomaly field theories, which is relevant to six-dimensional (2, 0) superconformal theories. In this case, we show that the Hamiltonian anomaly is characterized by a degree 2 non-abelian group cohomology class, associated to the non-abelian gerbe playing the role of the state space of the anomalous theory. We construct Dai-Freed theories, governing the anomalies of chiral fermionic theories, and Wess-Zumino theories, governing the anomalies of Wess-Zumino terms and self-dual field theories, as extended field theories down to codimension 2.
Renormalizable Quantum Field Theories in the Large -n Limit
NASA Astrophysics Data System (ADS)
Guruswamy, Sathya
1995-01-01
In this thesis, we study two examples of renormalizable quantum field theories in the large-N limit. Chapter one is a general introduction describing physical motivations for studying such theories. In chapter two, we describe the large-N method in field theory and discuss the pioneering work of 't Hooft in large-N two-dimensional Quantum Chromodynamics (QCD). In chapter three we study a spherically symmetric approximation to four-dimensional QCD ('spherical QCD'). We recast spherical QCD into a bilocal (constrained) theory of hadrons which in the large-N limit is equivalent to large-N spherical QCD for all energy scales. The linear approximation to this theory gives an eigenvalue equation which is the analogue of the well-known 't Hooft's integral equation in two dimensions. This eigenvalue equation is a scale invariant one and therefore leads to divergences in the theory. We give a non-perturbative renormalization prescription to cure this and obtain a beta function which shows that large-N spherical QCD is asymptotically free. In chapter four, we review the essentials of conformal field theories in two and higher dimensions, particularly in the context of critical phenomena. In chapter five, we study the O(N) non-linear sigma model on three-dimensional curved spaces in the large-N limit and show that there is a non-trivial ultraviolet stable critical point at which it becomes conformally invariant. We study this model at this critical point on examples of spaces of constant curvature and compute the mass gap in the theory, the free energy density (which turns out to be a universal function of the information contained in the geometry of the manifold) and the two-point correlation functions. The results we get give an indication that this model is an example of a three-dimensional analogue of a rational conformal field theory. A conclusion with a brief summary and remarks follows at the end.
Plasmon mass scale and quantum fluctuations of classical fields on a real time lattice
NASA Astrophysics Data System (ADS)
Kurkela, Aleksi; Lappi, Tuomas; Peuron, Jarkko
2018-03-01
Classical real-time lattice simulations play an important role in understanding non-equilibrium phenomena in gauge theories and are used in particular to model the prethermal evolution of heavy-ion collisions. Above the Debye scale the classical Yang-Mills (CYM) theory can be matched smoothly to kinetic theory. First we study the limits of the quasiparticle picture of the CYM fields by determining the plasmon mass of the system using 3 different methods. Then we argue that one needs a numerical calculation of a system of classical gauge fields and small linearized fluctuations, which correspond to quantum fluctuations, in a way that keeps the separation between the two manifest. We demonstrate and test an implementation of an algorithm with the linearized fluctuation showing that the linearization indeed works and that the Gauss's law is conserved.
A Guided Tour of Mathematical Methods for the Physical Sciences
NASA Astrophysics Data System (ADS)
Snieder, Roel; van Wijk, Kasper
2015-05-01
1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical coordinates; 5. Gradient; 6. Divergence of a vector field; 7. Curl of a vector field; 8. Theorem of Gauss; 9. Theorem of Stokes; 10. The Laplacian; 11. Scale analysis; 12. Linear algebra; 13. Dirac delta function; 14. Fourier analysis; 15. Analytic functions; 16. Complex integration; 17. Green's functions: principles; 18. Green's functions: examples; 19. Normal modes; 20. Potential-field theory; 21. Probability and statistics; 22. Inverse problems; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Conservation laws; 26. Cartesian tensors; 27. Variational calculus; 28. Epilogue on power and knowledge.
NASA Astrophysics Data System (ADS)
Ojima, Izumi
1981-11-01
"Thermo field dynamics," allowing the Feynman diagram method to be applied to real-time causal Green's functions at finite temperatures ( not temperature Green's functions with imaginary times) expressed in the form of "vacuum" expectation values, is reconsidered in light of its connection with the algebraic formulation of statical machanics based upon the KMS condition. On the basis of so-obtained general basic formulae, the formalism is extended to the case of gauge theories, where the subsidiary condition specifying physical states, the notion of observables, and the structure of the physical subspace at finite temperatures are clarified.
Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.
Slave boson theory of orbital differentiation with crystal field effects: Application to UO 2
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; ...
2017-03-23
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. Furthermore, we apply our theory to the archetypical nuclear fuel UO 2 and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ 8 and extended Γ 7 electrons.
Slave Boson Theory of Orbital Differentiation with Crystal Field Effects: Application to UO_{2}.
Lanatà, Nicola; Yao, Yongxin; Deng, Xiaoyu; Dobrosavljević, Vladimir; Kotliar, Gabriel
2017-03-24
We derive an exact operatorial reformulation of the rotational invariant slave boson method, and we apply it to describe the orbital differentiation in strongly correlated electron systems starting from first principles. The approach enables us to treat strong electron correlations, spin-orbit coupling, and crystal field splittings on the same footing by exploiting the gauge invariance of the mean-field equations. We apply our theory to the archetypical nuclear fuel UO_{2} and show that the ground state of this system displays a pronounced orbital differentiation within the 5f manifold, with Mott-localized Γ_{8} and extended Γ_{7} electrons.
A simple proof of orientability in colored group field theory.
Caravelli, Francesco
2012-01-01
Group field theory is an emerging field at the boundary between Quantum Gravity, Statistical Mechanics and Quantum Field Theory and provides a path integral for the gluing of n-simplices. Colored group field theory has been introduced in order to improve the renormalizability of the theory and associates colors to the faces of the simplices. The theory of crystallizations is instead a field at the boundary between graph theory and combinatorial topology and deals with n-simplices as colored graphs. Several techniques have been introduced in order to study the topology of the pseudo-manifold associated to the colored graph. Although of the similarity between colored group field theory and the theory of crystallizations, the connection between the two fields has never been made explicit. In this short note we use results from the theory of crystallizations to prove that color in group field theories guarantees orientability of the piecewise linear pseudo-manifolds associated to each graph generated perturbatively. Colored group field theories generate orientable pseudo-manifolds. The origin of orientability is the presence of two interaction vertices in the action of colored group field theories. In order to obtain the result, we made the connection between the theory of crystallizations and colored group field theory.
NASA Technical Reports Server (NTRS)
Chiu, Y. T.; Hilton, H. H.
1977-01-01
Exact closed-form solutions to the solar force-free magnetic-field boundary-value problem are obtained for constant alpha in Cartesian geometry by a Green's function approach. The uniqueness of the physical problem is discussed. Application of the exact results to practical solar magnetic-field calculations is free of series truncation errors and is at least as economical as the approximate methods currently in use. Results of some test cases are presented.
NASA Technical Reports Server (NTRS)
Yao, Tse-Min; Choi, Kyung K.
1987-01-01
An automatic regridding method and a three dimensional shape design parameterization technique were constructed and integrated into a unified theory of shape design sensitivity analysis. An algorithm was developed for general shape design sensitivity analysis of three dimensional eleastic solids. Numerical implementation of this shape design sensitivity analysis method was carried out using the finite element code ANSYS. The unified theory of shape design sensitivity analysis uses the material derivative of continuum mechanics with a design velocity field that represents shape change effects over the structural design. Automatic regridding methods were developed by generating a domain velocity field with boundary displacement method. Shape design parameterization for three dimensional surface design problems was illustrated using a Bezier surface with boundary perturbations that depend linearly on the perturbation of design parameters. A linearization method of optimization, LINRM, was used to obtain optimum shapes. Three examples from different engineering disciplines were investigated to demonstrate the accuracy and versatility of this shape design sensitivity analysis method.
Kurashige, Yuki; Yanai, Takeshi
2011-09-07
We present a second-order perturbation theory based on a density matrix renormalization group self-consistent field (DMRG-SCF) reference function. The method reproduces the solution of the complete active space with second-order perturbation theory (CASPT2) when the DMRG reference function is represented by a sufficiently large number of renormalized many-body basis, thereby being named DMRG-CASPT2 method. The DMRG-SCF is able to describe non-dynamical correlation with large active space that is insurmountable to the conventional CASSCF method, while the second-order perturbation theory provides an efficient description of dynamical correlation effects. The capability of our implementation is demonstrated for an application to the potential energy curve of the chromium dimer, which is one of the most demanding multireference systems that require best electronic structure treatment for non-dynamical and dynamical correlation as well as large basis sets. The DMRG-CASPT2/cc-pwCV5Z calculations were performed with a large (3d double-shell) active space consisting of 28 orbitals. Our approach using large-size DMRG reference addressed the problems of why the dissociation energy is largely overestimated by CASPT2 with the small active space consisting of 12 orbitals (3d4s), and also is oversensitive to the choice of the zeroth-order Hamiltonian. © 2011 American Institute of Physics
Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro
2016-11-01
Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.
Daul, Claude
2014-09-01
Despite the important growth of ab initio and computational techniques, ligand field theory in molecular science or crystal field theory in condensed matter offers the most intuitive way to calculate multiplet energy levels arising from systems with open shells d and/or f electrons. Over the past decade we have developed a ligand field treatment of inorganic molecular modelling taking advantage of the dominant localization of the frontier orbitals within the metal-sphere. This feature, which is observed in any inorganic coordination compound, especially if treated by Density Functional Theory calculation, allows the determination of the electronic structure and properties with a surprising good accuracy. In ligand field theory, the theoretical concepts consider only a single atom center; and treat its interaction with the chemical environment essentially as a perturbation. Therefore success in the simple ligand field theory is no longer questionable, while the more accurate molecular orbital theory does in general over-estimate the metal-ligand covalence, thus yields wave functions that are too delocalized. Although LF theory has always been popular as a semi-empirical method when dealing with molecules of high symmetry e.g. cubic symmetry where the number of parameters needed is reasonably small (3 or 5), this is no more the case for molecules without symmetry and involving both an open d- and f-shell (# parameters ∼90). However, the combination of LF theory and Density Functional (DF) theory that we introduced twenty years ago can easily deal with complex molecules of any symmetry with two and more open shells. The accuracy of these predictions from 1(st) principles achieves quite a high accuracy (<5%) in terms of states energies. Hence, this approach is well suited to predict the magnetic and photo-physical properties arbitrary molecules and materials prior to their synthesis, which is the ultimate goal of each computational chemist. We will illustrate the performance of LFDFT for the design of phosphors that produces light similar to our sun and predict the magnetic anisotropy energy of single ion magnets.
NASA Astrophysics Data System (ADS)
Khan, Shehryar; Kubica-Misztal, Aleksandra; Kruk, Danuta; Kowalewski, Jozef; Odelius, Michael
2015-01-01
The zero-field splitting (ZFS) of the electronic ground state in paramagnetic ions is a sensitive probe of the variations in the electronic and molecular structure with an impact on fields ranging from fundamental physical chemistry to medical applications. A detailed analysis of the ZFS in a series of symmetric Gd(III) complexes is presented in order to establish the applicability and accuracy of computational methods using multiconfigurational complete-active-space self-consistent field wave functions and of density functional theory calculations. The various computational schemes are then applied to larger complexes Gd(III)DOTA(H2O)-, Gd(III)DTPA(H2O)2-, and Gd(III)(H2O)83+ in order to analyze how the theoretical results compare to experimentally derived parameters. In contrast to approximations based on density functional theory, the multiconfigurational methods produce results for the ZFS of Gd(III) complexes on the correct order of magnitude.
NASA Astrophysics Data System (ADS)
Tyu, N. S.; Ekhilevsky, S. G.
1992-07-01
For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.
Direct discretization of planar div-curl problems
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.
1989-01-01
A control volume method is proposed for planar div-curl systems. The method is independent of potential and least squares formulations, and works directly with the div-curl system. The novelty of the technique lies in its use of a single local vector field component and two control volumes rather than the other way around. A discrete vector field theory comes quite naturally from this idea and is developed. Error estimates are proved for the method, and other ramifications investigated.
Diagrammatic routes to nonlocal correlations beyond dynamical mean field theory
NASA Astrophysics Data System (ADS)
Rohringer, G.; Hafermann, H.; Toschi, A.; Katanin, A. A.; Antipov, A. E.; Katsnelson, M. I.; Lichtenstein, A. I.; Rubtsov, A. N.; Held, K.
2018-04-01
Strong electronic correlations pose one of the biggest challenges to solid state theory. Recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT) are reviewed. In addition, nonlocal correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge, magnetic, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. An overview is provided of the successes and results achieved, mainly for model Hamiltonians, and an outline is given of future prospects for realistic material calculations.
Bourjaily, Jacob L.; Herrmann, Enrico; Trnka, Jaroslav
2017-06-12
We introduce a prescriptive approach to generalized unitarity, resulting in a strictly-diagonal basis of loop integrands with coefficients given by specifically-tailored residues in field theory. We illustrate the power of this strategy in the case of planar, maximally supersymmetric Yang-Mills theory (SYM), where we construct closed-form representations of all (n-point N k MHV) scattering amplitudes through three loops. The prescriptive approach contrasts with the ordinary description of unitarity-based methods by avoiding any need for linear algebra to determine integrand coefficients. We describe this approach in general terms as it should have applications to many quantum field theories, including those withoutmore » planarity, supersymmetry, or massless spectra defined in any number of dimensions.« less
From the necessary to the possible: the genesis of the spin-statistics theorem
NASA Astrophysics Data System (ADS)
Blum, Alexander
2014-12-01
The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.
A Proposal for Facilitating More Cooperation in Competitive Sports
ERIC Educational Resources Information Center
Jacobs, George M.; Teh, Jiexin; Spencer, Leonora
2017-01-01
This article utilises theories, methods and tools from the fields of Social Psychology and Education to suggest new metrics for the analysis of competitive sport. The hope is that these metrics will encourage cooperation to exist alongside of the dominant feelings of competition. The main theory from Social Psychology involved here is Social…
NASA Technical Reports Server (NTRS)
Hong, Z. C.
1975-01-01
A review of various methods of calculating turbulent chemically reacting flow such as the Green Function, Navier-Stokes equation, and others is presented. Nonequilibrium degrees of freedom were employed to study the mixing behavior of a multiscale turbulence field. Classical and modern theories are discussed.
Louis Guttman's Contributions to Classical Test Theory
ERIC Educational Resources Information Center
Zimmerman, Donald W.; Williams, Richard H.; Zumbo, Bruno D.; Ross, Donald
2005-01-01
This article focuses on Louis Guttman's contributions to the classical theory of educational and psychological tests, one of the lesser known of his many contributions to quantitative methods in the social sciences. Guttman's work in this field provided a rigorous mathematical basis for ideas that, for many decades after Spearman's initial work,…
Rearranging Pionless Effective Field Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin Savage; Silas Beane
2001-11-19
We point out a redundancy in the operator structure of the pionless effective field theory which dramatically simplifies computations. This redundancy is best exploited by using dibaryon fields as fundamental degrees of freedom. In turn, this suggests a new power counting scheme which sums range corrections to all orders. We explore this method with a few simple observables: the deuteron charge form factor, n p -> d gamma, and Compton scattering from the deuteron. Higher dimension operators involving electroweak gauge fields are not renormalized by the s-wave strong interactions, and therefore do not scale with inverse powers of the renormalizationmore » scale. Thus, naive dimensional analysis of these operators is sufficient to estimate their contribution to a given process.« less
Generalized Quantum Theory and Mathematical Foundations of Quantum Field Theory
NASA Astrophysics Data System (ADS)
Maroun, Michael Anthony
This dissertation is divided into two main topics. The first is the generalization of quantum dynamics when the Schrodinger partial differential equation is not defined even in the weak mathematical sense because the potential function itself is a distribution in the spatial variable, the same variable that is used to define the kinetic energy operator, i.e. the Laplace operator. The procedure is an extension and broadening of the distributional calculus and offers spectral results as an alternative to the only other two known methods to date, namely a) the functional calculi; and b) non-standard analysis. Furthermore, the generalizations of quantum dynamics presented within give a resolution to the time asymmetry paradox created by multi-particle quantum mechanics due to the time evolution still being unitary. A consequence is the randomization of phases needed for the fundamental justification Pauli master equation. The second topic is foundations of the quantum theory of fields. The title is phrased as ``foundations'' to emphasize that there is no claim of uniqueness but rather a proposal is put forth, which is markedly different than that of constructive or axiomatic field theory. In particular, the space of fields is defined as a space of generalized functions with involutive symmetry maps (the CPT invariance) that affect the topology of the field space. The space of quantum fields is then endowed the Frechet property and interactions change the topology in such a way as to cause some field spaces to be incompatible with others. This is seen in the consequences of the Haag theorem. Various examples and discussions are given that elucidate a new view of the quantum theory of fields and its (lack of) mathematical structure.
NASA Astrophysics Data System (ADS)
Bennett, Ed; Ki Hong, Deog; Lee, Jong-Wan; David Lin, C.-J.; Lucini, Biagio; Piai, Maurizio; Vadacchino, Davide
2018-03-01
As a first step towards a quantitative understanding of the SU(4)/Sp(4) composite Higgs model through lattice calculations, we discuss the low energy effective field theory resulting from the SU(4) → Sp(4) global symmetry breaking pattern. We then consider an Sp(4) gauge theory with two Dirac fermion flavours in the fundamental representation on a lattice, which provides a concrete example of the microscopic realisation of the SU(4)/Sp(4) composite Higgs model. For this system, we outline a programme of numerical simulations aiming at the determination of the low-energy constants of the effective field theory and we test the method on the quenched theory. We also report early results from dynamical simulations, focussing on the phase structure of the lattice theory and a calculation of the lowest-lying meson spectrum at coarse lattice spacing. Combined contributions of B. Lucini (e-mail: b.lucini@swansea.ac.uk) and J.-W. Lee (e-mail: wlee823@pusan.ac.kr).
Matter field Kähler metric in heterotic string theory from localisation
NASA Astrophysics Data System (ADS)
Blesneag, Ştefan; Buchbinder, Evgeny I.; Constantin, Andrei; Lukas, Andre; Palti, Eran
2018-04-01
We propose an analytic method to calculate the matter field Kähler metric in heterotic compactifications on smooth Calabi-Yau three-folds with Abelian internal gauge fields. The matter field Kähler metric determines the normalisations of the N = 1 chiral superfields, which enter the computation of the physical Yukawa couplings. We first derive the general formula for this Kähler metric by a dimensional reduction of the relevant supergravity theory and find that its T-moduli dependence can be determined in general. It turns out that, due to large internal gauge flux, the remaining integrals localise around certain points on the compactification manifold and can, hence, be calculated approximately without precise knowledge of the Ricci-flat Calabi-Yau metric. In a final step, we show how this local result can be expressed in terms of the global moduli of the Calabi-Yau manifold. The method is illustrated for the family of Calabi-Yau hypersurfaces embedded in P^1× P^3 and we obtain an explicit result for the matter field Kähler metric in this case.
NASA Astrophysics Data System (ADS)
Khoudeir, A.; Montemayor, R.; Urrutia, Luis F.
2008-09-01
Using the parent Lagrangian method together with a dimensional reduction from D to (D-1) dimensions, we construct dual theories for massive spin two fields in arbitrary dimensions in terms of a mixed symmetry tensor TA[A1A2…AD-2]. Our starting point is the well-studied massless parent action in dimension D. The resulting massive Stueckelberg-like parent actions in (D-1) dimensions inherit all the gauge symmetries of the original massless action and can be gauge fixed in two alternative ways, yielding the possibility of having a parent action with either a symmetric or a nonsymmetric Fierz-Pauli field eAB. Even though the dual sector in terms of the standard spin two field includes only the symmetrical part e{AB} in both cases, these two possibilities yield different results in terms of the alternative dual field TA[A1A2…AD-2]. In particular, the nonsymmetric case reproduces the Freund-Curtright action as the dual to the massive spin two field action in four dimensions.
Optical Limiting Using the Two-Photon Absorption Electrical Modulation Effect in HgCdTe Photodiode
Cui, Haoyang; Yang, Junjie; Zeng, Jundong; Tang, Zhong
2013-01-01
The electrical modulation properties of the output intensity of two-photon absorption (TPA) pumping were analyzed in this paper. The frequency dispersion dependence of TPA and the electric field dependence of TPA were calculated using Wherrett theory model and Garcia theory model, respectively. Both predicted a dramatic variation of TPA coefficient which was attributed into the increasing of the transition rate. The output intensity of the laser pulse propagation in the pn junction device was calculated by using function-transfer method. It shows that the output intensity increases nonlinearly with increasing intensity of incident light and eventually reaches saturation. The output saturation intensity depends on the electric field strength; the greater the electric field, the smaller the output intensity. Consequently, the clamped saturation intensity can be controlled by the electric field. The prior advantage of electrical modulation is that the TPA can be varied extremely continuously, thus adjusting the output intensity in a wide range. This large change provides a manipulate method to control steady output intensity of TPA by adjusting electric field. PMID:24198721
Granular statistical mechanics - a personal perspective
NASA Astrophysics Data System (ADS)
Blumenfeld, R.; Edwards, S. F.
2014-10-01
The science of granular matter has expanded from an activity for specialised engineering applications to a fundamental field in its own right. This has been accompanied by an explosion of research and literature, which cannot be reviewed in one paper. A key to progress in this field is the formulation of a statistical mechanical formalism that could help develop equations of state and constitutive relations. This paper aims at reviewing some milestones in this direction. An essential basic step toward the development of any static and quasi-static theory of granular matter is a systematic and useful method to quantify the grain-scale structure and we start with a review of such a method. We then review and discuss the ongoing attempt to construct a statistical mechanical theory of granular systems. Along the way, we will clarify a number of misconceptions in the field, as well as highlight several outstanding problems.
Further Development of HS Field Theory
NASA Astrophysics Data System (ADS)
Abdurrahman, Abdulmajeed; Faridani, Jacqueline; Gassem, Mahmoud
2006-04-01
We present a systematic treatment of the HS Field theory of the open bosonic string and discuss its relationship to other full string field theories of the open bosonic string such as Witten's theory and the CVS theory. In the development of the HS field theory we encounter infinite dimensional matrices arising from the change of representation between the two theories, i.e., the HS field theory and the full string field theory. We give a general procedure of how to invert these gigantic matrices. The inversion of these matrices involves the computation of many infinite sums. We give the values of these sums and state their generalizations arising from considering higher order vertices (i.e., more than three strings) in string field theory. Moreover, we give a general procedure, on how to evaluate the generalized sums, that can be extended to many generic sums of similar properties. We also discuss the conformal operator connecting the HS field theory to that of the CVS string field theory.
Research on radiation characteristic of plasma antenna through FDTD method.
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Paulo R. S.; Leite, Marcelo M.
2013-09-15
We introduce a simpler although unconventional minimal subtraction renormalization procedure in the case of a massive scalar λφ{sup 4} theory in Euclidean space using dimensional regularization. We show that this method is very similar to its counterpart in massless field theory. In particular, the choice of using the bare mass at higher perturbative order instead of employing its tree-level counterpart eliminates all tadpole insertions at that order. As an application, we compute diagrammatically the critical exponents η and ν at least up to two loops. We perform an explicit comparison with the Bogoliubov-Parasyuk-Hepp-Zimmermann (BPHZ) method at the same loop order,more » show that the proposed method requires fewer diagrams and establish a connection between the two approaches.« less
Qualitative methods in quantum theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Migdal, A.B.
The author feels that the solution of most problems in theoretical physics begins with the application of qualitative methods - dimensional estimates and estimates made from simple models, the investigation of limiting cases, the use of the analytic properties of physical quantities, etc. This book proceeds in this spirit, rather than in a formal, mathematical way with no traces of the sweat involved in the original work left to show. The chapters are entitled Dimensional and model approximations, Various types of perturbation theory, The quasi-classical approximation, Analytic properties of physical quantities, Methods in the many-body problem, and Qualitative methods inmore » quantum field theory. Each chapter begins with a detailed introduction, in which the physical meaning of the results obtained in that chapter is explained in a simple way. 61 figures. (RWR)« less
Spontaneous emission and atomic line shift in causal perturbation theory
NASA Astrophysics Data System (ADS)
Marzlin, Karl-Peter; Fitzgerald, Bryce
2018-04-01
We derive a spontaneous emission rate and line shift for two-level atoms coupled to the radiation field using causal perturbation theory. In this approach, employing the theory of distribution splitting prevents the occurrence of divergent integrals. Our method confirms the result for an atomic decay rate but suggests that the cutoff frequency for the atomic line shift is determined by the atomic mass, rather than the Bohr radius or electron mass.
In the Shadow of E. H. Carr: The Evolution of International Politics
2012-06-01
promote the merits of cooperation and look to institutions as a method for ensuring peace. We examine Normal Angel’s liberal theory , Robert Keohane...pages, Carr divides the field into its ideational and material sides: utopianism and realism, ethics and politics, theory and practice, intellectualism...Carr believed that the current course of international politics could lead to the ruin of humanity. He did not believe that IR theories and practices
Channel flow analysis. [velocity distribution throughout blade flow field
NASA Technical Reports Server (NTRS)
Katsanis, T.
1973-01-01
The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.
Exact image theory for the problem of dielectric/magnetic slab
NASA Technical Reports Server (NTRS)
Lindell, I. V.
1987-01-01
Exact image method, recently introduced for the exact solution of electromagnetic field problems involving homogeneous half spaces and microstrip-like geometries, is developed for the problem of homogeneous slab of dielectric and/or magnetic material in free space. Expressions for image sources, creating the exact reflected and transmitted fields, are given and their numerical evaluation is demonstrated. Nonradiating modes, guided by the slab and responsible for the loss of convergence of the image functions, are considered and extracted. The theory allows, for example, an analysis of finite ground planes in microstrip antenna structures.
Evaluation of Quantitative Environmental Stress Screening (ESS) Methods. Volume 1
1991-11-01
required information on screening strength from the curvefitting parameters. The underlying theory and approach taken are discussed in Appendix A. To...in field 1020 arm St.,Vas AJ Ptr 0.4i Currpnt. c- ugt ~ing DU?/SYS 2.7264 Wll/IY.3 at Factory Stress- NaxiLMw outgoing W?is’ys 0.288 DrW/5?S at Field...182 125 K.W.Fertig and V.X. Murthy, Models for Reliability Growth During Burn-in: Theory and Applicat’ons,Proceedings 1978 Annual Reliability and
Twelve tips for getting started using mixed methods in medical education research.
Lavelle, Ellen; Vuk, Jasna; Barber, Carolyn
2013-04-01
Mixed methods research, which is gaining popularity in medical education, provides a new and comprehensive approach for addressing teaching, learning, and evaluation issues in the field. The aim of this article is to provide medical education researchers with 12 tips, based on consideration of current literature in the health professions and in educational research, for conducting and disseminating mixed methods research. Engaging in mixed methods research requires consideration of several major components: the mixed methods paradigm, types of problems, mixed method designs, collaboration, and developing or extending theory. Mixed methods is an ideal tool for addressing a full range of problems in medical education to include development of theory and improving practice.
A formal derivation of the local energy transfer (LET) theory of homogeneous turbulence
NASA Astrophysics Data System (ADS)
McComb, W. D.; Yoffe, S. R.
2017-09-01
A statistical closure of the Navier-Stokes hierarchy which leads to equations for the two-point, two-time covariance of the velocity field for stationary, homogeneous isotropic turbulence is presented. It is a generalisation of the self-consistent field method due to Edwards (1964) for the stationary, single-time velocity covariance. The probability distribution functional P≤ft[\\mathbf{u},t\\right] is obtained, in the form of a series, from the Liouville equation by means of a perturbation expansion about a Gaussian distribution, which is chosen to give the exact two-point, two-time covariance. The triple moment is calculated in terms of an ensemble-averaged infinitesimal velocity-field propagator, and shown to yield the Edwards result as a special case. The use of a Gaussian zero-order distribution has been found to justify the introduction of a fluctuation-response relation, which is in accord with modern dynamical theories. In a sense this work completes the analogy drawn by Edwards between turbulence and Brownian motion. Originally Edwards had shown that the noise input was determined by the correlation of the velocity field with the externally applied stirring forces but was unable to determine the system response. Now we find that the system response is determined by the correlation of the velocity field with internal quasi-entropic forces. This analysis is valid to all orders of perturbation theory, and allows the recovery of the local energy transfer (LET) theory, which had previously been derived by more heuristical methods. The LET theory is known to be in good agreement with experimental results. It is also unique among two-point statistical closures in displaying an acceptable (i.e. non-Markovian) relationship between the transfer spectrum and the system response, in accordance with experimental results. As a result of the latter property, it is compatible with the Kolmogorov (K41) spectral phenomenology. In memory of Professor Sir Sam Edwards F.R.S. 1928-2015.
BOOK REVIEW: Path Integrals in Field Theory: An Introduction
NASA Astrophysics Data System (ADS)
Ryder, Lewis
2004-06-01
In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed by three on gauge field theories---quantum electrodynamics and Yang--Mills theories, Faddeev--Popov ghosts and so on.There is no treatment of the quantisation of gravity.Thus in about 200 pages the reader has the chance to learn in some detail about a most important area of modern physics. The subject is tough but the style is clear and pedagogic, results for the most part being derived explicitly. The choice of topics included is main-stream and sensible and one has a clear sense that the author knows where he is going and is a reliable guide. Path Integrals in Field Theory is clearly the work of a man with considerable teaching experience and is recommended as a readable and helpful account of a rather non-trivial subject.
A Laboratory Astrophysical Jet to Study Canonical Flux Tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, Setthivoine
Understanding the interaction between plasma flows and magnetic fields remains a fundamental problem in plasma physics, with important applications to astrophysics, fusion energy, and advanced space propulsion. For example, flows are of primary importance in astrophysical jets even if it is not fully understood how jets become so long without becoming unstable. Theories for the origin of magnetic fields in the cosmos rely on flowing charged fluids that should generate magnetic fields, yet this remains to be demonstrated experimentally. Fusion energy reactors can be made smaller with flows that improve stability and confinement. Advanced space propulsion could be more efficientmore » with collimated and stable plasma flows through magnetic nozzles but must eventually detach from the nozzle. In all these cases, there appears to be a spontaneous emergence of flowing and/or magnetic structures, suggesting a form of self-organization in plasmas. Beyond satisfying simple intellectual curiosity, understanding plasma self-organization could enable the development of methods to control plasma structures for fusion energy, space propulsion, and other applications. The research project has therefore built a theory and an experiment to investigate the interaction between magnetic fields and plasma flows. The theory is called canonical field theory for short, and the experiment is called Mochi after a rice cake filled with surprising, yet delicious fillings.« less
Zevenhoven, Koos C. J.; Busch, Sarah; Hatridge, Michael; Öisjöen, Fredrik; Ilmoniemi, Risto J.; Clarke, John
2014-01-01
Eddy currents induced by applied magnetic-field pulses have been a common issue in ultra-low-field magnetic resonance imaging. In particular, a relatively large prepolarizing field—applied before each signal acquisition sequence to increase the signal—induces currents in the walls of the surrounding conductive shielded room. The magnetic-field transient generated by the eddy currents may cause severe image distortions and signal loss, especially with the large prepolarizing coils designed for in vivo imaging. We derive a theory of eddy currents in thin conducting structures and enclosures to provide intuitive understanding and efficient computations. We present detailed measurements of the eddy-current patterns and their time evolution in a previous-generation shielded room. The analysis led to the design and construction of a new shielded room with symmetrically placed 1.6-mm-thick aluminum sheets that were weakly coupled electrically. The currents flowing around the entire room were heavily damped, resulting in a decay time constant of about 6 ms for both the measured and computed field transients. The measured eddy-current vector maps were in excellent agreement with predictions based on the theory, suggesting that both the experimental methods and the theory were successful and could be applied to a wide variety of thin conducting structures. PMID:24753629
NASA Astrophysics Data System (ADS)
Folacci, Antoine; Jensen, Bruce
2003-12-01
Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. One knows in advance that this book can only lead to a genuine enrichment of the literature. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983 [1, 2], have had a great impact on quantum field theory. All this makes the reader keen to pick up his new work and a deeper reading confirms the reviewer's initial enthusiasm. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field (unless of course we are talking about references [1] and [2], of which the book under review is an extension and reworking). This uniqueness applies to both the scientific content and the way the ideas are presented. A quick description of this book and a brief explanation of its title should convince the reader of the book's unique quality. For DeWitt, a central concept of field theory is that of `space of histories'. For a field varphii defined on a given spacetime M, the set of all varphii(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the `space of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold [3]. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field theory. This is the so-called global approach to quantum field theory where time does not play any particular role, and quantization is then naturally realized covariantly using tools such as the Peierls bracket (a covariant generalization of Poisson bracket), the Schwinger variational principle and Feynman sums over histories. However, it should be noted that the boycott of canonical methods by DeWitt is not total: when he judges they genuinely illuminate the physics of a problem, he does not hesitate to descend from the global point of view and to use them. In a few words, we have in fact described the research program initiated by DeWitt forty years ago, which has progressively evolved in order to take into account the latest development of gauge theories. While the Les Houches Lectures of 1963 [1] were mainly concentrated on the formal structure and the quantization of Yang--Mills and gravitational fields, the present book also deals with more general gauge theories including those with open gauge algebras and structure functions, and therefore supergravity theories. More precisely, the book, more than a thousand pages in length, consists of eight parts and is completed by six appendices where certain technical aspects are singled out. An enormous variety of topics is covered, including the invariance transformations of the action functional, the Batalin--Vilkovisky formalism, Green's functions, the Peierls bracket, conservation laws, the theory of measurement, the Everett (or many worlds) interpretation of quantum mechanics, decoherence, the Schwinger variational principle and Feynman functional integrals, the heat kernel, aspects of quantization for linear systems in stationary and non-stationary backgrounds, the S-matrix, the background field method, the effective action and the Vilkovisky--DeWitt formalism, the quantization of gauge theories without ghosts, anomalies, black holes and Hawking radiation, renormalization, and more. It should be noted that DeWitt's book is rather difficult to read because of its great breadth. From the start he is faithful to his own view of field theory by developing a powerful formalism which permits him to discuss broad general features common to all field theories. He demands a considerable effort from the reader to penetrate his formalism, and a reading of Appendix~A which presents the basics of super-analysis is a prerequisite. To keep the reader on course, DeWitt offers a series of exercises on applications of global formalism in Part 8, nearly 200 pages worth. The exercises are to be worked in parallel with reading the text, starting from the beginning. It should be noted that these exercises previously appeared in references [1], [2] and [3], but here they have been worked out in some detail by the author. Before concluding, some criticisms. DeWitt has anticipated some criticism himself in the Preface, where he warns the reader that `this book is in no sense a reference book on quantum field theory and its application to particle physics. The selection of topics is idiosyncratic.' But the reviewers should add a few more remarks: (1) There are very few references. Of course, this is because the work is largely original. Even where the work of other researchers is presented, it has mostly been transformed by the DeWittian point of view. (2) There are very few diagrams, which sometimes hinders the exposition. In summary, in our opinion, this is one of the best books dealing with quantum field theory existing today. It will be of great interest for graduate and postgraduate students as well as workers in the domains of quantum field theory in flat and in curved spacetime and string theories. But we believe that the reader must have previously studied standard textbooks on quantum field theory and general relativity. Even with this preparation, it is by no means an easy book to read. However, the reward is to be able to share the deep and unique vision of the quantum theory of fields and its formalism by one of its greatest expositors. References [1] DeWitt B S 1965 Dynamical Theory of Groups and Fields (Les Houches Lectures 1963) (New York: Gordon and Breach) [2] DeWitt B S 1984 Relativity, Groups and Topology II (Les Houches Lectures 1983) ed R Stora and B S DeWitt (Amsterdam: North-Holland) [3] DeWitt B S 1994 Supermanifolds (Cambridge: Cambridge University Press)
Ideal-Magnetohydrodynamic-Stable Tilting in Field-Reversed Configurations
NASA Astrophysics Data System (ADS)
Kanno, Ryutaro; Ishida, Akio; Steinhauer, Loren
1995-02-01
The tilting mode in field-reversed configurations (FRC) is examined using ideal-magnetohydrodynamic stability theory. Tilting, a global mode, is the greatest threat for disruption of FRC confinement. Previous studies uniformly found tilting to be unstable in ideal theory: the objective here is to ascertain if stable equilibria were overlooked in past work. Solving the variational problem with the Rayleigh-Ritz technique, tilting-stable equilibria are found for sufficiently hollow current profile and sufficient racetrackness of the separatrix shape. Although these equilibria were not examined previously, the present conclusion is quite surprising. Consequently checks of the method are offered. Even so it cannot yet be claimed with complete certainty that stability has been proved: absolute confirmation of ideal-stable tilting awaits the application of more complete methods.
Transition operators in electromagnetic-wave diffraction theory. II - Applications to optics
NASA Technical Reports Server (NTRS)
Hahne, G. E.
1993-01-01
The theory developed by Hahne (1992) for the diffraction of time-harmonic electromagnetic waves from fixed obstacles is briefly summarized and extended. Applications of the theory are considered which comprise, first, a spherical harmonic expansion of the so-called radiation impedance operator in the theory, for a spherical surface, and second, a reconsideration of familiar short-wavelength approximation from the new standpoint, including a derivation of the so-called physical optics method on the basis of quasi-planar approximation to the radiation impedance operator, augmented by the method of stationary phase. The latter includes a rederivation of the geometrical optics approximation for the complete Green's function for the electromagnetic field in the presence of a smooth- and a convex-surfaced perfectly electrically conductive obstacle.
Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Xie, Haiqiong; Zeng, Zhong; Zhang, Liangqi; Yokota, Yuui; Kawazoe, Yoshiyuki; Yoshikawa, Akira
2016-04-01
A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop's motion and coalescence were investigated.
Dreuw, Andreas
2006-11-13
With the advent of modern computers and advances in the development of efficient quantum chemical computer codes, the meaningful computation of large molecular systems at a quantum mechanical level became feasible. Recent experimental effort to understand photoinitiated processes in biological systems, for instance photosynthesis or vision, at a molecular level also triggered theoretical investigations in this field. In this Minireview, standard quantum chemical methods are presented that are applicable and recently used for the calculation of excited states of photoinitiated processes in biological molecular systems. These methods comprise configuration interaction singles, the complete active space self-consistent field method, and time-dependent density functional theory and its variants. Semiempirical approaches are also covered. Their basic theoretical concepts and mathematical equations are briefly outlined, and their properties and limitations are discussed. Recent successful applications of the methods to photoinitiated processes in biological systems are described and theoretical tools for the analysis of excited states are presented.
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Cornaton, Yann
2018-05-01
This work presents an investigation of the theoretical predictions yielded by anharmonic force fields having the cubic and quartic force constants are computed analytically by means of density functional theory (DFT) using the recursive scheme developed by M. Ringholm et al. (J. Comput. Chem. 35 (2014) 622). Different functionals (namely B3LYP, PBE, PBE0 and PW86x) and basis sets were used for calculating the anharmonic vibrational spectra of two halomethanes. The benchmark analysis carried out demonstrates the reliability and overall good performances offered by hybrid approaches, where the harmonic data obtained at the coupled cluster with single and double excitations level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T), are combined with the fully analytic higher order force constants yielded by DFT functionals. These methods lead to reliable and computationally affordable calculations of anharmonic vibrational spectra with an accuracy comparable to that yielded by hybrid force fields having the anharmonic force fields computed at second order Møller-Plesset perturbation theory (MP2) level of theory using numerical differentiation but without the corresponding potential issues related to computational costs and numerical errors.
Computational Methods for Inviscid and Viscous Two-and-Three-Dimensional Flow Fields.
1975-01-01
Difference Equations Over a Network, Watson Sei. Comput. Lab. Report, 19U9. 173- Isaacson, E. and Keller, H. B., Analaysis of Numerical Methods...element method has given a new impulse to the old mathematical theory of multivariate interpolation. We first study the one-dimensional case, which
Functional renormalization group and Kohn-Sham scheme in density functional theory
NASA Astrophysics Data System (ADS)
Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo
2018-04-01
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.
NASA Astrophysics Data System (ADS)
Heaps, Charles W.; Schatz, George C.
2017-06-01
A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.
Pi Bond Orders and Bond Lengths
ERIC Educational Resources Information Center
Herndon, William C.; Parkanyi, Cyril
1976-01-01
Discusses three methods of correlating bond orders and bond lengths in unsaturated hydrocarbons: the Pauling theory, the Huckel molecular orbital technique, and self-consistent-field techniques. (MLH)
Diagonalizing the Hamiltonian of λϕ4 theory in 2 space-time dimensions
NASA Astrophysics Data System (ADS)
Christensen, Neil
2018-01-01
We propose a new non-perturbative technique for calculating the scattering amplitudes of field-theory directly from the eigenstates of the Hamiltonian. Our method involves a discretized momentum space and a momentum cutoff, thereby truncating the Hilbert space and making numerical diagonalization of the Hamiltonian achievable. We show how to do this in the context of a simplified λϕ4 theory in two space-time dimensions. We present the results of our diagonalization, its dependence on time, its dependence on the parameters of the theory and its renormalization.
Generalized recursion relations for correlators in the gauge-gravity correspondence.
Raju, Suvrat
2011-03-04
We show that a generalization of the Britto-Cachazo-Feng-Witten recursion relations gives a new and efficient method of computing correlation functions of the stress tensor or conserved currents in conformal field theories with an (d+1)-dimensional anti-de Sitter space dual, for d≥4, in the limit where the bulk theory is approximated by tree-level Yang-Mills theory or gravity. In supersymmetric theories, additional correlators of operators that live in the same multiplet as a conserved current or stress tensor can be computed by these means.
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2013-01-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson’s equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both of the mean-field theory and MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling. PMID:22680474
Wen, Jiayi; Zhou, Shenggao; Xu, Zhenli; Li, Bo
2012-04-01
Competitive adsorption of counterions of multiple species to charged surfaces is studied by a size-effect-included mean-field theory and Monte Carlo (MC) simulations. The mean-field electrostatic free-energy functional of ionic concentrations, constrained by Poisson's equation, is numerically minimized by an augmented Lagrangian multiplier method. Unrestricted primitive models and canonical ensemble MC simulations with the Metropolis criterion are used to predict the ionic distributions around a charged surface. It is found that, for a low surface charge density, the adsorption of ions with a higher valence is preferable, agreeing with existing studies. For a highly charged surface, both the mean-field theory and the MC simulations demonstrate that the counterions bind tightly around the charged surface, resulting in a stratification of counterions of different species. The competition between mixed entropy and electrostatic energetics leads to a compromise that the ionic species with a higher valence-to-volume ratio has a larger probability to form the first layer of stratification. In particular, the MC simulations confirm the crucial role of ionic valence-to-volume ratios in the competitive adsorption to charged surfaces that had been previously predicted by the mean-field theory. The charge inversion for ionic systems with salt is predicted by the MC simulations but not by the mean-field theory. This work provides a better understanding of competitive adsorption of counterions to charged surfaces and calls for further studies on the ionic size effect with application to large-scale biomolecular modeling.
NASA Astrophysics Data System (ADS)
Dayi, Ömer F.
The recently proposed generalized field method for solving the master equation of Batalin and Vilkovisky is applied to a gauge theory of quadratic Lie algebras in two dimensions. The charge corresponding to BRST symmetry derived from this solution in terms of the phase space variables by using the Noether procedure, and the one found due to the BFV-method are compared and found to coincide. W3-algebra, formulated in terms of a continuous variable is exploit in the mentioned gauge theory to construct a W3 topological gravity. Moreover, its gauge fixing is briefly discussed.
Practices of Cooperating Teachers Contributing to a High Quality Field Experience
ERIC Educational Resources Information Center
Lafferty, Karen Elizabeth
2015-01-01
This mixed methods study framed in cognitive apprenticeship theory involved cooperating and preservice teachers from 10 university-based credentialing programs in California. It examined the connection between cooperating teacher practices and preservice teachers' perceptions of a high quality field experience. Survey responses from 146…
ERIC Educational Resources Information Center
Mazur-Stommen, Susan
2006-01-01
This article contributes to the field of anthropological pedagogy, adding to recent articles regarding needed change in anthropology teaching methods. All have in common the practice of anthropology in the classroom. The author used the theory of optimal foraging to encourage students to operationalize human behavior. The economic benefit that…
Investigator Bias and Theory-Ladenness in Cross-Cultural Research: Insights from Wittgenstein
ERIC Educational Resources Information Center
Tan, Charlene
2016-01-01
A relatively under-explored topic in the current literature on and methods for research in the field of comparative and international education is the problem of investigator bias in cross-cultural research. This article discusses the nature of and an approach to address investigator bias in research that originates from the theory-ladenness of…
Academic Writing: Theory and Practice
ERIC Educational Resources Information Center
Street, Brian V.
2015-01-01
In this paper I attempt to locate the study of academic writing in the broader field of Literacies as Social Practice. I begin with a brief summary of recent theories of Literacies as Social Practice and then recount some of the ethnographic methods for studying these. I then discuss the application of these concepts to academic writing in Higher…
Nonequilibrium steady states of ideal bosonic and fermionic quantum gases
NASA Astrophysics Data System (ADS)
Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André
2015-12-01
We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.
Theory and in vivo application of electroporative gene delivery.
Somiari, S; Glasspool-Malone, J; Drabick, J J; Gilbert, R A; Heller, R; Jaroszeski, M J; Malone, R W
2000-09-01
Efficient and safe methods for delivering exogenous genetic material into tissues must be developed before the clinical potential of gene therapy will be realized. Recently, in vivo electroporation has emerged as a leading technology for developing nonviral gene therapies and nucleic acid vaccines (NAV). Electroporation (EP) involves the application of pulsed electric fields to cells to enhance cell permeability, resulting in exogenous polynucleotide transit across the cytoplasmic membrane. Similar pulsed electrical field treatments are employed in a wide range of biotechnological processes including in vitro EP, hybridoma production, development of transgenic animals, and clinical electrochemotherapy. Electroporative gene delivery studies benefit from well-developed literature that may be used to guide experimental design and interpretation. Both theory and experimental analysis predict that the critical parameters governing EP efficacy include cell size and field strength, duration, frequency, and total number of applied pulses. These parameters must be optimized for each tissue in order to maximize gene delivery while minimizing irreversible cell damage. By providing an overview of the theory and practice of electroporative gene transfer, this review intends to aid researchers that wish to employ the method for preclinical and translational gene therapy, NAV, and functional genomic research.
Cartographic generalization of urban street networks based on gravitational field theory
NASA Astrophysics Data System (ADS)
Liu, Gang; Li, Yongshu; Li, Zheng; Guo, Jiawei
2014-05-01
The automatic generalization of urban street networks is a constant and important aspect of geographical information science. Previous studies show that the dual graph for street-street relationships more accurately reflects the overall morphological properties and importance of streets than do other methods. In this study, we construct a dual graph to represent street-street relationship and propose an approach to generalize street networks based on gravitational field theory. We retain the global structural properties and topological connectivity of an original street network and borrow from gravitational field theory to define the gravitational force between nodes. The concept of multi-order neighbors is introduced and the gravitational force is taken as the measure of the importance contribution between nodes. The importance of a node is defined as the result of the interaction between a given node and its multi-order neighbors. Degree distribution is used to evaluate the level of maintaining the global structure and topological characteristics of a street network and to illustrate the efficiency of the suggested method. Experimental results indicate that the proposed approach can be used in generalizing street networks and retaining their density characteristics, connectivity and global structure.
NASA Astrophysics Data System (ADS)
Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.
2017-10-01
We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.
NASA Astrophysics Data System (ADS)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian; Rauhut, Guntram
2015-12-01
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier, Patrick; Oschetzki, Dominik; Pfeiffer, Florian
Resonating vibrational states cannot consistently be described by single-reference vibrational self-consistent field methods but request the use of multiconfigurational approaches. Strategies are presented to accelerate vibrational multiconfiguration self-consistent field theory and subsequent multireference configuration interaction calculations in order to allow for routine calculations at this enhanced level of theory. State-averaged vibrational complete active space self-consistent field calculations using mode-specific and state-tailored active spaces were found to be very fast and superior to state-specific calculations or calculations with a uniform active space. Benchmark calculations are presented for trans-diazene and bromoform, which show strong resonances in their vibrational spectra.
Tools of the trade: theory and method in mindfulness neuroscience.
Tang, Yi-Yuan; Posner, Michael I
2013-01-01
Mindfulness neuroscience is an emerging research field that investigates the underlying mechanisms of different mindfulness practices, different stages and different states of practice as well as different effects of practice over the lifespan. Mindfulness neuroscience research integrates theory and methods from eastern contemplative traditions, western psychology and neuroscience, and from neuroimaging techniques, physiological measures and behavioral tests. We here review several key theoretical and methodological challenges in the empirical study of mindfulness neuroscience and provide suggestions for overcoming these challenges.
Cluster mass inference via random field theory.
Zhang, Hui; Nichols, Thomas E; Johnson, Timothy D
2009-01-01
Cluster extent and voxel intensity are two widely used statistics in neuroimaging inference. Cluster extent is sensitive to spatially extended signals while voxel intensity is better for intense but focal signals. In order to leverage strength from both statistics, several nonparametric permutation methods have been proposed to combine the two methods. Simulation studies have shown that of the different cluster permutation methods, the cluster mass statistic is generally the best. However, to date, there is no parametric cluster mass inference available. In this paper, we propose a cluster mass inference method based on random field theory (RFT). We develop this method for Gaussian images, evaluate it on Gaussian and Gaussianized t-statistic images and investigate its statistical properties via simulation studies and real data. Simulation results show that the method is valid under the null hypothesis and demonstrate that it can be more powerful than the cluster extent inference method. Further, analyses with a single subject and a group fMRI dataset demonstrate better power than traditional cluster size inference, and good accuracy relative to a gold-standard permutation test.
Smith, Daniel G A; Burns, Lori A; Sirianni, Dominic A; Nascimento, Daniel R; Kumar, Ashutosh; James, Andrew M; Schriber, Jeffrey B; Zhang, Tianyuan; Zhang, Boyi; Abbott, Adam S; Berquist, Eric J; Lechner, Marvin H; Cunha, Leonardo A; Heide, Alexander G; Waldrop, Jonathan M; Takeshita, Tyler Y; Alenaizan, Asem; Neuhauser, Daniel; King, Rollin A; Simmonett, Andrew C; Turney, Justin M; Schaefer, Henry F; Evangelista, Francesco A; DePrince, A Eugene; Crawford, T Daniel; Patkowski, Konrad; Sherrill, C David
2018-06-11
Psi4NumPy demonstrates the use of efficient computational kernels from the open-source Psi4 program through the popular NumPy library for linear algebra in Python to facilitate the rapid development of clear, understandable Python computer code for new quantum chemical methods, while maintaining a relatively low execution time. Using these tools, reference implementations have been created for a number of methods, including self-consistent field (SCF), SCF response, many-body perturbation theory, coupled-cluster theory, configuration interaction, and symmetry-adapted perturbation theory. Furthermore, several reference codes have been integrated into Jupyter notebooks, allowing background, underlying theory, and formula information to be associated with the implementation. Psi4NumPy tools and associated reference implementations can lower the barrier for future development of quantum chemistry methods. These implementations also demonstrate the power of the hybrid C++/Python programming approach employed by the Psi4 program.
Theory development for situational awareness in multi-casualty incidents.
Busby, Steven; Witucki-Brown, Janet
2011-09-01
Nurses and other field-level providers will be increasingly called on to respond to both natural and manmade situations that involve multiple casualties. Situational Awareness (SA) is necessary for managing these complicated incidents. The purpose of the study was to create new knowledge by discovering the process of SA in multi-casualty incidents (MCI) and develop substantive theory with regard to field-level SA for use by emergency response nurses and other providers. A qualitative, grounded theory approach was used to develop the first substantive theory of SA for MCI. The sample included 15 emergency response providers from the Southeastern United States. One pilot interview was conducted to trial and refine the semi-structured interview questions. Following Institutional Review Board approval, data collection and analysis occurred from September 2008 through January 2009. The grounded theory methods of Corbin and Strauss (2008) and Charmaz (2006) informed this study. Transcribed participant interviews constituted the bulk of the data with additional data provided by field notes and extensive memos. Multiple levels of coding, theoretical sampling, and theoretical sensitivity were used to develop and relate concepts resulting in emerging theory. Multiple methods were used for maintaining the rigor of the study. The process of SA in MCI involves emergency responders establishing and maintaining control of dynamic, contextually-based situations. Against the backdrop of experience and other preparatory interval actions, responders handle various types of information and manage resources, roles, relationships and human emotion. The goal is to provide an environment of relative safety in which patient care is provided. SA in MCI is an on-going and iterative process with each piece of information informing new actions. Analysis culminated in the development of the Busby Theory of Situational Awareness in Multi-casualty Incidents. SA in MCI is a growing need at local, national and international levels. The newly developed theory provides a useful model for appreciating SA in the context of MCI thereby improving practice and providing a tool for education. The theory also provides a catalyst for further research refining and testing of the theory and for studying larger-scale incidents. Copyright © 2011 Emergency Nurses Association. Published by Mosby, Inc. All rights reserved.
Comparison of a low- to high-confinement transition theory with experimental data from DIII-D.
Guzdar, P N; Kleva, R G; Groebner, R J; Gohil, P
2002-12-23
From our recent theory based on the generation of shear flow and field in finite beta plasmas, the criterion for bifurcation from low to high confinement mode yields a critical parameter proportional to T(e)/square root (L(n)), where T(e) is the electron temperature and L(n) is the density scale length. The predicted threshold shows very good agreement with edge measurements on discharges undergoing low-to-high transitions in DIII-D. The observed differences in the transitions with the reversal of the toroidal magnetic field are reconciled in terms of this critical parameter. The theory also provides an explanation for pellet injection H modes in DIII-D, thereby unifying unconnected methods for accomplishing the transition.
Controlling the sign problem in finite-density quantum field theory
NASA Astrophysics Data System (ADS)
Garron, Nicolas; Langfeld, Kurt
2017-07-01
Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the "telegraphic" approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close—if not identical—to the full answer in the strong sign-problem regime.
Quantum mechanical force field for hydrogen fluoride with explicit electronic polarization.
Mazack, Michael J M; Gao, Jiali
2014-05-28
The explicit polarization (X-Pol) theory is a fragment-based quantum chemical method that explicitly models the internal electronic polarization and intermolecular interactions of a chemical system. X-Pol theory provides a framework to construct a quantum mechanical force field, which we have extended to liquid hydrogen fluoride (HF) in this work. The parameterization, called XPHF, is built upon the same formalism introduced for the XP3P model of liquid water, which is based on the polarized molecular orbital (PMO) semiempirical quantum chemistry method and the dipole-preserving polarization consistent point charge model. We introduce a fluorine parameter set for PMO, and find good agreement for various gas-phase results of small HF clusters compared to experiments and ab initio calculations at the M06-2X/MG3S level of theory. In addition, the XPHF model shows reasonable agreement with experiments for a variety of structural and thermodynamic properties in the liquid state, including radial distribution functions, interaction energies, diffusion coefficients, and densities at various state points.
Theory of L -edge spectroscopy of strongly correlated systems
NASA Astrophysics Data System (ADS)
Lüder, Johann; Schött, Johan; Brena, Barbara; Haverkort, Maurits W.; Thunström, Patrik; Eriksson, Olle; Sanyal, Biplab; Di Marco, Igor; Kvashnin, Yaroslav O.
2017-12-01
X-ray absorption spectroscopy measured at the L edge of transition metals (TMs) is a powerful element-selective tool providing direct information about the correlation effects in the 3 d states. The theoretical modeling of the 2 p →3 d excitation processes remains to be challenging for contemporary ab initio electronic structure techniques, due to strong core-hole and multiplet effects influencing the spectra. In this work, we present a realization of the method combining the density-functional theory with multiplet ligand field theory, proposed in Haverkort et al. [Phys. Rev. B 85, 165113 (2012), 10.1103/PhysRevB.85.165113]. In this approach, a single-impurity Anderson model (SIAM) is constructed, with almost all parameters obtained from first principles, and then solved to obtain the spectra. In our implementation, we adopt the language of the dynamical mean-field theory and utilize the local density of states and the hybridization function, projected onto TM 3 d states, in order to construct the SIAM. The developed computational scheme is applied to calculate the L -edge spectra for several TM monoxides. A very good agreement between the theory and experiment is found for all studied systems. The effect of core-hole relaxation, hybridization discretization, possible extensions of the method as well as its limitations are discussed.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Dunn, Patrick
1995-01-01
A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.
Computational Relativistic Astrophysics Using the Flow Field-Dependent Variation Theory
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2002-01-01
We present our method for solving general relativistic nonideal hydrodynamics. Relativistic effects become pronounced in such cases as jet formation from black hole magnetized accretion disks which may lead to the study of gamma-ray bursts. Nonideal flows are present where radiation, magnetic forces, viscosities, and turbulence play an important role. Our concern in this paper is to reexamine existing numerical simulation tools as to the accuracy and efficiency of computations and introduce a new approach known as the flow field-dependent variation (FDV) method. The main feature of the FDV method consists of accommodating discontinuities of shock waves and high gradients of flow variables such as occur in turbulence and unstable motions. In this paper, the physics involved in the solution of relativistic hydrodynamics and solution strategies of the FDV theory are elaborated. The general relativistic astrophysical flow and shock solver (GRAFSS) is introduced, and some simple example problems for computational relativistic astrophysics (CRA) are demonstrated.
Partition functions for heterotic WZW conformal field theories
NASA Astrophysics Data System (ADS)
Gannon, Terry
1993-08-01
Thus far in the search for, and classification of, "physical" modular invariant partition functions ΣN LRχ Lχ R∗ the attention has been focused on the symmetric case where the holomorphic and anti-holomorphic sectors, and hence the characters χLand χR, are associated with the same Kac-Moody algebras ĝL = ĝR and levels κ L = κ R. In this paper we consider the more general possibility where ( ĝL, κ L) may not equal ( ĝR, κ R). We discuss which choices of algebras and levels may correspond to well-defined conformal field theories, we find the "smallest" such heterotic (i.e. asymmetric) partition functions, and we give a method, generalizing the Roberts-Terao-Warner lattice method, for explicitly constructing many other modular invariants. We conclude the paper by proving that this new lattice method will succeed in generating all the heterotic partition functions, for all choices of algebras and levels.
High-Fidelity Generalization Method of Cells for Inelastic Periodic Multiphase Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
2002-01-01
An extension of a recently-developed linear thermoelastic theory for multiphase periodic materials is presented which admits inelastic behavior of the constituent phases. The extended theory is capable of accurately estimating both the effective inelastic response of a periodic multiphase composite and the local stress and strain fields in the individual phases. The model is presently limited to materials characterized by constituent phases that are continuous in one direction, but arbitrarily distributed within the repeating unit cell which characterizes the material's periodic microstructure. The model's analytical framework is based on the homogenization technique for periodic media, but the method of solution for the local displacement and stress fields borrows concepts previously employed by the authors in constructing the higher-order theory for functionally graded materials, in contrast with the standard finite-element solution method typically used in conjunction with the homogenization technique. The present approach produces a closed-form macroscopic constitutive equation for a periodic multiphase material valid for both uniaxial and multiaxial loading. The model's predictive accuracy in generating both the effective inelastic stress-strain response and the local stress said inelastic strain fields is demonstrated by comparison with the results of an analytical inelastic solution for the axisymmetric and axial shear response of a unidirectional composite based on the concentric cylinder model, and with finite-element results for transverse loading.
NASA Astrophysics Data System (ADS)
Lazanja, David; Boozer, Allen
2006-10-01
Given the total magnetic field on a toroidal plasma surface, a method for decomposing the field into a part due to internal currents (often the plasma) and a part due to external currents is presented. The method exploits Laplace theory which is valid in the vacuum region between the plasma surface and the chamber walls. The method is developed for the full three dimensional case which is necessary for studying stellarator plasma configurations. A change in the plasma shape is produced by the total normal field perturbation on the plasma surface. This method allows a separation of the total normal field perturbation into a part produced by external currents and a part produced by the plasma response. There are immediate applications to coil design. The computational procedure is based on Merkel's 1986 work on vacuum field computations. Several test cases are presented for toroidal surfaces which verify the method and computational robustness of the code.
Yamaguchi, Takashi; Hinata, Takashi
2007-09-03
The time-average energy density of the optical near-field generated around a metallic sphere is computed using the finite-difference time-domain method. To check the accuracy, the numerical results are compared with the rigorous solutions by Mie theory. The Lorentz-Drude model, which is coupled with Maxwell's equation via motion equations of an electron, is applied to simulate the dispersion relation of metallic materials. The distributions of the optical near-filed generated around a metallic hemisphere and a metallic spheroid are also computed, and strong optical near-fields are obtained at the rim of them.
Gravitational Scattering Amplitudes and Closed String Field Theory in the Proper-Time Gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2018-01-01
We construct a covariant closed string field theory by extending recent works on the covariant open string field theory in the proper-time gauge. Rewriting the string scattering amplitudes generated by the closed string field theory in terms of the Polyakov string path integrals, we identify the Fock space representations of the closed string vertices. We show that the Fock space representations of the closed string field theory may be completely factorized into those of the open string field theory. It implies that the well known Kawai-Lewellen-Tye (KLT) relations of the first quantized string theory may be promoted to the second quantized closed string theory. We explicitly calculate the scattering amplitudes of three gravitons by using the closed string field theory in the proper-time gauge.
S-Duality, Deconstruction and Confinement for a Marginal Deformation of N=4 SUSY Yang-Mills
NASA Astrophysics Data System (ADS)
Dorey, Nick
2004-08-01
We study an exactly marginal deformation of Script N = 4 SUSY Yang-Mills with gauge group U(N) using field theory and string theory methods. The classical theory has a Higgs branch for rational values of the deformation parameter. We argue that the quantum theory also has an S-dual confining branch which cannot be seen classically. The low-energy effective theory on these branches is a six-dimensional non-commutative gauge theory with sixteen supercharges. Confinement of magnetic and electric charges, on the Higgs and confining branches respectively, occurs due to the formation of BPS-saturated strings in the low energy theory. The results also suggest a new way of deconstructing Little String Theory as a large-N limit of a confining gauge theory in four dimensions.
Detecting spatio-temporal modes in multivariate data by entropy field decomposition
NASA Astrophysics Data System (ADS)
Frank, Lawrence R.; Galinsky, Vitaly L.
2016-09-01
A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESPs). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and nonlinear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging.
Boundary terms and three-point functions: an AdS/CFT puzzle resolved
Freedman, Daniel Z.; Pilch, Krzysztof; Pufu, Silviu S.; ...
2017-06-12
N=8 superconformal field theories, such as the ABJM theory at Chern-Simons level k = 1 or 2, contain 35 scalar operators O IJ with Δ = 1 in the 35 v representation of SO(8). The 3-point correlation function of these operators is non-vanishing, and indeed can be calculated non-perturbatively in the field theory. But its AdS 4 gravity dual, obtained from gauged N=8 supergravity, has no cubic A 3 couplings in its Lagrangian, where A IJ is the bulk dual of OIJ. So conventional Witten diagrams cannot furnish the field theory result. We show that the extension of bulk supersymmetrymore » to the AdS 4 boundary requires the introduction of a finite A 3 counterterm that does provide a perfect match to the 3-point correlator. Boundary supersymmetry also requires infinite counterterms which agree with the method of holographic renormalization. The generating functional of correlation functions of the Δ = 1 operators is the Legendre transform of the on-shell action, and the supersymmetry properties of this functional play a significant role in our treatment.« less
Boundary terms and three-point functions: an AdS/CFT puzzle resolved
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Daniel Z.; Pilch, Krzysztof; Pufu, Silviu S.
N=8 superconformal field theories, such as the ABJM theory at Chern-Simons level k = 1 or 2, contain 35 scalar operators O IJ with Δ = 1 in the 35 v representation of SO(8). The 3-point correlation function of these operators is non-vanishing, and indeed can be calculated non-perturbatively in the field theory. But its AdS 4 gravity dual, obtained from gauged N=8 supergravity, has no cubic A 3 couplings in its Lagrangian, where A IJ is the bulk dual of OIJ. So conventional Witten diagrams cannot furnish the field theory result. We show that the extension of bulk supersymmetrymore » to the AdS 4 boundary requires the introduction of a finite A 3 counterterm that does provide a perfect match to the 3-point correlator. Boundary supersymmetry also requires infinite counterterms which agree with the method of holographic renormalization. The generating functional of correlation functions of the Δ = 1 operators is the Legendre transform of the on-shell action, and the supersymmetry properties of this functional play a significant role in our treatment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kampf, Karol; Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague; Novotny, Jiri
2010-06-01
We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent tomore » the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.« less
Development of Numerical Methods to Estimate the Ohmic Breakdown Scenarios of a Tokamak
NASA Astrophysics Data System (ADS)
Yoo, Min-Gu; Kim, Jayhyun; An, Younghwa; Hwang, Yong-Seok; Shim, Seung Bo; Lee, Hae June; Na, Yong-Su
2011-10-01
The ohmic breakdown is a fundamental method to initiate the plasma in a tokamak. For the robust breakdown, ohmic breakdown scenarios have to be carefully designed by optimizing the magnetic field configurations to minimize the stray magnetic fields. This research focuses on development of numerical methods to estimate the ohmic breakdown scenarios by precise analysis of the magnetic field configurations. This is essential for the robust and optimal breakdown and start-up of fusion devices especially for ITER and its beyond equipped with low toroidal electric field (ET <= 0.3 V/m). A field-line-following analysis code based on the Townsend avalanche theory and a particle simulation code are developed to analyze the breakdown characteristics of actual complex magnetic field configurations including the stray magnetic fields in tokamaks. They are applied to the ohmic breakdown scenarios of tokamaks such as KSTAR and VEST and compared with experiments.
The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alarcon, Jose Manuel
We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.
Noncommutative geometry and arithmetics
NASA Astrophysics Data System (ADS)
Almeida, P.
2009-09-01
We intend to illustrate how the methods of noncommutative geometry are currently used to tackle problems in class field theory. Noncommutative geometry enables one to think geometrically in situations in which the classical notion of space formed of points is no longer adequate, and thus a “noncommutative space” is needed; a full account of this approach is given in [3] by its main contributor, Alain Connes. The class field theory, i.e., number theory within the realm of Galois theory, is undoubtedly one of the main achievements in arithmetics, leading to an important algebraic machinery; for a modern overview, see [23]. The relationship between noncommutative geometry and number theory is one of the many themes treated in [22, 7-9, 11], a small part of which we will try to put in a more down-to-earth perspective, illustrating through an example what should be called an “application of physics to mathematics,” and our only purpose is to introduce nonspecialists to this beautiful area.
Koopman-von Neumann formulation of classical Yang-Mills theories: I
NASA Astrophysics Data System (ADS)
Carta, P.; Gozzi, E.; Mauro, D.
2006-03-01
In this paper we present the Koopman-von Neumann (KvN) formulation of classical non-Abelian gauge field theories. In particular we shall explore the functional (or classical path integral) counterpart of the KvN method. In the quantum path integral quantization of Yang-Mills theories concepts like gauge-fixing and Faddeev-Popov determinant appear in a quite natural way. We will prove that these same objects are needed also in this classical path integral formulation for Yang-Mills theories. We shall also explore the classical path integral counterpart of the BFV formalism and build all the associated universal and gauge charges. These last are quite different from the analog quantum ones and we shall show the relation between the two. This paper lays the foundation of this formalism which, due to the many auxiliary fields present, is rather heavy. Applications to specific topics outlined in the paper will appear in later publications.
The Right Tools for the Job: The Challenges of Theory and Method in Geoscience Education Research
NASA Astrophysics Data System (ADS)
Riggs, E. M.
2011-12-01
As geoscience education has matured as a research field over the last decade, workers in this area have been challenged to adapt methodologies and theoretical approaches to study design and data collection. These techniques are as diverse as the earth sciences themselves, and researchers have drawn on established methods and traditions from science education research, social science research, and the cognitive and learning sciences. While the diversity of methodological and theoretical approaches is powerful, the challenge is to ground geoscience education research in rigorous methodologies that are appropriate for the epistemological and functional realities of the content area and the environment in which the research is conducted. The issue of theory is the first hurdle. After techniques are proven, earth scientists typically need not worry much about the theoretical value or theory-laden nature of measurements they make in the field or laboratory. As an example, a field geologist does not question the validity of the gravitational field that levels the spirit level within a Brunton compass. However, in earth science education research, these issues are magnified because a theoretical approach to a study affects what is admitted as data and the weight that can be given to conclusions. Not only must one be concerned about the validity of measurements and observations, but also the value of this information from an epistemological standpoint. The assigning of meaning to student gestures, utterances, writing and actions all carries theoretical implications. For example, working with geologists learning or working in the field, purely experimental research designs are very difficult, and the majority of the work must be conducted in a naturalistic environment. In fact dealing with time pressure, distractions, and complexity of a field environment is part of intellectual backdrop for field geology that separates experts from novices and advanced students from beginners. Thus researchers must embrace the uncontrolled nature of the setting, the qualitative nature of the data collected, and the researcher's role in interpreting geologically appropriate actions as evidence of successful problem solving and investigation. Working to understand the role of diversity and culture in the geosciences also involves a wide array of theory, from affective issues through culturally and linguistically-influenced cognition, through gender, self-efficacy, and many other areas of inquiry. Research in understanding spatial skills draws heavily on techniques from cognition research but also must involve the field-specific knowledge of geoscientists to infuse these techniques with exemplars, a catalog of meaningful actions by students, and an understanding of how to recognize success. These examples illustrate briefly the wide array of tools from other fields that is being brought to bear to advance rigorous geoscience education research. We will illustrate a few of these and the insights we have gained, and the power of theory and method from other fields to enlighten us as we attempt to educate a broader array of earth scientists.
Sawin, Kathleen J; Weiss, Marianne E; Johnson, Norah; Gralton, Karen; Malin, Shelly; Klingbeil, Carol; Lerret, Stacee M; Thompson, Jamie J; Zimmanck, Kim; Kaul, Molly; Schiffman, Rachel F
2017-03-01
Parents of hospitalized children, especially parents of children with complex and chronic health conditions, report not being adequately prepared for self-management of their child's care at home after discharge. No theory-based discharge intervention exists to guide pediatric nurses' preparation of parents for discharge. To develop a theory-based conversation guide to optimize nurses' preparation of parents for discharge and self-management of their child at home following hospitalization. Two frameworks and one method influenced the development of the intervention: the Individual and Family Self-Management Theory, Tanner's Model of Clinical Judgment, and the Teach-Back method. A team of nurse scientists, nursing leaders, nurse administrators, and clinical nurses developed and field tested the electronic version of a nine-domain conversation guide for use in acute care pediatric hospitals. The theory-based intervention operationalized self-management concepts, added components of nursing clinical judgment, and integrated the Teach-Back method. Development of a theory-based intervention, the translation of theoretical knowledge to clinical innovation, is an important step toward testing the effectiveness of the theory in guiding clinical practice. Clinical nurses will establish the practice relevance through future use and refinement of the intervention. © 2017 Sigma Theta Tau International.
Intercultural Ethics: Questions of Methods in Language and Intercultural Communication
ERIC Educational Resources Information Center
Phipps, Alison
2013-01-01
This paper explores how questions of ethics and questions of method are intertwined and unavoidable in any serious study of language and intercultural communication. It argues that the focus on difference and solution orientations to intercultural conflict has been a fundamental driver for theory, data collection and methods in the field. These…
General Potential Theory of Arbitrary Wing Sections
NASA Technical Reports Server (NTRS)
Theodorsen, T.; Garrick, I. E.
1979-01-01
The problem of determining the two dimensional potential flow around wing sections of any shape is examined. The problem is condensed into the compact form of an integral equation capable of yielding numerical solutions by a direct process. An attempt is made to analyze and coordinate the results of earlier studies relating to properties of wing sections. The existing approximate theory of thin wing sections and the Joukowski theory with its numerous generalizations are reduced to special cases of the general theory of arbitrary sections, permitting a clearer perspective of the entire field. The method which permits the determination of the velocity at any point of an arbitrary section and the associated lift and moments is described. The method is also discussed in terms for developing new shapes of preassigned aerodynamical properties.
The Vibrational Frequencies of CaO2, ScO2, and TiO2: A Comparison of Theoretical Methods
NASA Technical Reports Server (NTRS)
Rosi, Marzio; Bauschlicher, Charles W., Jr.; Chertihin, George V.; Andrews, Lester; Arnold, James O. (Technical Monitor)
1997-01-01
The vibrational frequencies of several states of CaO2, ScO2, and TiO2 are computed at using density functional theory (DFT), the Hatree-Fock approach, second order Moller-Plesset perturbation theory (MP2), and the complete-active-space self-consistent-field theory. Three different functionals are used in the DFT calculations, including two hybrid functionals. The coupled cluster singles and doubles approach including the effect of unlinked triples, determined using perturbation theory, is applied to selected states. The Becke-Perdew 86 functional appears to be the cost effective method of choice, although even this functional does not perform well for one state of CaO2. The MP2 approach is significantly inferior to the DFT approaches.
Culture care theory: a major contribution to advance transcultural nursing knowledge and practices.
Leininger, Madeleine
2002-07-01
This article is focused on the major features of the Culture Care Diversity and Universality theory as a central contributing theory to advance transcultural nursing knowledge and to use the findings in teaching, research, practice, and consultation. It remains one of the oldest, most holistic, and most comprehensive theories to generate knowledge of diverse and similar cultures worldwide. The theory has been a powerful means to discover largely unknown knowledge in nursing and the health fields. It provides a new mode to assure culturally competent, safe, and congruent transcultural nursing care. The purpose, goal, assumptive premises, ethnonursing research method, criteria, and some findings are highlighted.
Statistical lamb wave localization based on extreme value theory
NASA Astrophysics Data System (ADS)
Harley, Joel B.
2018-04-01
Guided wave localization methods based on delay-and-sum imaging, matched field processing, and other techniques have been designed and researched to create images that locate and describe structural damage. The maximum value of these images typically represent an estimated damage location. Yet, it is often unclear if this maximum value, or any other value in the image, is a statistically significant indicator of damage. Furthermore, there are currently few, if any, approaches to assess the statistical significance of guided wave localization images. As a result, we present statistical delay-and-sum and statistical matched field processing localization methods to create statistically significant images of damage. Our framework uses constant rate of false alarm statistics and extreme value theory to detect damage with little prior information. We demonstrate our methods with in situ guided wave data from an aluminum plate to detect two 0.75 cm diameter holes. Our results show an expected improvement in statistical significance as the number of sensors increase. With seventeen sensors, both methods successfully detect damage with statistical significance.
NASA Astrophysics Data System (ADS)
Haule, Kristjan
2018-04-01
The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.
Business Language Studies in the United States: On Nomenclature, Context, Theory, and Method
ERIC Educational Resources Information Center
Doyle, Michael Scott
2012-01-01
Although it has existed for many decades in the national curriculum of U.S. higher education, the study of languages for business purposes has lacked a more serviceable and academically communal name--a more rigorous toponymic identity--by which to identify itself as a theory-based field of scholarship. The intention here is to propose for…
Information theory lateral density distribution for Earth inferred from global gravity field
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
1981-01-01
Information Theory Inference, better known as the Maximum Entropy Method, was used to infer the lateral density distribution inside the Earth. The approach assumed that the Earth consists of indistinguishable Maxwell-Boltzmann particles populating infinitesimal volume elements, and followed the standard methods of statistical mechanics (maximizing the entropy function). The GEM 10B spherical harmonic gravity field coefficients, complete to degree and order 36, were used as constraints on the lateral density distribution. The spherically symmetric part of the density distribution was assumed to be known. The lateral density variation was assumed to be small compared to the spherically symmetric part. The resulting information theory density distribution for the cases of no crust removed, 30 km of compensated crust removed, and 30 km of uncompensated crust removed all gave broad density anomalies extending deep into the mantle, but with the density contrasts being the greatest towards the surface (typically + or 0.004 g cm 3 in the first two cases and + or - 0.04 g cm 3 in the third). None of the density distributions resemble classical organized convection cells. The information theory approach may have use in choosing Standard Earth Models, but, the inclusion of seismic data into the approach appears difficult.
Field-Based Teacher Education in Literacy: Preparing Teachers in Real Classroom Contexts
ERIC Educational Resources Information Center
DeGraff, Tricia L.; Schmidt, Cynthia M.; Waddell, Jennifer H.
2015-01-01
For the past two decades, scholars have advocated for reforms in teacher education that emphasize relevant connections between theory and practice in university coursework and focus on clinical experiences. This paper is based on our experiences in designing and implementing an integrated literacy methods course in a field-based teacher education…
On the `simple' form of the gravitational action and the self-interacting graviton
NASA Astrophysics Data System (ADS)
Tomboulis, E. T.
2017-09-01
The so-called ΓΓ-form of the gravitational Lagrangian, long known to provide its most compact expression as well as the most efficient generation of the graviton vertices, is taken as the starting point for discussing General Relativity as a theory of the self-interacting graviton. A straightforward but general method of converting to a covariant formulation by the introduction of a reference metric is given. It is used to recast the Einstein field equation as the equation of motion of a spin-2 particle interacting with the canonical energy-momentum tensor symmetrized by the standard Belinfante method applicable to any field carrying nonzero spin. This represents the graviton field equation in a form complying with the precepts of standard field theory. It is then shown how representations based on other, at face value completely unrelated definitions of energy-momentum (pseudo)tensors are all related by the addition of appropriate superpotential terms. Specifically, the superpotentials are explicitly constructed which connect to: i) the common definition consisting simply of the nonlinear part of the Einstein tensor; ii) the Landau-Lifshitz definition.
A Guided Tour of Mathematical Methods
NASA Astrophysics Data System (ADS)
Snieder, Roel
2009-04-01
1. Introduction; 2. Dimensional analysis; 3. Power series; 4. Spherical and cylindrical co-ordinates; 5. The gradient; 6. The divergence of a vector field; 7. The curl of a vector field; 8. The theorem of Gauss; 9. The theorem of Stokes; 10. The Laplacian; 11. Conservation laws; 12. Scale analysis; 13. Linear algebra; 14. The Dirac delta function; 15. Fourier analysis; 16. Analytic functions; 17. Complex integration; 18. Green's functions: principles; 19. Green's functions: examples; 20. Normal modes; 21. Potential theory; 22. Cartesian tensors; 23. Perturbation theory; 24. Asymptotic evaluation of integrals; 25. Variational calculus; 26. Epilogue, on power and knowledge; References.
Integrability, Quantization and Moduli Spaces of Curves
NASA Astrophysics Data System (ADS)
Rossi, Paolo
2017-07-01
This paper has the purpose of presenting in an organic way a new approach to integrable (1+1)-dimensional field systems and their systematic quantization emerging from intersection theory of the moduli space of stable algebraic curves and, in particular, cohomological field theories, Hodge classes and double ramification cycles. This methods are alternative to the traditional Witten-Kontsevich framework and its generalizations by Dubrovin and Zhang and, among other advantages, have the merit of encompassing quantum integrable systems. Most of this material originates from an ongoing collaboration with A. Buryak, B. Dubrovin and J. Guéré.
Rigorous Electromagnetic Analysis of the Focusing Action of Refractive Cylindrical Microlens
NASA Astrophysics Data System (ADS)
Liu, Juan; Gu, Ben-Yuan; Dong, Bi-Zhen; Yang, Guo-Zhen
The focusing action of refractive cylindrical microlens is investigated based on the rigorous electromagnetic theory with the use of the boundary element method. The focusing behaviors of these refractive microlenses with continuous and multilevel surface-envelope are characterized in terms of total electric-field patterns, the electric-field intensity distributions on the focal plane, and their diffractive efficiencies at the focal spots. The obtained results are also compared with the ones obtained by Kirchhoff's scalar diffraction theory. The present numerical and graphical results may provide useful information for the analysis and design of refractive elements in micro-optics.
Self-consistent-field perturbation theory for the Schröautdinger equation
NASA Astrophysics Data System (ADS)
Goodson, David Z.
1997-06-01
A method is developed for using large-order perturbation theory to solve the systems of coupled differential equations that result from the variational solution of the Schröautdinger equation with wave functions of product form. This is a noniterative, computationally efficient way to solve self-consistent-field (SCF) equations. Possible applications include electronic structure calculations using products of functions of collective coordinates that include electron correlation, vibrational SCF calculations for coupled anharmonic oscillators with selective coupling of normal modes, and ab initio calculations of molecular vibration spectra without the Born-Oppenheimer approximation.
Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Endres, Michael G.; Brower, Richard C.; Orginos, Kostas; ...
2015-12-29
In this study, we present a multiscale thermalization algorithm for lattice gauge theory, which enables efficient parallel generation of uncorrelated gauge field configurations. The algorithm combines standard Monte Carlo techniques with ideas drawn from real space renormalization group and multigrid methods. We demonstrate the viability of the algorithm for pure Yang-Mills gauge theory for both heat bath and hybrid Monte Carlo evolution, and show that it ameliorates the problem of topological freezing up to controllable lattice spacing artifacts.
Butterfly velocities for holographic theories of general spacetimes
Nomura, Yasunori; Salzetta, Nico
2017-10-01
The butterfly velocity characterizes the spread of correlations in a quantum system. Recent work has provided a method of calculating the butterfly velocity of a class of boundary operators using holographic duality. Utilizing this and a presumed extension of the canonical holographic correspondence of AdS/CFT, we investigate the butterfly velocities of operators with bulk duals living in general spacetimes. We analyze some ubiquitous issues in calculating butterfly velocities using the bulk effective theory, and then extend the previously proposed method to include operators in entanglement shadows. Here in this paper, we explicitly compute butterfly velocities for bulk local operators inmore » the holographic theory of flat Friedmann-Robertson-Walker spacetimes and find a universal scaling behavior for the spread of operators in the boundary theory, independent of dimension and fluid components. This result may suggest that a Lifshitz field theory with z = 4 is the appropriate holographic dual for these spacetimes.« less
NASA Astrophysics Data System (ADS)
Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.
2018-04-01
Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.
Perturbation theory in light-cone quantization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langnau, A.
1992-01-01
A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towardsmore » formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.« less
NASA Astrophysics Data System (ADS)
Parthasarathy, R.
2005-06-01
This book gives a clear exposition of quantum field theory at the graduate level and the contents could be covered in a two semester course or, with some effort, in a one semester course. The book is well organized, and subtle issues are clearly explained. The margin notes are very useful, and the problems given at the end of each chapter are relevant and help the student gain an insight into the subject. The solutions to these problems are given in chapter 12. Care is taken to keep the numerical factors and notation very clear. Chapter 1 gives a clear overview and typical scales in high energy physics. Chapter 2 presents an excellent account of the Lorentz group and its representation. The decomposition of Lorentz tensors under SO(3) and the subsequent spinorial representations are introduced with clarity. After giving the field representation for scalar, Weyl, Dirac, Majorana and vector fields, the Poincaré group is introduced. Representations of 1-particle states using m2 and the Pauli Lubanski vector, although standard, are treated lucidly. Classical field theory is introduced in chapter 3 and a careful treatment of the Noether theorem and the energy momentum tensor are given. After covering real and complex scalar fields, the author impressively introduces the Dirac spinor via the Weyl spinor; Abelian gauge theory is also introduced. Chapter 4 contains the essentials of free field quantization of real and complex scalar fields, Dirac fields and massless Weyl fields. After a brief discussion of the CPT theorem, the quantization of electromagnetic field is carried out both in radiation gauge and Lorentz gauge. The presentation of the Gupta Bleuler method is particularly impressive; the margin notes on pages 85, 100 and 101 invaluable. Chapter 5 considers the essentials of perturbation theory. The derivation of the LSZ reduction formula for scalar field theory is clearly expressed. Feynman rules are obtained for the λphi4 theory in detail and those of QED briefly. The basic idea of renormalization is explained using the λphi4 theory as an example. There is a very lucid discussion on the `running coupling' constant in section 5.9. Chapter 6 explains the use of the matrix elements, formally given in the previous chapter, to compute decay rates and cross sections. The exposition is such that the reader will have no difficulty in following the steps. However, bearing in mind the continuity of the other chapters, this material could have been consigned to an appendix. In the short chapter 7, the QED Lagrangian is shown to respect P, C and T invariance. One-loop divergences are described. Dimensional and Pauli Villars regularization are introduced and explained, although there is no account of their use in evaluating a typical one-loop divergent integral. Chapter 8 describes the low energy limit of the Weinberg Salam theory. Examples for μ-→ e-barnueν μ, π+→ l+νl and K0→ π-l+νl are explicitly solved, although the serious reader should work them out independently. On page 197 the `V-A structure of the currents proposed by Feynman and Gell-Mann' is stated; the first such proposal was by E C G Sudarshan and R E Marshak. In chapter 9 the path integral quantization method is developed. After deriving the transition amplitude as the sum over all paths, in quantum mechanics, a demonstration that the integration of functions in the path integral gives the expectation value of the time ordered product of the corresponding operators is given and applied to real scalar free field theory to get the Feynman propagator. Then the Euclidean formulation is introduced and its `tailor made' role in critical phenomena is illustrated with the 2-d Ising model as an example, including the RG equation. Chapter 10 introduces Yang Mills theory. After writing down the typical gauge invariant Lagrangian and outlining the ingredients of QCD, the adjoint representation for fields is given. It could have been made complete by giving the Feynman rules for the cubic and quartic vertices for non-Abelian gauge fields, although the reader can obtain them from the last term in equation 10.27. In chapter 11, spontaneous symmetry breaking in quantum field theory is described. The difference in quantum mechanics and QFT with respect to the degenerate vacua is clearly brought out by considering the tunnelling amplitude between degenerate vacua. This is very good, as this aspect is mostly overlooked in many textbooks. The Goldstone theorem is then illustrated by an example. The Higgs mechanism is explained in Abelian and non-Abelian (SU(2)) gauge theories and the situation in SU(2)xU(1) gauge theory is discussed. This book certainly covers most of the modern developments in quantum field theory. The reader will be able to follow the content and apply it to specific problems. The bibliography is certainly useful. It will be an asset to libraries in teaching and research institutions.
A lifting surface theory for thrust augmenting ejectors
NASA Technical Reports Server (NTRS)
Bevilaqua, P. M.
1977-01-01
The circulation theory of airfoil lift has been applied to calculate the performance of thrust augmenting ejectors. The ejector shroud is considered to be 'flying' in the secondary velocity field induced by the entrainment of the primary jet, so that the augmenting thrust is viewed as analogous to the lift on an airfoil. Vortex lattice methods are utilized to compute the thrust augmentation from the force on the flaps. The augmentation is shown to be a function of the length and shape of the flaps, as well as their position and orientation. Predictions of this new theory are compared with the results of classical methods of calculating the augmentation by integration of the stream thrust.
NASA Astrophysics Data System (ADS)
Shi, Min; Niu, Zhong-Ming; Liang, Haozhao
2018-06-01
We have combined the complex momentum representation method with the Green's function method in the relativistic mean-field framework to establish the RMF-CMR-GF approach. This new approach is applied to study the halo structure of 74Ca. All the continuum level density of concerned resonant states are calculated accurately without introducing any unphysical parameters, and they are independent of the choice of integral contour. The important single-particle wave functions and densities for the halo phenomenon in 74Ca are discussed in detail.
Surface field theories of point group symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Huang, Sheng-Jie; Hermele, Michael
2018-02-01
We identify field theories that describe the surfaces of three-dimensional bosonic point group symmetry protected topological (pgSPT) phases. The anomalous nature of the surface field theories is revealed via a dimensional reduction argument. Specifically, we study three different surface field theories. The first field theory is quantum electrodynamics in three space-time dimensions (QED3) with four flavors of fermions. We show this theory can describe the surfaces of a majority of bosonic pgSPT phases protected by a single mirror reflection, or by Cn v point group symmetry for n =2 ,3 ,4 ,6 . The second field theory is a variant of QED3 with charge-1 and charge-3 Dirac fermions. This field theory can describe the surface of a reflection symmetric pgSPT phase built by placing an E8 state on the mirror plane. The third field theory is an O (4 ) nonlinear sigma model with a topological theta term at θ =π , or, equivalently, a noncompact CP1 model. Using a coupled wire construction, we show this is a surface theory for bosonic pgSPT phases with U (1 ) ×Z2P symmetry. For the latter two field theories, we discuss the connection to gapped surfaces with topological order. Moreover, we conjecture that the latter two field theories can describe surfaces of more general bosonic pgSPT phases with Cn v point group symmetry.
Research on Radiation Characteristic of Plasma Antenna through FDTD Method
Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan
2014-01-01
The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961
A phase cell cluster expansion for Euclidean field theories
NASA Astrophysics Data System (ADS)
Battle, Guy A., III; Federbush, Paul
1982-08-01
We adapt the cluster expansion first used to treat infrared problems for lattice models (a mass zero cluster expansion) to the usual field theory situation. The field is expanded in terms of special block spin functions and the cluster expansion given in terms of the expansion coefficients (phase cell variables); the cluster expansion expresses correlation functions in terms of contributions from finite coupled subsets of these variables. Most of the present work is carried through in d space time dimensions (for φ24 the details of the cluster expansion are pursued and convergence is proven). Thus most of the results in the present work will apply to a treatment of φ34 to which we hope to return in a succeeding paper. Of particular interest in this paper is a substitute for the stability of the vacuum bound appropriate to this cluster expansion (for d = 2 and d = 3), and a new method for performing estimates with tree graphs. The phase cell cluster expansions have the renormalization group incorporated intimately into their structure. We hope they will be useful ultimately in treating four dimensional field theories.
NASA Astrophysics Data System (ADS)
Dung, Nguyen Thi; Linh, Dinh Chi; Huyen Yen, Pham Duc; Yu, Seong Cho; Van Dang, Nguyen; Dang Thanh, Tran
2018-06-01
Influence of the crystallite size on the magnetic and critical properties of nanocrystals has been investigated. The results show that Curie temperature and magnetization slightly decrease with decreasing average crystallite size . Based on the mean-field theory and the magnetic-field dependences of magnetization at different temperatures , we pointed out that the ferromagnetic-paramagnetic phase transition in the samples undergoes the second-order phase transition with the critical exponents (, , and ) close to those of the mean-field theory. However, there is a small deviation from those expected for the mean-field theory of the values of , and obtained for the samples. It means that short-range ferromagnetic interactions appear in the smaller particles. In other words, nanocrystals become more magnetically inhomogeneous with smaller crystallite sizes that could be explained by the presence of surface-related effects, lattice strain and distortions, which lead the strength of ferromagnetic interaction is decreased in the small crystallite sizes.
Bao, Jie J; Gagliardi, Laura; Truhlar, Donald G
2017-11-15
Multiconfiguration pair-density functional theory (MC-PDFT) is a post multiconfiguration self-consistent field (MCSCF) method with similar performance to complete active space second-order perturbation theory (CASPT2) but with greater computational efficiency. Cyano radical (CN) is a molecule whose spectrum is well established from experiments and whose excitation energies have been used as a testing ground for theoretical methods to treat excited states of open-shell systems, which are harder and much less studied than excitation energies of closed-shell singlets. In the present work, we studied the adiabatic excitation energies of CN with MC-PDFT. Then we compared this multireference (MR) method to some single-reference (SR) methods, including time-dependent density functional theory (TDDFT) and completely renormalized equation-of-motion coupled-cluster theory with singles, doubles and noniterative triples [CR-EOM-CCSD(T)]; we also compared to some other MR methods, including configuration interaction singles and doubles (MR-CISD) and multistate CASPT2 (MS-CASPT2). Through a comparison between SR and MR methods, we achieved a better appreciation of the need to use MR methods to accurately describe higher excited states, and we found that among the MR methods, MC-PDFT stands out for its accuracy for the first four states out of the five doublet states studied this paper; this shows its efficiency for calculating doublet excited states.
Antipov, Sergey V; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2017-11-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research "Molecular Ultrafast Science and Technology," are presented: These include Bohmian dynamics description of the collision of H with H 2 , local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase.
Radiative Processes in Graphene and Similar Nanostructures in Strong Electric Fields
NASA Astrophysics Data System (ADS)
Gavrilov, S. P.; Gitman, D. M.
2017-03-01
Low-energy single-electron dynamics in graphene monolayers and similar nanostructures is described by the Dirac model, being a 2+1 dimensional version of massless QED with the speed of light replaced by the Fermi velocity vF ≃ c/300. Methods of strong-field QFT are relevant for the Dirac model, since any low-frequency electric field requires a nonperturbative treatment of massless carriers in the case it remains unchanged for a sufficiently long time interval. In this case, the effects of creation and annihilation of electron-hole pairs produced from vacuum by a slowly varying and small-gradient electric field are relevant, thereby substantially affecting the radiation pattern. For this reason, the standard QED text-book theory of photon emission cannot be of help. We construct the Fock-space representation of the Dirac model, which takes exact accounts of the effects of vacuum instability caused by external electric fields, and in which the interaction between electrons and photons is taken into account perturbatively, following the general theory (the generalized Furry representation). We consider the effective theory of photon emission in the first-order approximation and construct the corresponding total probabilities, taking into account the unitarity relation.
Antipov, Sergey V.; Bhattacharyya, Swarnendu; El Hage, Krystel; Xu, Zhen-Hao; Meuwly, Markus; Rothlisberger, Ursula; Vaníček, Jiří
2018-01-01
Several strategies for simulating the ultrafast dynamics of molecules induced by interactions with electromagnetic fields are presented. After a brief overview of the theory of molecule-field interaction, we present several representative examples of quantum, semiclassical, and classical approaches to describe the ultrafast molecular dynamics, including the multiconfiguration time-dependent Hartree method, Bohmian dynamics, local control theory, semiclassical thawed Gaussian approximation, phase averaging, dephasing representation, molecular mechanics with proton transfer, and multipolar force fields. In addition to the general overview, some focus is given to the description of nuclear quantum effects and to the direct dynamics, in which the ab initio energies and forces acting on the nuclei are evaluated on the fly. Several practical applications, performed within the framework of the Swiss National Center of Competence in Research “Molecular Ultrafast Science and Technology,” are presented: These include Bohmian dynamics description of the collision of H with H2, local control theory applied to the photoinduced ultrafast intramolecular proton transfer, semiclassical evaluation of vibrationally resolved electronic absorption, emission, photoelectron, and time-resolved stimulated emission spectra, infrared spectroscopy of H-bonding systems, and multipolar force fields applications in the condensed phase. PMID:29376107
Classical Field Theory and the Stress-Energy Tensor
NASA Astrophysics Data System (ADS)
Swanson, Mark S.
2015-09-01
This book is a concise introduction to the key concepts of classical field theory for beginning graduate students and advanced undergraduate students who wish to study the unifying structures and physical insights provided by classical field theory without dealing with the additional complication of quantization. In that regard, there are many important aspects of field theory that can be understood without quantizing the fields. These include the action formulation, Galilean and relativistic invariance, traveling and standing waves, spin angular momentum, gauge invariance, subsidiary conditions, fluctuations, spinor and vector fields, conservation laws and symmetries, and the Higgs mechanism, all of which are often treated briefly in a course on quantum field theory. The variational form of classical mechanics and continuum field theory are both developed in the time-honored graduate level text by Goldstein et al (2001). An introduction to classical field theory from a somewhat different perspective is available in Soper (2008). Basic classical field theory is often treated in books on quantum field theory. Two excellent texts where this is done are Greiner and Reinhardt (1996) and Peskin and Schroeder (1995). Green's function techniques are presented in Arfken et al (2013).
A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.
We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less
Spatial change transformation of educational areas in Bandung
NASA Astrophysics Data System (ADS)
Yudi Permana, Asep; Wijaya, Karto
2017-12-01
Transformation is a total transfer process from a particular shape into a new figure which can be interpreted as the final stage of a changing process. Transformation, as a gradually progressive process, utilizes space and time factors becoming the aspect that greatly influences the change until reaching the ultimate stage. The changes are completed by responding to the influence of external and internal elements which will lead to a change from an early familiar form. The purpose of this research is to build theory based on phenomenon which occurs in the field as a result of space transformation process in Bandung so that it can be seen the setting adjustment of either physical or non-physical in the area becoming the city identity. The research method is qualitative research method with descriptive survey method approach. The focus of research is aimed at discrete phenomena in the field as an effort to disclose the background essence of the resulted theory formation. The study does not use a theoretical framework, yet there is a consistency in observing a discrete phenomenon of the grand tour results. The phenomenon is raised through the snowball sampling process. The process of collecting data, analyzing, and building theories is conducted jointly and iteratively within one research time range. The study results in the formation of space knowledge based on knitting and the value system of the users’ activities and the space settings. All users’ behaviors in using space are related to social, cultural, economic and creative activities in utilizing the existing space conditions. The results of this study provide an enrichment of architectural theory, planning theory and urban design theory having already existed.
NASA Astrophysics Data System (ADS)
Xia, Ying; Wang, Shiyu; Sun, Wenjia; Xiu, Jie
2017-01-01
The electromagnetically induced parametric vibration of the symmetrical three-phase induction stator is examined. While it can be analyzed by an approximate analytical or numerical method, more accurate and simple analytical method is desirable. This work proposes a new method based on the field-synchronous coordinates. A mechanical-electromagnetic coupling model is developed under this frame such that a time-invariant governing equation with gyroscopic term can be developed. With the general vibration theory, the eigenvalue is formulated; the transition curves between the stable and unstable regions, and response are all determined as closed-form expressions of basic mechanical-electromagnetic parameters. The dependence of these parameters on the instability behaviors is demonstrated. The results imply that the divergence and flutter instabilities can occur even for symmetrical motors with balanced, constant amplitude and sinusoidal voltage. To verify the analytical predictions, this work also builds up a time-variant model of the same system under the conventional inertial frame. The Floquét theory is employed to predict the parametric instability and the numerical integration is used to obtain the parametric response. The parametric instability and response are both well compared against those under the field-synchronous coordinates. The proposed field-synchronous coordinates allows a quick estimation on the electromagnetically induced vibration. The convenience offered by the body-fixed coordinates is discussed across various fields.
Lensing observables: Massless dyonic vis-à-vis Ellis wormholes
NASA Astrophysics Data System (ADS)
Lukmanova, R. F.; Tuleganova, G. Y.; Izmailov, R. N.; Nandi, K. K.
2018-06-01
Stable massless wormholes are theoretically interesting in their own right as well as for astrophysical applications, especially as galactic halo objects. Therefore, the study of gravitational lensing observables for such objects is of importance, and we do it here by applying the parametric post-Newtonian method of Keeton and Petters to massless dyonic charged wormholes of the Einstein-Maxwell-dilaton field theory and to the massless Ellis wormhole of the Einstein minimally coupled scalar field theory. The paper exemplifies how the lensing signatures of two different solutions belonging to two different theories could be qualitatively similar from the observational point of view. Quantitative differences appear depending on the parameter values. Surprisingly, there appears an unexpected divergence in the correction to differential time delay, which seems to call for a review of its original derivation.
Non-equilibrium magnetic interactions in strongly correlated systems
NASA Astrophysics Data System (ADS)
Secchi, A.; Brener, S.; Lichtenstein, A. I.; Katsnelson, M. I.
2013-06-01
We formulate a low-energy theory for the magnetic interactions between electrons in the multi-band Hubbard model under non-equilibrium conditions determined by an external time-dependent electric field which simulates laser-induced spin dynamics. We derive expressions for dynamical exchange parameters in terms of non-equilibrium electronic Green functions and self-energies, which can be computed, e.g., with the methods of time-dependent dynamical mean-field theory. Moreover, we find that a correct description of the system requires, in addition to exchange, a new kind of magnetic interaction, that we name twist exchange, which formally resembles Dzyaloshinskii-Moriya coupling, but is not due to spin-orbit, and is actually due to an effective three-spin interaction. Our theory allows the evaluation of the related time-dependent parameters as well.
Spatial resolution of the electrical conductance of ionic fluids using a Green-Kubo method.
Jones, R E; Ward, D K; Templeton, J A
2014-11-14
We present a Green-Kubo method to spatially resolve transport coefficients in compositionally heterogeneous mixtures. We develop the underlying theory based on well-known results from mixture theory, Irving-Kirkwood field estimation, and linear response theory. Then, using standard molecular dynamics techniques, we apply the methodology to representative systems. With a homogeneous salt water system, where the expectation of the distribution of conductivity is clear, we demonstrate the sensitivities of the method to system size, and other physical and algorithmic parameters. Then we present a simple model of an electrochemical double layer where we explore the resolution limit of the method. In this system, we observe significant anisotropy in the wall-normal vs. transverse ionic conductances, as well as near wall effects. Finally, we discuss extensions and applications to more realistic systems such as batteries where detailed understanding of the transport properties in the vicinity of the electrodes is of technological importance.
Quantum theory of multiscale coarse-graining.
Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A
2018-03-14
Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.
The role of the psychiatrist : defining methods, theories, and practice in the time of managed care.
Verhulst, J
1996-12-01
This essay proposes that the division between biological and psychotherapy-oriented psychiatry originates in the discipline's reliance on two fundamentally different methods of inquiry, that is, the medical-biological and the empathic-narrative. These terms are defined and distinguished from psychotherapy and psychodynamic psychiatry, as well as from general humanistic qualities in medicine. The division within the field may be fueled by a lack of clarity with respect to these concepts. The author argues that the essence of psychiatry is defined by a balanced combination of both methods. Psychiatry does not consist only of basic methods, but also of rules and guidelines for clinical practice, and of knowledge and theories used in the application of the methods. The role expectations for psychiatry in the managed care environment are examined and their effects upon methods, theory, and practice are analyzed. Some suggestions for dealing with the challenges of health care reform are offered.
A superstring field theory for supergravity
NASA Astrophysics Data System (ADS)
Reid-Edwards, R. A.; Riccombeni, D. A.
2017-09-01
A covariant closed superstring field theory, equivalent to classical tendimensional Type II supergravity, is presented. The defining conformal field theory is the ambitwistor string worldsheet theory of Mason and Skinner. This theory is known to reproduce the scattering amplitudes of Cachazo, He and Yuan in which the scattering equations play an important role and the string field theory naturally incorporates these results. We investigate the operator formalism description of the ambitwsitor string and propose an action for the string field theory of the bosonic and supersymmetric theories. The correct linearised gauge symmetries and spacetime actions are explicitly reproduced and evidence is given that the action is correct to all orders. The focus is on the NeveuSchwarz sector and the explicit description of tree level perturbation theory about flat spacetime. Application of the string field theory to general supergravity backgrounds and the inclusion of the Ramond sector are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Düchs, Dominik; Delaney, Kris T., E-mail: kdelaney@mrl.ucsb.edu; Fredrickson, Glenn H., E-mail: ghf@mrl.ucsb.edu
Field-theoretic models have been used extensively to study the phase behavior of inhomogeneous polymer melts and solutions, both in self-consistent mean-field calculations and in numerical simulations of the full theory capturing composition fluctuations. The models commonly used can be grouped into two categories, namely, species models and exchange models. Species models involve integrations of functionals that explicitly depend on fields originating both from species density operators and their conjugate chemical potential fields. In contrast, exchange models retain only linear combinations of the chemical potential fields. In the two-component case, development of exchange models has been instrumental in enabling stable complexmore » Langevin (CL) simulations of the full complex-valued theory. No comparable stable CL approach has yet been established for field theories of the species type. Here, we introduce an extension of the exchange model to an arbitrary number of components, namely, the multi-species exchange (MSE) model, which greatly expands the classes of soft material systems that can be accessed by the complex Langevin simulation technique. We demonstrate the stability and accuracy of the MSE-CL sampling approach using numerical simulations of triblock and tetrablock terpolymer melts, and tetrablock quaterpolymer melts. This method should enable studies of a wide range of fluctuation phenomena in multiblock/multi-species polymer blends and composites.« less
Crystal Field in Rare-Earth Complexes: From Electrostatics to Bonding.
Alessandri, Riccardo; Zulfikri, Habiburrahman; Autschbach, Jochen; Bolvin, Hélène
2018-04-11
The flexibility of first-principles (ab initio) calculations with the SO-CASSCF (complete active space self-consistent field theory with a treatment of the spin-orbit (SO) coupling by state interaction) method is used to quantify the electrostatic and covalent contributions to crystal field parameters. Two types of systems are chosen for illustration: 1) The ionic and experimentally well-characterized PrCl 3 crystal; this study permits a revisitation of the partition of contributions proposed in the early days of crystal field theory; and 2) a series of sandwich molecules [Ln(η n -C n H n ) 2 ] q , with Ln=Dy, Ho, Er, and Tm and n=5, 6, and 8, in which the interaction between Ln III and the aromatic ligands is more difficult to describe within an electrostatic approach. It is shown that a model with three layers of charges reproduces the electrostatic field generated by the ligands and that the covalency plays a qualitative role. The one-electron character of crystal field theory is discussed and shown to be valuable, although it is not completely quantitative. This permits a reduction of the many-electron problem to a discussion of the energy of the seven 4f orbitals. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-12-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J Andrew
2015-12-28
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson-Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum-Chandler-Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods.
Sun, Hui; Wen, Jiayi; Zhao, Yanxiang; Li, Bo; McCammon, J. Andrew
2015-01-01
Dielectric boundary based implicit-solvent models provide efficient descriptions of coarse-grained effects, particularly the electrostatic effect, of aqueous solvent. Recent years have seen the initial success of a new such model, variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett. 96, 087802 (2006) and J. Chem. Phys. 124, 084905 (2006)], in capturing multiple dry and wet hydration states, describing the subtle electrostatic effect in hydrophobic interactions, and providing qualitatively good estimates of solvation free energies. Here, we develop a phase-field VISM to the solvation of charged molecules in aqueous solvent to include more flexibility. In this approach, a stable equilibrium molecular system is described by a phase field that takes one constant value in the solute region and a different constant value in the solvent region, and smoothly changes its value on a thin transition layer representing a smeared solute-solvent interface or dielectric boundary. Such a phase field minimizes an effective solvation free-energy functional that consists of the solute-solvent interfacial energy, solute-solvent van der Waals interaction energy, and electrostatic free energy described by the Poisson–Boltzmann theory. We apply our model and methods to the solvation of single ions, two parallel plates, and protein complexes BphC and p53/MDM2 to demonstrate the capability and efficiency of our approach at different levels. With a diffuse dielectric boundary, our new approach can describe the dielectric asymmetry in the solute-solvent interfacial region. Our theory is developed based on rigorous mathematical studies and is also connected to the Lum–Chandler–Weeks theory (1999). We discuss these connections and possible extensions of our theory and methods. PMID:26723595
Angular momentum and torque described with the complex octonion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weng, Zi-Hua, E-mail: xmuwzh@xmu.edu.cn
2014-08-15
The paper aims to adopt the complex octonion to formulate the angular momentum, torque, and force etc in the electromagnetic and gravitational fields. Applying the octonionic representation enables one single definition of angular momentum (or torque, force) to combine some physics contents, which were considered to be independent of each other in the past. J. C. Maxwell used simultaneously two methods, the vector terminology and quaternion analysis, to depict the electromagnetic theory. It motivates the paper to introduce the quaternion space into the field theory, describing the physical feature of electromagnetic and gravitational fields. The spaces of electromagnetic field andmore » of gravitational field can be chosen as the quaternion spaces, while the coordinate component of quaternion space is able to be the complex number. The quaternion space of electromagnetic field is independent of that of gravitational field. These two quaternion spaces may compose one octonion space. Contrarily, one octonion space can be separated into two subspaces, the quaternion space and S-quaternion space. In the quaternion space, it is able to infer the field potential, field strength, field source, angular momentum, torque, and force etc in the gravitational field. In the S-quaternion space, it is capable of deducing the field potential, field strength, field source, current continuity equation, and electric (or magnetic) dipolar moment etc in the electromagnetic field. The results reveal that the quaternion space is appropriate to describe the gravitational features, including the torque, force, and mass continuity equation etc. The S-quaternion space is proper to depict the electromagnetic features, including the dipolar moment and current continuity equation etc. In case the field strength is weak enough, the force and the continuity equation etc can be respectively reduced to that in the classical field theory.« less
Estimating cosmic velocity fields from density fields and tidal tensors
NASA Astrophysics Data System (ADS)
Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan
2012-10-01
In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.
Huang, Xuan-Yi; Yen, Wen-Jiuan; Liu, Shwu-Jiuan; Lin, Chouh-Jiuan
2008-03-01
The aim was to develop a practice theory that can be used to guide the direction of community nursing practice to help clients with schizophrenia and those who care for them. Substantive grounded theory was developed through use of grounded theory method of Strauss and Corbin. Two groups of participants in Taiwan were selected using theoretical sampling: one group consisted of community mental health nurses and the other group was clients with schizophrenia and those who cared for them. The number of participants in each group was determined by theoretical saturation. Semi-structured one-to-one in-depth interviews and unstructured non-participant observation were utilized for data collection. Data analysis involved three stages: open, axial and selective coding. During the process of coding and analysis, both inductive and deductive thinking were utilized and the constant comparative analysis process continued until data saturation occurred. To establish trustworthiness, the four criteria of credibility, transferability, dependability and confirmability were followed along with field trial, audit trial, member check and peer debriefing for reliability and validity. A substantive grounded theory, the role of community mental health nurses caring for people with schizophrenia in Taiwan, was developed through utilization of grounded theory method of Strauss and Corbin. In this paper, results and discussion focus on causal conditions, context, intervening conditions, consequences and phenomenon. The theory is the first to contribute knowledge about the field of mental health home visiting services in Taiwan to provide guidance for the delivery of quality care to assist people in the community with schizophrenia and their carers.
Democratic Superstring Field Theory and Its Gauge Fixing
NASA Astrophysics Data System (ADS)
Kroyter, M.
This work is my contribution to the proceedings of the conference``SFT2010 -- the third international conference on string field theory and related topics'' and it reflects my talk there, which described the democratic string field theory and its gauge fixing. The democratic string field theory is the only fully RNS string field theory to date. It lives in the large Hilbert space and includes all picture numbers. Picture changing amounts in this formalism to a gauge transformation. We describe the theory and its properties and show that when partially gauge fixed it can be reduced to the modified theory and to the non-polynomial theory. In the latter case we can even include the Ramond sector in the picture-fixed action. We also show that another partial gauge-fixing leads to a new consistent string field theory at picture number -1.
Perspectives of Light-Front Quantized Field Theory: Some New Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Prem P.
1999-08-13
A review of some basic topics in the light-front (LF) quantization of relativistic field theory is made. It is argued that the LF quantization is equally appropriate as the conventional one and that they lead, assuming the microcausality principle, to the same physical content. This is confirmed in the studies on the LF of the spontaneous symmetry breaking (SSB), of the degenerate vacua in Schwinger model (SM) and Chiral SM (CSM), of the chiral boson theory, and of the QCD in covariant gauges among others. The discussion on the LF is more economical and more transparent than that found inmore » the conventional equal-time quantized theory. The removal of the constraints on the LF phase space by following the Dirac method, in fact, results in a substantially reduced number of independent dynamical variables. Consequently, the descriptions of the physical Hilbert space and the vacuum structure, for example, become more tractable. In the context of the Dyson-Wick perturbation theory the relevant propagators in the front form theory are causal. The Wick rotation can then be performed to employ the Euclidean space integrals in momentum space. The lack of manifest covariance becomes tractable, and still more so if we employ, as discussed in the text, the Fourier transform of the fermionic field based on a special construction of the LF spinor. The fact that the hyperplanes x{sup {+-}} = 0 constitute characteristic surfaces of the hyperbolic partial differential equation is found irrelevant in the quantized theory; it seems sufficient to quantize the theory on one of the characteristic hyperplanes.« less
Towards weakly constrained double field theory
NASA Astrophysics Data System (ADS)
Lee, Kanghoon
2016-08-01
We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.
NASA Astrophysics Data System (ADS)
Gillman, Edward; Rajantie, Arttu
2018-05-01
The Kibble Zurek mechanism in a relativistic ϕ4 scalar field theory in D =(1 +1 ) is studied using uniform matrix product states. The equal time two point function in momentum space G2(k ) is approximated as the system is driven through a quantum phase transition at a variety of different quench rates τQ. We focus on looking for signatures of topological defect formation in the system and demonstrate the consistency of the picture that the two point function G2(k ) displays two characteristic scales, the defect density n and the kink width dK. Consequently, G2(k ) provides a clear signature for the formation of defects and a well defined measure of the defect density in the system. These results provide a benchmark for the use of tensor networks as powerful nonperturbative nonequilibrium methods for relativistic quantum field theory, providing a promising technique for the future study of high energy physics and cosmology.
Duality for massive spin two theories in arbitrary dimensions
NASA Astrophysics Data System (ADS)
González, B.; Khoudeir, A.; Montemayor, R.; Urrutia, L. F.
2008-09-01
Using the parent Lagrangian approach we construct a dual formulation, in the sense originally proposed by Curtright and Freund, of a massive spin two Fierz-Pauli theory in arbitrary dimensions D. This is achieved in terms of a mixed symmetry tensor TA[B1B2...BD-2], without the need of auxiliary fields. The relation of this method with an alternative formulation based on a gauge symmetry principle proposed by Zinoviev is elucidated. We show that the latter formulation in four dimensions, with a given gauge fixing together with a definite sequence of auxiliary fields elimination via their equations of motion, leads to the parent Lagrangian already considered by West completed by a Fierz-Pauli mass term, which in turns yields the Curtright-Freund action. This motivates our generalization to arbitrary dimensions leading to the corresponding extension of the four dimensional result. We identify the transverse true degrees of freedom of the dual theory and verify that their number is in accordance with those of the massive Fierz-Pauli field.
Multiagent model and mean field theory of complex auction dynamics
NASA Astrophysics Data System (ADS)
Chen, Qinghua; Huang, Zi-Gang; Wang, Yougui; Lai, Ying-Cheng
2015-09-01
Recent years have witnessed a growing interest in analyzing a variety of socio-economic phenomena using methods from statistical and nonlinear physics. We study a class of complex systems arising from economics, the lowest unique bid auction (LUBA) systems, which is a recently emerged class of online auction game systems. Through analyzing large, empirical data sets of LUBA, we identify a general feature of the bid price distribution: an inverted J-shaped function with exponential decay in the large bid price region. To account for the distribution, we propose a multi-agent model in which each agent bids stochastically in the field of winner’s attractiveness, and develop a theoretical framework to obtain analytic solutions of the model based on mean field analysis. The theory produces bid-price distributions that are in excellent agreement with those from the real data. Our model and theory capture the essential features of human behaviors in the competitive environment as exemplified by LUBA, and may provide significant quantitative insights into complex socio-economic phenomena.
BV Quantization of the Rozansky-Witten Model
NASA Astrophysics Data System (ADS)
Chan, Kwokwai; Leung, Naichung Conan; Li, Qin
2017-10-01
We investigate the perturbative aspects of Rozansky-Witten's 3d {σ}-model (Rozansky and Witten in Sel Math 3(3):401-458, 1997) using Costello's approach to the Batalin-Vilkovisky (BV) formalism (Costello in Renormalization and effective field theory, American Mathematical Society, Providence, 2011). We show that the BV quantization (in Costello's sense) of the model, which produces a perturbative quantum field theory, can be obtained via the configuration space method of regularization due to Kontsevich (First European congress of mathematics, Paris, 1992) and Axelrod-Singer (J Differ Geom 39(1):173-213, 1994). We also study the factorization algebra structure of quantum observables following Costello-Gwilliam (Factorization algebras in quantum field theory, Cambridge University Press, Cambridge 2017). In particular, we show that the cohomology of local quantum observables on a genus g handle body is given by {H^*(X, (\\wedge^*T_X)^{⊗ g})} (where X is the target manifold), and we prove that the partition function reproduces the Rozansky-Witten invariants.
Anharmonic vibrational spectra and mode-mode couplings analysis of 2-aminopyridine
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Bhat, Sheeraz Ahmad; Ahmad, Shabbir
2018-01-01
Vibrational spectra of 2-aminopyridine (2AP) have been analyzed using the vibrational self-consistence field theory (VSCF), correlated corrected vibrational self-consistence field theory (CC-VSCF) and vibrational perturbation theory (VPT2) at B3LYP/6-311G(d,p) framework. The mode-mode couplings affect the vibrational frequencies and intensities. The coupling integrals between pairs of normal modes have been obtained on the basis of quartic force field (2MR-QFF) approximation. The overtone and combination bands are also assigned in the FTIR spectrum with the help of anharmonic calculation at VPT2 method. A statistical analysis of deviations shows that estimated anharmonic frequencies are closer to the experiment over harmonic approximation. Furthermore, the anharmonic correction has also been carried out for the dimeric structure of 2AP. The fundamental vibration bands have been assigned on the basis of potential energy distribution (PED) and visual look over the animated modes. Other important molecular properties such as frontier molecular orbitals and molecular electrostatics potential mapping have also been analyzed.
Spectral difference Lanczos method for efficient time propagation in quantum control theory
NASA Astrophysics Data System (ADS)
Farnum, John D.; Mazziotti, David A.
2004-04-01
Spectral difference methods represent the real-space Hamiltonian of a quantum system as a banded matrix which possesses the accuracy of the discrete variable representation (DVR) and the efficiency of finite differences. When applied to time-dependent quantum mechanics, spectral differences enhance the efficiency of propagation methods for evolving the Schrödinger equation. We develop a spectral difference Lanczos method which is computationally more economical than the sinc-DVR Lanczos method, the split-operator technique, and even the fast-Fourier-Transform Lanczos method. Application of fast propagation is made to quantum control theory where chirped laser pulses are designed to dissociate both diatomic and polyatomic molecules. The specificity of the chirped laser fields is also tested as a possible method for molecular identification and discrimination.
Digital Video Cameras for Brainstorming and Outlining: The Process and Potential
ERIC Educational Resources Information Center
Unger, John A.; Scullion, Vicki A.
2013-01-01
This "Voices from the Field" paper presents methods and participant-exemplar data for integrating digital video cameras into the writing process across postsecondary literacy contexts. The methods and participant data are part of an ongoing action-based research project systematically designed to bring research and theory into practice…
Gestalt Therapy: Its Inheritance from Gestalt Psychology.
ERIC Educational Resources Information Center
Yontef, Gary M.
When adequately elaborated, the basic method of Gestalt therapy can be traced to the phenomenological field theory of Gestalt psychology. Gestalt therapy differs from Gestalt psychology not because of a difference in philosophy or method, but because of different contexts; the clinical context has different demands than those of basic research.…
ERIC Educational Resources Information Center
Ferran, C.; Bosch, S.; Carnicer, A.
2012-01-01
A practical activity designed to introduce wavefront coding techniques as a method to extend the depth of field in optical systems is presented. The activity is suitable for advanced undergraduate students since it combines different topics in optical engineering such as optical system design, aberration theory, Fourier optics, and digital image…
NASA Technical Reports Server (NTRS)
Hanson, D. B.
1991-01-01
A unified theory for the aerodynamics and noise of advanced turboprops are presented. Aerodynamic topics include calculation of performance, blade load distribution, and non-uniform wake flow fields. Blade loading can be steady or unsteady due to fixed distortion, counter-rotating wakes, or blade vibration. The aerodynamic theory is based on the pressure potential method and is therefore basically linear. However, nonlinear effects associated with finite axial induction and blade vortex flow are included via approximate methods. Acoustic topics include radiation of noise caused by blade thickness, steady loading (including vortex lift), and unsteady loading. Shielding of the fuselage by its boundary layer and the wing are treated in separate analyses that are compatible but not integrated with the aeroacoustic theory for rotating blades.
Sociological analysis and comparative education
NASA Astrophysics Data System (ADS)
Woock, Roger R.
1981-12-01
It is argued that comparative education is essentially a derivative field of study, in that it borrows theories and methods from academic disciplines. After a brief humanistic phase, in which history and philosophy were central for comparative education, sociology became an important source. In the mid-50's and 60's, sociology in the United States was characterised by Structural Functionalism as a theory, and Social Survey as a dominant methodology. Both were incorporated into the development of comparative education. Increasingly in the 70's, and certainly today, the new developments in sociology are characterised by an attack on Positivism, which is seen as the philosophical position underlying both functionalism and survey methods. New or re-discovered theories with their attendant methodologies included Marxism, Phenomenological Sociology, Critical Theory, and Historical Social Science. The current relationship between comparative education and social science is one of uncertainty, but since social science is seen to be returning to its European roots, the hope is held out for the development of an integrated social theory and method which will provide a much stronger basis for developments in comparative education.
NASA Technical Reports Server (NTRS)
Hwu, Shian U.; Kelley, James S.; Panneton, Robert B.; Arndt, G. Dickey
1995-01-01
In order to estimate the RF radiation hazards to astronauts and electronics equipment due to various Space Station transmitters, the electric fields around the various Space Station antennas are computed using the rigorous Computational Electromagnetics (CEM) techniques. The Method of Moments (MoM) was applied to the UHF and S-band low gain antennas. The Aperture Integration (AI) method and the Geometrical Theory of Diffraction (GTD) method were used to compute the electric field intensities for the S- and Ku-band high gain antennas. As a result of this study, The regions in which the electric fields exceed the specified exposure levels for the Extravehicular Mobility Unit (EMU) electronics equipment and Extravehicular Activity (EVA) astronaut are identified for various Space Station transmitters.
Near-field diffraction from amplitude diffraction gratings: theory, simulation and results
NASA Astrophysics Data System (ADS)
Abedin, Kazi Monowar; Rahman, S. M. Mujibur
2017-08-01
We describe a computer simulation method by which the complete near-field diffract pattern of an amplitude diffraction grating can be generated. The technique uses the method of iterative Fresnel integrals to calculate and generate the diffraction images. Theoretical background as well as the techniques to perform the simulation is described. The program is written in MATLAB, and can be implemented in any ordinary PC. Examples of simulated diffraction images are presented and discussed. The generated images in the far-field where they reduce to Fraunhofer diffraction pattern are also presented for a realistic grating, and compared with the results predicted by the grating equation, which is applicable in the far-field. The method can be used as a tool to teach the complex phenomenon of diffraction in classrooms.
Bino variations: Effective field theory methods for dark matter direct detection
NASA Astrophysics Data System (ADS)
Berlin, Asher; Robertson, Denis S.; Solon, Mikhail P.; Zurek, Kathryn M.
2016-05-01
We apply effective field theory methods to compute bino-nucleon scattering, in the case where tree-level interactions are suppressed and the leading contribution is at loop order via heavy flavor squarks or sleptons. We find that leading log corrections to fixed-order calculations can increase the bino mass reach of direct detection experiments by a factor of 2 in some models. These effects are particularly large for the bino-sbottom coannihilation region, where bino dark matter as heavy as 5-10 TeV may be detected by near future experiments. For the case of stop- and selectron-loop mediated scattering, an experiment reaching the neutrino background will probe thermal binos as heavy as 500 and 300 GeV, respectively. We present three key examples that illustrate in detail the framework for determining weak scale coefficients, and for mapping onto a low-energy theory at hadronic scales, through a sequence of effective theories and renormalization group evolution. For the case of a squark degenerate with the bino, we extend the framework to include a squark degree of freedom at low energies using heavy particle effective theory, thus accounting for large logarithms through a "heavy-light current." Benchmark predictions for scattering cross sections are evaluated, including complete leading order matching onto quark and gluon operators, and a systematic treatment of perturbative and hadronic uncertainties.
Bino variations: Effective field theory methods for dark matter direct detection
Berlin, Asher; Robertson, Denis S.; Solon, Mikhail P.; ...
2016-05-10
We apply effective field theory methods to compute bino-nucleon scattering, in the case where tree-level interactions are suppressed and the leading contribution is at loop order via heavy flavor squarks or sleptons. We find that leading log corrections to fixed-order calculations can increase the bino mass reach of direct detection experiments by a factor of 2 in some models. These effects are particularly large for the bino-sbottom coannihilation region, where bino dark matter as heavy as 5–10 TeV may be detected by near future experiments. For the case of stop- and selectron-loop mediated scattering, an experiment reaching the neutrino backgroundmore » will probe thermal binos as heavy as 500 and 300 GeV, respectively. We present three key examples that illustrate in detail the framework for determining weak scale coefficients, and for mapping onto a low-energy theory at hadronic scales, through a sequence of effective theories and renormalization group evolution. For the case of a squark degenerate with the bino, we extend the framework to include a squark degree of freedom at low energies using heavy particle effective theory, thus accounting for large logarithms through a “heavy-light current.” Finally, benchmark predictions for scattering cross sections are evaluated, including complete leading order matching onto quark and gluon operators, and a systematic treatment of perturbative and hadronic uncertainties.« less
Quantum Approach to Informatics
NASA Astrophysics Data System (ADS)
Stenholm, Stig; Suominen, Kalle-Antti
2005-08-01
An essential overview of quantum information Information, whether inscribed as a mark on a stone tablet or encoded as a magnetic domain on a hard drive, must be stored in a physical object and thus made subject to the laws of physics. Traditionally, information processing such as computation occurred in a framework governed by laws of classical physics. However, information can also be stored and processed using the states of matter described by non-classical quantum theory. Understanding this quantum information, a fundamentally different type of information, has been a major project of physicists and information theorists in recent years, and recent experimental research has started to yield promising results. Quantum Approach to Informatics fills the need for a concise introduction to this burgeoning new field, offering an intuitive approach for readers in both the physics and information science communities, as well as in related fields. Only a basic background in quantum theory is required, and the text keeps the focus on bringing this theory to bear on contemporary informatics. Instead of proofs and other highly formal structures, detailed examples present the material, making this a uniquely accessible introduction to quantum informatics. Topics covered include: * An introduction to quantum information and the qubit * Concepts and methods of quantum theory important for informatics * The application of information concepts to quantum physics * Quantum information processing and computing * Quantum gates * Error correction using quantum-based methods * Physical realizations of quantum computing circuits A helpful and economical resource for understanding this exciting new application of quantum theory to informatics, Quantum Approach to Informatics provides students and researchers in physics and information science, as well as other interested readers with some scientific background, with an essential overview of the field.
Thellamurege, Nandun M; Cui, Fengchao; Li, Hui
2013-08-28
A combined quantum mechanical/molecular mechanical/continuum (QM/MMpol/C) style method is developed for time-dependent density functional theory (TDDFT, including long-range corrected TDDFT) method, induced dipole polarizable force field, and induced surface charge continuum model. Induced dipoles and induced charges are included in the TDDFT equations to solve for the transition energies, relaxed density, and transition density. Analytic gradient is derived and implemented for geometry optimization and molecular dynamics simulation. QM/MMpol/C style DFT and TDDFT methods are used to study the hydrogen bonding of the photoactive yellow protein chromopore in ground state and excited state.
Optimization Design of Minimum Total Resistance Hull Form Based on CFD Method
NASA Astrophysics Data System (ADS)
Zhang, Bao-ji; Zhang, Sheng-long; Zhang, Hui
2018-06-01
In order to reduce the resistance and improve the hydrodynamic performance of a ship, two hull form design methods are proposed based on the potential flow theory and viscous flow theory. The flow fields are meshed using body-fitted mesh and structured grids. The parameters of the hull modification function are the design variables. A three-dimensional modeling method is used to alter the geometry. The Non-Linear Programming (NLP) method is utilized to optimize a David Taylor Model Basin (DTMB) model 5415 ship under the constraints, including the displacement constraint. The optimization results show an effective reduction of the resistance. The two hull form design methods developed in this study can provide technical support and theoretical basis for designing green ships.
Reduction of parameters in Finite Unified Theories and the MSSM
NASA Astrophysics Data System (ADS)
Heinemeyer, Sven; Mondragón, Myriam; Tracas, Nicholas; Zoupanos, George
2018-02-01
The method of reduction of couplings developed by W. Zimmermann, combined with supersymmetry, can lead to realistic quantum field theories, where the gauge and Yukawa sectors are related. It is the basis to find all-loop Finite Unified Theories, where the β-function vanishes to all-loops in perturbation theory. It can also be applied to the Minimal Supersymmetric Standard Model, leading to a drastic reduction in the number of parameters. Both Finite Unified Theories and the reduced MSSM lead to successful predictions for the masses of the third generation of quarks and the Higgs boson, and also predict a heavy supersymmetric spectrum, consistent with the non-observation of supersymmetry so far.
Tunneling in quantum cosmology and holographic SYM theory
NASA Astrophysics Data System (ADS)
Ghoroku, Kazuo; Nakano, Yoshimasa; Tachibana, Motoi; Toyoda, Fumihiko
2018-03-01
We study the time evolution of the early Universe, which is developed by a cosmological constant Λ4 and supersymmetric Yang-Mills (SYM) fields in the Friedmann-Robertson-Walker space-time. The renormalized vacuum expectation value of the energy-momentum tensor of the SYM theory is obtained in a holographic way. It includes a radiation of the SYM field, parametrized as C . The evolution is controlled by this radiation C and the cosmological constant Λ4. For positive Λ4, an inflationary solution is obtained at late time. When C is added, the quantum mechanical situation at early time is fairly changed. Here we perform the early time analysis in terms of two different approaches, (i) the Wheeler-DeWitt equation and (ii) Lorentzian path integral with the Picard-Lefschetz method by introducing an effective action. The results of two methods are compared.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
Quantum field theory on toroidal topology: Algebraic structure and applications
NASA Astrophysics Data System (ADS)
Khanna, F. C.; Malbouisson, A. P. C.; Malbouisson, J. M. C.; Santana, A. E.
2014-05-01
The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus ΓDd=(S1)d×RD-d is developed from a Lie-group representation and c*c*-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ41. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space-time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy-momentum tensor. Self interacting four-fermion systems, described by the Gross-Neveu and Nambu-Jona-Lasinio models, are considered. Then finite size effects on the hadronic phase structure are investigated, taking into account density and temperature. As a final application, effects of extra spatial dimensions are addressed, by developing a quantum electrodynamics in a five-dimensional space-time, where the fifth-dimension is compactified on a torus. The formalism, initially developed for particle physics, provides results compatible with other trials of probing the existence of extra-dimensions.
NASA Astrophysics Data System (ADS)
Shore, R. M.; Freeman, M. P.; Gjerloev, J. W.
2017-12-01
We apply the meteorological analysis method of Empirical Orthogonal Functions (EOF) to ground magnetometer measurements, and subsequently use graph theory to classify the results. The EOF method is used to characterise and separate contributions to the variability of the Earth's external magnetic field (EMF) in the northern polar region. EOFs decompose the noisy EMF data into a small number of independent spatio-temporal basis functions, which collectively describe the majority of the magnetic field variance. We use these basis functions (computed monthly) to infill where data are missing, providing a self-consistent description of the EMF at 5-minute resolution spanning 1997-2009 (solar cycle 23). The EOF basis functions are calculated independently for each of the 144 months (i.e. 1997-2009) analysed. Since (by definition) the basis vectors are ranked by their contribution to the total variance, their rank will change from month to month. We use graph theory to find clusters of quantifiably-similar spatial basis functions, and thereby track similar patterns throughout the span of 144 months. We find that the discovered clusters can be associated with well-known individual Disturbance Polar (DP)-type equivalent current systems (e.g. DP2, DP1, DPY, NBZ), or with the motion of these systems. Via this method, we thus describe the varying behaviour of these current systems over solar cycle 23. We present their seasonal and solar cycle variations and examine the response of each current system to solar wind driving.
NASA Astrophysics Data System (ADS)
Vanmarcke, Erik
1983-03-01
Random variation over space and time is one of the few attributes that might safely be predicted as characterizing almost any given complex system. Random fields or "distributed disorder systems" confront astronomers, physicists, geologists, meteorologists, biologists, and other natural scientists. They appear in the artifacts developed by electrical, mechanical, civil, and other engineers. They even underlie the processes of social and economic change. The purpose of this book is to bring together existing and new methodologies of random field theory and indicate how they can be applied to these diverse areas where a "deterministic treatment is inefficient and conventional statistics insufficient." Many new results and methods are included. After outlining the extent and characteristics of the random field approach, the book reviews the classical theory of multidimensional random processes and introduces basic probability concepts and methods in the random field context. It next gives a concise amount of the second-order analysis of homogeneous random fields, in both the space-time domain and the wave number-frequency domain. This is followed by a chapter on spectral moments and related measures of disorder and on level excursions and extremes of Gaussian and related random fields. After developing a new framework of analysis based on local averages of one-, two-, and n-dimensional processes, the book concludes with a chapter discussing ramifications in the important areas of estimation, prediction, and control. The mathematical prerequisite has been held to basic college-level calculus.
Detecting Spatio-Temporal Modes in Multivariate Data by Entropy Field Decomposition
Frank, Lawrence R.; Galinsky, Vitaly L.
2016-01-01
A new data analysis method that addresses a general problem of detecting spatio-temporal variations in multivariate data is presented. The method utilizes two recent and complimentary general approaches to data analysis, information field theory (IFT) and entropy spectrum pathways (ESP). Both methods reformulate and incorporate Bayesian theory, thus use prior information to uncover underlying structure of the unknown signal. Unification of ESP and IFT creates an approach that is non-Gaussian and non-linear by construction and is found to produce unique spatio-temporal modes of signal behavior that can be ranked according to their significance, from which space-time trajectories of parameter variations can be constructed and quantified. Two brief examples of real world applications of the theory to the analysis of data bearing completely different, unrelated nature, lacking any underlying similarity, are also presented. The first example provides an analysis of resting state functional magnetic resonance imaging (rsFMRI) data that allowed us to create an efficient and accurate computational method for assessing and categorizing brain activity. The second example demonstrates the potential of the method in the application to the analysis of a strong atmospheric storm circulation system during the complicated stage of tornado development and formation using data recorded by a mobile Doppler radar. Reference implementation of the method will be made available as a part of the QUEST toolkit that is currently under development at the Center for Scientific Computation in Imaging. PMID:27695512
Aspects of the Antisymmetric Tensor Field
NASA Astrophysics Data System (ADS)
Lahiri, Amitabha
1991-02-01
With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.
Simultaneous computation of jet turbulence and noise
NASA Technical Reports Server (NTRS)
Berman, C. H.; Ramos, J. I.
1989-01-01
The existing flow computation methods, wave computation techniques, and theories based on noise source models are reviewed in order to assess the capabilities of numerical techniques to compute jet turbulence noise and understand the physical mechanisms governing it over a range of subsonic and supersonic nozzle exit conditions. In particular, attention is given to (1) methods for extrapolating near field information, obtained from flow computations, to the acoustic far field and (2) the numerical solution of the time-dependent Lilley equation.
Scattering from thin dielectric straps surrounding a perfectly conducting structure
NASA Technical Reports Server (NTRS)
Al-Hekail, Zeyad; Gupta, Inder J.
1989-01-01
A method to calculate the electromagnetic scattered fields from a dielectric strap wrapped around convex, conducting structure is presented. A moment method technique is used to find the current excited within the strap by the incident plane wave. Then, Uniform Geometrical Theory of Diffraction (UTD) is used to compute the fields scattered by the strap. Reasonable agreement was obtained between the computed and the measured results. The results found in this study are useful in evaluating straps as a target support structure for scattering measurements.
"Fathers" and "sons" of theories in cell physiology: the membrane theory.
Matveev, V V; Wheatley, D N
2005-12-16
The last 50 years in the history of life sciences are remarkable for a new important feature that looks as a great threat for their future. A profound specialization dominating in quickly developing fields of science causes a crisis of the scientific method. The essence of the method is a unity of two elements, the experimental data and the theory that explains them. To us, "fathers" of science, classically, were the creators of new ideas and theories. They were the true experts of their own theories. It is only they who have the right to say: "I am the theory". In other words, they were carriers of theories, of the theoretical knowledge. The fathers provided the necessary logical integrity to their theories, since theories in biology have still to be based on strict mathematical proofs. It is not true for sons. As a result of massive specialization, modern experts operate in very confined close spaces. They formulate particular rules far from the level of theory. The main theories of science are known to them only at the textbook level. Nowadays, nobody can say: "I am the theory". With whom, then is it possible to discuss today on a broader theoretical level? How can a classical theory--for example, the membrane one--be changed or even disproved under these conditions? How can the "sons" with their narrow education catch sight of membrane theory defects? As a result, "global" theories have few critics and control. Due to specialization, we have lost the ability to work at the experimental level of biology within the correct or appropriate theoretical context. The scientific method in its classic form is now being rapidly eroded. A good case can be made for "Membrane Theory", to which we will largely refer throughout this article.
NASA Astrophysics Data System (ADS)
Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan
2017-08-01
We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.
NASA Astrophysics Data System (ADS)
Kaplan, Jared Daniel
The principle of holography---that theories of gravity should be described in terms of their boundaries---has been the driving force behind many great strides in quantum gravity, gauge theory, and even in phenomenology. The most concrete example of holographic duality is the AdS/CFT correspondence, which relates quantum gravity in Anti-deSitter space to a Conformal Field Theory in Minkowski space. In this thesis we begin with a chapter on black holes in the AdS/CFT duality, and then move on to the main line of development, where we describe the exciting first steps towards the discovery of a holographic duality for quantum gravity in flat spacetime. A holographic description of flat spacetime would be a theory of the Scattering Matrix, which contains the quantum mechanical amplitudes that determine how incoming states from past infinity scatter into outgoing states at future infinity. We suspect that a holographic duality between a local spacetime description of quantum gravity and a non-local boundary description of the S-Matrix would be a weak coupling-weak coupling duality. We work towards this concrete goal from the bottom up by studying new methods for computing scattering amplitudes. We begin by studying the BCFW Recursion Relations, which are an explicitly non-local, boundary oriented method for computing tree-level scattering amplitudes. We give an elementary derivation of these relations for general theories in any number of dimensions, showing that their existence is a deep feature of field theory. Next we argue that, counter to naive expectations, N = 8 Supergravity may be the simplest quantum field theory. We demonstrate this by explicitly solving its one-loop S-Matrix with techniques that rely on our understanding of tree amplitudes to vastly simplify calculations. Finally, we show that the BCFW recursion relations find their natural home in Twistor Space, where it is possible to formulate classical scattering theory in a beautiful and manifestly holographic way. This investigation takes us beyond the BCFW relations; it suggests that scattering amplitudes can be calculated in terms of holographic "words" whose "grammar" has yet to be uncovered.
Koopman operator theory: Past, present, and future
NASA Astrophysics Data System (ADS)
Brunton, Steven; Kaiser, Eurika; Kutz, Nathan
2017-11-01
Koopman operator theory has emerged as a dominant method to represent nonlinear dynamics in terms of an infinite-dimensional linear operator. The Koopman operator acts on the space of all possible measurement functions of the system state, advancing these measurements with the flow of the dynamics. A linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. Dynamic mode decomposition has become the leading data-driven method to approximate the Koopman operator, although there are still open questions and challenges around how to obtain accurate approximations for strongly nonlinear systems. This talk will provide an introductory overview of modern Koopman operator theory, reviewing the basics and describing recent theoretical and algorithmic developments. Particular emphasis will be placed on the use of data-driven Koopman theory to characterize and control high-dimensional fluid dynamic systems. This talk will also address key advances in the rapidly growing fields of machine learning and data science that are likely to drive future developments.
Crane, David; Brown, Jamie; Kaner, Eileen; Beyer, Fiona; Muirhead, Colin; Hickman, Matthew; Redmore, James; de Vocht, Frank; Beard, Emma; Michie, Susan
2018-01-01
Background Applying theory to the design and evaluation of interventions is likely to increase effectiveness and improve the evidence base from which future interventions are developed, though few interventions report this. Objective The aim of this paper was to assess how digital interventions to reduce hazardous and harmful alcohol consumption report the use of theory in their development and evaluation, and whether reporting of theory use is associated with intervention effectiveness. Methods Randomized controlled trials were extracted from a Cochrane review on digital interventions for reducing hazardous and harmful alcohol consumption. Reporting of theory use within these digital interventions was investigated using the theory coding scheme (TCS). Reported theory use was analyzed by frequency counts and descriptive statistics. Associations were analyzed with meta-regression models. Results Of 41 trials involving 42 comparisons, half did not mention theory (50% [21/42]), and only 38% (16/42) used theory to select or develop the intervention techniques. Significant heterogeneity existed between studies in the effect of interventions on alcohol reduction (I2=77.6%, P<.001). No significant associations were detected between reporting of theory use and intervention effectiveness in unadjusted models, though the meta-regression was underpowered to detect modest associations. Conclusions Digital interventions offer a unique opportunity to refine and develop new dynamic, temporally sensitive theories, yet none of the studies reported refining or developing theory. Clearer selection, application, and reporting of theory use is needed to accurately assess how useful theory is in this field and to advance the field of behavior change theories. PMID:29490895
Group field theory with noncommutative metric variables.
Baratin, Aristide; Oriti, Daniele
2010-11-26
We introduce a dual formulation of group field theories as a type of noncommutative field theories, making their simplicial geometry manifest. For Ooguri-type models, the Feynman amplitudes are simplicial path integrals for BF theories. We give a new definition of the Barrett-Crane model for gravity by imposing the simplicity constraints directly at the level of the group field theory action.
Many-Body Theory of Pyrochlore Iridates and Related Materials
NASA Astrophysics Data System (ADS)
Wang, Runzhi
In this thesis we focus on two problems. First we propose a numerical method for generating optimized Wannier functions with desired properties. Second we perform the state of the art density functional plus dynamical mean-field calculations in pyrochlore iridates, to investigate the physics induced by the cooperation of spin-orbit coupling and electron correlation. We begin with the introduction for maximally localized Wannier functions and other related extensions. Then we describe the current research in the field of spin-orbit coupling and its interplay with correlation effects, followed by a brief introduction of the `hot' materials of iridates. Before the end of the introduction, we discuss the numerical methods employed in our work, including the density functional theory; dynamical mean-field theory and its combination with the exact diagonalization impurity solver. Then we propose our approach for constructing an optimized set of Wannier functions, which is a generalization of the functionality of the classic maximal localization method put forward by Marzari and Vanderbilt. Our work is motivated by the requirement of the effective description of the local subspace of the Hamiltonian by the beyond density functional theory methods. In extensions of density functional theory such as dynamical mean-field theory, one may want highly accurate description of particular local orbitals, including correct centers and symmetries; while the basis for the remaining degrees of freedom is unimportant. Therefore, we develop the selectively localized Wannier function approach which allows for a greater localization in the selected subset of Wannier functions and at the same time allows us to fix the centers and ensure the point symmetries. Applications in real materials are presented to demonstrate the power of our approach. Next we move to the investigation of pyrochlore iridates, focussing on the metal-insulator transition and material dependence in these compounds. We perform combined density functional plus dynamical mean-field calculations in Lu2Ir2O7, Y2Ir2O 7, Eu2Ir2O7, with spin-orbit coupling included and both single-site and cluster approximations appiled. A broad range of Weyl metal is predicted as the intervening phase in the metal-insulator transition. By comparing to experiments, we find that the single-site approximation fails to predict the gap values and substantial difference between the Y and Eu-compound, demonstrating the inadequacy of this approximation and indicating the key role played by the intersite effects. Finally, we provide a more accurate description of the vicinity of the metal-insulator and topological transitions implied by density functional plus cluster dynamical mean-field calculations of pyrochlore iridates. We find definitive evidence of the Weyl semimetal phase, the electronic structure of which can be approximately described as ``Weyl rings" with an extremely flat dispersion of one of the Weyl bands. This Weyl semimetal phase is further investigated by the k • p analysis fitting to the numerical results. We find that this unusual structure leads to interesting behavior in the optical conductivity including a Hall effect in the interband component, and to an enhanced susceptibility.
Effective Field Theory on Manifolds with Boundary
NASA Astrophysics Data System (ADS)
Albert, Benjamin I.
In the monograph Renormalization and Effective Field Theory, Costello made two major advances in rigorous quantum field theory. Firstly, he gave an inductive position space renormalization procedure for constructing an effective field theory that is based on heat kernel regularization of the propagator. Secondly, he gave a rigorous formulation of quantum gauge theory within effective field theory that makes use of the BV formalism. In this work, we extend Costello's renormalization procedure to a class of manifolds with boundary and make preliminary steps towards extending his formulation of gauge theory to manifolds with boundary. In addition, we reorganize the presentation of the preexisting material, filling in details and strengthening the results.
Dynamics of multiple viscoelastic carbon nanotube based nanocomposites with axial magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karličić, Danilo; Cajić, Milan; Murmu, Tony
2014-06-21
Nanocomposites and magnetic field effects on nanostructures have received great attention in recent years. A large amount of research work was focused on developing the proper theoretical framework for describing many physical effects appearing in structures on nanoscale level. Great step in this direction was successful application of nonlocal continuum field theory of Eringen. In the present paper, the free transverse vibration analysis is carried out for the system composed of multiple single walled carbon nanotubes (MSWCNT) embedded in a polymer matrix and under the influence of an axial magnetic field. Equivalent nonlocal model of MSWCNT is adopted as viscoelasticallymore » coupled multi-nanobeam system (MNBS) under the influence of longitudinal magnetic field. Governing equations of motion are derived using the Newton second low and nonlocal Rayleigh beam theory, which take into account small-scale effects, the effect of nanobeam angular acceleration, internal damping and Maxwell relation. Explicit expressions for complex natural frequency are derived based on the method of separation of variables and trigonometric method for the “Clamped-Chain” system. In addition, an analytical method is proposed in order to obtain asymptotic damped natural frequency and the critical damping ratio, which are independent of boundary conditions and a number of nanobeams in MNBS. The validity of obtained results is confirmed by comparing the results obtained for complex frequencies via trigonometric method with the results obtained by using numerical methods. The influence of the longitudinal magnetic field on the free vibration response of viscoelastically coupled MNBS is discussed in detail. In addition, numerical results are presented to point out the effects of the nonlocal parameter, internal damping, and parameters of viscoelastic medium on complex natural frequencies of the system. The results demonstrate the efficiency of the suggested methodology to find the closed form solutions for the free vibration response of multiple nanostructure systems under the influence of magnetic field.« less
NASA Technical Reports Server (NTRS)
Goldstein, M. L.
1976-01-01
The propagation of charged particles through interstellar and interplanetary space has often been described as a random process in which the particles are scattered by ambient electromagnetic turbulence. In general, this changes both the magnitude and direction of the particles' momentum. Some situations for which scattering in direction (pitch angle) is of primary interest were studied. A perturbed orbit, resonant scattering theory for pitch-angle diffusion in magnetostatic turbulence was slightly generalized and then utilized to compute the diffusion coefficient for spatial propagation parallel to the mean magnetic field, Kappa. All divergences inherent in the quasilinear formalism when the power spectrum of the fluctuation field falls off as K to the minus Q power (Q less than 2) were removed. Various methods of computing Kappa were compared and limits on the validity of the theory discussed. For Q less than 1 or 2, the various methods give roughly comparable values of Kappa, but use of perturbed orbits systematically results in a somewhat smaller Kappa than can be obtained from quasilinear theory.
Theory of molecular rate processes in the presence of intense laser radiation
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.
1979-01-01
The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.
NASA Astrophysics Data System (ADS)
Hayata, Tomoya; Hidaka, Yoshimasa; Noumi, Toshifumi; Hongo, Masaru
2015-09-01
We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without a choice of frame such as the Landau-Lifshitz or Eckart frame.
NASA Astrophysics Data System (ADS)
Hardhienata, S.
2017-01-01
Operations research is a general method used in the study and optimization of a system through modeling of the system. In the field of education, especially in education management, operations research has not been widely used. This paper gives an exposition of ideas about how operations research can be used to conduct research and optimization in the field of education management by developing SITOREM (Scientific Identification Theory for Operation Research in Education Management). To clarify the intent of the idea, an example of applying SITOREM to enhance the professional commitment of lecturers associated with achieving the vision of university will be described.
Jets and Metastability in Quantum Mechanics and Quantum Field Theory
NASA Astrophysics Data System (ADS)
Farhi, David
I give a high level overview of the state of particle physics in the introduction, accessible without any background in the field. I discuss improvements of theoretical and statistical methods used for collider physics. These include telescoping jets, a statistical method which was claimed to allow jet searches to increase their sensitivity by considering several interpretations of each event. We find that indeed multiple interpretations extend the power of searches, for both simple counting experiments and powerful multivariate fitting experiments, at least for h → bb¯ at the LHC. Then I propose a method for automation of background calculations using SCET by appropriating the technology of Monte Carlo generators such as MadGraph. In the third chapter I change gears and discuss the future of the universe. It has long been known that our pocket of the standard model is unstable; there is a lower-energy configuration in a remote part of the configuration space, to which our universe will, eventually, decay. While the timescales involved are on the order of 10400 years (depending on how exactly one counts) and thus of no immediate worry, I discuss the shortcomings of the standard methods and propose a more physically motivated derivation for the decay rate. I then make various observations about the structure of decays in quantum field theory.
Two-dimensional RCFT's without Kac-Moody symmetry
NASA Astrophysics Data System (ADS)
Hampapura, Harsha R.; Mukhi, Sunil
2016-07-01
Using the method of modular-invariant differential equations, we classify a family of Rational Conformal Field Theories with two and three characters having no Kac-Moody algebra. In addition to unitary and non-unitary minimal models, we find "dual" theories whose characters obey bilinear relations with those of the minimal models to give the Moonshine Module. In some ways this relation is analogous to cosets of meromorphic CFT's. The theory dual in this sense to the Ising model has central charge 47/2 and is related to the Baby Monster Module.
Lattice field theory applications in high energy physics
NASA Astrophysics Data System (ADS)
Gottlieb, Steven
2016-10-01
Lattice gauge theory was formulated by Kenneth Wilson in 1974. In the ensuing decades, improvements in actions, algorithms, and computers have enabled tremendous progress in QCD, to the point where lattice calculations can yield sub-percent level precision for some quantities. Beyond QCD, lattice methods are being used to explore possible beyond the standard model (BSM) theories of dynamical symmetry breaking and supersymmetry. We survey progress in extracting information about the parameters of the standard model by confronting lattice calculations with experimental results and searching for evidence of BSM effects.
Spatio-Temporal Evolutions of Non-Orthogonal Equatorial Wave Modes Derived from Observations
NASA Astrophysics Data System (ADS)
Barton, C.; Cai, M.
2015-12-01
Equatorial waves have been studied extensively due to their importance to the tropical climate and weather systems. Historically, their activity is diagnosed mainly in the wavenumber-frequency domain. Recently, many studies have projected observational data onto parabolic cylinder functions (PCF), which represent the meridional structure of individual wave modes, to attain time-dependent spatial wave structures. In this study, we propose a methodology that seeks to identify individual wave modes in instantaneous fields of observations by determining their projections on PCF modes according to the equatorial wave theory. The new method has the benefit of yielding a closed system with a unique solution for all waves' spatial structures, including IG waves, for a given instantaneous observed field. We have applied our method to the ERA-Interim reanalysis dataset in the tropical stratosphere where the wave-mean flow interaction mechanism for the quasi-biennial oscillation (QBO) is well-understood. We have confirmed the continuous evolution of the selection mechanism for equatorial waves in the stratosphere from observations as predicted by the theory for the QBO. This also validates the proposed method for decomposition of observed tropical wave fields into non-orthogonal equatorial wave modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korthals-Altes, C.P.; de Rafael, E.; Stora, R.
1975-07-01
This Colloquium was devoted to recent developments in the study of Lagrangian models of quantum field theory: renormalized pertubation theories; supergauge fields; asymptotic freedom and infrared slavery in gauge field models involving quarks; gauge fields on lattices; and theory of critical exponents. Papers were abstracted separately for the database.
Quantum corrections to the generalized Proca theory via a matter field
NASA Astrophysics Data System (ADS)
Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab
2017-09-01
We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.
NASA Astrophysics Data System (ADS)
El Grini, A.; Salmi, S.; Masrour, R.; Hamedoun, M.; Bouslykhane, K.; Marzouk, A.; Hourmatallah, A.; Benzakour, N.
2018-06-01
The Green's function theory and high-temperature series expansions technical have been developed for magnetic systems GeNi2-xCoxO4. We have applied the Green's function theory to evaluate thermal magnetization and magnetic susceptibility for different values of magnetic field and dilution x, considering all components of the magnetization when an external magnetic field is applied in (x,z)-plane. The second theory combined with the Padé approximants method for a randomly diluted Heisenberg magnet is used to deduce the magnetic phase diagram of GeNi2 - xCoxO4 systems. The critical exponents ? and ? associated with the magnetic susceptibility ? and the correlation length ξ, respectively, have been deduced. The theoretical results are compared with those given by magnetic measurements.
Second-Order Perturbation Theory for Generalized Active Space Self-Consistent-Field Wave Functions.
Ma, Dongxia; Li Manni, Giovanni; Olsen, Jeppe; Gagliardi, Laura
2016-07-12
A multireference second-order perturbation theory approach based on the generalized active space self-consistent-field (GASSCF) wave function is presented. Compared with the complete active space (CAS) and restricted active space (RAS) wave functions, GAS wave functions are more flexible and can employ larger active spaces and/or different truncations of the configuration interaction expansion. With GASSCF, one can explore chemical systems that are not affordable with either CASSCF or RASSCF. Perturbation theory to second order on top of GAS wave functions (GASPT2) has been implemented to recover the remaining electron correlation. The method has been benchmarked by computing the chromium dimer ground-state potential energy curve. These calculations show that GASPT2 gives results similar to CASPT2 even with a configuration interaction expansion much smaller than the corresponding CAS expansion.
Determination of structure parameters in strong-field tunneling ionization theory of molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao Songfeng; Jin Cheng; College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, Gansu 730070
2010-03-15
In the strong field molecular tunneling ionization theory of Tong et al. [Phys. Rev. A 66, 033402 (2002)], the ionization rate depends on the asymptotic wave function of the molecular orbital from which the electron is removed. The orbital wave functions obtained from standard quantum chemistry packages in general are not good enough in the asymptotic region. Here we construct a one-electron model potential for several linear molecules using density functional theory. We show that the asymptotic wave function can be improved with an iteration method and after one iteration accurate asymptotic wave functions and structure parameters are determined. Withmore » the new parameters we examine the alignment-dependent tunneling ionization probabilities for several molecules and compare with other calculations and with recent measurements, including ionization from inner molecular orbitals.« less
NASA Technical Reports Server (NTRS)
Cunningham, A. M., Jr.
1976-01-01
The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.
Quantum chromodynamics near the confinement limit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, C.
1985-09-01
These nine lectures deal at an elementary level with the strong interaction between quarks and its implications for the structure of hadrons. Quarkonium systems are studied as a means for measuring the interquark interaction. This is presumably (part of) the answer a solution to QCD must yield, if it is indeed the correct theory of the strong interactions. Some elements of QCD are reviewed, and metaphors for QCD as a confining theory are introduced. The 1/N expansion is summarized as a way of guessing the consequences of QCD for hadron physics. Lattice gauge theory is developed as a means formore » going beyond perturbation theory in the solution of QCD. The correspondence between statistical mechanics, quantum mechanics, and field theory is made, and simple spin systems are formulated on the lattice. The lattice analog of local gauge invariance is developed, and analytic methods for solving lattice gauge theory are considered. The strong-coupling expansion indicates the existence of a confining phase, and the renormalization group provides a means for recovering the consequences of continuum field theory. Finally, Monte Carlo simulations of lattice theories give evidence for the phase structure of gauge theories, yield an estimate for the string tension characterizing the interquark force, and provide an approximate description of the quarkonium potential in encouraging good agreement with what is known from experiment.« less
NASA Astrophysics Data System (ADS)
Saracco, Ginette; Moreau, Frédérique; Mathé, Pierre-Etienne; Hermitte, Daniel; Michel, Jean-Marie
2007-10-01
We have previously developed a method for characterizing and localizing `homogeneous' buried sources, from the measure of potential anomalies at a fixed height above ground (magnetic, electric and gravity). This method is based on potential theory and uses the properties of the Poisson kernel (real by definition) and the continuous wavelet theory. Here, we relax the assumption on sources and introduce a method that we call the `multiscale tomography'. Our approach is based on the harmonic extension of the observed magnetic field to produce a complex source by use of a complex Poisson kernel solution of the Laplace equation for complex potential field. A phase and modulus are defined. We show that the phase provides additional information on the total magnetic inclination and the structure of sources, while the modulus allows us to characterize its spatial location, depth and `effective degree'. This method is compared to the `complex dipolar tomography', extension of the Patella method that we previously developed. We applied both methods and a classical electrical resistivity tomography to detect and localize buried archaeological structures like antique ovens from magnetic measurements on the Fox-Amphoux site (France). The estimates are then compared with the results of excavations.
More on the scalar-tensor BF theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Harvendra
2009-09-15
This work is based on an earlier proposal [H. Singh, Phys. Lett. B 673, 68 (2009)] that the membrane BF theory consists of matter fields along with Chern-Simons fields as well as the auxiliary pairs of scalar and tensor fields. In particular, we discuss the supersymmetry aspects of such a membrane theory. It is concluded that the theory possesses maximal supersymmetry, and it is related to the L-BLG theory via a field map. We obtain fuzzy-sphere solution, and corresponding tensor field configuration is given.
Finding Horndeski theories with Einstein gravity limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManus, Ryan; Lombriser, Lucas; Peñarrubia, Jorge, E-mail: ryanm@roe.ac.uk, E-mail: llo@roe.ac.uk, E-mail: jorpega@roe.ac.uk
The Horndeski action is the most general scalar-tensor theory with at most second-order derivatives in the equations of motion, thus evading Ostrogradsky instabilities and making it of interest when modifying gravity at large scales. To pass local tests of gravity, these modifications predominantly rely on nonlinear screening mechanisms that recover Einstein's Theory of General Relativity in regions of high density. We derive a set of conditions on the four free functions of the Horndeski action that examine whether a specific model embedded in the action possesses an Einstein gravity limit or not. For this purpose, we develop a new andmore » surprisingly simple scaling method that identifies dominant terms in the equations of motion by considering formal limits of the couplings that enter through the new terms in the modified action. This enables us to find regimes where nonlinear terms dominate and Einstein's field equations are recovered to leading order. Together with an efficient approximation of the scalar field profile, one can then further evaluate whether these limits can be attributed to a genuine screening effect. For illustration, we apply the analysis to both a cubic galileon and a chameleon model as well as to Brans-Dicke theory. Finally, we emphasise that the scaling method also provides a natural approach for performing post-Newtonian expansions in screened regimes.« less
Galilean field theories and conformal structure
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Chakrabortty, Joydeep; Mehra, Aditya
2018-04-01
We perform a detailed analysis of Galilean field theories, starting with free theories and then interacting theories. We consider non-relativistic versions of massless scalar and Dirac field theories before we go on to review our previous construction of Galilean Electrodynamics and Galilean Yang-Mills theory. We show that in all these cases, the field theories exhibit non-relativistic conformal structure (in appropriate dimensions). The surprising aspect of the analysis is that the non-relativistic conformal structure exhibited by these theories, unlike relativistic conformal invariance, becomes infinite dimensional even in spacetime dimensions greater than two. We then couple matter with Galilean gauge theories and show that there is a myriad of different sectors that arise in the non-relativistic limit from the parent relativistic theories. In every case, if the parent relativistic theory exhibited conformal invariance, we find an infinitely enhanced Galilean conformal invariance in the non-relativistic case. This leads us to suggest that infinite enhancement of symmetries in the non-relativistic limit is a generic feature of conformal field theories in any dimension.
Banerjee, Amartya S.; Suryanarayana, Phanish; Pask, John E.
2016-01-21
Pulay's Direct Inversion in the Iterative Subspace (DIIS) method is one of the most widely used mixing schemes for accelerating the self-consistent solution of electronic structure problems. In this work, we propose a simple generalization of DIIS in which Pulay extrapolation is performed at periodic intervals rather than on every self-consistent field iteration, and linear mixing is performed on all other iterations. Lastly, we demonstrate through numerical tests on a wide variety of materials systems in the framework of density functional theory that the proposed generalization of Pulay's method significantly improves its robustness and efficiency.
The Riemann-Lanczos equations in general relativity and their integrability
NASA Astrophysics Data System (ADS)
Dolan, P.; Gerber, A.
2008-06-01
The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.
Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory
NASA Astrophysics Data System (ADS)
Usselman, Austin
We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.
NASA Astrophysics Data System (ADS)
Zhang, Yufeng; Long, Man; Luo, Sida; Bao, Yu; Shen, Hanxia
2015-12-01
Transit route choice model is the key technology of public transit systems planning and management. Traditional route choice models are mostly based on expected utility theory which has an evident shortcoming that it cannot accurately portray travelers' subjective route choice behavior for their risk preferences are not taken into consideration. Cumulative prospect theory (CPT), a brand new theory, can be used to describe travelers' decision-making process under the condition of uncertainty of transit supply and risk preferences of multi-type travelers. The method to calibrate the reference point, a key parameter to CPT-based transit route choice model, determines the precision of the model to a great extent. In this paper, a new method is put forward to obtain the value of reference point which combines theoretical calculation and field investigation results. Comparing the proposed method with traditional method, it shows that the new method can promote the quality of CPT-based model by improving the accuracy in simulating travelers' route choice behaviors based on transit trip investigation from Nanjing City, China. The proposed method is of great significance to logical transit planning and management, and to some extent makes up the defect that obtaining the reference point is solely based on qualitative analysis.
NASA Astrophysics Data System (ADS)
Pietropolli Charmet, Andrea; Stoppa, Paolo; Tasinato, Nicola; Giorgianni, Santi
2017-05-01
This work presents a benchmark study on the calculation of the sextic centrifugal distortion constants employing cubic force fields computed by means of density functional theory (DFT). For a set of semi-rigid halogenated organic compounds several functionals (B2PLYP, B3LYP, B3PW91, M06, M06-2X, O3LYP, X3LYP, ωB97XD, CAM-B3LYP, LC-ωPBE, PBE0, B97-1 and B97-D) were used for computing the sextic centrifugal distortion constants. The effects related to the size of basis sets and the performances of hybrid approaches, where the harmonic data obtained at higher level of electronic correlation are coupled with cubic force constants yielded by DFT functionals, are presented and discussed. The predicted values were compared to both the available data published in the literature and those obtained by calculations carried out at increasing level of electronic correlation: Hartree-Fock Self Consistent Field (HF-SCF), second order Møller-Plesset perturbation theory (MP2), and coupled-cluster single and double (CCSD) level of theory. Different hybrid approaches, having the cubic force field computed at DFT level of theory coupled to harmonic data computed at increasing level of electronic correlation (up to CCSD level of theory augmented by a perturbational estimate of the effects of connected triple excitations, CCSD(T)) were considered. The obtained results demonstrate that they can represent reliable and computationally affordable methods to predict sextic centrifugal terms with an accuracy almost comparable to that yielded by the more expensive anharmonic force fields fully computed at MP2 and CCSD levels of theory. In view of their reduced computational cost, these hybrid approaches pave the route to the study of more complex systems.
Exoatmospheric Applications of Obscurants and Smokes.
1985-09-01
field equations (.14)-(19) with substra- tum and their Galilei transformation (24)-(28) represent a field theory in terms of absolute or Galilean space r...of Scientific Research (AFOSR) c ntrat-is-concerned with experimental and theoretical investigations on electrically conducting aerosols for...Another method of reducing the decay rate of ferromagnetic aerosols is to spray the ferromagnetic particles with electric charges. The resulting
Global Systems Science: A New World View
NASA Technical Reports Server (NTRS)
Sneider, Cary; Golden, Richard; Barrett, Katharine
1999-01-01
Global systems science is a new field of study about the interactions between Earth's natural systems and human activities. The people who study global systems science draw on methods and theories of many different fields from chemistry and biology to economics and politics-in order to predict how today's actions are likely to affect the world of tomorrow - our world and our children's world.
ERIC Educational Resources Information Center
Higgins, Monica; Ishimaru, Ann; Holcombe, Rebecca; Fowler, Amy
2012-01-01
This study draws upon theory and methods from the field of organizational behavior to examine organizational learning (OL) in the context of a large urban US school district. We build upon prior literature on OL from the field of organizational behavior to introduce and validate three subscales that assess key dimensions of organizational learning…
Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yamada, Masaki; ICRR, University of Tokyo, Kashiwa, 277-8582
2014-02-03
I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less
Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawasaki, Masahiro; Yamada, Masaki, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: yamadam@icrr.u-tokyo.ac.jp
2014-02-01
I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less
Remote sensing of the solar photosphere: a tale of two methods
NASA Astrophysics Data System (ADS)
Viavattene, G.; Berrilli, F.; Collados Vera, M.; Del Moro, D.; Giovannelli, L.; Ruiz Cobo, B.; Zuccarello, F.
2018-01-01
Solar spectro-polarimetry is a powerful tool to investigate the physical processes occurring in the solar atmosphere. The different states of polarization and wavelengths have in fact encoded the information about the thermodynamic state of the solar plasma and the interacting magnetic field. In particular, the radiative transfer theory allows us to invert the spectro-polarimetric data to obtain the physical parameters of the different atmospheric layers and, in particular, of the photosphere. In this work, we present a comparison between two methods used to analyze spectro-polarimetric data: the classical Center of Gravity method in the weak field approximation and an inversion code that solves numerically the radiative transfer equation. The Center of Gravity method returns reliable values for the magnetic field and for the line-of-sight velocity in those regions where the weak field approximation is valid (field strength below 400 G), while the inversion code is able to return the stratification of many physical parameters in the layers where the spectral line used for the inversion is formed.
Gómez-Coca, Silvia; Ruiz, Eliseo
2012-03-07
The magnetic properties of a new family of single-molecule magnet Ni(3)Mn(2) complexes were studied using theoretical methods based on Density Functional Theory (DFT). The first part of this study is devoted to analysing the exchange coupling constants, focusing on the intramolecular as well as the intermolecular interactions. The calculated intramolecular J values were in excellent agreement with the experimental data, which show that all the couplings are ferromagnetic, leading to an S = 7 ground state. The intermolecular interactions were investigated because the two complexes studied do not show tunnelling at zero magnetic field. Usually, this exchange-biased quantum tunnelling is attributed to the presence of intermolecular interactions calculated with the help of theoretical methods. The results indicate the presence of weak intermolecular antiferromagnetic couplings that cannot explain the ferromagnetic value found experimentally for one of the systems. In the second part, the goal is to analyse magnetic anisotropy through the calculation of the zero-field splitting parameters (D and E), using DFT methods including the spin-orbit effect.
Study on the radial vibration and acoustic field of an isotropic circular ring radiator.
Lin, Shuyu; Xu, Long
2012-01-01
Based on the exact analytical theory, the radial vibration of an isotropic circular ring is studied and its electro-mechanical equivalent circuit is obtained. By means of the equivalent circuit model, the resonance frequency equation is derived; the relationship between the radial resonance frequency, the radial displacement amplitude magnification and the geometrical dimensions, the material property is analyzed. For comparison, numerical method is used to simulate the radial vibration of isotropic circular rings. The resonance frequency and the radial vibrational displacement distribution are obtained, and the radial radiation acoustic field of the circular ring in radial vibration is simulated. It is illustrated that the radial resonance frequencies from the analytical method and the numerical method are in good agreement when the height is much less than the radius. When the height becomes large relative to the radius, the frequency deviation from the two methods becomes large. The reason is that the exact analytical theory is limited to thin circular ring whose height must be much less than its radius. Copyright © 2011 Elsevier B.V. All rights reserved.
Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics
NASA Astrophysics Data System (ADS)
Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel
2018-04-01
We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.
Signal inference with unknown response: calibration-uncertainty renormalized estimator.
Dorn, Sebastian; Enßlin, Torsten A; Greiner, Maksim; Selig, Marco; Boehm, Vanessa
2015-01-01
The calibration of a measurement device is crucial for every scientific experiment, where a signal has to be inferred from data. We present CURE, the calibration-uncertainty renormalized estimator, to reconstruct a signal and simultaneously the instrument's calibration from the same data without knowing the exact calibration, but its covariance structure. The idea of the CURE method, developed in the framework of information field theory, is to start with an assumed calibration to successively include more and more portions of calibration uncertainty into the signal inference equations and to absorb the resulting corrections into renormalized signal (and calibration) solutions. Thereby, the signal inference and calibration problem turns into a problem of solving a single system of ordinary differential equations and can be identified with common resummation techniques used in field theories. We verify the CURE method by applying it to a simplistic toy example and compare it against existent self-calibration schemes, Wiener filter solutions, and Markov chain Monte Carlo sampling. We conclude that the method is able to keep up in accuracy with the best self-calibration methods and serves as a noniterative alternative to them.
Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K
2013-01-01
We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.
Supersymmetric extensions of K field theories
NASA Astrophysics Data System (ADS)
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Klinkusch, Stefan; Tremblay, Jean Christophe
2016-05-14
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electron ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinkusch, Stefan; Tremblay, Jean Christophe
In this contribution, we introduce a method for simulating dissipative, ultrafast many-electron dynamics in intense laser fields. The method is based on the norm-conserving stochastic unraveling of the dissipative Liouville-von Neumann equation in its Lindblad form. The N-electron wave functions sampling the density matrix are represented in the basis of singly excited configuration state functions. The interaction with an external laser field is treated variationally and the response of the electronic density is included to all orders in this basis. The coupling to an external environment is included via relaxation operators inducing transition between the configuration state functions. Single electronmore » ionization is represented by irreversible transition operators from the ionizing states to an auxiliary continuum state. The method finds its efficiency in the representation of the operators in the interaction picture, where the resolution-of-identity is used to reduce the size of the Hamiltonian eigenstate basis. The zeroth-order eigenstates can be obtained either at the configuration interaction singles level or from a time-dependent density functional theory reference calculation. The latter offers an alternative to explicitly time-dependent density functional theory which has the advantage of remaining strictly valid for strong field excitations while improving the description of the correlation as compared to configuration interaction singles. The method is tested on a well-characterized toy system, the excitation of the low-lying charge transfer state in LiCN.« less
NASA Astrophysics Data System (ADS)
Miller, Kelsey; Guyon, Olivier
2016-07-01
This paper presents the early-stage simulation results of linear dark field control (LDFC) as a new approach to maintaining a stable dark hole within a stellar post-coronagraphic PSF. In practice, conventional speckle nulling is used to create a dark hole in the PSF, and LDFC is then employed to maintain the dark field by using information from the bright speckle field. The concept exploits the linear response of the bright speckle intensity to wavefront variations in the pupil, and therefore has many advantages over conventional speckle nulling as a method for stabilizing the dark hole. In theory, LDFC is faster, more sensitive, and more robust than using conventional speckle nulling techniques, like electric field conjugation, to maintain the dark hole. In this paper, LDFC theory, linear bright speckle characterization, and first results in simulation are presented as an initial step toward the deployment of LDFC on the UA Wavefront Control testbed in the coming year.
Does ethical theory have a future in bioethics?
Beauchamp, Tom L
2004-01-01
Although there has long been a successful and stable marriage between philosophical ethical theory and bioethics, the marriage has become shaky as bioethics has become a more interdisciplinary and practical field. A practical price is paid for theoretical generality in philosophy. It is often unclear whether and, if so, how theory is to be brought to bear on dilemmatic problems, public policy, moral controversies, and moral conflict. Three clearly philosophical problems are used to see how philosophers are doing in handling practical problems: Cultural Relativity, and Moral Universality, Moral Justification, and Conceptual Analysis. In each case it is argued that philosophers need to develop theories and methods more closely attuned to practice. The work of philosophers such as Ruth Macklin, Norman Daniels, and Gerald Dworkin is examined. In the writings of each there is major methological gap between philosophical theory (or method) and practical conclusions. The future of philosophical ethics in interdisciplinary bioethics may turn on whether such gaps can be closed. If not, bioethics may justifiably conclude that philosophy is of little value.
Covariant open bosonic string field theory on multiple D-branes in the proper-time gauge
NASA Astrophysics Data System (ADS)
Lee, Taejin
2017-12-01
We construct a covariant open bosonic string field theory on multiple D-branes, which reduces to a non-Abelian group Yang-Mills gauge theory in the zero-slope limit. Making use of the first quantized open bosonic string in the proper time gauge, we convert the string amplitudes given by the Polyakov path integrals on string world sheets into those of the second quantized theory. The world sheet diagrams generated by the constructed open string field theory are planar in contrast to those of the Witten's cubic string field theory. However, the constructed string field theory is yet equivalent to the Witten's cubic string field theory. Having obtained planar diagrams, we may adopt the light-cone string field theory technique to calculate the multi-string scattering amplitudes with an arbitrary number of external strings. We examine in detail the three-string vertex diagram and the effective four-string vertex diagrams generated perturbatively by the three-string vertex at tree level. In the zero-slope limit, the string scattering amplitudes are identified precisely as those of non-Abelian Yang-Mills gauge theory if the external states are chosen to be massless vector particles.
Field-flow fractionation and hydrodynamic chromatography on a microfluidic chip.
Shendruk, Tyler N; Tahvildari, Radin; Catafard, Nicolas M; Andrzejewski, Lukasz; Gigault, Christian; Todd, Andrew; Gagne-Dumais, Laurent; Slater, Gary W; Godin, Michel
2013-06-18
We present gravitational field-flow fractionation and hydrodynamic chromatography of colloids eluting through 18 μm microchannels. Using video microscopy and mesoscopic simulations, we investigate the average retention ratio of colloids with both a large specific weight and neutral buoyancy. We consider the entire range of colloid sizes, including particles that barely fit in the microchannel and nanoscopic particles. Ideal theory predicts four operational modes, from hydrodynamic chromatography to Faxén-mode field-flow fractionation. We experimentally demonstrate, for the first time, the existence of the Faxén-mode field-flow fractionation and the transition from hydrodynamic chromatography to normal-mode field-flow fractionation. Furthermore, video microscopy and simulations show that the retention ratios are largely reduced above the steric-inversion point, causing the variation of the retention ratio in the steric- and Faxén-mode regimes to be suppressed due to increased drag. We demonstrate that theory can accurately predict retention ratios if hydrodynamic interactions with the microchannel walls (wall drag) are added to the ideal theory. Rather than limiting the applicability, these effects allow the microfluidic channel size to be tuned to ensure high selectivity. Our findings indicate that particle velocimetry methods must account for the wall-induced lag when determining flow rates in highly confining systems.
Superstatistics model for T₂ distribution in NMR experiments on porous media.
Correia, M D; Souza, A M; Sinnecker, J P; Sarthour, R S; Santos, B C C; Trevizan, W; Oliveira, I S
2014-07-01
We propose analytical functions for T2 distribution to describe transverse relaxation in high- and low-fields NMR experiments on porous media. The method is based on a superstatistics theory, and allows to find the mean and standard deviation of T2, directly from measurements. It is an alternative to multiexponential models for data decay inversion in NMR experiments. We exemplify the method with q-exponential functions and χ(2)-distributions to describe, respectively, data decay and T2 distribution on high-field experiments of fully water saturated glass microspheres bed packs, sedimentary rocks from outcrop and noisy low-field experiment on rocks. The method is general and can also be applied to biological systems. Copyright © 2014 Elsevier Inc. All rights reserved.
Inverse Diffusion Curves Using Shape Optimization.
Zhao, Shuang; Durand, Fredo; Zheng, Changxi
2018-07-01
The inverse diffusion curve problem focuses on automatic creation of diffusion curve images that resemble user provided color fields. This problem is challenging since the 1D curves have a nonlinear and global impact on resulting color fields via a partial differential equation (PDE). We introduce a new approach complementary to previous methods by optimizing curve geometry. In particular, we propose a novel iterative algorithm based on the theory of shape derivatives. The resulting diffusion curves are clean and well-shaped, and the final image closely approximates the input. Our method provides a user-controlled parameter to regularize curve complexity, and generalizes to handle input color fields represented in a variety of formats.
Nuclear Deformation at Finite Temperature
NASA Astrophysics Data System (ADS)
Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.
2014-12-01
Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.
Modern Quantum Field Theory II - Proceeeings of the International Colloquium
NASA Astrophysics Data System (ADS)
Das, S. R.; Mandal, G.; Mukhi, S.; Wadia, S. R.
1995-08-01
The Table of Contents for the book is as follows: * Foreword * 1. Black Holes and Quantum Gravity * Quantum Black Holes and the Problem of Time * Black Hole Entropy and the Semiclassical Approximation * Entropy and Information Loss in Two Dimensions * Strings on a Cone and Black Hole Entropy (Abstract) * Boundary Dynamics, Black Holes and Spacetime Fluctuations in Dilation Gravity (Abstract) * Pair Creation of Black Holes (Abstract) * A Brief View of 2-Dim. String Theory and Black Holes (Abstract) * 2. String Theory * Non-Abelian Duality in WZW Models * Operators and Correlation Functions in c ≤ 1 String Theory * New Symmetries in String Theory * A Look at the Discretized Superstring Using Random Matrices * The Nested BRST Structure of Wn-Symmetries * Landau-Ginzburg Model for a Critical Topological String (Abstract) * On the Geometry of Wn Gravity (Abstract) * O(d, d) Tranformations, Marginal Deformations and the Coset Construction in WZNW Models (Abstract) * Nonperturbative Effects and Multicritical Behaviour of c = 1 Matrix Model (Abstract) * Singular Limits and String Solutions (Abstract) * BV Algebra on the Moduli Spaces of Riemann Surfaces and String Field Theory (Abstract) * 3. Condensed Matter and Statistical Mechanics * Stochastic Dynamics in a Deposition-Evaporation Model on a Line * Models with Inverse-Square Interactions: Conjectured Dynamical Correlation Functions of the Calogero-Sutherland Model at Rational Couplings * Turbulence and Generic Scale Invariance * Singular Perturbation Approach to Phase Ordering Dynamics * Kinetics of Diffusion-Controlled and Ballistically-Controlled Reactions * Field Theory of a Frustrated Heisenberg Spin Chain * FQHE Physics in Relativistic Field Theories * Importance of Initial Conditions in Determining the Dynamical Class of Cellular Automata (Abstract) * Do Hard-Core Bosons Exhibit Quantum Hall Effect? (Abstract) * Hysteresis in Ferromagnets * 4. Fundamental Aspects of Quantum Mechanics and Quantum Field Theory * Finite Quantum Physics and Noncommutative Geometry * Higgs as Gauge Field and the Standard Model * Canonical Quantisation of an Off-Conformal Theory * Deterministic Quantum Mechanics in One Dimension * Spin-Statistics Relations for Topological Geons in 2+1 Quantum Gravity * Generalized Fock Spaces * Geometrical Expression for Short Distance Singularities in Field Theory * 5. Mathematics and Quantum Field Theory * Knot Invariants from Quantum Field Theories * Infinite Grassmannians and Moduli Spaces of G-Bundles * A Review of an Algebraic Geometry Approach to a Model Quantum Field Theory on a Curve (Abstract) * 6. Integrable Models * Spectral Representation of Correlation Functions in Two-Dimensional Quantum Field Theories * On Various Avatars of the Pasquier Algebra * Supersymmetric Integrable Field Theories and Eight Vertex Free Fermion Models (Abstract) * 7. Lattice Field Theory * From Kondo Model and Strong Coupling Lattice QCD to the Isgur-Wise Function * Effective Confinement from a Logarithmically Running Coupling (Abstract)
The application of mean field theory to image motion estimation.
Zhang, J; Hanauer, G G
1995-01-01
Previously, Markov random field (MRF) model-based techniques have been proposed for image motion estimation. Since motion estimation is usually an ill-posed problem, various constraints are needed to obtain a unique and stable solution. The main advantage of the MRF approach is its capacity to incorporate such constraints, for instance, motion continuity within an object and motion discontinuity at the boundaries between objects. In the MRF approach, motion estimation is often formulated as an optimization problem, and two frequently used optimization methods are simulated annealing (SA) and iterative-conditional mode (ICM). Although the SA is theoretically optimal in the sense of finding the global optimum, it usually takes many iterations to converge. The ICM, on the other hand, converges quickly, but its results are often unsatisfactory due to its "hard decision" nature. Previously, the authors have applied the mean field theory to image segmentation and image restoration problems. It provides results nearly as good as SA but with much faster convergence. The present paper shows how the mean field theory can be applied to MRF model-based motion estimation. This approach is demonstrated on both synthetic and real-world images, where it produced good motion estimates.
Variational methods in supersymmetric lattice field theory: The vacuum sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Meyer-Ortmanns, H.; Roskies, R.
1987-12-15
The application of variational methods to the computation of the spectrum in supersymmetric lattice theories is considered, with special attention to O(N) supersymmetric sigma models. Substantial cancellations are found between bosonic and fermionic contributions even in approximate Ansa$uml: tze for the vacuum wave function. The nonlinear limit of the linear sigma model is studied in detail, and it is shown how to construct an appropriate non-Gaussian vacuum wave function for the nonlinear model. The vacuum energy is shown to be of order unity in lattice units in the latter case, after infinite cancellations.
Error estimates for (semi-)empirical dispersion terms and large biomacromolecules.
Korth, Martin
2013-10-14
The first-principles modeling of biomaterials has made tremendous advances over the last few years with the ongoing growth of computing power and impressive developments in the application of density functional theory (DFT) codes to large systems. One important step forward was the development of dispersion corrections for DFT methods, which account for the otherwise neglected dispersive van der Waals (vdW) interactions. Approaches at different levels of theory exist, with the most often used (semi-)empirical ones based on pair-wise interatomic C6R(-6) terms. Similar terms are now also used in connection with semiempirical QM (SQM) methods and density functional tight binding methods (SCC-DFTB). Their basic structure equals the attractive term in Lennard-Jones potentials, common to most force field approaches, but they usually use some type of cutoff function to make the mixing of the (long-range) dispersion term with the already existing (short-range) dispersion and exchange-repulsion effects from the electronic structure theory methods possible. All these dispersion approximations were found to perform accurately for smaller systems, but error estimates for larger systems are very rare and completely missing for really large biomolecules. We derive such estimates for the dispersion terms of DFT, SQM and MM methods using error statistics for smaller systems and dispersion contribution estimates for the PDBbind database of protein-ligand interactions. We find that dispersion terms will usually not be a limiting factor for reaching chemical accuracy, though some force fields and large ligand sizes are problematic.
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.
Sun, Fadi; Yu, Xiao-Lu; Ye, Jinwu; Fan, Heng; Liu, Wu-Ming
2013-01-01
The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non-Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and explore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase transition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops. PMID:23846153
Bootstrapping conformal field theories with the extremal functional method.
El-Showk, Sheer; Paulos, Miguel F
2013-12-13
The existence of a positive linear functional acting on the space of (differences between) conformal blocks has been shown to rule out regions in the parameter space of conformal field theories (CFTs). We argue that at the boundary of the allowed region the extremal functional contains, in principle, enough information to determine the dimensions and operator product expansion (OPE) coefficients of an infinite number of operators appearing in the correlator under analysis. Based on this idea we develop the extremal functional method (EFM), a numerical procedure for deriving the spectrum and OPE coefficients of CFTs lying on the boundary (of solution space). We test the EFM by using it to rederive the low lying spectrum and OPE coefficients of the two-dimensional Ising model based solely on the dimension of a single scalar quasiprimary--no Virasoro algebra required. Our work serves as a benchmark for applications to more interesting, less known CFTs in the near future.
Wave functions of symmetry-protected topological phases from conformal field theories
NASA Astrophysics Data System (ADS)
Scaffidi, Thomas; Ringel, Zohar
2016-03-01
We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-03-15
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target's point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment.
Hu, Cheng; Wang, Jingyang; Tian, Weiming; Zeng, Tao; Wang, Rui
2017-01-01
Multiple-Input Multiple-Output (MIMO) radar provides much more flexibility than the traditional radar thanks to its ability to realize far more observation channels than the actual number of transmit and receive (T/R) elements. In designing the MIMO imaging radar arrays, the commonly used virtual array theory generally assumes that all elements are on the same line. However, due to the physical size of the antennas and coupling effect between T/R elements, a certain height difference between T/R arrays is essential, which will result in the defocusing of edge points of the scene. On the other hand, the virtual array theory implies far-field approximation. Therefore, with a MIMO array designed by this theory, there will exist inevitable high grating lobes in the imaging results of near-field edge points of the scene. To tackle these problems, this paper derives the relationship between target’s point spread function (PSF) and pattern of T/R arrays, by which the design criterion is presented for near-field imaging MIMO arrays. Firstly, the proper height between T/R arrays is designed to focus the near-field edge points well. Secondly, the far-field array is modified to suppress the grating lobes in the near-field area. Finally, the validity of the proposed methods is verified by two simulations and an experiment. PMID:28294996
NASA Astrophysics Data System (ADS)
Guan, Yihong; Luo, Yatao; Yang, Tao; Qiu, Lei; Li, Junchang
2012-01-01
The features of the spatial information of Markov random field image was used in image segmentation. It can effectively remove the noise, and get a more accurate segmentation results. Based on the fuzziness and clustering of pixel grayscale information, we find clustering center of the medical image different organizations and background through Fuzzy cmeans clustering method. Then we find each threshold point of multi-threshold segmentation through two dimensional histogram method, and segment it. The features of fusing multivariate information based on the Dempster-Shafer evidence theory, getting image fusion and segmentation. This paper will adopt the above three theories to propose a new human brain image segmentation method. Experimental result shows that the segmentation result is more in line with human vision, and is of vital significance to accurate analysis and application of tissues.
Similitude design for the vibration problems of plates and shells: A review
NASA Astrophysics Data System (ADS)
Zhu, Yunpeng; Wang, You; Luo, Zhong; Han, Qingkai; Wang, Deyou
2017-06-01
Similitude design plays a vital role in the analysis of vibration and shock problems encountered in large engineering equipment. Similitude design, including dimensional analysis and governing equation method, is founded on the dynamic similitude theory. This study reviews the application of similitude design methods in engineering practice and summarizes the major achievements of the dynamic similitude theory in structural vibration and shock problems in different fields, including marine structures, civil engineering structures, and large power equipment. This study also reviews the dynamic similitude design methods for thin-walled and composite material plates and shells, including the most recent work published by the authors. Structure sensitivity analysis is used to evaluate the scaling factors to attain accurate distorted scaling laws. Finally, this study discusses the existing problems and the potential of the dynamic similitude theory for the analysis of vibration and shock problems of structures.
NASA Astrophysics Data System (ADS)
Gagatsos, Christos N.; Karanikas, Alexandros I.; Kordas, Georgios; Cerf, Nicolas J.
2016-02-01
In spite of their simple description in terms of rotations or symplectic transformations in phase space, quadratic Hamiltonians such as those modelling the most common Gaussian operations on bosonic modes remain poorly understood in terms of entropy production. For instance, determining the quantum entropy generated by a Bogoliubov transformation is notably a hard problem, with generally no known analytical solution, while it is vital to the characterisation of quantum communication via bosonic channels. Here we overcome this difficulty by adapting the replica method, a tool borrowed from statistical physics and quantum field theory. We exhibit a first application of this method to continuous-variable quantum information theory, where it enables accessing entropies in an optical parametric amplifier. As an illustration, we determine the entropy generated by amplifying a binary superposition of the vacuum and a Fock state, which yields a surprisingly simple, yet unknown analytical expression.
Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals
NASA Astrophysics Data System (ADS)
Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.
2018-04-01
We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.
Quantum Field Theory in (0 + 1) Dimensions
ERIC Educational Resources Information Center
Boozer, A. D.
2007-01-01
We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…
Selected Topics in Light Front Field Theory and Applications to the High Energy Phenomena
NASA Astrophysics Data System (ADS)
Kundu, Rajen
1999-10-01
In this thesis, we have presented some of the aspects of light-front (LF) field theory through their successful application in the Deep Inelastic Scattering (DIS). We have developed a LFQCD Hamiltonian description of the DIS structure functions starting from Bjorken-Johnson-Low limit of virtual forward Compton scattering amplitude and using LF current commutators. We worked in the LF gauge A^+=0 and used the old-fashioned LFQCD perturbation theory in our calculations. The importance of our work are summarized below. Our approach shares the intution of parton model and addresses directly the structure functions, which are experimental objects, instead of its moments as in OPE method. Moreover, it can potentially incorporate the non-perturbative contents of the structure functions as we have demonstrated by introducing a new factorization scheme. In the context of nucleonic helicity structure, the well known gauge fixed LF helicity operator is shown to provide consistent physical information and helps us defining new relevant structure functions. The anomalous dimensions relevant for the Q^2-evolution of such structure functions are calculated. Our study is important in establishing the equivalance of LF field theory and the usual equal-time one through perturbative calculations of the dressed parton structure functions reproducing the well known results. Also the importance of Gallilean boost symmetry in understanding the correctness of any higher order calculation using (x^+)-ordered LFQCD perturbation theory are emphasized.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2017-11-15
A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Doebner, H.-D.
2008-02-01
Ladies and Gentlemen Dear Friends and Colleagues I welcome you at the 5th International Symposium `Quantum Theory and Symmetries, QTS5' in Valladolid as Chairman of the Conference Board of this biannual series. The aim of the series is to arrange an international meeting place for scientists working in theoretical and mathematical physics, in mathematics, in mathematical biology and chemistry and in other sciences for the presentation and discussion of recent developments in connection with quantum physics and chemistry, material science and related further fields, like life sciences and engineering, which are based on mathematical methods which can be applied to model and to understand microphysical and other systems through inherent symmetries in their widest sense. These systems include, e.g., foundations and extensions of quantum theory; quantum probability; quantum optics and quantum information; the description of nonrelativistic, finite dimensional and chaotic systems; quantum field theory, particle physics, string theory and quantum gravity. Symmetries in their widest sense describe properties of a system which could be modelled, e.g., through geometry, group theory, topology, algebras, differential geometry, noncommutative geometry, functional analysis and approximation methods; numerical evaluation techniques are necessary to connect such symmetries with experimental results. If you ask for a more detailed characterisation of this notion a hand waving indirect answer is: Collect titles and contents of the contributions of the proceedings of QTS4 and get a characterisation through semantic closure. Quantum theory and its Symmetries was and is a diversified and rapidly growing field. The number of and the types of systems with an internal symmetry and the corresponding mathematical models develop fast. This is reflected in the content of the five former international symposia of this series: The first symposium, QTS1-1999, was organized in Goslar (Germany) with 170 participants and 89 contributions in the proceedings; it was centred on the foundations and extensions of quantum theory, on quantisation methods and on q-algebras. In QTS2-2001 in Cracow (Poland) with 175 participants and 81 contributions; the main topics were applications of quantum mechanics, representations of algebras and group theoretical techniques in physics. In the symposium QTS3-2003 in Cincinnati (USA) with 145 participants and 92 contributions, quantum field theory, loop quantum gravity, string and brane theory was discussed. The focus in QTS4-2005 in Varna (Bulgaria) with 228 participant and 105 contributions, was on conformal field theory, quantum gravity, noncommutative geometry and quantum groups. Three proceedings volumes were published with World Scientific and one volume with Heron Press. The promising and interesting programme for QTS5-2007 in Valladolid (Spain) attracted more than 200 participants; the contributions will be published in a special issue of Journal of Physics A: Mathematical and Theoretical and a volume of Journal of Physics: Conference Series. This shows the wide scope of symmetry in connection with quantum physics and related sciences. In the background of the symposia series is the Conference Board with presently 13 members. The Board encourages scientists and Institutions to present detailed proposals for a QTS symposium; it agrees to one proposal and is prepared to assist in matters of organisation; the local organisers are responsible for the scientific programme and for the organisation, including the budget. The Board decided that the next symposium QTS6 will be held 2009 at the University of Kentucky in Lexington (USA); Alan Shapere is the chairman of the Local Organizing committee. In the name of all of you I express my appreciation and my thanks to the members of the Local Organizing Committee of QTS5, especially to Mariano del Olmo. The programme is outstanding; it covers recent and new developments in our field. The organization is very effective and complete. We have all the necessary condition for a successful and smooth meeting. Thank you again Mariano. H-D Doebner Chairman of the Conference Board of QTS5
Preface to the Focus Issue: chaos detection methods and predictability.
Gottwald, Georg A; Skokos, Charalampos
2014-06-01
This Focus Issue presents a collection of papers originating from the workshop Methods of Chaos Detection and Predictability: Theory and Applications held at the Max Planck Institute for the Physics of Complex Systems in Dresden, June 17-21, 2013. The main aim of this interdisciplinary workshop was to review comprehensively the theory and numerical implementation of the existing methods of chaos detection and predictability, as well as to report recent applications of these techniques to different scientific fields. The collection of twelve papers in this Focus Issue represents the wide range of applications, spanning mathematics, physics, astronomy, particle accelerator physics, meteorology and medical research. This Preface surveys the papers of this Issue.
Comparison of up-scaling methods in poroelasticity and its generalizations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J G
2003-12-13
Four methods of up-scaling coupled equations at the microscale to equations valid at the mesoscale and/or macroscale for fluid-saturated and partially saturated porous media will be discussed, compared, and contrasted. The four methods are: (1) effective medium theory, (2) mixture theory, (3) two-scale and multiscale homogenization, and (4) volume averaging. All these methods have advantages for some applications and disadvantages for others. For example, effective medium theory, mixture theory, and homogenization methods can all give formulas for coefficients in the up-scaled equations, whereas volume averaging methods give the form of the up-scaled equations but generally must be supplemented with physicalmore » arguments and/or data in order to determine the coefficients. Homogenization theory requires a great deal of mathematical insight from the user in order to choose appropriate scalings for use in the resulting power-law expansions, while volume averaging requires more physical insight to motivate the steps needed to find coefficients. Homogenization often is performed on periodic models, while volume averaging does not require any assumption of periodicity and can therefore be related very directly to laboratory and/or field measurements. Validity of the homogenization process is often limited to specific ranges of frequency - in order to justify the scaling hypotheses that must be made - and therefore cannot be used easily over wide ranges of frequency. However, volume averaging methods can quite easily be used for wide band data analysis. So, we learn from these comparisons that a researcher in the theory of poroelasticity and its generalizations needs to be conversant with two or more of these methods to solve problems generally.« less
NASA Astrophysics Data System (ADS)
Chen, Yihang; Xiao, Chijie; Yang, Xiaoyi; Wang, Tianbo; Xu, Tianchao; Yu, Yi; Xu, Min; Wang, Long; Lin, Chen; Wang, Xiaogang
2017-10-01
The Laser-driven Ion beam trace probe (LITP) is a new diagnostic method for measuring poloidal magnetic field (Bp) and radial electric field (Er) in tokamaks. LITP injects a laser-driven ion beam into the tokamak, and Bp and Er profiles can be reconstructed using tomography methods. A reconstruction code has been developed to validate the LITP theory, and both 2D reconstruction of Bp and simultaneous reconstruction of Bp and Er have been attained. To reconstruct from experimental data with noise, Maximum Entropy and Gaussian-Bayesian tomography methods were applied and improved according to the characteristics of the LITP problem. With these improved methods, a reconstruction error level below 15% has been attained with a data noise level of 10%. These methods will be further tested and applied in the following LITP experiments. Supported by the ITER-CHINA program 2015GB120001, CHINA MOST under 2012YQ030142 and National Natural Science Foundation Abstract of China under 11575014 and 11375053.
Velocity measurement by vibro-acoustic Doppler.
Nabavizadeh, Alireza; Urban, Matthew W; Kinnick, Randall R; Fatemi, Mostafa
2012-04-01
We describe the theoretical principles of a new Doppler method, which uses the acoustic response of a moving object to a highly localized dynamic radiation force of the ultrasound field to calculate the velocity of the moving object according to Doppler frequency shift. This method, named vibro-acoustic Doppler (VAD), employs two ultrasound beams separated by a slight frequency difference, Δf, transmitting in an X-focal configuration. Both ultrasound beams experience a frequency shift because of the moving objects and their interaction at the joint focal zone produces an acoustic frequency shift occurring around the low-frequency (Δf) acoustic emission signal. The acoustic emission field resulting from the vibration of the moving object is detected and used to calculate its velocity. We report the formula that describes the relation between Doppler frequency shift of the emitted acoustic field and the velocity of the moving object. To verify the theory, we used a string phantom. We also tested our method by measuring fluid velocity in a tube. The results show that the error calculated for both string and fluid velocities is less than 9.1%. Our theory shows that in the worst case, the error is 0.54% for a 25° angle variation for the VAD method compared with an error of -82.6% for a 25° angle variation for a conventional continuous wave Doppler method. An advantage of this method is that, unlike conventional Doppler, it is not sensitive to angles between the ultrasound beams and direction of motion.
NASA Astrophysics Data System (ADS)
Najafi, M. N.
2018-04-01
The coupling of the c = ‑2, c=\\frac{1}{2} and c = 0 conformal field theories are numerically considered in this paper. As the prototypes of the couplings, (c_1=-2)\\oplus (c_2=0) and (c_1=-2)\\oplus (c_2=\\frac{1}{2}) , we consider the Bak–Tang–Weisenfeld (BTW) model on the 2D square critical site-percolation and the BTW model on Ising-correlated percolation lattices respectively. Some geometrical techniques are used to characterize the presumable conformal symmetry of the resultant systems. Based on the numerical analysis of the diffusivity parameter (κ) in the Schramm–Loewner evolution (SLE) theory we propose that the algebra of the central charges of the coupled models is closed. This result is based on the analysis of the conformal loop ensemble (CLE) analysis. The diffusivity parameter in each case is obtained by calculating the fractal dimension of loops (and the corresponding exponent of mean-square root distance), the direct SLE mapping method, the left passage probability and the winding angle analysis. More precisely we numerically show that the coupling (c_1=-2)\\oplus (c_2=\\frac{1}{2}) results to 2D self-avoiding walk (SAW) fixed point corresponding to c = 0 conformal field theory, whereas the coupling (c_1=-2)\\oplus (c_2=0) results to the 2D critical Ising fixed point corresponding to the c=\\frac{1}{2} conformal field theory.
NASA Astrophysics Data System (ADS)
Graham, Wendy D.; Tankersley, Claude D.
1994-05-01
Stochastic methods are used to analyze two-dimensional steady groundwater flow subject to spatially variable recharge and transmissivity. Approximate partial differential equations are developed for the covariances and cross-covariances between the random head, transmissivity and recharge fields. Closed-form solutions of these equations are obtained using Fourier transform techniques. The resulting covariances and cross-covariances can be incorporated into a Bayesian conditioning procedure which provides optimal estimates of the recharge, transmissivity and head fields given available measurements of any or all of these random fields. Results show that head measurements contain valuable information for estimating the random recharge field. However, when recharge is treated as a spatially variable random field, the value of head measurements for estimating the transmissivity field can be reduced considerably. In a companion paper, the method is applied to a case study of the Upper Floridan Aquifer in NE Florida.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutsker, V.; Niehaus, T. A., E-mail: thomas.niehaus@physik.uni-regensburg.de; Aradi, B.
2015-11-14
Bridging the gap between first principles methods and empirical schemes, the density functional based tight-binding method (DFTB) has become a versatile tool in predictive atomistic simulations over the past years. One of the major restrictions of this method is the limitation to local or gradient corrected exchange-correlation functionals. This excludes the important class of hybrid or long-range corrected functionals, which are advantageous in thermochemistry, as well as in the computation of vibrational, photoelectron, and optical spectra. The present work provides a detailed account of the implementation of DFTB for a long-range corrected functional in generalized Kohn-Sham theory. We apply themore » method to a set of organic molecules and compare ionization potentials and electron affinities with the original DFTB method and higher level theory. The new scheme cures the significant overpolarization in electric fields found for local DFTB, which parallels the functional dependence in first principles density functional theory (DFT). At the same time, the computational savings with respect to full DFT calculations are not compromised as evidenced by numerical benchmark data.« less
NASA Astrophysics Data System (ADS)
Xin, Chen; Huang, Ji-Ping
2017-12-01
Agent-based modeling and controlled human experiments serve as two fundamental research methods in the field of econophysics. Agent-based modeling has been in development for over 20 years, but how to design virtual agents with high levels of human-like "intelligence" remains a challenge. On the other hand, experimental econophysics is an emerging field; however, there is a lack of experience and paradigms related to the field. Here, we review some of the most recent research results obtained through the use of these two methods concerning financial problems such as chaos, leverage, and business cycles. We also review the principles behind assessments of agents' intelligence levels, and some relevant designs for human experiments. The main theme of this review is to show that by combining theory, agent-based modeling, and controlled human experiments, one can garner more reliable and credible results on account of a better verification of theory; accordingly, this way, a wider range of economic and financial problems and phenomena can be studied.
Sainburg, Robert L; Liew, Sook-Lei; Frey, Scott H; Clark, Florence
2017-01-01
Integration of research in the fields of neural control of movement and biomechanics (collectively referred to as movement science) with the field of human occupation directly benefits both areas of study. Specifically, incorporating many of the quantitative scientific methods and analyses employed in movement science can help accelerate the development of rehabilitation-relevant research in occupational therapy (OT) and occupational science (OS). Reciprocally, OT and OS, which focus on the performance of everyday activities (occupations) to promote health and well-being, provide theoretical frameworks to guide research on the performance of actions in the context of social, psychological, and environmental factors. Given both fields' mutual interest in the study of movement as it relates to health and disease, the authors posit that combining OS and OT theories and principles with the theories and methods in movement science may lead to new, impactful, and clinically relevant knowledge. The first step is to ensure that individuals with OS or OT backgrounds are academically prepared to pursue advanced study in movement science. In this article, the authors propose 2 strategies to address this need.
NASA Astrophysics Data System (ADS)
Arabahmadi, Ehsan; Ahmadi, Zabihollah; Rashidian, Bizhan
2018-06-01
A quantum theory for describing the interaction of photons and plasmons, in one- and two-dimensional arrays is presented. Ohmic losses and inter-band transitions are not considered. We use macroscopic approach, and quantum field theory methods including S-matrix expansion, and Feynman diagrams for this purpose. Non-linear interactions are also studied, and increasing the probability of such interactions, and its application are also discussed.
Aeroacoustics Computation for Nearly Fully Expanded Supersonic Jets Using the CE/SE Method
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Hultgren, Lennart S.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.
2000-01-01
In this paper, the space-time conservation element solution element (CE/SE) method is tested in the classical axisymmetric jet instability problem, rendering good agreement with the linear theory. The CE/SE method is then applied to numerical simulations of several nearly fully expanded axisymmetric jet flows and their noise fields and qualitative agreement with available experimental and theoretical results is demonstrated.
Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior
Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.; ...
2017-11-02
Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less
Comparison of Coarse-Grained Approaches in Predicting Polymer Nanocomposite Phase Behavior
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koski, Jason P.; Ferrier, Robert C.; Krook, Nadia M.
Because of the considerable parameter space, efficient theoretical and simulation methods are required to predict the morphology and guide experiments in polymer nanocomposites (PNCs). Unfortunately, theoretical and simulation methods are restricted in their ability to accurately map to experiments based on necessary approximations and numerical limitations. In this study, we provide direct comparisons of two recently developed coarse-grained approaches for modeling polymer nanocomposites (PNCs): polymer nanocomposite field theory (PNC-FT) and dynamic mean-field theory (DMFT). These methods are uniquely suited to efficiently capture mesoscale phase behavior of PNCs in comparison to other theoretical and simulation frameworks. We demonstrate the ability ofmore » both methods to capture macrophase separation and describe the thermodynamics of PNCs. We systematically test how the nanoparticle morphology in PNCs is affected by a uniform probability distribution of grafting sites, common in field-based methods, versus random discrete grafting sites on the nanoparticle surface. We also analyze the accuracy of the mean-field approximation in capturing the phase behavior of PNCs. Moreover, the DMFT method introduces the ability to describe nonequilibrium phase behavior while the PNC-FT method is strictly an equilibrium method. With the DMFT method we are able to show the evolution of nonequilibrium states toward their equilibrium state and a qualitative assessment of the dynamics in these systems. These simulations are compared to experiments consisting of polystyrene grafted gold nanorods in a poly(methyl methacrylate) matrix to ensure the model gives results that qualitatively agree with the experiments. This study reveals that nanoparticles in a relatively high matrix molecular weight are trapped in a nonequilibrium state and demonstrates the utility of the DMFT framework in capturing nonequilibrium phase behavior of PNCs. In conclusion, both the PNC-FT and DMFT framework are promising methods to describe the thermodynamic and nonequilibrium phase behavior of PNCs.« less
Moura, Carlos E V de; Oliveira, Ricardo R; Rocha, Alexandre B
2013-05-01
Potential energy curves and inner-shell ionization energies of carbon monoxide, oxygen and nitrogen molecules were calculated using several forms of the inner-shell multiconfigurational self-consistent field (IS-MCSCF) method-a recently proposed protocol to obtain specifically converged inner-shell states at this level. The particular forms of the IS-MCSCF method designated IS-GVB-PP, IS-FVBL and IS-CASSCF stand for perfect pairing generalized valence bond, full valence bond-like MCSCF and complete active space self consistent field, respectively. A comparison of these different versions of the IS-MCSCF method was carried out for the first time. The results indicate that inner-shell states are described accurately even for the simplest version of the method (IS-GVB-PP). Dynamic correlation was recovered by multireference configuration interaction or multireference perturbation theory. For molecules not having equivalent atoms, all methods led to comparable and accurate transition energies. For molecules with equivalent atoms, the most accurate results were obtained by multireference perturbation theory. Scalar relativistic effects were accounted for using the Douglas-Kroll-Hess Hamiltonian.
NASA Astrophysics Data System (ADS)
Prilepina, Valentina V.
This thesis represents an investigation of topics in conformal field theory (CFT). Here we discuss three new contributions to this area. The first one relates to the famous problem of scale versus conformal invariance in d = 4. We give an argument that rules out a serious loophole present in relevant arguments for the conjecture that scale implies conformal invariance in 4D local unitary quantum field theories, namely that the trace of the energy-momentum tensor T could potentially be a generalized free field. Our argument hinges on the observation that any 4D unitary theory endowed with scale but not conformal invariance necessarily has a non-vanishing anomaly for global scale transformations. We show that this anomaly cannot be reproduced if T is a generalized free field unless a dimension-2 scalar operator is present in the theory. In the case that the theory does contain such an operator, we demonstrate that it can be exploited to redefine or "improve" Tmunu such that there is always at least one possible improvement of T which is not a generalized free field. This argument thus essentially excludes this option in a 4D unitary scale but not conformally invariant theory. Our next contribution relates to using energy positivity conditions to place constraints on conformal field theories. We propose a new special kind of weak energy condition with spacetime averaging over a finite region of length scale L to suppress quantum fluctuations. Our Spacetime Averaged Weak Energy Condition (SAWEC) is a novel completely local inequality closely related to the positivity of total energy. It is a proposed bound on the energy density of the form T00 ≥ -C/L4, where L is the size of the smearing region, and C is a positive theory-dependent constant. We motivate this condition as a fundamental consistency requirement for any 4D quantum field theory. We argue that violation of this statement would have serious undesirable consequences for a theory. In particular, the theory would contain states indistinguishable from states of negative total energy by any local measurement, which would lead to unphysical instabilities. We apply the condition to 4D and 3D CFTs and derive bounds on the OPE coefficients of these theories. Interestingly, these conditions imply the positivity of the 2-point function of the energy-momentum tensor. Our 4D bounds are weaker than the "conformal collider" constraints of Hofman and Maldacena, which were rigorously established fairly recently. All calculations were carried out in momentum space using Wightman correlation functions. These methods may also be interesting on their own. The third contribution relates to the problem of the enhancement of conformal invariance in flat spacetime to Weyl invariance in curved spacetime. We restrict attention to all unitary quantum field theories and put forward a compelling argument for the statement that for all spacetime dimensions d ≤ 10, conformal invariance in flat spacetime implies Weyl invariance in a general curved background metric. In addition, we examine possible curvature corrections to the Weyl transformation laws of operators and show that these corrections are in fact absent for sufficiently low operator dimension and spin. In particular, we demonstrate this for an important class of operators, namely relevant scalar operators in d ≤ 6, and find that the Weyl transformations of these operators are the standard ones. Moreover, we find a class of consistent 'anomalous' curvature corrections proportional to the Weyl (Cotton) tensor in d > 3 (d = 3) spacetime dimensions. The arguments rely on algebraic consistency conditions reminiscent of the famous Wess-Zumino consistency conditions employed for the classification of Weyl anomalies. We anticipate that they can be extended to higher spacetime dimensions and for more general operators at the price of higher algebraic complexity.
A new probe of the magnetic field power spectrum in cosmic web filaments
NASA Astrophysics Data System (ADS)
Hales, Christopher A.; Greiner, Maksim; Ensslin, Torsten A.
2015-08-01
Establishing the properties of magnetic fields on scales larger than galaxy clusters is critical for resolving the unknown origin and evolution of galactic and cluster magnetism. More generally, observations of magnetic fields on cosmic scales are needed for assessing the impacts of magnetism on cosmology, particle physics, and structure formation over the full history of the Universe. However, firm observational evidence for magnetic fields in large scale structure remains elusive. In an effort to address this problem, we have developed a novel statistical method to infer the magnetic field power spectrum in cosmic web filaments using observation of the two-point correlation of Faraday rotation measures from a dense grid of extragalactic radio sources. Here we describe our approach, which embeds and extends the pioneering work of Kolatt (1998) within the context of Information Field Theory (a statistical theory for Bayesian inference on spatially distributed signals; Enfllin et al., 2009). We describe prospects for observation, for example with forthcoming data from the ultra-deep JVLA CHILES Con Pol survey and future surveys with the SKA.
Measurement of Antenna Bore-Sight Gain
NASA Technical Reports Server (NTRS)
Fortinberry, Jarrod; Shumpert, Thomas
2016-01-01
The absolute or free-field gain of a simple antenna can be approximated using standard antenna theory formulae or for a more accurate prediction, numerical methods may be employed to solve for antenna parameters including gain. Both of these methods will result in relatively reasonable estimates but in practice antenna gain is usually verified and documented via measurements and calibration. In this paper, a relatively simple and low-cost, yet effective means of determining the bore-sight free-field gain of a VHF/UHF antenna is proposed by using the Brewster angle relationship.
NASA Technical Reports Server (NTRS)
Nielsen, Jack N
1955-01-01
A theoretical method is presented for calculating the flow field about wing-body combinations employing bodies deviating only slightly in shape from a circular cylinder. The method is applied to the calculation of the pressure field acting between a circular cylindrical body and a rectangular wing. The case of zero body angle of attack and variable wing incidence is considered as well as the case of zero wing incidence and variable body angle of attack. An experiment was performed especially for the purpose of checking the calculative examples.
Quantum simulation of quantum field theory using continuous variables
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George; ...
2015-12-14
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less
Quantum simulation of quantum field theory using continuous variables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshall, Kevin; Pooser, Raphael C.; Siopsis, George
Much progress has been made in the field of quantum computing using continuous variables over the last couple of years. This includes the generation of extremely large entangled cluster states (10,000 modes, in fact) as well as a fault tolerant architecture. This has lead to the point that continuous-variable quantum computing can indeed be thought of as a viable alternative for universal quantum computing. With that in mind, we present a new algorithm for continuous-variable quantum computers which gives an exponential speedup over the best known classical methods. Specifically, this relates to efficiently calculating the scattering amplitudes in scalar bosonicmore » quantum field theory, a problem that is known to be hard using a classical computer. Thus, we give an experimental implementation based on cluster states that is feasible with today's technology.« less
NASA Astrophysics Data System (ADS)
Lim, Yeunhwan; Holt, Jeremy W.
2017-06-01
We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.
Plasma Equilibrium in a Magnetic Field with Stochastic Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.A. Krommes and Allan H. Reiman
The nature of plasma equilibrium in a magnetic field with stochastic regions is examined. It is shown that the magnetic differential equation that determines the equilibrium Pfirsch-Schluter currents can be cast in a form similar to various nonlinear equations for a turbulent plasma, allowing application of the mathematical methods of statistical turbulence theory. An analytically tractable model, previously studied in the context of resonance-broadening theory, is applied with particular attention paid to the periodicity constraints required in toroidal configurations. It is shown that even a very weak radial diffusion of the magnetic field lines can have a significant effect onmore » the equilibrium in the neighborhood of the rational surfaces, strongly modifying the near-resonant Pfirsch-Schluter currents. Implications for the numerical calculation of 3D equilibria are discussed« less
Debates - Stochastic subsurface hydrology from theory to practice: Introduction
NASA Astrophysics Data System (ADS)
Rajaram, Harihar
2016-12-01
This paper introduces the papers in the "Debates - Stochastic Subsurface Hydrology from Theory to Practice" series. Beginning in the 1970s, the field of stochastic subsurface hydrology has been an active field of research, with over 3500 journal publications, of which over 850 have appeared in Water Resources Research. We are fortunate to have insightful contributions from four groups of distinguished authors who discuss the reasons why the advanced research framework established in stochastic subsurface hydrology has not impacted the practice of groundwater flow and transport modeling and design significantly. There is reasonable consensus that a community effort aimed at developing "toolboxes" for applications of stochastic methods will make them more accessible and encourage practical applications.
Dispersion Relations for Proton Relaxation in Solid Dielectrics
NASA Astrophysics Data System (ADS)
Kalytka, V. A.; Korovkin, M. V.
2017-04-01
Frequency-temperature spectra of the complex permittivity are studied for proton semiconductors and dielectrics using the methods of a quasi-classical kinetic theory of dielectric relaxation (the Boltzmann kinetic theory) in the linear approximation with respect to the polarizing field in the radio frequency range at temperatures T = 50-450 K. The effect of the quantum transitions of protons on the Debye dispersion relations is taken into account for crystals with hydrogen bonds (HBC) at low temperatures (50-100 K). The diffusion coefficients and the mobilities under electrical transfer of protons in the HBCs are constructed at high temperatures (100-350 K) in a non-linear approximation with respect to the polarizing field.
NASA Astrophysics Data System (ADS)
Kotliar, Gabriel
2005-01-01
Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.
The DV-Xα Calculations of Optical Spectra and Their Pressure-Induced Shifts for Ruby
NASA Astrophysics Data System (ADS)
Ma, Dongping; Ellis, D. E.; Liu, Yanyun; Chen, Jurong
1997-10-01
The R line and U band at normal pressure and their pressure-induced shifts of ruby have been calculated by making use of the SCF embedded-cluster discrete variational (DV-Xα) method. The calculated results of the spectral pressure-induced shifts of ruby by making use of the crystal-field theory have also been given. The results of the first-principle calculations are in very good agreement with the experimental data and the calculated results by using crystal-field theory. The results of local lattice relaxations around the Cr3+ ion are obtained by the DV-Xα calculations. The project supported by National Natural Science Foundation of China
NASA Astrophysics Data System (ADS)
Eichinger, M.; Tavan, P.; Hutter, J.; Parrinello, M.
1999-06-01
We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane-wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase.
An application of information theory to stochastic classical gravitational fields
NASA Astrophysics Data System (ADS)
Angulo, J.; Angulo, J. C.; Angulo, J. M.
2018-06-01
The objective of this study lies on the incorporation of the concepts developed in the Information Theory (entropy, complexity, etc.) with the aim of quantifying the variation of the uncertainty associated with a stochastic physical system resident in a spatiotemporal region. As an example of application, a relativistic classical gravitational field has been considered, with a stochastic behavior resulting from the effect induced by one or several external perturbation sources. One of the key concepts of the study is the covariance kernel between two points within the chosen region. Using this concept and the appropriate criteria, a methodology is proposed to evaluate the change of uncertainty at a given spatiotemporal point, based on available information and efficiently applying the diverse methods that Information Theory provides. For illustration, a stochastic version of the Einstein equation with an added Gaussian Langevin term is analyzed.
Valente, Thomas W; Pitts, Stephanie R
2017-03-20
The use of social network theory and analysis methods as applied to public health has expanded greatly in the past decade, yielding a significant academic literature that spans almost every conceivable health issue. This review identifies several important theoretical challenges that confront the field but also provides opportunities for new research. These challenges include (a) measuring network influences, (b) identifying appropriate influence mechanisms, (c) the impact of social media and computerized communications, (d) the role of networks in evaluating public health interventions, and (e) ethics. Next steps for the field are outlined and the need for funding is emphasized. Recently developed network analysis techniques, technological innovations in communication, and changes in theoretical perspectives to include a focus on social and environmental behavioral influences have created opportunities for new theory and ever broader application of social networks to public health topics.
Inverse bootstrapping conformal field theories
NASA Astrophysics Data System (ADS)
Li, Wenliang
2018-01-01
We propose a novel approach to study conformal field theories (CFTs) in general dimensions. In the conformal bootstrap program, one usually searches for consistent CFT data that satisfy crossing symmetry. In the new method, we reverse the logic and interpret manifestly crossing-symmetric functions as generating functions of conformal data. Physical CFTs can be obtained by scanning the space of crossing-symmetric functions. By truncating the fusion rules, we are able to concentrate on the low-lying operators and derive some approximate relations for their conformal data. It turns out that the free scalar theory, the 2d minimal model CFTs, the ϕ 4 Wilson-Fisher CFT, the Lee-Yang CFTs and the Ising CFTs are consistent with the universal relations from the minimal fusion rule ϕ 1 × ϕ 1 = I + ϕ 2 + T , where ϕ 1 , ϕ 2 are scalar operators, I is the identity operator and T is the stress tensor.
Plane wave scattering by bow-tie posts
NASA Astrophysics Data System (ADS)
Lech, Rafal; Mazur, Jerzy
2004-04-01
The theory of scattering in free space by a novel structure of a two-dimensional dielectric-metallic post is developed with the use of a combination of a modified iterative scattering procedure and an orthogonal expansion method. The far scattered field patterns for open structures are derived. The rotation of the post affects its scattered field characteristic, which permits to make adjustments in characteristic of the posts arrays.
[Physical essence of erythrocytic sedimentation rate in the gravitation field of the earth].
Cherniĭ, A N
2009-01-01
The erythrocytic sedimentation rate method has been long known in medicine and extensively used in laboratory practice in tuberculosis facilities. However, many authors note that the erythrocytic sedimentation rate phenomenon has not clearly understood. By applying the total theory of relativity and quantum mechanics, the author discloses the physical essence of erythrocytic sedimentation in the gravitation field of the Earth.
NASA Astrophysics Data System (ADS)
Rädler, K.-H.
This article elucidates the basic ideas of electrodynamics and magnetohydrodynamics of mean fields in turbulently moving conducting fluids. It is stressed that the connection of the mean electromotive force with the mean magnetic field and its first spatial derivatives is in general neither local nor instantaneous and that quite a few claims concerning pretended failures of the mean-field concept result from ignoring this aspect. In addition to the mean-field dynamo mechanisms of α2 and α Ω type several others are considered. Much progress in mean-field electrodynamics and magnetohydrodynamics results from the test-field method for calculating the coefficients that determine the connection of the mean electromotive force with the mean magnetic field. As an important example the memory effect in homogeneous isotropic turbulence is explained. In magnetohydrodynamic turbulence there is the possibility of a mean electromotive force that is primarily independent of the mean magnetic field and labeled as Yoshizawa effect. Despite of many efforts there is so far no convincing comprehensive theory of α quenching, that is, the reduction of the α effect with growing mean magnetic field, and of the saturation of mean-field dynamos. Steps toward such a theory are explained. Finally, some remarks on laboratory experiments with dynamos are made.
Grounded theory research: literature reviewing and reflexivity.
McGhee, Gerry; Marland, Glenn R; Atkinson, Jacqueline
2007-11-01
This paper is a report of a discussion of the arguments surrounding the role of the initial literature review in grounded theory. Researchers new to grounded theory may find themselves confused about the literature review, something we ourselves experienced, pointing to the need for clarity about use of the literature in grounded theory to help guide others about to embark on similar research journeys. The arguments for and against the use of a substantial topic-related initial literature review in a grounded theory study are discussed, giving examples from our own studies. The use of theoretically sampled literature and the necessity for reflexivity are also discussed. Reflexivity is viewed as the explicit quest to limit researcher effects on the data by awareness of self, something seen as integral both to the process of data collection and the constant comparison method essential to grounded theory. A researcher who is close to the field may already be theoretically sensitized and familiar with the literature on the study topic. Use of literature or any other preknowledge should not prevent a grounded theory arising from the inductive-deductive interplay which is at the heart of this method. Reflexivity is needed to prevent prior knowledge distorting the researcher's perceptions of the data.
Piezoelectrically actuated flextensional micromachined ultrasound transducers--I: theory.
Perçin, Gökhan; Khuri-Yakub, Butrus T
2002-05-01
This series of two papers considers piezoelectrically actuated flextensional micromachined ultrasound transducers (PAFMUTs) and consists of theory, fabrication, and experimental parts. The theory presented in this paper is developed for an ultrasound transducer application presented in the second part. In the absence of analytical expressions for the equivalent circuit parameters of a flextensional transducer, it is difficult to calculate its optimal parameters and dimensions and difficult to choose suitable materials. The influence of coupling between flexural and extensional deformation and that of coupling between the structure and the acoustic volume on the dynamic response of piezoelectrically actuated flextensional transducer are analyzed using two analytical methods: classical thin (Kirchhoff) plate theory and Mindlin plate theory. Classical thin plate theory and Mindlin plate theory are applied to derive two-dimensional plate equations for the transducer and to calculate the coupled electromechanical field variables such as mechanical displacement and electrical input impedance. In these methods, the variations across the thickness direction vanish by using the bending moments per unit length or stress resultants. Thus, two-dimensional plate equations for a step-wise laminated circular plate are obtained as well as two different solutions to the corresponding systems. An equivalent circuit of the transducer is also obtained from these solutions.
{{SO(d,1)}}-Invariant Yang-Baxter Operators and the dS/CFT Correspondence
NASA Astrophysics Data System (ADS)
Hollands, Stefan; Lechner, Gandalf
2018-01-01
We propose a model for the dS/CFT correspondence. The model is constructed in terms of a "Yang-Baxter operator" R for unitary representations of the de Sitter group {SO(d,1)}. This R-operator is shown to satisfy the Yang-Baxter equation, unitarity, as well as certain analyticity relations, including in particular a crossing symmetry. With the aid of this operator we construct: (a) a chiral (light-ray) conformal quantum field theory whose internal degrees of freedom transform under the given unitary representation of {SO(d,1)}. By analogy with the O( N) non-linear sigma model, this chiral CFT can be viewed as propagating in a de Sitter spacetime. (b) A (non-unitary) Euclidean conformal quantum field theory on R}^{d-1, where SO( d, 1) now acts by conformal transformations in (Euclidean) spacetime. These two theories can be viewed as dual to each other if we interpret R}^{d-1 as conformal infinity of de Sitter spacetime. Our constructions use semi-local generator fields defined in terms of R and abstract methods from operator algebras.
Standard model effective field theory: Integrating out neutralinos and charginos in the MSSM
NASA Astrophysics Data System (ADS)
Han, Huayong; Huo, Ran; Jiang, Minyuan; Shu, Jing
2018-05-01
We apply the covariant derivative expansion method to integrate out the neutralinos and charginos in the minimal supersymmetric Standard Model. The results are presented as set of pure bosonic dimension-six operators in the Standard Model effective field theory. Nontrivial chirality dependence in fermionic covariant derivative expansion is discussed carefully. The results are checked by computing the h γ γ effective coupling and the electroweak oblique parameters using the Standard Model effective field theory with our effective operators and direct loop calculation. In global fitting, the proposed lepton collider constraint projections, special phenomenological emphasis is paid to the gaugino mass unification scenario (M2≃2 M1) and anomaly mediation scenario (M1≃3.3 M2). These results show that the precision measurement experiments in future lepton colliders will provide a very useful complementary job in probing the electroweakino sector, in particular, filling the gap of the soft lepton plus the missing ET channel search left by the traditional collider, where the neutralino as the lightest supersymmetric particle is very degenerated with the next-to-lightest chargino/neutralino.
Renormalizable group field theory beyond melonic diagrams: An example in rank four
NASA Astrophysics Data System (ADS)
Carrozza, Sylvain; Lahoche, Vincent; Oriti, Daniele
2017-09-01
We prove the renormalizability of a gauge-invariant, four-dimensional group field theory (GFT) model on SU(2), whose defining interactions correspond to necklace bubbles (found also in the context of new large-N expansions of tensor models), rather than melonic ones, which are not renormalizable in this case. The respective scaling of different interactions in the vicinity of the Gaussian fixed point is determined by the renormalization group itself. This is possible because the appropriate notion of canonical dimension of the GFT coupling constants takes into account the detailed combinatorial structure of the individual interaction terms. This is one more instance of the peculiarity (and greater mathematical richness) of GFTs with respect to ordinary local quantum field theories. We also explore the renormalization group flow of the model at the nonperturbative level, using functional renormalization group methods, and identify a nontrivial fixed point in various truncations. This model is expected to have a similar structure of divergences as the GFT models of 4D quantum gravity, thus paving the way to more detailed investigations on them.
Time-dependent mean-field theory for x-ray near-edge spectroscopy
NASA Astrophysics Data System (ADS)
Bertsch, G. F.; Lee, A. J.
2014-02-01
We derive equations of motion for calculating the near-edge x-ray absorption spectrum in molecules and condensed matter, based on a two-determinant approximation and Dirac's variational principle. The theory provides an exact solution for the linear response when the Hamiltonian or energy functional has only diagonal interactions in some basis. We numerically solve the equations to compare with the Mahan-Nozières-De Dominicis theory of the edge singularity in metallic conductors. Our extracted power-law exponents are similar to those of the analytic theory, but are not in quantitative agreement. The calculational method can be readily generalized to treat Kohn-Sham Hamiltonians with electron-electron interactions derived from correlation-exchange potentials.
Charm: Cosmic history agnostic reconstruction method
NASA Astrophysics Data System (ADS)
Porqueres, Natalia; Ensslin, Torsten A.
2017-03-01
Charm (cosmic history agnostic reconstruction method) reconstructs the cosmic expansion history in the framework of Information Field Theory. The reconstruction is performed via the iterative Wiener filter from an agnostic or from an informative prior. The charm code allows one to test the compatibility of several different data sets with the LambdaCDM model in a non-parametric way.
Nondestructive assessment of timber bridges using a vibration-based method
Xiping Wang; James P. Wacker; Robert J. Ross; Brian K. Brashaw
2005-01-01
This paper describes an effort to develop a global dynamic testing technique for evaluating the overall stiffness of timber bridge superstructures. A forced vibration method was used to measure the natural frequency of single-span timber bridges in the laboratory and field. An analytical model based on simple beam theory was proposed to represent the relationship...
Constructive tensorial group field theory I: The {U(1)} -{T^4_3} model
NASA Astrophysics Data System (ADS)
Lahoche, Vincent
2018-05-01
The loop vertex expansion (LVE) is a constructive technique using canonical combinatorial tools. It works well for quantum field theories without renormalization, which is the case of the field theory studied in this paper. Tensorial group field theories (TGFTs) are a new class of field theories proposed to quantize gravity. This paper is devoted to a very simple TGFT for rank three tensors with U(1) group and quartic interactions, hence nicknamed -. It has no ultraviolet divergence, and we show, with the LVE, that it is Borel summable in its coupling constant.
Electrorotation and levitation of cells and colloidal particles
Foster, Kenneth R.; Sauer, Friedrich A.; Schwan, Herman P.
1992-01-01
We review dielectrophoretic forces on cells and colloidal particles, emphasizing their use for manipulating and characterizing the electrical properties of suspended particles. Compared with dielectric spectroscopy, these methods offer a measure of independence from electrode artifacts and mixture theory. On the assumption that the particles can be modeled as uniform dielectric objects with effective dielectric properties, a simple theory can be developed for the frequency variation in the field-induced forces. For particles exhibiting counterion polarization, dielectrophoretic forces differ considerably from predictions of this theory at low frequencies, apparently because of double layer phenomena. PMID:19431839
On the characteristics of optimal transfers
NASA Astrophysics Data System (ADS)
Iorfida, Elisabetta
In the past 50 years the scientists have been developing and analysing methods and new algorithms that optimise an interplanetary trajectory according to one or more objectives. Within this field, in 1963 Lawden derived, from Pontryagin's minimum principle, the so-called `primer vector theory'. The main goal of this thesis is to develop a theoretical understanding of Lawden's theory, getting an insight into the optimality of a trajectory when mid-course corrections need to be applied. The novelty of the research is represented by a different approach to the primer vector theory, which simplifies the structure of the problem.
Theory of Thomson scattering in inhomogeneous plasmas
NASA Astrophysics Data System (ADS)
Belyi, V. V.
2018-05-01
A self-consistent kinetic theory of Thomson scattering of an electromagnetic field by a nonuniform plasma is derived. We show that not only the imaginary part, but also the time and space derivatives of the real part of the dielectric susceptibility determine the amplitude and the width of the Thomson scattering spectral lines. As a result of inhomogeneity, these properties become asymmetric with respect to inversion of the sign of the frequency. Our theory provides a method of a remote probing and measurement of electron density gradients in plasma; this is based on the demonstrated asymmetry of the Thomson scattering lines.
Geometrical optics in the near field: local plane-interface approach with evanescent waves.
Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari
2015-01-12
We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.
Nonlinear response of a harmonic diatomic molecule: Algebraic nonperturbative calculation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recamier, Jose; Mochan, W. Luis; Maytorena, Jesus A.
2005-08-15
Even harmonic molecules display a nonlinear behavior when driven by an inhomogeneous field. We calculate the response of single harmonic molecules to a monochromatic time and space dependent electric field E(r,t) of frequency {omega} employing exact algebraic methods. We evaluate the responses at the fundamental frequency {omega} and at successive harmonics 2{omega}, 3{omega}, etc., as a function of the intensity and of the frequency of the field and compare the results with those of first and second order perturbation theory.
Vibrational multiconfiguration self-consistent field theory: implementation and test calculations.
Heislbetz, Sandra; Rauhut, Guntram
2010-03-28
A state-specific vibrational multiconfiguration self-consistent field (VMCSCF) approach based on a multimode expansion of the potential energy surface is presented for the accurate calculation of anharmonic vibrational spectra. As a special case of this general approach vibrational complete active space self-consistent field calculations will be discussed. The latter method shows better convergence than the general VMCSCF approach and must be considered the preferred choice within the multiconfigurational framework. Benchmark calculations are provided for a small set of test molecules.
Coupled fluid-structure interaction. Part 1: Theory. Part 2: Application
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Ohayon, Roger
1991-01-01
A general three dimensional variational principle is obtained for the motion of an acoustic field enclosed in a rigid or flexible container by the method of canonical decomposition applied to a modified form of the wave equation in the displacement potential. The general principle is specialized to a mixed two-field principle that contains the fluid displacement potential and pressure as independent fields. Semidiscrete finite element equations of motion based on this principle are derived and sample cases are given.
Mitigating reentry radio blackout by using a traveling magnetic field
NASA Astrophysics Data System (ADS)
Zhou, Hui; Li, Xiaoping; Xie, Kai; Liu, Yanming; Yu, Yuanyuan
2017-10-01
A hypersonic flight or a reentry vehicle is surrounded by a plasma layer that prevents electromagnetic wave transmission, which results in radio blackout. The magnetic-window method is considered a promising means to mitigate reentry communication blackout. However, the real application of this method is limited because of the need for strong magnetic fields. To reduce the required magnetic field strength, a novel method that applies a traveling magnetic field (TMF) is proposed in this study. A mathematical model based on magneto-hydrodynamic theory is adopted to analyze the effect of TMF on plasma. The mitigating effects of the TMF on the blackout of typical frequency bands, including L-, S-, and C-bands, are demonstrated. Results indicate that a significant reduction of plasma density occurs in the magnetic-window region by applying a TMF, and the reduction ratio is positively correlated with the velocity of the TMF. The required traveling velocities for eliminating the blackout of the Global Positioning System (GPS) and the typical telemetry system are also discussed. Compared with the constant magnetic-window method, the TMF method needs lower magnetic field strength and is easier to realize in the engineering field.
Lunar gravity derived from long-period satellite motion, a proposed method
NASA Technical Reports Server (NTRS)
Ferrari, A. J.
1971-01-01
A method was devised to determine the spherical harmonic coefficients of the lunar gravity field. The method consists of a two-step data reduction and estimation process. Pseudo-Doppler data were generated simulating two different lunar orbits. The analysis included the perturbing effects of the L1 lunar gravity field, the earth, the sun, and solar radiation pressure. Orbit determinations were performed on these data and long-period orbital elements were obtained. The Kepler element rates from these solutions were used to recover L1 lunar gravity coefficients. Overall results of the experiment show that lunar gravity coefficients can be accurately determined and that the method is dynamically consistent with long-period perturbation theory.
Historical evolution of vortex-lattice methods
NASA Technical Reports Server (NTRS)
Deyoung, J.
1976-01-01
A review of the beginning and some orientation of the vortex-lattice method were given. The historical course of this method was followed in conjunction with its field of computational fluid dynamics, spanning the period from L.F. Richardson's paper in 1910 to 1975. The following landmarks were pointed out: numerical analysis of partial differential equations, lifting-line theory, finite-difference method, 1/4-3/4 rule, block relaxation technique, application of electronic computers, and advanced panel methods.
Conformal field theories from deformations of theories with Wn symmetry
NASA Astrophysics Data System (ADS)
Babaro, Juan Pablo; Giribet, Gaston; Ranjbar, Arash
2016-10-01
We construct a set of nonrational conformal field theories that consist of deformations of Toda field theory for s l (n ). In addition to preserving conformal invariance, the theories may still exhibit a remnant infinite-dimensional affine symmetry. The case n =3 is used to illustrate this phenomenon, together with further deformations that yield enhanced Kac-Moody symmetry algebras. For generic n we compute N -point correlation functions on the Riemann sphere and show that these can be expressed in terms of s l (n ) Toda field theory ((N -2 )n +2 ) -point correlation functions.
Perturbative quantum field theory in the framework of the fermionic projector
NASA Astrophysics Data System (ADS)
Finster, Felix
2014-04-01
We give a microscopic derivation of perturbative quantum field theory, taking causal fermion systems and the framework of the fermionic projector as the starting point. The resulting quantum field theory agrees with standard quantum field theory on the tree level and reproduces all bosonic loop diagrams. The fermion loops are described in a different formalism in which no ultraviolet divergences occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sundararaman, Ravishankar; Goddard, III, William A.; Arias, Tomas A.
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solvemore » the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Lastly, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.« less
Sundararaman, Ravishankar; Goddard, William A; Arias, Tomas A
2017-03-21
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the portion of the system treated quantum mechanically changes continuously, with a balancing charge appearing in the continuum electrolyte. A grand-canonical ensemble of electrons at a chemical potential set by the electrode potential is therefore the ideal description of such systems that directly mimics the experimental condition. We present two distinct algorithms: a self-consistent field method and a direct variational free energy minimization method using auxiliary Hamiltonians (GC-AuxH), to solve the Kohn-Sham equations of electronic density-functional theory directly in the grand canonical ensemble at fixed potential. Both methods substantially improve performance compared to a sequence of conventional fixed-number calculations targeting the desired potential, with the GC-AuxH method additionally exhibiting reliable and smooth exponential convergence of the grand free energy. Finally, we apply grand-canonical density-functional theory to the under-potential deposition of copper on platinum from chloride-containing electrolytes and show that chloride desorption, not partial copper monolayer formation, is responsible for the second voltammetric peak.