Science.gov

Sample records for field-induced continuum lowering

  1. Continuum lowering - A new perspective

    NASA Astrophysics Data System (ADS)

    Crowley, B. J. B.

    2014-12-01

    What is meant by continuum lowering and ionization potential depression (IPD) in a Coulomb system depends very much upon precisely what question is being asked. It is shown that equilibrium (equation of state) phenomena and non-equilibrium dynamical processes like photoionization are characterized by different values of the IPD. In the former, the ionization potential of an atom embedded in matter is the difference in the free energy of the many-body system between states of thermodynamic equilibrium differing by the ionization state of just one atom. Typically, this energy is less than that required to ionize the same atom in vacuo. Probably, the best known example of this is the IPD given by Stewart and Pyatt (SP). However, it is a common misconception that this formula should apply directly to the energy of a photon causing photoionization, since this is a local adiabatic process that occurs in the absence of a response from the surrounding plasma. To achieve the prescribed final equilibrium state, in general, additional energy, in the form of heat and work, is transferred between the atom and its surroundings. This additional relaxation energy is sufficient to explain the discrepancy between recent spectroscopic measurements of IPD in dense plasmas and the predictions of the SP formula. This paper provides a detailed account of an analytical approach, based on SP, to calculating thermodynamic and spectroscopic (adiabatic) IPDs in multicomponent Coulomb systems of arbitrary coupling strength with Te ≠ Ti. The ramifications for equilibrium Coulomb systems are examined in order to elucidate the roles of the various forms of the IPD and any possible connection with the plasma microfield. The formulation embodies an analytical equation of state (EoS) that is thermodynamically self-consistent, provided that the bound and free electrons are dynamically separable, meaning that the system is not undergoing pressure ionization. Apart from this restriction, the model is

  2. Measurements of continuum lowering in solid-density plasmas created from elements and compounds

    SciTech Connect

    Ciricosta, O.; Vinko, S. M.; Barbrel, B.; Rackstraw, D. S.; Preston, T. R.; Burian, T.; Chalupský, J.; Cho, B. I.; Chung, H. -K.; Dakovski, G. L.; Engelhorn, K.; Hájková, V.; Heimann, P.; Holmes, M.; Juha, L.; Krzywinski, J.; Lee, R. W.; Toleikis, S.; Turner, J. J.; Zastrau, U.; Wark, J. S.

    2016-05-23

    The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. In this study, we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. Lastly, the results have implications for the standard approaches to the equation of state calculations.

  3. Measurements of continuum lowering in solid-density plasmas created from elements and compounds

    DOE PAGES

    Ciricosta, O.; Vinko, S. M.; Barbrel, B.; ...

    2016-05-23

    The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. In this study, we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffectedmore » by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. Lastly, the results have implications for the standard approaches to the equation of state calculations.« less

  4. Measurements of continuum lowering in solid-density plasmas created from elements and compounds

    PubMed Central

    Ciricosta, O.; Vinko, S. M.; Barbrel, B.; Rackstraw, D. S.; Preston, T. R.; Burian, T.; Chalupský, J.; Cho, B. I.; Chung, H. -K.; Dakovski, G. L.; Engelhorn, K.; Hájková, V.; Heimann, P.; Holmes, M.; Juha, L.; Krzywinski, J.; Lee, R. W.; Toleikis, S.; Turner, J. J.; Zastrau, U.; Wark, J. S.

    2016-01-01

    The effect of a dense plasma environment on the energy levels of an embedded ion is usually described in terms of the lowering of its continuum level. For strongly coupled plasmas, the phenomenon is intimately related to the equation of state; hence, an accurate treatment is crucial for most astrophysical and inertial-fusion applications, where the case of plasma mixtures is of particular interest. Here we present an experiment showing that the standard density-dependent analytical models are inadequate to describe solid-density plasmas at the temperatures studied, where the reduction of the binding energies for a given species is unaffected by the different plasma environment (ion density) in either the element or compounds of that species, and can be accurately estimated by calculations only involving the energy levels of an isolated neutral atom. The results have implications for the standard approaches to the equation of state calculations. PMID:27210741

  5. Experimental Measurements and Density Functional Theory Calculations of Continuum Lowering in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Vinko, Sam

    2014-10-01

    An accurate description of the ionization potential depression (IPD) of ions in plasmas due to their interaction with the environment is a fundamental problem in plasma physics, playing a key role in determining the ionization balance, charge state distribution, opacity and plasma equation of state. Here I present the first experimental investigation of the IPD as a function of ionic charge state in a range of dense Mg, Al and Si plasmas, using the Linac Coherent Light Source X-ray free-electron laser. The measurements show significantly larger IPDs than are predicted by the most commonly used models, such as that of Stewart-Pyatt, or the ion-sphere model of Zimmerman-More. Instead, plasma simulations using finite-temperature density functional theory with excited-state projector augmented-wave potentials show excellent agreement with the experimental results and explain the stronger-than-expected continuum lowering through the electronic structure of the valence states in these strong-coupling conditions, which retain much of their atomic characteristics close to the ion core regions. These results have a profound impact on the understanding and modelling of plasmas over a wide range of warm- and hot-dense matter conditions.

  6. Doing Away with Occupation Probability: A New Way to Model Continuum Lowering at White Dwarf Photosphere Conditions

    NASA Astrophysics Data System (ADS)

    Gomez, Thomas A.; Winget, Donald E.; Montgomery, Michael H.; Kilcrease, Dave; Nagayama, Taisuke

    2016-01-01

    White dwarfs are interesting for a number of applications including studying equations of state, stellar pulsations, and determining the age of the universe.These interesting applications require accurate determination of surface conditions: temperatures and surface gravity (or mass).The most common technique to estimate the temperature and gravity is to find the model spectrun that best fits the observed spectra of a star (known as the spectroscopic method); however, this model rests on our ability to accurately model the hydrogen spectrum at high densities.There are currently disagreements between the spectroscopic method and other techniques to determine mass.We seek to resolve this issue by exploring the continuum lowering (or disappearance of states) of the hydrogen atom.The current formalism, called "occupation probability," defines some criteria for the isolated atom's bound state to be ionized, then extrapolates the continuous spectrum to the same energy threshold.The two are then combined to create the final cross-section.I introduce a new way of calculating the atomic spectrum by doing some averaging of the plasma interaction potential energy (previously used in the physics community) and directly integrating the Schrodinger equation.This technique is a major improvement over the Taylor expansion used to describe the ion-emitter interaction and removes the need of the occupation probability and treats continuum states and discrete states on the same footing in the spectrum calculation.The resulting energy spectrum is in fact many discrete states that when averaged over the electric field distribution in the plasma appears to be a continuum.In the low density limit, the two methods are in agreement, but show some differences at high densities (above 10$^{17} e/cc$) including line shifts near the ``continuum'' edge.

  7. The evolution of organic matter along the lower Amazon River continuum - Óbidos to the ocean

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Keil, R. G.; Medeiros, P. M.; Brito, D.; Cunha, A.; Sawakuchi, H. O.; Moura, J. S.; Yager, P. L.; Krusche, A. V.; Richey, J. E.

    2013-12-01

    The influence of the Amazon River on global hydrologic and biogeochemical cycling is well recognized. The Amazon River provides roughly 16% of the global freshwater supply to the ocean and is a significant source of CO2 to the atmosphere, outgassing 0.5 Pg C y-1 to the atmosphere--a flux roughly equivalent to the amount of carbon 'sequestered' by the Amazon rainforest (Field et al, 1998; Richey et al., 2002; Malhi et al., 2008). However, much of our understanding of the flux of matter from the Amazon River into the Atlantic Ocean (and atmosphere) is limited to measurements made at and upstream of Óbidos, 900 km upstream from the actual river mouth. Further, there are few to no observations documenting the transformation of organic matter in a parcel of water as it travels downstream of Óbidos into the ocean. Here we explore the hydrological and biogeochemical evolution of the lower Amazon River continuum, from Óbidos to the Atlantic Ocean. A suite of dissolved and particulate organic matter (OM) parameters were measured during a series of five river expeditions with stations at Óbidos, the Tapajós tributary, the mouth of the Lago Grande de Curuai floodplain lake, both the north and south channels of the Amazon River mouth near Macapá, and the confluence of the Amazon and Tocantins Rivers near Belém. In addition to bulk carbon isotopic signatures, a suite of biomarkers including dissolved and particulate lignin-derived phenols were measured to trace the sources and degradation history of terrestrial vascular plant derived OM throughout the continuum. Dissolved and particulate lignin phenol concentrations both correlated positively with river discharge in the Amazon River mainstem, with variable export patterns from the tributaries and floodplains. As organic matter travels along the continuum it is degraded by microbial composition, fuelling gross respiration and CO2 outgassing. The flux of organic carbon to the ocean is chemically recalcitrant as a result of

  8. Flood management along the Lower Mississippi and Rhine Rivers (The Netherlands) and the continuum of geomorphic adjustment

    NASA Astrophysics Data System (ADS)

    Hudson, Paul F.; Middelkoop, Hans; Stouthamer, Esther

    2008-10-01

    the 1928 Mississippi River & Tributaries Act have rapidly infilled, with 67% of the lake area converted to wetlands. In comparison, older oxbow lakes located outside of the embanked floodplain have undergone much lower amounts of infilling, averaging 37% of oxbow lake area converted to wetlands. The floodplain geomorphology is further modified by numerous large floodplain borrow pits and the selective removal of fine-grained deposits, primarily created for dike (levee) construction and maintenance. The Dutch Rhine has been managed for flooding for over eight centuries and exhibits specific types of humanized embanked floodplain geomorphology that require a greater period of adjustment. Dike breaches create ponds (wielen) and sandy splay-like deposits, which represent distinctive anthro-geomorphic environments along the margins of embanked floodplains. Channel stabilization by groynes and dikes has resulted in the formation of new floodplains along Rhine distributaries. The trapping of flood sediments within the embanked floodplain has resulted in aggradation that has reduced the inundation capacity of the embanked floodplain. This geomorphic alteration reduced the effectiveness of the existing flood management infrastructure and has stimulated a change towards a new flood management approach designed to "work with the river". The major conclusions are placed within a conceptual model, and illustrate that; 1. in many instances specific flood management options were constrained by the type of floodplain deposit; 2. geomorphic adjustment to flood management occurs along a time-space continuum; 3. flood management initiates positive feedbacks with unintended geomorphic consequences that require further management options to minimize flood risk.

  9. Lower thermospheric nitric oxide concentrations derived from WINDII observations of the green nightglow continuum at 553.1 nm

    NASA Astrophysics Data System (ADS)

    von Savigny, C. H. A.; McDade, I. C.; Shepherd, G. G.; Rochon, Y.

    1999-11-01

    Vertical profiles of nitric oxide in the altitude range 90 to 105 km are derived from 553 nm nightglow continuum measurements made with the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS). The profiles are derived under the assumption that the continuum emission is due entirely to the NO+O air afterglow reaction. Vertical profiles of the atomic oxygen density, which are required to determine the nitric oxide concentrations, are derived from coordinated WINDII measurements of the atomic oxygen OI 557.7 nm nightglow emission. Data coverage for local solar times ranging from 20 h to 04 h, and latitudes ranging from 42°S to 42°N, is achieved by zonally averaging and binning data obtained on 18 nights during a two-month period extending from mid-November 1992 until mid-January 1993. The derived nitric oxide concentrations are significantly smaller than those obtained from rocket measurements of the airglow continuum but they do compare well with model expectations and nitric oxide densities measured using the resonance fluorescence technique on the Solar Mesosphere Explorer satellite. The near-global coverage of the WINDII observations and the similarities to the nitric oxide global morphology established from other satellite measurements strongly suggests that the NO+O reaction is the major source of the continuum near 553 nm and that there is no compelling reason to invoke additional sources of continuum emission in this immediate spectral region.

  10. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  11. Electric field-induced softening of alkali silicate glasses

    SciTech Connect

    McLaren, C.; Heffner, W.; Jain, H.; Tessarollo, R.; Raj, R.

    2015-11-02

    Motivated by the advantages of two-electrode flash sintering over normal sintering, we have investigated the effect of an external electric field on the viscosity of glass. The results show remarkable electric field-induced softening (EFIS), as application of DC field significantly lowers the softening temperature of glass. To establish the origin of EFIS, the effect is compared for single vs. mixed-alkali silicate glasses with fixed mole percentage of the alkali ions such that the mobility of alkali ions is greatly reduced while the basic network structure does not change much. The sodium silicate and lithium-sodium mixed alkali silicate glasses were tested mechanically in situ under compression in external electric field ranging from 0 to 250 V/cm in specially designed equipment. A comparison of data for different compositions indicates a complex mechanical response, which is observed as field-induced viscous flow due to a combination of Joule heating, electrolysis and dielectric breakdown.

  12. Kilometric Continuum Radiation

    NASA Technical Reports Server (NTRS)

    Green, James L.; Boardsen, Scott

    2006-01-01

    Kilometric continuum (KC) is the high frequency component (approximately 100 kHz to approximately 800 kHz) of nonthermal continuum (NTC). Unlike the lower frequency portion of NTC (approximately 5 kHz to approximately 100 kHz) whose source is around the dawn sector, the source of KC occurs at all magnetic local times. The latitudinal beaming of KC as observed by GEOTAIL is, for most events, restricted to plus or minus 15 degrees magnetic latitude. KC has been observed during periods of both low and strong geomagnetic activity, with no significant correlation of wave intensity with K(sub p), index. However statistically the maximum observed frequency of KC emission tends to increase with K(sub p) index, the effect is more pronounced around solar maximum, but is also detected near solar minimum. There is strong evidence that the source region of KC is from the equatorial plasmapause during periods when a portion of the plasmapause moves significantly inwards from its nominal position. Case studies have shown that KC emissions are nearly always associated with plasmaspheric notches, shoulders, and tails. There is a recent focus on trying to understand the banded frequency structure of this emission and its relationship to plasmaspheric density ducts and irregularities in the source region.

  13. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  14. The Suicide Prevention Continuum

    PubMed Central

    Caldwell, Dawn

    2010-01-01

    The suicide prevention continuum illustrates a practical approach to the complex issue of suicide prevention. The continuum evolved from discussions with two Aboriginal communities in Atlantic Canada about suicide and the different types of interventions available. The continuum offers a framework and reference tool to differentiate between the different stages of suicide risk. It illustrates where the Aboriginal Community Youth Resilience Network (ACYRN) fits into suicide prevention and how it contributes to prevention knowledge, capacity building, and policy development. PMID:20835376

  15. Oral Language Continuum.

    ERIC Educational Resources Information Center

    Fresno County Dept. of Education, Fresno, CA.

    An oral language continuum designed to help elementary students develop techniques for a variety of speech situations, learn to listen, and learn to be aware of the responsibility of the speaker is presented. The continuum is divided into four sections. Student needs, implications for teaching, and suggested activities are arranged sequentially.…

  16. Surface Modifications by Field Induced Diffusion

    PubMed Central

    Olsen, Martin; Hummelgård, Magnus; Olin, Håkan

    2012-01-01

    By applying a voltage pulse to a scanning tunneling microscope tip the surface under the tip will be modified. We have in this paper taken a closer look at the model of electric field induced surface diffusion of adatoms including the van der Waals force as a contribution in formations of a mound on a surface. The dipole moment of an adatom is the sum of the surface induced dipole moment (which is constant) and the dipole moment due to electric field polarisation which depends on the strength and polarity of the electric field. The electric field is analytically modelled by a point charge over an infinite conducting flat surface. From this we calculate the force that cause adatoms to migrate. The calculated force is small for voltage used, typical 1 pN, but due to thermal vibration adatoms are hopping on the surface and even a small net force can be significant in the drift of adatoms. In this way we obtain a novel formula for a polarity dependent threshold voltage for mound formation on the surface for positive tip. Knowing the voltage of the pulse we then can calculate the radius of the formed mound. A threshold electric field for mound formation of about 2 V/nm is calculated. In addition, we found that van der Waals force is of importance for shorter distances and its contribution to the radial force on the adatoms has to be considered for distances smaller than 1.5 nm for commonly used voltages. PMID:22253894

  17. Field-induced superdiffusion and dynamical heterogeneity

    NASA Astrophysics Data System (ADS)

    Gradenigo, Giacomo; Bertin, Eric; Biroli, Giulio

    2016-06-01

    By analyzing two kinetically constrained models of supercooled liquids we show that the anomalous transport of a driven tracer observed in supercooled liquids is another facet of the phenomenon of dynamical heterogeneity. We focus on the Fredrickson-Andersen and the Bertin-Bouchaud-Lequeux models. By numerical simulations and analytical arguments we demonstrate that the violation of the Stokes-Einstein relation and the field-induced superdiffusion observed during a long preasymptotic regime have the same physical origin: while a fraction of probes do not move, others jump repeatedly because they are close to local mobile regions. The anomalous fluctuations observed out of equilibrium in the presence of a pulling force ɛ ,σx2(t ) = - 2˜t3 /2 , which are accompanied by the asymptotic decay αɛ(t ) ˜t-1 /2 of the non-Gaussian parameter from nontrivial values to zero, are due to the splitting of the probes population in the two (mobile and immobile) groups and to dynamical correlations, a mechanism expected to happen generically in supercooled liquids.

  18. Continuum radiation at Uranus

    SciTech Connect

    Kurth, W.S.; Gurnett, D.A. ); Desch, M.D. )

    1990-02-01

    Uranus has proven to be a radio source of remarkable complexity with as many as six distinctly different types of emission. One Uranian radio emission which has thus far escaped attention is an analog of continuum radiation at Earth, Jupiter, and Saturn. The emission is found to be propagating in the ordinary mode in the range of one to a few kHz on the inbound leg of the Voyager 2 encounter, shortly after the magnetopause crossing. The continuum radiation spectrum at Uranus also includes bands with frequencies as high as 12 kHz or greater on both the inbound and outbound legs. The Uranian continuum radiation is notably weak, making it more like that detected at Saturn than the extremely intense Jovian continuum radiation. The Uranian emission shows some evidence for narrow-band components lying in the same frequency regime as the continuum, completing the analogy with the other planets, which also show narrow-band components superimposed on the continuum spectrum. The authors argue that the low intensity of the Uranian continuum is most likely related to the lack of a density cavity within the Uranian magnetosphere that is deep relative to the solar wind plasma density.

  19. Examining the Psychosis Continuum

    PubMed Central

    DeRosse, Pamela; Karlsgodt, Katherine H.

    2015-01-01

    The notion that psychosis may exist on a continuum with normal experience has been proposed in multiple forms throughout the history of psychiatry. However, in recent years there has been an exponential increase in efforts aimed at elucidating what has been termed the ‘psychosis continuum’. The present review seeks to summarize some of the more basic characteristics of this continuum and to present some of the recent findings that provide support for its validity. While there is still considerable work to be done, the emerging data holds considerable promise for advancing our understanding of both risk and resilience to psychiatric disorders characterized by psychosis. PMID:26052479

  20. Electric field induced percolation in microemulsions: simulation of the electric conductivity

    NASA Astrophysics Data System (ADS)

    Ilgenfritz, G.; Runge, F.

    1992-02-01

    Structure changes can be induced by high electric fields in microemulsions which bring the system from a nonconducting state to a highly conducting state. We report conductivity and electric birefringence measurements in a microemulsion, stabilized by the nonionic surfactant Igepal CO-520 (10 wt% 0.01 M KCl/40% n-hexane, 40% c-hexane/ 10% Igepal). Based on the experimental findings we investigate two models which may be relevant for understanding the field induced percolation behavior. Computer simulations of the electric conductivity, using the random walk approach, are performed with the following heterogeneous systems: (a) statistically distributed conducting Ising chains in a nonconducting matrix, (b) nonconducting overlapping spheres in a conducting medium. Both systems are capable of modelling certain aspects of the observed percolation. The continuum percolation with overlapping spheres puts special emphasis on the Bruggeman equation of the conductivity in dispersed systems, which is found to be valid in a much wider range than might have been thought before.

  1. The Continuum of Listening

    ERIC Educational Resources Information Center

    Rud, A. G.; Garrison, Jim

    2007-01-01

    The distinction between "apophatic" and "cataphatic" listening is defined and analyzed. "Apophatic" listening is more or less devoid of cognitivist claims, whereas "cataphatic" listening involves cognition and questioning. Many of the papers in this volume are discussed along the continuum determined by these two types of listening.…

  2. The Creativity Continuum

    ERIC Educational Resources Information Center

    Walling, Donovan R.

    2009-01-01

    Children are innately creative, and the youngest often are the most original because they have yet to be influenced by the creativity of others. One way to think of creative expression is as a continuum. At one end is originality, or the creation of something wholly new, "original." At the other end is replication, or the re-creation of something…

  3. Electric field induced deformation of sessile drops

    NASA Astrophysics Data System (ADS)

    Corson, Lindsey; Tsakonas, Costas; Duffy, Brian; Mottram, Nigel; Brown, Carl; Wilson, Stephen

    2014-11-01

    The ability to control the shape of a drop with the application of an electric field has been exploited for many technological applications including measuring surface tension, producing an optical display device, and optimising the optical properties of microlenses. In this work we consider, both theoretically and experimentally, the deformation of pinned sessile drops with contact angles close to either 0° or 90° resting on the lower substrate inside a parallel plate capacitor due to an A.C. electric field. Using both asymptotic and numerical approaches we obtain predictive equations for the static and dynamic drop shape deformations as functions of the key experimental parameters (drop size, capacitor plate separation, electric field magnitude and contact angle). The asymptotic results agree well with the experimental results for a range of liquids. We gratefully acknowledge the financial support of EPSRC via research Grants EP/J009865 and EP/J009873.

  4. Field-induced magnetic states in holmium tetraboride

    NASA Astrophysics Data System (ADS)

    Brunt, D.; Balakrishnan, G.; Wildes, A. R.; Ouladdiaf, B.; Qureshi, N.; Petrenko, O. A.

    2017-01-01

    A study of the zero field and field induced magnetic states of the frustrated rare earth tetraboride HoB4 has been carried out using single crystal neutron diffraction complemented by magnetization measurements. In zero field, HoB4 shows magnetic phase transitions at TN 1=7.1 K to an incommensurate state with a propagation vector (δ ,δ ,δ') , where δ =0.02 and δ'=0.43 and at TN 2=5.7 K to a noncollinear commensurate antiferromagnetic structure. Polarized neutron diffraction measurements in zero field have revealed that the incommensurate reflections, albeit much reduced in intensity, persist down to 1.5 K despite antiferromagnetic ordering at 5.7 K. At lower temperatures, application of a magnetic field along the c axis initially re-establishes the incommensurate phase as the dominant magnetic state in a narrow field range, just prior to HoB4 ordering with an up-up-down ferrimagnetic structure characterized by the (h k 1/3 ) -type reflections between 18 and 24 kOe. This field range is marked by the previously reported M /Msat=1/3 magnetization plateau, which we also see in our magnetization measurements. The region between 21 and 33 kOe is characterized by the increase in the intensity of the antiferromagnetic reflections, such as (100), the maximum of which coincides with the appearance of the narrow magnetization plateau with M /Msat≈3/5 . Further increase of the magnetic field results in the stabilization of a polarized state above 33 kOe, while the incommensurate reflections are clearly present in all fields up to 59 kOe. We propose the H -T phase diagram of HoB4 for the H ∥c containing both stationary and transitionary magnetic phases which overlap and show significant history dependence.

  5. Isostaticity in Cosserat Continuum

    DTIC Science & Technology

    2012-01-01

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Isostaticity, Cosserat, Granular, Force chains Antoinette ...TELEPHONE NUMBER Antoinette Tordesillas 038-344-9685 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18...Cosserat continuum Antoinette Tordesillas · Jingyu Shi · John F. Peters Received: 29 August 2011 / Published online: 16 March 2012 © Springer-Verlag 2012

  6. Continuum Nuclear Structure via

    NASA Astrophysics Data System (ADS)

    Templon, Jeffrey A.

    1993-01-01

    Nuclear spectra are generally well-understood for excitation energies below the particle-emission threshold. Above this threshold, excited states decay preferentially by emission of nucleons or nucleon clusters. These resonant excitations are short-lived, producing continuum spectra of overlapping states accompanied by non-resonant, probe -dependent background processes. The resonant excitations' properties are difficult to deduce from these spectra. Many important advances in nuclear physics require understanding of such excitations. (e,e^' X) coincidence experiments have established the utility of angular correlation measurements of particle (X) emitted by decaying resonances for continuum studies. However, electron-induced reactions excite only a subset of the total nuclear response. Hadronic probes are necessary for a complete study. This dissertation describes a (p,p^' X) coincidence experiment, the first at intermediate energies where microscopic theories apply. The reaction's utility was investigated and applied to ^{12 }C. The experiment was performed using a 156 MeV polarized proton beam. A magnetic spectrometer was used to detect scattered protons. An array of eight silicon-detector telescopes was constructed and used to measure the angular correlation of charged particles (X). Inclusive (p,p ^') and exclusive (p,p ^' X) data were acquired simultaneously. The momentum transfer range (0.6<= q<= 1.2 fm^{-1}) was covered in three spectrometer angle settings. The excitation energy range spanned the region from sharp states to quasifree processes. Analyzing powers and cross sections were measured for both inclusive and exclusive data. A simple reaction model was developed which suggested a Legendre-polynomial series should describe the sigma(theta_{X}) data. The model relates the polynomial coefficients to nuclear structure information. A result of this work is that this series was found to satisfactorily describe the data and provided new information about

  7. The Response Continuum

    SciTech Connect

    Caltagirone, Sergio; Frincke, Deborah A.

    2005-06-17

    Active response is a sequence of actions per- formed speci¯cally to mitigate a detected threat. Response decisions always follow detection: a decision to take `no ac- tion' remains a response decision. However, active response is a complex subject that has received insu±cient formal attention. To facilitate discussion, this paper provides a framework that proposes a common de¯nition, describes the role of response and the major issues surrounding response choices, and ¯nally, provides a model for the process of re- sponse. This provides a common starting point for discus- sion of the full response continuum as an integral part of contemporary computer security.

  8. Field-Induced Superconductivity in Electric Double Layer Transistors

    NASA Astrophysics Data System (ADS)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    2014-03-01

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be possible in principle but impossible in practice. However, in the past several years, this limitation has been overcome by the introduction of an electrochemical concept, and electric-field-induced superconductivity has been realized. In the electric double layer (EDL) formed at the electrochemical interfaces, an extremely high electric field is generated and hence high-density charge carriers sufficient to induce superconductivity exist and are collectively used as a charge accumulation device known as an EDL capacitor. Field-induced superconductivity has been used to establish the relationship between Tc and carrier density and can now be used to search for new superconductors. Here, we review electric-field-induced superconductivity using an FET device, with a particular focus on the latest advances in EDL transistors.

  9. Magnetic-field-induced bistability in resonant tunneling

    NASA Astrophysics Data System (ADS)

    Brown, S. A.; Macks, L. D.

    1998-07-01

    We report an unusual magnetic-field-induced bistability in the current-voltage characteristic of an asymmetric double-barrier resonant tunneling structure. It is suggested that this bistability is the experimental manifestation of self-sustained current oscillations that have recently been predicted by Orellana, Anda, and Claro [Phys. Rev. Lett. 79, 1118 (1997)].

  10. Solar radio continuum storms and a breathing magnetic field model

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Radio noise continuum emissions observed in metric and decametric wave frequencies are, in general, associated with actively varying sunspot groups accompanied by the S-component of microwave radio emissions. These continuum emission sources, often called type I storm sources, are often associated with type III burst storm activity from metric to hectometric wave frequencies. This storm activity is, therefore, closely connected with the development of these continuum emission sources. It is shown that the S-component emission in microwave frequencies generally precedes, by several days, the emission of these noise continuum storms of lower frequencies. In order for these storms to develop, the growth of sunspot groups into complex types is very important in addition to the increase of the average magnetic field intensity and area of these groups. After giving a review on the theory of these noise continuum storm emissions, a model is briefly considered to explain the relation of the emissions to the storms.

  11. Field-induced phase transitions and reversible field-induced inversion of chirality in tilted smectic phases of bent-core mesogens

    NASA Astrophysics Data System (ADS)

    Pelzl, G.; Schröder, M. W.; Eremin, A.; Diele, S.; Das, B.; Grande, S.; Kresse, H.; Weissflog, W.

    2006-12-01

    Three homologous achiral five-ring bent-core mesogens are presented where 4-chlororesorcinol is the central core and the aromatic rings are linked by ester groups. These compounds form smectic phases with a tilted arrangement of the molecules (tilt angle ≈ 45°). On cooling the isotropic liquid this phase adopts a fan-like texture which shows for two homologues at relatively high electric fields ( 25-35V μm-1) an antiferroelectric electro-optical response based on the collective rotation of the molecules around their long axes. At lower temperature the application of a sufficiently high electric field leads to a continuous transition into a non-birefringent texture which exhibits randomly distributed domains of opposite handedness. These domains can be reversibly switched into a state of opposite chirality by reversal of the field polarity. This switching is bistable and shows a current response typical for a ferroelectric ground state. The possible mechanism of the field-induced phase transition, of the ferroelectric switching and of the field-induced inversion of the chirality is discussed on the base of XRD, 13C- and 1H-NMR investigations, dielectric and electro-optical measurements.

  12. Fundamental Studies of Electric-Field-Induced Coherent Raman Scattering

    DTIC Science & Technology

    2011-06-07

    mechanisms of nanosecond- pulsed dielectric barrier discharges generated in open air. Our experimental observations have revealed that, in the pre...dynamics in nanosecond- pulsed discharges . a) Electric-field-induced coherent Raman scattering (E-CRS) In this section, I describe the...the electric field in hydrogen. With E-CRS method, our group has revealed very fast discharge dynamics in repetitively pulsed nanosecond discharges [4

  13. Field-induced stacking transition of biofunctionalized trilayer graphene

    NASA Astrophysics Data System (ADS)

    Masato Nakano, C.; Sajib, Md Symon Jahan; Samieegohar, Mohammadreza; Wei, Tao

    2016-02-01

    Trilayer graphene (TLG) is attracting a lot of attention as their stacking structures (i.e., rhombohedral vs. Bernal) drastically affect electronic and optical properties. Based on full-atom molecular dynamics simulations, we here predict electric field-induced rhombohedral-to-Bernal transition of TLG tethered with proteins. Furthermore, our simulations show that protein's electrophoretic mobility and diffusivity are enhanced on TLG surface. This phenomenon of controllable TLG stacking transition will contribute to various applications including biosensing.

  14. Continuum Modeling of Facet Evolution

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel

    2000-03-01

    Standard continuum models of surface dynamics are very useful for studying thin film evolution on the micron length scale. Unfortunately, they are inadequate below the roughening transition, since they do not appropriately describe faceting. Our goal is to propose a continuum approach which deals with facet dynamics in a physically accurate way. We studied in detail the dynamics of faceting in simple submicron surface structures [1], and proposed two approaches for the development of continuum models. First, we rigorously derived continuum kinetic models of the systems of interest, starting from step flow models. These models break down at singular points, which we identify as facet edges. The models are not applicable on facets, and the surface profile is obtained as a solution of the continuum model with boundary conditions at the singular points. Secondly, we showed [2] that if the existence of both steps and anti-steps in regions of small surface slope is taken into account, it is possible to construct continuum models that are valid even on facets. The solutions of both types of continuum models are in excellent agreement with step flow models. The resulting surface profiles are of relevance to experiments on decay of one dimensional periodic gratings. Our work points to a possible general continuum model for an accurate description of kinetics of crystalline surfaces below the roughening transition. [1] N. Israeli and D. Kandel, Phys. Rev. Lett. 80, 3300 (1998); N. Israeli and D. Kandel, Phys. Rev. B 60, 5946 (1999). [2] N. Israeli and D. Kandel, preprint.

  15. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  16. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  17. Theory of inelastic neutron scattering in a field-induced spin-nematic state

    NASA Astrophysics Data System (ADS)

    Smerald, Andrew; Ueda, Hiroaki T.; Shannon, Nic

    2015-05-01

    We develop a theory of spin excitations in a field-induced spin-nematic state, and use it to show how a spin-nematic order can be indentified using inelastic neutron scattering. We concentrate on two-dimensional frustrated ferromagnets, for which a two-sublattice, bond-centered spin-nematic state is predicted to exist over a wide range of parameters. First, to clarify the nature of spin-excitations, we introduce a soluble spin-1 model, and use this to derive a continuum field theory, applicable to any two-sublattice spin-nematic state. We then parameterize this field theory, using diagrammatic calculations for a realistic microscopic model of a spin-1/2 frustrated ferromagnet, and show how it can be used to make predictions for inelastic neutron scattering. As an example, we show quantitative predictions for inelastic scattering of neutrons from BaCdVO(PO 4)2 , a promising candidate to realize a spin-nematic state at an achievable h ˜4 T. We show that in this material it is realistic to expect a ghostly Goldstone mode, signalling spin-nematic order, to be visible in experiment.

  18. Magnetic field induced differential neutron phase contrast imaging

    SciTech Connect

    Strobl, M.; Treimer, W.; Walter, P.; Keil, S.; Manke, I.

    2007-12-17

    Besides the attenuation of a neutron beam penetrating an object, induced phase changes have been utilized to provide contrast in neutron and x-ray imaging. In analogy to differential phase contrast imaging of bulk samples, the refraction of neutrons by magnetic fields yields image contrast. Here, it will be reported how double crystal setups can provide quantitative tomographic images of magnetic fields. The use of magnetic air prisms adequate to split the neutron spin states enables a distinction of field induced phase shifts and these introduced by interaction with matter.

  19. Electric field induced by vortex transport in percolation superconductors

    NASA Astrophysics Data System (ADS)

    Kuz'min, Yu. I.

    2016-10-01

    The influence of fractal normal phase clusters on the electric field induced by the flow and creep of the magnetic flux in percolation superconductors has been considered. The current-voltage characteristics of such superconductors with allowance for the influence of the fractal dimension of cluster boundaries and the pinning barrier height have been obtained. The vortex dynamics in percolation superconductors with a fractal cluster structure in a viscous flow of the magnetic flux, the Anderson-Kim creep, and the collective flux creep has been analyzed. It has been discovered that the fractality of normal phase clusters reduces the electric field arising in the initial stage of the resistive transition.

  20. The Paranoid-Depressive Continuum

    ERIC Educational Resources Information Center

    Johnson, Betty J.

    1977-01-01

    Few investigators have attempted to lay a conceptual base for comparative studies of paranoia and depression within a single general framework. The paranoid-depressive continuum is an attempt to develop such a framework. (Author)

  1. Density-functional-theory study of the electric-field-induced second harmonic generation (EFISHG) of push pull phenylpolyenes in solution

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Cappelli, Chiara; Sałek, Paweł; Ågren, Hans; Helgaker, Trygve; Ruud, Kenneth

    2006-07-01

    Density-functional theory and the polarizable continuum model have been used to calculate the electric-field-induced second harmonic generation of a series of push-pull phenylpolyenes in chloroform solution. The calculations have been performed using both the Becke 3-parameter Lee-Yang-Parr functional and the recently developed Coulomb-attenuated method functional. Solvation has been investigated by examining the effects of the reaction field, non-equilibrium solvation, geometry relaxation, and cavity field. The inclusion of solvent effects leads to significantly better agreement with experimental observations.

  2. Field-induced structure of confined ferrofluid emulsion

    SciTech Connect

    Lawrence, E.M.; Ivey, M.L.; Flores, G.A.; Liu, J. . Dept. of Physics and Astronomy); Bibette, J. ); Richard, J. )

    1994-09-01

    Field-induced phase behavior of a confined monodisperse ferrofluid emulsion was studied using optical microscopy, light transmission, and static light scattering techniques. Upon application of magnetic field, randomly-dispersed magnetic emulsion droplets form solid structures at [lambda] = 1.5, where [lambda] is defines as the ratio of the dipole-dipole interaction energy to the thermal energy at room temperature. The new solid phase consists of either single droplet chains, columns, or worm-like clusters, depending on the volume fraction, cell thickness and rate of field application. For the column phase, an equilibrium structure of equally-sized and spaced columns was observed. The measurements taken for cell thickness 5[mu]m [<=] L [<=] 500 [mu]m and volume fraction 0.04 show the column spacing to be reasonably described by d = 1.49 L[sup 0.34].

  3. Field-induced rectification in rutile single crystals.

    NASA Astrophysics Data System (ADS)

    Jameson, John R.; Fukuzumi, Yoshiaki; Tsunoda, Koji; Wang, Zheng; Griffin, Peter B.; Nishi, Yoshio

    2007-03-01

    A previously unknown resistive memory effect is reported in rutile titanium dioxide. Two Pt electrodes were placed on the surface of a rutile crystal, and a large voltage was applied between them. Afterwards, the device allowed current to pass in the direction of the voltage, but not in the other direction. The orientation of this rectification could then be switched by applying a large voltage of opposite sign. The effect was observed with electrodes on the (100) or (110) surfaces, but not the (001) surface. A plausible explanation is the field-induced motion of oxygen vacancies, which the large voltage might cause to pile up under the negative electrode, eliminating a Schottky barrier at that interface, but leaving a Schottky at the positive electrode intact. Parallels are drawn to other memory effects in titanium dioxide.

  4. Direct observations of field-induced assemblies in magnetite ferrofluids

    NASA Astrophysics Data System (ADS)

    Mousavi, N. S. Susan; Khapli, Sachin D.; Kumar, Sunil

    2015-03-01

    Evolution of microstructures in magnetite-based ferrofluids with weak dipolar moments (particle size ≤ 10 nm) is studied with an emphasis on examining the effects of particle concentration (ϕ) and magnetic field strength (H) on the structures. Nanoparticles are dispersed in water at three different concentrations, ϕ = 0.15%, 0.48%, and 0.59% (w/v) [g/ml%] and exposed to uniform magnetic fields in the range of H = 0.05-0.42 T. Cryogenic transmission electron microscopy is employed to provide in-situ observations of the field-induced assemblies in such systems. As the magnetic field increases, the Brownian colloids are observed to form randomly distributed chains aligned in the field direction, followed by head-to-tail chain aggregation and then lateral aggregation of chains termed as zippering. By increasing the field in low concentration samples, the number of chains increases, though their length does not change dramatically. Increasing concentration increases the length of the linear particle assemblies in the presence of a fixed external magnetic field. Thickening of the chains due to zippering is observed at relatively high fields. Through a systematic variation of concentration and magnetic field strength, this study shows that both magnetic field strength and change in concentration can strongly influence formation of microstructures even in weak dipolar systems. Additionally, the results of two commonly used support films on electron microscopy grids, continuous carbon and holey carbon films, are compared. Holey carbon film allows us to create local regions of high concentrations that further assist the development of field-induced assemblies. The experimental observations provide a validation of the zippering effect and can be utilized in the development of models for thermophysical properties such as thermal conductivity.

  5. Lagrangian continuum dynamics in ALEGRA.

    SciTech Connect

    Wong, Michael K. W.; Love, Edward

    2007-12-01

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  6. Submillimeter Continuum Observations of Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    The aim of this proposal was to study the submillimeter continuum emission from comets. The study was based mainly on the exploitation of the world's leading submillimeter telescope, the JCMT (James Clerk Maxwell Telescope) on Mauna Kea. Submillimeter wavelengths provide a unique view of cometary physics for one main reason. The cometary size distribution is such that the scattering cross-section is dominated by small dust grains, while the mass is dominated by the largest particles. Submillimeter continuum radiation samples cometary particles much larger than those sampled by more common observations at shorter (optical and infrared) wavelengths and therefore provides a nearly direct measure of the cometary dust mass.

  7. Field induced UV-alignment method for a zero pre-tilt liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Oh, Seung-Won; Park, Jun-Hee; Yoon, Tae-Hoon

    2016-09-01

    Recently, photo-alignment technology has been the focus of research efforts because lowering the pre-tilt angle is essential for complete elimination of the off-axis light leakage. However, even though photo-alignment can provide zero pre-tilt angle, it has not yet been widely applied in mass production because of its weak surface anchoring, high curing energy, and strong image sticking. In this paper, we demonstrate that the zero pre-tilt angle can be obtained by employing the field-induced UV-alignment method. We have shown electro-optical characteristics and parameters related to the image quality of a fringe-field switching cell fabricated using the proposed method as functions of the monomer concentration and the UV irradiation time.

  8. Hall field-induced resistance oscillations in MgZnO/ZnO heterostructures

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Zudov, M. A.; Falson, J.; Kozuka, Y.; Tsukazaki, A.; Kawasaki, M.; von Klitzing, K.; Smet, J.

    2017-01-01

    We report on nonlinear magnetotransport in a two-dimensional electron gas hosted in a MgZnO/ZnO heterostructure. Upon application of a direct current, we observe pronounced Hall field-induced resistance oscillations (HIRO), which are well known from experiments on high-mobility GaAs/AlGaAs quantum wells. The unique sensitivity of HIRO to the short-range component of the disorder potential allows us to unambiguously establish that the mobility of our MgZnO/ZnO heterostructure is limited by impurities residing within or near the two-dimensional (2D) channel. This demonstration that HIRO can be realized in a system with a much lower mobility, much higher density, and much larger effective mass than in previously studied systems highlights the remarkable universality of the phenomenon and its great promise for use in studies of a wide variety of emerging 2D materials.

  9. Parameter identification in continuum models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.

    1983-01-01

    Approximation techniques for use in numerical schemes for estimating spatially varying coefficients in continuum models such as those for Euler-Bernoulli beams are discussed. The techniques are based on quintic spline state approximations and cubic spline parameter approximations. Both theoretical and numerical results are presented.

  10. A telluric method for natural field induced polarization studies

    NASA Astrophysics Data System (ADS)

    Zorin, Nikita; Epishkin, Dmitrii; Yakovlev, Andrey

    2016-12-01

    Natural field induced polarization (NFIP) is a branch of low-frequency electromagnetics designed for detection of buried polarizable objects from magnetotelluric (MT) data. The conventional approach to the method deals with normalized MT apparent resistivity. We show that it is more favorable to extract the IP effect from solely electric (telluric) transfer functions instead. For lateral localization of polarizable bodies it is convenient to work with the telluric tensor determinant, which does not depend on the rotation of the receiving electric dipoles. Applicability of the new method was verified in the course of a large-scale field research. The field work was conducted in a well-explored area in East Kazakhstan known for the presence of various IP sources such as graphite, magnetite, and sulfide mineralization. A new multichannel processing approach allowed the determination of the telluric tensor components with very good accuracy. This holds out a hope that in some cases NFIP data may be used not only for detection of polarizable objects, but also for a rough estimation of their spectral IP characteristics.

  11. Magnetic field induced motion behavior of gas bubbles in liquid

    PubMed Central

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-01-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields. PMID:26867515

  12. Magnetic field induced motion behavior of gas bubbles in liquid

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Pei, Yu; Ma, Ze; Xu, Huachi; Chen, Dongfang

    2016-02-01

    The oxygen evolution reaction generally exists in electrochemical reactions. It is a ubiquitous problem about how to control the motion of oxygen bubbles released by the reaction. Here we show that oxygen bubbles during oxygen evolution reaction exhibit a variety of movement patterns in the magnetic field, including directional migration and rotational motion of oxygen bubbles when the magnet in parallel with the electrode, and exclusion movement of oxygen bubbles when the magnet perpendicular to the electrode. The results demonstrate that the direction of oxygen bubbles movement is dependent upon the magnet pole near the electrode, and the kinetics of oxygen bubbles is mainly proportional to intensity of the electromagnetic field. The magnetic-field induced rotational motion of oxygen bubbles in a square electrolyzer can increase liquid hydrodynamics, thus solve the problems of oxygen bubbles coalescence, and uneven distribution of electrolyte composition and temperature. These types of oxygen bubbles movement will not only improve energy saving and metal deposition for energy storage and metal refinery, but also propel object motion in application to medical and martial fields.

  13. Electric-field-induced superconductivity in an insulator.

    PubMed

    Ueno, K; Nakamura, S; Shimotani, H; Ohtomo, A; Kimura, N; Nojima, T; Aoki, H; Iwasa, Y; Kawasaki, M

    2008-11-01

    Electric field control of charge carrier density has long been a key technology to tune the physical properties of condensed matter, exploring the modern semiconductor industry. One of the big challenges is to increase the maximum attainable carrier density so that we can induce superconductivity in field-effect-transistor geometry. However, such experiments have so far been limited to modulation of the critical temperature in originally conducting samples because of dielectric breakdown. Here we report electric-field-induced superconductivity in an insulator by using an electric-double-layer gating in an organic electrolyte. Sheet carrier density was enhanced from zero to 10(14) cm(-2) by applying a gate voltage of up to 3.5 V to a pristine SrTiO(3) single-crystal channel. A two-dimensional superconducting state emerged below a critical temperature of 0.4 K, comparable to the maximum value for chemically doped bulk crystals, indicating this method as promising for searching for unprecedented superconducting states.

  14. Possible Electric-Field-Induced Superconducting States in Doped Silicene

    PubMed Central

    Zhang, Li-Da; Yang, Fan; Yao, Yugui

    2015-01-01

    Silicene has been synthesized recently, with experimental evidence showing possible superconductivity in the doped case. The noncoplanar low-buckled structure of this material inspires us to study the pairing symmetry of the doped system under a perpendicular external electric field. Our study reveals that the electric field induces an interesting quantum phase transition from the singlet chiral d + id′-wave superconducting phase to the triplet f-wave one. The emergence of the f-wave pairing results from the sublattice-symmetry-breaking caused by the electric field and the ferromagnetic-like intra-sublattice spin correlations at low dopings. Due to the enhanced density of states, the superconducting critical temperature of the system is enhanced by the electric field remarkably. Furthermore, we design a particular dc SQUID experiment to detect the quantum phase transition predicted here. Our results, if confirmed, will inject a new vitality to the familiar Si-based industry through adopting doped silicene as a tunable platform to study different types of exotic unconventional superconductivities. PMID:25644143

  15. Homogenization of a Cauchy continuum towards a micromorphic continuum

    NASA Astrophysics Data System (ADS)

    Hütter, Geralf

    2017-02-01

    The micromorphic theory of Eringen and Mindlin, including special cases like strain gradient theory or Cosserat theory, is widely used to model size effects and localization phenomena. The heuristic construction of such theories based on thermodynamic considerations is well-established. However, the identification of corresponding constitutive laws and of the large number of respective constitutive parameters limits the practical application of such theories. In the present contribution, a closed procedure for the homogenization of a Cauchy continuum at the microscale towards a fully micromorphic continuum is derived including explicit definitions of all involved generalized macroscopic stress and deformation measures. The boundary value problem to be solved on the microscale is formulated either for using static or kinematic boundary conditions. The procedure is demonstrated with an example.

  16. Continuum effects in nuclear transfer reactions

    SciTech Connect

    Marta, H. D.; Donangelo, R.; Fernandez Niello, J. O.; Pacheco, A. J.

    2007-02-12

    We develop a semiclassical calculation for nuclear transfer reactions where the continuum is treated in an exact way, and compare the results with those of a treatment in which the continuum is neglected. We conclude that the influence of the continuum is very important for weakly bound reactants.

  17. Mathematical Modeling in Continuum Mechanics

    NASA Astrophysics Data System (ADS)

    Temam, Roger; Miranville, Alain

    2005-06-01

    Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

  18. ALMA Band 8 Continuum Emission from Orion Source I

    NASA Astrophysics Data System (ADS)

    Hirota, Tomoya; Machida, Masahiro N.; Matsushita, Yuko; Motogi, Kazuhito; Matsumoto, Naoko; Kim, Mi Kyoung; Burns, Ross A.; Honma, Mareki

    2016-12-01

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest-southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperature is evaluated to be 700-800 K. It is much lower than that in the case of proton-electron or H- free-free radiations. Our data are consistent with the latest ALMA results by Plambeck & Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.

  19. Continuum description for jointed media

    SciTech Connect

    Thomas, R.K.

    1982-04-01

    A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented.

  20. Continuum radiation in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.

  1. Continuum representations of cellular solids

    NASA Astrophysics Data System (ADS)

    Neilsen, M. K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics, and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  2. Continuum representations of cellular solids

    SciTech Connect

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  3. 77 FR 45367 - Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... URBAN DEVELOPMENT Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application... subject proposal. Pre-established communities, called Continuums of Care (CoC), will complete the Exhibit 1 of the Continuum of Care Homeless Assistance application which collects data about the...

  4. Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2017-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Interestingly, CDT shows striking analogies to other branches of continuum mechanics. The present contribution demonstrates this on two essential kinematical quantities which reflect tensorial dislocation properties: the (resultant) Burgers vector and the dislocation density tensor. First, the limiting process for the (resultant) Burgers vector from an integral to a local quantity is performed analogously to the limiting process from the force vector to the traction vector. By evaluating the balance of forces on a tetrahedral volume element, Cauchy found his famous formula relating traction vector and stress tensor. It is shown how this procedure may be adopted to a continuously dislocated tetrahedron. Here, the conservation of Burger’s vector implicates the introduction of the dislocation density tensor. Second, analogies between the plastic flow of a continuously dislocated solid and the liquid flow of a fluid are highlighted: the resultant Burgers vector of a dislocation ensemble plays a similar role as the (resultant) circulation of a vortex tube. Moreover, both vortices within flowing fluids and dislocations within deforming solids induce discontinuities in the velocity field and the plastic distortion field, respectively. Beyond the analogies, some peculiar properties of the dislocation density tensor are presented as well.

  5. Disease management: a continuum approach.

    PubMed

    Harvey, N; DePue, D M

    1997-06-01

    Disease management is a comprehensive, integrated approach to managing the health of populations through the use of disease-specific standards and protocols and population segmentation. It has been increasing in popularity among integrated delivery systems (IDSs) and payers alike as a way to respond to competitive pressures and to shift care delivery from inpatient to alternative care sites. To successfully implement disease-management programs, IDSs must develop an organizational mind-set that stresses information-driven, evidence-based standards of care that are adhered to across a tightly integrated continuum of care.

  6. Magnetic-field-induced stepwise director reorientation and untwisting of a planar cholesteric structure with finite anchoring energy

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Shavkunov, V. S.

    2016-10-01

    Within the continuum approach we study the equilibrium configurations of a cholesteric liquid crystal confined between two parallel plates, when a magnetic field is applied perpendicularly to the plates. We analyze the role of soft anchoring boundary conditions on magnetic-field-induced cholesteric-nematic transitions in a finite thickness cholesteric cell, treated to induce soft planar alignment. We study the stepwise behavior of cholesteric pitch as a function of the anchoring energy, the thickness of a layer, and the field strength. We analyze some kinds of soft anchoring potentials, including the case of degeneration of the easy axes. We show that the variation of the thickness or intrinsic pitch induces the the stepwise behavior of a pitch of the planar cholesteric structure, and the stepwise variations of the average tensor of diamagnetic susceptibility. The values of these jumps are determined by the anchoring energy. We find the values of critical parameters for the transitions between planar and confocal cholesteric states, and homeotropic nematic state. We show that the variation of the anchoring energy leads to change of the phase transition character; the conditions for hysteresis behavior are obtained. We show that for rather soft anchoring the confocal state is metastable, and the increase of a magnetic field leads to the direct transition between the planar cholesteric and homeotropic nematic phases. We also give a detailed derivation of the threshold and saturation properties of planar cholesteric to homeotropic nematic transition.

  7. Magnetic-field-induced stepwise director reorientation and untwisting of a planar cholesteric structure with finite anchoring energy.

    PubMed

    Zakhlevnykh, A N; Shavkunov, V S

    2016-10-01

    Within the continuum approach we study the equilibrium configurations of a cholesteric liquid crystal confined between two parallel plates, when a magnetic field is applied perpendicularly to the plates. We analyze the role of soft anchoring boundary conditions on magnetic-field-induced cholesteric-nematic transitions in a finite thickness cholesteric cell, treated to induce soft planar alignment. We study the stepwise behavior of cholesteric pitch as a function of the anchoring energy, the thickness of a layer, and the field strength. We analyze some kinds of soft anchoring potentials, including the case of degeneration of the easy axes. We show that the variation of the thickness or intrinsic pitch induces the the stepwise behavior of a pitch of the planar cholesteric structure, and the stepwise variations of the average tensor of diamagnetic susceptibility. The values of these jumps are determined by the anchoring energy. We find the values of critical parameters for the transitions between planar and confocal cholesteric states, and homeotropic nematic state. We show that the variation of the anchoring energy leads to change of the phase transition character; the conditions for hysteresis behavior are obtained. We show that for rather soft anchoring the confocal state is metastable, and the increase of a magnetic field leads to the direct transition between the planar cholesteric and homeotropic nematic phases. We also give a detailed derivation of the threshold and saturation properties of planar cholesteric to homeotropic nematic transition.

  8. Nonlocal models in continuum mechanics

    SciTech Connect

    Johnson, N.L.; Phan-Thien, N.

    1993-09-01

    The recent appearance of nonlocal methods is examined in the light of traditional continuum mechanics. A comparison of nonlocal approaches in the fields of solid and fluid mechanics reveals that no consistent definition of a nonlocal theory has been used. We suggest a definition based on the violation of the principle of local action in continuum mechanics. From the consideration of the implications of a nonlocal theory based on this definition, we conclude that constitutive relations with nonlocal terms can confuse the traditional separation of the roles between conservation laws and constitutive relations. The diversity of motivations for the nonlocal approaches are presented, resulting primarily from deficiencies in numerical solutions to practical problems. To illustrate these concepts, the history of nonlocal terms in the field of viscoelastic fluids is reviewed. A specific example of a viscoelastic constitutive relation that contains a stress diffusion term is applied to a simple shear flow and found not to be a physical description of any known fluid. We conclude by listing questions that should be asked of nonlocal approaches.

  9. Conductivity of continuum percolating systems

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Janssen, Hans-Karl

    2001-11-01

    We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance σ of randomly occupied bonds is drawn from a probability distribution of the form σ-a. Employing the methods of renormalized field theory we show to arbitrary order in ɛ expansion that the critical conductivity exponent of the Swiss-cheese model is given by tSC(a)=(d-2)ν+max[φ,(1-a)-1], where d is the spatial dimension and ν and φ denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the ``nodes, links, and blobs'' picture of percolation clusters.

  10. Bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

  11. Dementia: Continuum or Distinct Entity?

    PubMed Central

    Walters, Glenn D.

    2009-01-01

    The latent structure of dementia was examined in a group of 10,775 older adults with indicators derived from a neuropsychological test battery. Subjecting these data to taxometric analysis using mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode) produced results more consistent with dementia as a dimensional (lying along a continuum) than categorical (representing a distinct entity) construct. A second study conducted on a group of 2375 21-to-64-year olds produced similar results. These findings denote that dementia, as measured by deficits in episodic memory, attention/concentration, executive function, and language, differs quantitatively rather than qualitatively from the cognitive status of non-demented adults. The implications of these results for classification, assessment, etiology, and prevention are discussed. PMID:20677881

  12. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  13. Micropolar continuum in spatial description

    NASA Astrophysics Data System (ADS)

    Ivanova, Elena A.; Vilchevskaya, Elena N.

    2016-11-01

    Within the spatial description, it is customary to refer thermodynamic state quantities to an elementary volume fixed in space containing an ensemble of particles. During its evolution, the elementary volume is occupied by different particles, each having its own mass, tensor of inertia, angular and linear velocities. The aim of the present paper is to answer the question of how to determine the inertial and kinematic characteristics of the elementary volume. In order to model structural transformations due to the consolidation or defragmentation of particles or anisotropic changes, one should consider the fact that the tensor of inertia of the elementary volume may change. This means that an additional constitutive equation must be formulated. The paper suggests kinetic equations for the tensor of inertia of the elementary volume. It also discusses the specificity of the inelastic polar continuum description within the framework of the spatial description.

  14. Computational Methods in Continuum Mechanics

    DTIC Science & Technology

    1993-11-30

    ftruet11ft bwalch.Aq 0.4.oiqn 04ta tou.MtC’ gahimtc" n matod .nAfitang In@ data 01#04141. OAd co0noIDW~ng And tft@nq the ~OIWCI&Qn of 1,onjt~omt .nd~ml...AD-A27S 560 DTIC\\3\\Ul3 10 S ELECTE1 FEB 9 1994 I c I £ COMPUTATIONAL METHODS IN CONTINUUM MECHANICS By Bolindra N . Borah N.C. A&T State University...PAGE 0me No 0.704-0158 io (reorovtnq burden ’Of .t..i e’iortion of Information is estimted to ’Adoraw 1O4 .0 e~o- * n th.n I~c ot.. "o.vw.n. q

  15. Electric field induced lateral instability in a simple autocatalytic front

    NASA Astrophysics Data System (ADS)

    Horváth, Dezsö; Tóth, Ágota; Yoshikawa, Kenichi

    1999-07-01

    The effect of ionic drift caused by small constant electric field on autocatalytic reaction fronts of ionic species is studied both theoretically and numerically. Besides varying the velocity of propagation, the electric field parallel to the direction of propagation may induce lateral instability in planar fronts resulting in the emergence of cellular structures. The difference in the diffusivities at the onset of instability are lowered when the electric field tends to separate the species spatially. The predictions of the linear stability analysis based on a thin-front approximation are confirmed by the numerical integration of the full two-dimensional system.

  16. Magnetic field induced minigap in double quantum wells

    SciTech Connect

    Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Harff, N.E. |

    1994-07-01

    We report discovery of a partial energy gap, or minigap, in strongly coupled double quantum wells (QWs), due to an anticrossing of the two QW dispersion curves. The anticrossing and minigap are induced by an in-plane magnetic field B{sub {parallel}}, and give rise to large distortions in the Fermi surface and density of states, including a Van Hove singularity. Sweeping B{sub {parallel}} moves the minigap through the Fermi level, with the upper and lower gap edges producing a sharp maximum and minimum in the low-temperature in-plane conductance, in agreement with theoretical calculations. The gap energy may be directly determined from the data.

  17. Turbulent fluid motion 3: Basic continuum equations

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.

  18. Novel Continuum Modeling of Crystal Surface Evolution

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel

    2003-03-01

    Below the roughening temperature the evolution of crystal surfaces proceeds by the nucleation, flow and annihilation of discrete atomic steps. The appropriate mathematical model of the evolution of such surfaces is discrete in nature, and consists of coupled equations for the motion, nucelation and annihilation of steps. It is useful, however, to describe surface evolution in terms of continuum models. Such models are more amenable to analytical treatments and have enormous computational advantages over their discrete counterparts. Standard continuum models successfully describe the evolution of surfaces with smooth morphology, but completely fail when the surface has singularities such as facets. It is an interesting and important challenge to develop continuum descriptions of surfaces with singularities, since in many cases the singularities drive the evolution of the whole system. In the talk I will present a conceptually new approach to continuum modeling of surface evolution, termed Configurational Continuum [1], which is valid even in singular regions. The approach consists of a new definition of the continuum limit. It is equivalent to standard continuum for very smooth morphology, but is radically different from it in singular regions, where it becomes equivalent to the discrete models. The validity of configurational continuum will be demonstrated on several simple systems. [1] N. Israeli and D. Kandel, Phys. Rev. Lett. 88, 116103 (2002).

  19. Electron-ion continuum-continuum mixing in dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1993-01-01

    In recent calculations on the dissociative recombination (DR) of the v=1 vibrational level of the ground state of N2(+), N2(+)(v=1) + e(-) yields N + N, we have observed an important continuun-continuum mixing process involving the open channels on both sides of N2(+)(v=1) + e(-) yields N2(+)(v=0) + e(-). In vibrational relaxation by electron impact (immediately above) the magnitude of the cross section depends upon the strength of the interaction between these continua. In DR of the v=1 ion level, these continua can also interact in the entrance channel, and the mixing can have a profound effect upon the DR cross section from v=1, as we illustrate in this paper. In our theoretical calculations of N2(+) DR using multichannel quantum defect theory (MQDT), the reactants and products in the two above equations are described simultaneously. This allows us to calculate vibrational relaxation and excitation cross sections as well as DR cross sections. In order to understand the mixing described above, we first present a brief review of the prior results for DR of the v=0 level of N2(+).

  20. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  1. Lattice continuum and diffusional creep

    PubMed Central

    2016-01-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696

  2. MIRO Continuum Calibration for Asteroid Mode

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon

    2011-01-01

    MIRO (Microwave Instrument for the Rosetta Orbiter) is a lightweight, uncooled, dual-frequency heterodyne radiometer. The MIRO encountered asteroid Steins in 2008, and during the flyby, MIRO used the Asteroid Mode to measure the emission spectrum of Steins. The Asteroid Mode is one of the seven modes of the MIRO operation, and is designed to increase the length of time that a spectral line is in the MIRO pass-band during a flyby of an object. This software is used to calibrate the continuum measurement of Steins emission power during the asteroid flyby. The MIRO raw measurement data need to be calibrated in order to obtain physically meaningful data. This software calibrates the MIRO raw measurements in digital units to the brightness temperature in Kelvin. The software uses two calibration sequences that are included in the Asteroid Mode. One sequence is at the beginning of the mode, and the other at the end. The first six frames contain the measurement of a cold calibration target, while the last six frames measure a warm calibration target. The targets have known temperatures and are used to provide reference power and gain, which can be used to convert MIRO measurements into brightness temperature. The software was developed to calibrate MIRO continuum measurements from Asteroid Mode. The software determines the relationship between the raw digital unit measured by MIRO and the equivalent brightness temperature by analyzing data from calibration frames. The found relationship is applied to non-calibration frames, which are the measurements of an object of interest such as asteroids and other planetary objects that MIRO encounters during its operation. This software characterizes the gain fluctuations statistically and determines which method to estimate gain between calibration frames. For example, if the fluctuation is lower than a statistically significant level, the averaging method is used to estimate the gain between the calibration frames. If the

  3. Continuum methods in lattice perturbation theory

    SciTech Connect

    Becher, Thomas G

    2002-11-15

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.

  4. Electric-field-induced Labyrinthine Patterns in Ferrofluids--- A Two Dimensional Diffusion Model

    NASA Astrophysics Data System (ADS)

    Riley, Brett; Duan, Xiaodong; Luo, Weili

    2001-03-01

    A two-dimension particle diffusion equation is derived to model the observed labyrinthine patterns induced by electric fields [1]. The numerical solution of the equation was obtained and it shows patterns similar to experiment. The stripe width increases with time in both experiment and calculation. The time increase can be described by a power law with exponent of 1/3. The field-induced phase separation is attributed to the competition between the electrostatic energy and the entropy. Reference [1] Xiaodong Duan and Weili Luo, "Electric-field-induced second order phase transition in a ferrofluid," Bull. Ame. Phys. Soc. Vol. 45, P 864; Xiaodong Duan, Weili Luo, Brent Wacaser and Robert C. Davis, "Field-Induced Universal Labyrinthine Patterns in Nanocolloids." Preprint , 2000.

  5. Field-induced activation of metal oxide semiconductor for low temperature flexible transparent electronic device applications

    NASA Astrophysics Data System (ADS)

    Pudasaini, Pushpa Raj; Noh, Joo Hyon; Wong, Anthony; Haglund, Amada; Ward, Thomas Zac; Mandrus, David; Rack, Philip

    Amorphous metal-oxide semiconductors have been extensively studied as an active channel material in thin film transistors due to their high carrier mobility, and excellent large-area uniformity. Here, we report the athermal activation of amorphous indium gallium zinc oxide semiconductor channels by an electric field-induced oxygen migration via gating through an ionic liquid. Using field-induced activation, a transparent flexible thin film transistor is demonstrated on a polyamide substrate with transistor characteristics having a current ON-OFF ratio exceeding 108, and saturation field effect mobility of 8.32 cm2/(V.s) without a post-deposition thermal treatment. This study demonstrates the potential of field-induced activation as an athermal alternative to traditional post-deposition thermal annealing for metal oxide electronic devices suitable for transparent and flexible polymer substrates. Materials Science and Technology Division, ORBL, Oak Ridge, TN 37831, USA.

  6. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution.

    PubMed

    Egwolf, Bernhard; Tavan, Paul

    2004-01-22

    We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations, which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.

  7. Magnetic-field-induced criticality in superconducting two-leg ladders

    NASA Astrophysics Data System (ADS)

    Vekua, Temo

    2017-03-01

    We study magnetic-field-induced critical singularities in the superconducting phase of the hole-doped Hubbard model of repulsively interacting electrons, defined on a two-leg ladder. We argue that, provided the low-energy spin excitations in doped ladders carry electric charge, the low-temperature thermodynamic quantities, such as the specific-heat coefficient and magnetic susceptibility, will show logarithmic singularities in the quantum critical regime. This behavior is in drastic contrast to the magnetic-field-induced criticality in undoped Mott insulator ladders, which is governed by the zero-scale-factor universality with its hallmark square-root singularities.

  8. Field induced aggregation in electrorheological suspension: kernel form and self similar solutions

    NASA Astrophysics Data System (ADS)

    Mimouni, Zineb; Limage, René

    2009-05-01

    Within the framework of the study of the fibrillation mechanism in an electrorheological (ER) suspension, this work presents a comparison between the self similar solutions when the kernel is K i, j ~ ( i -1 + j -1) and the behaviour of the chains growth. Till now, the field induced chains formation has only been studied by numerical or experimental methods. The work of Fournier and Laurençot (Communications in Mathematical Physics 256 2005) on the Smoluchowski’s equation allows us to present an analytical solution for the field induced pearl chains in a colloidal ER suspension.

  9. Periodic amplitude variations in Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  10. Noise scaling in continuum percolating films

    NASA Astrophysics Data System (ADS)

    Garfunkel, G. A.; Weissman, M. B.

    1985-07-01

    Measurements of the scaling of 1/f noise magnitude versus resistance were made in metal films as the metal was removed by sandblasting. This procedure gives an approximate experimental realization of a Swiss-cheese continuum-percolation model, for which theory indicates some scaling properties very different from lattice percolation. The ratio of the resistance and noise exponents was in strong disagreement with lattice-percolation predictions and agreed approximately with simple continuum predictions.

  11. Geometric continuum regularization of quantum field theory

    SciTech Connect

    Halpern, M.B. . Dept. of Physics)

    1989-11-08

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.

  12. Terahertz Atmospheric Attenuation and Continuum Effects

    DTIC Science & Technology

    2013-05-01

    4 . TITLE AND SUBTITLE Terahertz atmospheric attenuation and continuum effects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...As stated previously, each dataset had 6 transmission scans, one for each path length. A total of 4 relative humidity levels were studied, 17.89...continuum absorption and instrumentation distortion (blue). All plots are 15.23Torr of water vapor and 746.77Torr or air. 4 RESULTS The

  13. Polarizable atomic multipole solutes in a Poisson-Boltzmann continuum

    NASA Astrophysics Data System (ADS)

    Schnieders, Michael J.; Baker, Nathan A.; Ren, Pengyu; Ponder, Jay W.

    2007-03-01

    Modeling the change in the electrostatics of organic molecules upon moving from vacuum into solvent, due to polarization, has long been an interesting problem. In vacuum, experimental values for the dipole moments and polarizabilities of small, rigid molecules are known to high accuracy; however, it has generally been difficult to determine these quantities for a polar molecule in water. A theoretical approach introduced by Onsager [J. Am. Chem. Soc. 58, 1486 (1936)] used vacuum properties of small molecules, including polarizability, dipole moment, and size, to predict experimentally known permittivities of neat liquids via the Poisson equation. Since this important advance in understanding the condensed phase, a large number of computational methods have been developed to study solutes embedded in a continuum via numerical solutions to the Poisson-Boltzmann equation. Only recently have the classical force fields used for studying biomolecules begun to include explicit polarization in their functional forms. Here the authors describe the theory underlying a newly developed polarizable multipole Poisson-Boltzmann (PMPB) continuum electrostatics model, which builds on the atomic multipole optimized energetics for biomolecular applications (AMOEBA) force field. As an application of the PMPB methodology, results are presented for several small folded proteins studied by molecular dynamics in explicit water as well as embedded in the PMPB continuum. The dipole moment of each protein increased on average by a factor of 1.27 in explicit AMOEBA water and 1.26 in continuum solvent. The essentially identical electrostatic response in both models suggests that PMPB electrostatics offers an efficient alternative to sampling explicit solvent molecules for a variety of interesting applications, including binding energies, conformational analysis, and pKa prediction. Introduction of 150mM salt lowered the electrostatic solvation energy between 2 and 13kcal /mole, depending on

  14. Microstructural and continuum evolution modeling of sintering.

    SciTech Connect

    Braginsky, Michael V.; Olevsky, Eugene A.; Johnson, D. Lynn; Tikare, Veena; Garino, Terry J.; Arguello, Jose Guadalupe, Jr.

    2003-12-01

    deformation during. The continuum portion is based on a finite element formulation that allows 3D components to be modeled using SNL's nonlinear large-deformation finite element code, JAS3D. This tool provides a capability to model sintering of complex three-dimensional components. The model was verified by comparing to simulations results published in the literature. The model was validated using experimental results from various laboratory experiments performed by Garino. In addition, the mesoscale simulations were used to study anisotropic shrinkage in aligned, elongated powder compacts. Anisotropic shrinkage occurred in all compacts with aligned, elongated particles. However, the direction of higher shrinkage was in some cases along the direction of elongation and in other cases in the perpendicular direction depending on the details of the powder compact. In compacts of simple-packed, mono-sized, elongated particles, shrinkage was higher in the direction of elongation. In compacts of close-packed, mono-sized, elongated particles and of elongated particles with a size and shape distribution, the shrinkage was lower in the direction of elongation. We also explored the concept of a sintering stress tensor rather than the traditional sintering stress scalar concept for the case of anisotropic shrinkage. A thermodynamic treatment of this is presented. A method to calculate the sintering stress tensor is also presented. A user-friendly code that can simulate microstructural evolution during sintering in 2D and in 3D was developed. This code can run on most UNIX platforms and has a motif-based GUI. The microstructural evolution is shown as the code is running and many of the microstructural features, such as grain size, pore size, the average grain boundary length (in 2D) and area (in 3D), etc. are measured and recorded as a function of time. The overall density as the function of time is also recorded.

  15. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  16. Stiffness Control of Surgical Continuum Manipulators

    PubMed Central

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  17. Stiffness Control of Surgical Continuum Manipulators.

    PubMed

    Mahvash, Mohsen; Dupont, Pierre E

    2011-04-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot's coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.

  18. Defining and testing a granular continuum element

    SciTech Connect

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  19. Determination of Near-IR Water Vapor Self Continuum from Observations

    NASA Astrophysics Data System (ADS)

    Mlawer, Eli; Gombos, Daniel; Alvarado, Matthew; Cady-Pereira, Karen; Payne, Vivienne; Chase, Alison; Michalsky, Joseph

    2014-06-01

    There is still significant uncertainty in the strength of water vapor continuum absorption in the windows between near-infrared water vapor bands. Many radiation codes obtain their water vapor continuum absorption coefficients from the MT CKD continuum model, which derives its near-infrared values from a water vapor line-shape function that has been constrained by continuum measurements in other spectral regions. A number of recent laboratory studies have shown that the strength of the near-IR self continuum in the MT CKD model is too low, but these laboratory studies disagree with each other by more than an order of magnitude. At the high end of the range of measured strengths, the self continuum absorbs a significant amount of solar radiation, so it is crucial that other observational studies are performed to establish the actual strength of this absorption source. We describe here an analysis of measurements from a solar FTS in Lamont, OK, part of the Total Carbon Column Observing Network (TCCON). Thirteen periods on individual days in 2012 were identified as being reasonably stable with respect to aerosol optical depth and precipitable water vapor. For each period, the FTS measurements, coincident measurements from a Normal Incidence Multi-Filter Radiometer (NIMFR) at the DOE ARM site, and calculations from the Line-By-Line Radiative Transfer Model (LBLRTM) were used to obtain aerosol optical depths in window regions from 8000-20000 cm-1, which were then extended to lower wavenumbers through a generalized Angstrom relationship. In windows between 4000-7000 cm-1, these aerosol optical depths, and the LBLRTM optical depths without any self continuum, were subtracted from FTS-derived total optical depths. The self continuum absorption coefficients that were derived from this procedure were at the low end of the recent laboratory studies, but higher than the current version of MT CKD. The implications of the results of this study with respect to the absorption of

  20. Modeling angiogenesis: A discrete to continuum description

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Byrne, Helen M.; Maini, Philip K.

    2017-01-01

    Angiogenesis is the process by which new blood vessels develop from existing vasculature. During angiogenesis, endothelial tip cells migrate via diffusion and chemotaxis, loops form via tip-to-tip and tip-to-sprout anastomosis, new tip cells are produced via branching, and a vessel network forms as endothelial cells follow the paths of tip cells. The latter process is known as the snail trail. We use a mean-field approximation to systematically derive a continuum model from a two-dimensional lattice-based cellular automaton model of angiogenesis in the corneal assay, based on the snail-trail process. From the two-dimensional continuum model, we derive a one-dimensional model which represents angiogenesis in two dimensions. By comparing the discrete and one-dimensional continuum models, we determine how individual cell behavior manifests at the macroscale. In contrast to the phenomenological continuum models in the literature, we find that endothelial cell creation due to tip cell movement (vessel formation via the snail trail) manifests as a source term of tip cells on the macroscale. Further, we find that phenomenological continuum models, which assume that endothelial cell creation is proportional to the flux of tip cells in the direction of increasing chemoattractant concentration, qualitatively capture vessel formation in two dimensions, but must be modified to accurately represent vessel formation. Additionally, we find that anastomosis imposes restrictions on cell density, which, if violated, leads to ill-posedness in our continuum model. We also deduce that self-loops should be excluded when tip-to-sprout anastomosis is active in the discrete model to ensure propagation of the vascular front.

  1. Stratospheric infrared continuum absorptions observed by the ATMOS instrument

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Namkung, J. S.; Farmer, C. B.; Norton, R. H.

    1989-01-01

    A quantitative analysis of infrared continuum absorption features observed in ATMOS/Spacelab 3 (1985) spectra of the lower stratosphere is reported. Continuous absorption produced primarily by the collision-induced fundamental vibration-rotation band of O2 and to a lesser extent by the superposition of H2O far line wings has been observed in the 1400 to 1800/cm interval below tangent heights of about 25 km. Continuum optical depths measured in microwindows nearly free of atmospheric line absorption are 0.78 + or - 0.06 times those calculated with the O2 absorption coefficients of Timofeyev and Tonkov (1978). Transmittance measurements in microwindows between 2395 and 2535/cm have been used to study continuous absorption from the collision induced fundamental vibration-rotation band of N2 and the far wings of strong CO2 lines. The measured transmittances have been analyzed to derive best fit absorption coefficients for the N2 pressure-induced band at lower stratospheric temperatures (about 210 K).

  2. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    NASA Astrophysics Data System (ADS)

    Nan, Tianxiang; Emori, Satoru; Peng, Bin; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.; Liu, Ming; Sun, Nian

    2016-01-01

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  3. Electric field-induced emission enhancement and modulation in individual CdSe nanowires.

    PubMed

    Vietmeyer, Felix; Tchelidze, Tamar; Tsou, Veronica; Janko, Boldizsar; Kuno, Masaru

    2012-10-23

    CdSe nanowires show reversible emission intensity enhancements when subjected to electric field strengths ranging from 5 to 22 MV/m. Under alternating positive and negative biases, emission intensity modulation depths of 14 ± 7% are observed. Individual wires are studied by placing them in parallel plate capacitor-like structures and monitoring their emission intensities via single nanostructure microscopy. Observed emission sensitivities are rationalized by the field-induced modulation of carrier detrapping rates from NW defect sites responsible for nonradiative relaxation processes. The exclusion of these states from subsequent photophysics leads to observed photoluminescence quantum yield enhancements. We quantitatively explain the phenomenon by developing a kinetic model to account for field-induced variations of carrier detrapping rates. The observed phenomenon allows direct visualization of trap state behavior in individual CdSe nanowires and represents a first step toward developing new optical techniques that can probe defects in low-dimensional materials.

  4. Fields induced by three-dimensional dislocation loops in anisotropic magneto-electro-elastic bimaterials

    NASA Astrophysics Data System (ADS)

    Han, Xueli; Pan, Ernie; Sangghaleh, Ali

    2013-08-01

    The coupled elastic, electric and magnetic fields produced by an arbitrarily shaped three-dimensional dislocation loop in general anisotropic magneto-electro-elastic (MEE) bimaterials are derived. First, we develop line-integral expressions for the fields induced by a general dislocation loop. Then, we obtain analytical solutions for the fields, including the extended Peach-Koehler force, due to some useful dislocation segments such as straight line and elliptic arc. The present solutions contain the piezoelectric, piezomagnetic and purely elastic solutions as special cases. As numerical examples, the fields induced by a square and an elliptic dislocation loop in MEE bimaterials are studied. Our numerical results show the coupling effects among different fields, along with various interesting features associated with the dislocation and interface.

  5. Rotating-Electric-Field-Induced Carbon-Nanotube-Based Nanomotor in Water: A Molecular Dynamics Study.

    PubMed

    Rahman, Md Mushfiqur; Chowdhury, Mokter Mahmud; Alam, Md Kawsar

    2017-03-29

    Using molecular dynamics simulations, it is shown that a carbon nanotube (CNT) suspended in water and subjected to a rotating electric field of proper magnitude and angular speed can be rotated with the aid of water dipole orientations. Based on this principle, a rotational nanomotor structure is designed and the system is simulated in water. Use of the fast responsiveness of electric-field-induced CNT orientation in water is employed and its operation at ultrahigh-speed (over 10(11) r.p.m.) is shown. To explain the basic mechanism, the behavior of the rotational actuation, originated from the water dipole orientation, is also analyzed . The proposed nanomotor is capable of rotating an attached load (such as CNT) at a precise angle as well as nanogear-based complex structures. The findings suggest potential way of using the electric-field-induced CNT rotation in a polarizable fluids as a novel tool to operate nanodevices and systems.

  6. Control of magnetic relaxation by electric-field-induced ferroelectric phase transition and inhomogeneous domain switching

    SciTech Connect

    Nan, Tianxiang; Emori, Satoru; Wang, Xinjun; Hu, Zhongqiang; Xie, Li; Gao, Yuan; Lin, Hwaider; Sun, Nian; Peng, Bin; Liu, Ming; Jiao, Jie; Luo, Haosu; Budil, David; Jones, John G.; Howe, Brandon M.; Brown, Gail J.

    2016-01-04

    Electric-field modulation of magnetism in strain-mediated multiferroic heterostructures is considered a promising scheme for enabling memory and magnetic microwave devices with ultralow power consumption. However, it is not well understood how electric-field-induced strain influences magnetic relaxation, an important physical process for device applications. Here, we investigate resonant magnetization dynamics in ferromagnet/ferroelectric multiferroic heterostructures, FeGaB/PMN-PT and NiFe/PMN-PT, in two distinct strain states provided by electric-field-induced ferroelectric phase transition. The strain not only modifies magnetic anisotropy but also magnetic relaxation. In FeGaB/PMN-PT, we observe a nearly two-fold change in intrinsic Gilbert damping by electric field, which is attributed to strain-induced tuning of spin-orbit coupling. By contrast, a small but measurable change in extrinsic linewidth broadening is attributed to inhomogeneous ferroelastic domain switching during the phase transition of the PMN-PT substrate.

  7. Electric-field-induced response of a droplet embedded in a polyelectrolyte gel

    NASA Astrophysics Data System (ADS)

    Mohammadi, Aliasghar

    2013-08-01

    The electric-field induced response of a droplet embedded in a quenched polyelectrolyte gel is calculated theoretically. The response comprises the droplet translation and the electric-field induced flow fields within the droplet. The gel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid. The droplet is considered an incompressible Newtonian fluid with no free charge. An analytical solution, using the perturbation methodology and linear superposition, is obtained for the leading-order steady response to a DC electric-field. The fluid within the droplet is driven due to hydrodynamic coupling with the electroosmotic flow. The fluid velocity within the droplet is linearly proportional to the electroosmotic flow. Moreover, the microrheological response function of a droplet within a polyelectrolyte gel is also provided, highlighting the importance of boundary conditions at the droplet-gel interface on microrheological measurements.

  8. Magnetic-field induced orientational transition in a helicoidal liquid-crystalline antiferromagnet

    NASA Astrophysics Data System (ADS)

    Zakhlevnykh, A. N.; Kuznetsova, K. V.

    2016-11-01

    The magnetic-field induced orientational transition in helicoidal liquid-crystalline antiferromagnets representing compensated suspensions of magnetic nanoparticles in cholesteric liquid crystals is theoretically studied. The untwisting of a helicoidal structure and the behavior of mean magnetization as a function of the field strength and material parameters are investigated. It is shown that the magnetic subsystems in the field-untwisted ferronematic phase are not completely compensated, and the ferronematic phase is ferrimagnetic.

  9. Direct measurements of the magnetic field induced by optically polarized sup 3 He atoms

    SciTech Connect

    Gudoshnikov, S.A.; Snigirev, O.V. ); Kozlov, A.N.; Maslennikov, Y.V.; Serebrjakov, A.Y. )

    1991-03-01

    This paper reports on an alternative magnetic field induced by the standard cell of the optically pumped {sup 3}He magnetometer directly measured by the SQUID-based second-order gradiometer with signal-to-noise ratio higher than 6. The magnitude of the measured field equal to 5 {times} 10{sup {minus}13} T at the 5-cm distance from the cell axis and transverse relaxation time T{sub 2} equal to 7 minutes have been found.

  10. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    SciTech Connect

    Li, M.; Breizman, B. N.; Zheng, L. J.; Chen, Eugene Y.

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuum absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.

  11. Electric-field-induced strong enhancement of electroluminescence in multilayer molybdenum disulfide

    PubMed Central

    Li, Dehui; Cheng, Rui; Zhou, Hailong; Wang, Chen; Yin, Anxiang; Chen, Yu; Weiss, Nathan O.; Huang, Yu; Duan, Xiangfeng

    2015-01-01

    The layered transition metal dichalcogenides have attracted considerable interest for their unique electronic and optical properties. While the monolayer MoS2 exhibits a direct bandgap, the multilayer MoS2 is an indirect bandgap semiconductor and generally optically inactive. Here we report electric-field-induced strong electroluminescence in multilayer MoS2. We show that GaN–Al2O3–MoS2 and GaN–Al2O3–MoS2–Al2O3-graphene vertical heterojunctions can be created with excellent rectification behaviour. Electroluminescence studies demonstrate prominent direct bandgap excitonic emission in multilayer MoS2 over the entire vertical junction area. Importantly, the electroluminescence efficiency observed in multilayer MoS2 is comparable to or higher than that in monolayers. This strong electroluminescence can be attributed to electric-field-induced carrier redistribution from the lowest energy points (indirect bandgap) to higher energy points (direct bandgap) in k-space. The electric-field-induced electroluminescence is general for other layered materials including WSe2 and can open up a new pathway towards transition metal dichalcogenide-based optoelectronic devices. PMID:26130491

  12. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation.

    PubMed

    Thielscher, Axel; Opitz, Alexander; Windhoff, Mirko

    2011-01-01

    The spatial extent of the effects of transcranial magnetic stimulation (TMS) on neural tissue is only coarsely understood. One key problem is the realistic calculation of the electric field induced in the brain, which proves difficult due to the complex gyral folding pattern that results in an inhomogeneous conductivity distribution within the skull. We used the finite element method (FEM) together with a high-resolution volume mesh of the human head to better characterize the field induced in cortical gray matter (GM). The volume mesh was constructed from T1-weighted structural magnetic resonance images to allow for an anatomically accurate modeling of the gyrification pattern. Five tissue types were taken into account, corresponding to skin, skull, cerebrospinal fluid (CSF) including the ventricles as well as cortical gray and white matter. We characterized the effect of the current direction on the electric field distribution in GM. Importantly, the field strength in GM was increased by up to 51% when the induced currents were perpendicular to the local gyrus orientation. This effect was mainly restricted to the gyral crowns and lips, but did not extend into the sulcal walls. As a result, the focality of the fields induced in GM was increased. This enhancement effect might in part underlie the dependency of stimulation thresholds on coil orientation, as commonly observed in TMS motor cortex studies. In contrast to the clear-cut effects of the gyrification pattern on the induced field strength, current directions were predominantly influenced by the CSF-skull boundary.

  13. Continuum-continuum transitions between resonant states using the RABITT technique

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; Argenti, L.; Martín, F.

    2014-04-01

    We present a study of radiative continuum-continuum transitions in helium in the presence of doubly-excited states by using the attosecond RABITT technique beyond the Single Active Electron approximation. On the one hand, transition amplitudes between correlated continuum states are calculated both by direct numerical solution of the time-dependent Schrodinger equation as well as with a two-photon perturbative model. The effect of autoionizing states on the sideband phaseshift is thus analyzed. On the other hand, we apply the soft-photon approximation to quantify the effects the IR probe intensity on the sideband non-resonant overtone components.

  14. A Multiscale Morphing Continuum Description for Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, James; Wonnell, Louis

    2015-11-01

    Turbulence is a flow physics phenomena invlolving multiple length scales. The popular Navier- Stokes equations only possess one length/time scale. Therefore, extremely fine mesh is needed for DNS attempting to resolve the small scale motion, which comes with a burden of excessive computational cost. For practical application with complex geometries, the research society rely on RANS and LES, which requre turbulence model or subgrid scale (SGS) model for closure problems. Different models not only lead to different results but usually are invalidated on solid physical grounds, such as objectivity and entropy principle.The Morphing Continuum Theory (MCT) is a high-order continuum theory formulated under the framework of thermalmechanics for physics phenomena involving microstructure. In this study, a theoretical perspective for the multiscale nature of the Morphing Continuum Theory is connected with the multiscale nature of turbulence physics. The kinematics, balance laws, constitutive equations and a Morphing Continuum description of turbulence are introduced. The equations were numerically implemented for a zero pressure gradient flat plate. The simulations are compate with the laminar, transitional and turbulence cases.

  15. Parental Involvement to Parental Engagement: A Continuum

    ERIC Educational Resources Information Center

    Goodall, Janet; Montgomery, Caroline

    2014-01-01

    Based on the literature of the field, this article traces a continuum between parental involvement with schools, and parental engagement with children's learning. The article seeks to shed light on an area of confusion; previous research has shown that different stakeholder groups understand "parental engagement" in different ways.…

  16. Language Attitudes in a Creole Continuum.

    ERIC Educational Resources Information Center

    Rickford, John R.

    The standard view of language attitudes in a creole continuum is that the creole is considered bad and the standard language is considered good. This standard view fits with the theory of decreolization by which such continua are thought to have come about. A study was carried out in Guyana in an effort to overcome the perceived limitations of the…

  17. Some Continuum Aspects of Data Assimilation

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Menard, Richard

    1999-01-01

    A long-sought goal in data assimilation is to build more fully the time dimension into the data assimilation process. Truly four-dimensional data assimilation requires evolving second-moment information, namely the estimation error covariance, along with the state estimate itself. The continuum evolution equations for the estimation error covariance constitute a system of partial differential equations in six space dimensions, forced by a model error covariance and by the observations themselves. The high dimensionality of this system poses a difficult computational problem. Numerous methods have been proposed for approximate, discrete solution of this system of equations. Four-dimensional variational schemes solve these equations indirectly, while schemes based on Kalman filtering solve the equations more directly, usually on a small subspace of the full six-dimensional space. In both cases, most proposed solution methods are not derived from the continuum covariance evolution equations themselves. Instead, most methods simply inherit the discretization used for evolving the state estimate, either in the form of a discrete tangent linear model or, in the case of ensemble schemes, in the form of a fully nonlinear discrete model. In this lecture we show that solutions of the continuum covariance evolution equations possess simple properties that are not readily satisfied upon discretization of the equations. we give numerical examples illustrating that "inherited" discretizations sometimes fail to produce meaningfully accurate solutions. Finally, we suggest alternative discretization methods that may yield more faithful approximate solutions of the continuum problem.

  18. Radio continuum from FU Orionis stars

    SciTech Connect

    Rodriguez, L.F.; Hartmann, L.W.; Chavira, E. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Instituto Nacional de Astrofisica, Optica y Electronica, Puebla )

    1990-12-01

    Using the very large array a sensitive search is conducted for 3.6-cm continuum emission toward four FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, and Elias 1-12. V1057 Cyg and Elias 1-12 at the level of about 0.1 mJy is detected. The association of radio continuum emission with these FU Ori objects strengthens a possible relation between FU Ori stars and objects like L 1551 IRS 5 and Z CMa that are also sources of radio continuum emission and have been proposed as post-FU Ori objects. Whether the radio continuum emission is caused by free-free emission from ionized ejecta or if it is optically thin emission from a dusty disk is discussed. It was determined that, in the archives of the Tonantzintla Observatory, a plate taken in 1957 does not show Elias 1-12. This result significantly narrows the time range for the epoch of the outburst of this source to between 1957 and 1965. 38 refs.

  19. Continuum modeling of large lattice structures: Status and projections

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Mikulas, Martin M., Jr.

    1988-01-01

    The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

  20. Block versus continuum deformation in the Western United States

    USGS Publications Warehouse

    King, G.; Oppenheimer, D.; Amelung, F.

    1994-01-01

    The relative role of block versus continuum deformation of continental lithosphere is a current subject of debate. Continuous deformation is suggested by distributed seismicity at continental plate margins and by cumulative seismic moment sums which yield slip estimates that are less than estimates from plate motion studies. In contrast, block models are favored by geologic studies of displacement in places like Asia. A problem in this debate is a lack of data from which unequivocal conclusions may be reached. In this paper we apply the techniques of study used in regions such as the Alpine-Himalayan belt to an area with a wealth of instrumental data-the Western United States. By comparing plate rates to seismic moment release rates and assuming a typical seismogenic layer thickness of 15 km it appears that since 1850 about 60% of the Pacific-North America motion across the plate boundary in California and Nevada has occurred seismically and 40% aseismically. The San Francisco Bay area shows similar partitioning between seismic and aseismic deformation, and it can be shown that within the seismogenic depth range aseismic deformation is concentrated near the surface and at depth. In some cases this deformation can be located on creeping surface faults, but elsewhere it is spread over a several kilometer wide zone adjacent to the fault. These superficial creeping deformation zones may be responsible for the palaeomagnetic rotations that have been ascribed elsewhere to the surface expression of continuum deformation in the lithosphere. Our results support the dominant role of non-continuum deformation processes with the implication that deformation localization by strain softening must occur in the lower crust and probably the upper mantle. Our conclusions apply only to the regions where the data are good, and even within the Western United States (i.e., the Basin and Range) deformation styles remain poorly resolved. Nonetheless, we maintain that block motion is the

  1. Multiscale gas-kinetic simulation for continuum and near-continuum flows.

    PubMed

    Xu, Kun; Liu, Hongwei

    2007-01-01

    It is well known that for increasingly rarefied flow fields, predictions from continuum formulations, such as the Navier-Stokes equations, lose accuracy. The inclusion of higher-order terms, such as Burnett or high-order moment equations, could improve the predictive capabilities of such continuum formulations, but there has been only limited success. Here, we present a multiscale model. On the macroscopic level, the flow variables are updated based on the mass, momentum, and energy conservation through the fluxes. On the other hand, the fluxes are constructed on the microscopic level based on the gas-kinetic equation, which is valid in both continuum and near-continuum flow regimes. Based on this model, the nonequilibrium shock structure, Poiseuille flow, nonlinear heat conduction problems, and unsteady Rayleigh problem will be studied. In the near-continuum flow regime, the current gas-kinetic simulation is more efficient than microscopic methods, such as the direction Boltzmann solver and direct-simulation Monte Carlo method. In the continuum flow limit, the current formulation will go back to the gas-kinetic Navier-Stokes flow solver automatically.

  2. Observations of Continuum Depression in Warm Dense Matter with X-Ray Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Kritcher, A. L.; Pak, A.; Ma, T.; Döppner, T.; Fortmann, C.; Divol, L.; Jones, O. S.; Landen, O. L.; Scott, H. A.; Vorberger, J.; Chapman, D. A.; Gericke, D. O.; Mattern, B. A.; Seidler, G. T.; Gregori, G.; Falcone, R. W.; Glenzer, S. H.

    2014-04-01

    Detailed measurements of the electron densities, temperatures, and ionization states of compressed CH shells approaching pressures of 50 Mbar are achieved with spectrally resolved x-ray scattering. Laser-produced 9 keV x-rays probe the plasma during the transient state of three-shock coalescence. High signal-to-noise x-ray scattering spectra show direct evidence of continuum depression in highly degenerate warm dense matter states with electron densities ne>1024 cm-3. The measured densities and temperatures agree well with radiation-hydrodynamic modeling when accounting for continuum lowering in calculations that employ detailed configuration accounting.

  3. Continuum effects in transfer reactions induced by heavy ions

    SciTech Connect

    Marta, H.D.; Donangelo, R.; Fernandez Niello, J.O.; Pacheco, A.J.

    2006-02-15

    In the usual treatment of transfer nuclear reactions, the continuum states of the transferred particle are neglected. Here we perform a semiclassical calculation that treats the continuum in an exact way. For comparison purposes, we perform a second calculation in which the continuum is completely disregarded. The results of these two calculations indicates that the influence of the continuum states may be very important in systems with weakly bound reactants.

  4. Variability of Lyman-alpha and the ultraviolet continuum of 3C 446

    NASA Technical Reports Server (NTRS)

    Bregman, J. N.; Glassgold, A. E.; Huggins, P. J.; Kinney, A. L.

    1986-01-01

    IUE observations have been conducted over the 1230-3175 A range for the violently variable quasar 3C 446, beginning in June 1980, at intervals of 1.2, 2.2, 0.5, and 0.4 yr. Strong absorption of the continuum was found below 1830 A, probably corresponding to a Lyman edge at z of 1.00 + or - 0.01. The absence of Mg II 2798 A absorption implies that the column density is in the lower end of the range, unless the gas is metal-poor. The Lyman-alpha emission line was detected in five spectra; relative to the number of ionizing protons, the line strengths are the same as in normal quasars, and line equivalent widths are small due to the continuum's rise redward of 912 A, which is much steeper than in normal quasars. The Lyman-alpha line and the nearby continuum vary so as to maintain constant equivalent width.

  5. Capillary effects in drainage in heterogeneous porous media: Continuum modeling, experiments and pore network simulations

    SciTech Connect

    Xu, Baomin; Yortsos, Y.C.

    1993-04-01

    We investigate effects of capillary heterogeneity induced by variations in permeability in the direction of displacement in heterogeneous porous media under drainage conditions. The investigation is three-pronged and uses macroscopic simulation, based on the standard continuum equations, experiments with the use of an acoustic technique and pore network numerical models. It is found that heterogeneity affects significantly the saturation profiles, the effect being stronger at lower rates. A good agreement is found between the continuum model predictions and the experimental results based on which it can be concluded that capillary heterogeneity effects in the direction of displacement act much like a body force (e.g. gravity). A qualitative agreement is also found between the continuum approach and the pore network numerical models, which is expected to improve when finite size effects in the pore network simulations diminish. The results are interpreted with the use of invasion percolation concepts.

  6. Continuum of Collaboration: Little Steps for Little Feet

    ERIC Educational Resources Information Center

    Powell, Gwynn M.

    2013-01-01

    This mini-article outlines a continuum of collaboration for faculty within a department of the same discipline. The goal of illustrating this continuum is showcase different stages of collaboration so that faculty members can assess where they are as a collective and consider steps to collaborate more. The separate points along a continuum of…

  7. Mesoscopic and continuum modelling of angiogenesis

    PubMed Central

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2016-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007

  8. Robot strings: Long, thin continuum robots

    NASA Astrophysics Data System (ADS)

    Walker, I. D.

    We describe and discuss the development of long, thin, continuous “ string-like” robots aimed at Space exploration missions. These continuous backbone “ continuum” robots are inspired by numerous biological structures, particularly vines, worms, and the tongues of animals such as the anteater. The key novelty is the high length-to-diameter ratio of the robots. This morphology offers penetration into, and exploration of, significantly narrower and deeper environments than accessible using current robot technology. In this paper, we introduce new design alternatives for long thin continuum robots, based on an analysis and extension of three core existing continuum robot design types. The designs are evaluated based on their mechanical feasibility, structural properties, kinematic simplicity, and degrees of freedom.

  9. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  10. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  11. Continuum Statistics of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Quastel, Jeremy; Remenik, Daniel

    2013-01-01

    We develop an exact determinantal formula for the probability that the Airy_2 process is bounded by a function g on a finite interval. As an application, we provide a direct proof that {sup({A}2(x)-x^2)} is distributed as a GOE random variable. Both the continuum formula and the GOE result have applications in the study of the end point of an unconstrained directed polymer in a disordered environment. We explain Johansson's (Commun. Math. Phys. 242(1-2):277-329, 2003) observation that the GOE result follows from this polymer interpretation and exact results within that field. In a companion paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics are used to compute the distribution of the endpoint of directed polymers.

  12. Entropic formulation of relativistic continuum mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    An entropic formulation of relativistic continuum mechanics is developed in the Landau-Lifshitz frame. We introduce two spatial scales, one being the small scale representing the linear size of each material particle and the other the large scale representing the linear size of a large system which consists of material particles and is to linearly regress to the equilibrium. We propose a local functional which is expected to represent the total entropy of the larger system and require the entropy functional to be maximized in the process of linear regression. We show that Onsager's original idea on linear regression can then be realized explicitly as current conservations with dissipative currents in the desired form. We demonstrate the effectiveness of this formulation by showing that one can treat a wide class of relativistic continuum materials, including standard relativistic viscous fluids and relativistic viscoelastic materials.

  13. Automatic continuum analysis of reflectance spectra

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.

    1987-01-01

    A continuum algorithm based on a Segmented Upper Hull method (SUH) is described. An upper hull is performed on segments of a spectrum defined by local minima and maxima. The segments making a complete spectrum are then combined. The definition of the upper hull allows the continuum to be both concave and/or convex, adapting to the shape of the spectrum. The method performs multiple passes on a spectrum by segmenting each local maximum to minimum and performing an upper hull. The algorithm naturally adapts to the widths of absorption features, so that all features are found, including the nature of doublets, triplets, etc. The algorithm is also reasonably fast on common minicomputers so that it might be applied to the large data sets from imaging spectrometers.

  14. AC field-induced polymer electroluminescence with single wall carbon nanotubes.

    PubMed

    Sung, Jinwoo; Choi, Yeon Sik; Kang, Seok Ju; Cho, Sung Hwan; Lee, Tae-Woo; Park, Cheolmin

    2011-03-09

    We developed a high-performance field-induced polymer electroluminescence (FPEL) device consisting of four stacked layers: a top metal electrode/thin solution-processed nanocomposite film of single wall carbon nanotubes (SWNTs) and a fluorescent polymer/insulator/transparent bottom electrode working under an alternating current (AC) electric field. A small amount of SWNTs that were highly dispersed in the fluorescent polymer matrix by a conjugate block copolymer dispersant significantly enhanced EL, and we were able to realize an SWNT-FPEL device with a light emission of approximately 350 cd/m(2) at an applied voltage of ±25 V and an AC frequency of 300 kHz. The brightness of the SWNT-FPEL device is much greater than those of other AC-based organic or even inorganic ELs that generally require at least a few hundred volts. Light is emitted from our SWNT-FPEL device because of the sequential injection of field-induced holes and then electron carriers through ambipolar carbon nanotubes under an AC field, followed by exciton formation in the conjugated organic layer. Field-induced bipolar charge injection provides great material design freedom for our devices; the energy level does not have to be aligned between the electrode and the emission layer, and the balance of the carrier injected and transported can be altered in contrast to that in conventional organic light-emitting diodes, leading to an extremely cost-effective and unified device architecture that is applicable to all red-green-blue fluorescent polymers.

  15. Optimizing commensality of radio continuum and spectral line observations in the era of the SKA

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Jarvis, M. J.; Oosterloo, T. A.

    2016-08-01

    The substantial decrease in star formation density from z = 1 to the present day is curious given the relatively constant neutral gas density over the same epoch. Future radio astronomy facilities, including the Square Kilometre Array (SKA) and pathfinder telescopes, will provide pioneering measures of both the gas content of galaxies and star formation activity over cosmological time-scales. Here we investigate the commensalities between neutral atomic gas (H I) and radio continuum observations, as well as the complementarity of the data products. We start with the proposed H I and continuum surveys to be undertaken with the SKA precursor telescope MeerKAT, and building on this, explore optimal combinations of survey area coverage and depth of proposed H I and continuum surveys to be undertaken with the SKA1-MID instrument. Intelligent adjustment of these observational parameters results in a tiered strategy that minimizes observation time while maximizing the value of the data set, both for H I and continuum science goals. We also find great complementarity between the H I and continuum data sets, with the spectral line H I data providing redshift measurements for gas-rich, star-forming galaxies with stellar masses M* ˜ 109 M⊙ to z ˜ 0.3, a factor of 3 lower in stellar mass than would be feasible to reach with large optical spectroscopic campaigns.

  16. A continuum model of a multilayer nanosheet

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Tovstik, P. E.; Tovstik, T. P.

    2016-11-01

    A continuum model for describing the bending and free vibrations of a crystalline graphite sheet consisting of graphene layers is proposed. Graphene is modeled by a two-dimensional layer having a finite rigidity under extension and bending. The interval between graphene layers through which their Van-der-Waals interaction occurs is modeled by a fictitious layer with relatively low rigidity. In the solution, formulas describing the bending of a multilayer sheet with alternating rigid and soft layers are used.

  17. Electric Field-Induced Fluid Velocity Field Distribution in DNA Solution

    NASA Astrophysics Data System (ADS)

    Zhang, Ling-Yun; Wang, Peng-Ye

    2008-10-01

    We present an analytical solution for fluid velocity Geld distribution of polyelectrolyte DNA. Both the electric field force and the viscous force in the DNA solution are considered under a suitable boundary condition. The solution of electric potential is analytically obtained by using the linearized Poisson-Boltzmann equation. The fluid velocity along the electric field is dependent on the cylindrical radius and concentration. It is shown that the electric field-induced fluid velocity will be increased with the increasing cylindrical radius, whose distribution also varies with the concentration.

  18. Dipolar field-induced spin-wave waveguides for spin-torque magnonics

    SciTech Connect

    Demidov, V. E.; Urazhdin, S.; Zholud, A.; Sadovnikov, A. V.; Demokritov, S. O.

    2015-01-12

    We use high-resolution imaging to study the propagation of spin waves in magnonic waveguides created by the dipolar magnetic fields of microscopic patterns. We show that the characteristics of spin-wave modes in such waveguides depend strongly on their geometry. In particular, by tuning the geometrical parameters, field-induced confinement for both the edge and the center waveguide modes can be achieved, enabling control over the spin-wave transmission characteristics. The studied waveguiding structures are particularly promising for the implementation of magnonic devices utilizing spin-torque phenomena.

  19. Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head

    NASA Astrophysics Data System (ADS)

    Choi, Jaeyong; Kim, Yong-Jae; Lee, Sukhan; Son, Sang Uk; Ko, Han Seo; Nguyen, Vu Dat; Byun, Doyoung

    2008-11-01

    Recently, inkjet printing technology has become crucial in many industrial fabrication fields mainly due to its advantages of noncontact and fast pattern generation. In this paper, we investigate an electrostatic field induced inkjet printing system, which is based on an electrohydrodynamic process, for drop-on-demand jetting. In order to locate the optimal jetting conditions, we tested jetting performance for various bias voltages and pulse signals. To investigate the characteristics of drop-on-demand operation and micropatterning, we used conductive silver ink and examined the drops and lines patterned on a substrate.

  20. A procedure to estimate the electric field induced in human body exposed to unknown magnetic sources.

    PubMed

    Wang, Wencui; Bottauscio, Oriano; Chiampi, Mario; Giordano, Domenico; Zilberti, Luca

    2013-04-01

    The paper proposes and discusses a boundary element procedure able to predict the distribution of the electric field induced in a human body exposed to a low-frequency magnetic field produced by unknown sources. As a first step, the magnetic field on the body surface is reconstructed starting from the magnetic field values detected on a closed surface enclosing the sources. Then, the solution of a boundary value problem provides the electric field distribution inside the human model. The procedure is tested and validated by considering different non-uniform magnetic field distributions generated by a Helmholtz coil system as well as different locations of the human model.

  1. Field-induced spin-density wave in (TMTSF)2NO3

    NASA Astrophysics Data System (ADS)

    Vignolles, David; Audouard, Alain; Nardone, Marc; Brossard, Luc; Bouguessa, Sabrina; Fabre, Jean-Marc

    2005-01-01

    Interlayer magnetoresistance of the Bechgaard salt (TMTSF)2NO3 is investigated up to 50 T under pressures of a few kilobars. This compound, the Fermi surface of which is quasi-two-dimensional at low temperature, is a semimetal under pressure. Nevertheless, a field-induced spin-density wave is evidenced at 8.5 kbars above ˜20T . This state is characterized by a drastically different spectrum of the quantum oscillations compared to the low-pressure spin-density wave state.

  2. Superconductivity and magnetic field induced spin density waves in the (TMTTF)2X family

    NASA Astrophysics Data System (ADS)

    Balicas, L.; Behnia, K.; Kang, W.; Canadell, E.; Auban-Senzier, P.; Jérome, D.; Ribault, M.; Fabre, J. M.

    1994-10-01

    We report magnetotransport measurements in the quasi one dimensional (Q-1-D) organic conductor (TMTTF)2Br at pressures up to 26 kbar, clown to 0.45 K in magnetic fields up to 19 T along the c^{ast} direction. It is found that a superconducting ground state is stabilized under 26 kbar at T_C = 0.8 K. No magnetic field induced spin density wave (FISDW) transitions are observed below 19T unlike other Q-1-D superconductors pertaining to the selenium series. The computed amplitude of the interchain coupling along transverse directions is unable to explain the missing; FISDW instability.

  3. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    NASA Astrophysics Data System (ADS)

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-01

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  4. Analysis and design of nonlocal spin devices with electric-field-induced spin-transport acceleration

    SciTech Connect

    Takamura, Yota; Akushichi, Taiju; Shuto, Yusuke; Sugahara, Satoshi

    2015-05-07

    We apply electric-field-induced acceleration for spin transport to a four-terminal nonlocal device and theoretically analyze its Hanle-effect signals. The effect of the ferromagnetic contact widths of the spin injector and detector on the signals is carefully discussed. Although Hanle-effect signals are randomized owing to the effect of the contact widths, this can be excluded by selecting an appropriate electric field for acceleration of spin transport. Spin lifetime can be correctly extracted by nonlocal devices with electric-field acceleration even using the spin injector and detector with finite contact widths.

  5. Electric-field-induced domain intersection in BaTiO3 single crystal

    NASA Astrophysics Data System (ADS)

    He, Ming; Wang, Mengxia; Zhang, Zhihua

    2017-03-01

    Large-angle convergent beam electron diffraction was used to determine the directions of polarization vectors in a BaTiO3 single crystal. Domain intersections driven by an electric field were investigated by in situ transmission electron microscopy. The dark triangles observed in the domain intersection region can be accounted for by dislocations and the strain field. Domains nucleate at the domain tip depending on the dislocations and strain field to relieve the accumulated stress. Schematic representations of the intersecting domains and the microscopic structure are given, clarifying the special electric-field-induced domain structure.

  6. Electric field-induced optical second harmonic generation in nematic liquid crystal 5CB

    NASA Astrophysics Data System (ADS)

    Torgova, S. I.; Shigorin, V. D.; Maslyanitsyn, I. A.; Todorova, L.; Marinov, Y. G.; Hadjichristov, G. B.; Petrov, A. G.

    2014-12-01

    Electric field-induced second harmonic generation (EFISH) was studied for the liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) (a nematic phase material at room temperature). The intensity of coherent SHG from 5CB cells upon DC electric field was measured for various initial orientations of the liquid crystal. The dependence of the SHG intensity on the pump beam incidence angle was obtained in transmission geometry using sample rotation method. The experimental results (the registered light intensity in the output SHG interference patterns) were theoretically modelled and analyzed.

  7. Field induced polarization and magnetization behaviour of Gd-doped lead magnesium niobate ceramics

    NASA Astrophysics Data System (ADS)

    Pandey, Adityanarayan; Gupta, Surya Mohan; Nigam, Arun Kumar

    2016-05-01

    Both superparaelectric and superparamagnetic behaviour has been observed in rare earth magnetic ion Gd3+ doped Lead Magnesium Niobate (Gd-PMN). Field induced polarization and magnetization studies reveal hystresis loss free P-E and M-H loop at 300K and 5K, respectively. Temperature dependence of inverse susceptibility plot shows deviation at a temperature "td" when fitted with the Curie-Weiss law. This deviation has been attributed to transition from paramagnetic to superparamagnetic behaviour as reported in amorphous Pd-Ni-Fe-P alloys.

  8. High-contrast, large optical bandwidth field-induced guide/antiguide modulator

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Chung, Y.; Dagli, N.; Coldren, L. A.

    1991-01-01

    An electric field induced-guide/antiguide optical intensity modulator which has a very wide optical bandwidth from 1 to 1.55/micron which is the largest ever reported before for an intensity modulator. A TE mode ON/OFF ratio larger than 21 dB at 1.15 micron, and a propagation loss about 1 dB at 1.3 micron has been measured. The electrooptic effects, along with carrier effects have been exploited to increase the refractive index under the guide and adjacent antiguide electrodes by applying reverse biases to them.

  9. Magnetic Field Induced Circular Photogalvanic Effect in InAs Quantum Wells

    DTIC Science & Technology

    2001-06-01

    St Petersburg, Russia We report on the first observation of a magnetic field induced circular photogalvanic effect ( CPGE ) in quantum wells (QWs). The...the magnetic field. For the sake of brevity we refer to the effect under consideration as to the magneto- CPGE . For bulk materials this effect was...theoretically treated in [2, 3] and observed in p-GaAs [4]. Phenomenologically, the magneto- CPGE is described by a third-rank tensor as J, = itaiýyBj•i (E x

  10. Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity

    NASA Astrophysics Data System (ADS)

    Nabeta, Masahiro; Tanaka, Kenta K.; Onari, Seiichiro; Ichioka, Masanori

    2016-11-01

    We study paramagnetic pair-breaking in electric-field-induced surface superconductivity, when magnetic field is applied parallel to the surface. The calculation is performed by Bogoliubov-de Gennes theory with s-wave pairing, including the screening effect of electric fields by the induced carriers near the surface. Due to the Zeeman shift by applied fields, electronic states at higher-level sub-bands become normal-state-like. Therefore, the magnetic field dependence of Fermi-energy density of states reflects the multi-gap structure in the surface superconductivity.

  11. A field induced guide-antiguide modulator of GaAs-AlGaAs

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Chung, Y.; Young, D. B.; Dagli, N.; Coldren, L. A.

    1991-01-01

    A guide-antiguide modulator of GaAs-AlGaAs using the electric-field-induced waveguide concept was demonstrated. The device was formed with a central waveguide electrode sandwiched between two antiguide electrodes on the surface of a p-i-n multiple quantum well (MQW). Switching between lateral guiding and antiguiding was accomplished by reverse biasing either the central electrode or the adjacent electrodes to increase the index beneath these respective regions. The on-off ratio was measured to be 20:1 with a propagation loss of the on-state of about 5 dB/mm.

  12. Theory of Exciton Migration and Field-Induced Dissociation in Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Vissenberg, M. C. J. M.; de Jong, M. J. M.

    1996-12-01

    The interplay of migration, recombination, and dissociation of excitons in disordered media is studied theoretically in the low temperature regime. An exact expression for the photoluminescence spectrum is obtained. The theory is applied to describe the electric field-induced photoluminescence-quenching experiments by Kersting et al. [Phys. Rev. Lett. 73, 1440 (1994)] and Deussen et al. [Synth. Met. 73, 123 (1995)] on conjugated polymer systems. Good agreement with experiment is obtained using an on-chain dissociation mechanism, which implies a separation of the electron-hole pair along the polymer chain.

  13. Lattice Boltzmann algorithm for continuum multicomponent flow

    NASA Astrophysics Data System (ADS)

    Halliday, I.; Hollis, A. P.; Care, C. M.

    2007-08-01

    We present a multicomponent lattice Boltzmann simulation for continuum fluid mechanics, paying particular attention to the component segregation part of the underlying algorithm. In the principal result of this paper, the dynamics of a component index, or phase field, is obtained for a segregation method after U. D’Ortona [Phys. Rev. E 51, 3718 (1995)], due to Latva-Kokko and Rothman [Phys. Rev. E 71 056702 (2005)]. The said dynamics accord with a simulation designed to address multicomponent flow in the continuum approximation and underwrite improved simulation performance in two main ways: (i) by reducing the interfacial microcurrent activity considerably and (ii) by facilitating simulational access to regimes of flow with a low capillary number and drop Reynolds number [I. Halliday, R. Law, C. M. Care, and A. Hollis, Phys. Rev. E 73, 056708 (2006)]. The component segregation method studied, used in conjunction with Lishchuk’s method [S. V. Lishchuk, C. M. Care, and I. Halliday, Phys. Rev. E 67, 036701 (2003)], produces an interface, which is distributed in terms of its component index; however, the hydrodynamic boundary conditions which emerge are shown to support the notion of a sharp, unstructured, continuum interface.

  14. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  15. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  16. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  17. Are young stars always associated with cold massive disks? A CO and millimeter interferometric continuum survey

    NASA Technical Reports Server (NTRS)

    Mundy, L. G.; Wilking, B. A.; Myers, S.; Howe, J. E.; Blackwell, J. H.; Likkel, L.

    1986-01-01

    The results of a combined millimeter-spectral-line and continuum survey of cold far-infrared sources selected to favor embedded young stars in the Galaxy are presented. The spectral-line observations were performed with the 5 meter antenna of the University of Texas Millimeter-Wave Observatory. High resolution continuum observations were obtained with the Owens Valley (OVRO) Millimeter-Wave Interferometer. The goal of the survey was to gain insight into the mass, temperature, and distribution of cold dust which envelopes stars during the earliest stages of their evolution. The first phase of our survey involved 1.2 arcmin resolution observations of CO-12 and CO-13 emission lines toward each source. All but two sources had detectable CO emission. We found that 40% of the sources appear to be associated with star formation as evidenced by the presence of enhanced CO-12 line widths or broad wings. At least five of these objects are associated with bipolar molecular outflows. The second phase of our survey involves high resolution 2.7 mm continuum observations with 3 interferometer baselines ranging from 15 to 55 m in length. Preliminary results indicate that about 25% of the sources in our sample have detectable continuum emission on scales less than 30 arcsec. The high percentage of sources with enhanced CO-12 line widths or broad wings indicates that a significant fraction of our samples, 40%, are likely to be young stars. The lower detection percentage in the continuum observations, 25%, suggest that such objects are not always surrounded by large concentrations of gas and dust. The continuum detection percentage for actual dust emission could be lower than that given above since emission from ionized gas could be responsible for the observed 2.7 mm emission in some objects. To get an understanding of the type of object detected in our survey, a map of one of the survey sources, L1689N, has been made using the OVRO mm interferometer.

  18. Spontaneous and field-induced magnetic transitions in YBaCo2O5.5

    SciTech Connect

    Bobrovskii, Vladimir; Kazantsev, Vadim; Mirmelstein, Aleksey; Mushnikov, Nikolai; Proskurnina, Natalia; Voronin, Vladimir; Pomjakushina, Ekaterina; Conder, Kazimierz; Podlesnyak, Andrey A

    2009-01-01

    A detailed study of magnetic properties of cobaltite YBaCo{sub 2}O{sub 5.5} has been performed in high (up to 35 T) magnetic fields and under hydrostatic pressure up to 0.8 GPa. The temperatures of paramagnet-ferromagnet (PM-FM) and ferromagnet-antiferromagnet (FM-AF) phase transitions and their pressure derivatives have been determined. It has been revealed that in the compound with yttrium, in contrast to those with magnetic rare earth atoms, the AF-FM field-induced magnetic phase transition is accompanied by a considerable field hysteresis below 240 K, and the magnetic field of 35 T is not sufficient to complete this transition at low temperatures. The hysteresis value depends on the magnetic field sweep rate, which considered as an evidence of magnetic viscosity that is especially strong in the region of coexistence of the FM and AF phases. High values of susceptibility for the field-induced FM phase show that Co spin state in these compounds changes in strong magnetic field.

  19. Ultra-Low-Energy Electric Field-Induced Magnetization Switching in Multiferroic Heterostructures

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2016-10-01

    Electric field-induced magnetization switching in multiferroics is intriguing for both fundamental studies and potential technological applications. Here, we review the recent developments on electric field-induced magnetization switching in multiferroic heterostructures. Particularly, we study the dynamics of magnetization switching between the two stable states in a shape-anisotropic single-domain nanomagnet using stochastic Landau-Lifshitz-Gilbert (LLG) equation in the presence of thermal fluctuations. For magnetostrictive nanomagnets in strain-coupled multiferroic composites, such study of magnetization dynamics, contrary to steady-state scenario, revealed intriguing new phenomena on binary switching mechanism. While the traditional method of binary switching requires to tilt the potential profile to the desired state of switching, we show that no such tilting is necessary to switch successfully since the magnetization’s excursion out of magnet’s plane can generate a built-in asymmetry during switching. We also study the switching dynamics in multiferroic heterostructures having magnetoelectric coupling at the interface and magnetic exchange coupling that can facilitate to maintain the direction of switching with the polarity of the applied electric field. We calculate the performance metrics like switching delay and energy dissipation during switching while simulating LLG dynamics. The performance metrics turn out to be very encouraging for potential technological applications.

  20. Spectral and polarization structure of field-induced photonic bands in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Palto, S. P.; Barnik, M. I.; Geivandov, A. R.; Kasyanova, I. V.; Palto, V. S.

    2015-09-01

    Transmission of planar layers of cholesteric liquid crystals is studied in pulsed electric fields perpendicular to the helix axis at normal incidence of both linearly polarized and unpolarized light. Spectral and light polarization properties of the primary photonic band and the field-induced bands up to fourth order of Bragg selective reflection are studied in detail. In our experiments we have achieved an electric field strength several times higher than the theoretical values corresponding to the critical field of full helix unwinding. However, the experiments show that despite the high strength of the electric field applied the helix does not unwind, but strongly deforms, keeping its initial spatial period. Strong helix deformation results in distinct spectral band splitting, as well as very high field-induced selective reflectance that can be applied in lasers and other optoelectronic devices. Peculiarities of inducing and splitting the bands are discussed in terms of the scattering coefficient approach. All observed effects are confirmed by numerical simulations. The simulations also show that liquid crystal surface anchoring is not the factor that prevents the helix unwinding. Thus, the currently acknowledged concept of continuous helix unwinding in the electric field should be reconsidered.

  1. Electric field-induced second-order nonlinear optical effects in silicon waveguides

    NASA Astrophysics Data System (ADS)

    Timurdogan, E.; Poulton, C. V.; Byrd, M. J.; Watts, M. R.

    2017-02-01

    The symmetry of crystalline silicon inhibits a second-order optical nonlinear susceptibility, χ(2), in complementary metal-oxide-semiconductor-compatible silicon photonic platforms. However, χ(2) is required for important processes such as phase-only modulation, second-harmonic generation (SHG) and sum/difference frequency generation. Here, we break the crystalline symmetry by applying direct-current fields across p-i-n junctions in silicon ridge waveguides and induce a χ(2) proportional to the large χ(3) of silicon. The obtained χ(2) is first used to perturb the permittivity (the direct-current Kerr effect) and achieve phase-only modulation. Second, the spatial distribution of χ(2) is altered by periodically patterning p-i-n junctions to quasi-phase-match pump and second-harmonic modes and realize SHG. We measure a maximum SHG efficiency of P2ω/Pω2 = 13 ± 0.5% W‑1 at λω = 2.29 µm and with field-induced χ(2) = 41 ± 1.5 pm V-1. We expect such field-induced χ(2) in silicon to lead to a new class of complex integrated devices such as carrier-envelope offset frequency stabilizers, terahertz generators, optical parametric oscillators and chirp-free modulators.

  2. Magnetic field induced optical gain in a dilute nitride quaternary semiconductor quantum dot

    NASA Astrophysics Data System (ADS)

    Mageshwari, P. Uma; Peter, A. John; Lee, Chang Woo

    2016-10-01

    Effects of magnetic field strength on the electronic and optical properties are brought out in a Ga0.661In0.339N0.0554As0.9446/GaAs quantum dot for the applications of desired wavelength in opto-electronic devices. The band alignment is obtained using band anticrossing model and the model solid theory. The magnetic field dependent electron-heavy hole transition energies with the dot radius in a GaInNAs/GaAs quantum dot are investigated. The magnetic field induced oscillator strength as a function of dot radius is studied. The resonant peak values of optical absorption coefficients and the changes of refractive index with the application of magnetic field strength in a GaInNAs/GaAs quantum dot are obtained. The magnetic field induced threshold current density and the maximum optical gain are found in a GaInNAs/GaAs quantum dot. The results show that the optimum wavelength for fibre optical communication networks can be obtained with the variation of applied magnetic field strength and the outcomes may be useful for the design of efficient lasers based on the group III-N-V semiconductors.

  3. Field induced rectification and memristive behavior of TlGaSe2 layered semiconductor

    NASA Astrophysics Data System (ADS)

    Seyidov, MirHasan Yu.; Suleymanov, R. A.; Balaban, Ertan; Şale, Y.

    2014-10-01

    We report the internal electric field induced rectification in TlGaSe2 layered semiconductor. This built-in internal electric field was imprinted into the TlGaSe2 sample prior to the measurements while cooling the samples under the external electric field. We employ various pairs of metallic electrodes (In-In, Au-In, Au-Cu), which are deposited on a smooth mirror-like surfaces of TlGaSe2 crystal, respectively, and used to measure the current flow in two directions, parallel and perpendicular to the plane of layers. The current-voltage (I-V) characteristics were measured on the samples with imprinted internal electric field. The diode-like I-V characteristics was observed with the rectification polarity coinciding with the direction of the imprinted electric field. This effect was observed in both directions parallel and perpendicular to the plane of layers. Our results support that near the metal-TlGaSe2 interface the barrier is formed after the pretreatment of the sample in the electric field. So, the diode with a controlled rectification direction, which is achieved by changing the polarization direction using an external bias, is fabricated. The field induced motion of the charge, which piles up under the respective contact that forms a barrier is assumed. The memristive behavior with characteristic pinched hysteresis loop is also observed.

  4. Plasma sheath model in the presence of field-induced electron emission

    NASA Astrophysics Data System (ADS)

    Dahal, Jiba; Ayyaswamy, Venkattraman

    2016-10-01

    Microplasmas have become an active area of research during the last two decades with several applications including nanomaterial synthesis, electronics, lighting, biomedicine, and metamaterials for controlling electromagnetic waves. The advances in micro/nanofabrication and the further miniaturization of plasma devices have contributed to the increasing role of new physical mechanisms that were previously neglected. Electric field-induced emission of electrons is one such mechanism that is gaining significance particularly with the discovery of novel electrodes that demonstrate excellent field emission properties. These field emitted electrons and their interaction with microdischarges has shown to affect both pre-breakdown and post-breakdown regimes of operation. The current work focuses on the development of self-consistent sheath model that includes the effects of field-induced electron emission. Sheath models presented earlier accounts for other emission mechanisms such as thermionic and secondary electron emission, the strong influence of electric field on electron emission is shown to lead to unique interplay. The results obtained from the sheath model for various parameters including current-voltage characteristics, and ion/electron number density are validated with PIC-MCC results.

  5. Observation of field-induced Fermi surface reconstruction in CeRhIn5

    NASA Astrophysics Data System (ADS)

    Yuan, Huiqiu; Jiao, Lin; Weng, Zongfa; Chen, Ye; Steglich, Frank; Graf, David; Singleton, John; Jaime, Marcelo; Bauer, Eric; Thompson, Joe

    2015-03-01

    CeRhIn5 provides a prototype compound for studying quantum criticality and its interplay with superconductivity. Application of pressure suppresses the antiferromagnetic (AF) order and gives rise to superconductivity. A sharp change of Fermi surface was observed just at the pressure-tuning AF quantum critical point (QCP), which was argued to support the scenario of local quantum criticality. By measuring the dHvA oscillations and specific heat in a pulsed magnetic field, we have demonstrated the existence of a field-induced AF QCP around Bc0 =50T in this compound. In this presentation, we will report the measurements of dHvA effect and Hall resistivity of CeRhIn5 performed by using the 45T hybrid magnet and the pulsed field magnet at NHMFL. Field-induced changes of the dHvA frequencies and Hall coefficient are observed around B* =31T. Detailed analyses suggest that the Fermi surface reconstruction at B* corresponds to a localized-itinerant transition of Ce 4f-electrons attributed to the Kondo effect. Our results indicate that multiple quantum phase transitions may exist in CeRhIn5 which can be classified by the measurements of Fermi surface topology.

  6. Laser field induced optical gain in a group III-V quantum wire

    NASA Astrophysics Data System (ADS)

    Saravanan, Subramanian; Peter, Amalorpavam John; Lee, Chang Woo

    2016-08-01

    Effect of intense high frequency laser field on the electronic and optical properties of heavy hole exciton in an InAsP/InP quantum well wire is investigated taking into consideration of the spatial confinement. Laser field induced exciton binding energies, optical band gap, oscillator strength and the optical gain in the InAs0.8P0.2/InP quantum well wire are studied. The variational formulism is applied to find the respective energies. The laser field induced optical properties are studied. The optical gain as a function of photon energy, in the InAs0.8P0.2/InP quantum wire, is obtained in the presence of intense laser field. The compact density matrix method is employed to obtain the optical gain. The results show that the 1.55 μm wavelength for the fibre optic telecommunication applications is achieved for 45 Å wire radius in the absence of laser field intensity whereas the 1.55 μm wavelength is obtained for 40 Å if the amplitude of the laser field amplitude parameter is 50 Å. The characterizing wavelength for telecommunication network is optimized when the intense laser field is applied for the system. It is hoped that the obtained optical gain in the group III-V narrow quantum wire can be applied for fabricating laser sources for achieving the preferred telecommunication wavelength.

  7. A robust, coupled approach for atomistic-continuum simulation.

    SciTech Connect

    Aubry, Sylvie; Webb, Edmund Blackburn, III; Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A.; Bammann, Douglas J.; Hoyt, Jeffrey John; Kimmer, Christopher J.

    2004-09-01

    This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.

  8. Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach.

    PubMed

    Zhu, Liangliang; Wu, Jiazhong; Liu, Ling; Liu, Yilun; Yan, Yuan; Cui, Qiang; Chen, Xi

    2016-12-01

    Gating transition of the mechanosensitive channel of large conductance (MscL) represents a good example of important biological processes that are difficult to describe using atomistic simulations due to the large (submicron) length scale and long (millisecond) time scale. Here we develop a novel computational framework that tightly couples continuum mechanics with continuum solvation models to study the detailed gating behavior of E. coli-MscL. The components of protein molecules are modeled by continuum elements that properly describe their shape, material properties and physicochemical features (e.g., charge distribution). The lipid membrane is modeled as a three-layer material in which the lipid head group and tail regions are treated separately, taking into account the fact that fluidic lipid bilayers do not bear shear stress. Coupling between mechanical and chemical responses of the channel is realized by an iterative integration of continuum mechanics (CM) modeling and continuum solvation (CS) computation. Compared to previous continuum mechanics studies, the present model is capable of capturing the most essential features of the gating process in a much more realistic fashion: due mainly to the apolar solvation contribution, the membrane tension for full opening of MscL is reduced substantially to the experimental measured range. Moreover, the pore size stabilizes constantly during gating because of the intricate interactions of the multiple components of the system, implying the mechanism for sub-conducting states of MscL gating. A significant fraction ([Formula: see text]2/3) of the gating membrane strain is required to reach the first sub-conducting state of our model, which is featured with a relative conductance of 0.115 to the fully opened state. These trends agree well with experimental observations. We anticipate that the coupled CM/CS modeling framework is uniquely suited for the analysis of many biomolecules and their assemblies under external

  9. Continuum absorption in the vicinity of the toroidicity-induced Alfvén gap

    DOE PAGES

    Li, M.; Breizman, B. N.; Zheng, L. J.; ...

    2015-12-04

    Excitation of Alfvén modes is commonly viewed as a concern for energetic particle confinement in burning plasmas. The 3.5 MeValpha particles produced by fusion may be affected as well as other fast ions in both present and future devices. Continuum damping of such modes is one of the key factors that determine their excitation thresholds and saturation levels. This work examines the resonant dissipative response of the Alfvén continuum to an oscillating driving current when the driving frequency is slightly outside the edges of the toroidicity-induced spectral gap. The problem is largely motivated by the need to describe the continuummore » absorption in the frequency sweeping events. Akey element of this problem is the negative interference of the two closely spaced continuum crossing points.Weexplain why the lower and upper edges of the gap can have very different continuum absorption features. Lastly, the difference is associated with an eigenmode whose frequency can be arbitrarily close to the upper edge of the gap whereas the lower edge of the gap is always a finite distance away from the closest eigenmode.« less

  10. The electric field induced in the brain by magnetic stimulation: a 3-D finite-element analysis of the effect of tissue heterogeneity and anisotropy.

    PubMed

    Miranda, Pedro C; Hallett, Mark; Basser, Peter J

    2003-09-01

    We investigate the effect of tissue heterogeneity and anisotropy on the electric field and current density distribution induced in the brain during magnetic stimulation. Validation of the finite-element (FE) calculations in a homogeneous isotropic sphere showed that the magnitude of the total electric field can be calculated to within an error of approximately 5% in the region of interest, even in the presence of a significant surface charge contribution. We used a high conductivity inclusion within a sphere of lower conductivity to simulate a lesion due to an infarct. Its effect is to increase the electric field induced in the surrounding low conductivity region. This boost is greatest in the vicinity of interfaces that lie perpendicular to the current flow. For physiological values of the conductivity distribution, it can reach a factor of 1.6 and extend many millimeters from the interface. We also show that anisotropy can significantly alter the electric field and current density distributions. Either heterogeneity or anisotropy can introduce a radial electric field component, not present in a homogeneous isotropic conductor. Heterogeneity and anisotropy are predicted to significantly affect the distribution of the electric field induced in the brain. It is, therefore, expected that anatomically faithful FE models of individual brains which incorporate conductivity tensor data derived from diffusion tensor measurements, will provide a better understanding of the location of possible stimulation sites in the brain.

  11. Field-Induced Crystalline-to-Amorphous Phase Transformation on the Si Nano-Apex and the Achieving of Highly Reliable Si Nano-Cathodes

    PubMed Central

    Huang, Yifeng; Deng, Zexiang; Wang, Weiliang; Liang, Chaolun; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-01-01

    Nano-scale vacuum channel transistors possess merits of higher cutoff frequency and greater gain power as compared with the conventional solid-state transistors. The improvement in cathode reliability is one of the major challenges to obtain high performance vacuum channel transistors. We report the experimental findings and the physical insight into the field induced crystalline-to-amorphous phase transformation on the surface of the Si nano-cathode. The crystalline Si tip apex deformed to amorphous structure at a low macroscopic field (0.6~1.65 V/nm) with an ultra-low emission current (1~10 pA). First-principle calculation suggests that the strong electrostatic force exerting on the electrons in the surface lattices would take the account for the field-induced atomic migration that result in an amorphization. The arsenic-dopant in the Si surface lattice would increase the inner stress as well as the electron density, leading to a lower amorphization field. Highly reliable Si nano-cathodes were obtained by employing diamond like carbon coating to enhance the electron emission and thus decrease the surface charge accumulation. The findings are crucial for developing highly reliable Si-based nano-scale vacuum channel transistors and have the significance for future Si nano-electronic devices with narrow separation. PMID:25994377

  12. Continuum models for epitaxial growth with elasticity

    NASA Astrophysics Data System (ADS)

    Xiang, Yang

    In heteroepitaxial growth, the mismatch between the lattice constants in the film and the substrate causes misfit strain in the film, making a flat surface unstable to small perturbations. This morphological instability is called Asaro-Tiller-Grinfeld (ATG) instability, which can drive the film to self-organize into nanostructures such as quantum wires or quantum dots. At low temperature, the surface consists of steps and facets, when the misfit strain causes step bunching, traditional continuum models for ATG instability does not apply directly. In the first part of this thesis, we derive a PDE model for step bunching by taking the continuum limit of the discrete models proposed by Tersoff et al and Duport et al. We study the linear instability of a uniform step train with small perturbations and compare our results with those of discrete models and continuum models for traditional ATG instability. We numerically study the nonlinear evolution of this instability and compare our results with those of discrete models. We also study the equilibrium shapes of step bunches and explain their coalescence. In the second part of this thesis, we derive a nonlinear approximate PDE for the ATG instability. In the ATG instability, the misfit strain is coupled with surface morphology and an elasticity problem must be solved numerically. Linear approximation is made in some cases such as when computing the equilibrium island shapes. Using the exact solution for a cycloid surface obtained by Chiu and Gao, we find that our nonlinear approximation has a wider range of applicability than linear approximation. Numerical simulation using our nonlinear PDE model predicts formation of a cusp-like surface morphology from initially small perturbations of flat surfaces, which agrees well with the result obtained by Spencer and Meiron by solving the elasticity problem numerically.

  13. Interpreting angina: symptoms along a gender continuum

    PubMed Central

    Crea-Arsenio, Mary; Shannon, Harry S; Velianou, James L; Giacomini, Mita

    2016-01-01

    Background ‘Typical’ angina is often used to describe symptoms common among men, while ‘atypical’ angina is used to describe symptoms common among women, despite a higher prevalence of angina among women. This discrepancy is a source of controversy in cardiac care among women. Objectives To redefine angina by (1) qualitatively comparing angina symptoms and experiences in women and men and (2) to propose a more meaningful construct of angina that integrates a more gender-centred approach. Methods Patients were recruited between July and December 2010 from a tertiary cardiac care centre and interviewed immediately prior to their first angiogram. Symptoms were explored through in-depth semi-structured interviews, transcribed verbatim and analysed concurrently using a modified grounded theory approach. Angiographically significant disease was assessed at ≥70% stenosis of a major epicardial vessel. Results Among 31 total patients, 13 men and 14 women had angiograpically significant CAD. Patients describe angina symptoms according to 6 symptomatic subthemes that array along a ‘gender continuum’. Gender-specific symptoms are anchored at each end of the continuum. At the centre of the continuum, are a remarkably large number of symptoms commonly expressed by both men and women. Conclusions The ‘gender continuum’ offers new insights into angina experiences of angiography candidates. Notably, there is more overlap of shared experiences between men and women than conventionally thought. The gender continuum can help researchers and clinicians contextualise patient symptom reports, avoiding the conventional ‘typical’ versus ‘atypical’ distinction that can misrepresent gendered angina experiences. PMID:27158523

  14. Three-body Coulomb continuum problem

    NASA Astrophysics Data System (ADS)

    Berakdar, J.; Briggs, J. S.

    1994-06-01

    A symmetric representation of the three-body Coulomb continuum wave function as a product of three two-body Coulomb wave functions is modified to allow for three-body effects whereby the Sommerfeld parameter describing the strength of interaction of any two particles is affected by the presence of the third particle. This approach gives excellent agreement with near-threshold absolute (e,2e) ionization cross sections. In particular a recently observed deep minimum in noncoplanar geometry is reproduced for the first time.

  15. Millimeter Continuum Observations Of Disk Solids

    NASA Astrophysics Data System (ADS)

    Andrews, Sean

    2016-07-01

    I will offer a condensed overview of some key issues in protoplanetary disk research that makes use interferometric measurements of the millimeter-wavelength continuum emitted by their solid particles. Several lines of evidence now qualitatively support theoretical models for the growth and migration of disk solids, but also advertise a quantitative tension with the traditional efficiency of that evolution. New observations of small-scale substructures in disks might both reconcile the conflict and shift our focus in the mechanics of planet formation.

  16. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  17. Dust continuum spectra from model HII regions

    NASA Technical Reports Server (NTRS)

    Aannestad, P. A.; Emery, R. J.

    1989-01-01

    The infrared spectrum emitted by nebular dust, heated by the ionizing stars in H II blisters and spherical H II regions, is calculated for various model parameters. Absorption of the non-ionizing radiation in a neutral layer is included. Heating by the Lyman alpha photon field is taken into account. The dust is composed of silicate and graphite grains, and evaporation of the grains in the inner region is considered. The models are presented with a view to interpretation of infrared observations of dusty H II regions and can be applied directly to the infrared astronomy satellite survey data. The continuum emission is compared with calculated fine structure line emission.

  18. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction.

    PubMed

    Luppi, Eleonora; Head-Gordon, Martin

    2013-10-28

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L = 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model.

  19. The role of Rydberg and continuum levels in computing high harmonic generation spectra of the hydrogen atom using time-dependent configuration interaction

    SciTech Connect

    Luppi, Eleonora; Head-Gordon, Martin

    2013-10-28

    We study the role of Rydberg bound-states and continuum levels in the field-induced electronic dynamics associated with the High-Harmonic Generation (HHG) spectroscopy of the hydrogen atom. Time-dependent configuration-interaction (TD-CI) is used with very large atomic orbital (AO) expansions (up to L= 4 with sextuple augmentation and off-center functions) to describe the bound Rydberg levels, and some continuum levels. To address the lack of ionization losses in TD-CI with finite AO basis sets, we employed a heuristic lifetime for energy levels above the ionization potential. The heuristic lifetime model is compared against the conventional atomic orbital treatment (infinite lifetimes), and a third approximation which is TD-CI using only the bound levels (continuum lifetimes go to zero). The results suggest that spectra calculated using conventional TD-CI do not converge with increasing AO basis set size, while the zero lifetime and heuristic lifetime models converge to qualitatively similar spectra, with implications for how best to apply bound state electronic structure methods to simulate HHG. The origin of HHG spectral features including the cutoff and extent of interference between peaks is uncovered by separating field-induced coupling between different types of levels (ground state, bound Rydberg levels, and continuum) in the simulated electronic dynamics. Thus the origin of deviations between the predictions of the semi-classical three step model and the full simulation can be associated with particular physical contributions, which helps to explain both the successes and the limitations of the three step model.

  20. Discovery of a complex linearly polarized spectrum of Betelgeuse dominated by depolarization of the continuum

    NASA Astrophysics Data System (ADS)

    Aurière, M.; López Ariste, A.; Mathias, P.; Lèbre, A.; Josselin, E.; Montargès, M.; Petit, P.; Chiavassa, A.; Paletou, F.; Fabas, N.; Konstantinova-Antova, R.; Donati, J.-F.; Grunhut, J. H.; Wade, G. A.; Herpin, F.; Kervella, P.; Perrin, G.; Tessore, B.

    2016-06-01

    Context. Betelgeuse is an M supergiant that harbors spots and giant granules at its surface and presents linear polarization of its continuum. Aims: We have previously discovered linear polarization signatures associated with individual lines in the spectra of cool and evolved stars. Here, we investigate whether a similar linearly polarized spectrum exists for Betelgeuse. Methods: We used the spectropolarimeter Narval, combining multiple polarimetric sequences to obtain high signal-to-noise ratio spectra of individual lines, as well as the least-squares deconvolution (LSD) approach, to investigate the presence of an averaged linearly polarized profile for the photospheric lines. Results: We have discovered the existence of a linearly polarized spectrum for Betelgeuse, detecting a rather strong signal (at a few times 10-4 of the continuum intensity level), both in individual lines and in the LSD profiles. Studying its properties and the signal observed for the resonant Na i D lines, we conclude that we are mainly observing depolarization of the continuum by the absorption lines. The linear polarization of the Betelgeuse continuum is due to the anisotropy of the radiation field induced by brightness spots at the surface and Rayleigh scattering in the atmosphere. We have developed a geometrical model to interpret the observed polarization, from which we infer the presence of two brightness spots and their positions on the surface of Betelgeuse. We show that applying the model to each velocity bin along the Stokes Q and U profiles allows the derivation of a map of the bright spots. We use the Narval linear polarization observations of Betelgeuse obtained over a period of 1.4 yr to study the evolution of the spots and of the atmosphere. Conclusions: Our study of the linearly polarized spectrum of Betelgeuse provides a novel method for studying the evolution of brightness spots at its surface and complements quasi-simultaneous observations obtained with PIONIER at the

  1. Magnetic-Field-Induced Insulator-Conductor Transition in SU(2) Quenched Lattice Gauge Theory

    SciTech Connect

    Buividovich, P.V.; Kharzeev, D.; Chernodub, M.N., Kalaydzhyan, T., Luschevskaya, E.V., and M.I. Polikarpov

    2010-09-24

    We study the correlator of two vector currents in quenched SU(2) lattice gauge theory with a chirally invariant lattice Dirac operator with a constant external magnetic field. It is found that in the confinement phase the correlator of the components of the current parallel to the magnetic field decays much slower than in the absence of a magnetic field, while for other components the correlation length slightly decreases. We apply the maximal entropy method to extract the corresponding spectral function. In the limit of zero frequency this spectral function yields the electric conductivity of quenched theory. We find that in the confinement phase the external magnetic field induces nonzero electric conductivity along the direction of the field, transforming the system from an insulator into an anisotropic conductor. In the deconfinement phase the conductivity does not exhibit any sizable dependence on the magnetic field.

  2. Vacuum Particle-Antiparticle Creation in Strong Fields as a Field-Induced Phase Transition

    NASA Astrophysics Data System (ADS)

    Smolyansky, S. A.; Panferov, A. D.; Blaschke, D. B.; Juchnowski, L.; Kämpfer, B.; Otto, A.

    2017-03-01

    We study the special features of vacuum particle creation in an external classical field for two simple external field models in standard QED. Our investigation is based on a kinetic equation that is a nonperturbative consequence of the fundamental QED equations of motion. We identify the special features of system evolution that apply qualitatively also for other systems and are therefore rather general. The common basis for a description of these systems is formed by kinetic equations for vacuum particle creation belonging to the class of integro-differential equations of non-Markovian type with fastly oscillating kernel. This allows us to characterize the processes of this type as belonging to the class of field-induced phase transitions. Examples range from condensed matter physics to cosmology.

  3. Electric field induced domain-wall dynamics: Depinning and chirality switching

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Pramey; Dusad, Ritika; Hoffman, Silas; Tserkovnyak, Yaroslav; Alzate, Juan G.; Amiri, Pedram Khalili; Wang, Kang L.

    2013-12-01

    We theoretically study the equilibrium and dynamic properties of nanoscale magnetic tunnel junctions (MTJs) and magnetic wires, in which an electric field controls the magnetic anisotropy through spin-orbit coupling. By performing micromagnetic simulations, we construct a rich phase diagram and find that, in particular, the equilibrium magnetic textures can be tuned between Néel and Bloch domain walls in an elliptical MTJ. Furthermore, we develop a phenomenological model of a quasi-one-dimensional domain wall confined by a parabolic potential and show that, near the Néel-to-Bloch-wall transition, a pulsed electric field induces precessional domain-wall motion which can be used to reverse the chirality of a Néel wall and even depin it. This domain-wall motion controlled by electric fields, in lieu of applied current, may provide a model for ultralow-power domain-wall memory and logic devices.

  4. Field-induced spin-density wave beyond hidden order in URu2Si2

    PubMed Central

    Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.

    2016-01-01

    URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations. PMID:27762260

  5. Magnetic-field-induced ferroelectric polarization reversal in magnetoelectric composites revealed by piezoresponse force microscopy.

    PubMed

    Miao, Hongchen; Zhou, Xilong; Dong, Shuxiang; Luo, Haosu; Li, Faxin

    2014-08-07

    Controlling electric polarization (or magnetization) in multiferroic materials with external magnetic fields (or electric fields) is very important for fundamental physics and spintronic devices. Although there has been some progress on magnetic-field-induced polarization reversal in single-phase multiferroics, such behavior has so far never been realized in composites. Here we show that it is possible to reverse ferroelectric polarization using magnetic fields in a bilayer Terfenol-D/PMN-33%PT composite. We realized this by ferroelectric domain imaging using piezoresponse force microscopy (PFM) under applied magnetic field loading. The internal electric field caused by the magnetoelectric (ME) effect in the PMN-PT crystal is considered as the driving force for the 180° polarization switching, and its existence is verified by switching spectroscopy PFM testing under a series of external magnetic fields. A quantitative method is further suggested to estimate the local ME coefficient based on the switching spectroscopy PFM testing results.

  6. An Analysis of Ripple and Error Fields Induced by a Blanket in the CFETR

    NASA Astrophysics Data System (ADS)

    Yu, Guanying; Liu, Xufeng; Liu, Songlin

    2016-10-01

    The Chinese Fusion Engineering Tokamak Reactor (CFETR) is an important intermediate device between ITER and DEMO. The Water Cooled Ceramic Breeder (WCCB) blanket whose structural material is mainly made of Reduced Activation Ferritic/Martensitic (RAFM) steel, is one of the candidate conceptual blanket design. An analysis of ripple and error field induced by RAFM steel in WCCB is evaluated with the method of static magnetic analysis in the ANSYS code. Significant additional magnetic field is produced by blanket and it leads to an increased ripple field. Maximum ripple along the separatrix line reaches 0.53% which is higher than 0.5% of the acceptable design value. Simultaneously, one blanket module is taken out for heating purpose and the resulting error field is calculated to be seriously against the requirement. supported by National Natural Science Foundation of China (No. 11175207) and the National Magnetic Confinement Fusion Program of China (No. 2013GB108004)

  7. Magnetic field induced tailoring of mechanical behavior of fluid filled micro porous carbon nanotube foam

    NASA Astrophysics Data System (ADS)

    Reddy, Siva Kumar; Mukherjee, Anwesha; Misra, Abha

    2014-06-01

    Compressive loading of the carbon nanotube (CNT) has attracted much attention due to its entangled cellular like structure (CNT foam). This report investigates the mechanical behavior of magnetorheological fluid impregnated micro porous CNT foam that has not been realized before at this scale. Compressive behavior of CNT foam is found to greatly depend on the variation in both fluid viscosity as well as magnetic field intensity. Moreover, maximum achieved stress and energy absorption in CNT foam followed a power law behavior with the magnetic field intensity. Magnetic field induced movement of both CNT and iron oxide particles along the field direction is shown to dominate compressive behavior of CNT foam over highly attractive van der Waals forces between individual CNT. Therefore, this study demonstrates a method for tailoring the mechanical behavior of the fluid impregnated CNT foam.

  8. Magnetic field induced modulated phases in a ferrofluid lutidine silicone oil mixture.

    PubMed

    Bugase, Jonas; Berner, Johannes; Fischer, Thomas M

    2016-10-19

    A mixture of an ester based ferrofluid with silicone oil and 2,6-lutidine is exposed to an external magnetic field. We find a region of composition of the ternary mixture, where weak magnetic fields of the order of a few kA m(-1) induce a modulated phase with a pattern characterized by equilibrium size droplets of the minority phase immersed into the extended majority phase. While the pattern resembles in many ways the pattern of immiscible magnetic fluids, the dependence of the characteristic parameters of the pattern on the magnetic field are completely different than in immiscible fluids. We theoretically explain the pattern formation as a magnetic field induced polymerization of magnetic particles into magnetic chains that goes along with a reduction of the entropy of mixing. This entropy reduction causes the Ostwald ripening of chains into mesoscopic droplets the size of which is limited by repulsive dipolar interactions between the chains.

  9. X-ray microtomography of field-induced macro-structures in a ferrofluid.

    SciTech Connect

    Lee, W.; X-Ray Science Division

    2010-09-01

    X-ray microtomography is used to visualize, in-situ, the three-dimensional nature of the magnetic field induced macro-structures (>1 ?m) inside a bulk (not, vert, similar1 mm diameter) magnetite-particle-mineral oil ferrofluid sample. Columnar structures of not, vert, similar10 ?m diameter were seen under a 0.35 kG applied magnetic field, while labyrinth type structures not, vert, similar4 ?m in width were seen at 0.55 kG. The structures have height/width aspect ratios >100. The results show that the magnetite volume fraction is not constant within the structures and on average is considerably less than a random sphere packing model.

  10. Two-stage kinetics of field-induced aggregation of medium-sized magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ezzaier, H.; Alves Marins, J.; Razvin, I.; Abbas, M.; Ben Haj Amara, A.; Zubarev, A.; Kuzhir, P.

    2017-03-01

    The present paper is focused on the theoretical and experimental study of the kinetics of field-induced aggregation of magnetic nanoparticles of a size range of 20-100 nm. Our results demonstrate that (a) in polydisperse suspensions, the largest particles could play a role of the centers of nucleation for smaller particles during the earliest heterogeneous nucleation stage; (b) an intermediate stage of the aggregate growth (due to diffusion and migration of individual nanoparticles towards the aggregates) is weakly influenced by the magnetic field strength, at least at high supersaturation; (c) the stage of direct coalescence of drop-like aggregates (occurring under magnetic attraction between them) plays a dominant role at the intermediate and late stages of the phase separation, with the time scale decreasing as a square of the aggregate magnetization.

  11. Raman thermometry: Effective temperature of the nonuniform temperature field induced by a Gaussian laser

    SciTech Connect

    Očenášek, Jan Voldřich, Josef

    2015-12-21

    Raman spectroscopy is a widely applied analytical technique with numerous applications that is based on inelastic scattering of monochromatic light, which is typically provided by a laser. Irradiation of a sample by a laser beam is always accompanied by an increase in the sample temperature, which may be unwanted or may be beneficial for studying temperature-related effects and determining thermal parameters. This work reports analyses of the temperature field induced by a Gaussian laser to calculate the Raman scattered intensity related to each temperature value of the nonuniform field present on the sample. The effective temperature of the probed field, calculated as an average weighted by the laser intensity, is demonstrated to be about 70% of the maximum temperature irrespective of the absorption coefficient or the laser focus. Finally, using crystalline silicon as a model material, it is shown that this effective value closely approximates the temperature value identified from the thermally related peak shift.

  12. Local field-induced optical properties of Ag-coated CdS quantum dots.

    PubMed

    Je, Koo-Chul; Ju, Honglyoul; Treguer, Mona; Cardinal, Thierry; Park, Seung-Han

    2006-08-21

    Local field-induced optical properties of Ag-coated CdS quantum dot structures are investigated. We experimentally observe a clear exciton peak due to the quantum confinement effect in uncoated CdS quantum dots, and surface plasmon resonance and red-shifted exciton peak in Ag-coated CdS composite quantum dot structures. We have calculated the Stark shift of the exciton peak as a function of the local field for different silver thicknesses and various sizes of quantum dots based on the effective-mass Hamiltonian using the numerical-matrix-diagonalization method. Our theoretical calculations strongly indicate that the exciton peak is red-shifted in the metal-semiconductor composite quantum dots due to a strong local field, i.e., the quantum confined Stark effect.

  13. Giant electric-field-induced strain in lead-free piezoelectric materials

    PubMed Central

    Chen, Lan; Yang, Yurong; Meng, X. K.

    2016-01-01

    First-principles calculations are performed to investigate the structures, electrical, and magnetic properties of compressive BiFeO3 films under electric-field and pressure perpendicular to the films. A reversible electric-field-induced strain up 10% is achieved in the compressive BiFeO3 films. The giant strain originates from rhombohedral-tetragonal (R-T) phase transition under electric-filed, and is recoverable from tetragonal-rhombohedral (T-R) phase transition by compressive stress. Additionally, the weak ferromagnetism in BiFeO3 films is largely changed in R-T phase transition under electric-filed and T-R phase transition under pressure – reminiscent of magnetoelectric effect and magnetoelastic effect. These results suggest exciting device opportunities arising from the giant filed-induced strain, large magnetoelectric effect and magnetoelastic effect. PMID:27139526

  14. Magnetic-field-induced rotation of light with orbital angular momentum

    SciTech Connect

    Shi, Shuai; Ding, Dong-Sheng Zhou, Zhi-Yuan; Li, Yan; Zhang, Wei; Shi, Bao-Sen

    2015-06-29

    Light carrying orbital angular momentum (OAM) has attractive applications in the fields of precise optical measurements and high capacity optical communications. We study the rotation of a light beam propagating in warm {sup 87}Rb atomic vapor using a method based on magnetic-field-induced circular birefringence. The dependence of the rotation angle on the magnetic field makes it appropriate for weak magnetic field measurements. We quote a detailed theoretical description that agrees well with the experimental observations. The experiment shown here provides a method to measure the magnetic field intensity precisely and expands the application of OAM-carrying light. This technique has advantage in measurement of magnetic field weaker than 0.5 G, and the precision we achieved is 0.8 mG.

  15. Field-induced exciton condensation in LaCoO3

    PubMed Central

    Sotnikov, A.; Kuneš, J.

    2016-01-01

    Motivated by recent observation of magnetic field induced transition in LaCoO3 we study the effect of external field in systems close to instabilities towards spin-state ordering and exciton condensation. We show that, while in both cases the transition can be induced by an external field, temperature dependencies of the critical field have opposite slopes. Based on this result we argue that the experimental observations select the exciton condensation scenario. We show that such condensation is possible due to high mobility of the intermediate spin excitations. The estimated width of the corresponding dispersion is large enough to overrule the order of atomic multiplets and to make the intermediate spin excitation propagating with a specific wave vector the lowest excitation of the system. PMID:27461512

  16. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials

    NASA Astrophysics Data System (ADS)

    Zalden, Peter; Shu, Michael J.; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W.; Wong, H.-S. Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M.

    2016-08-01

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4In3Sb67Te26 . Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales—faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  17. Electric field-induced reversible trapping of microtubules along metallic glass microwire electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Kyongwan; Sikora, Aurélien; Nakayama, Koji S.; Umetsu, Mitsuo; Hwang, Wonmuk; Teizer, Winfried

    2015-04-01

    Microtubules are among bio-polymers providing vital functions in dynamic cellular processes. Artificial organization of these bio-polymers is a requirement for transferring their native functions into device applications. Using electrophoresis, we achieve an accumulation of microtubules along a metallic glass (Pd42.5Cu30Ni7.5P20) microwire in solution. According to an estimate based on migration velocities of microtubules approaching the wire, the electrophoretic mobility of microtubules is around 10-12 m2/Vs. This value is four orders of magnitude smaller than the typical mobility reported previously. Fluorescence microscopy at the individual-microtubule level shows microtubules aligning along the wire axis during the electric field-induced migration. Casein-treated electrodes are effective to reversibly release trapped microtubules upon removal of the external field. An additional result is the condensation of secondary filamentous structures from oriented microtubules.

  18. Amplification of femtosecond pulses at 126 nm in optical field-induced plasma filamentation in Ar

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Fujiyoshi, Kazuyuki; Kaku, Masanori; Katto, Masahito

    2017-01-01

    We have observed an optical gain at the wavelength of 126 nm in an Ar excimer (Ar2 *) amplifier by utilizing a femtosecond vacuum ultraviolet (VUV) seed beam tuned at 126 nm. The maximum optical gain value of 1.1 cm-1 with a spatial distribution in the optical-field-induced ionization (OFI) Ar plasma was observed. The plasma diagnosis revealed that the plasma contraction near the plasma amplifier axis together with the plasma expansion was a key issue to observe such a high optical gain value inside the Ar plasma filament. The center axis of the contracted plasma amplifier showed the high electron density more than 1018 cm-3 even after 100 ns from the plasma production of Ar at 1 MPa. Our OFI plasma/excimer kinetics code reproduced the temporal progress of the optical gain distribution as well as the maximum gain value.

  19. Magnetostrictive hypersound generation by spiral magnets in the vicinity of magnetic field induced phase transition

    NASA Astrophysics Data System (ADS)

    Bychkov, Igor V.; Kuzmin, Dmitry A.; Kamantsev, Alexander P.; Koledov, Victor V.; Shavrov, Vladimir G.

    2016-11-01

    In present work we have investigated magnetostrictive ultrasound generation by spiral magnets in the vicinity of magnetic field induced phase transition from spiral to collinear state. We found that such magnets may generate transverse sound waves with the wavelength equal to the spiral period. We have examined two types of spiral magnetic structures: with inhomogeneous exchange and Dzyaloshinskii-Moriya interactions. Frequency of the waves from exchange-caused spiral magnetic structure may reach some THz, while in case of Dzyaloshinskii-Moriya interaction-caused spiral it may reach some GHz. These waves will be emitted like a sound pulses. Amplitude of the waves is strictly depends on the phase transition speed. Some aspects of microwaves to hypersound transformation by spiral magnets in the vicinity of phase transition have been investigated as well. Results of the work may be interesting for investigation of phase transition kinetics as well, as for various hypersound applications.

  20. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  1. Dispersion of Electric-Field-Induced Faraday Effect in Magnetoelectric Cr2O3

    NASA Astrophysics Data System (ADS)

    Wang, Junlei; Binek, Christian

    2016-03-01

    The frequency dependence of the electric-field-induced magneto-optical Faraday effect is investigated in the magnetoelectric antiferromagnet chromia. Two electrically induced Faraday signals superimpose in proportion to the linear magnetoelectric susceptibility α and the antiferromagnetic order parameter η . The relative strength of these contributions is determined by the frequency of the probing light and can be tuned between extreme characteristics following the temperature dependence of α or η . The frequency dependence is analyzed in terms of electric dipole transitions of perturbed Cr3 + crystal-field states. The results allow us to measure voltage-controlled selection, isothermal switching, and temperature dependence of η in a tabletop setup. The voltage-specific Faraday rotation is independent of the sample thickness, making the method scalable and versatile down to the limit of dielectric breakdown.

  2. Field-induced spin-density wave beyond hidden order in URu2Si2

    NASA Astrophysics Data System (ADS)

    Knafo, W.; Duc, F.; Bourdarot, F.; Kuwahara, K.; Nojiri, H.; Aoki, D.; Billette, J.; Frings, P.; Tonon, X.; Lelièvre-Berna, E.; Flouquet, J.; Regnault, L.-P.

    2016-10-01

    URu2Si2 is one of the most enigmatic strongly correlated electron systems and offers a fertile testing ground for new concepts in condensed matter science. In spite of >30 years of intense research, no consensus on the order parameter of its low-temperature hidden-order phase exists. A strong magnetic field transforms the hidden order into magnetically ordered phases, whose order parameter has also been defying experimental observation. Here, thanks to neutron diffraction under pulsed magnetic fields up to 40 T, we identify the field-induced phases of URu2Si2 as a spin-density-wave state. The transition to the spin-density wave represents a unique touchstone for understanding the hidden-order phase. An intimate relationship between this magnetic structure, the magnetic fluctuations and the Fermi surface is emphasized, calling for dedicated band-structure calculations.

  3. Electric field-induced magnetic switching in Mn:ZnO film

    SciTech Connect

    Ren, S. X.; Sun, G. W.; Zhao, J.; Dong, J. Y.; Zhao, X.; Chen, W.; Wei, Y.; Ma, Z. C.

    2014-06-09

    A large magnetic modulation, accompanied by stable bipolar resistive switching (RS) behavior, was observed in a Mn:ZnO film by applying a reversible electric field. A significant enhancement of the ferromagnetism of the film, to about five times larger than that in the initial (as-grown) state (IS), was obtained by switching the film into the low resistance state. X-ray photoelectron spectroscopy demonstrated the existence of abundant oxygen vacancies in the IS of the film. We suggest that this electric field-induced magnetic switching effect originates with the migration and redistribution of oxygen vacancies during RS. Our work indicates that electric switching is an effective and simple method to increase the ferromagnetism of diluted magnetic oxide films. This provides a promising direction for research in spintronic devices.

  4. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration

    NASA Astrophysics Data System (ADS)

    Liu, Min; Pang, Yuanjie; Zhang, Bo; de Luna, Phil; Voznyy, Oleksandr; Xu, Jixian; Zheng, Xueli; Dinh, Cao Thang; Fan, Fengjia; Cao, Changhong; de Arquer, F. Pelayo García; Safaei, Tina Saberi; Mepham, Adam; Klinkova, Anna; Kumacheva, Eugenia; Filleter, Tobin; Sinton, David; Kelley, Shana O.; Sargent, Edward H.

    2016-09-01

    Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.

  5. Atomistic to continuum modeling of solidification microstructures

    SciTech Connect

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked to experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.

  6. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  7. Continuum robot arms inspired by cephalopods

    NASA Astrophysics Data System (ADS)

    Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

    2005-05-01

    In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

  8. Mid-IR super-continuum generation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammed N.; Xia, Chenan; Freeman, Mike J.; Mauricio, Jeremiah; Zakel, Andy; Ke, Kevin; Xu, Zhao; Terry, Fred L., Jr.

    2009-02-01

    A Mid-InfraRed FIber Laser (MIRFIL) has been developed that generates super-continuum covering the spectral range from 0.8 to 4.5 microns with a time-averaged power as high as 10.5W. The MIRFIL is an all-fiber integrated laser with no moving parts and no mode-locked lasers that uses commercial off-the-shelf parts and leverages the mature telecom/fiber optics platform. The MIRFIL power can be easily scaled by changing the repetition rate and modifying the erbium-doped fiber amplifier. Some of the applications using the super-continuum laser will be described in defense, homeland security and healthcare. For example, the MIRFIL is being applied to a catheter-based medical diagnostic system to detect vulnerable plaque, which is responsible for most heart attacks resulting from hardening-of-the-arteries or atherosclerosis. More generally, the MIRFIL can be a platform for selective ablation of lipids without damaging normal protein or smooth muscle tissue.

  9. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles

  10. Non-coherent Continuum Scattering as a Line Polarization Mechanism

    NASA Astrophysics Data System (ADS)

    del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J.

    2014-03-01

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  11. Combined density functional/polarizable continuum model study of magnetochiral birefringence: can theory and experiment be brought to agreement?

    PubMed

    Jansík, Branislav; Rizzo, Antonio; Frediani, Luca; Ruud, Kenneth; Coriani, Sonia

    2006-12-21

    The magnetic-field-induced axial birefringence (magnetochirality) of five closed-shell chiral molecules (three substituted oxiranes, carvone, and limonene) is studied at the density functional theory level using Becke's 3-parameter Lee-Yang-Parr functional and frequency-dependent quadratic response theory. The influence of the environment and the conformational distribution on the property is also studied. The environment effects are described by the polarizable continuum model in its integral-equation formulation. The effect of the conformational distribution is investigated by performing calculations on several conformers-for carvone and limonene-followed by Boltzmann averaging. The calculated values for the magnetochiral birefringence are compared to previous ab initio results and experimental data where available. The refined model presented here brings the ab initio values closer to experiment. Still, disagreements remain in some cases and it appears difficult to resolve these discrepancies.

  12. Combined density functional/polarizable continuum model study of magnetochiral birefringence: Can theory and experiment be brought to agreement?

    NASA Astrophysics Data System (ADS)

    Jansík, Branislav; Rizzo, Antonio; Frediani, Luca; Ruud, Kenneth; Coriani, Sonia

    2006-12-01

    The magnetic-field-induced axial birefringence (magnetochirality) of five closed-shell chiral molecules (three substituted oxiranes, carvone, and limonene) is studied at the density functional theory level using Becke's 3-parameter Lee-Yang-Parr functional and frequency-dependent quadratic response theory. The influence of the environment and the conformational distribution on the property is also studied. The environment effects are described by the polarizable continuum model in its integral-equation formulation. The effect of the conformational distribution is investigated by performing calculations on several conformers—for carvone and limonene—followed by Boltzmann averaging. The calculated values for the magnetochiral birefringence are compared to previous ab initio results and experimental data where available. The refined model presented here brings the ab initio values closer to experiment. Still, disagreements remain in some cases and it appears difficult to resolve these discrepancies.

  13. Continuum capture in the three-body problem

    SciTech Connect

    Sellin, I A

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum. (GHT)

  14. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  15. In situ electric-field-induced contrast imaging of electronic transport pathways in nanotube-polymer composites

    NASA Astrophysics Data System (ADS)

    Jesse, Stephen; Guillorn, Michael A.; Ivanov, Ilia N.; Puretzky, Alexander A.; Howe, Jane Y.; Britt, Phillip F.; Geohegan, David B.

    2006-07-01

    An electric-field-induced contrast mechanism for scanning electron microscopy is reported which permits the visualization of embedded nanomaterials inside various matrices with high contrast and high definition. The high contrast is proposed to result from localized enhancement of secondary electron emission from the nanomaterials due to electric-field-induced changes in their work functions. By utilizing a stage that allows in situ current-voltage measurements inside a scanning electron microscope, single-walled carbon nanotubes embedded within polymethyl methacrylate films were visualized directly. In addition to the rapid assessment of nanotube dispersion within polymers, electric-field-induced contrast imaging enables the determination of percolation pathways. From the contrast in the images, the relative voltage at all points in the electron micrograph can be determined, providing a new mechanism to understand electronic percolation through nanoscale networks.

  16. In Situ Electric-Field-Induced Contrast Imaging of Electronic Transport Pathways in Nanotube-Polymer Composites

    SciTech Connect

    Jesse, Stephen; Guillorn, Michael A; Ivanov, Ilia N; Puretzky, Alexander A; Howe, Jane Y; Britt, Phillip F; Geohegan, David B

    2006-01-01

    An electric-field-induced contrast mechanism for scanning electron microscopy is reported which permits the visualization of embedded nanomaterials inside various matrices with high contrast and high definition. The high contrast is proposed to result from localized enhancement of secondary electron emission from the nanomaterials due to electric-field-induced changes in their work functions. By utilizing a stage that allows in situ current-voltage measurements inside a scanning electron microscope, single-walled carbon nanotubes embedded within polymethyl methacrylate films were visualized directly. In addition to the rapid assessment of nanotube dispersion within polymers, electric-field-induced contrast imaging enables the determination of percolation pathways. From the contrast in the images, the relative voltage at all points in the electron micrograph can be determined, providing a new mechanism to understand electronic percolation through nanoscale networks.

  17. Electric-field-induced modification of the magnon energy, exchange interaction, and curie temperature of transition-metal thin films.

    PubMed

    Oba, M; Nakamura, K; Akiyama, T; Ito, T; Weinert, M; Freeman, A J

    2015-03-13

    The electric-field-induced modification in the Curie temperature of prototypical transition-metal thin films with the perpendicular magnetic easy axis, a freestanding Fe(001) monolayer and a Co monolayer on Pt(111), is investigated by first-principles calculations of spin-spiral structures in an external electric field (E field). An applied E field is found to modify the magnon (spin-spiral formation) energy; the change arises from the E-field-induced screening charge density in the spin-spiral states due to p-d hybridizations. The Heisenberg exchange parameters obtained from the magnon energy suggest an E-field-induced modification of the Curie temperature, which is demonstrated via Monte Carlo simulations that take the magnetocrystalline anisotropy into account.

  18. Discrete and Continuum Elastic Properties of Interfaces.

    NASA Astrophysics Data System (ADS)

    Alber, Elliott Solomon

    The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (i) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (ii) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h -thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic

  19. Discrete and continuum elastic properties of interfaces

    NASA Astrophysics Data System (ADS)

    Alber, Elliott Solomon

    1993-06-01

    The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (1) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (2) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h-thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic

  20. Continuum and line emission in Cygnus A

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Ridgway, Susan E.; Lilly, Simon J.

    1994-08-01

    We present the results from (1) imaging observations of Cygnus A in five essentially line-free continuum bands with central wavelengths ranging from 0.34 to 2.1 microns. (2) imaging observations in five narrowband filters centered on the emission lines H beta(O III) lambda5007, H alpha(N II) lambda6583, and (S II) lambda lambda6716, 6731, and (3) deep spectroscopy covering the entire central region of Cyg A. We confirm that the featureless spectrum component is to be identified with the prominent double morphology at the center of Cyg A, but uncertainties in the distribution of the dust in this region tend to limit the accuracy with which we can determine its morphology and spectral-energy distribution (SED). From regions that appear to be least affected by obscuration, we find fv is approximately v-0.1 for this component. This SED could be consistent with free-free emission, a population of young stars, or a quasar continuum scattered by electrons, but probably not with a quasar continuum scattered by dust, which would be bluer. Our spectroscopy places an upper limit on the equivalent width of broad H beta that is well below that of typical quasars, showing that this flat-spectrum component (FSC) is almost certainly not dominated by scattered quasar radiation. Appeals to scattering by hot electrons to smear the scattered broad lines into invisibility appear to fail because the large density scale height of the electrons and the inefficiency of electron scattering should result in smoother and more extensive structure than we observe. Although the relative SED is consistent with free-free emission, the required amount of hot gas violates other observational constraints. At high angular resolution, the apparent morphology of the FSC is spiral-like. Although this impression may be partly due to obscuration, the distribution of the dust itself only serves to reinforce the spiral-like nature of the material with which it is associated. We conclude that the FSC is most

  1. Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design

    SciTech Connect

    Meng, Bo; Zeng, Yong Quan; Liang, Guozhen; Hu, Xiao Nan; Rodriguez, Etienne; Wang, Qi Jie

    2015-09-14

    We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.

  2. Continuous Shape Estimation of Continuum Robots Using X-ray Images.

    PubMed

    Lobaton, Edgar J; Fu, Jinghua; Torres, Luis G; Alterovitz, Ron

    2013-05-06

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.

  3. Continuous Shape Estimation of Continuum Robots Using X-ray Images

    PubMed Central

    Lobaton, Edgar J.; Fu, Jinghua; Torres, Luis G.; Alterovitz, Ron

    2015-01-01

    We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot’s shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints. PMID:26279960

  4. Continuum mechanics, stresses, currents and electrodynamics.

    PubMed

    Segev, Reuven

    2016-04-28

    The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms.

  5. Exercise therapy across the lung cancer continuum.

    PubMed

    Jones, Lee W; Eves, Neil D; Waner, Emily; Joy, Anil A

    2009-07-01

    A lung cancer diagnosis and associated therapeutic management are associated with unique and varying degrees of adverse physical/functional impairments that dramatically reduce patients' ability to tolerate exercise. Poor exercise capacity predisposes to increased susceptibility to other common age-related diseases, poor quality of life, and likely premature death. This article reviews the literature investigating the role of exercise as an adjunct therapy across the lung cancer continuum (ie, prevention to palliation). The current evidence suggests that exercise training is a safe and feasible adjunct therapy for patients with operable lung cancer both before and after pulmonary resection. Among patients with inoperable disease, feasibility and safety studies of carefully prescribed exercise training are warranted. Preliminary evidence in this area suggests that exercise therapy may be an important consideration in multidisciplinary management of patients diagnosed with lung cancer.

  6. The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1992-01-01

    We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.

  7. Defining Health Across the Cancer Continuum

    PubMed Central

    Wallace, Audrey S; Everett, Ashlyn S; Dover, Laura; McDonald, Andrew; Kropp, Lauren

    2017-01-01

    Health is not defined by the absence of disease or suffering, but by response to a series of life events that can markedly alter the quality and quantity of life. Patients with cancer experience significant but dynamic physical, psychosocial, and financial challenges. With the increasing number of patients with early stage cancers transitioning to survivorship, there is a critical need to address health promotion and overall well-being. For those with advanced cancer, discussion about prognosis and early integration of palliative care can have a profound impact on the quality of life. Effective communication between healthcare providers and patients is important in aligning treatment recommendations with patient goals and preferences throughout cancer therapy. This review provides a dynamic definition of health and proposes actionable guidelines for health promotion at any point along the cancer continuum: survivorship after early cancer or when goals of care transition to improve quality at the end of life. PMID:28357161

  8. Continuum modeling of cooperative traffic flow dynamics

    NASA Astrophysics Data System (ADS)

    Ngoduy, D.; Hoogendoorn, S. P.; Liu, R.

    2009-07-01

    This paper presents a continuum approach to model the dynamics of cooperative traffic flow. The cooperation is defined in our model in a way that the equipped vehicle can issue and receive a warning massage when there is downstream congestion. Upon receiving the warning massage, the (up-stream) equipped vehicle will adapt the current desired speed to the speed at the congested area in order to avoid sharp deceleration when approaching the congestion. To model the dynamics of such cooperative systems, a multi-class gas-kinetic theory is extended to capture the adaptation of the desired speed of the equipped vehicle to the speed at the downstream congested traffic. Numerical simulations are carried out to show the influence of the penetration rate of the equipped vehicles on traffic flow stability and capacity in a freeway.

  9. Continuum-kinetic approach to sheath simulations

    NASA Astrophysics Data System (ADS)

    Cagas, Petr; Hakim, Ammar; Srinivasan, Bhuvana

    2016-10-01

    Simulations of sheaths are performed using a novel continuum-kinetic model with collisions including ionization/recombination. A discontinuous Galerkin method is used to directly solve the Boltzmann-Poisson system to obtain a particle distribution function. Direct discretization of the distribution function has advantages of being noise-free compared to particle-in-cell methods. The distribution function, which is available at each node of the configuration space, can be readily used to calculate the collision integrals in order to get ionization and recombination operators. Analytical models are used to obtain the cross-sections as a function of energy. Results will be presented incorporating surface physics with a classical sheath in Hall thruster-relevant geometry. This work was sponsored by the Air Force Office of Scientific Research under Grant Number FA9550-15-1-0193.

  10. Radio Continuum Emission from FS CMa Stars

    NASA Astrophysics Data System (ADS)

    Rodríguez, L. F.; Báez-Rubio, A.; Miroshnichenko, A. S.

    2012-04-01

    The FS CMa stars exhibit bright optical emission-line spectra and strong IR excesses. Very little is known of their radio characteristics. We analyzed archive Very Large Array data to search for radio continuum emission in a sample of them. There are good quality data for seven of the ~40 known FS CMa stars. Of these seven stars, five turn out to have associated radio emission. Two of these stars, CI Cam and MWC 300, have been previously reported in the literature as radio emitters. We present and briefly discuss the radio detection of the other three sources: FS CMa (the prototype of the class), AS 381, and MWC 922. The radio emission is most probably of a free-free nature but additional observations are required to better characterize it.

  11. A nonlocal continuum model for biological aggregation.

    PubMed

    Topaz, Chad M; Bertozzi, Andrea L; Lewis, Mark A

    2006-10-01

    We construct a continuum model for biological aggregations in which individuals experience long-range social attraction and short-range dispersal. For the case of one spatial dimension, we study the steady states analytically and numerically. There exist strongly nonlinear states with compact support and steep edges that correspond to localized biological aggregations, or clumps. These steady-state clumps are reached through a dynamic coarsening process. In the limit of large population size, the clumps approach a constant density swarm with abrupt edges. We use energy arguments to understand the nonlinear selection of clump solutions, and to predict the internal density in the large population limit. The energy result holds in higher dimensions as well, and is demonstrated via numerical simulations in two dimensions.

  12. The hurricane-flood-landslide continuum

    USGS Publications Warehouse

    Negri, A.J.; Burkardt, N.; Golden, J.H.; Halverson, J.B.; Huffman, G.J.; Larsen, M.C.; McGinley, J.A.; Updike, R.G.; Verdin, J.P.; Wieczorek, G.F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the US Geological Survey (USGS), as well as other government agencies and academic institutions convened in San Juan, Puerto Rico, at a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The purpose of the HFLC is to develop and integrate the multidisciplinary tools needed to issue regional guidance products for floods and landslide associated with major tropical rain systems with sufficient lead time that local emergency managers can notify vulnerable populations and protect infrastructure. The workshop sought to initiate discussion among these agencies about their highly complementary capabilities, and to establish a framework to leverage the strengths of each agency. Once a prototype system is developed, it could be adapted for use in regions that have a high frequency of tropical disturbances.

  13. Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Su, Yanjie; Zhang, Yaozhong; Wei, Hao; Zhang, Liling; Zhao, Jiang; Yang, Zhi; Zhang, Yafei

    2012-02-01

    We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process.We report a facile and scalable approach to synthesize single-walled carbon nanotubes (SWNTs) with selected diameter distribution by applying a magnetic field perpendicular to the electric field in the arc plasma region. It is found that this magnetic field-induced diameter-selectivity strategy enables the control of the SWNTs with different diameter distributions in different regions, and the diameter-selective efficiency could be enhanced by modifying the direction of magnetic field. Our results indicate that the motions of the catalysts with different particle sizes, positive carbon ions and electrons are significantly influenced by the magnetic field and electromagnetic force, resulting in the different nucleation and growth processes of SWNTs due to the collective interactions between the magnetic field and arc plasma. This approach would enable a viable route towards the synthesis of SWNTs with desired diameter through the tuning of arc parameters in the arc discharge process

  14. Testing Continuum and Non-Continuum Descriptions in High Speed Flows

    DTIC Science & Technology

    2005-07-13

    fundamentally different in the two solution approaches. In the continuum approach the Navier-Stokes equations consist of source terms of reaction...model match those obtained from the direct solution of the Boltzmann equation [14]. For the case of the Mach 1.2 Argon shock structure, (figure not...study provides excellent match with the DSMC and direct solutions of the Boltzmann equation [14]. Fig. 2 shows the effect of the variation of the

  15. Continuum Thinking and the Contexts of Personal Information Management

    ERIC Educational Resources Information Center

    Huvila, Isto; Eriksen, Jon; Häusner, Eva-Maria; Jansson, Ina-Maria

    2014-01-01

    Introduction: Recent personal information management literature has underlined the significance of the contextuality of personal information and its use. The present article discusses the applicability of the records continuum model and its generalisation, continuum thinking, as a theoretical framework for explicating the overlap and evolution of…

  16. Teaching Continuum Mechanics in a Mechanical Engineering Program

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  17. Rotational bands in the continuum illustrated by 8Be results

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.

    2013-08-01

    We use the α-α cluster model to describe the properties of 8Be. The rotational energy sequence of the (0+,2+,4+) resonances are reproduced with the complex energy scaling technique for Ali-Bodmer and Buck potentials. However, both static and transition probabilities are far from the rotational values. We trace this observation to the prominent continuum properties of the 2+ and 4+ resonances. They resemble free continuum solutions although still exhibit strong collective rotational character. We compare with cluster models and discuss concepts of rotations in the continuum in connection with such central quantities as transition probabilities, inelastic cross sections, and resonance widths. We compute the 6+ and 8+ S-matrix poles and discuss properties of this possible continuation of the band beyond the known 4+ state. Regularization of diverging quantities is discussed to extract observable continuum properties. We formulate the division of electromagnetic transition probabilities into interfering contributions from resonance-resonance, continuum-resonance, resonance-continuum, and continuum-continuum transitions.

  18. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics

    PubMed Central

    Usher, Tedi-Marie; Levin, Igor; Daniels, John E.; Jones, Jacob L.

    2015-01-01

    The atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3, and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively. PMID:26424360

  19. Magnetic-field-induced recovery strain in polycrystalline Ni-Mn-Ga foam

    NASA Astrophysics Data System (ADS)

    Chmielus, Markus; Witherspoon, Cassie; Wimpory, Robert C.; Paulke, Andreas; Hilger, André; Zhang, Xuexi; Dunand, David C.; Müllner, Peter

    2010-12-01

    Recently, we have shown that a polycrystalline Ni-Mn-Ga magnetic shape-memory alloy, when containing two populations of pore sizes, shows very high magnetic-field-induced strain of up to 8.7%. Here, this double-porosity sample is imaged by x-ray microtomography, showing a homogenous distribution of both pore populations. The orientation of six large grains—four with 10M and two with 14M structure—is identified with neutron diffraction. In situ magnetomechanical experiments with a rotating magnetic field demonstrate that strain incompatibilities between misoriented grains are effectively screened by the pores which also stop the propagation of microcracks. During uniaxial compression performed with an orthogonal magnetic bias field, a strain as high as 1% is recovered on unloading by twinning, which is much larger than the elastic value of <0.1% measured without field. At the same time, repeated loading and unloading results in a reduction in the yield stress, which is a training effect similar to that in single crystals.

  20. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams

    NASA Astrophysics Data System (ADS)

    Chmielus, M.; Zhang, X. X.; Witherspoon, C.; Dunand, D. C.; Müllner, P.

    2009-11-01

    The magnetic shape-memory alloy Ni-Mn-Ga shows, in monocrystalline form, a reversible magnetic-field-induced strain (MFIS) up to 10%. This strain, which is produced by twin boundaries moving solely by internal stresses generated by magnetic anisotropy energy, can be used in actuators, sensors and energy-harvesting devices. Compared with monocrystalline Ni-Mn-Ga, fine-grained Ni-Mn-Ga is much easier to process but shows near-zero MFIS because twin boundary motion is inhibited by constraints imposed by grain boundaries. Recently, we showed that partial removal of these constraints, by introducing pores with sizes similar to grains, resulted in MFIS values of 0.12% in polycrystalline Ni-Mn-Ga foams, close to those of the best commercial magnetostrictive materials. Here, we demonstrate that introducing pores smaller than the grain size further reduces constraints and markedly increases MFIS to 2.0-8.7%. These strains, which remain stable over >200,000cycles, are much larger than those of any polycrystalline, active material.

  1. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation

    PubMed Central

    Janssen, A M; Rampersad, S M; Lucka, F; Lanfer, B; Lew, S; Aydin, Ü; Wolters, C H; Stegeman, D F; Oostendorp, T F

    2013-01-01

    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation (TMS). One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between the CSF and GM (Thielscher et al. 2011; Bijsterbosch et al. 2012), or by resizing the whole brain (Wagner et al. 2008). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images (MRI), was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location. PMID:23787706

  2. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    DOE PAGES

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; ...

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along themore » $$1\\bar{1}0$$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.« less

  3. Field-induced spin density wave and spiral phases in a layered antiferromagnet

    SciTech Connect

    Stone, Matthew B.; Lumsden, Mark D.; Garlea, Vasile O.; Grenier, B.; Ressouche, E.; Samulon, Eric C.; Fisher, Ian R.

    2015-07-28

    Here we determine the low-field ordered magnetic phases of the S=1 dimerized antiferromagnet Ba3Mn2O8 using single crystal neutron diffraction. We find that for magnetic fields between μ0H=8.80 T and 10.56 T applied along the $1\\bar{1}0$ direction the system exhibits spin density wave order with incommensurate wave vectors of type (η,η,ε). For μ0H > 10.56 T, the magnetic order changes to a spiral phase with incommensurate wave vectors only along the [hh0] direction. For both field induced ordered phases, the magnetic moments are lying in the plane perpendicular to the field direction. Finally, the nature of these two transitions is fundamentally different: the low-field transition is a second order transition to a spin-density wave ground state, while the one at higher field, toward the spiral phase, is of first order.

  4. Background-free electric field-induced second harmonic generation with interdigitated combs of electrodes.

    PubMed

    Jašinskas, Vidmantas; Gedvilas, Mindaugas; Račiukaitis, Gediminas; Gulbinas, Vidmantas

    2016-06-15

    The electric field-induced second harmonic (EFISH) generation is a powerful tool for the investigation of optical nonlinearities, material polarization, internal electric fields, and other properties of photonic materials and devices. A conventional generation of the second harmonics (SH) in materials with the disturbed centrosymmetry causes a field-independent background to EFISH and limits its applications. Here we suggest and analyze the application of the interdigitated combs of electrodes for EFISH generation in thin films. Interdigitated electrodes form an optical transmission amplitude diffraction grating. Phase matching of the EFISH radiation creates unusual diffraction fringes with the zero intensity along the zeroth order direction and with the diffraction angles different from diffraction angles of incident fundamental laser radiation and its second harmonics. It enables a simple geometrical separation of the EFISH signal from a conventional SH background, simplifies the sample preparation, and provides additional experimental possibilities. We demonstrate applicability of the suggested technique for characterization of submicrometer thickness organic films of transparent and resonantly interacting polymers and of their mixtures.

  5. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics

    SciTech Connect

    Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; Jones, Jacob L.

    2015-10-01

    In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3, and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.

  6. The influence of sulcus width on simulated electric fields induced by transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Janssen, A. M.; Rampersad, S. M.; Lucka, F.; Lanfer, B.; Lew, S.; Aydin, Ü.; Wolters, C. H.; Stegeman, D. F.; Oostendorp, T. F.

    2013-07-01

    Volume conduction models can help in acquiring knowledge about the distribution of the electric field induced by transcranial magnetic stimulation. One aspect of a detailed model is an accurate description of the cortical surface geometry. Since its estimation is difficult, it is important to know how accurate the geometry has to be represented. Previous studies only looked at the differences caused by neglecting the complete boundary between cerebrospinal fluid (CSF) and grey matter (Thielscher et al 2011 NeuroImage 54 234-43, Bijsterbosch et al 2012 Med. Biol. Eng. Comput. 50 671-81), or by resizing the whole brain (Wagner et al 2008 Exp. Brain Res. 186 539-50). However, due to the high conductive properties of the CSF, it can be expected that alterations in sulcus width can already have a significant effect on the distribution of the electric field. To answer this question, the sulcus width of a highly realistic head model, based on T1-, T2- and diffusion-weighted magnetic resonance images, was altered systematically. This study shows that alterations in the sulcus width do not cause large differences in the majority of the electric field values. However, considerable overestimation of sulcus width produces an overestimation of the calculated field strength, also at locations distant from the target location.

  7. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates.

    PubMed

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M; Linn, Gary S; Megevand, Pierre; Thielscher, Axel; Deborah A, Ross; Milham, Michael P; Mehta, Ashesh D; Schroeder, Charles E

    2016-08-18

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG.

  8. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K.

    PubMed

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-12

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 10(15) cm(-2) (the average volume density of 1.7 × 10(21) cm(-3)), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials.

  9. Amplification of 126 nm femtosecond seed pulses in optical-field-induced Ar plasma filamentation

    NASA Astrophysics Data System (ADS)

    Kubodera, Shoichi; Deshimaru, Naoyuki; Kaku, Masanori; Katto, Masahito

    2014-10-01

    We have observed amplification of femtosecond (fs) VUV coherent seed beam at 126 nm by utilizing an optical-field-induced ionization (OFI) high-pressure Ar plasma filamentation. We have produced a low-temperature and high-density Ar plasma filamentation inside a high-pressure Ar cell by irradiating a high-intensity laser with an intensity of approximately 1014 W cm-2. Argon excimer molecules (Ar2*) as an amplifier medium were produced inside the high-pressure cell and were used to amplify a weak VUV ultrashort seed pulse at 126 nm, which was generated by harmonic generation of another short pulse infrared laser at 882 nm. We have measured the amplification characteristics and the OFI plasma diagnosis by utilizing the fs VUV pulses at 126 and 882 nm, respectively. The maximum optical gain value of 1.1 cm-1 was observed. Temporal behaviors of the plasma temperature and density in the nano-second time scale indicated a high-density and low-temperature plasma produced by using the OFI. These plasma behaviors were utilized to reproduce the optical amplification characteristics with our OFI excimer simulation code.

  10. Giant positive magnetoresistance and field-induced metal insulator transition in Cr2NiGa

    NASA Astrophysics Data System (ADS)

    Pramanick, S.; Dutta, P.; Chatterjee, S.; Giri, S.; Majumdar, S.

    2017-01-01

    We report the magneto-transport properties of the newly synthesized Heusler compound Cr2NiGa which crystallizes in a disordered cubic B2 structure belonging to the Pm\\bar{3} m space group. The sample is found to be paramagnetic down to 2 K with metallic characteristics. On application of a magnetic field, a significantly large increase in resistivity is observed which corresponds to magnetoresistance as high as 112% at 150 kOe of field at the lowest temperature. Most remarkably, the sample shows a negative temperature coefficient of resistivity below about 50 K under the application of field  ⩾80 kOe, signifying a field-induced metal to ‘insulating’ transition. The observed magnetoresistance follows Kohler’s rule below 20 K indicating the validity of the semiclassical model of electronic transport in metals with a single relaxation time. A multi-band model for electronic transport, originally proposed for semimetals, is found to be appropriate to describe the magneto-transport behavior of the sample.

  11. Electric-field-induced optical second-harmonic generation in doped graphene

    NASA Astrophysics Data System (ADS)

    Margulis, Vl. A.; Muryumin, E. E.; Gaiduk, E. A.

    2016-11-01

    A graphene layer interacting with an incident electromagnetic wave of frequency ω will produce dipole radiation at frequency 2 ω in the presence of an in-plane electric field breaking the spatial inversion symmetry of the graphene. Here, we develop a theory that describes such electric-field-induced second-harmonic generation (EFISHG) from doped graphene. We derive an analytic expression for the relevant third-order nonlinear optical (NLO) susceptibility χ (3)(- 2 ω ; ω , ω , 0) and numerically evaluate the absolute magnitude of the χ (3) for various values of the system's parameters. We find that the |χ (3) | spectrum is dominated by the resonant peak structure located at the incident photon energy ℏω equal to the Fermi energy EF of charge carriers in the doped graphene. We also show that the possibility to tune the doping level of graphene by an external gate voltage allows one to maximize the radiated EFISHG power at ℏω =EF , which may be of practical interest for the designs of the NLO devices based on employing a SHG-signal.

  12. Surface mapping of field-induced piezoelectric strain at elevated temperature employing full-field interferometry.

    PubMed

    Stevenson, Tim; Quast, Tatjana; Bartl, Guido; Schmitz-Kempen, Thorsten; Weaver, Paul M

    2015-01-01

    Piezoelectric actuators and sensors are widely used for flow control valves, including diesel injectors, ultrasound generation, optical positioning, printing, pumps, and locks. Degradation and failure of material and electrical properties at high temperature typically limits these applications to operating temperatures below 200°C, based on the ubiquitous Pb(Zr,Ti)O3 ceramic. There are, however, many applications in sectors such as automotive, aerospace, energy and process control, and oil and gas, where the ability to operate at higher temperatures would open up new markets for piezoelectric actuation. Presented here is a review of recent progress and initial results toward a European effort to develop measurement techniques to characterize high-temperature materials. Full-field, multi-wavelength absolute length interferometry has, for the first time, been used to map the electric-field-induced piezoelectric strain across the surface of a PZT ceramic. The recorded variation as a function of temperature has been evaluated against a newly developed commercial single-beam system. Conventional interferometry allows measurement of the converse piezoelectric effect with high precision and resolution, but is often limited to a single point, average measurement and to limited sample environments because of optical aberrations in varying atmospheres. Here, the full-field technique allows the entire surface to be analyzed for strain and, in a bespoke sample chamber, for elevated temperatures.

  13. Magnetic field induced augmented thermal conduction phenomenon in magneto-nanocolloids

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajay; Dhar, Purbarun; Nandi, Tandra; Das, Sarit K.

    2016-12-01

    Magnetic field induced augmented thermal conductivity of magneto-nanocolloids involving nanoparticles, viz. Fe2O3, Fe3O4, NiO and Co3O4 dispersed in different base fluids have been reported. Experiments reveal the augmented thermal transport under external applied magnetic field. A maximum thermal conductivity enhancement ∼114% is attained at 7.0 vol% concentration and 0.1 T magnetic flux density for Fe3O4/EG magneto-nanocolloid. However, a maximum ∼82% thermal conductivity enhancement is observed for Fe3O4/kerosene magneto-nanocolloid for the same concentration but relatively at low magnetic flux density (∼0.06 T). Thereby, a strong effect of fluid as well as particle physical properties on the chain formation propensity, leading to enhanced conduction, in such systems is observed. Co3O4 nanoparticles show insignificant effect on the thermal conductivity enhancement of MNCs due to their minimal magnetic moment. A semi-empirical approach has been proposed to understand the mechanism and physics behind the thermal conductivity enhancement under external applied magnetic field, in tune with near field magnetostatic interactions as well as Neel relaxivity of the magnetic nanoparticles. Furthermore, the model is able to predict the phenomenon of enhanced thermal conductivity as a function of physical parameters and shows good agreement with the experimental observations.

  14. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  15. Observatory geoelectric fields induced in a two-layer lithosphere during magnetic storms

    USGS Publications Warehouse

    Love, Jeffrey J.; Swidinsky, Andrei

    2015-01-01

    We report on the development and validation of an algorithm for estimating geoelectric fields induced in the lithosphere beneath an observatory during a magnetic storm. To accommodate induction in three-dimensional lithospheric electrical conductivity, we analyze a simple nine-parameter model: two horizontal layers, each with uniform electrical conductivity properties given by independent distortion tensors. With Laplace transformation of the induction equations into the complex frequency domain, we obtain a transfer function describing induction of observatory geoelectric fields having frequency-dependent polarization. Upon inverse transformation back to the time domain, the convolution of the corresponding impulse-response function with a geomagnetic time series yields an estimated geoelectric time series. We obtain an optimized set of conductivity parameters using 1-s resolution geomagnetic and geoelectric field data collected at the Kakioka, Japan, observatory for five different intense magnetic storms, including the October 2003 Halloween storm; our estimated geoelectric field accounts for 93% of that measured during the Halloween storm. This work demonstrates the need for detailed modeling of the Earth’s lithospheric conductivity structure and the utility of co-located geomagnetic and geoelectric monitoring.

  16. SEM technique for imaging and measuring electronic transport in nanocomposites based on electric field induced contrast

    DOEpatents

    Jesse, Stephen [Knoxville, TN; Geohegan, David B [Knoxville, TN; Guillorn, Michael [Brooktondale, NY

    2009-02-17

    Methods and apparatus are described for SEM imaging and measuring electronic transport in nanocomposites based on electric field induced contrast. A method includes mounting a sample onto a sample holder, the sample including a sample material; wire bonding leads from the sample holder onto the sample; placing the sample holder in a vacuum chamber of a scanning electron microscope; connecting leads from the sample holder to a power source located outside the vacuum chamber; controlling secondary electron emission from the sample by applying a predetermined voltage to the sample through the leads; and generating an image of the secondary electron emission from the sample. An apparatus includes a sample holder for a scanning electron microscope having an electrical interconnect and leads on top of the sample holder electrically connected to the electrical interconnect; a power source and a controller connected to the electrical interconnect for applying voltage to the sample holder to control the secondary electron emission from a sample mounted on the sample holder; and a computer coupled to a secondary electron detector to generate images of the secondary electron emission from the sample.

  17. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  18. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K

    PubMed Central

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-01-01

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 1015 cm–2 (the average volume density of 1.7 × 1021 cm–3), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials. PMID:27035956

  19. Magnetic field induced 1st order transitions: Recent studies, and some new concepts

    NASA Astrophysics Data System (ADS)

    Chaddah, P.

    2015-05-01

    Phase transitions are caused by varying temperature, or pressure, or magnetic field. The observation of 1st order magneto-structural transitions has created application possibilities based on magnetoresistance, magnetocaloric effect, magnetic shape memory effect, and magneto-dielectric effect. Magnetic field induced transitions, and phase coexistence of competing magnetic phases down to the lowest temperature, gained prominence over a decade ago with theoretical models suggesting that the ground state is not homogeneous. Researchers at Indore pushed an alternative view that this phase coexistence could be due to glasslike "kinetic arrest" of a disorder-broadened first-order magnetic transition between two states with long-range magnetic order, resulting in phase coexistence down to the lowest temperatures. The CHUF (cooling and heating in unequal field) protocol created at Indore allows the observation of `devitrification', followed by `melting'. I show examples of measurements establishing kinetic arrest in various materials, emphasizing that glasslike arrest of 1st order magnetic transitions may be as ubiquitous as glass formation following the arrest of 1st order structural transitions.

  20. Effects of coil orientation on the electric field induced by TMS over the hand motor area

    NASA Astrophysics Data System (ADS)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field).

  1. Nonlinear absorption dynamics using field-induced surface hopping: zinc porphyrin in water.

    PubMed

    Röhr, Merle I S; Petersen, Jens; Wohlgemuth, Matthias; Bonačić-Koutecký, Vlasta; Mitrić, Roland

    2013-05-10

    We wish to present the application of our field-induced surface-hopping (FISH) method to simulate nonlinear absorption dynamics induced by strong nonresonant laser fields. We provide a systematic comparison of the FISH approach with exact quantum dynamics simulations on a multistate model system and demonstrate that FISH allows for accurate simulations of nonlinear excitation processes including multiphoton electronic transitions. In particular, two different approaches for simulating two-photon transitions are compared. The first approach is essentially exact and involves the solution of the time-dependent Schrödinger equation in an extended manifold of excited states, while in the second one only transiently populated nonessential states are replaced by an effective quadratic coupling term, and dynamics is performed in a considerably smaller manifold of states. We illustrate the applicability of our method to complex molecular systems by simulating the linear and nonlinear laser-driven dynamics in zinc (Zn) porphyrin in the gas phase and in water. For this purpose, the FISH approach is connected with the quantum mechanical-molecular mechanical approach (QM/MM) which is generally applicable to large classes of complex systems. Our findings that multiphoton absorption and dynamics increase the population of higher excited states of Zn porphyrin in the nonlinear regime, in particular in solution, provides a means for manipulating excited-state properties, such as transient absorption dynamics and electronic relaxation.

  2. Calculation of the electromagnetic fields induced in the head of an operator of a cordless telephone

    NASA Astrophysics Data System (ADS)

    Martens, L.; de Moerloose, J.; de Zutter, D.; de Poorter, J.; de Wagter, C.

    1995-01-01

    This paper shows the capability of the finite difference time domain (FDTD) method to predict the interaction between the human body and the electromagnetic field generated by a cordless telephone. Both the influence of the human head on the performance of the cordless telephone and the energy deposited in the human head have been determined. The interaction has been evaluated for a simple dipole model and for an accurate "box" model of the telephone. The FDTD method is a versatile method for refining the antenna model. The results show that the use of the accurate box model in combination with a realistic model of the head derived from a nuclear magnetic resonance image is a prerequisite for accurate determination of the near fields induced in the head. The total amount of power absorbed in the head has been compared to the radiated power. From our calculations we found that about 15% of the antenna input power at 900 MHz is absorbed in the head.

  3. Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics

    DOE PAGES

    Usher, Tedi -Marie; Levin, Igor; Daniels, John E.; ...

    2015-10-01

    In this study, the atomic-scale response of dielectrics/ferroelectrics to electric fields is central to their functionality. Here we introduce an in situ characterization method that reveals changes in the local atomic structure in polycrystalline materials under fields. The method employs atomic pair distribution functions (PDFs), determined from X-ray total scattering that depends on orientation relative to the applied field, to probe structural changes over length scales from sub-Ångstrom to several nanometres. The PDF is sensitive to local ionic displacements and their short-range order, a key uniqueness relative to other techniques. The method is applied to representative ferroelectrics, BaTiO3 and Na½Bi½TiO3,more » and dielectric SrTiO3. For Na½Bi½TiO3, the results reveal an abrupt field-induced monoclinic to rhombohedral phase transition, accompanied by ordering of the local Bi displacements and reorientation of the nanoscale ferroelectric domains. For BaTiO3 and SrTiO3, the local/nanoscale structural changes observed in the PDFs are dominated by piezoelectric lattice strain and ionic polarizability, respectively.« less

  4. Determination of the magnetic field induced circular birefringence using the Mueller matrix of FBGs

    NASA Astrophysics Data System (ADS)

    Descamps, Frédéric; Bette, Sébastien; Kinet, Damien; Caucheteur, Christophe

    2016-04-01

    Different methods have already been developed to measure the magnetic field with fiber Bragg gratings (FBGs). They are based on the use of a magnetic fluid or magnetostrictive materials. In addition to these methods, a direct measurement of the magnetic field is also possible by determining the circular birefringence created by the magnetic field inside the fiber. In standard optical fiber, this circular birefringence is of the same order as the intrinsic fiber birefringence or even below. The polarization properties of FBGs are therefore used to perform such measurement since they allow to determine weak birefringence with higher accuracy than standard read-out techniques. However, the obtained accuracy is usually low due to the influence of the intrinsic fiber birefringence. To mitigate this issue, we study in this work the use of the diattenuation vector. This parameter is obtained from the Mueller matrix and we show that it evolves in response to a magnetic field. In practice, we analyze its response by both simulation and experiment. In our simulations, we solve numerically the coupled mode equations of the FBG. For the experiments, the Mueller matrix is measured by an optical vector analyzer for the gratings connected in transmission. We apply an increasing magnetic field on different Bragg gratings photo-written in SMF28 fibers. The rotation of the diattenuation vector is then used to retrieve the magnetic field induced circular birefringence. A linear increase of the reconstructed circular birefringence is reported for increasing magnetic field values in the range 0-1T.

  5. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    PubMed Central

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan; Yeagle, Erin M.; Linn, Gary S.; Megevand, Pierre; Thielscher, Axel; Deborah A., Ross; Milham, Michael P.; Mehta, Ashesh D.; Schroeder, Charles E.

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reaches the brain, and how it distributes across the brain. Lack of this basic information precludes a firm mechanistic understanding of TES effects. In this study we directly measure the spatial and temporal characteristics of the electric field generated by TES using stereotactic EEG (s-EEG) electrode arrays implanted in cebus monkeys and surgical epilepsy patients. We found a small frequency dependent decrease (10%) in magnitudes of TES induced potentials and negligible phase shifts over space. Electric field strengths were strongest in superficial brain regions with maximum values of about 0.5 mV/mm. Our results provide crucial information of the underlying biophysics in TES applications in humans and the optimization and design of TES stimulation protocols. In addition, our findings have broad implications concerning electric field propagation in non-invasive recording techniques such as EEG/MEG. PMID:27535462

  6. Magnetic-field-induced domain-wall motion in permalloy nanowires with modified Gilbert damping

    NASA Astrophysics Data System (ADS)

    Moore, Thomas A.; Möhrke, Philipp; Heyne, Lutz; Kaldun, Andreas; Kläui, Mathias; Backes, Dirk; Rhensius, Jan; Heyderman, Laura J.; Thiele, Jan-Ulrich; Woltersdorf, Georg; Fraile Rodríguez, Arantxa; Nolting, Frithjof; Menteş, Tevfik O.; Niño, Miguel Á.; Locatelli, Andrea; Potenza, Alessandro; Marchetto, Helder; Cavill, Stuart; Dhesi, Sarnjeet S.

    2010-09-01

    Domain wall (DW) depinning and motion in the viscous regime induced by magnetic fields, are investigated in planar permalloy nanowires in which the Gilbert damping α is tuned in the range 0.008-0.26 by doping with Ho. Real time, spatially resolved magneto-optic Kerr effect measurements yield depinning field distributions and DW mobilities. Depinning occurs at discrete values of the field which are correlated with different metastable DW states and changed by the doping. For α<0.033 , the DW mobilities are smaller than expected while for α≥0.033 , there is agreement between the measured DW mobilities and those predicted by the standard one-dimensional model of field-induced DW motion. Micromagnetic simulations indicate that this is because as α increases, the DW spin structure becomes increasingly rigid. Only when the damping is large can the DW be approximated as a pointlike quasiparticle that exhibits the simple translational motion predicted in the viscous regime. When the damping is small, the DW spin structure undergoes periodic distortions that lead to a velocity reduction. We therefore show that Ho doping of permalloy nanowires enables engineering of the DW depinning and mobility, as well as the extent of the viscous regime.

  7. An Optimization-based Atomistic-to-Continuum Coupling Method

    SciTech Connect

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell; Shapeev, Alexander V.

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally, we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.

  8. An Optimization-based Atomistic-to-Continuum Coupling Method

    DOE PAGES

    Olson, Derek; Bochev, Pavel B.; Luskin, Mitchell; ...

    2014-08-21

    In this paper, we present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. Finally,more » we present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.« less

  9. Continuum and molecular-dynamics simulation of nanodroplet collisions.

    PubMed

    Bardia, Raunak; Liang, Zhi; Keblinski, Pawel; Trujillo, Mario F

    2016-05-01

    The extent to which the continuum treatment holds in binary droplet collisions is examined in the present work by using a continuum-based implicit surface capturing strategy (volume-of-fluid coupled to Navier-Stokes) and a molecular dynamics methodology. The droplet pairs are arranged in a head-on-collision configuration with an initial separation distance of 5.3 nm and a velocity of 3 ms^{-1}. The size of droplets ranges from 10-50 nm. Inspecting the results, the collision process can be described as consisting of two periods: a preimpact phase that ends with the initial contact of both droplets, and a postimpact phase characterized by the merging, deformation, and coalescence of the droplets. The largest difference between the continuum and molecular dynamics (MD) predictions is observed in the preimpact period, where the continuum-based viscous and pressure drag forces significantly overestimate the MD predictions. Due to large value of Knudsen number in the gas (Kn_{gas}=1.972), this behavior is expected. Besides the differences between continuum and MD, it is also observed that the continuum simulations do not converge for the set of grid sizes considered. This is shown to be directly related to the initial velocity profile and the minute size of the nanodroplets. For instance, for micrometer-size droplets, this numerical sensitivity is not an issue. During the postimpact period, both MD and continuum-based simulations are strikingly similar, with only a moderate difference in the peak kinetic energy recorded during the collision process. With values for the Knudsen number in the liquid (Kn_{liquid}=0.01 for D=36nm) much closer to the continuum regime, this behavior is expected. The 50 nm droplet case is sufficiently large to be predicted reasonably well with the continuum treatment. However, for droplets smaller than approximately 36 nm, the departure from continuum behavior becomes noticeably pronounced, and becomes drastically different for the 10 nm

  10. Adiabatic passage and dissociation controlled by interference of two laser-induced continuum structures

    SciTech Connect

    Popov, A. K.; Kimberg, V. V.; George, Thomas F.

    2003-09-01

    We have developed a theory of three-pulse coherent control of photochemical processes. It is based on adiabatic passage and quantum coherence and interference attributed to the lower-lying dissociation continuum and excited upper discrete states, which are otherwise not connected to the ground state by one-photon transitions. Opportunities offered by the proposed scheme are demonstrated through extensive numerical simulations with the aid of a model relevant to typical experiments. The opportunities for manipulating the distribution of the population among discrete and continuous states with any necessary ratio by the end of the pulses are demonstrated.

  11. Longitudinal Changes in Physical Habitat and Macroinvertebrate Assemblages Along a Neotropical Stream Continuum

    NASA Astrophysics Data System (ADS)

    Colon-Gaud, C.; Whiles, M. R.

    2005-05-01

    Information on the structure and function of upland Neotropical streams is lacking compared to many other regions. We examined habitat characteristics and macroinvertebrate assemblages along an 8-km stretch of a stream originating on the continental divide in central Panama in order to examine patterns along a stream continuum. Wetted width and discharge ranged from 1 m and 18 L/s, respectively in the uppermost headwaters to 12 m and 1,580 L/s, respectively at the lowest reach examined. Percent substrate composition showed a decrease in fine particle sizes from upper headwater reaches (38%) to the lowest reach (10%). A total of 61 macroinvertebrate taxa were identified along the continuum, with more taxa present in lower reaches (45) compared to headwaters (28), but responses of individual groups varied. Trichoptera, Ephemeroptera, and Diptera richness increased from headwaters to the lowest site, whereas Hemiptera and Coleoptera richness decreased along the gradient. Collector-gatherers and predators were the dominant functional groups (~70% of total abundance) and changed little across sites. Shredder abundance was highest in headwaters (15% of total), while scrapers (20%) and collector/filterers (11%) peaked in the lower reaches. These patterns suggest that upland streams in this region follow basic tenets of the River Continuum Concept.

  12. Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles for clinical detection of creatinine.

    PubMed

    Wen, Tingting; Zhu, Wanying; Xue, Cheng; Wu, Jinhua; Han, Qing; Wang, Xi; Zhou, Xuemin; Jiang, Huijun

    2014-06-15

    A novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@Polyaniline nanoparticles (Fe3O4@PANI NPs) has been for the first time fabricated for the sensitive detection of creatinine in biological fluids. The template molecule, creatinine, was self-assembled on the surface of Fe3O4@PANI NPs together with the functional monomer aniline by the formation of N-H hydrogen bonds. After pre-assembled, through the magnetic-induction of the magnetic glassy carbon electrode (MGCE), the ordered structure of molecularly imprinted polymers (MIPs) were established by the electropolymerization and assembled on the surface of MGCE with the help of magnetic fields by a simple one-step approach. The structural controllability of the MIPs film established by magnetic field-induced self-assembly was further studied. The stable and hydrophilic Fe3O4@PANI can not only provide available functionalized sites with which the template molecule creatinine can form hydrogen bond by the abundant amino groups in PANI matrix, but also afford a promoting pathway for electron transfer. The as-prepared molecularly imprinted electrochemical sensor (MIES) shows good stability and reproducibility for the determination of creatinine with the detection limit reached 0.35 nmol L(-1) (S/N=3). In addition, the highly sensitive and selective MIES has been successfully used for the clinical determination of creatinine in human plasma and urine samples. The average recoveries were 90.8-104.9% with RSD lower than 2.7%.

  13. Continuum regularization of quantum field theory

    SciTech Connect

    Bern, Z.

    1986-04-01

    Possible nonperturbative continuum regularization schemes for quantum field theory are discussed which are based upon the Langevin equation of Parisi and Wu. Breit, Gupta and Zaks made the first proposal for new gauge invariant nonperturbative regularization. The scheme is based on smearing in the ''fifth-time'' of the Langevin equation. An analysis of their stochastic regularization scheme for the case of scalar electrodynamics with the standard covariant gauge fixing is given. Their scheme is shown to preserve the masslessness of the photon and the tensor structure of the photon vacuum polarization at the one-loop level. Although stochastic regularization is viable in one-loop electrodynamics, two difficulties arise which, in general, ruins the scheme. One problem is that the superficial quadratic divergences force a bottomless action for the noise. Another difficulty is that stochastic regularization by fifth-time smearing is incompatible with Zwanziger's gauge fixing, which is the only known nonperturbaive covariant gauge fixing for nonabelian gauge theories. Finally, a successful covariant derivative scheme is discussed which avoids the difficulties encountered with the earlier stochastic regularization by fifth-time smearing. For QCD the regularized formulation is manifestly Lorentz invariant, gauge invariant, ghost free and finite to all orders. A vanishing gluon mass is explicitly verified at one loop. The method is designed to respect relevant symmetries, and is expected to provide suitable regularization for any theory of interest. Hopefully, the scheme will lend itself to nonperturbative analysis. 44 refs., 16 figs.

  14. Continuum Edge Gyrokinetic Theory and Simulations

    SciTech Connect

    Xu, X Q; Xiong, Z; Dorr, M R; Hittinger, J A; Bodi, K; Candy, J; Cohen, B I; Cohen, R H; Colella, P; Kerbel, G D; Krasheninnikov, S; Nevins, W M; Qin, H; Rognlien, T D; Snyder, P B; Umansky, M V

    2007-01-09

    The following results are presented from the development and application of TEMPEST, a fully nonlinear (full-f) five dimensional (3d2v) gyrokinetic continuum edge-plasma code. (1) As a test of the interaction of collisions and parallel streaming, TEMPEST is compared with published analytic and numerical results for endloss of particles confined by combined electrostatic and magnetic wells. Good agreement is found over a wide range of collisionality, confining potential, and mirror ratio; and the required velocity space resolution is modest. (2) In a large-aspect-ratio circular geometry, excellent agreement is found for a neoclassical equilibrium with parallel ion flow in the banana regime with zero temperature gradient and radial electric field. (3) The four-dimensional (2d2v) version of the code produces the first self-consistent simulation results of collisionless damping of geodesic acoustic modes and zonal flow (Rosenbluth-Hinton residual) with Boltzmann electrons using a full-f code. The electric field is also found to agree with the standard neoclassical expression for steep density and ion temperature gradients in the banana regime. In divertor geometry, it is found that the endloss of particles and energy induces parallel flow stronger than the core neoclassical predictions in the SOL. (5) Our 5D gyrokinetic formulation yields a set of nonlinear electrostatic gyrokinetic equations that are for both neoclassical and turbulence simulations.

  15. Wavelet formulation of the polarizable continuum model.

    PubMed

    Weijo, Ville; Randrianarivony, Maharavo; Harbrecht, Helmut; Frediani, Luca

    2010-05-01

    The first implementation of a wavelet discretization of the Integral Equation Formalism (IEF) for the Polarizable Continuum Model (PCM) is presented here. The method is based on the application of a general purpose wavelet solver on the cavity boundary to solve the integral equations of the IEF-PCM problem. Wavelet methods provide attractive properties for the solution of the electrostatic problem at the cavity boundary: the system matrix is highly sparse and iterative solution schemes can be applied efficiently; the accuracy of the solver can be increased systematically and arbitrarily; for a given system, discretization error accuracy is achieved at a computational expense that scales linearly with the number of unknowns. The scaling of the computational time with the number of atoms N is formally quadratic but a N(1.5) scaling has been observed in practice. The current bottleneck is the evaluation of the potential integrals at the cavity boundary which scales linearly with the system size. To reduce this overhead, interpolation of the potential integrals on the cavity surface has been successfully used.

  16. Dynamical Response of Continuum Regime Langmuir Probe

    NASA Astrophysics Data System (ADS)

    Rappaport, H. L.

    2009-11-01

    Probe dynamic response is sometimes used as a way to increase the amount of information obtained from Langmuir probes [1]. In this poster, the effects of frequency dependent probe capacitance and coupling of probe fields to damped Langmuir waves and damped ion acoustic waves are considered. In the continuum regime, with small Debye length to spherical probe radius ratio, the probe DC current vs. voltage characteristic displays a hard saturation at sufficiently large probe potential [2]. In this regime, the sheath thickness varies little with the applied voltage although the plasma response can still be measured. A goal of the present investigation is to show that the probe dynamical response is richer as a result of modulation of sheath thickness or shielding particularly in the larger Debye length to probe radius ratio regime. Inertia inhibits ion response at sufficiently high frequency and deviation from the DC characteristic is shown.[4pt] [1] D. N. Walker, R.F. Fernsler, D.D. Blackwell, and W.E. Amatucci, Phys. Plasmas 15, 123506 (2008).[0pt] [2] E. Baum and R.L. Chapkis, AIAA J. 8, 1073 (1970).

  17. Second law violations, continuum mechanics, and permeability

    NASA Astrophysics Data System (ADS)

    Ostoja-Starzewski, Martin

    2016-03-01

    The violations of the second law are relevant as the length and/or time scales become very small. The second law then needs to be replaced by the fluctuation theorem and mathematically, the irreversible entropy is a submartingale. First, we discuss the consequences of these results for the axioms of continuum mechanics, arguing in favor of a framework relying on stochastic functionals of energy and entropy. We next determine a Lyapunov function for diffusion-type problems governed by stochastic rather than deterministic functionals of internal energy and entropy, where the random field coefficients of diffusion are not required to satisfy the positive definiteness everywhere. Next, a formulation of micropolar fluid mechanics is developed, accounting for the lack of symmetry of stress tensor on molecular scales. This framework is then applied to employed to show that spontaneous random fluctuations of the microrotation field will arise in Couette—and Poiseuille-type flows in the absence of random (turbulence-like) fluctuations of the classical velocity field. Finally, while the permeability is classically modeled by the Darcy law or its modifications, besides considering the violations of the second law, one also needs to account for the spatial randomness of the channel network, implying a modification of the hierarchy of scale-dependent bounds on the macroscopic property of the network.

  18. Continuum percolation of congruent overlapping spherocylinders

    NASA Astrophysics Data System (ADS)

    Xu, Wenxiang; Su, Xianglong; Jiao, Yang

    2016-09-01

    Continuum percolation of randomly orientated congruent overlapping spherocylinders (composed of cylinder of height H with semispheres of diameter D at the ends) with aspect ratio α =H /D in [0 ,∞ ) is studied. The percolation threshold ϕc, percolation transition width Δ, and correlation-length critical exponent ν for spherocylinders with α in [0, 200] are determined with a high degree of accuracy via extensive finite-size scaling analysis. A generalized excluded-volume approximation for percolation threshold with an exponent explicitly depending on both aspect ratio and excluded volume for arbitrary α values in [0 ,∞ ) is proposed and shown to yield accurate predictions of ϕc for an extremely wide range of α in [0, 2000] based on available numerical and experimental data. We find ϕc is a universal monotonic decreasing function of α and is independent of the effective particle size. Our study has implications in percolation theory for nonspherical particles and composite material design.

  19. Compact continuum brain model for human electroencephalogram

    NASA Astrophysics Data System (ADS)

    Kim, J. W.; Shin, H.-B.; Robinson, P. A.

    2007-12-01

    A low-dimensional, compact brain model has recently been developed based on physiologically based mean-field continuum formulation of electric activity of the brain. The essential feature of the new compact model is a second order time-delayed differential equation that has physiologically plausible terms, such as rapid corticocortical feedback and delayed feedback via extracortical pathways. Due to its compact form, the model facilitates insight into complex brain dynamics via standard linear and nonlinear techniques. The model successfully reproduces many features of previous models and experiments. For example, experimentally observed typical rhythms of electroencephalogram (EEG) signals are reproduced in a physiologically plausible parameter region. In the nonlinear regime, onsets of seizures, which often develop into limit cycles, are illustrated by modulating model parameters. It is also shown that a hysteresis can occur when the system has multiple attractors. As a further illustration of this approach, power spectra of the model are fitted to those of sleep EEGs of two subjects (one with apnea, the other with narcolepsy). The model parameters obtained from the fittings show good matches with previous literature. Our results suggest that the compact model can provide a theoretical basis for analyzing complex EEG signals.

  20. A continuum model of retinal electrical stimulation

    NASA Astrophysics Data System (ADS)

    Joarder, Saiful A.; Abramian, Miganoosh; Suaning, Gregg J.; Lovell, Nigel H.; Dokos, Socrates

    2011-10-01

    A continuum mathematical model of retinal electrical stimulation is described. The model is represented by a passive vitreous domain, a thin layer of active retinal ganglion cell (RGC) tissue adjacent to deeper passive neural layers of the retina, the retinal pigmented epithelium (RPE) and choroid thus ending at the sclera. To validate the model, in vitro epiretinal responses to stimuli from 50 µm disk electrodes, arranged in a hexagonal mosaic, were recorded from rabbit retinas. 100 µs/phase anodic-first biphasic current pulses were delivered to the retinal surface in both the mathematical model and experiments. RGC responses were simulated and recorded using extracellular microelectrodes. The model's epiretinal thresholds compared favorably with the in vitro data. In addition, simulations showed that single-return bipolar electrodes recruited a larger area of the retina than twin-return or six-return electrodes arranged in a hexagonal layout in which a central stimulating electrode is surrounded by six, eqi-spaced returns. Simulations were also undertaken to investigate the patterns of RGC activation in an anatomically-accurate model of the retina, as well as RGC activation patterns for subretinal and suprachoroidal bipolar stimulation. This paper was originally submitted for the special issue containing contributions from the Sixth Biennial Research Congress of The Eye and the Chip.

  1. Functional continuity: did field-induced oriented aperiodic constraints at Life's origin aid its sequence-based evolution?

    NASA Astrophysics Data System (ADS)

    Mitra-Delmotte, G.; Mitra, A. N.

    2014-04-01

    A non-biological analog undergoing Darwinian-like evolution could have enhanced the probability of many crucial independent bottom-up emergent steps, engendered within its premises, and smoothen the inanimate-animate transition. Now, the higher-level environment-mutable DNA sequences influence the lower-level pattern of oriented templates (enzymes, lipid membranes, RNA) in the organized cell matrix and hence their associated substrate-dynamics; note how templates are akin to local fields, kinetically constraining reactant orientations. Since the lowerlevel is likely the more primitive of the two (rather than Cairns-Smith's "readily available" rigid clay crystal sequence-based replicators as a memory-like basis for slowly mutating predecessor-patterns enroute to complex RNA-based Darwinian evolution), a gradual thermodynamic-to-kinetic transition in an isotropic medium, is proposed as driven by some order-parameter --via "available" field-responsive dipolar colloid networks, as apart from bio-organics, mineral colloids also can display liquid crystal (LC) phases (see [1]). An access to solid-like orientational order in a fluid matrix suggests how aperiodic patterns can be influenced and sustained (a la homeostasis) via external inhomogeneous fields (e.g. magnetic rocks); this renders these cooperative networks with potential as confining host-media, whose environment-sensitivity can not only influence their sterically-coupled guest-substrates but also their network properties (the latter can enable 'functions' like spontaneous transport under non-equilibrium suggesting a natural basis for their selection by the environment). In turn LC systems could have been preceded by even simpler anisotropic fluid hosts, viz., external field-induced mineral magnetic nanoparticle (MNP) aggregates. Indeed, the capacity of an MNP to couple its magnetic and rotational d.o.f.s suggests how an environment-sensitive field-influenced network of interacting dipolar colloids close to

  2. Electric-field-induced switchable dark conglomerate phases in a bent-core liquid crystal exhibiting reverse columnar phases

    NASA Astrophysics Data System (ADS)

    Deepa, G. B.; Radhika, S.; Sadashiva, B. K.; Pratibha, R.

    2013-06-01

    Electric-field-induced transitions into switchable dark conglomerate (DC) phases from two types of reverse columnar mesophases have been observed in the bent-core (BC) compound 2,7-naphthylene bis[4-(3-methyl-4-n-tetradecyloxybenzoyloxy)] benzoate. Optical and x-ray studies show that the higher temperature columnar phase corresponds to the orthogonal B1rev phase, whereas the lower temperature columnar phase is a variant of the B1revtilt phase. As the layer fragments in this phase are modulated in order to relieve the steric hindrance caused by an anticlinic tilting in adjacent blocks, it has been named B1revtiltM. The shape of the chiral domains are different in the DC phases viz. DC-B1rev and DC-B1revtiltM obtained by applying the electric field in the B1rev and B1revtiltM phases, respectively. While the chiral domains in the DC-B1rev phase appear similar to those observed in other DC phases, the shape of the domains in the DC-B1revtiltM phase appear to have some similarity to the domains in the banana leaf texture in the B1revtiltM phase implying that the detailed structure in this DC phase may be different. Optical observations, electro-optics, and dielectric studies show that the DC-B1rev and DC-B1revtiltM phases are both switchable and possess a local SmCSPF type of structure. As the temperature is decreased the switching behavior changes from ferroelectric to antiferroelectric. The temperature at which this changeover starts occurring coincides with the temperature at which the layer modulation occurs to overcome anticlinic tilt and the B1rev to B1revtiltM phase transition takes place without the application of the electric field. The change in switching behavior is attributed to a transformation into flat layers with the SmCAPA type of structure as also evidenced by the nucleation of bright regions alongside the chiral domains.

  3. Spontaneous and field-induced phase transitions in TbFe5Al7

    NASA Astrophysics Data System (ADS)

    Gorbunov, D. I.; Yasin, S.; Andreev, A. V.; Mushnikov, N. V.; Skourski, Y.; Zherlitsyn, S.; Wosnitza, J.

    2014-09-01

    Magnetization and ultrasound measurements have been performed on a TbFe5Al7 single crystal (tetragonal crystal structure) in the temperature range from 2 to 260 K in steady magnetic fields up to 18 T and in pulsed magnetic fields up to 60 T. The compound is a ferrimagnet (TC=242 K) having an easy-plane anisotropy. Strong anisotropy is also present within the basal plane. At 2 K, the easy magnetization direction is the [1 0 0] axis. In the vicinity of the compensation temperature, Tcomp=84 K, TbFe5Al7 displays a spin-reorientation transition from [1 0 0] to the [1 1 0] axis accompanied by pronounced anomalies in the relative sound-velocity change and sound attenuation. Further, field-induced magnetic transitions have been observed in TbFe5Al7 by magnetization and acoustic measurements. Step-wise rotation of the magnetic moments with a wide hysteresis occurs for fields applied along the [1 0 0] axis at TTcomp. The relative sound-velocity change displays sharp minima and the sound attenuation sharp maxima at the transitions. The critical field of the transitions tends to zero near the compensation point and grows sharply away from it reaching 19 and 33 T for fields applied along the [1 0 0] and [1 1 0] directions, respectively. The Tb-Fe inter-sublattice exchange constant has been determined directly from the high-field data and using molecular-field theory.

  4. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  5. Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination.

    PubMed

    Razmjou, Amir; Barati, Mohammad Reza; Simon, George P; Suzuki, Kiyonori; Wang, Huanting

    2013-06-18

    Freshwater shortage is one of the most pressing global issues. Forward osmosis (FO) desalination technology is emerging for freshwater production from saline water, which is potentially more energy-efficient than the current reverse osmosis process. However, the lack of a suitable draw solute is the major hurdle for commercial implementation of the FO desalination technology. We have previously reported that thermoresponsive hydrogels can be used as the draw agent for a FO process, and this new hydrogel-driven FO process holds promise for further development for practical application. In the present work, magnetic field-induced heating is explored for the purpose of developing a more effective way to recover water from swollen hydrogel draw agents. The composite hydrogel particles are prepared by copolymerization of sodium acrylate and N-isopropylacrylamide in the presence of magnetic nanoparticles (γ-Fe2O3, <50 nm). The results indicate that the magnetic heating is an effective and rapid method for dewatering of hydrogels by generating the heat more uniformly throughout the draw agent particles, and thus, a dense skin layer commonly formed via conventional heating from the outside of the particle is minimized. The FO dewatering performance is affected by the loading of magnetic nanoparticles and magnetic field intensity. Significantly enhanced liquid water recovery (53%) is achieved under magnetic heating, as opposed to only around 7% liquid water recovery obtained via convection heating. Our study shows that the magnetic heating is an attractive alternative stimulus for the extraction of highly desirable liquid water from the draw agent in the polymer hydrogel-driven forward osmosis process.

  6. Interface Charge Transport in Organic Transistors as Investigated by Field-Induced Electron Spin Resonance

    NASA Astrophysics Data System (ADS)

    Hasegawa, Tatsuo

    2013-03-01

    Most of high-performance organic thin-film transistors (OTFTs) as recently developed is attainable with non-doped, single-component π-conjugated materials that exhibit high layer crystallinity both for small-molecules and polymers. The layer crystallinity is quite suitable to compose channel transport layers of the OTFTs, although the main origin to hinder the charge transport or the intrinsic carrier mobility is still controversial; intra- or intermolecular electron-phonon coupling, polarization effects by the gate-dielectrics, or thermal or extrinsic disorder effects. Here we discuss the interface charge transport in the OTFTs, as investigated by field-induced electron spin resonance (FESR) technique that probes 1/2 spin of carriers induced by gate voltage. It is shown that the FESR technique is extremely useful especially for OTFTs, because of the fairly small spin-orbit interactions in organic materials as well as of the high layer crystallinity and the anisotropy. The following important aspects of the interface charge transport are presented and discussed: (1) Carrier motion in OTFTs can be understood in terms of the multiple trap-and-release (MTR) transport. The analyses of the motional narrowing effects allow us to estimate the average trap residence time that reaches about 1 ns. (2) Carriers are frozen at the respective trap sites at low temperature. The low-temperature spectral analyses allow us to obtain the distribution of trapped carriers over their degree of localization. (3) We also developed a unique technique to investigate the intra- and inter-domain transport in polycrystalline OTFTs by using anisotropic FESR measurements. The method allows us to evaluate the potential barrier height at the domain boundaries within the films.

  7. Preparation and properties of alumina composites modified by electric field-induced alignment of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-Feng; Shi, Lei; Zhang, Chan; Yang, Xi-Zhi; Liang, Ji

    2007-11-01

    Catalytic chemical vapor deposition (CVD) grown multi-walled carbon nanotubes (MWNTs) are treated with HF and deionized water and are then placed into alumina ceramics for improvement of both electrical conductivity and mechanical properties. In particular, an alternating current (ac) electric field is applied during the coagulation of the alumina slurries to induce the formation of aligned MWNT networks in the alumina matrix. The coagulated alumina matrix composite bases filled with 2 wt. % ac electric field-induced aligned MWNTs, are then sintered by hot pressing. The electrical conductivities of the prepared composites in directions both parallel and perpendicular to the MWNTs alignment, reach values of 6.2×10-2 S m-1 and 6.8×10-9 S m-1, respectively, compared with that of 4.5×10-15 S m-1 for pristine alumina ceramics. The fracture toughness and flexing strengths of the prepared composites in the two directions are 4.66±0.66 MPa m0.5, 390±70 MPa, and 3.65±0.46 MPa m0.5, 191±5 MPa, respectively, compared with 3.78±0.66 MPa m0.5 and 302±50 MPa for pristine alumina, 4.09±0.15 MPa m0.5 and 334±60 MPa for alumina filled with 2 wt. % MWNTs prepared without the effect of an electric field, respectively. The results indicate that the electric field leads to anisotropic behaviour. The properties of the composites along the direction of the MWNTs alignment are much improved with the addition of a small amount of CVD grown MWNTs.

  8. Research on adaptive temperature control in sound field induced by self-focused concave spherical transducer.

    PubMed

    Hu, Jiwen; Qian, Shengyou; Ding, Yajun

    2010-05-01

    Temperature control of hyperthermia treatments is generally implemented with multipoint feedback system comprised of phased-array transducer, which is complicated and high cost. Our simulations to the acoustic field induced by a self-focused concave spherical transducer (0.5MHz, 9cm aperture width, 8.0cm focal length) show that the distribution of temperature can keep the same "cigar shape" in the focal region during ultrasound insonation. Based on the characteristic of the temperature change, a two-dimensional model of a "cigar shape" tumor is designed and tested through numerical simulation. One single-point on the border of the "cigar shape" tumor is selected as the control target and is controlled at the temperature of 43 degrees C by using a self-tuning regulator (STR). Considering the nonlinear effects of biological medium, an accurate state-space model obtained via the finite Fourier integral transformation to the bioheat equation is presented and used for calculating temperature. Computer simulations were performed with the perfusion rates of 2.0kg/(m(3)s) and 4.5kg/(m(3)s) to the different targets, it was found that the temperatures on the border of the "cigar shape" tumor can achieve the desired temperature of 43 degrees C by control of one single-point. A larger perfusion rate requires a higher power output to obtain the same temperature elevation under the same insonation time and needs a higher cost for compensating the energy loss carried away by blood flow after steady state. The power output increases with the controlled region while achieving the same temperature at the same time. Especially, there is no overshoot during temperature elevation and no oscillation after steady state. The simulation results demonstrate that the proposed approach may offers a way for obtaining a single-point, low-cost hyperthermia system.

  9. TiO continuum placement effects in 47 Tucanae giants

    NASA Astrophysics Data System (ADS)

    Geisler, D.

    1986-05-01

    High-resolution echelle SIT Vidicon spectra have been obtained of giants in the metal-rich globular cluster 47 Tuc. The sample includes the giants previously investigated with the echelle photographically by Pilachowski, Canterna, and Wallerstein (1980), and Cottrell and Da Costa (1981), who derived controversially low abundances. The new spectra show that all of these giants have TiO absorption present in the wavelength region of the previous studies, particularly the two very cool giants in the Pilachowski et al. sample. The TiO bands were not recognized in the photographic spectra because they extend over several orders, each of which was analyzed independently. The presence of TiO absorption indicates that the abundances derived by these previous investigations are underestimates because of the underestimation of the continuum. The underestimates are not large, however, amounting to 0.2 dex or less, but this is sufficient to bring the echelle abundances into good agreement with estimates based on recent lower resolution techniques. An abundance for 47 Tuc of Fe/H about -0.9, intermediate between the old and new scales, is indicated.

  10. Lyman continuum leaking AGN in the SSA22 field

    NASA Astrophysics Data System (ADS)

    Micheva, Genoveva; Iwata, Ikuru; Inoue, Akio K.

    2017-02-01

    Subaru/SuprimeCam narrow-band photometry of the SSA22 field reveals the presence of four Lyman continuum (LyC) candidates among a sample of 14 active galactic nuclei (AGNs). Two show offsets and likely have stellar LyCin nature or are foreground contaminants. The remaining two LyC candidates are type I AGN. We argue that the average LyC escape fraction of high-redshift, low-luminosity AGN is not likely to be unity, as often assumed in the literature. From direct measurement we obtain the average LyC-to-UV flux density ratio and ionizing emissivity for a number of AGN classes and find it at least a factor of 2 lower than values obtained assuming fesc = 1. Comparing to recent Ly α forest measurements, AGNs at redshift z ˜ 3 make up at most ˜12 per cent and as little as ˜5 per cent of the total ionizing budget. Our results suggest that AGNs are unlikely to dominate the ionization budget of the Universe at high redshifts.

  11. Equivalent-Continuum Modeling With Application to Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2002-01-01

    A method has been proposed for developing structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with equivalent-continuum models. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As important examples with direct application to the development and characterization of single-walled carbon nanotubes and the design of nanotube-based devices, the modeling technique has been applied to determine the effective-continuum geometry and bending rigidity of a graphene sheet. A representative volume element of the chemical structure of graphene has been substituted with equivalent-truss and equivalent continuum models. As a result, an effective thickness of the continuum model has been determined. This effective thickness has been shown to be significantly larger than the interatomic spacing of graphite. The effective thickness has been shown to be significantly larger than the inter-planar spacing of graphite. The effective bending rigidity of the equivalent-continuum model of a graphene sheet was determined by equating the vibrational potential energy of the molecular model of a graphene sheet subjected to cylindrical bending with the strain energy of an equivalent continuum plate subjected to cylindrical bending.

  12. 77 FR 23491 - Notice of Submission of Proposed Information Collection to OMB; Continuum of Care Homeless...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-19

    ... URBAN DEVELOPMENT Notice of Submission of Proposed Information Collection to OMB; Continuum of Care Homeless Assistance Grant Application--Continuum of Care Registration AGENCY: Office of the Chief... reporting burden associated with registration requirements that Continuum of Care Homeless Assistance...

  13. 77 FR 44653 - Continuum of Care Homeless Assistance Grant Application-Technical Submission

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-30

    ... URBAN DEVELOPMENT Continuum of Care Homeless Assistance Grant Application-- Technical Submission AGENCY... the original Continuum of Care Homeless Assistance Grant Application. DATES: Comments Due Date: August... lists the following information: Title of Proposal: Continuum of Care Homeless Assistance...

  14. Continuum simulations of water flow past fullerene molecules

    NASA Astrophysics Data System (ADS)

    Popadić, A.; Praprotnik, M.; Koumoutsakos, P.; Walther, J. H.

    2015-09-01

    We present continuum simulations of water flow past fullerene molecules. The governing Navier-Stokes equations are complemented with the Navier slip boundary condition with a slip length that is extracted from related molecular dynamics simulations. We find that several quantities of interest as computed by the present model are in good agreement with results from atomistic and atomistic-continuum simulations at a fraction of the cost. We simulate the flow past a single fullerene and an array of fullerenes and demonstrate that such nanoscale flows can be computed efficiently by continuum flow solvers, allowing for investigations into spatiotemporal scales inaccessible to atomistic simulations.

  15. SEACAS Theory Manuals: Part II. Nonlinear Continuum Mechanics

    SciTech Connect

    Attaway, S.W.; Laursen, T.A.; Zadoks, R.I.

    1998-09-01

    This report summarizes the key continuum mechanics concepts required for the systematic prescription and numerical solution of finite deformation solid mechanics problems. Topics surveyed include measures of deformation appropriate for media undergoing large deformations, stress measures appropriate for such problems, balance laws and their role in nonlinear continuum mechanics, the role of frame indifference in description of large deformation response, and the extension of these theories to encompass two dimensional idealizations, structural idealizations, and rigid body behavior. There are three companion reports that describe the problem formulation, constitutive modeling, and finite element technology for nonlinear continuum mechanics systems.

  16. The submillimeter radio continuum of Comet P/Brorsen-Metcalf

    SciTech Connect

    Jewitt, D.; Luu, J. MIT, Cambridge, MA )

    1990-12-01

    Observations of Comet P/Brorsen-Metcalf in the submillimeter radio continuum are presented. The observations were taken using the James Clerk Maxwell Telescope on Mauna Kea, and include the first truly submillimeter detection of a comet, and the first submillimeter continuum spectrum. The submillimeter radiation is attributed to thermal emission from a transient population of large grains with a total mass of (1-10) x 10 to the 9th kg. The large grains may be produced by catastrophic failure of part of the refractory mantle on the surface of the cometary nucleus. Models of the submillimeter continuum are discussed. 49 refs.

  17. Area Regge calculus and continuum limit [rapid communication

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    2002-11-01

    Encountered in the literature generalisations of general relativity to independent area variables are considered, the discrete (generalised Regge calculus) and continuum ones. The generalised Regge calculus can be either with purely area variables or, as we suggest, with area tensor-connection variables. Just for the latter, in particular, we prove that in analogy with corresponding statement in ordinary Regge calculus (by Feinberg, Friedberg, Lee and Ren), passing to the (appropriately defined) continuum limit yields the generalised continuum area tensor-connection general relativity.

  18. Some fundamental aspects of the continuumization problem in granular Media

    NASA Astrophysics Data System (ADS)

    Peters, John F.

    The central problem of devising mathematical models of granular materials is how to define a granular medium as a continuum. This paper outlines the elements of a theory that could be incorporated in discrete models such as the Discrete-Element Method, without recourse to a continuum description. It is shown that familiar concepts from continuum mechanics such as stress and strain can be defined for interacting discrete quantities. Established concepts for constitutive equations can likewise be applied to discrete quantities. The key problem is how to define the constitutive response in terms of truncated strain measures that are a practical necessity for analysis of large granular systems.

  19. [Psychiatric Rehabilitation - From the Linear Continuum Approach Towards Supported Inclusion].

    PubMed

    Richter, Dirk; Hertig, Res; Hoffmann, Holger

    2016-11-01

    Background: For many decades, psychiatric rehabilitation in the German-speaking countries is following a conventional linear continuum approach. Methods: Recent developments in important fields related to psychiatric rehabilitation (UN Convention on the Rights of People with Disabilities, theory of rehabilitation, empirical research) are reviewed. Results: Common to all developments in the reviewed fields are the principles of choice, autonomy and social inclusion. These principles contradict the conventional linear continuum approach. Conclusions: The linear continuum approach of psychiatric rehabilitation should be replaced by the "supported inclusion"-approach.

  20. Cosmology of Continuum Creation and Annihilation

    NASA Astrophysics Data System (ADS)

    Ierokomos, Nikiforos

    2011-11-01

    An extensive cosmology hypothesis is presented that was developed over decades and is based on the existence and evolution of the universe via Cosmic Symmetry Breaks (CSBs) or phases with our universe (Cosmos) describable by a Cosmology of Continuum Creation and Annihilation, or CCA Cosmology. The CCA cosmology hypothesis does not belong to a Standard Model Big Bang. This hypothesis not only describes the universe but also the realm of elementary particles and forces. It provides plausible answers to a large number of puzzles in Physics and Cosmology. These answers range from those that can be calculated and values checked by observations, such as: How much and what is dark energy? How much and what is dark matter? How much baryonic matter? How much and why is there a time-delay for GRB energetic photons? When (or did?) the universe started to accelerate? Are primordial galaxies smaller? Why are orbits non-Newtonian beyond an acceleration value, and other calculable parameters. Also, answers which are more fundamental in interpretation, such as: What is mass and gravity? How many families of elementary particles exist and why are there only three generations of each? Why did the universe start with such low entropy? Does the Cosmos violate the First or Second Law of Thermodynamics? Why is there an asymmetry of matter over antimatter in the universe and what is antimatter? These and other questions the CCA hypothesis is proposing to answer. This hypothesis requires minimum assumptions and can build a coherent theory that can arrive at today's complex universe with plausible evolutionary steps from one postulate and one particle. cosmogony, non-standard cosmology, dark energy, dark matter, new elementary particles, gravity, antimatter, accelerated universe.

  1. The Hurricane-Flood-Landslide Continuum

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Burkardt, Nina; Golden, Joseph H.; Halverson, Jeffrey B.; Huffman, George J.; Larsen, Matthew C.; McGinley, John A.; Updike, Randall G.; Verdin, James P.; Wieczorek, Gerald F.

    2005-01-01

    In August 2004, representatives from NOAA, NASA, the USGS, and other government agencies convened in San Juan, Puerto Rim for a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The essence of the HFLC is to develop and integrate tools across disciplines to enable the issuance of regional guidance products for floods and landslides associated with major tropical rain systems, with sufficient lead time that local emergency managers can protect vulnerable populations and infrastructure. All three lead agencies are independently developing precipitation-flood-debris flow forecasting technologies, and all have a history of work on natural hazards both domestically and overseas. NOM has the capability to provide tracking and prediction of storm rainfall, trajectory and landfall and is developing flood probability and magnTtude capabilities. The USGS has the capability to evaluate the ambient stability of natural and man-made landforms, to assess landslide susceptibilities for those landforms, and to establish probabilities for initiation of landslides and debris flows. Additionally, the USGS has well-developed operational capacity for real-time monitoring and reporting of streamflow across distributed networks of automated gaging stations (http://water.usgs.gov/waterwatch/). NASA has the capability to provide sophisticated algorithms for satellite remote sensing of precipitation, land use, and in the future, soil moisture. The Workshop sought to initiate discussion among three agencies regarding their specific and highly complimentary capabilities. The fundamental goal of the Workshop was to establish a framework that will leverage the strengths of each agency. Once a prototype system is developed for example, in relatively data-rich Puerto Rim, it could be adapted for use in data-poor, low-infrastructure regions such as the Dominican Republic or Haiti. This paper provides an overview of the Workshop s goals

  2. Continuum and computational modeling of flexoelectricity

    NASA Astrophysics Data System (ADS)

    Mao, Sheng

    , stationary cracks, as well as structures with periodic structures, can be studied consistently with the continuum theory. We also generate predictions of experimental merit and reveal interesting flexoelectric phenomena with potential for application.

  3. Mentorship: The Education-Research Continuum

    SciTech Connect

    Correll, D

    2008-05-29

    Mentoring of science students stems naturally from the intertwined link between science education and science research. In fact, the mentoring relationship between a student and a scientist may be thought of analogically as a type of double helix forming the 'DNA' that defines the blueprint for the next generation of scientists. Although this analogy would not meet the rigorous tests commonly used for exploring the natural laws of the universe, the image depicted does capture how creating and sustaining the future science workforce benefits greatly from the continuum between education and research. The path science students pursue from their education careers to their research careers often involves training under an experienced and trusted advisor, i.e., a mentor. For many undergraduate science students, a summer research internship at a DOE National Laboratory is one of the many steps they will take in their Education-Research Continuum. Scientists who choose to be mentors share a commitment for both science education and science research. This commitment is especially evident within the research staff found throughout the Department of Energy's National Laboratories. Research-based internship opportunities within science, technology, engineering and mathematics (STEM) exist at most, if not all, of the Laboratories. Such opportunities for students are helping to create the next generation of highly trained professionals devoted to the task of keeping America at the forefront of scientific innovation. 'The Journal of Undergraduate Research' (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. The theme of this issue of the JUR (Vol. 8, 2008) is 'Science for All'. Almost 20 years have passed since the American Association for the Advancement of Science published its 1989 report, 'Science for All Americans-Project 2061'. The first

  4. Technical Note: A Monte Carlo study of magnetic-field-induced radiation dose effects in mice

    PubMed Central

    Liao, Zhongxing; Melancon, Adam D.; Guindani, Michele; Followill, David S.; Tailor, Ramesh C.; Hazle, John D.; Court, Laurence E.

    2015-01-01

    Purpose: Magnetic fields are known to alter radiation dose deposition. Before patients receive treatment using an MRI-linear accelerator (MRI-Linac), preclinical studies are needed to understand the biological consequences of magnetic-field-induced dose effects. In the present study, the authors sought to identify a beam energy and magnetic field strength combination suitable for preclinical murine experiments. Methods: Magnetic field dose effects were simulated in a mouse lung phantom using various beam energies (225 kVp, 350 kVp, 662 keV [Cs-137], 2 MV, and 1.25 MeV [Co-60]) and magnetic field strengths (0.75, 1.5, and 3 T). The resulting dose distributions were compared with those in a simulated human lung phantom irradiated with a 6 or 8 MV beam and orthogonal 1.5 T magnetic field. Results: In the human lung phantom, the authors observed a dose increase of 45% and 54% at the soft-tissue-to-lung interface and a dose decrease of 41% and 48% at the lung-to-soft-tissue interface for the 6 and 8 MV beams, respectively. In the mouse simulations, the magnetic fields had no measurable effect on the 225 or 350 kVp dose distribution. The dose increases with the Cs-137 beam for the 0.75, 1.5, and 3 T magnetic fields were 9%, 29%, and 42%, respectively. The dose decreases were 9%, 21%, and 37%. For the 2 MV beam, the dose increases were 16%, 33%, and 31% and the dose decreases were 9%, 19%, and 30%. For the Co-60 beam, the dose increases were 19%, 54%, and 44%, and the dose decreases were 19%, 42%, and 40%. Conclusions: The magnetic field dose effects in the mouse phantom using a Cs-137, 3 T combination or a Co-60, 1.5 or 3 T combination most closely resemble those in simulated human treatments with a 6 MV, 1.5 T MRI-Linac. The effects with a Co-60, 1.5 T combination most closely resemble those in simulated human treatments with an 8 MV, 1.5 T MRI-Linac. PMID:26328998

  5. Technical Note: A Monte Carlo study of magnetic-field-induced radiation dose effects in mice

    SciTech Connect

    Rubinstein, Ashley E.; Liao, Zhongxing; Melancon, Adam D.; Followill, David S.; Tailor, Ramesh C.; Guindani, Michele; Hazle, John D.; Court, Laurence E.

    2015-09-15

    Purpose: Magnetic fields are known to alter radiation dose deposition. Before patients receive treatment using an MRI-linear accelerator (MRI-Linac), preclinical studies are needed to understand the biological consequences of magnetic-field-induced dose effects. In the present study, the authors sought to identify a beam energy and magnetic field strength combination suitable for preclinical murine experiments. Methods: Magnetic field dose effects were simulated in a mouse lung phantom using various beam energies (225 kVp, 350 kVp, 662 keV [Cs-137], 2 MV, and 1.25 MeV [Co-60]) and magnetic field strengths (0.75, 1.5, and 3 T). The resulting dose distributions were compared with those in a simulated human lung phantom irradiated with a 6 or 8 MV beam and orthogonal 1.5 T magnetic field. Results: In the human lung phantom, the authors observed a dose increase of 45% and 54% at the soft-tissue-to-lung interface and a dose decrease of 41% and 48% at the lung-to-soft-tissue interface for the 6 and 8 MV beams, respectively. In the mouse simulations, the magnetic fields had no measurable effect on the 225 or 350 kVp dose distribution. The dose increases with the Cs-137 beam for the 0.75, 1.5, and 3 T magnetic fields were 9%, 29%, and 42%, respectively. The dose decreases were 9%, 21%, and 37%. For the 2 MV beam, the dose increases were 16%, 33%, and 31% and the dose decreases were 9%, 19%, and 30%. For the Co-60 beam, the dose increases were 19%, 54%, and 44%, and the dose decreases were 19%, 42%, and 40%. Conclusions: The magnetic field dose effects in the mouse phantom using a Cs-137, 3 T combination or a Co-60, 1.5 or 3 T combination most closely resemble those in simulated human treatments with a 6 MV, 1.5 T MRI-Linac. The effects with a Co-60, 1.5 T combination most closely resemble those in simulated human treatments with an 8 MV, 1.5 T MRI-Linac.

  6. Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Wenshan; Hennrich, Frank; Flavel, Benjamin S.; Kappes, Manfred M.; Krupke, Ralph

    2016-09-01

    The length of single-walled carbon nanotubes (SWCNTs) is an important metric for the integration of SWCNTs into devices and for the performance of SWCNT-based electronic or optoelectronic applications. In this work we propose a rather simple method based on electric-field induced differential absorption spectroscopy to measure the chiral-index-resolved average length of SWCNTs in dispersions. The method takes advantage of the electric-field induced length-dependent dipole moment of nanotubes and has been verified and calibrated by atomic force microscopy. This method not only provides a low cost, in situ approach for length measurements of SWCNTs in dispersion, but due to the sensitivity of the method to the SWCNT chiral index, the chiral index dependent average length of fractions obtained by chromatographic sorting can also be derived. Also, the determination of the chiral-index resolved length distribution seems to be possible using this method.

  7. Field-induced magnetic instability and quantum criticality in the antiferromagnet CeCu2Ge2.

    PubMed

    Liu, Yi; Xie, Donghua; Wang, Xiaoying; Zhu, Kangwei; Yang, Ruilong

    2016-01-13

    The magnetic quantum criticality in strongly correlated electron systems has been considered to be closely related with the occurrence of unconventional superconductivity. Control parameters such as magnetic field, pressure or chemical doping are frequently used to externally tune the quantum phase transition for a deeper understanding. Here we report the research of a field-induced quantum phase transition using conventional bulk physical property measurements in the archetypal antiferromagnet CeCu2Ge2, which becomes superconductive under a pressure of about 10 GPa with Tc ~ 0.64 K. We offer strong evidence that short-range dynamic correlations start appearing above a magnetic field of about 5 T. Our demonstrations of the magnetic instability and the field-induced quantum phase transition are crucial for the quantum criticality, which may open a new route in experimental investigations of the quantum phase transition in heavy-fermion systems.

  8. 3D Continuum-Particle Simulations for Multiscale Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sanith; Hornung, Richard; Garcia, Alejandro; Hadjiconstantinou, Nicolas

    2001-06-01

    An adaptive mesh and algorithmic refinement (AMAR) scheme to model multi-scale, continuum-particle hydrodynamic flows is presented. AMAR ensures the particle description is applied exclusively in regions with high flow gradients and discontinous material interfaces, i.e. regions where the continuum flow assumptions are typically invalid. Direct Simulation Monte Carlo (DSMC) is used to model the particle regions on the finest grid of the adaptive hierarchy. The continuum flow is modelled using the compressible flow Euler equations and is solved using a second order Godunov scheme. Coupling is achieved by conservation of fluxes across the continuum-particle grid boundaries. The AMAR data structures are supported by a C++ object oriented framework (Structured Adaptive Mesh Refinement Application Infrastructure - SAMRAI) which allows for efficient parallel implementation. The scheme also extends to simulations of gas mixtures. Results for test cases are compared with theory and experiment.

  9. Links between annual, Milankovitch and continuum temperature variability.

    PubMed

    Huybers, Peter; Curry, William

    2006-05-18

    Climate variability exists at all timescales-and climatic processes are intimately coupled, so that understanding variability at any one timescale requires some understanding of the whole. Records of the Earth's surface temperature illustrate this interdependence, having a continuum of variability following a power-law scaling. But although specific modes of interannual variability are relatively well understood, the general controls on continuum variability are uncertain and usually described as purely stochastic processes. Here we show that power-law relationships of surface temperature variability scale with annual and Milankovitch-period (23,000- and 41,000-year) cycles. The annual cycle corresponds to scaling at monthly to decadal periods, while millennial and longer periods are tied to the Milankovitch cycles. Thus the annual, Milankovitch and continuum temperature variability together represent the response to deterministic insolation forcing. The identification of a deterministic control on the continuum provides insight into the mechanisms governing interannual and longer-period climate variability.

  10. 24 CFR 578.39 - Continuum of Care planning activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., universities, affordable housing developers, law enforcement, organizations that serve veterans, and homeless and formerly homeless individuals; (2) Determining the geographic area that the Continuum of Care will... homeless providers, victim service providers, faith-based organizations, governments, businesses,...

  11. 24 CFR 578.39 - Continuum of Care planning activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., universities, affordable housing developers, law enforcement, organizations that serve veterans, and homeless and formerly homeless individuals; (2) Determining the geographic area that the Continuum of Care will... homeless providers, victim service providers, faith-based organizations, governments, businesses,...

  12. Vasculopathy of Aging and the Revised Cardiovascular Continuum

    PubMed Central

    Kim, Su-A; Park, Jeong Bae; O'Rourke, Michael F.

    2015-01-01

    There have been attempts to explain the process of developments in overt cardiovascular disease, resulting in the presentation of the classic cardiovascular disease continuum and the aging cardiovascular continuum. Although the starting points of these two continua are different, they meet in the midstream of the cycle and reach a consensus at the end of the process. The announcement of the aging cardiovascular continuum made both continua complete, explaining the cardiovascular events in patients without atherosclerotic cardiovascular disease with aging. Impairment of the vascular structure by pulse wave and reflected wave is considered the cause of aortic damage, which influences the development of ischemic heart disease and the development of overt renal disease or cerebrovascular disease. The pathophysiology of vascular aging through pulse wave and its effect on other organs was discussed with Prof. Michael F. O'Rourke who devised the aging cardiovascular continuum. PMID:26587463

  13. Four-body continuum-discretized coupled-channels calculations

    SciTech Connect

    Rodriguez-Gallardo, M.; Arias, J. M.; Moro, A. M.; Gomez-Camacho, J.; Thompson, I. J.; Tostevin, J. A.

    2009-11-15

    The development of a continuum-bin scheme of discretization for three-body projectiles is necessary for studies of reactions of Borromean nuclei such as {sup 6}He within the continuum-discretized coupled-channels approach. Such a procedure, for constructing bin states on selected continuum energy intervals, is formulated and applied for the first time to reactions of a three-body projectile. The continuum representation uses the eigenchannel expansion of the three-body S matrix. The method is applied to the challenging case of the {sup 6}He+{sup 208}Pb reaction at 22 MeV, where an accurate treatment of both the Coulomb and the nuclear interactions with the target is necessary.

  14. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  15. A hybrid particle/continuum approach for nonequilibrium hypersonic flows

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Lan

    A hybrid particle-continuum computational framework is developed and presented for simulating nonequilibrium hypersonic flows, aimed to be more accurate than conventional continuum methods and faster than particle methods. The frame work consists of the direct simulation Monte Carlo-Information Preservation (DSMC-IP) method coupled with a Navier-Stokes solver. Since the DSMC-IP method provides the macroscopic information at each time step, determination of the continuum fluxes across the interface between the particle and continuum domains becomes straightforward. Buffer and reservoir calls are introduced in the continuum domain and work as an extension of the particle domain. At the end of the particle movement phase, particles in either particle or buffer cells are retained. All simulated particles in the reservoir cells are first deleted for each time, step and re-generated based on the local cell values. The microscopic velocities for the newly generated particles are initialized to the Chapman-Enskog distribution using an acceptance-rejection scheme. Continuum breakdown in a flow is defined as when the continuum solution departs from the particle solution to at least 5%. Numerical investigations show that a Knudsen-number-like parameter can best predict the continuum breakdown in the flows of interest. Numerical experiments of hypersonic flows over a simple blunted cone and a much more complex hollow cylinder/flare are conducted. The solutions for the two geometries considered from the hybrid framework are compared with experimental data and pure particle solutions. Generally speaking, it is concluded that the hybrid approach works quite well. In the blunted cone flow, numerical accuracy is improved when 10 layers of buffer cells are employed and the continuum breakdown cut-off value is set to be 0.03. In the hollow cylinder/flare hybrid simulation, the size of the separation zone near the conjunction of the cylinder and flare is improved from the initial

  16. Effect of residual strain in Fe-based amorphous alloys on field induced magnetic anisotropy and domain structure

    NASA Astrophysics Data System (ADS)

    Azuma, Daichi; Hasegawa, Ryusuke; Saito, Shin; Takahashi, Migaku

    2013-05-01

    Field induced magnetic anisotropy in two Fe-based amorphous alloys with different saturation induction levels (1.56 T and 1.64 T) was investigated by varying magnetic field strength and annealing temperature and domain images were taken on these samples. Residual strain was evaluated by measuring coercivities of the materials after stress-relief annealing. These results are discussed, clarifying the difference between the two Fe-based amorphous alloys.

  17. Field induced Kosterlitz-Thouless transition in two-dimensional array of Nb-AlO-Nb Josephson junctions

    NASA Astrophysics Data System (ADS)

    Sergeenkov, S.; Rivera, V. A. G.; Marega, E.; Araujo-Moreira, F. M.

    2011-06-01

    We present recent results on the magnetic field dependence of current-voltage characteristics (CVC) for an artificially prepared two-dimensional array of unshunted Nb-AlO x-Nb Josephson junctions. The results obtained from the measured CVC and critical current IC(T,H) differential magnetoresistance (DMR) R(T,H)=[ of the array are found to exhibit behavior compatible with field induced Kosterlitz-Thouless transition describing unbinding of vortex-antivortex pairs under applied magnetic field.

  18. Magnetic field induced controllable self-assembly of maghemite nanocrystals: From 3D arrays to 1D nanochains

    NASA Astrophysics Data System (ADS)

    Tang, Yan; Chen, Qianwang; Chen, Rongsheng

    2015-08-01

    A hydrothermal process has been used to synthesize walnut-like maghemite superstructures which can be further self-assembled in a controllable manner into ordered three-dimensional (3D) architectures and one-dimensional (1D) nanochains in the presence of different external magnetic field. The assembly behavior of the maghemite nanoparticles isclosely related to the van der Waals interactions and external-field-induced magnetic dipole interactions. The magnetic properties of these nanostructures are also investigated.

  19. Influence of Field-Induced Drain on the Characteristics of Poly-Si Thin-Film Transistor using a Self-Aligned Double Spacer Process

    NASA Astrophysics Data System (ADS)

    Ahn, Jeong-Ah; Kim, Ohyun

    2004-03-01

    The electric characteristics of field-induced drain (FID) poly-Si thin-film transistors (poly-Si TFT) with an independently biased self-aligned sub-gate using a double space process are investigated. The on/off current ratio of this FID TFT is approximately 9.3× 107 and the off-state leakage current is 200 times lower than that of the conventional TFT and 60 times lower than that of the LDD TFT at VSG=VDS=5 V. The self-aligned double spacer process can remove the sub-gate misalignment error and the length of the sub-gate can be easily controlled by the poly-Si thickness and a hard mask. In particular, the use of the dual hard mask can realize a long sub-gate without thick sub-gate poly-Si (>500 nm). The optimum sub-gate voltage is about 5 V and the optimum effective sub-gate length is between 200 nm and 300 nm in these FID TFTs.

  20. Uses of Continuum Radiation in the AXAF Calibration

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Austin, R. A.; Eisner, R. F.; ODell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.

    1997-01-01

    X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.

  1. Thermodynamics of the magnetic-field-induced "normal" state in an underdoped high Tc superconductor

    NASA Astrophysics Data System (ADS)

    Riggs, Scott Chandler

    High magnetic fields are used to kill superconductivity and probe what happens to system when it cannot reach the ideal ground state, i.e. what is the normal-state ground state? Early work in High-Tc, where the application of magnetic field destroyed the zero resistance state and recovered a resistivity value that connected continuously with the zero field curve, lead people to believe this magnetic-field-induced-state had fully driven the system normal, revealing the true underlying ground state, without any vestige of superconductivity. Many experiments done in this region of phase space have results interpreted as coming from the low energy ground state excitations. With the emergence of ultra-clean crystals in a unique family of hole doped high-Tc superconductors, YBa2Cu3O 7-delta, YBCO, a new and highly unexpected phenomena of quantum oscillations were discovered, and they followed the standard Liftshitz-Kosevich (LK) theory for a normal metal. The results suddenly made the problem of high-T c appear to be analogous to superconductivity in the organics, which is brought about by a wave-vector nesting and Fermi surface reconstruction. The only problem, it appeared, that needed to be reconciled was with Angle Resolved Photo-Emission Spectroscopy (ARPES) and Scanning Tunneling Microscopy (STM) data that claimed to see no such Fermi surface, instead only "arcs", a set of disconnected segments in the Brillouin zone which quasiparticle peaks are observed at the Fermi energy, which in a mean field description does not allow for a continuous Fermi surface contour. These two discrepancies led to the "arc vs pocket" debate, which is still unresolved. The other kink in the quantum oscillation armor is that, to this date, quantum oscillations in the hole-doped cuprates have only been seen in YBCO, the only cuprate structure to have CuO chains, which conduct and are located in between two CuO2 superconducting planes in the unit cell. In an attempt to reconcile the "arc vs

  2. Translational research: understanding the continuum from bench to bedside.

    PubMed

    Drolet, Brian C; Lorenzi, Nancy M

    2011-01-01

    The process of translating basic scientific discoveries to clinical applications, and ultimately to public health improvements, has emerged as an important, but difficult, objective in biomedical research. The process is best described as a "translation continuum" because various resources and actions are involved in this progression of knowledge, which advances discoveries from the bench to the bedside. The current model of this continuum focuses primarily on translational research, which is merely one component of the overall translation process. This approach is ineffective. A revised model to address the entire continuum would provide a methodology to identify and describe all translational activities (eg, implementation, adoption translational research, etc) as well their place within the continuum. This manuscript reviews and synthesizes the literature to provide an overview of the current terminology and model for translation. A modification of the existing model is proposed to create a framework called the Biomedical Research Translation Continuum, which defines the translation process and describes the progression of knowledge from laboratory to health gains. This framework clarifies translation for readers who have not followed the evolving and complicated models currently described. Authors and researchers may use the continuum to understand and describe their research better as well as the translational activities within a conceptual framework. Additionally, the framework may increase the advancement of knowledge by refining discussions of translation and allowing more precise identification of barriers to progress.

  3. Spectral structure and stability studies on microstructure-fiber continuum

    NASA Astrophysics Data System (ADS)

    Gu, Xun; Kimmel, Mark; Zeek, Erik; Shreenath, Aparna P.; Trebino, Rick P.; Windeler, Robert S.

    2003-07-01

    Although previous direct measurements of the microstructure-fiber continuum have all showed a smooth and stable spectrum, our cross-correlation frequency-resolved optical gating (XFROG) full-intensity-and-phase characterization of the continuum pulse, utilizing sum-frequency-generation with a pre-characterized reference pulse and the angle-dithered-crystal technique, indicates that fine-scale spectral structure exists on a single-shot basis, contrary to previous observations. In particular, deep and fine oscillations are found in the retrieved spectrum, and the retrieved trace contains a "measles" pattern, whereas the measured trace and the independently-measured spectrum are rather smooth. The discrepancy is shown to be the result of unstable single-shot spectral structure. Although the XFROG measurement is not able to directly measure the single-shot fine structure in the trace, the redundancy of information in FROG traces enables the retrieval algorithm to correctly recognize the existence of the spectral fine structure, and restore the structure in the retrieved trace and spectrum. Numerical simulations have supported our hypothesis, and we directly observed the fine spectral structure in single-shot measurements of the continuum spectrum and the structure was seen to be highly unstable, the continuum spectrum appearing smooth only when many shots are averaged. Despite the structure and instability in the continuum spectrum, coherence experiments also reveal that the spectral phase is rather stable, being able to produce well-defined spectral fringes across the entire continuum bandwidth.

  4. Relativistic corrections and non-Gaussianity in radio continuum surveys

    SciTech Connect

    Maartens, Roy; Zhao, Gong-Bo; Bacon, David; Koyama, Kazuya; Raccanelli, Alvise E-mail: Gong-bo.Zhao@port.ac.uk E-mail: Kazuya.Koyama@port.ac.uk

    2013-02-01

    Forthcoming radio continuum surveys will cover large volumes of the observable Universe and will reach to high redshifts, making them potentially powerful probes of dark energy, modified gravity and non-Gaussianity. We consider the continuum surveys with LOFAR, WSRT and ASKAP, and examples of continuum surveys with the SKA. We extend recent work on these surveys by including redshift space distortions and lensing convergence in the radio source auto-correlation. In addition we compute the general relativistic (GR) corrections to the angular power spectrum. These GR corrections to the standard Newtonian analysis of the power spectrum become significant on scales near and beyond the Hubble scale at each redshift. We find that the GR corrections are at most percent-level in LOFAR, WODAN and EMU surveys, but they can produce O(10%) changes for high enough sensitivity SKA continuum surveys. The signal is however dominated by cosmic variance, and multiple-tracer techniques will be needed to overcome this problem. The GR corrections are suppressed in continuum surveys because of the integration over redshift — we expect that GR corrections will be enhanced for future SKA HI surveys in which the source redshifts will be known. We also provide predictions for the angular power spectra in the case where the primordial perturbations have local non-Gaussianity. We find that non-Gaussianity dominates over GR corrections, and rises above cosmic variance when f{sub NL}∼>5 for SKA continuum surveys.

  5. A continuum breakdown parameter based on the characteristic function of the molecular velocity distribution

    NASA Astrophysics Data System (ADS)

    Alamatsaz, Arghavan; Venkattraman, Ayyaswamy

    2014-11-01

    Rarefied flows characterized by Knudsen numbers (Kn) greater than 0.1 are frequently encountered in several applications including low-pressure, high speed and microscale flows and require computationally expensive molecular approaches such as direct simulation Monte Carlo (DSMC) to accurately capture the physical phenomena unique to these flows. However, most of these flows also contain regions where traditional inexpensive continuum techniques such as the Navier-Stokes (NS) equations are sufficiently accurate making a hybrid NS-DSMC approach attractive and optimal. Such a hybrid method typically requires a robust continuum breakdown parameter (CBP) to determine regions where each method should be applied. Historically, hybrid methods have used CBPs based on the macroscopic properties which are lower order moments of the molecular velocity distribution function (VDF) and their gradients which can have significant inaccuracies. In this work, we propose a novel CBP that utilizes all moments of the VDF by computing the characteristic function with limited computational overhead. We also compare the performance of this CBP using standard benchmark problems including structure of a normal shock wave and Fourier-Couette flow for various Kn from continuum to free-molecular.

  6. Soft X-ray continuum radiation from low-energy pinch discharges of hydrogen

    NASA Astrophysics Data System (ADS)

    Mills, R.; Booker, R.; Lu, Y.; Lu

    2013-10-01

    Under a study contracted by GEN3 Partners, spectra of high current pinch discharges in pure hydrogen and helium were recorded in the extreme ultraviolet radiation region at the Harvard Smithsonian Center for Astrophysics (CfA) in an attempt to reproduce experimental results published by BlackLight Power, Inc. (BLP) showing predicted continuum radiation due to hydrogen in the 10-30 nm region (Mills, R. L. and Lu, Y. 2010 Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm. Int. J. Hydrog. Energy 35, 8446-8456, doi:10.1016?j.ijhydene.2010.05.098). Alternative explanations were considered to the claimed interpretation of the continuum radiation as being that emitted during transitions of H to lower-energy states (hydrinos). Continuum radiation was observed at CfA in the 10-30 nm region that matched BLP's results. Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120-40 eV, reference experiments and analysis of plasma gases, cryofiltration to remove contaminants, and spectra of the electrode metal, no conventional explanation was found in the prior or present work to be plausible including contaminants, electrode metal emission, and Bremsstrahlung, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the charge-coupled device and H2 re-radiation at the detector chamber. Moreover, predicted selective extraordinarily high-kinetic energy H was observed by the corresponding Doppler broadening of the Balmer α line.

  7. Quantum dynamics of Ne -Br2 vibrational predissociation: The role of continuum resonances as doorway states

    NASA Astrophysics Data System (ADS)

    García-Vela, A.; Janda, K. C.

    2006-01-01

    Wave-packet simulations of the Ne -Br2(B,υ') vibrational predissociation dynamics in the range υ'=16-29 are reported. The aim is to interpret recent time-dependent pump-probe experiments [Cabrera et al., J. Chem. Phys. 123, 054311 (2005)]. Good agreement is found between the calculated and the experimental lifetimes corresponding to decay of the Ne -Br2(B,υ') initial state and to appearance of Br2(B,υ<υ') products. The simulations show that up to υ'˜22 the dynamics is dominated by direct predissociation, while for higher υ' levels an indirect intramolecular vibrational relaxation mechanism of dissociation becomes increasingly important. Such a mechanism occurs via coupling of the initial state in the υ' vibrational manifold to nearly degenerate resonances embedded in the continuum of the lower υ <υ' manifolds, which act as intermediate doorway states to dissociation. The role of the intermediate resonances manifests itself in multiexponential behavior and oscillations in the time-dependent population curves associated with the initial complex state, the final product states, and the Ne -Br2(B,υ<υ') intermediate complexes. Analysis of the Ne -Br2(B,υ<υ') intermediate population shows that the continuum resonances are supported by centrifugal barriers involving excitation of the internal rotation of the complex. We find that the coupling between the intermediate state resonances and the continuum product state wave functions extend to Ne -Br2 distances greater than 15Å. In the light of the results, a structure of the spectrum of continuum resonances is suggested and discussed.

  8. Anisotropy in finite continuum percolation: threshold estimation by Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Klatt, Michael A.; Schröder-Turk, Gerd E.; Mecke, Klaus

    2017-02-01

    We examine the interplay between anisotropy and percolation, i.e. the spontaneous formation of a system spanning cluster in an anisotropic model. We simulate an extension of a benchmark model of continuum percolation, the Boolean model, which is formed by overlapping grains. Here we introduce an orientation bias of the grains that controls the degree of anisotropy of the generated patterns. We analyze in the Euclidean plane the percolation thresholds above which percolating clusters in x- and in y-direction emerge. Only in finite systems, distinct differences between effective percolation thresholds for different directions appear. If extrapolated to infinite system sizes, these differences vanish independent of the details of the model. In the infinite system, the uniqueness of the percolating cluster guarantees a unique percolation threshold. While percolation is isotropic even for anisotropic processes, the value of the percolation threshold depends on the model parameters, which we explore by simulating a score of models with varying degree of anisotropy. To which precision can we predict the percolation threshold without simulations? We discuss analytic formulas for approximations (based on the excluded area or the Euler characteristic) and compare them to our simulation results. Empirical parameters from similar systems allow for accurate predictions of the percolation thresholds (with deviations of  <5% in our examples), but even without any empirical parameters, the explicit approximations from integral geometry provide, at least for the systems studied here, lower bounds that capture well the qualitative dependence of the percolation threshold on the system parameters (with deviations of 5 % –30 % ). As an outlook, we suggest further candidates for explicit and geometric approximations based on second moments of the so-called Minkowski functionals.

  9. Genomic Study of Cardiovascular Continuum Comorbidity

    PubMed Central

    Makeeva, O. A.; Sleptsov, A. A.; Kulish, E. V.; Barbarash, O. L.; Mazur, A. M.; Prokhorchuk, E. B.; Chekanov, N. N.; Stepanov, V. A.; Puzyrev, V. P.

    2015-01-01

    Comorbidity or a combination of several diseases in the same individual is a common and widely investigated phenomenon. However, the genetic background for non–random disease combinations is not fully understood. Modern technologies and approaches to genomic data analysis enable the investigation of the genetic profile of patients burdened with several diseases (polypathia, disease conglomerates) and its comparison with the profiles of patients with single diseases. An association study featuring three groups of patients with various combinations of cardiovascular disorders and a control group of relatively healthy individuals was conducted. Patients were selected as follows: presence of only one disease, ischemic heart disease (IHD); a combination of two diseases, IHD and arterial hypertension (AH); and a combination of several diseases, including IHD, AH, type 2 diabetes mellitus (T2DM), and hypercholesterolemia (HC). Genotyping was performed using the “My Gene” genomic service (www.i–gene.ru). An analysis of 1,400 polymorphic genetic variants and their associations with the studied phenotypes are presented. A total of 14 polymorphic variants were associated with the phenotype “IHD only,” including those in the APOB, CD226, NKX2–5, TLR2, DPP6, KLRB1, VDR, SCARB1, NEDD4L, and SREBF2 genes, and intragenic variants rs12487066, rs7807268, rs10896449, and rs944289. A total of 13 genetic markers were associated with the “IHD and AH” phenotype, including variants in the BTNL2, EGFR, CNTNAP2, SCARB1, and HNF1A genes, and intragenic polymorphisms rs801114, rs10499194, rs13207033, rs2398162, rs6501455, and rs1160312. A total of 14 genetic variants were associated with a combination of several diseases of cardiovascular continuum (CVC), including those in the TAS2R38, SEZ6L, APOA2, KLF7, CETP, ITGA4, RAD54B, LDLR, and MTAP genes, along with intragenic variants rs1333048, rs1333049, and rs6501455. One common genetic marker was identified for the

  10. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multispectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/sq m, which compared to the 4 W/sq m magnitude of the greenhouse gas forcing and the 1-2 W/sq m estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude

  11. Theoretical Calculation and Validation of the Water Vapor Continuum Absorption

    NASA Technical Reports Server (NTRS)

    Ma, Qiancheng; Tipping, Richard H.

    1998-01-01

    The primary objective of this investigation is the development of an improved parameterization of the water vapor continuum absorption through the refinement and validation of our existing theoretical formalism. The chief advantage of our approach is the self-consistent, first principles, basis of the formalism which allows us to predict the frequency, temperature and pressure dependence of the continuum absorption as well as provide insights into the physical mechanisms responsible for the continuum absorption. Moreover, our approach is such that the calculated continuum absorption can be easily incorporated into satellite retrieval algorithms and climate models. Accurate determination of the water vapor continuum is essential for the next generation of retrieval algorithms which propose to use the combined constraints of multi-spectral measurements such as those under development for EOS data analysis (e.g., retrieval algorithms based on MODIS and AIRS measurements); current Pathfinder activities which seek to use the combined constraints of infrared and microwave (e.g., HIRS and MSU) measurements to improve temperature and water profile retrievals, and field campaigns which seek to reconcile spectrally-resolved and broad-band measurements such as those obtained as part of FIRE. Current widely used continuum treatments have been shown to produce spectrally dependent errors, with the magnitude of the error dependent on temperature and abundance which produces errors with a seasonal and latitude dependence. Translated into flux, current water vapor continuum parameterizations produce flux errors of order 10 W/ml, which compared to the 4 W/m' magnitude of the greenhouse gas forcing and the 1-2 W/m' estimated aerosol forcing is certainly climatologically significant and unacceptably large. While it is possible to tune the empirical formalisms, the paucity of laboratory measurements, especially at temperatures of interest for atmospheric applications, preclude tuning

  12. Strain and Magnetic Field Induced Spin-Structure Transitions in Multiferroic BiFeO3.

    PubMed

    Agbelele, A; Sando, D; Toulouse, C; Paillard, C; Johnson, R D; Rüffer, R; Popkov, A F; Carrétéro, C; Rovillain, P; Le Breton, J-M; Dkhil, B; Cazayous, M; Gallais, Y; Méasson, M-A; Sacuto, A; Manuel, P; Zvezdin, A K; Barthélémy, A; Juraszek, J; Bibes, M

    2017-03-01

    The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly lower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices.

  13. Measuring the continuum polarization with ESPaDOnS

    NASA Astrophysics Data System (ADS)

    Pereyra, A.; Rodrigues, C. V.; Martioli, E.

    2015-01-01

    Aims: Our goal is to test the feasibility of obtaining accurate measurements of the continuum polarization from high-resolution spectra using the spectropolarimetric mode of ESPaDOnS. Methods: We used the new pipeline OPERA to reduce recent and archived ESPaDOnS data. Several polarization standard stars and science objects were tested for the linear mode. In addition, the circular mode was tested using several objects from the archive with expected null polarization. Synthetic broad-band polarization was computed from the ESPaDOnS continuum polarization spectra and compared with published values (when available) to quantify the accuracy of the instrument. Results: The continuum linear polarization measured by ESPaDOnS is consistent with broad-band polarimetry measurements available in the literature. The accuracy in the degree of linear polarization is around 0.2-0.3% considering the full sample. The accuracy in polarization position angle using the most polarized objects is better than 5°. Consistent with this, the instrumental polarization computed for the circular continuum polarization is also between 0.2-0.3%. Our results suggest that measurements of the continuum polarization using ESPaDOnS are viable and can be used to study many astrophysical objects. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientique of France, and the University of Hawaii.

  14. A Framework for Health Communication Across the HIV Treatment Continuum

    PubMed Central

    Van Lith, Lynn M.; Mallalieu, Elizabeth C.; Packman, Zoe R.; Myers, Emily; Ahanda, Kim Seifert; Harris, Emily; Gurman, Tilly; Figueroa, Maria-Elena

    2017-01-01

    Background: As test and treat rolls out, effective interventions are needed to address the determinants of outcomes across the HIV treatment continuum and ensure that people infected with HIV are promptly tested, initiate treatment early, adhere to treatment, and are virally suppressed. Communication approaches offer viable options for promoting relevant behaviors across the continuum. Conceptual Framework: This article introduces a conceptual framework, which can guide the development of effective health communication interventions and activities that aim to impact behaviors across the HIV treatment continuum in low- and medium-income countries. The framework includes HIV testing and counseling, linkage to care, retention in pre-antiretroviral therapy and antiretroviral therapy initiation in one single-stage linkage to care and treatment, and adherence for viral suppression. The determinants of behaviors vary across the continuum and include both facilitators and barriers with communication interventions designed to focus on specific determinants presented in the model. At each stage, relevant determinants occur at the various levels of the social–ecological model: intrapersonal, interpersonal, health services, community, and policy. Effective health communication interventions have mainly relied on mHealth, interpersonal communication through service providers and peers, community support groups, and treatment supporters. Discussion: The conceptual framework and evidence presented highlight areas across the continuum where health communication can significantly impact treatment outcomes to reach the 90-90-90 goals by strategically addressing key behavioral determinants. As test and treat rolls out, multifaceted health communication approaches will be critical. PMID:27930606

  15. A continuum hard-sphere model of protein adsorption

    NASA Astrophysics Data System (ADS)

    Finch, Craig; Clarke, Thomas; Hickman, James J.

    2013-07-01

    Protein adsorption plays a significant role in biological phenomena such as cell-surface interactions and the coagulation of blood. Two-dimensional random sequential adsorption (RSA) models are widely used to model the adsorption of proteins on solid surfaces. Continuum equations have been developed so that the results of RSA simulations can be used to predict the kinetics of adsorption. Recently, Brownian dynamics simulations have become popular for modeling protein adsorption. In this work a continuum model was developed to allow the results from a Brownian dynamics simulation to be used as the boundary condition in a computational fluid dynamics (CFD) simulation. Brownian dynamics simulations were used to model the diffusive transport of hard-sphere particles in a liquid and the adsorption of the particles onto a solid surface. The configuration of the adsorbed particles was analyzed to quantify the chemical potential near the surface, which was found to be a function of the distance from the surface and the fractional surface coverage. The near-surface chemical potential was used to derive a continuum model of adsorption that incorporates the results from the Brownian dynamics simulations. The equations of the continuum model were discretized and coupled to a CFD simulation of diffusive transport to the surface. The kinetics of adsorption predicted by the continuum model closely matched the results from the Brownian dynamics simulation. This new model allows the results from mesoscale simulations to be incorporated into micro- or macro-scale CFD transport simulations of protein adsorption in practical devices.

  16. Do subglacial bedforms comprise a size and shape continuum?

    NASA Astrophysics Data System (ADS)

    Ely, Jeremy C.; Clark, Chris D.; Spagnolo, Matteo; Stokes, Chris R.; Greenwood, Sarah L.; Hughes, Anna L. C.; Dunlop, Paul; Hess, Dale

    2016-03-01

    Understanding the evolution of the ice-bed interface is fundamentally important for gaining insight into the dynamics of ice masses and how subglacial landforms are created. However, the formation of the suite of landforms generated at this boundary - subglacial bedforms - is a contentious issue that is yet to be fully resolved. Bedforms formed in aeolian, fluvial, and marine environments either belong to separate morphological populations or are thought to represent a continuum of forms generated by the same governing processes. For subglacial bedforms, a size and shape continuum has been hypothesised, yet it has not been fully tested. Here we analyse the largest data set of subglacial bedform size and shape measurements ever collated (96,900 bedforms). Our results show that flutes form a distinct population of narrow bedforms. However, no clear distinction was found between drumlins and megascale glacial lineations (MSGLs), which form a continuum of subglacial lineations. A continuum of subglacial ribs also exists, with no clear size or shape distinctions indicating separate populations. Furthermore, an underreported class of bedform with no clear orientation to ice flow (quasi-circular bedforms) overlaps with the ribbed and lineation continua and typically occurs in spatial transition zones between the two, potentially merging these three bedform types into a larger continuum.

  17. A field theoretical approach to the quasi-continuum method

    NASA Astrophysics Data System (ADS)

    Iyer, Mrinal; Gavini, Vikram

    2011-08-01

    The quasi-continuum method has provided many insights into the behavior of lattice defects in the past decade. However, recent numerical analysis suggests that the approximations introduced in various formulations of the quasi-continuum method lead to inconsistencies—namely, appearance of ghost forces or residual forces, non-conservative nature of approximate forces, etc.—which affect the numerical accuracy and stability of the method. In this work, we identify the source of these errors to be the incompatibility of using quadrature rules, which is a local notion, on a non-local representation of energy. We eliminate these errors by first reformulating the extended interatomic interactions into a local variational problem that describes the energy of a system via potential fields. We subsequently introduce the quasi-continuum reduction of these potential fields using an adaptive finite-element discretization of the formulation. We demonstrate that the present formulation resolves the inconsistencies present in previous formulations of the quasi-continuum method, and show using numerical examples the remarkable improvement in the accuracy of solutions. Further, this field theoretic formulation of quasi-continuum method makes mathematical analysis of the method more amenable using functional analysis and homogenization theories.

  18. Field-Induced Strain of Shape Memory Alloy Fe-31.2%Pd Using a Capacitance Method in a Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sakon, Takuo; Takaha, Atsuo; Matsuoka, Yoshitaka; Obara, Kenji; Saito, Taku; Motokawa, Mitsuhiro; Fukuda, Takashi; Kakeshita, Tomoyuki

    2004-11-01

    A system for the simultaneous measurement of magnetization and magnetic strain, which is designed to be used in a pulsed magnetic field, has been developed. In this system, a capacitor on a sample is used and its capacitance changes with the displacement of a sample due to the strain on the sample in a magnetic field. The most significant feature of this system is that magnetization and strain can be measured simultaneously. It is useful to compare the magnetization and magnetic strain (magnetostriction) with each other. Using this system, we have studied the precise magnetization and magnetic field-induced strain (MFIS) of the martensite metallic compound Fe-31.2%Pd (at.%) at temperatures down to 80 K in martensite phase, which is much lower than the martensitic transformation temperature TM=230 K. Large MFIS has been measured under a pulsed magnetic field with the time constant 6 ms, which corresponds to 80 Hz in frequency. It means that the MFIS occurs even in short-pulse magnetic fields.

  19. Magnetic-Field-Induced Strain of Shape-Memory Alloy Fe3Pt Studied by a Capacitance Method in a Pulsed Magnetic Field

    NASA Astrophysics Data System (ADS)

    Sakon, Takuo; Takaha, Atsuo; Obara, Kenji; Dejima, Koutatsu; Nojiri, Hiroyuki; Motokawa, Mitsuhiro; Fukuda, Takashi; Kakeshita, Tomoyuki

    2007-01-01

    The precise magnetic-field-induced strain (MFIS) and magnetization of the martensite metallic compound Fe3Pt in a martensitic phase were studied in a pulsed magnetic field using the capacitance method at low temperatures down to 4.2 K, which is much lower than the martensitic transformation temperature TM=85 K. After zero field cooling, a pulsed magnetic field with a maximum frequency of 160 Hz was applied parallel to the [001]p axis. A large MFIS was measured. The value of the MFIS is Δ L/L=-1.7%. When the magnetic field was decreased, the recovery of the strain was observed. In the second applied field, a strain of about 0.6% was observed. This means that MFIS occurs even in short-pulse magnetic fields. MFIS was observed below 70 K. The largest strain was observed at 20 K. These results are almost the same as the MFIS in a steady magnetic field using a superconducting magnet.

  20. Magnetostrain and magnetocaloric effect by field-induced reverse martensitic transformation for Pd-doped Ni45Co5Mn37In13 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Li, Z.; Xu, K.; Yang, H. M.; Zhang, Y. L.; Jing, C.

    2015-06-01

    In the present work, polycrystalline Ni45Co5-xPdxMn37In13 (x = 0, 0.5, 1, and 3) Heusler alloys were prepared. The influences of Pd substitution for Co on crystal structure, martensitic transformation (MT), and magnetic properties have been carefully investigated for these quinary alloys. The structure measurement indicates that every sample possesses L10 martensitic structure at room temperature. With increasing of Pd content, it is found that the MT region shifts towards higher temperature, but the Curie transition region of austenitic state moves to lower temperature. Owing to the fact that the MT gradually approaches Curie point, the magnetization of austenitic phase is significantly decreased, while the one of martensitic phase almost remains unchanged. In addition, the functional properties associated with the field-induced reverse MT have been also studied in Ni45Co5-xPdxMn37In13 (x = 0, 0.5, and 1) alloys. In comparison to quaternary parent alloy, both of enhanced magnetostrain (0.3%) and isothermal entropy change (25 J/kg K) are observed in quinary Ni45Co4.5Pd0.5Mn37In13 alloy under an applied magnetic field up to 3 T. The implication of such results has been discussed in detail.

  1. NMR investigation of field-induced magnetic order in barium manganese oxide

    NASA Astrophysics Data System (ADS)

    Suh, Steve

    As early as 1956, Matsubara and Matsuda found an exact correspondence between a lattice gas model and a quantum antiferromagnet model[1]. They paved the way for the language of integer spin boson particles to be used interchangeably with quantum magnetic insulator systems in a general manner. For example, an analogy of density of bosons is found in magnetization, and analogy of chemical potential is found in external field. Just as there exist corresponding parameters between these two seemingly unrelated systems, quantum magnets can also exhibit consequences of Boson particle systems. In particular, spin-ordering transition in quantum magnets can be interpreted as Bose-Einstein condensate (BEC) transition in Boson particle framework. Direct observation of BEC in Boson particles has been realized in 4He's superfluid transition and in dilute atomic gas clouds cooled to very low temperatures[2]. In this thesis, we try to realize and analyze BEC transition through field-induced spin-ordering transition in the S = 1 antiferromagnetic dimer system, Ba3Mn2O8. We perform NMR measurements with 135,137Ba nucleus as a local probe. Although S = 1 spin properties of Ba 3Mn2O8 come from electronic spins on Mn atoms, hyperfine coupling between Mn electronic spins and Ba nuclear spins allow us to infer Mn electrons' spin information. Since there are 2 inequivalent Ba sites, Ba(1) and Ba(2), in Ba3Mn2O8, we essentially have two probes that provide a detailed picture of structure and nature of magnetism in this material. There are many antiferromagnetic BEC candidates, but there is a significant advantage of studying Ba3Mn 2O8. Unlike the other popular antiferromagnetic BEC candidates such as TlCuCl3[3] or BaCuSi2O6[4], we find no evidence of lattice deformation in Ba3Mn2O8 . This allows us an unprecedented clean look at magnetic properties. Aside from the aforementioned simple technical advantage, there are new physics that we can learn from Ba3Mn2O 8. The geometric frustration of

  2. Spontaneous AC Field Induced Mechanical Rotation in Magnetostrictive FeSiB-Based Wires Subjected to Thermal Treatments

    DTIC Science & Technology

    2001-04-01

    MAGNETOSTRICTIVE FeSiB-BASED WIRES SUBJECTED TO THERMAL TREATMENTS V.Raposo1 2, A.Mitra1," 3 and M.Vizquez 1 1 Instituto de Ciencia de Materiales de Madrid...INTRODUCTION The mechanical rotation of Fe base amorphous wires with bistable magnetic behavior when subjected to an alternating AC field of several kHz...The aim of this work has been to study the AC field induced rotation of Feyy.5 Si7 .5B 15 and Fe 73.5 Si]3.5B9Cu1 Nb3 amorphous wires exhibiting large

  3. The wetland continuum: a conceptual framework for interpreting biological studies

    USGS Publications Warehouse

    Euliss, N.H.; LaBaugh, J.W.; Fredrickson, L.H.; Mushet, D.M.; Swanson, G.A.; Winter, T.C.; Rosenberry, D.O.; Nelson, R.D.

    2004-01-01

    We describe a conceptual model, the wetland continuum, which allows wetland managers, scientists, and ecologists to consider simultaneously the influence of climate and hydrologic setting on wetland biological communities. Although multidimensional, the wetland continuum is most easily represented as a two-dimensional gradient, with ground water and atmospheric water constituting the horizontal and vertical axis, respectively. By locating the position of a wetland on both axes of the continuum, the potential biological expression of the wetland can be predicted at any point in time. The model provides a framework useful in the organization and interpretation of biological data from wetlands by incorporating the dynamic changes these systems undergo as a result of normal climatic variation rather than placing them into static categories common to many wetland classification systems. While we developed this model from the literature available for depressional wetlands in the prairie pothole region of North America, we believe the concept has application to wetlands in many other geographic locations.

  4. Rabi-split states broadened by a continuum

    SciTech Connect

    Maialle, M. Z.; Degani, M. H.; Madureira, J. R.

    2013-12-04

    In this work we theoretically investigate a Λ-like three-level system. Our model consists of a onedimensional quantum well with a nearby continuum. The Λ level structure is formed by the ground state (a valence band state) and two excited states (both in conduction band), one being a localized and the other a quasi-bound state which is interacting with the continuum. An infrared (IR) field is used to drive the excited states into dressed states creating Autler-Townes doublets. We solve the semiconductor Bloch equation, in real space and in time domain, to follow the interband optical excitation dynamics. The optical absorption and the photocurrent spectra are calculated for different potential barriers separating the well and the continuum. We show how this affects the Autler-Townes doublets since this is a possible way of changing the relationship between the IR Rabi frequency and the dephasing rates.

  5. Water vapor continuum in the millimeter spectral region

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Tipping, R. H.

    1990-11-01

    Continuum absorption by water molecules in the millimeter spectral region of the earth's atmosphere, a region very important for atmospheric remote sensing, electro-optical systems, radar propagation, and atmospheric meteorology, is discussed. Theoretical expressions for the absorption coefficient for frequencies up to 450 GHz and temperatures between 282 and 315 K are derived. Known values of the permanent dipole moment and rotational constants and reasonable choices for two Lennard-Jones potential parameters are used to describe the isotropic interaction between two water molecules. The results are in agreement with an empirical model for the water continuum based on combined laboratory and atmospheric measurements. It is concluded that both the strong negative temperature dependence and the magnitude of the continuum absorption can be explained in terms of far-wings of the allowed rotational transitions.

  6. Lattice fluid dynamics from perfect discretizations of continuum flows

    SciTech Connect

    Katz, E.; Wiese, U.

    1998-11-01

    We use renormalization group methods to derive equations of motion for large scale variables in fluid dynamics. The large scale variables are averages of the underlying continuum variables over cubic volumes and naturally exist on a lattice. The resulting lattice dynamics represents a perfect discretization of continuum physics, i.e., grid artifacts are completely eliminated. Perfect equations of motion are derived for static, slow flows of incompressible, viscous fluids. For Hagen-Poiseuille flow in a channel with a square cross section the equations reduce to a perfect discretization of the Poisson equation for the velocity field with Dirichlet boundary conditions. The perfect large scale Poisson equation is used in a numerical simulation and is shown to represent the continuum flow exactly. For nonsquare cross sections one can use a numerical iterative procedure to derive flow equations that are approximately perfect. {copyright} {ital 1998} {ital The American Physical Society}

  7. Quasiparticle-continuum level repulsion in a quantum magnet

    SciTech Connect

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G.  E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; Kim, Young-June

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here, we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.

  8. Micropolar continuum modelling of bi-dimensional tetrachiral lattices

    PubMed Central

    Chen, Y.; Liu, X. N.; Hu, G. K.; Sun, Q. P.; Zheng, Q. S.

    2014-01-01

    The in-plane behaviour of tetrachiral lattices should be characterized by bi-dimensional orthotropic material owing to the existence of two orthogonal axes of rotational symmetry. Moreover, the constitutive model must also represent the chirality inherent in the lattices. To this end, a bi-dimensional orthotropic chiral micropolar model is developed based on the theory of irreducible orthogonal tensor decomposition. The obtained constitutive tensors display a hierarchy structure depending on the symmetry of the underlying microstructure. Eight additional material constants, in addition to five for the hemitropic case, are introduced to characterize the anisotropy under Z2 invariance. The developed continuum model is then applied to a tetrachiral lattice, and the material constants of the continuum model are analytically derived by a homogenization process. By comparing with numerical simulations for the discrete lattice, it is found that the proposed continuum model can correctly characterize the static and wave properties of the tetrachiral lattice. PMID:24808754

  9. Quasiparticle-continuum level repulsion in a quantum magnet

    DOE PAGES

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; ...

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.« less

  10. Combination therapy in the extended cardiovascular continuum: a focus on perindopril and amlodipine.

    PubMed

    Borghi, Claudio; Morbini, Martino; Cicero, Arrigo F G

    2015-05-01

    The progression of cardiovascular disease could be regarded as following atherosclerosis-related and age-related pathways. The starting points for these pathways are different--risk factors or aortic ageing--but they conclude in the same way: end-stage heart disease. Together these interlinked pathways form the extended cardiovascular continuum. Renin-angiotensin-aldosterone system (RAAS) inhibitors have been shown to interrupt or slow the progression of cardiovascular disease along one pathway, the cardiovascular atherosclerotic continuum. Cardiovascular protection with RAAS inhibitors varies; different RAAS inhibitors offer different levels of protection. Similarly, calcium channel blockers (CCBs) also have clearly shown protective effect of cardiovascular system, especially as it regards cerebrovascular disease risk. The AngloScandinavian Cardiac Outcomes Trial (ASCOT) showed that a combination of the angiotensin-converting enzyme (ACE) inhibitor perindopril and CCB amlodipine offered better cardiovascular protection in at-risk hypertensive patients than beta-blocker and thiazide. By attenuating the deleterious effects of cardiovascular disease at multiple stages of the extended cardiovascular continuum on top of lowering blood pressure (BP), perindopril and amlodipine could interrupt and slow the progression of cardiovascular disease. These antihypertensive agents have complementary vascular effects that enhance cardiovascular protection and reduce side-effects. Evidence from ASCOT shows that antihypertensive and vascular effects of amlodipine with and without perindopril have translated into real-life clinical benefits. A strategy using ACE inhibitors and CCBs, such as perindopril and amlodipine, to target multiple stages in both pathways of cardiovascular disease could effectively reduce cardiovascular risk and lower BP.

  11. Continuum Polarizable Force Field within the Poisson-Boltzmann Framework

    PubMed Central

    Tan, Yu-Hong; Tan, Chunhu; Wang, Junmei; Luo, Ray

    2008-01-01

    We have developed and tested a complete set of nonbonded parameters for a continuum polarizable force field. Our analysis shows that the new continuum polarizable model is consistent with B3LYP/cc-pVTZ in modeling electronic response upon variation of dielectric environment. Comparison with experiment also shows that the new continuum polarizable model is reasonable, with similar accuracy as B3LYP/cc-pVTZ in reproduction of dipole moments of selected organic molecules in the gas phase. We have further tested the validity to interchange the Amber van der Waals parameters between the explicit and continuum polarizable force fields with a series of dimers. It can be found that the continuum polarizable model agrees well with MP2/cc-pVTZ, with deviations in dimer binding energies less than 0.9 kcal/mol in the aqueous dielectric environment. Finally we have optimized atomic cavity radii with respect to experimental solvation free energies of 177 training molecules. To validate the optimized cavity radii, we have tested these parameters against 176 test molecules. It is found that the optimized PB atomic cavity radii transfer well from the training set to the test set, with an overall root-mean-squared deviation of 1.30 kcal/mol, unsigned average error of 1.07 kacl/mol, and correlation coefficient of 92% for all 353 molecules in both the training and test sets. Given the development documented here, the next natural step is the construction of a full protein/nucleic acid force field within the new continuum polarization framework. PMID:18507452

  12. Ultraviolet variability of NGC 5548 - Dynamics of the continuum production region and geometry of the broad-line region

    NASA Technical Reports Server (NTRS)

    Krolik, J. H.; Horne, Keith; Kallman, T. R.; Malkan, M. A.; Edelson, R. A.

    1991-01-01

    Data from the 1989-1990 IUE monitoring of the Seyfert galaxy NGC 5548 are used here to analyze the continuum variability properties of the galaxy and to derive the structure or its emission-line region. The mean shape of the UV continuum is well fit by an accretion disk model with a given black hole mass and an additional component required to reproduce the observed soft X-ray flux. The continuum fluctuation power spectrum is very steep, with most of the variance coming from about 1 yr time scales. The entire optical/UV continuum rises and falls almost simultaneously, so that the logarithmic slope of the power spectrum is nearly the same for all bands, but the flux at higher photon frequencies varies with larger amplitude. The emission-line material around the nucleus may best be described by a highly ionized inner zone of high and nearly constant pressure that stretches about 4-14 light-days from the center and an outer, more weakly ionized zone of considerably lower ionization at least 20-30 light-days out.

  13. Capillarity-driven flows at the continuum limit

    NASA Astrophysics Data System (ADS)

    Vincent, Olivier; Szenicer, Alexandre; Stroock, Abraham D.

    We experimentally investigate the dynamics of capillary-driven flows at the nanoscale, using an original platform that combines nanoscale pores and microfluidic features. Our results show a coherent picture across multiple experiments including imbibition, poroelastic transient flows, and a drying-based method that we introduce. In particular, we exploit extreme drying stresses - up to 100 MPa of tension - to drive nanoflows and provide quantitative tests of continuum theories of fluid mechanics and thermodynamics (e.g. Kelvin-Laplace equation) across an unprecedented range. We isolate the breakdown of continuum as a negative slip length of molecular dimension.

  14. Continuum Theory of Phase Separation Kinetics for Active Brownian Particles

    NASA Astrophysics Data System (ADS)

    Stenhammar, Joakim; Tiribocchi, Adriano; Allen, Rosalind J.; Marenduzzo, Davide; Cates, Michael E.

    2013-10-01

    Active Brownian particles (ABPs), when subject to purely repulsive interactions, are known to undergo activity-induced phase separation broadly resembling an equilibrium (attraction-induced) gas-liquid coexistence. Here we present an accurate continuum theory for the dynamics of phase-separating ABPs, derived by direct coarse graining, capturing leading-order density gradient terms alongside an effective bulk free energy. Such gradient terms do not obey detailed balance; yet we find coarsening dynamics closely resembling that of equilibrium phase separation. Our continuum theory is numerically compared to large-scale direct simulations of ABPs and accurately accounts for domain growth kinetics, domain topologies, and coexistence densities.

  15. Manipulability, force, and compliance analysis for planar continuum manipulators.

    PubMed

    Gravagne, Ian A; Walker, Ian D

    2002-06-01

    Continuum manipulators, inspired by the natural capabilities of elephant trunks and octopus tentacles, may find niche applications in areas like human-robot interaction, multiarm manipulation, and unknown environment exploration. However, their true capabilities will remain largely inaccessible without proper analytical tools to evaluate their unique properties. Ellipsoids have long served as one of the foremost analytical tools available to the robotics researcher, and the purpose of this paper is to first formulate, and then to examine, three types of ellipsoids for continuum robots: manipulability, force, and compliance.

  16. Diffuse Galactic low energy gamma ray continuum emission

    NASA Technical Reports Server (NTRS)

    Skibo, J. G.; Ramaty, R.

    1993-01-01

    We investigate the origin of diffuse low-energy Galactic gamma-ray continuum down to about 30 keV. We calculate gamma-ray emission via bremsstrahlung and inverse Compton scattering by propagating an unbroken electron power law injection spectrum and employing a Galactic emmissivity model derived from COSB observations. To maintain the low energy electron population capable of producing the observed continuum via bremsstrahlung, a total power input of 4 x 10 exp 41 erg/s is required. This exceeds the total power supplied to the nuclear cosmic rays by about an order of magnitude.

  17. On the continuum limit for a semidiscrete Hirota equation.

    PubMed

    Pickering, Andrew; Zhao, Hai-Qiong; Zhu, Zuo-Nong

    2016-11-01

    In this paper, we propose a new semidiscrete Hirota equation which yields the Hirota equation in the continuum limit. We focus on the topic of how the discrete space step δ affects the simulation for the soliton solution to the Hirota equation. The Darboux transformation and explicit solution for the semidiscrete Hirota equation are constructed. We show that the continuum limit for the semidiscrete Hirota equation, including the Lax pair, the Darboux transformation and the explicit solution, yields the corresponding results for the Hirota equation as [Formula: see text].

  18. Manipulability, force, and compliance analysis for planar continuum manipulators

    NASA Technical Reports Server (NTRS)

    Gravagne, Ian A.; Walker, Ian D.

    2002-01-01

    Continuum manipulators, inspired by the natural capabilities of elephant trunks and octopus tentacles, may find niche applications in areas like human-robot interaction, multiarm manipulation, and unknown environment exploration. However, their true capabilities will remain largely inaccessible without proper analytical tools to evaluate their unique properties. Ellipsoids have long served as one of the foremost analytical tools available to the robotics researcher, and the purpose of this paper is to first formulate, and then to examine, three types of ellipsoids for continuum robots: manipulability, force, and compliance.

  19. FUV Continuum in Flare Kernels Observed by IRIS

    NASA Astrophysics Data System (ADS)

    Daw, Adrian N.; Kowalski, Adam; Allred, Joel C.; Cauzzi, Gianna

    2016-05-01

    Fits to Interface Region Imaging Spectrograph (IRIS) spectra observed from bright kernels during the impulsive phase of solar flares are providing long-sought constraints on the UV/white-light continuum emission. Results of fits of continua plus numerous atomic and molecular emission lines to IRIS far ultraviolet (FUV) spectra of bright kernels are presented. Constraints on beam energy and cross sectional area are provided by cotemporaneous RHESSI, FERMI, ROSA/DST, IRIS slit-jaw and SDO/AIA observations, allowing for comparison of the observed IRIS continuum to calculations of non-thermal electron beam heating using the RADYN radiative-hydrodynamic loop model.

  20. Improving the Capabilities of a Continuum Laser Plasma Interaction Code

    SciTech Connect

    Hittinger, J F; Dorr, M R

    2006-06-15

    The numerical simulation of plasmas is a critical tool for inertial confinement fusion (ICF). We have been working to improve the predictive capability of a continuum laser plasma interaction code pF3d, which couples a continuum hydrodynamic model of an unmagnetized plasma to paraxial wave equations modeling the laser light. Advanced numerical techniques such as local mesh refinement, multigrid, and multifluid Godunov methods have been adapted and applied to nonlinear heat conduction and to multifluid plasma models. We describe these algorithms and briefly demonstrate their capabilities.

  1. Lower-mantle viscosity constrained by seismicity around deglaciated regions

    NASA Technical Reports Server (NTRS)

    Spada, G.; Sabadini, R.; Boschi, E.; Yuen, D. A.

    1991-01-01

    It is shown here that seismicity around the margins of deglaciated areas provides a constraint on the viscosity of the lower mantle. Calculations using a spherical, viscoelastic earth model show that the present-day magnitude of the stress fields induced in the lithosphere beneath the Laurentide and Fennoscandian ice sheets is very sensitive to the value of the lower-mantle viscosity. Stress of about 100 bar, sufficient to cause seismicity, can still remain in the lithosphere for lower-mantle viscosities greater than about 10 to the 22nd Pa-s; for lower-mantle viscosities of about 10 to the 21st Pa-s, only a few tens of bars of stress persist in the lithosphere today. This influence of lower-mantle viscosity on the state of stress in the lithosphere also has implications for the migration of stress from earthquakes, and hence for earthquake recurrence times.

  2. Electric-Field-Induced Alignment of Block Copolymer/Nanoparticle Blends

    SciTech Connect

    Liedel, Clemens; Schindler, Kerstin; Pavan, Mariela J.; Lewin, Christian; Pester, Christian W; Ruppel, Markus A; Urban, Volker S; Shenhar, Roy; Boker, Alexander

    2013-01-01

    External electric fi elds readily align birefringent block-copolymer mesophases. In this study the effect of gold nanoparticles on the electric-fi eld-induced alignment of a lamellae-forming polystyrene- block -poly(2-vinylpyridine) copolymer is assessed. Nanoparticles are homogeneously dispersed in the styrenic phase and promote the quantitative alignment of lamellar domains by substantially lowering the critical field strength above which alignment proceeds. The results suggest that the electric-fi eldassisted alignment of nanostructured block copolymer/nanoparticle composites may offer a simple way to greatly mitigate structural and orientational defects of such fi lms under benign experimental conditions.

  3. Predicted electric-field-induced hexatic structure in an ionomer membrane

    NASA Astrophysics Data System (ADS)

    Allahyarov, Elshad; Taylor, Philip L.

    2009-08-01

    Coarse-grained molecular-dynamics simulations were used to study the morphological changes induced in a Nafion®-like ionomer by the imposition of a strong electric field. We observe the formation of structures aligned along the direction of the applied field. The polar head groups of the ionomer sidechains aggregate into clusters, which then form rodlike formations which assemble into a hexatic array aligned with the direction of the field. Occasionally these lines of sulfonates and protons form a helical structure. Upon removal of the electric field, the hexatic array of rodlike structures persists and has a lower calculated free energy than the original isotropic morphology.

  4. A continuum framework for mechanics of fractal materials I: from fractional space to continuum with fractal metric

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2015-04-01

    This paper is devoted to the mechanics of fractally heterogeneous media. A model of fractal continuum with a fractional number of spatial degrees of freedom and a fractal metric is suggested. The Jacobian matrix of the fractal continuum deformation is defined and the kinematics of deformations is elucidated. The symmetry of the Cauchy stress tensor for continua with the fractal metric is established. A homogenization framework accounting for the connectivity, topological, and metric properties of fractal domains in heterogeneous materials is developed. The mapping of mechanical problems for fractal media into the corresponding problems for the fractal continuum is discussed. Stress and strain distributions in elastic fractal bars are analyzed. An approach to fractal bar optimization is proposed. Some features of acoustic wave propagation and localization in fractal media are briefly highlighted.

  5. Field-induced quantum critical point in the pressure-induced superconductor CeRhIn5

    SciTech Connect

    Bauer, Eric D; Park, Tuson; Tokiwa, Yoshifumi; Ronning, Filip; Lee, Han O; Movshovich, Roman; Thompson, Joe D

    2009-01-01

    When subjected to pressure, the prototypical heavy-fermion antiferromagnet CeRhIn{sub 5} becomes superconducting, forming a broad dome of superconductivity centered around 2.35 GPa (=P2) with maximal T{sub c} of 2.3 K. Above the superconducting dome, the normal state shows strange metallic behaviors, including a divergence in the specific heat and a sub-T-linear electrical resistivity. The discovery of a field-induced magnetic phase that coexists with superconductivity for a range of pressures P {le} P2 has been interpreted as evidence for a quantum phase transition, which could explain the non-Fenni liquid behavior observed in the normal state. Here we report electrical resistivity measurements of CeRhIn{sub 5} under magnetic field at P2, where the resistivity is sub-T-linear for fields less than H{sub c2}(0) and a T{sup 2}-coefficient A found above H{sub c2}(0) diverges as H{sub c2} is approached. These results are similar to the field-induced quantum critical compound Ce-CoIn{sub 5} and confirm the presence of a quantum critical point in the pressure-induced superconductor CeRhIn{sub 5}.

  6. Magnetic-field-induced quantum criticality in a spin-1 planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Mercaldo, Maria Teresa; Rabuffo, Ileana; Decesare, Luigi; Caramicod'Auria, Alvaro

    2014-03-01

    The effects of single-ion anisotropy on field-induced quantum criticality in spin-1 planar ferromagnet is explored by means of the two-time Green's function method. We work at the Tyablikov decoupling level for exchange interactions and the Anderson-Callen decoupling level for single-ion anisotropy. In our analysis a longitudinal external magnetic field is used as the non-thermal control parameter and the phase diagram and the quantum critical properties are established for suitable values of the single-ion anisotropy parameter. We find that the single-ion anisotropy has sensible effects on the structure of the phase diagram close to the quantum critical point. Indeed, for values of the uniaxial crystal-field parameter above a positive threshold a re-entrant behavior appears for the critical line, while above this value the conventional magnetic-field-induced quantum critical scenario remains unchanged. M. T. Mercaldo, I. Rabuffo, L. De Cesare, A. Caramico D'Auria, Eur. Phys. J. B 86, 340 (2013)

  7. Electric-field-induced paraelectric to ferroelectric phase transformation in prototypical polycrystalline BaTiO{sub 3}

    SciTech Connect

    Wang, Zhiyang; Hinterstein, Manuel; Daniels, John E.; Webber, Kyle G.; Hudspeth, Jessica M.

    2014-10-20

    An electric-field-induced paraelectric cubic to ferroelectric tetragonal phase transformation has been directly observed in prototypical polycrystalline BaTiO{sub 3} at temperatures above the Curie point (T{sub C}) using in situ high-energy synchrotron X-ray diffraction. The transformation persisted to a maximum temperature of 4 °C above T{sub C}. The nature of the observed field-induced transformation and the resulting development of domain texture within the induced phase were dependent on the proximity to the transition temperature, corresponding well to previous macroscopic measurements. The transition electric field increased with increasing temperature above T{sub C}, while the magnitude of the resultant tetragonal domain texture at the maximum electric field (4 kV mm{sup −1}) decreased at higher temperatures. These results provide insights into the phase transformation behavior of a prototypical ferroelectric and have important implications for the development of future large-strain phase-change actuator materials.

  8. Field Induced Phase Transition with Quadrupole Fluctuation in HoFe2Al10 with Orthorhombic Symmetry

    NASA Astrophysics Data System (ADS)

    Kamikawa, Shuhei; Ishii, Isao; Takezawa, Kohki; Sakami, Tatsuhiro; Nakagawa, Fumiya; Tanida, Hiroshi; Sera, Masafumi; Suzuki, Takashi

    2017-04-01

    To explore phase transitions in HoFe2Al10 with an orthorhombic structure, we performed ultrasonic measurements on transverse elastic moduli C55 and C66 under magnetic fields H. At zero magnetic field, C55 and C66 show an elastic softening down to 0.5 K without a clear anomaly, suggesting that no phase transition exists at zero magnetic field. However, in H along the a- and c-axes, the softening of C55 under 0.6 (0.4) T stops at TQ = 0.8 (0.75) K for H || a (c). Below TQ, C55 shows an elastic hardening. With further increasing H, we observed a remarkable softening of C55 toward TQ. C66 also shows a kink anomaly at TQ in H || a and c. From the results, we clarified the field induced phase transition for H || a and c in HoFe2Al10. The minimum point of C55 at TQ suggests that the field induced phase transition results from a quadrupolar ordering with the order parameter of quadrupole Ozx despite a singlet ground state under an orthorhombic crystal electric field in HoFe2Al10.

  9. Rapid evaluation of a protein-based voltage probe using a field-induced membrane potential change.

    PubMed

    Tsutsui, Hidekazu; Jinno, Yuka; Tomita, Akiko; Okamura, Yasushi

    2014-07-01

    The development of a high performance protein probe for the measurement of membrane potential will allow elucidation of spatiotemporal regulation of electrical signals within a network of excitable cells. Engineering such a probe requires a functional screen of many candidates. Although the glass-microelectrode technique generally provides an accurate measure of a given test probe, throughputs are limited. In this study, we focused on an approach that uses the membrane potential changes induced by an external electric field in a geometrically simple mammalian cell. For quantitative evaluation of membrane voltage probes that rely on the structural transition of the S1-S4 voltage sensor domain and hence have non-linear voltage dependencies, it was crucial to introduce exogenous inwardly rectifying potassium conductance to reduce cell-to-cell variability in resting membrane potentials. Importantly, the addition of the exogenous conductance drastically altered the profile of the field-induced potential. Following a site-directed random mutagenesis and the rapid screen, we identified a mutant of a voltage probe Mermaid, exhibiting positively shifted voltage sensitivity. Due to its simplicity, the current approach will be applicable under a microfluidic configuration to carry out an efficient screen. Additionally, we demonstrate another interesting aspect of the field-induced optical signals, ability to visualize electrical couplings between cells.

  10. Electric-field-induced AFE-FE transitions and associated strain/preferred orientation in antiferroelectric PLZST

    PubMed Central

    Lu, Teng; Studer, Andrew J.; Noren, Lasse; Hu, Wanbiao; Yu, Dehong; McBride, Bethany; Feng, Yujun; Withers, Ray L.; Chen, Hua; Xu, Zhuo; Liu, Yun

    2016-01-01

    Electric-field-induced, antiferroelectric-ferroelectric (AFE-FE) phase transitions are common for AFE materials. To date, the strain and preferred orientation evolution as well as the role of the intermediate FE state during the successive AFE-FE-AFE phase transitions has not been clear. To this end, we have herein studied a typical AFE Pb0.97La0.02(Zr0.56Sn0.33Ti0.11)O3 (PLZST) material using in-situ neutron diffraction. It is striking that the AFE-FE phase transition is not fully reversible: in the electric-field-induced FE state, the induced strain exhibits an elliptical distribution, which in turn leads to significant preferred orientation in the final AFE state after withdrawal of the applied electric-field. The ω-dependent neutron diffraction patterns show clear evidence of the induced strain distribution and associated preferred orientation arising from the AFE-FE phase transition. The current work also provides an explanation for several temperature and electric-field dependent dielectric anomalies as well as unrecovered strain change which appear in AFE materials after exposure to sufficiently high electric fields. PMID:27025685

  11. Extreme sensitivity of the electric-field-induced band gap to the electronic topological transition in sliding bilayer graphene

    NASA Astrophysics Data System (ADS)

    Lee, Kyu Won; Lee, Cheol Eui

    2015-12-01

    We have investigated the effect of electronic topological transition on the electric field-induced band gap in sliding bilayer graphene by using the density functional theory calculations. The electric field-induced band gap was found to be extremely sensitive to the electronic topological transition. At the electronic topological transition induced by layer sliding, four Dirac cones in the Bernal-stacked bilayer graphene reduces to two Dirac cones with equal or unequal Dirac energies depending on the sliding direction. While the critical electric field required for the band gap opening increases with increasing lateral shift for the two Dirac cones with unequal Dirac energies, the critical field is essentially zero with or without a lateral shift for the two Dirac cones with equal Dirac energies. The critical field is determined by the Dirac energy difference and the electronic screening effect. The electronic screening effect was also found to be enhanced with increasing lateral shift, apparently indicating that the massless helical and massive chiral fermions are responsible for the perfect and imperfect electronic screening, respectively.

  12. Field-induced wooden-tip electrospray ionization mass spectrometry for high-throughput analysis of herbal medicines.

    PubMed

    Yang, Yunyun; Deng, Jiewei; Yao, Zhong-Ping

    2015-08-05

    This study demonstrates the first application of field-induced wooden-tip electrospray ionization (ESI) mass spectrometry (MS) for high-throughput analysis of herbal medicines. By application of an opposite and sample-contactless high voltage on the MS inlet rather than wooden tips, a high-throughput analysis device is easily set up, and a relatively fast analysis speed of 6 s per sample was successfully achieved. In addition, fast polarity switching between positive and negative ion detection mode is readily accomplished, which provides more complete chemical information for quality assessment and control of herbal medicines. By using the proposed method, various active ingredients present in different herbal medicines were rapidly detected, and the obtained mass spectra were served as the samples' fingerprints for tracing the origins, establishing the authenticity, and assessing the quality consistency and stability of herbal medicines. Our experimental results demonstrated that field-induced wooden-tip ESI-MS is a desirable method for high-throughput analysis of herbal medicines, with promising prospects for rapidly differentiating the origin, determining the authenticity, and assessing the overall quality of pharmaceuticals.

  13. Searching for the Center on the Mathematics-Science Continuum.

    ERIC Educational Resources Information Center

    Roebuck, Kay I.; Warden, Melissa A.

    1998-01-01

    The history of mathematics and science integration in American schools is a continuum which runs from math for math's sake to science for science's sake. While examples of the integration of process skills are common, integration of content is not. Presents two lessons developed around radioactive decay and efficiency. Suggests that changes in…

  14. Stability and Thermal Influences in Continuum Mechanics and Materials Science

    DTIC Science & Technology

    2007-11-02

    that maximizes the energy dissipatation . Explicit relations for the initial kink angle and the subsequent direction of propagation are given. A continuum...framework is developed for recrystallization. The driving force is the energy stored in dislocation substructures, characterized with the aid of a

  15. Three Dimensional Hybrid Continuum-Atomistic Simulations for Multiscale Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Sanith; Hornung, Richard; Garcia, Alejandro; Hadjiconstantinou, Nicolas

    2002-11-01

    An adaptive mesh and algorithmic refinement (AMAR) scheme to model multi-scale, compressible continuum-atomistic hydrodynamics is presented. The AMAR technique applies the atomistic description as the finest level of refinement in regions where the continuum description is expected to fail, such as in regions of high flow gradients and discontinous material interfaces. In the current implementation the atomistic description is provided by the direct simulation Monte Carlo (DSMC). The continuum flow is modeled using the compressible flow Euler equations and is solved using a second order Godunov scheme. Coupling is achieved by conservation of fluxes across the continuum-atomistic grid boundaries. The AMAR data structures are supported by a C++ object oriented framework (Structured Adaptive Mesh Refinement Application Infrastructure - SAMRAI) which allows for efficient parallel implementation. Current work is focused on extending AMAR to simulations of gas mixtures. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract number W-7405-Eng-48.

  16. Mixed Feelings: Towards a Continuum of Inclusive Pedagogies

    ERIC Educational Resources Information Center

    Wilde, Alison; Avramidis, Elias

    2011-01-01

    This paper presents approaches to inclusion taken by primary teachers and discusses the institutional contexts in which these are located. Focusing on the development of enabling practices for the inclusion of children accredited with "special educational needs" (SEN), a continuum of approaches is identified, ranging from inclusive to…

  17. Evaluation as a Process: The Formative-Summative Continuum.

    ERIC Educational Resources Information Center

    Caudle, Sharon L.

    Rather than automatically presuming explicit conditions exist when designing an evaluation to fit the summative or formative mold, evaluators should think of an evaluation design as fitting between endpoints on an evaluation process continuum. Evaluators can blend techniques from both the formative and summative evaluation, matching actual program…

  18. 24 CFR 578.5 - Establishing the Continuum of Care.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... geographic area to carry out the duties of this part. Relevant organizations include nonprofit homeless..., universities, affordable housing developers, law enforcement, and organizations that serve veterans and homeless and formerly homeless individuals. (b) The board. The Continuum of Care must establish a board...

  19. 24 CFR 578.5 - Establishing the Continuum of Care.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... geographic area to carry out the duties of this part. Relevant organizations include nonprofit homeless..., universities, affordable housing developers, law enforcement, and organizations that serve veterans and homeless and formerly homeless individuals. (b) The board. The Continuum of Care must establish a board...

  20. Continuum estimates of rotational dielectric friction and polar solvation

    SciTech Connect

    Maroncelli, M.

    1997-01-01

    Dynamical solvation data recently obtained with the probe solute coumarin 153 are used to test the reliability of dielectric continuum models for estimating dielectric friction effects. In particular, the predictions of the Nee{endash}Zwanzig theory of rotational dielectric friction are examined in some detail. The analysis undertaken here uncovers an error made in virtually all previous applications of the Nee{endash}Zwanzig formalism. The error involves neglect of the solvent{close_quote}s electronic polarizability when calculating dielectric friction constants. In highly polar solvents the effect of this neglect is shown to be minor, so that the results of past studies should not be appreciably altered. However, in weakly polar and especially in nondipolar solvents, the proper inclusion of electronic polarizability terms is essential. The equivalence between the Nee{endash}Zwanzig theory of dielectric friction and more general continuum treatments of polar solvation dynamics is also demonstrated. This equivalence enables the use of solvation data to test the reliability of the Nee{endash}Zwanzig description of electrical interactions between a solute and solvent that form the core of this and related continuum theories of dielectric friction. Comparisons to experimental data show that, with the important exception of nondipolar solvents, such continuum treatments provide reasonably accurate ({plus_minus}40{percent}) predictors of time-dependent solvation and/or dielectric friction. {copyright} {ital 1997 American Institute of Physics.}

  1. Continuum approximations of individual-based models for epithelial monolayers.

    PubMed

    Fozard, J A; Byrne, H M; Jensen, O E; King, J R

    2010-03-01

    This work examines a 1D individual-based model (IBM) for a system of tightly adherent cells, such as an epithelial monolayer. Each cell occupies a bounded region, defined by the location of its endpoints, has both elastic and viscous mechanical properties and is subject to drag generated by adhesion to the substrate. Differential-algebraic equations governing the evolution of the system are obtained from energy considerations. This IBM is then approximated by continuum models (systems of partial differential equations) in the limit of a large number of cells, N, when the cell parameters vary slowly in space or are spatially periodic (and so may be heterogeneous, with substantial variation between adjacent cells). For spatially periodic cell properties with significant cell viscosity, the relationship between the mean cell pressure and length for the continuum model is found to be history dependent. Terms involving convective derivatives, not normally included in continuum tissue models, are identified. The specific problem of the expansion of an aggregate of cells through cell growth (but without division) is considered in detail, including the long-time and slow-growth-rate limits. When the parameters of neighbouring cells vary slowly in space, the O(1/N(2)) error in the continuum approximation enables this approach to be used even for modest values of N. In the spatially periodic case, the neglected terms are found to be O(1/N). The model is also used to examine the acceleration of a wound edge observed in wound-healing assays.

  2. Rape nitrogen nutrition diagnosis using continuum-removed hyperspectral reflectance

    NASA Astrophysics Data System (ADS)

    Zhang, Xuehong; Tian, Qingjiu

    2008-12-01

    The hyperspectral reflectance for rape fresh leaves and data of chlorophyll and total nitrogen content were acquired in primary growth stages under different nitrogen levels in order to monitor rape status and diagnose nitrogen using remote sensing method. A new method was developed for estimating the nitrogen nutrition of rape using continuum-removed method, which generally used in spectral analysis on rock and mineral. Based on the continuum-removed treatment and the correlation between absorption feature parameters and total nitrogen content of fresh leaves, results show that reflectance at the visible region decreased with increasing in the nitrogen fertilization, and continuum-removed operation can magnify the subtle difference in spectral absorption characteristics arose from the nitrogen stress on rape. During the seeding stage, bud-emerging stage and flowering stage of rape, total area of absorption peak, area left of the absorption peak and area right of the absorption peak in 550-750 nm region increased with increasing in the nitrogen fertilization, but it was opposite for the area-normalized maximal absorption depth. The correlation analysis indicated that it is at seeding stage that the relation between absorption characteristics parameters and leaf total nitrogen was best close. The research demonstrated that continuum-removed method is a feasible method for quantificational evaluation of rape nitrogen nutrition, and the seeding stage of rape is the best stage for assessment of rape nitrogen nutrition based on absorption characteristics of fresh leaves.

  3. Levels of Mental Health Continuum and Personality Traits

    ERIC Educational Resources Information Center

    Joshanloo, Mohsen; Nosratabadi, Masoud

    2009-01-01

    Empirically, mental health and mental illness are not opposite ends of a single measurement continuum. In view of this fact, Keyes ("J Health Soc Behav," 43:207-202, 2002) operationalizes mental health as a syndrome of symptoms of both positive feelings (emotional well-being) and positive functioning (psychological and social well-being)…

  4. Predicting Eating Disorder Continuum Groups: Hardiness and College Adjustment.

    ERIC Educational Resources Information Center

    Simon-Boyd, Gail D.; Bieschke, Kathleen J.

    This study examined relationships between hardiness, college adjustment (academic adjustment, social adjustment, personal-emotional adjustment, institutional attachment) and eating disorder (ED) continuum categories in 122 female and 20 male college students. Students who exhibited a higher level of personal-emotional adjustment (PEA) to college…

  5. 48 CFR 15.101 - Best value continuum.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Best value continuum. 15.101 Section 15.101 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION CONTRACTING METHODS AND CONTRACT TYPES CONTRACTING BY NEGOTIATION Source Selection Processes and Techniques...

  6. Modes of interconnected lattice trusses using continuum models, part 1

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A. V.

    1991-01-01

    This represents a continuing systematic attempt to explore the use of continuum models--in contrast to the Finite Element Models currently universally in use--to develop feedback control laws for stability enhancement of structures, particularly large structures, for deployment in space. We shall show that for the control objective, continuum models do offer unique advantages. It must be admitted of course that developing continuum models for arbitrary structures is no easy task. In this paper we take advantage of the special nature of current Large Space Structures--typified by the NASA-LaRC Evolutionary Model which will be our main concern--which consists of interconnected orthogonal lattice trusses each with identical bays. Using an equivalent one-dimensional Timoshenko beam model, we develop an almost complete continuum model for the evolutionary structure. We do this in stages, beginning only with the main bus as flexible and then going on to make all the appendages also flexible-except for the antenna structure. Based on these models we proceed to develop formulas for mode frequencies and shapes. These are shown to be the roots of the determinant of a matrix of small dimension compared with mode calculations using Finite Element Models, even though the matrix involves transcendental functions. The formulas allow us to study asymptotic properties of the modes and how they evolve as we increase the number of bodies which are treated as flexible. The asymptotics, in fact, become simpler.

  7. JCMT COADD: UKT14 continuum and photometry data reduction

    NASA Astrophysics Data System (ADS)

    Hughes, David; Oliveira, Firmin J.; Tilanus, Remo P. J.; Jenness, Tim

    2014-11-01

    COADD was used to reduce photometry and continuum data from the UKT14 instrument on the James Clerk Maxwell Telescope in the 1990s. The software can co-add multiple observations and perform sigma clipping and Kolmogorov-Smirnov statistical analysis. Additional information on the software is available in the JCMT Spring 1993 newsletter (large PDF).

  8. Hα Emission vs. Continuum Variability of MWC349A

    NASA Astrophysics Data System (ADS)

    Schwarz, Kamber R.; Strelnitski, V.; Walker, G.

    2011-01-01

    We report on a three-year CCD monitoring of MWC349A at the Maria Mitchell Observatory with narrowband and broadband filters. The use of three narrowband filters centered on Hα and adjacent continuum allowed us to separate, for the first time, the variability of this object’s Hα emission from that of the continuum. We detected a general anticorrelation of Hα emission with its nearby continuum and, tentatively, periodic variations of the Hα flux with a period of 223±7 days and a peak-to-peak amplitude of ≈6%. This period is close to the supposed period of 238±8 days for the variations of the peak ratio of the double-peak spectrum of the masing H30α line (Fuchs et al. 2010). More observations, both in the optical and radio domains, are needed to verify these new phenomena. We briefly discuss possible causes of the periodicity and the anticorrelation between the Hα emission and continuum. This project was supported by NSF/REU grant AST-0851892 and the Nantucket Maria Mitchell Association.

  9. Online Learning Interaction Continuum (OLIC): A Qualitative Case Study

    ERIC Educational Resources Information Center

    Hashim, Mohamad Hisyam Mohd.; Hashim, Yusup; Esa, Ahmad

    2011-01-01

    The purpose of this research project is to explore the use of Blackboard Learning System (BLS) in enhancing interaction in online teaching and learning enviornment. This paper discusses the conceptual framework of Online Learning Interaction Continuum (OLIC) which explains the five levels of interactions. The OLIC was conceptualized as a result of…

  10. Equation of State and Sound Velocities from Isotropic Continuum Mechanics.

    DTIC Science & Technology

    1986-10-01

    of state and the shear and longitudinal velocity to fifth order elastic constants. The resulting expressions are implicit in terms of the pressure...The methods of finite elasticity in continuum mechanics of homogeneous isotropic materials are used to obtain the pressure dependence of the equation

  11. The Eating Disorders Continuum, Self-Esteem, and Perfectionism

    ERIC Educational Resources Information Center

    Peck, Lisa D.; Lightsey, Owen Richard

    2008-01-01

    Among 261 undergraduate women, increased severity of eating disorders along a continuum was associated with decreased self-esteem, increased perfectionism, and increased scores on 7 subscales of the Eating Disorders Inventory-2. Women with eating disorders differed from both symptomatic women and asymptomatic women on all variables, whereas…

  12. Assessing continuum postulates in simulations of granular flow

    SciTech Connect

    Rycroft, Chris; Kamrin, Ken; Bazant, Martin

    2008-08-26

    Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.

  13. Continuum channel coupling of shape resonances in N2

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Kakar, Sandeep; Rosenberg, R. A.

    1992-02-01

    We have measured vibrational branching ratios for 2σ-1u photoionization of N2 in an effort to elucidate fundamental aspects of continuum channel coupling. Calculations have shown that photoejection of a 2σu electron from N2 should be influenced by a shape resonance in the 3σg →ɛσu photoionization channel and that this continuum channel coupling can result in deviations from Franck-Condon behavior for the resulting N+2(B 2Σ+u) ion. In the present study, the N2 molecules are ionized by monochromatic synchrotron radiation (25continuum coupling between the 2σ-1u and 3σ-1g ionization channels. However, our results exhibit significant discrepancies with theory. The areas of agreement and disagreement suggest useful avenues of further study to clarify the nature of continuum channel coupling in molecular photoionization.

  14. The energetics of stochastic continuum equations for fluid systems

    NASA Astrophysics Data System (ADS)

    Fleming, Rex J.

    1991-05-01

    The numerical solution of the relevant prognostic equations for fluid systems involves sources of uncertainty in the initial conditions and uncertainty in the external forces applied to a physical system. The purpose of the note is to introduce stochastic continuum equations for fluid systems that express the uncertainty dynamically. These equations, written in analytical form, describe continuous field quantities which dynamically predict the future and its believability. Beginning with the Navier-Stokes equations and expressing uncertainty as continuous field quantities, one avoids the serious shortcomings and computational redundancy of previous methods using discrete amplitudes (gridpoints or orthogonal functions). No assumptions are made concerning the original deterministic equations, which predict the evolution of a single point in phase space. Rather, these are a subset of the stochastic continuum equations, which predict an infinite cloud of points in phase space. The amount of detailed structure in the shape of the cloud depends upon the degree of derivative closure used in the continuum equations. The solution of the stochastic continuum equations offers a tremendous computational improvement over previous fully stochastic dynamic methods. The equations are perfectly suited to the new emerging parallel computer architecture.

  15. Scaffolding the Inquiry Continuum and the Constitution of Identity

    ERIC Educational Resources Information Center

    Melville, Wayne; Bartley, Anthony; Fazio, Xavier

    2013-01-01

    This article considers the impact of scaffolding on pre-service science teachers' constitution of identities as teachers of inquiry. This scaffolding has consisted of 2 major components, a unit on current electricity which encompasses the inquiry continuum and an open inquiry which is situated in context of classroom practice. Our analysis…

  16. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  17. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.115... 34 Education 2 2012-07-01 2012-07-01 false Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  18. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  19. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.115... 34 Education 2 2013-07-01 2013-07-01 false Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  20. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.115... placements is available to meet the needs of children with disabilities for special education and related... 34 Education 2 2010-07-01 2010-07-01 false Continuum of alternative placements. 300.115...

  1. Continuum of Medical Education in Obstetrics and Gynecology.

    ERIC Educational Resources Information Center

    Dohner, Charles W.; Hunter, Charles A., Jr.

    1980-01-01

    Over the past eight years the obstetric and gynecology specialty has applied a system model of instructional planning to the continuum of medical education. The systems model of needs identification, preassessment, instructional objectives, instructional materials, learning experiences; and evaluation techniques directly related to objectives was…

  2. THE SOLAR X-RAY CONTINUUM MEASURED BY RESIK

    SciTech Connect

    Phillips, K. J. H.; Sylwester, J.; Sylwester, B.; Kuznetsov, V. D. E-mail: js@cbk.pan.wroc.p E-mail: kvd@izmiran.r

    2010-03-01

    The solar X-ray continuum emission at five wavelengths between 3.495 A and 4.220 A for 19 flares in a 7-month period in 2002-2003 was observed by the RESIK (REntgenovsky Spektrometr s Izognutymi Kristalami) crystal spectrometer on CORONAS-F. In this wavelength region, free-free and free-bound emissions have comparable fluxes. With a pulse-height analyzer having settings close to optimal, the fluorescence background was removed so that RESIK measured true solar continuum in these bands with an uncertainty in the absolute calibration of +-20%. With an isothermal assumption, and temperature and emission measure derived from the ratio of the two GOES channels, the observed continuum emission normalized to an emission measure of 10{sup 48} cm{sup -3} was compared with theoretical continua using the CHIANTI atomic code. The accuracy of the RESIK measurements allows photospheric and coronal abundance sets, important for the free-bound continuum, to be discriminated. It is found that there is agreement to about 25% of the measured continua with those calculated from CHIANTI assuming coronal abundances in which Mg, Si, and Fe abundances are four times photospheric.

  3. Space shuttle Ram glow: Implication of NO2 recombination continuum

    NASA Astrophysics Data System (ADS)

    Swenson, G. R.; Mende, S. B.; Clifton, S.

    1985-09-01

    The ram glow data gathered to data from imaging experiments on space shuttle suggest the glow is a continuum (within 34 angstrom resolution); the continuum shape is such that the peak is near 7000 angstroms decreasing to the blue and red, and the average molecular travel leading to emission after leaving the surface is 20 cm (assuming isotropic scattering from the surface). Emission continuum is rare in molecular systems but the measured spectrum does resemble the laboratory spectrum of NO2 (B) recombination continuum. The thickness of the observed emission is consistent with the NO2 hypothesis given an exit velocity of approx. 2.5 km/sec (1.3 eV) which leaves approx. 3.7 eV of ramming OI energy available for unbonding the recombined NO2 from the surface. The NO2 is formed in a 3-body recombination of OI + NO + m = NO2 + m where OI originates from the atmosphere and NO is chemically formed on the surface from atmospheric NI and OI. The spacecraft surface then acts as the n for the reaction: Evidence exists from orbital mass spectrometer data that the NO and NO2 chemistry described in this process does occur on surfaces of spectrometer orifices in orbit. Surface temperature effects are likely a factor in the NO sticking efficiency and, therefore, glow intensities.

  4. Haro 11: Where is the Lyman Continuum Source?

    NASA Astrophysics Data System (ADS)

    Keenan, Ryan P.; Oey, M. S.; Jaskot, Anne; James, Bethan

    2017-01-01

    Haro 11 is the best known source of Lyman continuum (LyC) emission in the local universe and is thought to be an analog of the early galaxies that drove cosmic reionization. The source of LyC emission within Haro 11 has not yet been identified, since the LyC detection is unresolved. To map the optically thin regions in this galaxy, we apply our technique of ionization parameter mapping, which uses continuum-subtracted, HST WFC3 and ACS narrowband images of [O III] and [O II] emission to construct ratio maps. These allow us to identify regions of the galaxy that are likely to be optically thin. Due to the importance of continuum subtraction for this technique, we also develop a new method for scaling the continuum images based on the mode of the pixel distribution. We find that a region extending from Haro 11 Knot A appears to be optically thin. Other regions of the galaxy have also been suggested as potential LyC sources, based on the presence of a ULX (Knot B) and Ly-alpha emission (Knot C). Our work now adds Knot A as a third candidate LyC source in this complex merger system. (This work was supported by NASA grant HST-GO-13702)

  5. Radio-continuum observations of Sersic-Pastoriza galaxies

    NASA Astrophysics Data System (ADS)

    Yates, G. J.; Saikia, D. J.; Pedlar, A.; Axon, D. J.

    1989-07-01

    Preliminary results of radio continuum observations of selected Sersic-Pastoriza galaxies are presented. Subjects reported are their radio properties at 6 and 20 cm, estimates of linear polarization and spectral indices and a discussion of possible relationships between nuclear morphology and radio luminosity.

  6. Isospin Mixing and the Continuum Coupling in Weakly Bound Nuclei

    SciTech Connect

    Michel, N.; Nazarewicz, Witold; Ploszajczak, M.

    2010-01-01

    We investigate the near-threshold behavior of one-nucleon spectroscopic factors in mirror nuclei using the Gamow Shell Model, which simultaneously takes into account many-body correlations and continuum effects. We demonstrate that for weakly bound or unbound systems, the mirror symmetry-breaking effects are appreciable, and they manifest in large differences of spectroscopic factors in a mirror pair.

  7. External magnetic field-induced selective biodistribution of magnetoliposomes in mice

    PubMed Central

    2012-01-01

    This study looked at the effect of an external magnet on the biodistribution of magnetoliposomes intravenously administrated in mice (8 mg iron/kg) with and without induced acute inflammation. Our results showed that due to enhanced vascular permeability, magnetoliposomes accumulated at the site of inflammation in the absence of an external magnetic field, but the amount of iron present increased under the effect of a magnet located at the inflammation zone. This increase was dependent on the time (20 or 60 min) of exposure of the external magnetic field. It was also observed that the presence of the magnet was associated with lower amounts of iron in the liver, spleen, and plasma than was found in mice in which a magnet had not been applied. The results of this study confirm that it is possible to target drugs encapsulated in magnetic particles by means of an external magnet. PMID:22883385

  8. Temperature and Field Induced Strain Measurements in Single Crystal Gd5Si2Ge2

    NASA Astrophysics Data System (ADS)

    McCall, S. K.; Nersessian, N.; Carman, G. P.; Pecharsky, V. K.; Schlagel, D. L.; Radousky, H. B.

    2016-06-01

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of -8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of -8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.

  9. Field-induced reentrant superconductivity in thin films of nodal superconductors

    NASA Astrophysics Data System (ADS)

    Hachiya, M.; Aoyama, K.; Ikeda, R.

    2013-08-01

    Previous work on nodal d-wave superconductors has shown that a Fulde-Ferrell-Larkin-Ovchinnikov- (FFLO-) like superconducting (SC) state, which is modulated along the film plane, can be realized with no magnetic field when quasiparticles acquire an additional linear term in the wave vector in their dispersion. In the present work, the stability of such a modulated SC state in an artificial film against an applied magnetic field is studied. As a reflection of the presence of two FFLO-like states of different origins, one close to zero field and the other at the high-field end, in a single field vs temperature phase diagram of thin films, the conventional SC state, which is uniform along the film plane, generally tends to appear as a reentrant ordered phase bounded by the normal phase in lower fields.

  10. Zinc supplementation ameliorates electromagnetic field-induced lipid peroxidation in the rat brain.

    PubMed

    Bediz, Cem Seref; Baltaci, Abdulkerim Kasim; Mogulkoc, Rasim; Oztekin, Esma

    2006-02-01

    Extremely low-frequency (0-300 Hz) electromagnetic fields (EMFs) generated by power lines, wiring and home appliances are ubiquitous in our environment. All populations are now exposed to EMF, and exposure to EMF may pose health risks. Some of the adverse health effects of EMF exposure are lipid peroxidation and cell damage in various tissues. This study has investigated the effects of EMF exposure and zinc administration on lipid peroxidation in the rat brain. Twenty-four male Sprague-Dawley rats were randomly allocated to three groups; they were maintained untreated for 6 months (control, n = 8), exposed to low-frequency (50 Hz) EMF for 5 minutes every other day for 6 months (n = 8), or exposed to EMF and received zinc sulfate daily (3 mg/kg/day) intraperitoneally (n = 8). We measured plasma levels of zinc and thiobarbituric acid reactive substances (TBARS), and levels of reduced glutathione (GSH) in erythrocytes. TBARS and GSH levels were also determined in the brain tissues. TBARS levels in the plasma and brain tissues were higher in EMF-exposed rats with or without zinc supplementation, than those in controls (p < 0.001). In addition, TBARS levels were significantly lower in the zinc-supplemented rats than those in the EMF-exposed rats (p < 0.001). GSH levels were significantly decreased in the brain and erythrocytes of the EMF-exposed rats (p < 0.01), and were highest in the zinc-supplemented rats (p < 0.001). Plasma zinc was significantly lower in the EMF-exposed rats than those in controls (p < 0.001), while it was highest in the zinc-supplemented rats (p < 0.001). The present study suggests that long-term exposure to low-frequency EMF increases lipid peroxidation in the brain, which may be ameliorated by zinc supplementation.

  11. Thermal and magnetic field-induced martensitic transformation in Ni50Mn25-x Ga25Cu x (0  ⩽  x  ⩽  7) melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Li, Zongbin; Zou, Naifu; Sánchez-Valdés, C. F.; Sánchez Llamazares, J. L.; Yang, Bo; Hu, Yong; Zhang, Yudong; Esling, Claude; Zhao, Xiang; Zuo, Liang

    2016-01-01

    We have studied the phase transformation behavior of \\text{N}{{\\text{i}}50}\\text{M}{{\\text{n}}25}-x\\text{G}{{\\text{a}}25}\\text{C}{{\\text{u}}x} melt-spun ribbons with x  =  0, 1, 2, …, 7 (at%). It is shown that Cu substitution simultaneously increases and decreases the martensitic transformation temperature T M and the magnetic transition temperature of austenite T\\text{C}\\text{A} , respectively. In Ni50Mn18Ga25Cu7 ribbons, the magnetic and structural transformations are coupled. The field-induced martensitic transformation from a paramagnetic austenite with lower magnetization to a ferromagnetic martensite with higher magnetization has been studied. The critical field μ o H cr above which the magnetic field can induce the martensitic transition is well defined and decreases linearly with the decrease of the temperature at a reduction rate of 1 T K-1. Under a magnetic field of 5 T, the starting temperature of martensitic transformation (M s) increases by ~9 K. Such a magnetic field-induced transformation is irreversible and temperature dependent, giving rise to the maximum magnetic entropy change of 17.8 J kg-1 K-1 and hysteresis losses of 43.6 J kg-1 under the magnetic field change of 5 T, respectively.

  12. Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches

    NASA Astrophysics Data System (ADS)

    Mahdavi, Arash

    nanotubes and carbon nanocones subject to different loadings and boundary conditions. This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures. We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from

  13. The High-energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.; VonMintigny, C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approx. = 1.7-1.8 and column density N(sub H) approx. = 5 x 10(exp 21)/ sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approx. 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with Energetic Gamma Ray Experiment Telescope (EGRET). The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approx. = 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approx. 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  14. The High-Energy Continuum Emission of the Gamma-Ray Blazar PKS 0528+134

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita M.; Urry, C. Megan; Maraschi, L.; Ghisellini, G.; Mukherjee, R.; Pesce, Joseph E.; Wagner, S. J.; Wehrle, A. E.; Hartman, R. C.; Lin, Y. C.

    1997-01-01

    We present Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of the gamma-ray blazar PKS 0528 + 134, obtained at two separate epochs in 1994 August and 1995 March. These data represent the first measurement of the X-ray continuum emission of this source in the medium-hard X-ray band. Both ASCA spectra are consistent with a single power law with photon index GAMMA approximate 1.7-1.8 and column density N(sub H) approximately 5 x 10(exp 21) /sq cm, higher than Galactic. The X-ray flux increased by a factor of 4 in approximately 7 months without appreciable change of the spectral shape. During the lower state of 1994 August, PKS 0528 + 134 was observed simultaneously in the optical, X-rays, and at gamma-ray energies with EGRET. The gamma-ray intensity is the faintest detected thus far in the source, with a steep spectrum (GAMMA approximately 2.7). The extrapolation of the X-ray continuum to the gamma-ray range requires a sharp spectral break at approximately 10(exp 22) Hz. We discuss the radio through gamma-ray spectral energy distribution of PKS 0528 + 134, comparing the low state of 1994 August with the flare state of 1993 March. We show that in PKS 0528 + 134, a non-negligible contribution from the external radiation field is present and that, although synchrotron self-Compton scenarios cannot be ruled out, inverse Compton upscattering of thermal seed photons may be the dominant cooling process for the production of the high-energy continuum in this blazar.

  15. Temperature and field induced strain measurements in single crystal Gd5Si2Ge2

    DOE PAGES

    McCall, S. K.; Nersessian, N.; Carman, G. P.; ...

    2016-03-29

    The first-order magneto-structural transformation that occurs in Gd5Si2Ge2 near room temperature makes it a strong candidate for many energy harvesting applications. Understanding the single crystal properties is crucial for allowing simulations of device performance. In this study, magnetically and thermally induced transformation strains were measured in a single crystal of Gd5Si2.05Ge1.95 as it transforms from a high-temperature monoclinic paramagnet to a lower-temperature orthorhombic ferromagnet. Thermally induced transformation strains of –8500 ppm, +960 ppm and +1800 ppm, and magnetically induced transformation strains of –8500 ppm, +900 ppm and +2300 ppm were measured along the a, b and c axes, respectively. Furthermore,more » using experimental data coupled with general thermodynamic considerations, a universal phase diagram was constructed showing the transition from the monoclinic to the orthorhombic phase as a function of temperature and magnetic field.« less

  16. Electric field induced rotation of polymer cholesteric liquid crystal flakes: mechanisms and applications

    NASA Astrophysics Data System (ADS)

    Kosc, Tanya Z.; Marshall, Kenneth L.; Jacobs, Stephen D.; Lambropoulos, John C.

    2002-12-01

    Electric fields can induce motion of polymer cholesteric liquid crystal (pCLC) flakes suspended in a fluid medium. The platelet-shaped pCLC flakes with a Grandjean texture show strong selective reflection when lying flat in the plane of a conventional cell. As their orientation with respect to normally incident light changes, their selective reflection color shifts toward the blue and diminishes until the flakes are no longer easily visible beyond 7-12° of rotation. Reproducibility and control of motion has been observed in moderately conductive host fluid. Flakes in such hosts do not respond to a DC electric field, but they rotate 90° in an AC field within a given frequency band. The response times and frequency regions for motion depend partially on the field magnitude, the dielectric properties of the host fluid and the flake geometry. We observe flakes reorienting in less than 500 ms in an electric field of 0.17 Vrms/μm, while sub-second reorientation is seen in fields as low as 5x10-2 Vrms/μm. This response time is comparable with typical electronic-paper applications, but with a significantly lower electric field. Displays using pCLC flakes would not require backlighting, sheet polarizers, color filters or alignment layers. Numerous additional applications for pCLC flakes are envisioned, including filters, polarizers, and spatial light modulators.

  17. Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics.

    PubMed

    Jia, Chenglong; Wang, Fenglong; Jiang, Changjun; Berakdar, Jamal; Xue, Desheng

    2015-06-09

    Steering magnetism by electric fields upon interfacing ferromagnetic (FM) and ferroelectric (FE) materials to achieve an emergent multiferroic response bears a great potential for nano-scale devices with novel functionalities. FM/FE heterostructures allow, for instance, the electrical manipulation of magnetic anisotropy via interfacial magnetoelectric (ME) couplings. A charge-mediated ME effect is believed to be generally weak and active in only a few angstroms. Here we present an experimental evidence uncovering a new magnon-driven, strong ME effect acting on the nanometer range. For Co92Zr8 (20 nm) film deposited on ferroelectric PMN-PT we show via ferromagnetic resonance (FMR) that this type of linear ME allows for electrical control of simultaneously the magnetization precession and its damping, both of which are key elements for magnetic switching and spintronics. The experiments unravel further an electric-field-induced negative magnetic permeability effect.

  18. Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics

    NASA Astrophysics Data System (ADS)

    Jia, Chenglong; Wang, Fenglong; Jiang, Changjun; Berakdar, Jamal; Xue, Desheng

    2015-06-01

    Steering magnetism by electric fields upon interfacing ferromagnetic (FM) and ferroelectric (FE) materials to achieve an emergent multiferroic response bears a great potential for nano-scale devices with novel functionalities. FM/FE heterostructures allow, for instance, the electrical manipulation of magnetic anisotropy via interfacial magnetoelectric (ME) couplings. A charge-mediated ME effect is believed to be generally weak and active in only a few angstroms. Here we present an experimental evidence uncovering a new magnon-driven, strong ME effect acting on the nanometer range. For Co92Zr8 (20 nm) film deposited on ferroelectric PMN-PT we show via ferromagnetic resonance (FMR) that this type of linear ME allows for electrical control of simultaneously the magnetization precession and its damping, both of which are key elements for magnetic switching and spintronics. The experiments unravel further an electric-field-induced negative magnetic permeability effect.

  19. Field induced phase transitions and energy harvesting performance of (Pb,La)(Zr,Sn,Ti)O3 single crystal

    NASA Astrophysics Data System (ADS)

    Zhuo, Fangping; Li, Qiang; Li, Yuanyuan; Gao, Jinghan; Yan, Qingfeng; Zhang, Yiling; Xi, Xiaoqing; Chu, Xiangcheng; Cao, Wenwu

    2017-02-01

    (Pb,La)(Zr,Sn,Ti)O3 (PLZST) single crystals with composition close to the morphotropic phase boundary had been grown by the flux method. The antiferroelectric-ferroelectric phase switching electric field was 0.8 kV/mm. Temperature-dependent dielectric and polarization versus electric field hysteresis loops revealed that the electric field induced ferroelectric phase could transform back into the antiferroelectric phase at depolarization temperature (145 °C). An enhanced pyroelectric coefficient value of 1.46 μC/cm2/K was obtained at 145 °C, which is several times larger than that of conventional pyroelectric materials. Furthermore, multiple peak pyroelectric responses and an enhanced harvested energy density value of 0.4 J/cm3 were achieved in the PLZST crystal. The enhanced harvested energy density and multiple peak pyroelectric responses make the PLZST crystal a promising candidate for high sensitive temperature sensors and energy conversion technologies.

  20. Electric tuning of magnetization dynamics and electric field-induced negative magnetic permeability in nanoscale composite multiferroics

    PubMed Central

    Jia, Chenglong; Wang, Fenglong; Jiang, Changjun; Berakdar, Jamal; Xue, Desheng

    2015-01-01

    Steering magnetism by electric fields upon interfacing ferromagnetic (FM) and ferroelectric (FE) materials to achieve an emergent multiferroic response bears a great potential for nano-scale devices with novel functionalities. FM/FE heterostructures allow, for instance, the electrical manipulation of magnetic anisotropy via interfacial magnetoelectric (ME) couplings. A charge-mediated ME effect is believed to be generally weak and active in only a few angstroms. Here we present an experimental evidence uncovering a new magnon-driven, strong ME effect acting on the nanometer range. For Co92Zr8 (20 nm) film deposited on ferroelectric PMN-PT we show via ferromagnetic resonance (FMR) that this type of linear ME allows for electrical control of simultaneously the magnetization precession and its damping, both of which are key elements for magnetic switching and spintronics. The experiments unravel further an electric-field-induced negative magnetic permeability effect. PMID:26058060

  1. Magnetic-field-induced quantum criticality in a spin- S planar ferromagnet with single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Mercaldo, M. T.; Rabuffo, I.; De Cesare, L.; Caramico D'Auria, A.

    2013-08-01

    The effects of single-ion anisotropy on quantum criticality in a d-dimensional spin- S planar ferromagnet is explored by means of the two-time Green's function method. We work at the Tyablikov decoupling level for exchange interactions and the Anderson-Callen decoupling level for single-ion anisotropy. In our analysis a longitudinal external magnetic field is used as the non-thermal control parameter and the phase diagram and the quantum critical properties are established for suitable values of the single-ion anisotropy parameter D. We find that the single-ion anisotropy has sensible effects on the structure of the phase diagram close to the quantum critical point. However, for values of the uniaxial crystal-field parameter below a positive threshold, the conventional magnetic-field-induced quantum critical scenario remains unchanged.

  2. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Lv, Q. Z.; Sheng, Z. M.; Grobe, R.; Su, Q.

    2013-04-01

    We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron between both field locations becomes comparable to the period of the oscillating fields, we observe peaks in the energy spectrum which can be explained in terms of field-induced transient bound states.

  3. Electric-field-induced changes in absorption and fluorescence of the green fluorescent protein chromophore in a PMMA film.

    PubMed

    Nakabayashi, Takakazu; Hino, Kazuyuki; Ohta, Yuka; Ito, Sayuri; Nakano, Hirofumi; Ohta, Nobuhiro

    2011-07-07

    External electric field effects on absorption, fluorescence, and fluorescence decay of p-HBDI that is a model compound of the chromophore of GFP have been examined in a poly(methyl methacrylate) film. The electroabsorption spectrum is similar in shape to the first derivative of the absorption spectrum, which results from the difference in molecular polarizability between the ground state and the Franck-Condon excited state. The electrophotoluminescence spectrum is dominated by the corresponding fluorescence spectrum, indicating the enhancement of the fluorescence intensity in the presence of external electric fields. The direct measurements of the electric field effect on the fluorescence decay profile suggest that the field-induced deceleration of the nonradiative process contributes to the increase in the fluorescence intensity in the presence of electric fields.

  4. Tunable fringe magnetic fields induced by converse magnetoelectric coupling in a FeGa/PMN-PT multiferroic heterostructure

    NASA Astrophysics Data System (ADS)

    Fitchorov, Trifon; Chen, Yajie; Hu, Bolin; Gillette, Scott M.; Geiler, Anton; Vittoria, Carmine; Harris, Vincent G.

    2011-12-01

    The fringe magnetic field, induced by magnetoelectric coupling in a bilayer Fe-Ga/Pb(Mg1/3Nb2/3)O3_PbTiO3 (PMN-PT) multifunctional composite, was investigated. The induced external field is characterized as having a butterfly hysteresis loop when tuned by an applied electric field. A tuning coefficient of the electrically induced fringe magnetic field is derived from the piezoelectric and magnetostrictive properties of the composite. A measured maximum tuning coefficient, 4.5 Oe/(kV cm-1), is found to agree well with theoretical prediction. This work establishes a foundation in the design of transducers based on the magnetoelectric effect.

  5. Electric-field induced quantum broadening of the characteristic energy level of traps in semiconductors and oxides

    NASA Astrophysics Data System (ADS)

    Mohammed, Mazharuddin; Verhulst, Anne S.; Verreck, Devin; Van de Put, Maarten; Simoen, Eddy; Sorée, Bart; Kaczer, Ben; Degraeve, Robin; Mocuta, Anda; Collaert, Nadine; Thean, Aaron; Groeseneken, Guido

    2016-12-01

    The trap-assisted tunneling (TAT) current in tunnel field-effect transistors (TFETs) is one of the crucial factors degrading the sub-60 mV/dec sub-threshold swing. To correctly predict the TAT currents, an accurate description of the trap is required. Since electric fields in TFETs typically reach beyond 106 V/cm, there is a need to quantify the impact of such high field on the traps. We use a quantum mechanical implementation based on the modified transfer matrix method to obtain the trap energy level. We present the qualitative impact of electric field on different trap configurations, locations, and host materials, including both semiconductors and oxides. We determine that there is an electric-field related trap level shift and level broadening. We find that these electric-field induced quantum effects can enhance the trap emission rates.

  6. A study of electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells

    NASA Astrophysics Data System (ADS)

    Zhai, Wangjian

    2014-12-01

    Electric-field-induced second-harmonic generation in asymmetrical Gaussian potential quantum wells is investigated using the effective mass approximation employing the compact density matrix method and the iterative approach. Our results show that the absolute value, the real part and the imaginary part of second-harmonic generation are greatly affected by the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field. The relationship between the absolute value and the imaginary part of second-harmonic generation together with the relationship between the absolute value and the real part of second-harmonic generation is studied. It is found that no matter how the height of the Gaussian potential quantum wells, the range of the Gaussian confinement potential and the applied electric field vary, the resonant peaks of the absolute value of second-harmonic generation do not originate from the imaginary part but from the real part.

  7. Model of third harmonic generation and electric field induced optical second harmonic using simplified bond-hyperpolarizability model

    NASA Astrophysics Data System (ADS)

    Alejo-Molina, Adalberto; Hingerl, Kurt; Hardhienata, Hendradi

    2015-04-01

    We report for the first time a comprehensive study of the fourth rank tensor describing third harmonic generation (THG) and electric field induced second harmonic (EFISH) in centrosymmetric material from two different viewpoints: Group Theory (GT) and the Simplified Bond Hyperpolarizability Model (SBHM). We show that the fourth rank tensor related to THG and direct current (DC) EFISH can be reduced to two independent elements whereas SBHM always gives only one, reproducing perfectly well EFISH experimental results in Metal Oxyde Semiconductor (MOS). We argue that it is possible to reduce the fourth rank tensor describing EFISH to a third rank tensor and further deliver a classical explanation of EFISH regarding symmetry breaking where the term containing $r^3$ in the potential immediately leads to second harmonic generation (SHG).

  8. Third-order electric-field-induced dipolar resonances from patterned barium-strontium-titanate thin-films

    NASA Astrophysics Data System (ADS)

    Toonen, Ryan C.; Cole, M. W.

    2012-05-01

    Using microwave reflection spectroscopy, the complex permittivities of etch defined, 240 nm thick, (Ba0.6Sr0.4)TiO3, thin films have been measured over the frequency range of (1 to 4) GHz. Anomalous electric-field-induced electro-acoustic resonances were observed and characterized as a function of extrinsic electric field magnitude, ambient temperature, and sample diameter. The real and imaginary parts of the measured permittivities were fit to frequency-dependent functions derived from the Lorentz oscillator model. From these functions, extracted static dielectric constants were found to display excellent agreement with a closed-form expression derived by calculating third-order nonlinear susceptibility from the Landau-Devonshire-Ginzberg model.

  9. Pressure field induced in the water column by acoustic-gravity waves generated from sea bottom motion

    NASA Astrophysics Data System (ADS)

    C. A. Oliveira, Tiago; Kadri, Usama

    2016-10-01

    An uplift of the ocean bottom caused by a submarine earthquake can trigger acoustic-gravity waves that travel at near the speed of sound in water and thus may act as early tsunami precursors. We study the spatiotemporal evolution of the pressure field induced by acoustic-gravity modes during submarine earthquakes, analytically. We show that these modes may all induce comparable temporal variations in pressure at different water depths in regions far from the epicenter, though the pressure field depends on the presence of a leading acoustic-gravity wave mode. Practically, this can assist in the implementation of an early tsunami detection system by identifying the pressure and frequency ranges of measurement equipment and appropriate installation locations.

  10. Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4

    PubMed Central

    Nakamura, Fumihiko; Sakaki, Mariko; Yamanaka, Yuya; Tamaru, Sho; Suzuki, Takashi; Maeno, Yoshiteru

    2013-01-01

    Recently, “application of electric field (E-field)” has received considerable attention as a new method to induce novel quantum phenomena since application of E-field can tune the electronic states directly with obvious scientific and industrial advantages over other turning methods. However, E-field-induced Mott transitions are rare and typically require high E-field and low temperature. Here we report that the multiband Mott insulator Ca2RuO4 shows unique insulator-metal switching induced by applying a dry-battery level voltage at room temperature. The threshold field Eth ~40 V/cm is much weaker than the Mott gap energy. Moreover, the switching is accompanied by a bulk structural transition. Perhaps the most peculiar of the present findings is that the induced metal can be maintained to low temperature by a weak current. PMID:23985626

  11. Magnetic field-induced changes of lattice parameters and thermal expansion behavior of the CoMnSi compound

    SciTech Connect

    Kou, R. H.; Gao, J.; Wang, G.; Liu, Y. D.; Wang, Y. D.; Ren, Y.; Brown, D. E.

    2016-02-01

    The crystal structure of the CoMnSi compound during zero-field cooling and field cooling from room temperature down to 200 K was studied using the synchrotron radiation X-ray diffraction technique. The results show that the lattice parameters and thermal expansion behavior of the sample are changed by the applied magnetic fields. The lattice contracts along the a axis, but expands along the b and c axes. Due to enlarged and anisotropic changes under a magnetic field of 6 T, the lattice shows an invar-like behavior along all three axes. Critical interatomic distances and bond angles also show large changes under the influence of such a high magnetic field. These magnetic field-induced changes of the lattice are discussed with respect to their contributions to the large magnetocaloric effect of the CoMnSi compound.

  12. Nuclear spin-lattice relaxation at field-induced level crossings in a Cr8F8 pivalate single crystal

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shoji

    2016-01-01

    We construct a microscopic theory for the proton spin-lattice relaxation-rate 1 / T1 measurements around field-induced level crossings in a single crystal of the trivalent chromium ion wheel complex [Cr8F8(OOCtBu)16] at sufficiently low temperatures [E. Micotti et al., Phys. Rev. B 72 (2005) 020405(R)]. Exactly diagonalizing a well-equipped spin Hamiltonian for the individual clusters and giving further consideration to their possible interactions, we reveal the mechanism of 1 / T1 being single-peaked normally at the first level crossing but double-peaked intriguingly around the second level crossing. We wipe out the doubt about poor crystallization and find out a solution-intramolecular alternating Dzyaloshinsky-Moriya interaction combined with intermolecular coupling of antiferromagnetic character, each of which is so weak as several tens of mK in magnitude.

  13. Chiral mononuclear lanthanide complexes and the field-induced single-ion magnet behaviour of a Dy analogue.

    PubMed

    Lin, Shuang-Yan; Wang, Chao; Zhao, Lang; Wu, Jianfeng; Tang, Jinkui

    2015-01-07

    Three pairs of homochiral mononuclear lanthanide complexes, with the general formula [LnH4LRRRRRR/SSSSSS(SCN)2](SCN)2·xCH3OH·yH2O(Ln = Dy (R/S-Dy1), Ho (R/S-Ho1) and Er (R/S-Er1)), have been obtained via self-assembly between chiral macrocyclic ligands and the respective thiocyanates, all of which show a saddle-type conformation with seven-coordinated metal ions. Magnetic measurements revealed that the Dy complex shows field-induced single-ion magnet behaviour, which is rarely reported in a seven-coordinated lanthanide-based SIM encapsulated in a macrocyclic ligand. The absolute configuration of all enantiomers was determined by single crystal X-ray crystallography and confirmed by electronic CD and VCD spectra.

  14. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko

    2015-09-01

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  15. Studying interfacial reactions of cholesterol sulfate in an unsaturated phosphatidylglycerol layer with ozone using field induced droplet ionization mass spectrometry.

    PubMed

    Ko, Jae Yoon; Choi, Sun Mi; Rhee, Young Min; Beauchamp, J L; Kim, Hugh I

    2012-01-01

    Field-induced droplet ionization (FIDI) is a recently developed ionization technique that can transfer ions from the surface of microliter droplets to the gas phase intact. The air-liquid interfacial reactions of cholesterol sulfate (CholSO(4)) in a 1-palmitoyl-2-oleoyl-sn-phosphatidylglycerol (POPG) surfactant layer with ozone (O(3)) are investigated using field-induced droplet ionization mass spectrometry (FIDI-MS). Time-resolved studies of interfacial ozonolysis of CholSO(4) reveal that water plays an important role in forming oxygenated products. An epoxide derivative is observed as a major product of CholSO(4) oxidation in the FIDI-MS spectrum after exposure of the droplet to O(3) for 5 s. The abundance of the epoxide product then decreases with continued O(3) exposure as the finite number of water molecules at the air-liquid interface becomes exhausted. Competitive oxidation of CholSO(4) and POPG is observed when they are present together in a lipid surfactant layer at the air-liquid interface. Competitive reactions of CholSO(4) and POPG with O(3) suggest that CholSO(4) is present with POPG as a well-mixed interfacial layer. Compared with CholSO(4) and POPG alone, the overall ozonolysis rates of both CholSO(4) and POPG are reduced in a mixed layer, suggesting the double bonds of both molecules are shielded by additional hydrocarbons from one another. Molecular dynamics simulations of a monolayer comprising POPG and CholSO(4) correlate well with experimental observations and provide a detailed picture of the interactions between CholSO(4), lipids, and water molecules in the interfacial region.

  16. Experimental evidence for field-induced emergent clock anisotropies in the XY pyrochlore Er2Ti2O7

    NASA Astrophysics Data System (ADS)

    Gaudet, J.; Hallas, A. M.; Thibault, J.; Butch, N. P.; Dabkowska, H. A.; Gaulin, B. D.

    2017-02-01

    The XY pyrochlore antiferromagnet Er2Ti2O7 exhibits a rare case of Z6 discrete symmetry breaking in its ψ2 magnetic ground state. Despite being well-studied theoretically, systems with high discrete symmetry breakings are uncommon in nature. Thus, Er2Ti2O7 provides an experimental playground for the study of broken Zn symmetry, for n >2 . A recent theoretical work examined the effect of a magnetic field on a pyrochlore lattice with broken Z6 symmetry and applied it to Er2Ti2O7 . This study predicted multiple domain transitions depending on the crystallographic orientation of the magnetic field, inducing rich and controllable magnetothermodynamic behavior. In this work, we present neutron scattering measurements on Er2Ti2O7 with a magnetic field applied along the [001] and [111] directions and provide experimental observation of these exotic domain transitions. In a [001] field, we observe a ψ2 to ψ3 transition at a critical field of 0.18 ±0.05 T. We are thus able to extend the concept of the spin-flop transition, which has long been observed in Ising systems, to higher discrete Zn symmetries. In a [111] field, we observe a series of domain-based phase transitions for fields of 0.15 ±0.03 T and 0.40 ±0.03 T. We show that these field-induced transitions are consistent with the emergence of twofold, threefold, and possibly sixfold Zeeman terms. Considering all the possible ψ2 and ψ3 domains, these Zeeman terms can be mapped onto an analog clock—exemplifying a literal clock anisotropy. Lastly, our quantitative analysis of the [001] domain transition in Er2Ti2O7 is consistent with order-by-disorder as the dominant ground state selection mechanism.

  17. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime.

    PubMed

    Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko

    2015-09-14

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  18. 24 CFR 578.7 - Responsibilities of the Continuum of Care.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES CONTINUUM OF CARE PROGRAM Establishing and Operating a... receive permanent supportive housing assistance; and (vi) Where the Continuum is designated a...

  19. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Dovan, Thanh; Kavet, Robert

    2011-07-01

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m-1. However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m-1, and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an estimate of

  20. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes.

    PubMed

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu; Dovan, Thanh; Kavet, Robert

    2011-07-07

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m(-1). However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m(-1), and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an

  1. The likelihood ratio as a tool for radio continuum surveys with Square Kilometre Array precursor telescopes

    NASA Astrophysics Data System (ADS)

    McAlpine, K.; Smith, D. J. B.; Jarvis, M. J.; Bonfield, D. G.; Fleuren, S.

    2012-06-01

    In this paper we investigate the performance of the likelihood ratio method as a tool for identifying optical and infrared counterparts to proposed radio continuum surveys with Square Kilometre Array (SKA) precursor and pathfinder telescopes. We present a comparison of the infrared counterparts identified by the likelihood ratio in the VISTA Deep Extragalactic Observations (VIDEO) survey to radio observations with 6, 10 and 15 arcsec resolution. We cross-match a deep radio catalogue consisting of radio sources with peak flux density >60 ?Jy with deep near-infrared data limited to Ks≲ 22.6. Comparing the infrared counterparts from this procedure to those obtained when cross-matching a set of simulated lower resolution radio catalogues indicates that degrading the resolution from 6 arcsec to 10 and 15 arcsec decreases the completeness of the cross-matched catalogue by approximately 3 and 7 per cent respectively. When matching against shallower infrared data, comparable to that achieved by the VISTA Hemisphere Survey, the fraction of radio sources with reliably identified counterparts drops from ˜89 per cent, at Ks≲ 22.6, to 47 per cent with Ks≲ 20.0. Decreasing the resolution at this shallower infrared limit does not result in any further decrease in the completeness produced by the likelihood ratio matching procedure. However, we note that radio continuum surveys with the MeerKAT and eventually the SKA, will require long baselines in order to ensure that the resulting maps are not limited by instrumental confusion noise.

  2. Large enhancement of fully resonant sum-frequency generation through quantum control via continuum states

    SciTech Connect

    Popov, A.K.; Kimberg, V.V.; George, Thomas F.

    2004-04-01

    A theory of quantum control of short-wavelength sum-frequency generation, which employs the continuum states, is developed. The proposed scheme employs all-resonant coupling and trade-off optimization of the accompanying constructive and destructive quantum interference effects in the lower-order and higher-order polarizations controlled by the overlap of two autoionizinglike laser-induced continuum structures. The scheme does not rely on adiabatic passage, coherent population trapping or maximum atomic coherence as a means to facilitate maximum output. The opportunities for manipulating transparency of the medium and refractive index for the fundamental and generated radiations, as well as nonlinear polarization in the multiple-resonant medium, are shown. This opens the feasibility of creating frequency-tunable narrowband filters, polarization rotators, and dispersive elements for vacuum ultraviolet radiation. The features specific for quantum interference in Doppler-broadened media are investigated. The feasibility of almost complete conversion of long-wavelength fundamental radiation into generated short-wavelength radiation, and of a dramatic decrease in the intensity of required fundamental radiations, is shown.

  3. Franck—Condon breakdown as a probe of continuum coupling in molecular photoionization

    NASA Astrophysics Data System (ADS)

    Kakar, Sandeep; Choi, Heung Cheun; Poliakoff, E. D.

    1992-03-01

    We have measured vibrational branching ratios for 4σ -1 photoionization of CO in order to characterize continuum channel coupling. The results indicate that the shape resonance in the 5σ→ɛσ channel influences vibrational branching ratios of the 4σ -1 channel via continuum coupling, and the data illustrate how continuum channel coupling affects molecular photoionization dynamics.

  4. 77 FR 33229 - Notice of Proposed Information Collection for Public Comment; Continuum of Care Homeless...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... URBAN DEVELOPMENT Notice of Proposed Information Collection for Public Comment; Continuum of Care Homeless Assistance Grant Application--Continuum of Care Application AGENCY: Office of Assistant Secretary... 27243, HUD published a proposed information collection for public comment entitled Continuum of Care...

  5. 77 FR 27243 - Notice of Propose Information Collection for Public Comment; Continuum of Care Homeless...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ... URBAN DEVELOPMENT Notice of Propose Information Collection for Public Comment; Continuum of Care Homeless Assistance Grant Application--Continuum of Care Application AGENCY: Office of Assistant Secretary... information: Title of Proposal: HEARTH Continuum of Care Program Application. Description of the need for...

  6. Elucidating a Goal-Setting Continuum in Brain Injury Rehabilitation.

    PubMed

    Hunt, Anne W; Le Dorze, Guylaine; Trentham, Barry; Polatajko, Helene J; Dawson, Deirdre R

    2015-08-01

    For individuals with brain injury, active participation in goal setting is associated with better rehabilitation outcomes. However, clinicians report difficulty engaging these clients in goal setting due to perceived or real deficits (e.g., lack of awareness). We conducted a study using grounded theory methods to understand how clinicians from occupational therapy facilitate client engagement and manage challenges inherent in goal setting with this population. Through constant comparative analysis, a goal-setting continuum emerged. At one end of the continuum, therapists embrace client-determined goals and enable clients to decide their own goals. At the other, therapists accept preset organization-determined goals (e.g., "the goal is discharge") and pay little attention to client input. Although all participants aspired to embrace client-determined goal setting, most felt powerless to do so within perceived organizational constraints. Views of advocacy and empowerment help to explain our findings and inform more inclusive practice.

  7. Wave propagation in equivalent continuums representing truss lattice materials

    SciTech Connect

    Messner, Mark C.; Barham, Matthew I.; Kumar, Mukul; Barton, Nathan R.

    2015-07-29

    Stiffness scales linearly with density in stretch-dominated lattice meta-materials offering the possibility of very light yet very stiff structures. Current additive manufacturing techniques can assemble structures consisting of these lattice materials, but the design of such structures will require accurate, efficient simulation techniques. Equivalent continuum models have several advantages over discrete truss models of stretch dominated lattices, including computational efficiency and ease of model construction. However, the development an equivalent model suitable for representing the dynamic response of a periodic truss is complicated by microinertial effects. This paper derives a dynamic equivalent continuum model for periodic truss structures and verifies it against detailed finite element simulations. The model must incorporate microinertial effects to accurately reproduce long-wavelength characteristics of the response such as anisotropic elastic soundspeeds. The formulation presented here also improves upon previous work by preserving equilibrium at truss joints for affine lattice deformation and by improving numerical stability by eliminating vertices in the effective yield surface.

  8. Capillarity-driven flows at the continuum limit.

    PubMed

    Vincent, Olivier; Szenicer, Alexandre; Stroock, Abraham D

    2016-08-21

    We experimentally investigate the dynamics of capillary-driven flows at the nanoscale, using an original platform that combines nanoscale pores (⋍3 nm in diameter) and microfluidic features. In particular, we show that drying involves a fine coupling between thermodynamics and fluid mechanics that can be used to generate precisely controlled nanoflows driven by extreme stresses - up to 100 MPa of tension. We exploit these tunable flows to provide quantitative tests of continuum theories (e.g. Kelvin-Laplace equation and Poiseuille flow) across an unprecedented range and we isolate the breakdown of continuum as a negative slip length of molecular dimension. Our results show a coherent picture across multiple experiments including drying-induced permeation flows, imbibition and poroelastic transients.

  9. Geometrically nonlinear continuum thermomechanics with surface energies coupled to diffusion

    NASA Astrophysics Data System (ADS)

    McBride, A. T.; Javili, A.; Steinmann, P.; Bargmann, S.

    2011-10-01

    Surfaces can have a significant influence on the overall response of a continuum body but are often neglected or accounted for in an ad hoc manner. This work is concerned with a nonlinear continuum thermomechanics formulation which accounts for surface structures and includes the effects of diffusion and viscoelasticity. The formulation is presented within a thermodynamically consistent framework and elucidates the nature of the coupling between the various fields, and the surface and the bulk. Conservation principles are used to determine the form of the constitutive relations and the evolution equations. Restrictions on the jump in the temperature and the chemical potential between the surface and the bulk are not a priori assumptions, rather they arise from the reduced dissipation inequality on the surface and are shown to be satisfiable without imposing the standard assumptions of thermal and chemical slavery. The nature of the constitutive relations is made clear via an example wherein the form of the Helmholtz energy is explicitly given.

  10. Applications of implicit BGK scheme in near-continuum flow

    NASA Astrophysics Data System (ADS)

    Li, Qibing; Fu, Song

    2006-07-01

    The implicit gas-kinetic Bhatnagar-Gross-Krook (BGK) scheme and kinetic boundary conditions are introduced and applied to the study of two typical flows in the near continuum regime, the hypersonic flow around a hollow cylinder flare and the flow in microchannels. The grid convergent numerical results in hypersonic flow agree well with experimental measurements and direct simulation Monte Carlo (DSMC) studies. For the low-speed microchannel flow, the present simulated results show good agreement with analytic solutions deduced from Navier-Stokes (NS) equations with slip conditions and DSMC computations. The implicit technology is found to be able to greatly improve the efficiency, which is expected to be a truly practical tool for the flow in micro-electro-mechanical systems (MEMS). The present study reveals the good performance of the BGK scheme in simulations of both high-speed and low-speed viscous flow in near continuum regime.

  11. Exploring continuum structures with a pseudo-state basis

    SciTech Connect

    Lay, J. A.; Moro, A. M.; Arias, J. M.; Gomez-Camacho, J.

    2010-08-15

    The ability of a recently developed square-integrable discrete basis to represent the properties of the continuum of a two-body system is investigated. The basis is obtained performing a simple analytic local scale transformation to the harmonic oscillator basis. Scattering phase-shifts and the electric transition probabilities B(E1) and B(E2) have been evaluated for several potentials using the proposed basis. Both quantities are found to be in excellent agreement with the exact values calculated from the true scattering states. The basis has been applied to describe the projectile continuum in the {sup 6}He scattering by {sup 12}C and {sup 208}Pb targets at 240 MeV/nucleon and the {sup 11}Be scattering by {sup 12}C at 67 MeV/nucleon. The calculated breakup differential cross sections are found to be in very good agreement with the available experimental data for these reactions.

  12. Topology and layout optimization of discrete and continuum structures

    NASA Technical Reports Server (NTRS)

    Bendsoe, Martin P.; Kikuchi, Noboru

    1993-01-01

    The basic features of the ground structure method for truss structure an continuum problems are described. Problems with a large number of potential structural elements are considered using the compliance of the structure as the objective function. The design problem is the minimization of compliance for a given structural weight, and the design variables for truss problems are the cross-sectional areas of the individual truss members, while for continuum problems they are the variable densities of material in each of the elements of the FEM discretization. It is shown how homogenization theory can be applied to provide a relation between material density and the effective material properties of a periodic medium with a known microstructure of material and voids.

  13. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  14. Three charged particles in the continuum: astrophysical examples

    NASA Astrophysics Data System (ADS)

    Belyaev, V. B.; Levin, S. B.; Yakovlev, S. L.

    2004-03-01

    We suggest a new adiabatic approach for the description of three charged particles in the continuum. This approach is based on the Coulomb-Fourier transformation of a three-body Hamiltonian, which allows us to develop a scheme, alternative to the Born-Oppenheimer one. The approach appears as an expansion of the kernels of corresponding integral transformations in terms of small mass-ratio parameter. To be specific, the results are presented for the system ppe in the continuum. The wavefunction of such a system is compared with the one which is used for the estimation of the rate for triple reaction p + p + e rarr d + ngr, which takes place as a step of the pp-cycle in the centre of the Sun. The problem of microscopic screening for this particular reaction is discussed.

  15. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin Sargsyan, Khachik Debusschere, Bert Najm, Habib N.

    2015-01-15

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker–Planck equation. The Fokker–Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  16. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  17. [Continuum, the continuing education platform based on a competency matrix].

    PubMed

    Ochoa Sangrador, C; Villaizán Pérez, C; González de Dios, J; Hijano Bandera, F; Málaga Guerrero, S

    2016-04-01

    Competency-Based Education is a learning method that has changed the traditional teaching-based focus to a learning-based one. Students are the centre of the process, in which they must learn to learn, solve problems, and adapt to changes in their environment. The goal is to provide learning based on knowledge, skills (know-how), attitude and behaviour. These sets of knowledge are called competencies. It is essential to have a reference of the required competencies in order to identify the need for them. Their acquisition is approached through teaching modules, in which one or more skills can be acquired. This teaching strategy has been adopted by Continuum, the distance learning platform of the Spanish Paediatric Association, which has developed a competency matrix based on the Global Paediatric Education Consortium training program. In this article, a review will be presented on the basics of Competency-Based Education and how it is applied in Continuum.

  18. Lyman Continuum Emission Search at z 1 Using GALEX Imaging

    NASA Astrophysics Data System (ADS)

    Friedman, Peter G.; Small, T. A.; Deharveng, J. M.; Milliard, B.

    2007-12-01

    We present the status and results of a search for Lyman continuum emission from galaxies at z 1. We use GALEX data in the Extended Groth Strip. Our method is to stack FUV image flux at locations of DEEP2 redshift catalog galaxies in the redshift range 1 < z < 1.5. In this range, the GALEX FUV band (1350-1800 A) is sensitive only to rest wavelengths below 912 A. We normalize FUV flux to NUV flux and calculate the Lyman continuum emission escape fraction by fitting SED models to broad-band fluxes from ground-based surveys of the same galaxies. GALEX is a NASA Small Explorer mission with contributions from France and South Korea. This work uses data from the AEGIS collaboration, which is supported by grants from the National Science Foundation, NASA, and the Keck Observatory.

  19. GALEX Imaging Search for Lyman Continuum Emission at z 1

    NASA Astrophysics Data System (ADS)

    Friedman, Peter G.; Small, T. A.; Deharveng, J. M.; Milliard, B.

    2009-01-01

    We present the status and results of a search for Lyman continuum emission from galaxies at z 1. We use GALEX data in the Extended Groth Strip. Our method is to stack FUV image flux at locations of DEEP2 redshift catalog galaxies in the redshift range 1 < z < 1.5. In this range, the GALEX FUV band (1350-1800 A) is sensitive only to rest wavelengths below 912 A. We normalize FUV flux to NUV flux and calculate the Lyman continuum emission escape fraction by fitting SED models to broad-band fluxes from ground-based surveys of the same galaxies. GALEX is a NASA Small Explorer mission with contributions from France and South Korea. This work uses data from the AEGIS collaboration, which is supported by grants from the National Science Foundation, NASA, and the Keck Observatory.

  20. GALEX Imaging Search for Lyman Continuum Emission at z 1

    NASA Astrophysics Data System (ADS)

    Friedman, Peter G.; Small, T. A.; Deharveng, J. M.; Milliard, B.

    2010-01-01

    We present the status and results of a search for Lyman continuum emission from galaxies at z 1. We use GALEX data in the Extended Groth Strip. Our method is to stack FUV image flux at locations of DEEP2 redshift catalog galaxies in the redshift range 1 < z < 1.5. In this range, the GALEX FUV band (1350-1800 A) is sensitive only to rest wavelengths below 912 A. We normalize FUV flux to NUV flux and calculate the Lyman continuum emission escape fraction by fitting SED models to broad-band fluxes from ground-based surveys of the same galaxies. GALEX is a NASA Small Explorer mission with contributions from France and South Korea. This work uses data from the AEGIS collaboration, which is supported by grants from the National Science Foundation, NASA, and the Keck Observatory.

  1. The virial theorem for the polarizable continuum model

    SciTech Connect

    Cammi, R.

    2014-02-28

    The electronic virial theorem is extended to molecular systems within the framework of the Polarizable Continuum Model (PCM) to describe solvation effects. The theorem is given in the form of a relation involving the components of the energy (kinetic and potential) of a molecular solute and its electrostatic properties (potential and field) at the boundary of the cavity in the continuum medium. The virial theorem is also derived in the presence of the Pauli repulsion component of the solute-solvent interaction. Furthermore, it is shown that these forms of the PCM virial theorem may be related to the virial theorem of more simple systems as a molecule in the presence of fixed point charges, and as an atom in a spherical box with confining potential.

  2. Metric Properties of Discrete Time Exclusion Type Processes in Continuum

    NASA Astrophysics Data System (ADS)

    Blank, Michael

    2010-07-01

    A new class of exclusion type processes acting in continuum with synchronous updating is introduced and studied. Ergodic averages of particle velocities are obtained and their connections to other statistical quantities, in particular to the particle density (the so called Fundamental Diagram) is analyzed rigorously. The main technical tool is a "dynamical" coupling applied in a nonstandard fashion: we do not prove the existence of the successful coupling (which even might not hold) but instead use its presence/absence as an important diagnostic tool. Despite that this approach cannot be applied to lattice systems directly, it allows to obtain new results for the lattice systems embedding them to the systems in continuum. Applications to the traffic flows modelling are discussed as well.

  3. Dynamic continuum pedestrian flow model with memory effect.

    PubMed

    Xia, Yinhua; Wong, S C; Shu, Chi-Wang

    2009-06-01

    In this paper, we develop a macroscopic model for pedestrian flow using the dynamic continuum modeling approach. We consider a two-dimensional walking facility that is represented as a continuum within which pedestrians can move freely in any direction. A pedestrian chooses a route based on his or her memory of the shortest path to the desired destination when the facility is empty and, at the same time, tries to avoid high densities. In this model, pedestrian flow is governed by a two-dimensional conservation law, and a general speed-flow-density relationship is considered. The model equation is solved numerically using the discontinuous Galerkin method, and a numerical example is employed to demonstrate both the model and the effectiveness of the numerical method.

  4. Nitrogen-induced absorption of oxygen in the Herzberg continuum

    NASA Technical Reports Server (NTRS)

    Shardanand, MR.

    1977-01-01

    Total absorption of O2 induced by collisions with N2 has been measured at room temperature in the Hersberg continuum using a one meter normal incidence grating monochromator. The enhanced absorption is ascribed to the formation of O2-O2 and O2-N2 dimers. The interaction constants for these dimers are determined and utilized to investigate their effect on the absorption of solar radiation in the stratosphere.

  5. NREL Leads Energy Systems Integration, Continuum Magazine: Issue 4 (Book)

    SciTech Connect

    Not Available

    2013-04-01

    Continuum Magazine showcases NREL's latest and most impactful clean energy innovations. This issue, 'NREL Leads Energy Systems Integration' explores the discipline of energy systems integration, in particular the role of the laboratory's new, one-of-a-kind Energy System Integration Facility. NREL scientists, engineers, and analysts deeply understand the fundamental science and technologies underpinning major energy producing and consuming systems, as well as the transmission infrastructure and communications and data networks required to integrate energy systems at all scales.

  6. A continuum model of nanocrystalline metals under shock loading

    NASA Astrophysics Data System (ADS)

    Jérusalem, Antoine; Radovitzky, Raúl

    2009-03-01

    Recent atomistic simulations have shown that grain boundary sliding in nanocrystals is altered under shock loading conditions. It is found that the high state of compression inhibits grain boundary sliding and reactivates intragrain dislocation activity. This leads to higher material strength and postpones the transition between these two deformation mechanisms to smaller grain size. We present here a continuum model aimed at extending the model proposed by Jérusalem et al for quasi-static and high rates (2007 Phil. Mag. 87 2541-59) to shock loading. To this end, the shock response of nanocrystals is investigated by accounting specifically for additional frictional deformation-inhibiting effects. The model is based on a numerical finite element discretization of the polycrystal, considered as a continuum, with embedded surfaces of discontinuity accounting for the grain boundary response. Interface elements are formulated to account for the special kinematics of grain boundaries, i.e. to describe grain boundary frictional sliding and other accommodation mechanisms. The response of grain interiors is modeled with a high rate equation of state for the volumetric response and a simple plasticity model to describe their deviatoric response. A large-scale parallel computing framework is finally developed to calibrate and investigate the specificities of the deformation mechanisms under shock loading conditions, and the results are compared in detail with atomistic results. As a conclusion, this extended three-dimensional continuum model constitutes a promising first step for the characterization of large-scale nanocrystalline deformation under the most complete range of loading rates yet proposed in continuum simulations, namely, from quasi-static to shock loading.

  7. A Continuum Mechanical Approach to Geodesics in Shape Space

    DTIC Science & Technology

    2010-01-01

    effectively evaluate distances between non -parametrized geometric shapes of possibly different topology. In particular, we allow shapes to consist of boundary...and the continuum mechanics of viscous fluid transport. Therefore, we will here review the fundamental concept of viscous dissipation in a Newtonian ...momentum the stress tensor σ is symmetric [13]. In a Newtonian fluid the stress tensor is assumed to depend linearly on the gradient Dv of the velocity v

  8. Continuum electromechanical modeling of protein-membrane interactions.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Gorfe, Alemayehu A

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  9. Terrestrial FeO Continuum Emission Observed in Sky Spectra

    NASA Astrophysics Data System (ADS)

    Slanger, Tom G.; Melchiorri, R.; Saran, D. V.

    2011-01-01

    The terrestrial continuum emission in the visible spectral region has often been studied by both astronomers and aeronomers, in order to clarify backgrounds and the nature of the emissions. New observations from the ESI spectrograph on the Keck II telescope, as well as from the OSIRIS/Odin spectrograph and orbiter, have established that a major component of the emission originates with the FeO molecule [Evans et al., 2010]. This quasi-continuum peaks at 5950 A and extends from 5000 A well into the infrared. The identity has been demonstrated by comparison with meteor trains and laboratory measurements [Jenniskens et al., 2000]. Early studies of the continuum show consistency with the FeO emission as presently observed [Gadsden and Marovich, 1973]. Analysis of spectra from Kitt Peak [Neugent and Massey, 2010] demonstrates the great similarity between FeO emission in a clean atmosphere and high pressure sodium lamp emission in a polluted atmosphere. This research was supported by NSF Aeronomy under Grant ATM-0637433 . Evans, W.F.J., et al., Geophys. Res. Lett. [in press, 2010] Gadsden, M. and E. Marovich, J. Atm. Terr. Phys., 35, 1601-1614 [1973] Jenniskens, P., et al., Earth, Moon and Planets, 82-83, 429-434 [2000] Neugent, K.F. and P. Massey, PASP [in press, 2010

  10. Coupled continuum and molecular model of flow through fibrous filter

    NASA Astrophysics Data System (ADS)

    Zhao, Shunliu; Povitsky, Alex

    2013-11-01

    A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 < Kn ⩽ 1, the difference in pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.

  11. Sacrifice Along the Energy Continuum: A Call for Energy Justice

    PubMed Central

    Hernández, Diana

    2016-01-01

    The confluence of energy supply- and demand-side dynamics links vulnerable communities along the spectrum of energy production and consumption. The disproportionate burden borne by vulnerable communities along the energy continuum are seldom examined simultaneously. Yet, from a justice perspective there are important parallels that merit further exploration in the United States and beyond. A first step is to understand links to vulnerability and justice along the energy continuum by way of theoretical constructs and practical applications. The present article posits energy as a social and environmental justice issue and advances our current understanding of the links between energy and vulnerability, particularly in the U.S. context. Drawing on several emerging concepts including, “energy sacrifice zones,” “energy insecurity” and “energy justice,” this article lays a foundation for examining critical sacrifices along the energy continuum. To conclude, four basic rights are proposed as a starting point to achieve recognition and equity for vulnerable populations in the realm of energy. PMID:27053980

  12. Continuum mechanics beyond the second law of thermodynamics.

    PubMed

    Ostoja-Starzewski, M; Malyarenko, A

    2014-11-08

    The results established in contemporary statistical physics indicating that, on very small space and time scales, the entropy production rate may be negative, motivate a generalization of continuum mechanics. On account of the fluctuation theorem, it is recognized that the evolution of entropy at a material point is stochastically (not deterministically) conditioned by the past history, with an increasing trend of average entropy production. Hence, the axiom of Clausius-Duhem inequality is replaced by a submartingale model, which, by the Doob decomposition theorem, allows classification of thermomechanical processes into four types depending on whether they are conservative or not and/or conventional continuum mechanical or not. Stochastic generalizations of thermomechanics are given in the vein of either thermodynamic orthogonality or primitive thermodynamics, with explicit models formulated for Newtonian fluids with, respectively, parabolic or hyperbolic heat conduction. Several random field models of the martingale component, possibly including spatial fractal and Hurst effects, are proposed. The violations of the second law are relevant in those situations in continuum mechanics where very small spatial and temporal scales are involved. As an example, we study an acceleration wavefront of nanoscale thickness which randomly encounters regions in the medium characterized by a negative viscosity coefficient.

  13. Continuum Mechanical Analysis of Collective Motion of Robots

    NASA Astrophysics Data System (ADS)

    Itami, Teturo

    Group of robots that works mainly in macroscopic systems is considered as a continuum. We need not mount specific sensors for mutual information among these robots. Increasing number of the robots makes it difficult to predict collective motion of the robots. To give a well organized strategy of designing the task, we describe these robots as that like fluid in continuum mechanics, where number density f_1 (\\vec{x},\\vec{p}; t) of the robots located at around \\vec{x} with momentum around \\vec{p} at time t is a main variable. Also we propose methods to move these robots by external potential energy V(\\vec{x};t). To specify a concept, we take a transportation system by group of robots. The objects located at \\vec{X}(t) that do not feel a potential V(\\vec{X}(t);t) can be transported by a collision with the robots moving aimlessly under the potential force -\\frac{\\partial V(\\vec{x};t)}{\\partial \\vec{x}}. The new scheme of a design based on continuum mechanics is validated by direct method of dynamical development of the system in time.

  14. Continuum modeling of deformation and aggregation of red blood cells.

    PubMed

    Yoon, Daegeun; You, Donghyun

    2016-07-26

    In order to gain better understanding for rheology of an isolated red blood cell (RBC) and a group of multiple RBCs, new continuum models for describing mechanical properties of cellular structures of an RBC and inter-cellular interactions among multiple RBCs are developed. The viscous property of an RBC membrane, which characterizes dynamic behaviors of an RBC under stress loading and unloading processes, is determined using a generalized Maxwell model. The present model is capable of predicting stress relaxation and stress-strain hysteresis, of which prediction is not possible using the commonly used Kelvin-Voigt model. Nonlinear elasticity of an RBC is determined using the Yeoh hyperelastic material model in a framework of continuum mechanics using finite-element approximation. A novel method to model inter-cellular interactions among multiple adjacent RBCs is also developed. Unlike the previous modeling approaches for aggregation of RBCs, where interaction energy for aggregation is curve-fitted using a Morse-type potential function, the interaction energy is analytically determined. The present aggregation model, therefore, allows us to predict various effects of physical parameters such as the osmotic pressure, the thickness of a glycocalyx layer, the penetration depth, and the permittivity, on the depletion and electrostatic energy among RBCs. Simulations for elongation and recovery deformation of an RBC and for aggregation of multiple RBCs are conducted to evaluate the efficacy of the present continuum modeling methods.

  15. Additive manufacturing of patient-specific tubular continuum manipulators

    NASA Astrophysics Data System (ADS)

    Amanov, Ernar; Nguyen, Thien-Dang; Burgner-Kahrs, Jessica

    2015-03-01

    Tubular continuum robots, which are composed of multiple concentric, precurved, elastic tubes, provide more dexterity than traditional surgical instruments at the same diameter. The tubes can be precurved such that the resulting manipulator fulfills surgical task requirements. Up to now the only material used for the component tubes of those manipulators is NiTi, a super-elastic shape-memory alloy of nickel and titan. NiTi is a cost-intensive material and fabrication processes are complex, requiring (proprietary) technology, e.g. for shape setting. In this paper, we evaluate component tubes made of 3 different thermoplastic materials (PLA, PCL and nylon) using fused filament fabrication technology (3D printing). This enables quick and cost-effective production of custom, patient-specific continuum manipulators, produced on site on demand. Stress-strain and deformation characteristics are evaluated experimentally for 16 fabricated tubes of each thermoplastic with diameters and shapes equivalent to those of NiTi tubes. Tubes made of PCL and nylon exhibit properties comparable to those made of NiTi. We further demonstrate a tubular continuum manipulator composed of 3 nylon tubes in a transnasal, transsphenoidal skull base surgery scenario in vitro.

  16. Resilience Among Patients Across the Cancer Continuum: Diverse Perspectives

    PubMed Central

    Molina, Yamile; Yi, Jean C.; Martinez-Gutierrez, Javiera; Reding, Kerryn W.; Yi-Frazier, Joyce P.; Rosenberg, Abby R.

    2014-01-01

    Each phase of the cancer experience profoundly affects patients’ lives. Much of the literature has focused on negative consequences of cancer; however, the study of resilience may enable providers to promote more positive psychosocial outcomes before, during, and after the cancer experience. The current review describes the ways in which elements of resilience have been defined and studied at each phase of the cancer continuum. Extensive literature searches were conducted to find studies assessing resilience during one or more stages of the adult cancer continuum. For all phases of the cancer continuum, resilience descriptions included preexisting or baseline characteristics, such as demographics and personal attributes (e.g., optimism, social support), mechanisms of adaptation, such as coping and medical experiences (e.g., positive provider communication), as well as psychosocial outcomes, such as growth and quality of life. Promoting resilience is a critical element of patient psychosocial care. Nurses may enable resilience by recognizing and promoting certain baseline characteristics and optimizing mechanisms of adaptation. PMID:24476731

  17. A new and accurate continuum description of moving fronts

    NASA Astrophysics Data System (ADS)

    Johnston, S. T.; Baker, R. E.; Simpson, M. J.

    2017-03-01

    Processes that involve moving fronts of populations are prevalent in ecology and cell biology. A common approach to describe these processes is a lattice-based random walk model, which can include mechanisms such as crowding, birth, death, movement and agent–agent adhesion. However, these models are generally analytically intractable and it is computationally expensive to perform sufficiently many realisations of the model to obtain an estimate of average behaviour that is not dominated by random fluctuations. To avoid these issues, both mean-field (MF) and corrected mean-field (CMF) continuum descriptions of random walk models have been proposed. However, both continuum descriptions are inaccurate outside of limited parameter regimes, and CMF descriptions cannot be employed to describe moving fronts. Here we present an alternative description in terms of the dynamics of groups of contiguous occupied lattice sites and contiguous vacant lattice sites. Our description provides an accurate prediction of the average random walk behaviour in all parameter regimes. Critically, our description accurately predicts the persistence or extinction of the population in situations where previous continuum descriptions predict the opposite outcome. Furthermore, unlike traditional MF models, our approach provides information about the spatial clustering within the population and, subsequently, the moving front.

  18. Polarizable Molecular Dynamics in a Polarizable Continuum Solvent

    PubMed Central

    Lipparini, Filippo; Lagardère, Louis; Raynaud, Christophe; Stamm, Benjamin; Cancès, Eric; Mennucci, Benedetta; Schnieders, Michael; Ren, Pengyu; Maday, Yvon; Piquemal, Jean-Philip

    2015-01-01

    We present for the first time scalable polarizable molecular dynamics (MD) simulations within a polarizable continuum solvent with molecular shape cavities and exact solution of the mutual polarization. The key ingredients are a very efficient algorithm for solving the equations associated with the polarizable continuum, in particular, the domain decomposition Conductor-like Screening Model (ddCOSMO), a rigorous coupling of the continuum with the polarizable force field achieved through a robust variational formulation and an effective strategy to solve the coupled equations. The coupling of ddCOSMO with non variational force fields, including AMOEBA, is also addressed. The MD simulations are feasible, for real life systems, on standard cluster nodes; a scalable parallel implementation allows for further speed up in the context of a newly developed module in Tinker, named Tinker-HP. NVE simulations are stable and long term energy conservation can be achieved. This paper is focused on the methodological developments, on the analysis of the algorithm and on the stability of the simulations; a proof-of-concept application is also presented to attest the possibilities of this newly developed technique. PMID:26516318

  19. Equivalent Continuum Modeling for Shock Wave Propagation in Jointed Media

    SciTech Connect

    Vorobiev, O; Antoun, T

    2009-12-11

    This study presents discrete and continuum simulations of shock wave propagating through jointed media. The simulations were performed using the Lagrangian hydrocode GEODYN-L with joints treated explicitly using an advanced contact algorithm. They studied both isotropic and anisotropic joint representations. For an isotropically jointed geologic medium, the results show that the properties of the joints can be combined with the properties of the intact rock to develop an equivalent continuum model suitable for analyzing wave propagation through the jointed medium. For an anisotropically jointed geologic medium, they found it difficult to develop an equivalent continuum (EC) model that matches the response derived from mesoscopic simulation. They also performed simulations of wave propagation through jointed media. Two appraoches are suggested for modeling the rock mass. In one approach, jointed are modeled explicitly in a Lagrangian framework with appropriate contact algorithms used to track motion along the interfaces. In the other approach, the effect of joints is taken into account using a constitutive model derived from mesoscopic simulations.

  20. Resilience among patients across the cancer continuum: diverse perspectives.

    PubMed

    Molina, Yamile; Yi, Jean C; Martinez-Gutierrez, Javiera; Reding, Kerryn W; Yi-Frazier, Joyce P; Rosenberg, Abby R

    2014-02-01

    Each phase of the cancer experience profoundly affects patients' lives. Much of the literature has focused on negative consequences of cancer; however, the study of resilience may enable providers to promote more positive psychosocial outcomes before, during, and after the cancer experience. The current review describes the ways in which elements of resilience have been defined and studied at each phase of the cancer continuum. Extensive literature searches were conducted to find studies assessing resilience during one or more stages of the adult cancer continuum. For all phases of the cancer continuum, resilience descriptions included preexisting or baseline characteristics, such as demographics and personal attributes (e.g., optimism, social support), mechanisms of adaptation, such as coping and medical experiences (e.g., positive provider communication), as well as psychosocial outcomes, such as growth and quality of life. Promoting resilience is a critical element of patient psychosocial care. Nurses may enable resilience by recognizing and promoting certain baseline characteristics and optimizing mechanisms of adaptation.

  1. Hybrid molecular-continuum techniques for micro and nano flows

    NASA Astrophysics Data System (ADS)

    Reese, Jason; Ritos, Konstantinos; Borg, Matthew; Lockerby, Duncan

    2015-11-01

    Nano- and micro-confined fluid flows are often characterised by non-continuum effects that require special treatment beyond the scope of conventional continuum-fluid modelling. However, if the flow system has high-aspect-ratio components (e.g. long narrow channels) the computational cost of a fully molecular-based simulation can be prohibitive. In this talk we present some important elements of a heterogeneous molecular-continuum method that exploits the various degrees of scale separation in both time and space that are very often present in these types of flows. We demonstrate the ability of these techniques to predict the flow of water in aligned carbon nanotube (CNT) membranes: the tube diameters are 1-2 nm and the tube lengths (i.e. the membrane thicknesses) are 2-6 orders of magnitude larger. We compare our results with experimental data. We also find very good agreement with experimental results for a 1 mm thick membrane that has CNTs of diameter 1.59 nm. In this case, our hybrid multiscale simulation is orders of magnitude faster than a full molecular dynamics simulation.

  2. Defining the HIV pre-exposure prophylaxis care continuum

    PubMed Central

    Nunn, Amy S.; Brinkley-Rubinstein, Lauren; Oldenburg, Catherine E.; Mayer, Kenneth H.; Mimiaga, Matthew; Patel, Rupa; Chan, Philip A.

    2017-01-01

    Pre-exposure prophylaxis (PrEP) is an effective HIV prevention strategy. There is little scientific consensus about how to measure PrEP program implementation progress. We draw on several years of experience in implementing PrEP programs and propose a PrEP continuum of care that includes: (1) identifying individuals at highest risk for contracting HIV, (2) increasing HIV risk awareness among those individuals, (3) enhancing PrEP awareness, (4) facilitating PrEP access, (5) linking to PrEP care, (6) prescribing PrEP, (7) initiating PrEP, (8) adhering to PrEP, and (9) retaining individuals in PrEP care. We also propose four distinct categories of PrEP retention in care that include being: (1) indicated for PrEP and retained in PrEP care, (2) indicated for PrEP and not retained in PrEP care, (3) no longer indicated for PrEP, and (4) lost to follow-up for PrEP care. This continuum of PrEP care creates a framework that researchers and practitioners can use to measure PrEP awareness, uptake, adherence, and retention. Understanding each point along the proposed continuum of PrEP care is critical for developing effective PrEP interventions and for measuring public health progress in PrEP program implementation. PMID:28060019

  3. The infrared continuum spectrum of x ray illuminated molecular gas

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1990-01-01

    In starburst galaxies, active galaxies, and the mysterious ultraluminous infrared galaxies, x rays are likely to interact with molecular gas and dust, thereby inducing infrared emission. X ray heated thermal dust will emit the IR continuum, and x ray photoelectrons will excite an IR emission-line spectrum. Here, researchers model the IR continuum emission characteristic of some selected x ray spectral fluxes, in particular the x ray bremsstrahlung characteristic of supernova and stellar wind bubble shocks in dense media and the power law spectra characteristic of active galactic nuclei. These models are part of a larger project to determine the complete IR spectra, lines plus continuum, of x ray sources embedded in molecular gas. They modeled the thermal emission from grains by calculating a grain temperature/size/composition distribution function, f(T,a,Comp.), which accounts for temperature fluctuations by averaging over all grain thermal histories. In determining the grain thermal distribution, researchers account for both direct grain heating (by x ray absorption and subsequent electron energy deposition) and indirect grain heating (by absorption of the UV emission stimulated by non-thermal photo- and Auger electrons in the gas phase). We let the grain size distribution be proportional to a(exp -3.5), and they consider two types of grain composition: graphites, which we assume to be pure carbon, and silicates, which contain all other depleted heavy elements. They derive the grain composition distribution function from solar abundances and interstellar depletion data.

  4. Magnetic-Field-Induced Spin Excitations and Renormalized Spin Gap of the Underdoped La{sub 1.895}Sr{sub 0.105}CuO{sub 4} Superconductor

    SciTech Connect

    Chang, J.; Gilardi, R.; Pailhes, S.; Niedermayer, Ch.; Mesot, J.; Schnyder, A. P.; Mudry, C.; Roennow, H. M.; Christensen, N. B.; McMorrow, D. F.; Hiess, A.; Stunault, A.; Enderle, M.; Lake, B.; Sobolev, O.; Momono, N.; Oda, M.; Ido, M.

    2007-02-16

    High-resolution neutron inelastic scattering experiments in applied magnetic fields have been performed on La{sub 1.895}Sr{sub 0.105}CuO{sub 4} (LSCO). In zero field, the temperature dependence of the low-energy peak intensity at the incommensurate momentum transfer Q{sub IC}=(0.5,0.5{+-}{delta},0),(0.5{+-}{delta},0.5,0) exhibits an anomaly at the superconducting T{sub c} which broadens and shifts to lower temperature upon the application of a magnetic field along the c axis. A field-induced enhancement of the spectral weight is observed, but only at finite energy transfers and in an intermediate temperature range. These observations establish the opening of a strongly downward renormalized spin gap in the underdoped regime of LSCO. This behavior contrasts with the observed doping dependence of most electronic energy features.

  5. Field induced phase transition in Sm{sub 0.5}(Ca{sub 1−x}Sr{sub x}){sub 0.5}MnO{sub 3}

    SciTech Connect

    Sabyasachi, Sk. Majumdar, S. Giri, S.

    2014-04-24

    We demonstrate a fascinating consequence of A-site disorder at x = 0.5 in a new series Sm{sub 0.5}(Ca{sub 1−x}Sr{sub x}){sub 0.5}MnO{sub 3}. An unusual magnetic field-induced ultra-sharp transition to ferromagnetic metallic (FMM) state and collapse of charge ordering are observed both in magnetization and magnetoresistance curves at much lower field compared to end compounds. When magnetic field is applied above a critical field, FMM state appears and it retains the high-field state, although magnetic field decreases to zero. With decreasing field sweep rate the transition shifts to higher field indicating a meta-magnetic transition. The atomic-scale local inhomogeneity/distortion arising from the difference in ionic radii and/or the random Coulomb potential from ion mixture is supposed to be critical behind such striking phenomena.

  6. On the emission-line response to continuum variations in the Seyfert galaxy NGC 5548

    NASA Astrophysics Data System (ADS)

    Netzer, Hagai; Maoz, Dan

    1990-12-01

    The two optical monitoring groups which have recently attempted to ascertain the continuum and emission-line variations in the Seyfert galaxy NGC 5548 have reported apparently contradictory results for the delay of H-beta variations with respect to the continuum. The measurements of Clavel et al. (1991) are presently used to demonstrate that the emission-line lag behind continuum variations depends on the continuum variability time-scale in this object, in the sense that continuum variations with larger time-scales yield larger emission-line lags. Monte Carlo simulations are used to show that there is at least one possible model which can reproduce the two differing delays.

  7. Lyman continuum galaxies: Observed Lyman continuum flux measurements at z ~ 3-4 and mechanisms behind the escape

    NASA Astrophysics Data System (ADS)

    Cooke, Jeff; Ryan-Weber, Emma; Garel, Thibault; Gonzalo Diaz, C.

    2016-06-01

    Measuring the surviving Lyman continuum (LyC) flux and inferred ionizing photon escape fraction (f_esc) of Lyman break galaxies has proved challenging, in part due to the historical selection criteria based on a Lyman continuum break. A few galaxies, largely serendipitous, have been detected with measurable LyC flux but have colors inconsistent with Lyman break galaxy expectations for their specific redshifts. I will discuss our physically motivated technique that provides an accurate measure of the average f_esc for the z ~ 3 Lyman break galaxy population that has also identified a population of galaxies, termed Lyman continuum galaxies (LCGs) with high expected levels of surviving LyC flux. I will present the results of our program that uses 30-band photometry, HST imaging, and deep medium-band IR imaging from the ZFOURGE survey to select z ~ 3-4 LCGs. We obtained very deep Keck spectroscopy that has confirmed the LCG population and has directly measured the predicted level of LyC flux. In addition, our program has obtained deep Keck infrared spectroscopy to calibrate restframe optical nebular emission-line models used to predict the LyC escape fraction, with the aim to measure the f_esc of galaxies at the Epoch of Reionization where direct LyC flux detection is not possible.

  8. Cobalt and manganese diphosphonates with one-, two-, and three-dimensional structures and field-induced magnetic transitions.

    PubMed

    Cao, Deng-Ke; Liu, Mei-Juan; Huang, Jian; Bao, Song-Song; Zheng, Li-Min

    2011-03-21

    Reactions of 2-(1-Imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid (ImhedpH(4)) and cobalt or manganese salts under hydrothermal conditions result in three new metal diphosphonates: β-Co(3)(ImhedpH)(2)(H(2)O)(4)·2H(2)O (1), Co(3)(ImhedpH)(2)(H(2)O)(4) (2), and Mn(ImhedpH(2))·H(2)O (3). In compound 1, the columns made up of {Co1(2)O(2)} dimers and {PO(3)C} tetrahedra through corner-sharing are cross-linked through {Co2O(6)} octahedra, forming an inorganic layer. Neighboring layers are pillared by coordinated imidazole groups of ImhedpH(-) ligands, leading to a three-dimensional open framework containing two kinds of channels with sizes of 8.256 × 9.851 Å and 8.030 × 4.745 Å (van der Waals radii not accounted for). Compound 2 shows a layer structure, in which Co(3)(ImhedpH)(2)(H(2)O)(4) trimer units are connected through the corner-sharing of {Co1O(5)} trigonal bipyramids and {PO(3)C} tetrahedra, forming an inorganic layer containing 20-member rings composed of six Co atoms, two μ(3)-O1 units, and four O-P-O units. The noncoordinated imidazole groups protrude from two sides of the layer. Compound 3 shows a ladder structure, where the Mn(II) ions are bridged by ImhedpH(2)(2-) ligands through double O-P-O units to form a single chain, and two such chains are further fused together by sharing edges of {MnO(5)} trigonal bipyramids. The magnetic properties of 1-3 have been studied. Ferrimagnetism and field-induced magnetic transition from ferrimagnetism to a fully polarized state are observed in 1. Compounds 2 and 3 reveal dominant antiferromagnetic interactions between metal centers, and two-step field-induced magnetic phase transitions are found in 2.

  9. Solution of the Burnett equations for hypersonic flows near the continuum limit

    NASA Technical Reports Server (NTRS)

    Imlay, Scott T.

    1992-01-01

    The INCA code, a three-dimensional Navier-Stokes code for analysis of hypersonic flowfields, was modified to analyze the lower reaches of the continuum transition regime, where the Navier-Stokes equations become inaccurate and Monte Carlo methods become too computationally expensive. The two-dimensional Burnett equations and the three-dimensional rotational energy transport equation were added to the code and one- and two-dimensional calculations were performed. For the structure of normal shock waves, the Burnett equations give consistently better results than Navier-Stokes equations and compare reasonably well with Monte Carlo methods. For two-dimensional flow of Nitrogen past a circular cylinder the Burnett equations predict the total drag reasonably well. Care must be taken, however, not to exceed the range of validity of the Burnett equations.

  10. Energy Saving Homes and Buildings, Continuum Magazine, Spring 2014 / Issue 6 (Book)

    SciTech Connect

    Not Available

    2014-03-01

    This issue of Continuum focuses on NREL's research to improve the energy efficiency of residential and commercial buildings. Heating, cooling, and lighting our homes and commercial structures account for more than 70% of all electricity used in the United States. That costs homeowners, businesses, and government agencies more than $400 billion annually, about 40% of our nation's total energy costs. Producing that energy contributes almost 40% of our nation's carbon dioxide emissions.By 2030, an estimated 900 billion square feet of new and rebuilt construction will be developed worldwide, providing an unprecedented opportunity to create efficient, sustainable buildings. Increasing the energy performance of our homes alone could potentially eliminate up to 160 million tons of greenhouse gas emissions and lower residential energy bills by $21 billion annually by the end of the decade.

  11. A High Signal-To-Noise Ultraviolet Spectrum of NGC 7469: New Support for Reprocessing of Continuum Radiation

    NASA Technical Reports Server (NTRS)

    Kriss, Gerard A.; Peterson, Bradley M.; Crenshaw, D. Michael; Zheng, Wei

    2000-01-01

    From 1996 June 10 to 1996 July 29, the International AGN Watch monitored the Seyfert 1 galaxy NGC 7469 using the International Ultraviolet Explorer, the Rossi X-Ray Timing Explorer, and a network of ground-based observatories. On 1996 June 18, in the midst of this intensive monitoring period, we obtained a high signal-to-noise snapshot of the UV spectrum from 1150 to 3300 A, using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope. This spectrum allows us to disentangle the UV continuum more accurately from the broad wings of the emission lines, to identify clean continuum windows free of contaminating emission and absorption, and to deblend line complexes such as Ly(alpha) + N V, C IV + He II + O III], Si III] + C III], and Mg II + Fe II. Using the FOS spectrum as a template, we have fitted and extracted line and continuum fluxes from the IUE monitoring data. The cleaner continuum extractions c o n h the discovery of time delays between the different UV continuum bands by Wanders et al. Our new measurements show delays increasing with wavelength for continuum bands centered at 1485, 1740, and 1825 A, relative to 1315 A with delays of 0.09, 0.28, and 0.36 days, respectively. Like many other Seyfert I galaxies, the UV spectrum of NGC 7469 shows intrinsic, blue-shifted absorption in Ly(alpha), N V, and C IV. Soft X-ray absorption is also visible in archival ASCA X-ray spectra. The strength of the UV absorption, however, is not compatible with a single-zone model in which the same material absorbs both the UV and X-ray light. Similar to other Seyfert galaxies, such as NGC 3516, the UV-absorbing gas in NGC 7469 has a lower ionization parameter and column density than the X-ray-absorbing material. While the UV and X-ray absorption does not arise in the same material, the frequent occurrence of both associated UV absorption and X-ray warm absorbers in the same galaxies suggests that the gas supply for each has a common origin.

  12. The higher temperature in the areola supports the natural progression of the birth to breastfeeding continuum.

    PubMed

    Zanardo, Vincenzo; Straface, Gianluca

    2015-01-01

    Numerous functional features that promote the natural progression of the birth to breastfeeding continuum are concentrated in the human female's areolar region. The aim of this study was to look more closely into the thermal characteristics of areola, which are said to regulate the local evaporation rate of odors and chemical signals that are uniquely important for the neonate's 'breast crawl'. A dermatological study of the areolae and corresponding intern breast quadrants was undertaken on the mothers of 70 consecutive, healthy, full-term breastfed infants. The study took place just after the births at the Policlinico Abano Terme, in Italy from January to February 2014. Temperature, pH and elasticity were assessed one day postpartum using the Soft Plus 5.5 (Callegari S.P.A., Parma, Italy). The mean areolar temperature was found to be significantly higher than the corresponding breast quadrant (34.60 ±1.40°C vs. 34.04 ±2.00°C, p<0.001) and the pH was also significantly higher (4.60±0.59 vs. 4.17±0.59, p<0.001). In contrast, the elasticity of the areolar was significantly lower (23.52±7.83 vs. 29.02±8.44%, p<0.003). Our findings show, for the first time, that the areolar region has a higher temperature than the surrounding breast skin, together with higher pH values and lower elasticity. We believe that the higher temperature of the areolar region may act as a thermal signal to guide the infant directly to the nipple and to the natural progression of the birth to breastfeeding continuum.

  13. The Higher Temperature in the Areola Supports the Natural Progression of the Birth to Breastfeeding Continuum

    PubMed Central

    Zanardo, Vincenzo; Straface, Gianluca

    2015-01-01

    Numerous functional features that promote the natural progression of the birth to breastfeeding continuum are concentrated in the human female’s areolar region. The aim of this study was to look more closely into the thermal characteristics of areola, which are said to regulate the local evaporation rate of odors and chemical signals that are uniquely important for the neonate’s ‘breast crawl’. A dermatological study of the areolae and corresponding intern breast quadrants was undertaken on the mothers of 70 consecutive, healthy, full-term breastfed infants. The study took place just after the births at the Policlinico Abano Terme, in Italy from January to February 2014. Temperature, pH and elasticity were assessed one day postpartum using the Soft Plus 5.5 (Callegari S.P.A., Parma, Italy). The mean areolar temperature was found to be significantly higher than the corresponding breast quadrant (34.60 ±1.40°C vs. 34.04 ±2.00°C, p<0.001) and the pH was also significantly higher (4.60±0.59 vs. 4.17±0.59, p<0.001). In contrast, the elasticity of the areolar was significantly lower (23.52±7.83 vs. 29.02±8.44%, p<0.003). Our findings show, for the first time, that the areolar region has a higher temperature than the surrounding breast skin, together with higher pH values and lower elasticity. We believe that the higher temperature of the areolar region may act as a thermal signal to guide the infant directly to the nipple and to the natural progression of the birth to breastfeeding continuum. PMID:25815834

  14. Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.

    1985-01-01

    The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.

  15. Influence of a channel-forming peptide on energy barriers to ion permeation, viewed from a continuum dielectric perspective.

    PubMed Central

    Partenskii, M B; Dorman, V; Jordan, P C

    1994-01-01

    The continuum three-dielectric model for an aqueous ion channel pore-forming peptide-membrane system is extended to account for the finite length of the channel. We focus on the electrostatic influence that a channel-forming peptide may exert on energy barriers to ion permeation. The nonlinear dielectric behavior of channel water caused by dielectric saturation in the presence of an ion is explicitly modeled by assigning channel water a mean dielectric constant much less than that of bulk water. An exact solution of the continuum problem is formulated by approximating the dielectric behavior of bulk water, assigning it a dielectric constant of infinity. The validity of this approximation is verified by comparison with a Poisson-Boltzmann description of the electrolyte. The formal equivalence of high ionic strength and high electrolyte dielectric constant is demonstrated. We estimate limits on the reduction of the electrostatic free energy caused by ionic interaction with the channel-forming peptide. We find that even assigning this region an epsilon of 100, its influence is insufficient to lower permeation free energy barriers to values consistent with observed channel conductances. We provide estimates of the effective dielectric constant of this highly polarizable region, by comparing energy barriers computed using the continuum approach with those found from a semi-microscopic analysis of a simplified model of a gramicidin-like charge distribution. Possible ways of improving both models are discussed. PMID:7529581

  16. Ultra-thin resistive switching oxide layers self-assembled by field-induced oxygen migration (FIOM) technique

    PubMed Central

    Lee, Sangik; Hwang, Inrok; Oh, Sungtaek; Hong, Sahwan; Kim, Yeonsoo; Nam, Yoonseung; Lee, Keundong; Yoon, Chansoo; Kim, Wondong; Park, Bae Ho

    2014-01-01

    High-performance ultra-thin oxide layers are required for various next-generation electronic and optical devices. In particular, ultra-thin resistive switching (RS) oxide layers are expected to become fundamental building blocks of three-dimensional high-density non-volatile memory devices. Until now, special deposition techniques have been introduced for realization of high-quality ultra-thin oxide layers. Here, we report that ultra-thin oxide layers with reliable RS behavior can be self-assembled by field-induced oxygen migration (FIOM) at the interface of an oxide-conductor/oxide-insulator or oxide-conductor/metal. The formation via FIOM of an ultra-thin oxide layer with a thickness of approximately 2–5 nm and 2.5% excess oxygen content is demonstrated using cross-sectional transmission electron microscopy and secondary ion mass spectroscopy depth profile. The observed RS behavior, such as the polarity dependent forming process, can be attributed to the formation of an ultra-thin oxide layer. In general, as oxygen ions are mobile in many oxide-conductors, FIOM can be used for the formation of ultra-thin oxide layers with desired properties at the interfaces or surfaces of oxide-conductors in high-performance oxide-based devices. PMID:25362933

  17. The field induced e{sub 31,f} piezoelectric and Rayleigh response in barium strontium titanate thin films

    SciTech Connect

    Garten, L. M. Trolier-McKinstry, S.

    2014-09-29

    The electric field induced e{sub 31,f} piezoelectric response and tunability of Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} (70:30) and Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} (60:40) thin films on MgO and silicon was measured. The relative dielectric tunabilities for the 70:30 and 60:40 compositions on MgO were 83% and 70%, respectively, with a dielectric loss of less than 0.011 and 0.004 at 100 kHz. A linear increase in induced piezoelectricity to −3.0 C/m{sup 2} and −1.5 C/m{sup 2} at 110 kV/cm was observed in Ba{sub 0.6}Sr{sub 0.4}TiO{sub 3} on MgO and Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} on Si. Hysteresis in the piezoelectric and dielectric response of the 70:30 composition films was consistent with the positive irreversible dielectric Rayleigh coefficient. Both indicate a ferroelectric contribution to the piezoelectric and dielectric response over 40–80 °C above the global paraelectric transition temperature.

  18. Large field-induced irreversibility in Ni-Mn based Heusler shape-memory alloys: A pulsed magnetic field study

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.; Mejia, C. Salazar; D'Souza, S. W.; Chadov, S.; Skourski, Y.; Felser, C.; Nicklas, M.

    2014-12-01

    We present a pulsed magnetic field study on the magnetic and magnetostriction properties of Ni-Mn-Z (Z =In , Sn, and Sb) based Heusler shape-memory alloys. These materials generally display a field-induced magnetostructural transition that could lead to an irreversible phase transition, when measured near the martensitic transition temperature. Here, we show that independently of the transition temperature, the critical field for the phase transition sensitively depends on the main-group element in the sample. Irrespective of their compositions, all samples display a magnetization of around 2 μB/f .u . in the martensite phase and about 6 μB/f .u . in the cubic austenite phase. Our magnetic and magnetostriction measurements at low temperatures exhibit a partial or complete arrest of the high-field austenite phase below the reverse martensitic transition. This results in a large irreversibility with a hysteresis width as high as 24 T. We introduce a theoretical model to discuss the experimental results.

  19. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni3TeO6

    DOE PAGES

    Kim, Jae Wook; Artyukhin, Sergei; Mun, Eun Deok; ...

    2015-09-24

    In this paper, we report the discovery of a metamagnetic phase transition in a polar antiferromagnet Ni3TeO6 that occurs at 52 T. The new phase transition accompanies a colossal magnetoelectric effect, with a magnetic-field-induced polarization change of 0.3 μC/cm2, a value that is 4 times larger than for the spin-flop transition at 9 T in the same material, and also comparable to the largest magnetically induced polarization changes observed to date. Via density-functional calculations we construct a full microscopic model that describes the data. We model the spin structures in all fields and clarify the physics behind the 52 Tmore » transition. The high-field transition involves a competition between multiple different exchange interactions which drives the polarization change through the exchange-striction mechanism. Finally, the resultant spin structure is rather counterintuitive and complex, thus providing new insights on design principles for materials with strong magnetoelectric coupling.« less

  20. Antiferroquadrupolar ordering and magnetic-field-induced phase transition in the cage compound PrRh2Zn20

    NASA Astrophysics Data System (ADS)

    Ishii, Isao; Muneshige, Hitoshi; Kamikawa, Shuhei; Fujita, Takahiro K.; Onimaru, Takahiro; Nagasawa, Naohiro; Takabatake, Toshiro; Suzuki, Takashi; Ano, Genki; Akatsu, Mitsuhiro; Nemoto, Yuichi; Goto, Terutaka

    2013-05-01

    To investigate the origin of a phase transition at TQ=0.06 K simultaneously occurring with a superconducting transition in a cage compound PrRh2Zn20, we carried out ultrasonic measurements on a single-crystalline sample. The transverse modulus (C11-C12)/2 is intimately coupled to the non-Kramers ground doublet Γ3, and elastic softening is observed at low temperatures. Below TQ, the softening stops, suggesting the disappearance of quadrupole degrees of freedom. We clarified the negative quadrupole-quadrupole coupling constant and reentrant behavior of TQ(H) in a magnetic field H. These results reveal that the phase transition at TQ is antiferroquadrupolar ordering. The anisotropic magnetic field-temperature phase diagram is determined for H∥[100], [110], and [111]. A magnetic-field-induced phase transition is newly found at high fields in all three field directions. We also observed ultrasonic dispersion at around 50 K owing to the rattling motion of Zn atoms at the 16c site, and pointed out the strong electron-phonon coupling in PrRh2Zn20.