Science.gov

Sample records for field-testing uv disinfection

  1. Field-testing UV disinfection of drinking water

    SciTech Connect

    Gadgil, A.; Drescher, A.; Greene, D.; Miller, P.; Motau, C.; Stevens, F.

    1997-09-01

    A recently invented device, ``UV Waterworks,`` uses ultraviolet (UV) light to disinfect drinking water. Its novel features are: low cost, robust design, rapid disinfection, low electricity use, low maintenance, high flow rate and ability to work with unpressurized water sources. The device could service a community of 1,000 persons, at an annual total cost of less than 10 US cents per person. UV Waterworks has been successfully tested in the laboratory. Limited field trials of an early version of the device were conducted in India in 1994--95. Insights from these trials led to the present design. Extended field trials of UV Waterworks, initiated in South Africa in February 1997, will be coordinated by the South African Center for Essential Community Services (SACECS), with technical and organizational support from Lawrence Berkeley National Laboratory(LBNL) and the Natural Resources Defense Council (both US). The first of the eight planned sites of the year long trial is an AIDS hospice near Durban. Durban metro Water and LBNL lab-tested a UV Waterworks unit prior to installing it at the hospice in August, 1997. The authors describe the field test plans and preliminary results from Durban.

  2. Ultraviolet (UV) Disinfection for Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  3. Ultraviolet (UV) Disinfection for Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens in water with potential to serve as stand-alone treatment or in combination with other disinfectants. USEPA provided guidance on the validation of UV reactors nearly a decade ago. Since then, lesson...

  4. UV DISINFECTION GUIDANCE MANUAL FOR THE ...

    EPA Pesticide Factsheets

    Provides technical information on selection, design and operation of UV systems; provides regulatory agencies with guidance and the necessary tools to assess UV systems at the design, start-up, and routine operation phase; provides manufacturers with the testing and performance standards for UV components and systems for treating drinking water. Provide guidance to water systems, regulators and manufacturers on UV disinfection of drinking water.

  5. DETECTION OF INFECTIOUS ADENOVIRUS IN TERTIARY TREATED AND UV DISINFECTED WASTEWATER DURING A UV DISINFECTION PILOT STUDY

    EPA Science Inventory

    An infectious enteric adenovirus was isolated from urban wastewater receiving tertiary treatment and ultraviolet (UV) disinfection. A pilot study was undertaken to investigate the efficacy of UV disinfection (low pressure, high intensity radiation) of total and fecal coliform bac...

  6. DETECTION OF INFECTIOUS ADENOVIRUS IN TERTIARY TREATED AND UV DISINFECTED WASTEWATER DURING A UV DISINFECTION PILOT STUDY

    EPA Science Inventory

    An infectious enteric adenovirus was isolated from urban wastewater receiving tertiary treatment and ultraviolet (UV) disinfection. A pilot study was undertaken to investigate the efficacy of UV disinfection (low pressure, high intensity radiation) of total and fecal coliform bac...

  7. UV Disinfection System for Cabin Air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung

    Ultraviolet (UV) radiation is commonly used for disinfection of water. As a result of advancements made in the last 10-15 years, the analysis and design of UV disinfection systems for water is well developed. UV disinfection is also used for disinfection of air; however, despite the fact the UV-air systems have a longer record of application than UV-water systems, the methods used to analyze and design UV-air disinfection systems remain quite empirical. It is well-established that the effectiveness of UV-air systems is strongly affected by the type of microorganisms, the irradiation level/type (lamp power and wavelength), duration of irradiation (exposure time), air movement pattern (mixing degree), and relative humidity. This paper will describe ongoing efforts to evaluate, design and test a UV-air system based on first principles. Specific issues to be addressed in this work will include laboratory measurements of relevant kinetics (i.e., UV dose-response behavior) and numerical simulations designed to represent fluid mechanics and the radiation intensity field. UV dose-response behavior of test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (e.g., bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to an environmental chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm2 accomplished 90% (1 log10 units) of the B. subtilis spore inactivation, whereas 99 % (2 log10 units) inactivation was accomplished at this same UV dose under 20% RH conditions. However, at higher doses, the result was opposite of that in low dose. Reactor behavior is simulated using an integrated application

  8. Virus Sensitivity Index of UV disinfection.

    PubMed

    Tang, Walter Z; Sillanpää, Mika

    2015-01-01

    A new concept of Virus Sensitivity Index (VSI) is defined as the ratio between the first-order inactivation rate constant of a virus, ki, and that of MS2-phage during UV disinfection, kr. MS2-phage is chosen as the reference virus because it is recommended as a virus indicator during UV reactor design and validation by the US Environmental Protection Agency. VSI has wide applications in research, design, and validation of UV disinfection systems. For example, it can be used to rank the UV disinfection sensitivity of viruses in reference to MS2-phage. There are four major steps in deriving the equation between Hi/Hr and 1/VSI. First, the first-order inactivation rate constants are determined by regression analysis between Log I and fluence required. Second, the inactivation rate constants of MS2-phage are statistically analysed at 3, 4, 5, and 6 Log I levels. Third, different VSI values are obtained from the ki of different viruses dividing by the kr of MS2-phage. Fourth, correlation between Hi/Hr and 1/VSI is analysed by using linear, quadratic, and cubic models. As expected from the theoretical analysis, a linear relationship adequately correlates Hi/Hr and 1/VSI without an intercept. VSI is used to quantitatively predict the UV fluence required for any virus at any log inactivation (Log I). Four equations were developed at 3, 4, 5, and 6 Log I. These equations have been validated using external data which are not used for the virus development. At Log I less than 3, the equation tends to under-predict the required fluence at both low Log I such as 1 and 2 Log I. At Log I greater than 3 Log I, the equation tends to over-predict the fluence required. The reasons for these may very likely be due to the shoulder at the beginning and the tailing at the end of the collimated beam test experiments. At 3 Log I, the error percentage is less than 6%. The VSI is also used to predict inactivation rate constants under two different UV disinfection

  9. Design and bidding of UV disinfection equipment -- Case study

    SciTech Connect

    Akyurek, M.

    1998-07-01

    Ultraviolet (UV) disinfection systems are being widely considered for application to treated wastewaters, in lieu of conventional chlorination facilities. The number of UV systems operating in the US was approximately 50 in 1984. In 1990 there were over 500 systems, a ten-fold increase. The use of UV disinfection has increased since 1990, and will likely to increase in the future. It is anticipated that as many chlorine disinfection facilities reach their useful life, most of them will be replaced with UV disinfection systems. Several manufacturers offer different UV disinfection equipment. Each offers something different for the designer. There are also different approaches used in estimating the number of lamps needed for the disinfection system. The lack of standardization in determination of the number of lamps for a UV system poses problems for the designer. Such was the case during the design of the disinfection system for the Watertown, SD Wastewater Treatment Plant (WWRP). The purpose of this paper is to present a case study for the design and bidding of UV disinfection equipment.

  10. UV disinfection pilot plant study at the Savannah River Site

    SciTech Connect

    Huffines, R.L.; Beavers, B.A.

    1993-05-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfection process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.

  11. UV disinfection pilot plant study at the Savannah River Site

    SciTech Connect

    Huffines, R.L.; Beavers, B.A.

    1993-01-01

    An ultraviolet light disinfection system pilot plant was operated at the Savannah River Site Central Shops sanitary wastewater treatment package plant July 14, 1992 through August 13, 1992. The purpose was to determine the effectiveness of ultraviolet light disinfection on the effluent from the small package-type wastewater treatment plants currently used on-site. This pilot plant consisted of a rack of UV lights suspended in a stainless steel channel through which a sidestream of effluent from the treatment plant clarifier was pumped. Fecal coliform analyses were performed on the influent to and effluent from the pilot unit to verify the disinfection process. UV disinfection was highly effective in reducing fecal coliform colonies within NPDES permit limitations even under process upset conditions. The average fecal coliform reduction exceeded 99.7% using ultraviolet light disinfection under normal operating conditions at the package treatment plants.

  12. US EPA Testing of LP & MP UV Disinfection Technologies

    EPA Science Inventory

    Presentation will discuss the ongoing USEPA research on UV disinfection addressing the following objectives: Conservatively predict log inactivation and RED of adenovirus with surrogates; Conduct many (LP=61) UV reactor conditions challenged with Ad2, B. pumilus, and MS2 & conduc...

  13. US EPA Testing of LP & MP UV Disinfection Technologies

    EPA Science Inventory

    Presentation will discuss the ongoing USEPA research on UV disinfection addressing the following objectives: Conservatively predict log inactivation and RED of adenovirus with surrogates; Conduct many (LP=61) UV reactor conditions challenged with Ad2, B. pumilus, and MS2 & conduc...

  14. PULSED UV: REALITIES OF ENHANCED DISINFECTION

    EPA Science Inventory

    Quantitative measurements of the light output from low pressure (LP), medium pressure (MP) and the pulsed UV lamps were made using calibrated spectrometry, chemical actinometry and biodosimetry approaches to compare their relative efficiency in producing germicidal UV energy. Fur...

  15. PULSED UV: REALITIES OF ENHANCED DISINFECTION

    EPA Science Inventory

    Quantitative measurements of the light output from low pressure (LP), medium pressure (MP) and the pulsed UV lamps were made using calibrated spectrometry, chemical actinometry and biodosimetry approaches to compare their relative efficiency in producing germicidal UV energy. Fur...

  16. Tertiary treatment using microfiltration and UV disinfection for water reclamation

    SciTech Connect

    Jolis, D.; Hirano, R.; Pitt, P.

    1999-03-01

    Microfiltration and UV disinfection are two alternative technologies for water reclamation. The results of a pilot study combining these two processes are presented. In addition to producing filtrate turbidites averaging 0.06 nephelometric turbidity units, microfiltration was an effective barrier to pathogens, demonstrating average log reductions of 4.5 for total coliforms and 2.9 for MS2 bacteriophage. Ultraviolet disinfection following microfiltration reliably met the California Wastewater Reclamation Criteria (Title 22) total coliform standard of 2.2 colony-forming units/100 mL at a UV dose of 450 J/m{sup 2}. The MS2 bacteriophage standard, which requires a 5-log reduction, was achieved by microfiltration and a UV dose of 880 J/m{sup 2}. A model of the kinetics of inactivation of MS2 bacteriophage was used in further analysis of disinfection data. The model indicated that considerable backmixing occurred in the pilot UV disinfection unit, and observed UV doses could be reduced with improved hydraulics.

  17. UV disinfection for reuse applications in North America.

    PubMed

    Sakamoto, G; Schwartzel, D; Tomowich, D

    2001-01-01

    In an effort to conserve and protect limited water resources, the States of Florida and California have actively promoted wastewater reclamation and have implemented comprehensive regulations covering a range of reuse applications. Florida has a semi-tropical climate with heavy summer rains that are lost due to run off and evaporation. Much of California is arid and suffers periodic droughts, low annual rainfall and depleted ground water supplies. The high population density combined with heavy irrigation demands has depleted ground water supplies resulting in salt-water intrusion. During the past decade, Florida reuse sites have increased dramatically from 118 to 444 plants representing a total flow capacity of 826 MGD. California presently has over 250 plants producing 1 BGD with a projected increase of 160 sites over the next 20 years. To prevent the transmission of waterborne diseases, disinfection of reclaimed water is controlled by stringent regulations. Many states regulate wastewater treatment processes, nutrient removal, final effluent quality and disinfection criteria based upon the specific reuse application. As a rule, the resulting effluents have low turbidity and suspended solids. For such effluents, UV technology can economically achieve the most stringent disinfection targets that are required by the States of California and Florida for restricted and unrestricted reuse. This paper compares UV disinfection for wastewater reuse sites in California and Florida and discusses the effect of effluent quality on UV disinfection.

  18. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments.

    PubMed

    Koivunen, J; Heinonen-Tanski, H

    2005-04-01

    The relative disinfection efficiencies of peracetic acid (PAA), hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) against Escherichia coli, Enterococcus faecalis, Salmonella enteritidis and coliphage MS2 virus were studied in laboratory-scale experiments. This study also evaluated the efficiency of combined PAA/ultraviolet irradiation (UV) and H2O2/UV treatments to determine if the microbial inactivation was synergistic. Microbial cultures were added into a synthetic wastewater-like test medium and treated by chemical disinfectants with a 10 min contact time, UV irradiation or the combination of chemical and UV treatments. A peracetic acid dose of 3 mg/l resulted in approximately 2-3 log enteric bacterial reductions, whereas 7-15 mg/l PAA was needed to achieve 1-1.5 log coliphage MS2 reductions. Doses of 3-150 mg/l hydrogen peroxide achieved below 0.2 log microbial reductions. Sodium hypochlorite treatments caused 0.3-1 log microbial reductions at an 18 mg/l chlorine dose, while 2.6 log reductions of E. faecalis were achieved at a 12 mg/l chlorine dose. The results indicate that PAA could represent a good alternative to chlorine compounds in disinfection procedures, especially in wastewaters containing easily oxidizable organic matter. Hydrogen peroxide is not an efficient disinfectant against enteric microorganisms in wastewaters. The combined PAA/UV disinfection showed increased disinfection efficiency and synergistic benefits with all the enteric bacteria tested but lower synergies for the coliphage MS2. This suggests that this method could improve the efficiency and reliability of disinfection in wastewater treatment plants. The combined H2O2/UV disinfection only slightly influenced the microbial reductions compared to UV treatments and showed some antagonism and no synergies.

  19. Calibration and characterization of UV sensors for water disinfection

    NASA Astrophysics Data System (ADS)

    Larason, T.; Ohno, Y.

    2006-04-01

    The National Institute of Standards and Technology (NIST), USA is participating in a project with the American Water Works Association Research Foundation (AwwaRF) to develop new guidelines for ultraviolet (UV) sensor characteristics to monitor the performance of UV water disinfection plants. The current UV water disinfection standards, ÖNORM M5873-1 and M5873-2 (Austria) and DVGW W294 3 (Germany), on the requirements for UV sensors for low-pressure mercury (LPM) and medium-pressure mercury (MPM) lamp systems have been studied. Additionally, the characteristics of various types of UV sensors from several different commercial vendors have been measured and analysed. This information will aid in the development of new guidelines to address issues such as sensor requirements, calibration methods, uncertainty and traceability. Practical problems were found in the calibration methods and evaluation of spectral responsivity requirements for sensors designed for MPM lamp systems. To solve the problems, NIST is proposing an alternative sensor calibration method for MPM lamp systems. A future calibration service is described for UV sensors intended for low- and medium-pressure mercury lamp systems used in water disinfection applications.

  20. UV disinfection of Giardia lamblia cysts in water.

    PubMed

    Linden, Karl G; Shin, Gwy-Am; Faubert, Gaetan; Cairns, William; Sobsey, Mark D

    2002-06-01

    The human and animal pathogen Giardia lamblia is a waterborne risk to public health because the cysts are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Given the recently recognized efficacy of UV irradiation against Cryptosporidium parvum oocysts, the inactivation of G. lamblia cysts in buffered saline water at pH 7.3 and room temperature by near monochromatic (254 nm) UV irradiation from low-pressure mercury vapor lamps was determined using a "collimated beam" exposure system. Reduction of G. lamblia infectivity for gerbils was very rapid and extensive, reaching a detection limit of >4 log within a dose of 10 JM-2. The ability of UV-irradiated G. lamblia cysts to repair UV-induced damage following typical drinking water and wastewater doses of 160 and 400 JM(-2) was also investigated using experimental protocols typical for bacterial and eucaryotic DNA repair under both light and dark conditions. The infectivity reduction of G. lamblia cysts at these UV doses remained unchanged after exposure to repair conditions. Therefore, no phenotypic evidence of either light or dark repair of DNA damage caused by LP UV irradiation of cysts was observed at the UV doses tested. We conclude that UV disinfection at practical doses achieves appreciable (much greater than 4 log) inactivation of G. lamblia cysts in water with no evidence of DNA repair leading to infectivity reactivation.

  1. Wastewater disinfection alternatives: chlorine, ozone, peracetic acid, and UV light.

    PubMed

    Mezzanotte, V; Antonelli, M; Citterio, S; Nurizzo, C

    2007-11-01

    Disinfection tests were carried out at pilot scale to compare the disinfection efficiency of ozone, sodium hypochlorite (NaOCl), peracetic acid (PAA), and UV irradiation. Total coliforms, fecal coliforms, and Escherichia coli were monitored as reference microorganisms. Total heterotrophic bacteria (THB) were also enumerated by cytometry. At similar doses, NaOCl was more effective than PAA, and its action was less affected by contact time. The results obtained by ozonation were comparable for total coliforms, fecal coliforms, and E. coli. On the contrary, some differences among the three indicators were observed for NaOCl, PAA, and UV. Differences increased with increasing values of the disinfectant concentration times contact time (C x t) and were probably the result of different initial counts, as total coliforms include fecal coliforms, which include E. coli. The UV irradiation lead to complete E. coli removals, even at low doses (10 to 20 mJ/cm2). Total heterotrophic bacteria appeared to be too wide a group to be a good disinfection indicator; no correlation was found among THB inactivation, dose, and contact time.

  2. Ozone and UV254 radiation for municipal wastewater disinfection.

    PubMed

    Blatchley, Ernest R; Weng, Shihchi; Afifi, Mehrnaz Zare; Chiu, Hsiao-Han; Reichlin, Douglas B; Jousset, Stéphane; Erhardt, Richard S

    2012-11-01

    Bench-scale experiments were conducted with municipal wastewater effluent samples to examine the feasibility of combined application of ozone and ultraviolet (UV) radiation for disinfection. Effluent samples displayed rapid initial ozone demand, which promotes ozone transfer but diminishes disinfection efficacy. Ozone doses up to 10 mg/L yielded only trace quantities of residual ozone; despite the fact that initial ozone demand was never exceeded, quantifiable (though variable) inactivation of E. coli was observed, along with modest improvements of UV transmittance. Results from collimated beam experiments demonstrated that compliance with effluent discharge permit limitations could be achieved consistently with a UV254 dose of 12.4 mJ/cm2 at a pre-ozonation dose of 2 to 3 mg/L. In the absence of pre-ozonation, consistent compliance was observed at a UV dose of 16.5 mJ/cm2. No evidence of synergism between ozone and UV254 radiation was found in the measured inactivation responses of E. coli.

  3. EVALUATING IN VITRO INFECTIVITY FOR MEASURING UV DISINFECTION OF CRYPTOSPORIDIUM PARVUM OOCYSTS IN FINISHED WATER

    EPA Science Inventory

    UV technology to inactivate Cryptosporidium parvum oocysts has become well established in the US. The challenge now is to effectively demonstrate UV reactor performance and disinfection capacity with various finished water matrices and under different operational conditions. In s...

  4. EVALUATING IN VITRO INFECTIVITY FOR MEASURING UV DISINFECTION OF CRYPTOSPORIDIUM PARVUM OOCYSTS IN FINISHED WATER

    EPA Science Inventory

    UV technology to inactivate Cryptosporidium parvum oocysts has become well established in the US. The challenge now is to effectively demonstrate UV reactor performance and disinfection capacity with various finished water matrices and under different operational conditions. In s...

  5. Evaluation of Filtration and UV Disinfection for Inactivation of ...

    EPA Pesticide Factsheets

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3) cartridge filtration. Two types of low-pressure UV systems were evaluated with and without pretreatment systems. The presentation will provide results for removal of particles and inactivation of MS2 bacteriophage (a viral surrogate) on two surface waters in northeastern Minnesota. Several studies, including a recent study conducted by Minnesota Department of Health (MDH), show that viruses occur in groundwater at a higher rate than expected. Based on preliminary results in Minnesota, virus occurrence appears to be correlated with recharge events such as heavy rainfall and snowmelt. These recharge events are predicted to become more extreme due to climate change impacts. Filtration, ultraviolet (UV) disinfection, and chlorination, can provide a multi-barrier approach for removal or inactivation of pathogens and DBP precursors in both groundwater and surface water systems.

  6. COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES

    EPA Science Inventory

    Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...

  7. COMPARATIVE DISINFECTION EFFICIENCY OF PULSED AND CONTINUOUS-WAVE UV IRRADIATION TECHNOLOGIES

    EPA Science Inventory

    Pulsed UV (PUV) is novel UV irradiation system that is a non-mercury lamp based alternative to currently used continuous-wave systems for water disinfection. To compare the polychromatic PUV irradiation disinfection efficiency with that from continuous wave monochromatic low-pre...

  8. Kinetics of inactivation and photoreactivation of Escherichia coli using ultrasound-enhanced UV-C light-emitting diodes disinfection.

    PubMed

    Zhou, Xiaoqin; Li, Zifu; Lan, Juanru; Yan, Yichang; Zhu, Nan

    2017-03-01

    Ultraviolet (UV) disinfection is highly recommended owing to its high disinfection efficiency and disinfection by-products free, and UV Light-Emitting Diodes (UV LEDs) is increasingly becoming an alternative of mercury UV lamps for water disinfection owing to its long lifetime, low input power, and absence of problems on disposal. However, renovation of existing UV lamps faces the challenges for UV disinfection associated with disinfection efficiency and photoreactivation, and modified UV disinfection process is required for practical application. In this study, mathematical rule of disinfection and photoreactivation in a US enhanced UV disinfection system was investigated. UV LED with peak emission at 254nm (UV-C LED) was selected as representative for UV lamps, and a low frequency US was used as pretreatment followed by UV disinfection. The disinfection efficiency of Escherichia coli in deionized water (DI), DI water with kaoline suspension (DIK), and secondary effluent (SE) of municipal wastewater treatment plant were analyzed. Moreover, photoreactivation of E. coli in DIK water within 6h after disinfection was conducted. The experimental results showed that the disinfection efficiencies had good fit with Chick-Watson first-order linear model, and US pretreatment increased the inactivation rate constant for E. coli, which increased from 0.1605 to 0.1887 in the DIK water. Therefore, US pretreatment with UV disinfection have potential to shorten the retention time and reduce the reactor volume. Moreover, the number of photoreactivated E. coli in effluent was reduced under UV-C LED disinfection with US pretreatment compared with that under UV-C LED disinfection alone. The order of maximum percentage of photo-reactivated E. coli was as follows: UV-C LED disinfection alone at 30mJ/cm(2)>UV-C LED disinfection at 25mJ/cm(2) with US pretreatment>UV-C LED disinfection at 30mJ/cm(2) with US pretreatment. The survival ratio versus photoreactivation time showed a good fit

  9. Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms.

    PubMed

    Murphy, H M; Payne, S J; Gagnon, G A

    2008-04-01

    This study was designed to examine the potential downstream benefits of sequential disinfection to control the persistence of Escherichia coli under conditions relevant to drinking water distribution systems. Eight annular reactors (four polycarbonate and four cast iron) were setup in parallel to address various factors that could influence biofilm growth in distribution systems. Eight reactors were treated with chlorine, chlorine dioxide and monochloramine alone or in combination with UV to examine the effects on Escherichia coli growth and persistence in both the effluent and biofilm. In general, UV-treated systems in combination with chlorine or chlorine dioxide and monochloramine achieved greater log reductions in both effluent and biofilm than systems treated with chlorine-based disinfectants alone. However, during UV-low chlorine disinfection, E. coli was found to persist at low levels, suggesting that the UV treatment had instigated an adaptive mutation. During UV-chlorine-dioxide treatment, the E. coli that was initially below the detection limit reappeared during a low level of disinfection (0.2 mg/L) in the cast iron systems. Chloramine was shown to be effective in disinfecting suspended E. coli in the effluent but was unable to reduce biofilm counts to below the detection limit. Issues such as repair mechanism of E. coli and nitrification could help explain some of these aberrations. Improved understanding of the ability of chlorine-based disinfectant in combination with UV to provide sufficient disinfection will ultimately effect in improved management and safety of drinking water.

  10. The response of aggregated Pseudomonas putida CP1 cells to UV-C and UV-A/B disinfection.

    PubMed

    Maganha de Almeida, Ana C; Quilty, Bríd

    2016-11-01

    UV radiation is a spread method used worldwide for the disinfection of water. However, much of the research on the disinfection of bacterial cells by UV has focused on planktonic cells. Many bacterial cells in nature are present in clumps or aggregates, and these aggregates, which are more resistant to disinfection than their planktonic counterparts, can be problematic in engineered water systems. The current research used Pseudomonas putida (P. putida) CP1, an environmental and non-pathogenic microorganism which autoaggregates when grown under certain conditions, as a model organism to simulate aggregated cells. The study investigated the response of both the planktonic and the aggregated forms of the bacterium to UV-C (λ = 253.7 nm) and UV-A/B (λ > 300 nm) disinfection at laboratory scale in a minimal medium. The planktonic cells of P. putida CP1 were inactivated within 60 s by UV-C and in 60 min by UV-A/B; however, the aggregated cells required 120 min of UV-C treatment and 240 min of UV-A/B radiation to become inactive. The size of the aggregate was reduced following UV treatment. Although all the cells had lost culturability, viability as measured by the LIVE/DEAD(®) stain and epifluorescence microscopy was not completely lost and the cells all demonstrated regrowth after overnight incubation in the dark.

  11. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems - presentation

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  12. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems - presentation

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  13. Effectiveness of UV-C light irradiation on disinfection of an eSOS(®) smart toilet evaluated in a temporary settlement in the Philippines.

    PubMed

    Zakaria, Fiona; Harelimana, Bertin; Ćurko, Josip; van de Vossenberg, Jack; Garcia, Hector A; Hooijmans, Christine Maria; Brdjanovic, Damir

    2016-01-01

    Ultraviolet germicidal (short wavelength UV-C) light was studied as surface disinfectant in an Emergency Sanitation Operation System(®) smart toilet to aid to the work of manual cleaning. The UV-C light was installed and regulated as a self-cleaning feature of the toilet, which automatically irradiate after each toilet use. Two experimental phases were conducted i.e. preparatory phase consists of tests under laboratory conditions and field testing phase. The laboratory UV test indicated that irradiation for 10 min with medium-low intensity of 0.15-0.4 W/m(2) could achieve 6.5 log removal of Escherichia coli. Field testing of the toilet under real usage found that UV-C irradiation was capable to inactivate total coliform at toilet surfaces within 167-cm distance from the UV-C lamp (UV-C dose between 1.88 and 2.74 mW). UV-C irradiation is most effective with the support of effective manual cleaning. Application of UV-C for surface disinfection in emergency toilets could potentially reduce public health risks.

  14. Role of ultraviolet (UV) disinfection in infection control and environmental cleaning.

    PubMed

    Qureshi, Zubair; Yassin, Mohamed H

    2013-06-01

    Ultraviolet (UV) radiation is capable of disinfecting surfaces, water and air. The UV technology was used for many years. However, safer and more effective delivery systems of UV radiation, make it a very useful option for disinfection. Effective disinfection of environmental surfaces is a key step in the prevention of spread of infectious agents. The traditional manual cleaning is essential in assuring adequate elimination of contamination. However, terminal cleaning is frequently suboptimal or unpredictable in many circumstances. UV-C radiation is an adjunctive disinfectant new technology that could kill a wide array of microorganisms including both vegetative and spore forming pathogens. The technology is getting more affordable and has produced consistent reproducible significant reduction of bacterial contamination.

  15. Comparison of UV-LED and low pressure UV for water disinfection: Photoreactivation and dark repair of Escherichia coli.

    PubMed

    Li, Guo-Qiang; Wang, Wen-Long; Huo, Zheng-Yang; Lu, Yun; Hu, Hong-Ying

    2017-09-17

    Studies on ultraviolet light-emitting diode (UV-LED) water disinfection have shown advantages, such as safety, flexible design, and lower starting voltages. However, information about reactivation after UV-LED disinfection is limited, which is an important issue of UV light-based technology. In this study, the photoreactivation and dark repair of Escherichia coli after UV-LEDs and low pressure (LP) UV disinfection were compared. Four UV-LED units, 265 nm, 280 nm, the combination of 265 + 280 (50%), and 265 + 280 (75%) were tested. 265 nm LEDs was more effective than 280 nm LEDs and LP UV lamps for E. coli inactivation. No synergic effect for disinfection was observed from the combination of 265 and 280 nm LEDs. 265 nm LEDs had no different reactivation performances with that of LP UV, while 280 nm LEDs could significantly repress photoreactivation and dark repair at a low irradiation intensity of 6.9 mJ/cm(2). Furthermore, the UV-induced damage of 280 nm LEDs was less repaired which was determined by endonuclease sensitive site (ESS) assay. The impaired protein activities by 280 nm LEDs might be one of the reasons that inhibited reactivation. A new reactivation rate constant, Kmax, was introduced into the logistic model to simulate the reactivation data, which showed positive relationship with the maximum survival ratio and was more reasonable to interpret the results of photoreactivation and dark repair. This study revealed the distinct roles of different UV lights in disinfection and reactivation, which is helpful for the future design of UV-LED equipment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluation of photoreactivation of Escherichia coli and Enterococci after UV disinfection of municipal wastewater.

    PubMed

    Locas, Annie; Demers, Josée; Payment, Pierre

    2008-11-01

    Because chlorine disinfection is not permitted in the province of Quebec, wastewater disinfection by ultraviolet (UV) light has been used for years in wastewater treatment plants. Thermotolerant coliforms discharge criteria are set for each plant and are adjusted by a factor of 1 log to compensate for photoreactivation in UV-disinfected effluents. The current study evaluated levels of Escherichia coli and enterococci photoreactivation from disinfected wastewater under varying temperature, visible light, and type of UV lamps. Escherichia coli photoreactivation increased significantly after exposure to 5600 lx compared with 1600 lx of visible light. This increase was significantly higher in warm water (25 degrees C) than cold water (4 degrees C). The level of photoreactivation of E. coli was also higher after wastewater disinfection by low-pressure UV lamps as opposed to medium-pressure UV lamps. Enterococci, however, were not photoreactivated under any test conditions. This result suggests that enterococci could be a better indicator than thermotolerant coliforms or E. coli. The use of enterococci would also eliminate the requirement to set different discharge criteria based on disinfection type (UV or chemical) and would also provide a better assessment of treatment efficiency for more resistant microorganisms.

  17. Feasibility of the silver-UV process for drinking water disinfection.

    PubMed

    Butkus, Michael A; Talbot, Mark; Labare, Michael P

    2005-12-01

    A synergistic effect between cationic silver and UV radiation (silver-UV disinfection) has been observed that can appreciably enhance inactivation of viruses. The purpose of this work was to assess the feasibility of this technique for drinking water disinfection and evaluate the effects of selected impurities, found in fresh water, and common parameters on inactivation of the coliphage MS-2 with the silver-UV process. Turbidity (kaolin), calcium hardness, carbonate alkalinity, and pH did not significantly degrade inactivation. Inactivation was reduced in the presence of chloride, at concentrations greater than 30 mg/L, and in water samples with UV-254 absorbance values greater than ca. 0.1 cm(-1). Inactivation of MS-2 with silver-UV disinfection was also reduced at high phosphate concentrations (above ca. 5 mM). Silver-UV inactivation of MS-2 increased with increases in temperature between 10 and 20 degrees C. Silver-UV inactivation of MS-2 was increased by greater than 1-log over UV alone, in two untreated fresh water sources, which indicates that silver-UV may be a viable treatment technology. An assessment of operation and management costs suggests that an increase in inactivation of MS-2 with silver-UV disinfection could be economically beneficial.

  18. Modeling and kinetic characterization of wastewater disinfection using chlorine and UV irradiation.

    PubMed

    Mounaouer, Brahmi; Abdennaceur, Hassen

    2016-10-01

    Sewage disinfection has the primary objective of inactivating pathogenic organisms to prevent the dissemination of waterborne diseases. This study analyzed individual disinfection, with chlorine alone, ultraviolet radiation alone, and a combined disinfection process (chlorine-UV radiation). Pseudomonas aeruginosa ATCC 15442, Escherichia coli ATCC 11229, Salmonella typhi ATCC 14028, and Clostridium perfringens were selected to evaluate the efficiency of different disinfection processes. The aim of the present study was to characterize the kinetics of chlorine (as NaHOCl) consumption, to evaluate responses of these bacterial species to the chlorination, the ultraviolet (UV) radiation, and the chlorine/UV disinfection processes in secondary wastewater using a batch laboratory reactor. Another target of this work was to study the modeling of the kinetic of water disinfection by chlorination and/or UV irradiation. Two kinetic models (Chick-Watson and Hom) were tested as to ability to scale disinfection of these bacterial species by different ultraviolet and/or chlorine doses. The results of the kinetics of chlorine consumption showed that monochloramines and trichloramines were the most important forms of residual chlorine as compared to free chlorine and dichloramines. The kinetics of inactivation of all examined bacterial strains showed that the application of the model of Hom in its original form was not representative of this kinetics of inactivation. Modification of this model, considering an initial decline of bacteria during the contact of water with chlorine, improved the results of the model. By the same, results revealed that the involved processes of UV irradiation were too complex to be approached by a simplified formulation, even in the case of specific strains of microorganisms and the use of nearly constant UV radiation intensity. In fact, the results have pointed out that the application of the Chick-Watson law is known to be inadequate to describe

  19. Impact of UV disinfection on microbially available phosphorus, organic carbon, and microbial growth in drinking water.

    PubMed

    Lehtola, Markku J; Miettinen, Ilkka T; Vartiainen, Terttu; Rantakokko, Panu; Hirvonen, Arja; Martikainen, Pertti J

    2003-03-01

    UV irradiation at a wavelength of 253.7 nm (UV(254)) is commonly used for drinking water disinfection. UV radiation is known to convert organically combined phosphorus to orthophosphate and to degrade natural organic matter. We studied if UV disinfection increases the amount of microbially available forms of organic carbon and phosphorus in drinking waters with different characteristics, and if these changes in water chemical quality could enhance the microbial growth in drinking water. The UV(254) dose (15-50 mWs/cm(2)) used in waterworks reduced the concentration of assimilable organic carbon and the sum of the molecular size fractions. The release of microbially available phosphorus needed higher doses (204 mWs/cm(2)) of UV(254) radiation. Of bacteria in drinking water, 90% were inactivated with UV(254)-irradiation doses below 50 mWs/cm(2). A high dose (501 mWs/cm(2)) of UV(254) radiation inhibited the microbial growth in water.

  20. Disinfection of a wastewater flow treated by advanced primary treatment using O₃, UV and O₃/UV combinations.

    PubMed

    Bustos, Yaneth A; Vaca, Mabel; López, Raymundo; Torres, Luis G

    2010-11-01

    This study was conducted to evaluate the ozone, UV and O₃/UV processes for the reuse of sewage treatment plant effluent (Universidad Autonoma Metropolitana Azcapotzalco wastewater treatment plant). The ozone/UV process was compared to individual ozone and the UV processes and control parameters were total and fecal coliforms. Different ozone concentrations (6-12 mg O₃/min) and different UV fluencies (6.7-20.12 mJ/cm²) were tested. It is possible to conclude than none of the processes achieved the disinfection levels required to comply with the Mexican standard NOM-003-SEMARNAT-1997. The continuous ozone process offered the lower total and fecal coliforms reductions, while UV light resulted a disinfection agent with higher germicide power than ozone. The maximum logarithmic reduction achieved due to the combined ozone/UV process was of 2.04 for fecal coliforms and of 2.17 for total coliforms. The next 8 combinations showed lower removal efficiencies, but always higher than those obtained with the single ozone or UV processes. The ozone/UV process was highly effective for the disinfection and a synergistic effect was observed.

  1. Enhancing disinfection by advanced oxidation under UV irradiation in polyphosphate-containing wastewater flocs.

    PubMed

    Azimi, Y; Allen, D G; Farnood, R R

    2014-05-01

    In this paper, the role of naturally occurring polyphosphate in enhancing the ultraviolet disinfection of wastewater flocs is examined. It was found that polyphosphate, which accumulates naturally within the wastewater flocs in the enhanced biological phosphorus removal process, is capable of producing hydroxyl radicals under UV irradiation and hence causing the photoreactive disinfection of microorganisms embedded within flocs. This phenomenon is likely responsible for the improved UV disinfection of the biological nutrient removal (BNR) effluent compared to that of conventional activated sludge effluent by as much as 1 log. A mathematical model is developed that combines the chemical disinfection by hydroxyl radical formation within flocs, together with the direct inactivation of microorganisms by UV irradiation. The proposed model is able to quantitatively explain the observed improvement in the UV disinfection of the BNR effluents. This study shows that the chemical composition of wastewater flocs could have a significant positive impact on their UV disinfection by inducing the production of oxidative species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Evaluation of DNA damage reversal during medium-pressure UV disinfection.

    PubMed

    Poepping, Christopher; Beck, Sara E; Wright, Harold; Linden, Karl G

    2014-06-01

    Ultraviolet (UV) disinfection relies on the principal that DNA exposure to UV irradiation leads to the formation of cytotoxic lesions resulting in the inactivation of microorganisms. Cyclobutane pyrimdine dimers (CPDs) account for the majority of DNA lesions upon UV exposure. Past research has demonstrated reversal of CPDs in extracted DNA formed at high UV-C wavelength irradiation (280 nm) upon subsequent irradiation at lower UVC wavelengths (230-240 nm). Medium-pressure (MP) UV lamps produce a polychromatic emission giving rise to the possibility that cellular DNA in a target pathogen may undergo simultaneous damage and repair when exposed to multiple wavelengths during the disinfection process, decreasing the efficiency of MP UV lamp disinfection. Culture techniques and a quantitative polymerase chain reaction (qPCR) assay were used to examine cell viability and DNA damage reversal. qPCR results indicated direct photoreversal of UV-induced DNA damage through sequential irradiations of 280 nm followed by 228 nm in Escherichia coli DNA. However, significant photoreversal was only observed after high initial doses and secondary doses of UV light. The doses where significant photoreversal took place were more than 10 times higher than those typically used in UV disinfection. Despite evidence of CPD photoreversal, bacterial growth assays showed no indication that sequential-wavelength irradiations result in higher survival rates than single-wavelength irradiations.

  3. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review.

    PubMed

    Song, Kai; Mohseni, Madjid; Taghipour, Fariborz

    2016-05-01

    Ultraviolet (UV) disinfection is an effective technology for the inactivation of pathogens in water and is of growing interest for industrial application. A new UV source - ultraviolet light-emitting diode (UV-LED) - has emerged in the past decade with a number of advantages compared to traditional UV mercury lamps. This promising alternative raises great interest in the research on application of UV-LEDs for water treatment. Studies on UV-LED water disinfection have increased during the past few years. This article presents a comprehensive review of recent studies on UV-LEDs with various wavelengths for the inactivation of different microorganisms. Many inconsistent and incomparable data were found from published studies, which underscores the importance of establishing a standard protocol for studying UV-LED inactivation of microorganisms. Different UV sensitivities to UV-LEDs and traditional UV lamps were observed in the literature for some microorganisms, which requires further investigation for a better understanding of microorganism response to UV-LEDs. The unique aspects of UV-LEDs improve inactivation effectiveness by applying LED special features, such as multiple wavelengths and pulsed illumination; however, more studies are needed to investigate the influencing factors and mechanisms. The special features of UV-LEDs offer the flexibility of novel reactor designs for a broad application of UV-LED reactors.

  4. UV-based technologies for marine water disinfection and the application to ballast water: Does salinity interfere with disinfection processes?

    PubMed

    Moreno-Andrés, Javier; Romero-Martínez, Leonardo; Acevedo-Merino, Asunción; Nebot, Enrique

    2017-03-01

    Water contained on ships is employed in the majority of activities on a vessel; therefore, it is necessary to correctly manage through marine water treatments. Among the main water streams generated on vessels, ballast water appears to be an emerging global challenge (especially on cargo ships) due to the transport of invasive species and the significant impact that the ballast water discharge could have on ecosystems and human activities. To avoid this problem, ballast water treatment must be implemented prior to water discharge in accordance with the upcoming Ballast Water Management Convention. Different UV-based treatments (photolytic: UV-C and UV/H2O2, photocatalytic: UV/TiO2), have been compared for seawater disinfection. E. faecalis is proposed as a biodosimeter organism for UV-based treatments and demonstrates good properties for being considered as a Standard Test Organism for seawater. Inactivation rates by means of the UV-based treatments were obtained using a flow-through UV-reactor. Based on the two variables responses that were studied (kinetic rate constant and UV-Dose reductions), both advanced oxidation processes (UV/H2O2 and photocatalysis) were more effective than UV-C treatment. Evaluation of salinity on the processes suggests different responses according to the treatments: major interference on photocatalysis treatment and minimal impact on UV/H2O2.

  5. Use of Clinical UV Chamber to Disinfect Dental Impressions: A Comparative Study

    PubMed Central

    Sharma, Sakshi; Kumar, Varun; Gupta, Neelu

    2015-01-01

    Introduction Dental impressions are potential source of infection in a prosthodontic practice. Risk of transmission of infection through saliva, blood etc is considered as hazard for both dentist as well as dental auxiliary staff. A number of methods are currently employed for disinfecting the impressions which are technique sensitive and time consuming. This study focuses on disinfecting impression using dental UV chamber which is commonly employed for storing sterilized instruments. Aim The aim of this invitro study was to evaluate the use of clinical UV chamber to disinfect various impression materials at different time intervals and its comparison with 2% glutaraldehyde using standard immersion technique. Materials and Methods Total sample size of 180 specimens was taken from three different impression materials. The impressions were made from 30 dentulous subjects. A total of ten impressions were made for each impression material i.e. alginate, addition silicone and polyether impression material. Six punch samples were taken from each impression. Out of 6 punch sample, one was kept as control, second was disinfected by immersing in freshly prepared 2% glutaraldehyde solution for 10 minutes and remaining four were exposed to UV rays for 3 minutes, 6 minutes, 10 minutes and 15 minutes using dental UV chamber. Amount of disinfection achieved was evaluated by counting the colonies over the culture plates with the help of digital colony. Results The results showed that the mean CFUs for alginate were found to be i.e. 11797.40 ± 5989.73 (mean ± SD). The mean CFUs for addition silicone impression material was found 7095.40 with a standard deviation of 4268.83 and the mean CFUs for polyether impression material was found to be 2168.92 ± 1676 (mean ± SD). Conclusion For alginate and addition silicone impression material, disinfection was achieved on exposure to UV rays for a period of 10 minutes. However, for polyether impression material 3 minutes of exposure to

  6. Inactivation of human adenovirus by sequential disinfection with an alternative UV technology and free chlorine.

    PubMed

    Lee, Jung-Keun; Shin, Gwy-Am

    2011-03-01

    There has been growing concern over human exposure to adenoviruses through drinking water due to the extreme resistance of human adenoviruses to the traditional UV technology (low-pressure (LP) UV). As an effort to develop an effective treatment strategy against human adenoviruses in drinking water, we determined the effectiveness of sequential disinfection with an alternative UV technology (medium-pressure (MP) UV) and free chlorine. Human adenovirus 2 (Ad2) was irradiated with a low dose of MP UV irradiation (10 mJ/cm(2)) through UV collimated apparatus and then exposed to a low dose of free chlorine (0.17 mg/L) at pH 8 and 5°C using a bench-scale chemical disinfection system. A significant inactivation (e.g. 4 log(10)) of Ad2 was achieved with the low doses of MP UV and free chlorine within a very short contact time (∼1.5 min) although there was no apparent synergistic effect on Ad2 between MP UV and free chlorine. Overall, it is likely that the sequential disinfection with UV irradiation and free chlorine should control the contamination of drinking water by human adenoviruses within practical doses of UV and free chlorine typically used in drinking water treatment processes.

  7. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  8. IDENTIFICATION OF TI02/UV DISINFECTION BYPRODUCTS IN DRINKING WATER

    EPA Science Inventory

    Due to concern over the presence of trihalomethanes (THMs) and other chlorinated byproducts in chlorinated drinking water, alternative disinfection methods are being explored. One of the alternative treatment methods currently being evaluated for potential use with small systems ...

  9. Photoreactivation and subsequent solar disinfection of Escherichia coli in UV-disinfected municipal wastewater under natural conditions.

    PubMed

    Schmidtlein, F; Lübken, M; Grote, I; Orth, H; Wichern, M

    2015-01-01

    Photoreactivation of ultraviolet (UV)-disinfected wastewater of different qualities was experimentally assessed. Photoreactivation ability of secondary effluent and microstrained inflow was analyzed in different samples of 50 mL (Petri dish) and 7,000 mL volume to describe open channel effluent situations of wastewater treatment plants in a more realistic approach. The small sample of secondary effluent revealed a total log10 inactivation of 1.8 units and the small sample of microstrained inflow a total log10 inactivation of 3.2, with an applied UV-254 fluence of 84 and 253 J/m², respectively. Maximum net photoreactivation for secondary effluent and microstrained inflow was in the order of 1.2 log10 and 0.37 log10 units, respectively, for both sample sizes. However, significantly faster photoreactivation performance was generally determined for small sample volumes. The photoreactivation processes were completely compensated for by solar disinfection within a 120 min exposure time. Solar disinfection processes were negligible in the larger sample volumes of microstrained inflow. For municipal wastewater treatment systems with open channel effluents, it is essential to take into consideration the dependence of solar UV-365 fluence rate on water depth and wastewater characteristics.

  10. Sequential water disinfection using UV irradiation and iodination for long-term space missions

    NASA Astrophysics Data System (ADS)

    Pennell, Kelly

    As part of the NASA Specialized Center of Research and Training for Advanced Life Support (NSCORT-ALS), a disinfection process, which uses ultraviolet (UV) radiation as the primary disinfectant and iodine as the secondary disinfectant, was investigated. The purpose of this research was to support NASA's goal of long-term space missions to destinations such as Mars. Long-term space missions typically refer to missions with durations of one (1) to five (5) years. For a hypothetical mission to Mars, the length of the mission is estimated to be 600 days. All of the items required for survival of the six person crew would need to be readily available during the mission, including safe potable water. Due to cost and logistical considerations associated with supplying the crew with earth-based potable water for the entire mission duration, closed-loop water treatment processes, in which a finite amount of water is continuously used and re-used, are being considered. Closed-loop treatment systems are comprised of many individual processes. The subject research is focused on the water disinfection process using ultraviolet (UV) radiation as the primary disinfectant and a chemical disinfectant (iodine) as the residual disinfectant. The four main research objectives completed as part of this research are summarized below. (1) Developed a tool that allowed iodine species and concentrations to be predicted based on system characteristics, such as pH and redox potential. (2) Investigated the disinfection efficacy of UV radiation and iodine using a challenge microorganism (Bacillus subtilis spores). Effort was placed on characterizing the response of B. subtilis spores to sequential disinfection (i.e. UV then iodine). Inactivation models were developed to describe the inactivation kinetics. (3) Evaluated a chemical actinometer to monitor the minimum dose within a UV reactor. A continuous-form irradiance field model was developed to estimate the output of a cylindrical non

  11. [Photoreactivation of Escherichia coli and Enterococcus faecalis in the secondary effluent disinfected by UV-TiO2].

    PubMed

    Wang, Xi-Feng; Gong, Xin; Hu, Xiao-Lian; Ren, Bo-Zhi

    2014-04-01

    Effects of photoreactivating light intensity (0-41 microW x cm(-2)) on photoreactivation of Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) in the secondary effluent after UV and UV-TiO2 disinfection were investigated. The results indicated that the disinfection efficiency of UV-TiO2 was much higher than that of UV disinfection. The photoreactivation rate of E. coli was much higher in UV disinfection than that in UV-TiO2 disinfection. Under high light intensity in UV-TiO2 disinfection, high resurrection rate can be induced. However, a higher resurrection rate can be introduced even under low light intensity in the UV disinfection. Meanwhile, UV-TiO2 disinfection had a strong inhibition effect on E. faecalis photoreactivation, when the light intensity was lower than 21 microW x cm(-2), three was no resurrection occurred on E. faecalis after 72 h resurrection irradiation, only under a strong photoreactivating light intensity, the resurrection rate of E. faecalis was observed.

  12. Effects of UV-based treatment on volatile disinfection byproducts in a chlorinated, indoor swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2016-11-15

    Ultraviolet (UV) irradiation and chlorination are commonly used together in treatment of swimming pool water because they function as complementary disinfectants and because UV-based processes have been shown to promote photodecay of chloramines. However, UV-based treatment also has the potential to promote formation of some disinfection byproducts (DBPs). As a result, the overall effects of UV irradiation with chlorination on swimming pool chemistry remain unclear. To address this issue, a three-year study was conducted in a chlorinated, indoor swimming pool under three different operating conditions: conventional chlorination (1st year) which served as a control, chlorination augmented by MP UV irradiation (2nd year), and chlorination augmented by LP UV irradiation (3rd year). Water samples were collected from the pool for measurement of pH, temperature, total alkalinity, free and combined chlorine, eleven volatile DBPs, and urea concentration. After installation of MP UV, the concentrations of most volatile DBPs decreased; similar effects were observed after inclusion of LP UV. Collectively, these results imply an overall improvement in water quality as a result of the inclusion of the both UV systems. In general, MP UV was more efficient than LP UV for reducing the concentrations of most of the volatile DBPs measured in this pool. However, a need exists to standardize the application of UV systems in recreational water settings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. The effects of UV disinfection on drinking water quality in distribution systems.

    PubMed

    Choi, Yonkyu; Choi, Young-June

    2010-01-01

    UV treatment is a cost-effective disinfection process for drinking water, but concerned to have negative effects on water quality in distribution system by changed DOM structure. In the study, the authors evaluated the effects of UV disinfection on the water quality in the distribution system by investigating structure of DOM, concentration of AOC, chlorine demand and DBP formation before and after UV disinfection process. Although UV treatment did not affect concentration of AOC and characteristics of DOM (e.g., DOC, UV(254,) SUVA(254), the ratio of hydrophilic/hydrophobic fractions, and distribution of molecular weight) significantly, the increase of low molecular fraction was observed after UV treatment, in dry season. Chlorine demand and THMFP are also increased with chlorination of UV treated water. This implies that UV irradiation can cleave DOM, but molecular weights of broken DOM are not low enough to be used directly by microorganisms in distribution system. Nonetheless, modification of DOM structure can affect water quality of distribution system as it can increase chlorine demands and DBPs formation by post-chlorination.

  14. Spectral irradiance measurement and actinic radiometer calibration for UV water disinfection

    NASA Astrophysics Data System (ADS)

    Sperfeld, Peter; Barton, Bettina; Pape, Sven; Towara, Anna-Lena; Eggers, Jutta; Hopfenmüller, Gabriel

    2014-12-01

    In a joint project, sglux and PTB investigated and developed methods and equipment to measure the spectral and weighted irradiance of high-efficiency UV-C emitters used in water disinfection plants. A calibration facility was set up to calibrate the microbicidal irradiance responsivity of actinic radiometers with respect to the weighted spectral irradiance of specially selected low-pressure mercury and medium-pressure mercury UV lamps. To verify the calibration method and to perform on-site tests, spectral measurements were carried out directly at water disinfection plants in operation. The weighted microbicidal irradiance of the plants was calculated and compared to the measurements of various actinic radiometers.

  15. Disinfection of Spacecraft Potable Water Systems by Photocatalytic Oxidation Using UV-A Light Emitting Diodes

    NASA Technical Reports Server (NTRS)

    Birmele, Michele N.; O'Neal, Jeremy A.; Roberts, Michael S.

    2011-01-01

    Ultraviolet (UV) light has long been used in terrestrial water treatment systems for photodisinfection and the removal of organic compounds by several processes including photoadsorption, photolysis, and photocatalytic oxidation/reduction. Despite its effectiveness for water treatment, UV has not been explored for spacecraft applications because of concerns about the safety and reliability of mercury-containing UV lamps. However, recent advances in ultraviolet light emitting diodes (UV LEDs) have enabled the utilization of nanomaterials that possess the appropriate optical properties for the manufacture of LEDs capable of producing monochromatic light at germicidal wavelengths. This report describes the testing of a commercial-off-the-shelf, high power Nichia UV-A LED (250mW A365nnJ for the excitation of titanium dioxide as a point-of-use (POD) disinfection device in a potable water system. The combination of an immobilized, high surface area photocatalyst with a UV-A LED is promising for potable water system disinfection since toxic chemicals and resupply requirements are reduced. No additional consumables like chemical biocides, absorption columns, or filters are required to disinfect and/or remove potentially toxic disinfectants from the potable water prior to use. Experiments were conducted in a static test stand consisting of a polypropylene microtiter plate containing 3mm glass balls coated with titanium dioxide. Wells filled with water were exposed to ultraviolet light from an actively-cooled UV-A LED positioned above each well and inoculated with six individual challenge microorganisms recovered from the International Space Station (ISS): Burkholderia cepacia, Cupriavidus metallidurans, Methylobacterium fujisawaense, Pseudomonas aeruginosa, Sphingomonas paucimobilis and Wautersia basilensis. Exposure to the Nichia UV-A LED with photocatalytic oxidation resulted in a complete (>7-log) reduction of each challenge bacteria population in <180 minutes of contact

  16. UV disinfection induces a VBNC state in Escherichia coli and Pseudomonas aeruginosa.

    PubMed

    Zhang, Shenghua; Ye, Chengsong; Lin, Huirong; Lv, Lu; Yu, Xin

    2015-02-03

    The occurrence of a viable but nonculturable (VBNC) state in bacteria may dramatically underestimate the health risks associated with drinking water. Therefore, the potential for UV treatment to induce a VBNC state in Escherichia coli and Pseudomonas aeruginosa was investigated. UV disinfection effectively reduced the culturability of E. coli and P. aeruginosa, with the destruction of nucleic acids demonstrated using gadA long gene fragment qPCR amplification. Following UV radiation, copy numbers for the high transcriptional levels of the 16S rRNA gene varied insignificantly in both strains, confirming results from plate counting assays indicating that VBNC states were induced in both strains. Furthermore, the virulence genes gadA and oprL remained highly expressed, suggesting that the VBNC bacteria still displayed pathogenicity. Propidium monoazide qPCR indicated that cell membranes remained intact even at a UV dose of 300 mJ/cm(2). The RT-qPCR results after UV and chlorine treatments in E. coli were significantly different (8.41 and 5.59 log units, respectively), further confirming the induction of VBNC bacteria induced by UV radiation. Finally, resuscitation was achieved, with E. coli showing greater resuscitation ability than P. aeruginosa. These results systematically revealed the potential health risks of UV disinfection and strongly suggest a combined disinfection strategy.

  17. A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection.

    PubMed

    Rand, J L; Hofmann, R; Alam, M Z B; Chauret, C; Cantwell, R; Andrews, R C; Gagnon, G A

    2007-05-01

    The drinking water industry is continually seeking innovative disinfection strategies to control biofouling in transmission systems. This research, conducted in collaboration with the East Bay Municipal Utility District (EBMUD) in California, compared the efficacy of chlorine dioxide (ClO2) to free chlorine (Cl2) with and without pre-treatment with low-pressure ultraviolet (UV) light for biofilm control. An additional goal was to determine disinfection by-product (DBP) formation with each disinfection strategy. Annular reactors (ARs) containing polycarbonate coupons were used to simulate EBMUD's 90-mile aqueduct that transports surface water from a source reservoir to treatment facilities. ARs were dosed with chemical disinfectants to achieve a residual of 0.2 mg/L, which is a typical value mid-way in the aqueduct. The experiment matrix included four strategies of disinfection including UV/ClO2, ClO2, UV/Cl2 and Cl2. Two ARs acted as controls and received raw water (RW) or UV-treated water. The data presented show that the UV/ClO2 combination was most effective against suspended and attached heterotrophic (heterotrophic plate count, HPC) bacteria with 3.93 log and 2.05 log reductions, respectively. ClO2 was more effective than Cl2 at removing suspended HPC bacteria and similarly effective in biofilm bacterial removal. UV light alone was not effective in controlling suspended or biofilm bacteria compared to treatment with ClO2 or Cl2. Pre-treatment with UV was more effective overall for removal of HPC bacteria than treating with corresponding chemical disinfectants only; however, it did not lower required chemical dosages. Therefore, no significant differences were observed in DBP concentrations between ARs pre-treated with UV light and ARs not pre-treated. Disinfection with ClO2 produced fewer total trihalomethanes (TTHMs) and haloacetic acids (HAAs) than chlorination but did produce low levels of chlorite. These data indicate that replacing Cl2 with ClO2 would

  18. An EPR study on wastewater disinfection by peracetic acid, hydrogen peroxide and UV irradiation.

    PubMed

    Bianchini, Roberto; Calucci, Lucia; Caretti, Cecilia; Lubello, Claudio; Pinzino, Calogero; Piscicelli, Michela

    2002-09-01

    EPR spectroscopy was applied to obtain qualitative and quantitative information on the radicals produced in disinfection processes of wastewater for agricultural reuse. The DEPMPO spin trap was employed to detect hydroxyl and carbon-centered short living radicals in two different peracetic acid solutions and a hydrogen peroxide solution used for water disinfection either in the absence or in the presence of UV-C irradiation. Moreover, three different kinds of water (wastewater, demineralized water, distilled water) were analysed in order to assess the contribution of Fenton reactions to the radical production. The spectroscopic results were discussed in relation to the efficiency of the different oxidizing agents and UV irradiation in wastewater disinfection evaluated as Escherichia Coli, Faecal and Total Coliforms inactivation.

  19. Limnoithona sinensis as refuge for bacteria: protection from UV radiation and chlorine disinfection in drinking water treatment.

    PubMed

    Lin, Tao; Cai, Bo; Chen, Wei

    2014-11-01

    In this study, we tested the potential of Limnoithona sinensis to provide its attached bacteria refuge against disinfection. The experimental results indicated that in water devoid of zooplankton, both UV radiation and chlorine disinfection significantly decreased the viability of free-living bacteria. In the presence of L. sinensis, however, the attached bacteria could survive and rapidly recover from disinfection. This demonstrated that L. sinensis provided protection from external damage to various aquatic bacteria that were attached to its body. The surviving bacteria remained on L. sinensis after disinfection exposure, which enabled a rapid increase in the bacterial population followed by their subsequent release into the surrounding water. Compared with UV radiation, chlorine disinfection was more effective in terms of inactivating attached bacteria. Both UV radiation and chlorine disinfection had little effect in terms of preventing the spread of undesirable bacteria, due to the incomplete inactivation of the bacteria associated with L. sinensis.

  20. Determining Resistance of Toxoplasma gondii Oocysts to UV Disinfection Using Cell Culture and a Mouse Bioassay

    USDA-ARS?s Scientific Manuscript database

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated irradiated oocysts by three assays: a SCID mouse biassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reverse-transcriptase real-t...

  1. Non-PRASA Drinking Water Research on UV Disinfection in Puerto Rico

    EPA Science Inventory

    The U.S. EPA and InterAmerican University of San German worked with water treatment operators from Patillas, Puerto Rico on the installation, training and testing of pretreatment/UV disinfection systems in the communities of La Sofia and Apeadero. This presentation provides path...

  2. MONITORING THE EFFECTIVENESS OF UV DISINFECTION OF AEROMONAS SPP. USING SELECTIVE AND NON-SELECTIVE MEDIA

    EPA Science Inventory

    This research was initiated to determine the sensitivity of Aeromonas spp. to ultraviolet (UV) disinfection. Aeromonas hydrophila is a contaminant listed on the USEPA's 1998 CCL. Three different Aeromonas spp. (A. hydrophila, A. sobria and A. caviae) were tested using membrane fi...

  3. Development of pulsed UV light processes for surface fungal disinfection of fresh fruits.

    PubMed

    Lagunas-Solar, Manuel C; Piña, Cecilia; MacDonald, James D; Bolkan, Linda

    2006-02-01

    Pulsed UV (PUV) power techniques were studied as a nonthermal, residue-free alternative to contact pesticides and to evaluate the surface disinfection of fresh fruits using this type of extremely rapid, high-peak power UV beams. Coherent 248-nm beams from excimer lasers were used to simulate a variety of pulsed light sources now commercially available. Surface disinfection on a series of fresh fruits (i.e., apples, kiwi, lemon, nectarines, oranges, peaches, pears, raspberries, and grapes), representing economically important commodities, were studied and evaluated. Plant (fungal) pathogens were rapidly (<10 s), efficiently (>5 log), and reproducibly killed on fruit surfaces. However, in naturally infected or inoculated (sprayed) fruits, a fraction of the inoculum may penetrate into the epidermis or locate in injured tissue in crevices or in surface irregularities. Under these conditions, only partial disinfection was obtained due to UV shielding (shadowing) effects, which prevent the highly directional, coherent PUV beam from reaching its target. For maximum disinfection efficiency, coherent PUV sources must be combined with dispersing reflectors, and fruits must be handled to ensure uniform exposure to multidirectional incident beams. New, existing, noncoherent, broadband, pulsed light beams (high in UV emission) from arc lamps appear to provide adequate PUV light sources capable of meeting the conditions for commercial applications in slight-modified conveyorized operations. Therefore, PUV techniques may provide effective, commercial-scale, reliable, and viable residue-free alternatives to chemical (contact) pesticides.

  4. MONITORING THE EFFECTIVENESS OF UV DISINFECTION OF AEROMONAS SPP. USING SELECTIVE AND NON-SELECTIVE MEDIA

    EPA Science Inventory

    This research was initiated to determine the sensitivity of Aeromonas spp. to ultraviolet (UV) disinfection. Aeromonas hydrophila is a contaminant listed on the USEPA's 1998 CCL. Three different Aeromonas spp. (A. hydrophila, A. sobria and A. caviae) were tested using membrane fi...

  5. Non-PRASA Drinking Water Research on UV Disinfection in Puerto Rico

    EPA Science Inventory

    The U.S. EPA and InterAmerican University of San German worked with water treatment operators from Patillas, Puerto Rico on the installation, training and testing of pretreatment/UV disinfection systems in the communities of La Sofia and Apeadero. This presentation provides path...

  6. Impacts of goethite particles on UV disinfection of drinking water.

    PubMed

    Wu, Youxian; Clevenger, Thomas; Deng, Baolin

    2005-07-01

    A unique association between bacterial cells and small goethite particles (approximately 0.2 by 2 microm) protected Escherichia coli and Pseudomonas putida from UV inactivation. The protection increased with the particle concentration in the turbidity range of 1 to 50 nephelometric turbidity units and with the bacterium-particle attachment time prior to UV irradiation. The lower degree of bacterial inactivation at longer attachment time was mostly attributed to the particle aggregation surrounding bacteria that provided shielding from UV radiation.

  7. Point-of-use water disinfection using UV light-emitting diodes to reduce bacterial contamination.

    PubMed

    Nelson, Kristina Y; McMartin, Dena W; Yost, Christopher K; Runtz, Ken J; Ono, Takaya

    2013-08-01

    The treatment process described in this research explores the impact of exposing water samples containing fecal coliforms to the radiation produced by single ultraviolet (UV) light-emitting diodes (LEDs) operating at 265 nm. UV LEDs are long lasting, compact in size and produce more efficient light output than traditional mercury-vapour bulbs, making them ideal for application in point-of-use disinfection systems, such as in remote areas. In this study, contaminated water samples containing either a pure culture of Escherichia coli or tertiary effluent from the City of Regina Wastewater Treatment Plant were used to study the application and efficiency of using UV LEDs for water disinfection. The results indicate that bacterial inactivation was achieved in a time-dependent manner, with 1- and 2.5-log E. coli reductions in water following 20 and 50 min of UV LED exposure, respectively. Ultraviolet radiation was less effective in reducing coliform bacteria in wastewater samples due to the elevated turbidity levels. Further work remains to be completed to optimize the application of UV LEDs for point-of-use disinfection systems; however, the results from this study support that bacterial inactivation using UV LEDs is possible, meriting further future technological development of the LEDs.

  8. Surface disinfection by exposure to germicidal UV light.

    PubMed

    Katara, G; Hemvani, N; Chitnis, S; Chitnis, V; Chitnis, D S

    2008-01-01

    The present study was aimed to design a simple model to check efficacy of germicidal UV tube, to standardise the position, distance and time for UV light and also to find out its efficacy against medically important bacteria, the bacterial spores and fungi. The microbial cultures tested included gram positive and gram negative bacteria, bacterial spores and fungal spores. The microbes streaked on solid media were exposed to UV light. The inactivation of the order of four logs was observed for bacteria. UV light can have efficient inactivation of bacteria up to a distance of eight feet on either side and exposure time of 30 minutes is adequate.

  9. Numerical study of the effects of surface roughness on water disinfection UV reactor.

    PubMed

    Sultan, Tipu; Ahmad, Sarfraz; Cho, Jinsoo

    2016-04-01

    UV reactors are an emerging choice as a big barrier against the pathogens present in drinking water. However, the precise role of reactor's wall roughness for cross flow ultraviolet (CF-UV) and axial flow ultraviolet (AF-UV) water disinfection reactors are unknown. In this paper, the influences of reactor's wall roughness were investigated with a view to identify their role on the performance factors namely dose distribution and reduction equivalent dose (RED). Herein, the relative effects of reactor's wall roughness on the performance of CF-UV and AF-UV reactors were also highlighted. This numerical study is a first step towards the comprehensive analysis of the effects of reactor's wall roughness for UV reactor. A numerical analysis was performed using ANSYS Fluent 15 academic version. The reactor's wall roughness has a significant effect on the RED. We found that the increase in RED is Reynolds number dependent (at lower value of turbulent Reynolds number the effects are remarkable). The effects of reactor's roughness were more pronounced for AF-UV reactor. The simulation results suggest that the study of reactor's wall roughness provides valuable insight to fully understand the effects of reactor's wall roughness and its impact on the flow behavior and other features of CF-UV and AF-UV water disinfection reactors.

  10. Modeling of secondary treated wastewater disinfection by UV irradiation: effects of suspended solids content.

    PubMed

    Brahmi, Mounaouer; Belhadi, Noureddine Hamed; Hamdi, Helmi; Hassen, Abdennaceur

    2010-01-01

    This work aimed to study UV-resistant strains of Pseudomonas aeruginosa, to propose a formulation of the kinetics of secondary treated wastewater disinfection and to underline the influence of suspended solids on the inactivation kinetics of these strains. Some investigations were carried out for the validation of some simulation models, from the simplest, the kinetics model of Chick-Watson reduced to first order, to rather complex models such as multi-kinetic and Collins-Selleck models. Results revealed that the involved processes of UV irradiation were too complex to be approached by a simplified formulation, even in the case of specific strains of microorganisms and the use of nearly constant UV radiation intensity. In fact, the application of Chick-Watson model in its original form is not representative of the kinetics of UV disinfection. Modification, taking into account the speed change during the disinfection process, has not significantly improved results. On the other hand, the application of Collins-Selleck model demonstrates that it was necessary to exceed a least dose of critical radiation to start the process of inactivation. To better explain the process of inactivation, we have assumed that the action of disinfectant on the survival of lonely microorganisms is faster than its action on suspended solids protected or agglomerated to each others. We can assume in this case the existence of two inactivation kinetics during the processes (parallel and independent) of the first-order. For this reason, the application of a new kinetic model by introducing a third factor reflecting the influence of suspended solids in water on disinfection kinetics appeared to be determinant for modeling UV inactivation of P. aeruginosa in secondary treated wastewater.

  11. Secondary formation of disinfection by-products by UV treatment of swimming pool water.

    PubMed

    Spiliotopoulou, Aikaterini; Hansen, Kamilla M S; Andersen, Henrik R

    2015-07-01

    Formation of disinfection by-products (DBPs) during experimental UV treatment of pool water has previously been reported with little concurrence between laboratory studies, field studies and research groups. In the current study, changes in concentration of seven out of eleven investigated volatile DBPs were observed in experiments using medium pressure UV treatment, with and without chlorine and after post-UV chlorination. Results showed that post-UV chlorine consumption increased, dose-dependently, with UV treatment dose. A clear absence of trihalomethane formation by UV and UV with chlorine was observed, while small yet statistically significant increases in dichloroacetonitrile and dichloropropanone concentrations were detected. Results indicate that post-UV chlorination clearly induced secondary formation of several DBPs. However, the formation of total trihalomethanes was no greater than what could be replicated by performing the DBP formation assay with higher chlorine concentrations to simulate extended chlorination. Post-UV chlorination of water from a swimming pool that continuously uses UV treatment to control combined chlorine could not induce secondary formation for most DBPs. Concurrence for induction of trihalomethanes was identified between post-UV chlorination treatments and simulated extended chlorination time treatment. Trihalomethanes could not be induced by UV treatment of water from a continuously UV treated pool. This indicates that literature reports of experimentally induced trihalomethane formation by UV may be a result of kinetic increase in formation by UV. However, this does not imply that higher trihalomethane concentrations would occur in pools that apply continuous UV treatment. The bromine fraction of halogens in formed trihalomethanes increased with UV dose. This indicates that UV removes bromine atoms from larger molecules that participate in trihalomethane production during post-UV chlorination. Additionally, no significant

  12. Synergistic effect of the sequential use of UV irradiation and chlorine to disinfect reclaimed water.

    PubMed

    Wang, Xiujuan; Hu, Xuexiang; Wang, Haibo; Hu, Chun

    2012-03-15

    The effectiveness of UV and chlorination, used individually and sequentially, was investigated in killing pathogenic microorganisms and inhibiting the formation of disinfection by-products in two different municipal wastewaters for the source water of reclaimed water, which were from a microfilter (W1) and membrane bioreactor (W2) respectively. Heterotrophic plate count (HPC), total bacteria count (TBC), and total coliform (TC) were selected to evaluate the efficiency of different disinfection processes. UV inactivation of the three bacteria followed first-order kinetics in W1 wastewater, but in W2 wastewater, the UV dose-response curve trailed beyond approximately 10 mJ/cm2 UV. The higher number of particles in the W2 might have protected the bacteria against UV damage, as UV light alone was not effective in killing HPC in W2 wastewater with higher turbidity. However, chlorine was more effective in W2 than in W1 for the three bacteria inactivation owing to the greater formation of inorganic and organic chloramines in W1 wastewater. Complete inactivation of HPC in W1 wastewater required a chlorine dose higher than 5.5 mg/L, whereas 4.5 mg/L chlorine gave the equivalent result in W2 wastewater. In contrast, sequential UV and chlorine treatment produced a synergistic effect in both wastewater systems and was the most effective option for complete removal of all three bacteria. UV disinfection lowered the required chlorine dose in W1, but not in W2, because of the higher chlorine consumption in W2 wastewater. However, UV irradiation decreased total trihalomethane formation during chlorination in both wastewaters.

  13. Treatment of Arctic wastewater by chemical coagulation, UV and peracetic acid disinfection.

    PubMed

    Chhetri, Ravi Kumar; Klupsch, Ewa; Andersen, Henrik Rasmus; Jensen, Pernille Erland

    2017-02-16

    Conventional wastewater treatment is challenging in the Arctic region due to the cold climate and scattered population. Thus, no wastewater treatment plant exists in Greenland, and raw wastewater is discharged directly to nearby waterbodies without treatment. We investigated the efficiency of physicochemical wastewater treatment, in Kangerlussuaq, Greenland. Raw wastewater from Kangerlussuaq was treated by chemical coagulation and UV disinfection. By applying 7.5 mg Al/L polyaluminium chloride (PAX XL100), 73% of turbidity and 28% phosphate was removed from raw wastewater. E. coli and Enterococcus were removed by 4 and 2.5 log, respectively, when UV irradiation of 0.70 kWh/m(3) was applied to coagulated wastewater. Furthermore, coagulated raw wastewater in Denmark, which has a chemical quality similar to Greenlandic wastewater, was disinfected by peracetic acid or UV irradiation. Removal of heterotrophic bacteria by applying 6 and 12 mg/L peracetic acid was 2.8 and 3.1 log, respectively. Similarly, removal of heterotrophic bacteria by applying 0.21 and 2.10 kWh/m(3) for UV irradiation was 2.1 and greater than 4 log, respectively. Physicochemical treatment of raw wastewater followed by UV irradiation and/or peracetic acid disinfection showed the potential for treatment of arctic wastewater.

  14. US EPA's UV Disinfection Technologies Demonstration Study - States Briefing

    EPA Science Inventory

    EPA report and anticipated Journal articles will provide recommendations & guidance based on lessons learned for subsequent UV technology testing and monitoring/control applications of virus inactivation in drinking water.

  15. US EPA's UV Disinfection Technologies Demonstration Study - States Briefing

    EPA Science Inventory

    EPA report and anticipated Journal articles will provide recommendations & guidance based on lessons learned for subsequent UV technology testing and monitoring/control applications of virus inactivation in drinking water.

  16. Evaluating UV-C LED disinfection performance and ...

    EPA Pesticide Factsheets

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research included an evaluation of genomic damage. Inactivation by the LEDs was compared with the efficacy of conventional UV sources, the low-pressure (LP) and medium-pressure (MP) mercury vapor lamps. The work also calculated the electrical energy per order of reduction of the microorganisms by the five UV sources.For E. coli, all five UV sources yielded similar inactivation rates. For MS2 coliphage, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was significantly more effective than the LP UV and UVC LED sources. When considering electrical energy per order of reduction, the LP UV lamp was the most efficient for E. coli and MS2, and the MPUV and LPUV were equally efficient for HAdV2 and B. pumilus spores. Among the UVC LEDs, the 280 nm LED unit required the least energy per log reduction of E. coli and HAdV2. The 280 nm and 260|280 nm LED units were equally efficient per log reduction of B. pumilus spores, and the 260 nm LED unit required the lowest energy per order of reduction of MS2 coliphage. The combination of the 260 nm and 280 nm UV LED wavelengths was also evaluated for potential synergistic effects. No dual-wavelength synergy was detected for inactivation of

  17. UV photolysis of nitrate: effects of natural organic matter and dissolved inorganic carbon and implications for UV water disinfection.

    PubMed

    Sharpless, C M; Linden, K G

    2001-07-15

    Nitrite (NO2-) formation during ultraviolet (UV) photolysis of nitrate was studied as a function of pH and natural organic matter (NOM) concentration to determine water-quality effects on quantum yields and overall formation potential during UV disinfection of drinking water with polychromatic, medium-pressure (MP) Hg lamps. Quantum yields measured at 228 nm are approximately 2 times higher than at 254 nm under all conditions studied. In the absence of NOM, NO2- quantum yields decrease with time. With addition of NOM, initial quantum yields increase, and the time-dependent decrease is eliminated. At 15 ppm dissolved organic carbon (DOC) as NOM, the quantum yield increases with time. Dissolved inorganic carbon significantly decreases NO2- yields at pH 8 but not pH 6, presumably by reaction of CO2(aq) with peroxynitrite, a major intermediate in NO2- formation. The results indicate important and previously unrecognized roles for NOM and CO2(aq) in nitrate photolysis. When photolysis was carried out using the full spectrum MPUV lamp and germicidally relevant UV doses, NO2- concentrations remained well below the U.S. maximum contaminant level of 1 ppm N, even with nitrate initially present at 10 ppm N. Under current U.S. regulations, NO2- formation should not pose a significant problem for water utilities during UV disinfection of drinking water with MP Hg lamps.

  18. Fungicidal effects of chemical disinfectants, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis.

    PubMed

    Johnson, Megan L; Berger, Lee; Philips, Lara; Speare, Richard

    2003-12-29

    The efficacy of a number of disinfection treatments was tested on in vitro cultures of the fungus Batrachochytrium dendrobatidis, the causative agent of chytridiomycosis in amphibians. The aim was to evaluate the fungicidal effects of chemical disinfectants, sterilising ultraviolet (UV) light, heat and desiccation, using methods that were feasible for either disinfection in the field, in amphibian husbandry or in the laboratory. The chemical disinfectants tested were: sodium chloride, household bleach (active ingredient: sodium hypochlorite), potassium permanganate, formaldehyde solution, Path-X agricultural disinfectant (active ingredient: didecyl dimethyl ammonium chloride, DDAC), quaternary ammonium compound 128 (DDAC), Dithane, Virkon, ethanol and benzalkonium chloride. In 2 series of experiments using separate isolates of B. dendrobatidis, the fungicidal effect was evaluated for various time periods and at a range of chemical concentrations. The end point measured was death of 100% of zoospores and zoosporangia. Nearly all chemical disinfectants resulted in 100%, mortality for at least one of the concentrations tested. However, concentration and time of exposure was critical for most chemicals. Exposure to 70% ethanol, 1 mg Virkon ml(-1) or 1 mg benzalkonium chloride ml(-1) resulted in death of all zoosporangia after 20 s. The most effective products for field use were Path-X and the quaternary ammonium compound 128, which can be used at dilutions containing low levels (e.g. 0.012 or 0.008%, respectively) of the active compound didecyl dimethyl ammonium chloride. Bleach, containing the active ingredient sodium hypochlorite, was effective at concentrations of 1% sodium hypochlorite and above. Cultures did not survive complete drying, which occurred after <3 h at room temperature. B. dendrobatidis was sensitive to heating, and within 4 h at 37 degrees C, 30 min at 47 degrees C and 5 min at 60 degrees C, 100% mortality occurred. UV light (at 1000 mW m(-2) with a

  19. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  20. Evaluation of an Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    EPA Science Inventory

    UV disinfection is an effective process for inactivating many microbial pathogens found in source waters with the potential as stand-alone treatment or in combination with other disinfectants. For surface and groundwater sourced drinking water applications, the U.S. Environmental...

  1. [Inactivation and reactivation of antibiotic-resistant bacteria during and after UV disinfection in reclaimed water].

    PubMed

    Huang, Jing-Jing; Tang, Fang; Xi, Jin-Ying; Pang, Yu-Chen; Hu, Hong-Ying

    2014-04-01

    Prevalence of antibiotic-resistant bacteria in wastewater effluents is concerned as an emerging contaminant. To estimate inactivation and reactivation potentials of antibiotic-resistant bacteria by UV disinfection, inactivation and reactivation of penicillin-, ampicillin-, cephalexin-, chloramphenicol-and rifampicin-resistant bacteria in the secondary effluent were studied under different UV doses. The results showed that the inactivation ratios of penicillin-, ampicillin-, cephalexin-and chloramphenicol-resistant bacteria were higher than 4-log, which was closed to that of total heterotrophic bacteria; however, the inactivation ratio of rifampicin-resistant bacteria was lower (3.7-log) under 20 mJ x cm(-2) UV exposure. After 22 h standing incubation, antibiotic-resistant bacteria widely reactivated. The colony forming ability of antibiotic-resistant bacteria was as high as 3-log when exposed to 20 mJ x cm(-2) UV light. Hence, conventional UV dose can not effectively control reactivation of antibiotic-resistant bacteria in reclaimed water by UV disinfection.

  2. Disinfection and oxidation of sewage effluent water using ozone and UV technologies.

    PubMed

    Oh, B S; Park, S J; Jung, Y J; Park, S Y; Kang, J W

    2007-01-01

    This study was aimed at exploring the reclamation of sewage treatment plant effluent water (SEW) as an alternative water resource. For the oxidation of SEW, an ozone-UV system, based on the results of the combined ozone/UV process performed in our previous study, was set up under practical conditions, including a series type, continuous mode, semi-pilot scale operation (1.5 m3/d). As a result, the serial contact of the ozone and UV reactors showed lower CODCr and TOC removal efficiencies. However, these were greatly enhanced by recycling the water flow of the ozone-UV system at 40Q, as a result of the improvements in the transferred ozone dose in the ozone reactor and the contact efficiency between photons and ozone in the UV reactor, which approached that achieved in the combined ozone/UV process. For the disinfection of SEW, carried out in a syringe-type batch reactor, the increase of instantaneous ozone demand (ozone ID) led to a higher inactivation efficiency, an increased UV transmittance due to ozonation, and an enhanced inactivation rate of E. coli in the UV reactor. Additionally, it was concluded that the ozone/UV process could overcome the limitations of the ozone alone and UV alone processes for the reclamation of sewage effluent water.

  3. UV inactivation and characteristics after photoreactivation of Escherichia coli with plasmid: health safety concern about UV disinfection.

    PubMed

    Guo, Meiting; Huang, Jingjing; Hu, Hongying; Liu, Wenjun; Yang, Jian

    2012-09-01

    Occurrence and degree of photoreactivation after ultraviolet (UV) exposure have been widely studied. However, the characteristics of photoreactivated microorganisms were rarely investigated. Hence, in this study, Escherichia coli with plasmids of ampicillin (amp)-resistance or fluorescence was used as indicators to examine the UV inactivation efficiencies and variations of characteristics of E. coli after subsequent photoreactivation. The experimental results indicate that the amp-resistant bacteria and the fluorescent bacteria used in this study had similar trends of UV dose-response curves. 3.5-log(10) and 3-log(10) reductions were achieved with a UV dose of 5 mJ/cm(2) for the amp-resistant and fluorescent E. coli, respectively. There was no significant difference in the UV inactivation behavior, as compared with common strains of E. coli. For the amp-resistant E. coli and the fluorescent E. coli, after exposures with UV doses of 5, 15, 25, 40 and 80 mJ/cm(2), the corresponding percent photoreactivations after a 4 h exposure to photoreactivating light were 1% and 46% respectively for a UV dose of 5 mJ/cm(2), and essentially negligible for all other UV doses. Furthermore, the photoreactivated amp-resistant bacteria still have the ability of amp-resistance. And the revived fluorescent E. coli showed similar fluorescent behavior, compared with the untreated bacteria. The experimental results imply that after UV inactivation and subsequent photoreactivation, the bacteria retained the initial characteristics coded in the plasmid. This reveals a possibility that some characteristics of bacteria can retain or recover through photoreactivation, and a safety concern about pathogenicity revival might need to be considered with UV disinfection and photoreactivation.

  4. The potential for optical beam shaping of UV laser sources for mass scale quarantine disinfection applications

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    Recent events concerning H1N1 "swine flu", have demonstrated to the world the significant potential of rapid increases in death and illness among all age groups and even among the healthy population [1] when a highly infectious influenza virus is introduced. In terms of mass casualties due to a pandemic, preparedness and response planning must be done. One course of action to prevent a pandemic outbreak or reduce the impact of a bioterrorist event is the use of isolation or quarantine facilities. The first level of isolation or quarantine is within the personal residence of the person exposed or infected. In the case where, the specific virus is extremely contagious and its onset of symptoms is rapid and severe, there will be a need for the deployment and setup of larger self contained quarantine facilities. Such facilities are used to house infectious individuals to minimize the exposure of susceptible individuals to contagious individuals, especially when specialized care or treatment is required and during the viral shedding period (5 to 7 days). These types of facilities require non-shared air conditioning, heating and ventilating systems where 100% of air is vented to the outside through a series of disinfection systems and staged filters. Although chemical disinfection is possible, there is a desire to incorporate intense UV radiation as a means to deactivate and disinfect airborne virus within hospital settings and isolated mass scale quarantine facilities. UV radiation is also being considered for disinfection of contaminated surfaces, such as table tops, walls and floors in hospitals and temporary quarantine facilities. In such applications the use of UV bulb technology can create many problems, for instance bulb technology requires numerous bulbs to treat a large volume of air, generates significant heat, uses significant power and does not produce large fluxes of UV light efficiently. This paper provides several methods of creating quarantine level

  5. A comparative study of the bactericidal activity and daily disinfection housekeeping surfaces by a new portable pulsed UV radiation device.

    PubMed

    Umezawa, Kazuo; Asai, Satomi; Inokuchi, Sadaki; Miyachi, Hayato

    2012-06-01

    Daily cleaning and disinfecting of non-critical surfaces in the patient-care areas are known to reduce the occurrence of health care-associated infections. However, the conventional means for decontamination of housekeeping surfaces of sites of frequent hand contact such as manual disinfection using ethanol wipes are laborious and time-consuming in daily practice. This study evaluated a newly developed portable pulsed ultraviolet (UV) radiation device for its bactericidal activity in comparison with continuous UV-C, and investigated its effect on the labor burden when implemented in a hospital ward. Pseudomonas aeruginosa, Multidrug-resistant P. aeruginosa, Escherichia coli, Acinetobacter baumannii, Amikacin and Ciprofloxacin-resistant A. baumannii, Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus cereus were irradiated with pulsed UV or continuous UV-C. Pulsed UV and continuous UV-C required 5 and 30 s of irradiation, respectively, to attain bactericidal activity with more than 2Log growth inhibition of all the species. The use of pulsed UV in daily disinfection of housekeeping surfaces reduced the working hours by half in comparison to manual disinfection using ethanol wipes. The new portable pulsed UV radiation device was proven to have a bactericidal activity against critical nosocomial bacteria, including antimicrobial-resistant bacteria after short irradiation, and was thus found to be practical as a method for disinfecting housekeeping surfaces and decreasing the labor burden.

  6. Removal of disinfection by-product precursors with ozone-UV advanced oxidation process.

    PubMed

    Chin, A; Bérubé, P R

    2005-05-01

    The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.

  7. Effect of ozonation and UV irradiation with direct filtration on disinfection and disinfection by-product precursors in drinking water treatment.

    PubMed

    Amirsardari, Y; Yu, Q; Willams, P

    2001-09-01

    Pilot plant studies were conducted to evaluate the effect of pre-ozonation and ultraviolet irradiation on disinfection, disinfection by-product precursors and water quality in a direct filtration water treatment system. Disinfection parameters including total coliforms, faecal coliforms and heterotrophic plate count were investigated. Total organic carbon (TOC), trihalomethanes (THMs), total organic halides (TOX), filtered water turbidity and colour were also evaluated. It was found that advanced pre-oxidation processes (ozonation and UV irradiation) significantly increase the level of disinfection of raw water. Removal of total trihalomethanes and total organic halides precursors improved with ozonation and UV irradiation, compared to no oxidation treatment in direct filtration and/or in conventional water treatment. All coliforms (total and faecal) were completely destroyed by ozonation alone, and also with ozonation in conjunction with UV irradiation. However, the heterotrophic plate count was not significantly reduced at an ozone residual concentration of 0.1 mg l(-1). This suggests that disinfection efficiency is strongly influenced by competition reactions of organic and inorganic compounds with ozone. Precursors of total trihalomethanes and total organic halides were reduced by 90% and 98%, respectively, with advanced pre-oxidation processes. Water quality parameters were improved by the pre-ozonation and UV irradiation treatment system.

  8. Effects of UV light disinfection on antibiotic-resistant coliforms in wastewater effluents

    SciTech Connect

    Meckes, M.C.

    1982-02-01

    Total coliforms and total coliforms resistant to streptomycin, tetracycline, or chloramphenicol were isolated from filtered activated sludge effluents before and after UV light irradiation. Although the UV irradiation effectively disinfected the wastewater effluent, the percentage of the total surviving coliform population resistant to tetracycline or chloramphenicol was significantly higher than the percentage of the total coliform population resistant to those antibiotics before UV irradiation. This finding was attributed to the mechanism of R-factor mediated resistance to tetracycline. No significant difference was noted for the percentage of the surviving total coliform population resistant to streptomycin before or after UV irradiation. Multiple drug resistant to patterns of 300 total coliform isolates revealed that 82% were resistant to two or more antibiotics. Furthermore, 46% of these isolates were capable of transferring antibiotic resistance to a sensitive strain of Escherichia coli.

  9. Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection.

    PubMed

    Anastasi, E M; Wohlsen, T D; Stratton, H M; Katouli, M

    2013-11-01

    We investigated the survival of Escherichia coli in two STPs utilising UV irradiation (STP-A) or chlorination (STP-B) for disinfection. In all, 370 E. coli strains isolated from raw influent sewage (IS), secondary treated effluent (STE) and effluent after the disinfection processes of both STPs were typed using a high resolution biochemical fingerprinting method and were grouped into common (C-) and single (S-) biochemical phenotypes (BPTs). In STP-A, 83 BPTs comprising 123 isolates were found in IS and STE, of which 7 BPTs survived UV irradiation. Isolates tested from the same sites of STP-B (n = 220) comprised 122 BPTs, however, only two BPTs were found post-chlorination. A representative isolate from each BPT from both STPs was tested for the presence of 11 virulence genes (VGs) associated with uropathogenic (UPEC) or intestinal pathogenic (IPEC) E. coli strains. Strains surviving UV irradiation were distributed among seven phylogenetic groups with five BPTs carrying VGs associated with either UPEC (4 BPTs) or IPEC (1 BPT). In contrast, E. coli strains found in STP-B carried no VGs. Strains from both STPs were resistant to up to 12 out of the 21 antibiotics tested but there was no significant difference between the numbers of antibiotics to which surviving strains were resistant to in these STPs. Our data suggests that some E. coli strains have a better ability to survive STPs utilising chlorination and UV irradiation for disinfection. However, strains that survive UV irradiation are more diverse and may carry more VGs than those surviving SPTs using chlorination.

  10. Performance of UV disinfection and the microbial quality of greywater effluent along a reuse system for toilet flushing.

    PubMed

    Friedler, Eran; Gilboa, Yael

    2010-04-01

    This paper examines the microbial quality of treated RBC (Rotating Biological Contactor) and MBR (Membrane Bioreactor) light greywater along a continuous pilot-scale reuse system for toilet flushing, quantifies the efficiency of UV disinfection unit, and evaluates the regrowth potential of selected microorganisms along the system. The UV disinfection unit was found to be very efficient in reducing faecal coliforms and Staphylococcus aureus. On the other hand, its efficiency of inactivation of HPC (Heterotrophic Plate Count) and Pseudomonas aeruginosa was lower. Some regrowth occurred in the reuse system as a result of HPC regrowth which included opportunistic pathogens such as P. aeruginosa. Although the membrane (UF) of the MBR system removed all bacteria from the greywater, bacteria were observed in the reuse system due to "hopping phenomenon." The microbial quality of the disinfected greywater was found to be equal or even better than the microbial quality of "clean" water in toilet bowls flushed with potable water (and used for excretion). Thus, the added health risk associated with reusing the UV-disinfected greywater for toilet flushing (regarding P. aeruginosa and S. aureus), was found to be insignificant. The UV disinfection unit totally removed (100%) the viral indicator (F-RNA phage, host: E. coli F(amp)(+)) injected to the treatment systems simulating transient viral contamination. To conclude, this work contributes to better design of UV disinfection reactors and provides an insight into the long-term behavior of selected microorganisms along on-site greywater reuse systems for toilet flushing.

  11. The role of effluent nitrate in trace organic chemical oxidation during UV disinfection.

    PubMed

    Keen, Olya S; Love, Nancy G; Linden, Karl G

    2012-10-15

    Most conventional biological treatment wastewater treatment plants (WWTPs) contain nitrate in the effluent. Nitrate undergoes photolysis when irradiated with ultraviolet (UV) light in the 200-240 and 300-325 nm wavelength range. In the process of nitrate photolysis, nitrite and hydroxyl radicals are produced. Medium pressure mercury lamps emitting a polychromatic UV spectrum including irradiation below 240 nm are becoming more common for wastewater disinfection. Therefore, nitrified effluent irradiated with polychromatic UV could effectively become a de facto advanced oxidation (hydroxyl radical) treatment process. UV-based advanced oxidation processes commonly rely on addition of hydrogen peroxide in the presence of UV irradiation for production of hydroxyl radicals. This study compares the steady-state concentration of hydroxyl radicals produced by nitrate contained in a conventional WWTP effluent to that produced by typical concentrations of hydrogen peroxide used for advanced oxidation treatment of water. The quantum yield of hydroxyl radical production from nitrate by all pathways was calculated to be 0.24 ± 0.03, and the quantum yield of hydroxyl radicals from nitrite was calculated to be 0.65 ± 0.06. A model was developed that would estimate production of hydroxyl radicals directly from nitrate and water quality parameters. In effluents with >5 mg-N/L of nitrate, the concentration of hydroxyl radicals is comparable to that produced by addition of 10 mg/L of H(2)O(2). Nitrifying wastewater treatment plants utilizing polychromatic UV systems at disinfection dose levels can be expected to achieve up to 30% degradation of some micropollutants by hydroxyl radical oxidation. Increasing UV fluence to levels used during advanced oxidation could achieve over 95% degradation of some compounds.

  12. Advanced process of microbiological control of wastewater in combined system of disinfection with UV radiation.

    PubMed

    Bilotta, P; Daniel, L A

    2010-01-01

    The purpose of this study was to present a methodology with superior efficiency for inactivating pathogenic indicators commonly found in domestic sewage. The adopted method was based on synergistic effect resulting from the introduction of a UV radiation pre-disinfection stage of sewage followed by secondary treatment. A pilot unit was installed in the sewage treatment plant of the University of São Paulo to simulate the combined system in full-scale operational conditions. Its performance was evaluated through microbiological examinations for determining Escherichia coli, total coliforms and coliphages. The application of UV radiation at 5.1 mW/cm(2) for 10 s of exposure in the first disinfection stage was enough to reduce the surviving number of E. coli around 100 times, in comparison to the conventional method. Therefore, based on experimental data, it is possible to conclude that combining treatment and pre-disinfection stage is an effective potential technique to produce effluents with lower degree of contamination by pathogenic organisms.

  13. Impulse powerful UV-radiation source pumped by the sublight ionization waves for the bacteriological disinfection of water

    NASA Astrophysics Data System (ADS)

    Filiouguine, Igor V.; Kostiouchenko, S. V.; Koudryavtsev, N. N.; Vasilyak, Leonid M.; Yakimenko, A. V.

    1993-11-01

    The bacteriological disinfective action of UV-radiation is well known. The pioneer work on UV-radiation used for bacteriological disinfection of waste water was made in 1910. Because of the high cost and low living time of the UV-radiation sources, the alternative technique for waste water purification by chlorine introducing was spread out. During the second stage of the UV purification development, beginning in approximately 1970, the interest for bacteriological cleaning of water, increased again. Two reasons were responsible for this event: first, the significant improvement of technology and design of UV-bacteriological purificators, and second, recognition of the serious danger of chlorine compounds introduced into water under purification because of the toxicity of these compounds. Further investigations gave excellent results in the creation and industrial applications of UV- bacteriological purificators. Now we can see a rapid development of industrial technology in UV-purification of drinking and waste waters.

  14. The effect of a commercial UV disinfection system on the bacterial load of shell eggs.

    PubMed

    De Reu, K; Grijspeerdt, K; Herman, L; Heyndrickx, M; Uyttendaele, M; Debevere, J; Putirulan, F F; Bolder, N M

    2006-02-01

    To study the effect of UV irradiation on the bacterial load of shell eggs and of a roller conveyor belt. The natural bacterial load on the eggshell of clean eggs was significantly reduced by a standard UV treatment of 4.7 s; from 4.47 to 3.57 log CFU per eggshell. For very dirty eggs no significant reduction was observed. Eggs inoculated with Escherichia coli and Staphylococcus aureus (4.74 and 4.64 log CFU per eggshell respectively) passed the conveyor belt and were exposed to UV for 4.7 and 18.8 s. The reduction of both inoculated bacteria on the eggshell was comparable and significant for both exposure times (3 and 4 log CFU per eggshell). Escherichia coli was reduced but still detectable on the conveyor rollers. The internal bacterial contamination of eggs filled up with diluent containing E. coli or S. aureus was not influenced by UV irradiation. There is a significant lethal effect of UV irradiation on the bacterial contamination of clean eggshells and recent shell contamination, contamination of rollers can be controlled and the internal contamination of eggs is not reduced. The penetration of UV into organic material appears to be poor and UV disinfection can be used as an alternative for egg washing.

  15. Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection.

    PubMed

    Hong, Xuesen; Wen, Junjie; Xiong, Xuhua; Hu, Yongyou

    2016-07-01

    Novel silver nanowire (AgNW) - carbon fiber cloth (CC) nanocomposites were synthesized by a rapid and facile method. Acting as filter in an electrical gravity filtration device, the AgNW-CC nanocomposites were applied to electrochemical point-of-use water disinfection. AgNW-CC nanocomposites were characterized by FESEM, XRD, and FTIR. Their disinfection performance toward Escherichia coli and bacteriophage MS2 was evaluated by inhibition zone tests, optical density growth curve tests, and flow tests. The results showed that complex 3D AgNW networks with controllable silver release (<100 ppb) were fabricated on CC by using UV curing adhesive. AgNW-CC nanocomposites exhibited excellent intrinsic antibacterial activities against E. coli. The concentration of AgNWs and UV adhesive controlled the released silver and hence led to the change in antibacterial activity. The external electric field significantly enhanced the disinfection efficiency of AgNW-CC nanocomposites. Over 99.999% removal of E. coli and MS2 could be achieved. More complex AgNW networks contributed to higher disinfection efficiency under 10 V and 10(6) CFU (PFU) mL(-1) of microorganism. UV adhesive could keep the disinfection performance from being affected by flow rate. The convenient synthesis and outstanding disinfection performance offer AgNW-CC nanocomposites opportunities in the application of electrochemical point-of-use drinking water disinfection.

  16. [Analysis of UV-visible absorption spectrum on the decolorization of industrial wastewater by disinfection].

    PubMed

    Huang, Xin; Wang, Long-Yong; Gao, Nai-Yun; Li, Wei-Guo

    2012-10-01

    The UV-Visible absorption spectrum of industrial wastewater was explored to introduce a substituting method determining the color of water, and to compare the decolorization efficacy of different disinfectants. The results show that the visible absorption spectrum(350-600 nm), instead of ultraviolet absorption spectrum, should be applied to characterize the color of wastewater. There is a good correlation between the features of visible absorption spectrum and the true color of wastewater. Both ozone and chlorine dioxide has a better decolorization performance than chlorine. However, the color of chlorine dioxide itself has a negative effect on decolorization. The changes in the features of visible absorption spectrum effectively reflect the variations in the color of wastewater after disinfection.

  17. The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment.

    PubMed

    Lyon, Bonnie A; Dotson, Aaron D; Linden, Karl G; Weinberg, Howard S

    2012-10-01

    Ultraviolet (UV) disinfection is being increasingly used in drinking water treatment. It is important to understand how its application to different types of water may influence finished water quality, particularly as anthropogenic activity continues to impact the quality of source waters. The objective of this study was to evaluate the effect of inorganic precursors on the formation of regulated and unregulated disinfection byproducts (DBPs) during UV irradiation of surface waters when combined with chlorination or chloramination. Samples were collected from three drinking water utilities supplied by source waters with varying organic and inorganic precursor content. The filtered samples were treated in the laboratory with a range of UV doses delivered from low pressure (LP, UV output at 253.7 nm) and medium pressure (MP, polychromatic UV output 200-400 nm) mercury lamps followed by chlorination or chloramination, in the presence and absence of additional bromide and nitrate. The regulated trihalomethanes and haloacetic acids were not affected by UV pretreatment at disinfection doses (40-186 mJ/cm²). With higher doses (1000 mJ/cm²), trihalomethane formation was increased 30-40%. While most effects on DBPs were only observed with doses much higher than typically used for UV disinfection, there were some effects on unregulated DBPs at lower doses. In nitrate-spiked samples (1-10 mg N/L), chloropicrin formation doubled and increased three- to six-fold with 40 mJ/cm² MP UV followed by chloramination and chlorination, respectively. Bromopicrin formation was increased in samples containing bromide (0.5-1 mg/L) and nitrate (1-10 mg N/L) when pretreated with LP or MP UV (30-60% with 40 mJ/cm² LP UV and four- to ten-fold increase with 40 mJ/cm² MP UV, after subsequent chlorination). The formation of cyanogen chloride doubled and increased three-fold with MP UV doses of 186 and 1000 mJ/cm², respectively, when followed by chloramination in nitrate-spiked samples but

  18. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: UV DISINFECTION FOR REUSE APPLICATIONS, ONDEO DEGREMONT, INC., AQUARAY® 40 HO VLS DISINFECTION SYSTEM

    EPA Science Inventory

    Verification testing of the Ondeo Degremont, Inc. Aquaray® 40 HO VLS Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Three reactor modules were m...

  19. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT: UV DISINFECTION FOR REUSE APPLICATIONS, ONDEO DEGREMONT, INC., AQUARAY® 40 HO VLS DISINFECTION SYSTEM

    EPA Science Inventory

    Verification testing of the Ondeo Degremont, Inc. Aquaray® 40 HO VLS Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Three reactor modules were m...

  20. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy.

    PubMed

    Beck, Sara E; Ryu, Hodon; Boczek, Laura A; Cashdollar, Jennifer L; Jeanis, Kaitlyn M; Rosenblum, James S; Lawal, Oliver R; Linden, Karl G

    2017-02-01

    A dual-wavelength UV-C LED unit, emitting at peaks of 260 nm, 280 nm, and the combination of 260|280 nm together was evaluated for its inactivation efficacy and energy efficiency at disinfecting Escherichia coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores, compared to conventional low-pressure and medium-pressure UV mercury vapor lamps. The dual-wavelength unit was also used to measure potential synergistic effects of multiple wavelengths on bacterial and viral inactivation and DNA and RNA damage. All five UV sources demonstrated similar inactivation of E. coli. For MS2, the 260 nm LED was most effective. For HAdV2 and B. pumilus, the MP UV lamp was most effective. When measuring electrical energy per order of reduction, the LP UV lamp was most efficient for inactivating E. coli and MS2; the LP UV and MP UV mercury lamps were equally efficient for HAdV2 and B. pumilus spores. Among the UV-C LEDs, there was no statistical difference in electrical efficiency for inactivating MS2, HAdV2, and B. pumilus spores. The 260 nm and 260|280 nm LEDs had a statistical energy advantage for E. coli inactivation. For UV-C LEDs to match the electrical efficiency per order of log reduction of conventional LP UV sources, they must reach efficiencies of 25-39% or be improved on by smart reactor design. No dual wavelength synergies were detected for bacterial and viral inactivation nor for DNA and RNA damage.

  1. Photoreactivation of bacteriophages after UV disinfection: role of genome structure and impacts of UV source.

    PubMed

    Rodriguez, Roberto A; Bounty, Sarah; Beck, Sara; Chan, Connie; McGuire, Christian; Linden, Karl G

    2014-05-15

    The UV inactivation kinetics of bacteriophages MS2, PhiX174, T1 and PRD1 and the potential of bacterial UV repair mechanisms to reactivate these bacteriophages is described here. The selected bacteriophages represent a range of genome size, single and double stranded genomes, circular and linear organization and RNA and DNA. Bacteriophages were exposed to UV irradiation from two different collimated beam UV irradiation sources (medium-pressure (MP) mercury lamps and low-pressure (LP) mercury lamps) and assayed during which host-phage cultures were exposed to photoreactivating light for 6 h, then incubated overnight at 37 °C in the dark. Dark controls following UV exposure were performed in parallel. UV inactivation kinetics (using dark controls) showed that circular ssDNA phage (PhiX174) was the most sensitive and linear ssRNA phage (MS2) was the more resistant phage. No photoreactivation was observed for MS2 (RNA phage) and the highest photoreactivation was observed for PRD1. In the case of PRD1, the dose required for 4-log reduction (dark control) was around 35 mJ/cm(2), with a similar dose observed for both UV sources (MP and LP). When the photoreactivation step was added, the dose required for 4-log reduction using LP lamps was 103 mJ/cm(2) and for MP lamps was 60 mJ/cm(2). Genome organization differences between bacteriophages play an important role in resistance to UV inactivation and potential photoreactivation mediated by bacterial host mechanisms. The use of photoreactivation during the assay of PRD1 creates a more conservative surrogate for potential use in UV challenge testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Numerical study of the effects of lamp configuration and reactor wall roughness in an open channel water disinfection UV reactor.

    PubMed

    Sultan, Tipu

    2016-07-01

    This article describes the assessment of a numerical procedure used to determine the UV lamp configuration and surface roughness effects on an open channel water disinfection UV reactor. The performance of the open channel water disinfection UV reactor was numerically analyzed on the basis of the performance indictor reduction equivalent dose (RED). The RED values were calculated as a function of the Reynolds number to monitor the performance. The flow through the open channel UV reactor was modelled using a k-ε model with scalable wall function, a discrete ordinate (DO) model for fluence rate calculation, a volume of fluid (VOF) model to locate the unknown free surface, a discrete phase model (DPM) to track the pathogen transport, and a modified law of the wall to incorporate the reactor wall roughness effects. The performance analysis was carried out using commercial CFD software (ANSYS Fluent 15.0). Four case studies were analyzed based on open channel UV reactor type (horizontal and vertical) and lamp configuration (parallel and staggered). The results show that lamp configuration can play an important role in the performance of an open channel water disinfection UV reactor. The effects of the reactor wall roughness were Reynolds number dependent. The proposed methodology is useful for performance optimization of an open channel water disinfection UV reactor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Toxicity on aquatic organisms exposed to secondary effluent disinfected with chlorine, peracetic acid, ozone and UV radiation.

    PubMed

    da Costa, Juliana Berninger; Rodgher, Suzelei; Daniel, Luiz Antonio; Espíndola, Evaldo Luiz Gaeta

    2014-11-01

    The toxic potential of four disinfectant agents (chlorine, ozone, peracetic acid and UV radiation), used in the disinfection of urban wastewater, was evaluated with respect to four aquatic organisms. Disinfection assays were carried out with wastewater from the city of Araraquara (São Paulo State, Brazil), and subsequently, toxicity bioassays were applied in order to verify possible adverse effects to the cladocerans (Ceriodaphnia silvestrii and Daphnia similis), midge larvae Chironomus xanthus and fish (Danio rerio). Under the experimental conditions tested, all the disinfectants were capable of producing harmful effects on the test organisms, except for C. xanthus. The toxicity of the effluent to C. silvestrii was observed to increase significantly as a result of disinfection using 2.5 mg L(-1) chlorine and 29.9 mg L(-1) ozone. Ozonation and chlorination significantly affected the survival of D. similis and D. rerio, causing mortality of 60 to 100 % in comparison to the non-disinfected effluent. In experiments with effluent treated with peracetic acid (PAA) and UV radiation, a statistically significant decrease in survival was only detected for D. rerio. This investigation suggested that the study of the ideal concentrations of disinfectants is a research need for ecologically safe options for the treatment of wastewater.

  4. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater.

    PubMed

    Gehr, Ronald; Wagner, Monika; Veerasubramanian, Priya; Payment, Pierre

    2003-11-01

    The City of Montreal Wastewater Treatment Plant uses enhanced physicochemical processes (ferric and/or alum coagulation) for suspended solids and phosphorus removal. The objective of this study was to assess the ability of peracetic acid (PAA), UV, or ozone to inactivate the indicator organisms fecal coliforms, Enterococci, MS-2 coliphage, or Clostridium perfringens in the effluent from this plant. PAA doses to reach the target fecal coliform level of 9000 CFU/100mL exceeded 6 mg/L; similar results were obtained for enterococci, and no inactivation of Clostridium perfringens was observed. However a 1-log reduction of MS-2 occurred at PAA doses of 1.5 mg/L and higher. It was expected that this effluent would have a high ozone demand, and would require relatively high UV fluences, because of relatively high effluent COD, iron and suspended solids concentrations, and low UV transmittance. This was confirmed herein. For UV, the inactivation curve for fecal coliforms showed the typical two-stage shape, with the target of 1000 CFU/100 mL (to account for photoreactivation) occurring in the asymptote zone at fluences >20 mJ/cm(2). In contrast, inactivation curves for MS-2 and Clostridium perfringens were linear. Clostridium perfringens was the most resistant organism. For ozone, inactivation was already observed before any residuals could be measured. The transferred ozone doses to reach target fecal coliform levels ( approximately 2-log reduction) were 30-50 mg/L. MS-2 was less resistant, but Clostridium perfringens was more resistant than fecal coliforms. The different behaviour of the four indicator organisms studied, depending on the disinfectant, suggests that a single indicator organism might not be appropriate. The required dose of any of the disinfectants is unlikely to be economically viable, and upstream changes to the plant will be needed.

  5. Inactivation of Escherichia coli, Bacteriophage MS2, and Bacillus Spores under UV/H2O2 and UV/Peroxydisulfate Advanced Disinfection Conditions.

    PubMed

    Sun, Peizhe; Tyree, Corey; Huang, Ching-Hua

    2016-04-19

    Ultraviolet light (UV) combined with peroxy chemicals, such as H2O2 and peroxydisulfate (PDS), have been considered potentially highly effective disinfection processes. This study investigated the inactivation of Escherichia coli, bacteriophage MS2, and Bacillus subtilis spores as surrogates for pathogens under UV/H2O2 and UV/PDS conditions, with the aim to provide further understanding of UV-based advanced disinfection processes (ADPs). Results showed that one additional log of inactivation of E. coli was achieved with 0.3 mM H2O2 or PDS at 5.2 × 10(-5) Einstein·L(-1) photo fluence (at 254 nm) compared with UV irradiation alone. Addition of H2O2 and PDS greatly enhanced the inactivation rate of MS2 by around 15 folds and 3 folds, respectively, whereas the inactivation of B. subtilis spores was slightly enhanced. Reactive species responsible for the inactivation were identified to be •OH, SO4(·-), and CO3(·-) based on manipulation of solution conditions. The CT value of each reactive species was calculated with respect to each microbial surrogate, which showed that the disinfection efficacy ranked as •OH > SO4(·-) > CO3(·-) ≫ O2(·-)/HO2(·). A comprehensive dynamic model was developed and successfully predicted the inactivation of the microbial surrogates in surface water and wastewater matrices. The concepts of UV-efficiency and EE/O were employed to provide a cost-effective evaluation for UV-based ADPs. Overall, the present study suggests that it will be beneficial to upgrade UV disinfection to UV/H2O2 ADP for the inactivation of viral pathogens.

  6. What happens with organic micropollutants during UV disinfection in WWTPs? A global perspective from laboratory to full-scale.

    PubMed

    Paredes, L; Omil, F; Lema, J M; Carballa, M

    2017-09-09

    The phototransformation of 18 organic micropollutants (OMPs) commonly detected in wastewater treatment plant (WWTP) effluents was examined attempting to explain their fate during UV disinfection in WWTPs. For this purpose, a lab-scale UV reactor (lamp emitting at 254nm) was used to study the influence of the operational conditions (UV dose, temperature and water matrix) on OMPs abatement and disinfection efficiency. Chemical properties of OMPs and the quality of treated effluent were identified as key factors affecting the phototransformation rate of these compounds. Sampling campaigns were carried out at the inlet and outlet of UV systems of three WWTPs, and the results evidenced that only the most photosensitive compounds, such as sulfamethoxazole and diclofenac, are eliminated. Therefore, despite UV treatment is an effective technology to phototransform OMPs, the UV doses typically applied for disinfection (10-50mJ/cm(2)) are not sufficient to remove them. Consequently, small modifications (increase of UV dose, use of catalysts) should be applied in WWTPs to enhance the abatement of OMPs in UV systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Application of GaN-based ultraviolet-C light emitting diodes--UV LEDs--for water disinfection.

    PubMed

    Würtele, M A; Kolbe, T; Lipsz, M; Külberg, A; Weyers, M; Kneissl, M; Jekel, M

    2011-01-01

    GaN-based ultraviolet-C (UV-C) light emitting diodes (LEDs) are of great interest for water disinfection. They offer significant advantages compared to conventional mercury lamps due to their compact form factor, low power requirements, high efficiency, non-toxicity, and overall robustness. However, despite the significant progress in the performance of semiconductor based UV LEDs that has been achieved in recent years, these devices still suffer from low emission power and relatively short lifetimes. Even the best UV LEDs exhibit external quantum efficiencies of only 1-2%. The objective of this study was to investigate the suitability of GaN-based UV LEDs for water disinfection. The investigation included the evaluation of the performance characteristics of UV LEDs at different operating conditions as well as the design of a UV LED module in view of the requirements for water treatment applications. Bioanalytical testing was conducted using Bacillus subtilis spores as test organism and UV LED modules with emission wavelengths of 269 nm and 282 nm. The results demonstrate the functionality of the developed UV LED disinfection modules. GaN-based UV LEDs effectively inactivated B. subtilis spores during static and flow-through tests applying varying water qualities. The 269 nm LEDs reached a higher level of inactivation than the 282 nm LEDs for the same applied fluence. The lower inactivation achieved by the 282 nm LEDs was compensated by their higher photon flux. First flow-through tests indicate a linear correlation between inactivation and fluence, demonstrating a well designed flow-through reactor. With improved light output and reduced costs, GaN-based UV LEDs can provide a promising alternative for decentralised and mobile water disinfection systems.

  8. Disinfection.

    ERIC Educational Resources Information Center

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  9. Disinfection.

    ERIC Educational Resources Information Center

    Gould, J. P.; Haas, C. N.

    1978-01-01

    Presents a literature review of wastewater disinfection for 1978. This review covers areas such as: (1) mechanisms of inactivation of negative microorganisms by chlorine and ozone; and (2) the effects of various treatment on over-all water quality. A list of 61 references is also presented. (HM)

  10. DISINFECTION

    EPA Science Inventory

    The primary goal of the disinfection process in drinking water treatment is the inactivation of microbial pathogens. These pathogens comprise a diverse group of organisms which serve as the etiological agents of waterborne disease. Included in this group are bacterial, viral and ...

  11. Characteristic correlation study of UV disinfection performance for ballast water treatment

    NASA Astrophysics Data System (ADS)

    Ba, Te; Li, Hongying; Osman, Hafiiz; Kang, Chang-Wei

    2016-11-01

    Characteristic correlation between ultraviolet disinfection performance and operating parameters, including ultraviolet transmittance (UVT), lamp power and water flow rate, was studied by numerical and experimental methods. A three-stage model was developed to simulate the fluid flow, UV radiation and the trajectories of microorganisms. Navier-Stokes equation with k-epsilon turbulence was solved to model the fluid flow, while discrete ordinates (DO) radiation model and discrete phase model (DPM) were used to introduce UV radiation and microorganisms trajectories into the model, respectively. The UV dose statistical distribution for the microorganisms was found to move to higher value with the increase of UVT and lamp power, but moves to lower value when the water flow rate increases. Further investigation shows that the fluence rate increases exponentially with UVT but linearly with the lamp power. The average and minimum resident time decreases linearly with the water flow rate while the maximum resident time decrease rapidly in a certain range. The current study can be used as a digital design and performance evaluation tool of the UV reactor for ballast water treatment.

  12. Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method.

    PubMed

    Chatzisymeon, Efthalia; Droumpali, Ariadni; Mantzavinos, Dionissios; Venieri, Danae

    2011-03-02

    The disinfection efficiency of synthetic and real wastewater by means of UV-A and UV-C irradiation in the presence or absence of TiO(2) was investigated. A reference strain of Escherichia coli suspended in sterile 0.8% (w/v) NaCl aqueous solution was used as a synthetic wastewater, while real wastewater samples were collected from the outlet of the secondary treatment of a municipal wastewater treatment plant. E. coli inactivation was monitored both by the conventional culture technique and by the real-time PCR method. Culture method showed that UV-C irradiation (11 W lamp) achieved total E. coli inactivation of 100% within 3 min of photolytic treatment. On the other hand, UV-A (9 W lamp)/TiO(2); [TiO(2)]=200 mg L(-1) (i.e. best operating conditions) required 60 min to achieve total disinfection of the synthetic wastewater. Real time PCR revealed compatible results, regarding the better efficiency of UV-C. However, it showed different times of bacterial inactivation, probably due to the phenomenon of "viable but not culturable bacteria". Disinfection durability tests in the dark and under natural sunlight irradiation showed that there is cell repair when UV-C irradiation is used for synthetic wastewater disinfection. Regarding real wastewater it was observed that only UV-C irradiation was capable of totally inactivating E. coli population in short time. Comparing results obtained from both methods, real time PCR proved to be more reliable and accurate, concerning the bacterial detection and enumeration in aquatic samples after the application of UV irradiation.

  13. Impact of UV disinfection combined with chlorination/chloramination on the formation of halonitromethanes and haloacetonitriles in drinking water.

    PubMed

    Shah, Amisha D; Dotson, Aaron D; Linden, Karl G; Mitch, William A

    2011-04-15

    The application of UV disinfection in water treatment is increasing due to both its effectiveness against protozoan pathogens, and the perception that its lack of chemical inputs would minimize disinfection byproduct formation. However, previous research has indicated that treatment of nitrate-containing drinking waters with polychromatic medium pressure (MP), but not monochromatic (254 nm) low pressure (LP), UV lamps followed by chlorination could promote chloropicrin formation. To better understand this phenomenon, conditions promoting the formation of the full suite of chlorinated halonitromethanes and haloacetonitriles were studied. MP UV/postchlorination of authentic filter effluent waters increased chloropicrin formation up to an order of magnitude above the 0.19 μg/L median level in the U.S. EPA's Information Collection Rule database, even at disinfection-level fluences (<300 mJ/cm(2)) and nitrate/nitrite concentrations (1.0 mg/L-N) relevant to drinking waters. Formation was up to 2.5 times higher for postchlorination than for postchloramination. Experiments indicated that the nitrating agent, NO(2)(•), generated during nitrate photolysis, was primarily responsible for halonitromethane promotion. LP UV treatment up to 1500 mJ/cm(2) did not enhance halonitromethane formation. Although MP UV/postchloramination enhanced dichloroacetonitrile formation with Sigma-Aldrich humic acid, formation was not significant in field waters. Prechlorination/MP UV nearly doubled chloropicrin formation compared to MP UV/postchlorination, but effects on haloacetonitrile formation were not significant.

  14. Efficiency of the UV/H2O2 process for the disinfection of humic surface waters.

    PubMed

    Alkan, Ufuk; Teksoy, Arzu; Atesli, Ahu; Baskaya, Huseyin S

    2007-03-01

    The efficiency of the UV/H2O2 process for the disinfection of total coliforms and the prevention of bacterial regrowth in humic surface waters were investigated. Inactivation of total coliforms was determined in water samples containing various concentrations ranging from 0-10 mg/L dissolved organic carbon (DOC) of fulvic acid, which were exposed to various doses (68-681 mWs/cm2) of UV radiation in the presence of 0.125 mg/L and 3.000 mg/L of hydrogen peroxide. Disinfection efficiencies of the UV radiation and the UV/H2O2 processes were compared. The results of bacterial inactivation experiments showed that the performances of the UV and the UV/H2O2 (0.125) were comparable whereas the UV/H2O2 (3.000) process showed significant improvement in performance, especially, in highly humic waters. Inactivation coefficient appeared to be almost doubled by the addition of 3.000 mg/L hydrogen peroxide during the treatment of highly humic waters. In contradiction to significant regrowth which occurred in the single UV radiation treatment, residual bacteria following the UV/H2O2 (0.125) and the UV/H2O2 (3.000) treatments were completely inactivated during dark incubation indicating the elimination of possible bacterial regrowth.

  15. Field testing of biological spectral weighting functions for induction of UV-absorbing compounds in higher plants.

    PubMed

    Flint, Stephan D; Searles, Peter S; Caldwell, Martyn M

    2004-05-01

    Action spectra are typically used as biological spectral weighting functions (BSWF) in biological research on the stratospheric ozone depletion issue. Despite their critical role in determining the amount of UV supplied in experiments, there has been only limited testing of different functions under realistic field conditions. Here, we calculate effective radiation according to five published BSWF and evaluate the appropriateness of these BSWF in representing the induction of UV-absorbing compounds. Experiments were carried out in the field using both ultraviolet-B radiation (280-320 nm) supplementation and selective filtering of solar UV radiation. For the four species tested, BSWF that extend into the ultraviolet-A radiation (320-400 nm) (UV-A) with moderate effectiveness best represented the observed results. When compared with the commonly used generalized plant response, these BSWF suggest that simulations of ozone depletion will require more radiation than in the past experiments. However, they imply lower radiation supplements than a new plant growth BSWF that has a greater emphasis on UV-A wavelengths.

  16. The tail of two models: Impact of circularity and biomass non-homogeneity on UV disinfection of wastewater flocs.

    PubMed

    Azimi, Y; Liu, Y; Tan, T C; Allen, D G; Farnood, R R

    2017-09-06

    The effects of floc structural characteristics, i.e. shape and dense biomass distribution, were evaluated on ultraviolet (UV) disinfection resistance, represented by the tailing level of the UV dose response curve (DRC). Ellipsoid-shaped flocs of similar volume and different projected circularities were constructed in-silico and a mathematical model was developed to compare their UV DRC tailing levels (indicative of UV-resistance). It was found that floc shape can significantly influence tailing level, and rounder flocs (i.e. flocs with higher circularity) were more UV-resistant. This result was confirmed experimentally by obtaining UV DRCs of two 75-90 μm floc populations with different percentages (20% vs. 30%) of flocs with circularities higher than 0.5. The population enriched in less circular flocs (i.e. 20% flocs with circularities >0.5) had a lower tailing level (at least by 1-log) compared to the other population. The second model was developed to describe variations in UV disinfection kinetics observed in flocs with transverse vs. radial biomass non-homogeneity, indicative of biofilm-originated vs. suspended flocs. The varied-density hemispheres model and shell-core model were developed to simulate transverse and radial non-homogeneity, respectively. The UV DRCs were mathematically constructed and biofilm-originated flocs showed higher UV resistance compared to suspended flocs. The calculated UV DRCs agreed well with the experimental data collected from activated sludge and trickling filter flocs (no fitting parameters were used). These findings provide useful information in terms of designing/modifying upstream processes for reducing UV disinfection energy demand. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. UV disinfection of RBC-treated light greywater effluent: kinetics, survival and regrowth of selected microorganisms.

    PubMed

    Gilboa, Yael; Friedler, Eran

    2008-02-01

    The microbial quality of raw greywater was found to be much better than that of municipal wastewater, with 1.6 x 10(7)cfu ml(-1) heterotrophic plate count (HPC), and 3.8 x 10(4), 9.9 x 10(3), 3.3 x 10(3) and 4.6 x 10(0)cfu 100 ml(-1) faecal coliforms (FC), Staphylococcus aureus sp., Pseudomonas aeruginosa sp. and Clostridium perfringes sp., respectively. Further, three viral indicators monitored (somatic phage, host: Escherichia coli CN(13) and F-RNA phages, hosts: E. coli F+(amp), E. coli K12) were not present in raw greywater. The greywater was treated by an RBC followed by sedimentation. The treatment removed two orders of magnitude of all bacteria. UV disinfection kinetics, survival and regrowth of HPC, FC, P. aeruginosa sp. and S. aureus sp. were examined. At doses up to 69 mW s cm(-2) FC were found to be the most resistant bacteria, followed by HPC, P. aeruginosa sp. and S. aureus sp. (inactivation rate coefficients: 0.0687, 0.113, 0.129 and 0.201 cm2 mW(-1)s(-1), respectively). At higher doses (69-439 mW s cm(-2)) all but HPC (which exhibited a tailing curve) were completely eliminated. Microscopic examination showed that FC self-aggregate in the greywater effluent. This provides FC an advantage at low doses, since the concentration of suspended matter (that can provide shelter from UV radiation) in the effluent was very low. FC, P. aeruginosa sp. and S. aureus sp. did not exhibit regrowth up to 6h after exposure to increasing UV doses (19-439 mW s cm(-2)). HPC regrowth was proven to be statistically significant in un-disinfected effluent and after irradiation with high UV doses (147 and 439 mW s cm(-2)). At these doses regrowth resulted from growth of UV-resistant bacteria due to decreased competition with other bacteria eliminated by the irradiation.

  18. Effect of medium-pressure UV-lamp treatment on disinfection by-products in chlorinated seawater swimming pool waters.

    PubMed

    Cheema, Waqas A; Manasfi, Tarek; Kaarsholm, Kamilla M S; Andersen, Henrik R; Boudenne, Jean-Luc

    2017-12-01

    Several brominated disinfection by-products (DBPs) are formed in chlorinated seawater pools, due to the high concentration of bromide in seawater. UV irradiation is increasingly employed in freshwater pools, because UV treatment photodegrades harmful chloramines. However, in freshwater pools it has been reported that post-UV chlorination promotes the formation of other DBPs. To date, UV-based processes have not been investigated for DBPs in seawater pools. In this study, the effects of UV, followed by chlorination, on the concentration of three groups of DBPs were investigated in laboratory batch experiments using a medium-pressure UV lamp. Chlorine consumption increased following post-UV chlorination, most likely because UV irradiation degraded organic matter in the pool samples to more chlorine-reactive organic matter. Haloacetic acid (HAA) concentrations decreased significantly, due to photo-degradation, but the concentrations of trihalomethanes (THMs) and haloacetonitriles (HANs) increased with post-UV chlorination. Bromine incorporation in HAAs was significantly higher in the control samples chlorinated without UV irradiation but decreased significantly with UV treatment. Bromine incorporation was promoted in THM and HAN after UV and chlorine treatment. Overall, the accumulated bromine incorporation level in DBPs remained essentially unchanged in comparison with the control samples. Toxicity estimates increased with single-dose UV and chlorination, mainly due to increased HAN concentrations. However, brominated HANs are known in the literature to degrade following further UV treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. UV disinfection and flocculation-chlorination sachets to reduce hepatitis E virus in drinking water.

    PubMed

    Guerrero-Latorre, Laura; Gonzales-Gustavson, Eloy; Hundesa, Ayalkibet; Sommer, Regina; Rosina, Girones

    2016-07-01

    Hepatitis E Virus (HEV) is a major cause of waterborne outbreaks in areas with poor sanitation. As safe water supplies are the keystone for preventing HEV outbreaks, data on the efficacy of disinfection treatments are urgently needed. Here, we evaluated the ability of UV radiation and flocculation-chlorination sachets (FCSs) to reduce HEV in water matrices. The HEV-p6-kernow strain was replicated in the HepG2/C3A cell line, and we quantified genome number using qRT-PCR and infectivity using an immunofluorescence assay (IFA). UV irradiation tests using low-pressure radiation showed inactivation kinetics for HEV of 99.99% with a UV fluence of 232J/m(2) (IC 95%, 195,02-269,18). Moreover, the FCSs preparations significantly reduced viral concentrations in both water matrices, although the inactivation results were under the baseline of reduction (4.5 LRV) proposed by WHO guidelines. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Heuristic optimization of a continuous flow point-of-use UV-LED disinfection reactor using computational fluid dynamics.

    PubMed

    Jenny, Richard M; Jasper, Micah N; Simmons, Otto D; Shatalov, Max; Ducoste, Joel J

    2015-10-15

    Alternative disinfection sources such as ultraviolet light (UV) are being pursued to inactivate pathogenic microorganisms such as Cryptosporidium and Giardia, while simultaneously reducing the risk of exposure to carcinogenic disinfection by-products (DBPs) in drinking water. UV-LEDs offer a UV disinfecting source that do not contain mercury, have the potential for long lifetimes, are robust, and have a high degree of design flexibility. However, the increased flexibility in design options will add a substantial level of complexity when developing a UV-LED reactor, particularly with regards to reactor shape, size, spatial orientation of light, and germicidal emission wavelength. Anticipating that LEDs are the future of UV disinfection, new methods are needed for designing such reactors. In this research study, the evaluation of a new design paradigm using a point-of-use UV-LED disinfection reactor has been performed. ModeFrontier, a numerical optimization platform, was coupled with COMSOL Multi-physics, a computational fluid dynamics (CFD) software package, to generate an optimized UV-LED continuous flow reactor. Three optimality conditions were considered: 1) single objective analysis minimizing input supply power while achieving at least (2.0) log10 inactivation of Escherichia coli ATCC 11229; and 2) two multi-objective analyses (one of which maximized the log10 inactivation of E. coli ATCC 11229 and minimized the supply power). All tests were completed at a flow rate of 109 mL/min and 92% UVT (measured at 254 nm). The numerical solution for the first objective was validated experimentally using biodosimetry. The optimal design predictions displayed good agreement with the experimental data and contained several non-intuitive features, particularly with the UV-LED spatial arrangement, where the lights were unevenly populated throughout the reactor. The optimal designs may not have been developed from experienced designers due to the increased degrees of

  1. The removal of estrogenic activity with UV/chlorine technology and identification of novel estrogenic disinfection by-products.

    PubMed

    Li, Man; Xu, Bi; Liungai, Zhiqi; Hu, Hong-Ying; Chen, Chao; Qiao, Juan; Lu, Yun

    2016-04-15

    As a recently developed disinfection technology, ultraviolet (UV)/chlorine treatment has received much attention. Many studies have evaluated its effects on pathogen inactivation, contaminant removal, and formation of disinfection by-products (DBPs), but its potential for environmental estrogen removal and estrogenic DBP generation, which can also be a risk to both ecosystem and human health, have not been evaluated. In this study, UV/chlorine treatment resulted in a greater removal of estrogenic activity in synthetic effluent samples containing 17β-estradiol (E2) than did UV or chlorine treatment alone regardless of the water quality. For both the UV/chlorine and chlorine treatments, there was significant interference from NH3-N, although the UV/chlorine treatment was less affected. Estrogen receptor based affinity chromatography was used to isolate the specific estrogenic DBPs, and a novel product, with high estrogenic activity compared to E2, Δ9(11)-dehydro-estradiol, was identified. It was generated by all three treatments, and might be previously mistakenly recognized as estrone (E1). This study demonstrated that UV/chlorine is a better treatment for the removal of 17β-estradiol than chlorine and UV alone. The new identified estrogenic DBP, Δ9(11)-dehydro-estradiol, which can be isolated by affinity chromatography, could be an emerging concern in the future.

  2. Protection against UV disinfection of E. coli bacteria and B. subtilis spores ingested by C. elegans nematodes.

    PubMed

    Bichai, Françoise; Barbeau, Benoit; Payment, Pierre

    2009-08-01

    Nematodes, which occur abundantly in granular media filters of drinking water treatment plants and in distribution systems, can ingest and transport pathogenic bacteria and provide them protection against chemical disinfectants. However, protection against UV disinfection had not been investigated to date. In this study, Caenorhabditis elegans nematodes (wild-type strain N2) were allowed to feed on Escherichia coli OP50 and Bacillus subtilis spores before being exposed to 5 and 40 mJ/cm(2) UV fluences, using a collimated beam apparatus (LP, 254 nm). Sonication (15 W, 60s) was used to extract bacteria from nematode guts following UV exposure in order to assess the amount of ingested bacteria that resisted the UV treatment using a standard culture method. Bacteria located inside the gut of C. elegans were shown to benefit from a significant protection against UV. Approximately 15% of the applied UV fluence of 40 mJ/cm(2) (as typically used in WTP) was found to reach the bacteria located inside nematode guts based on the inactivation of recovered bacteria (2.7 log reduction of E. coli bacteria and 0.7 log reduction of B. subtilis spores at 40 mJ/cm(2)). To our knowledge, this study is the first demonstration of the protection effect of bacterial internalization by higher organisms against UV treatment, using the specific case of E. coli and B. subtilis spores ingested by C. elegans.

  3. Photodegradation kinetics of iopamidol by UV irradiation and enhanced formation of iodinated disinfection by-products in sequential oxidation processes.

    PubMed

    Tian, Fu-Xiang; Xu, Bin; Lin, Yi-Li; Hu, Chen-Yan; Zhang, Tian-Yang; Gao, Nai-Yun

    2014-07-01

    The photochemical degradation of iopamidol with low-pressure UV lamps and the formation of iodinated disinfection by-products (I-DBPs) during sequential oxidation processes including chlorine, monochloramine and chlorine dioxide were investigated in this study. Iopamidol can be effectively decomposed by UV irradiation with pseudo-first order reaction kinetics. The evaluated quantum yield was found to be 0.03318 mol einstein(-1). Results showed that iopamidol degradation rate was significantly increased by higher UV intensity and lower initial iopamidol concentration. However, the effect of solution pH was negligible. Degradation of iopamidol by UV photolysis was subjected to deiodination and hydroxylation mechanisms. The main degradation products including -OH substitutes and iodide were identified by UPLC-ESI-MS and UPLC-UV, respectively. Increasing the intensity of UV irradiation promoted the release of iodide. Destruction pathways of iopamidol photolysis were proposed. Enhanced formation of I-DBPs were observed after iopamidol photolysis followed by disinfection processes including chlorine, monochloramine and chlorine dioxide. With the increase of UV fluence, I-DBPs formation were significantly promoted.

  4. Faecal bacteria and bacteriophage inactivation in a full-scale UV disinfection system used for wastewater reclamation.

    PubMed

    Bourrouet, A; García, J; Mujeriego, R; Peñuelas, G

    2001-01-01

    A study was carried out to compare the inactivation of faecal bacteria and one type of bacteriophage in a full-scale UV disinfection system. The system is part of a water reclamation facility for effluent reuse in golf course and agricultural irrigation. Influent and effluent samples were taken over two sampling periods (three consecutive days in July and one day in August), with three different UV doses applied each day (ranging from 10 to 40 mW.s/cm2 and 20 to 80 mW.s/cm2 in July and August, respectively). Effluent samples were also taken from a chlorine disinfection channel (5 mg Cl2/L dose) operating in parallel to the UV system. Total coliforms (TC), faecal coliforms (FC), faecal streptoccoci (FS) and somatic coliphages (SC) were measured in each sample. F-specific RNA bacteriophages and bacteriophages of Bacteroides fragilis were also measured one day in July. The decay ratio observed for all the microorganisms was similar when UV doses applied were low (July), ranging from 1.15 to 1.25 log-units. This suggests that bacterial indicators may be suitable for virus inactivation control when low UV doses are applied; however, such low doses are inadequate to achieve effluent quality requirements for unrestricted irrigation. At higher UV doses (August), decay ratios for TC and FC were 3.1 and 2.8 log-units respectively, indicating that they were more susceptible to UV exposure than SC and FS, with decay ratios of 2.6 and 1.0 log-units, respectively. Nevertheless, these higher doses were also inadequate to achieve water quality requirements for unrestricted irrigation. The decay ratio of SC during chlorine disinfection was clearly lower than that of the other microorganisms. Bacteriophages of Bacteroides fragilis were more resistant to UV disinfection than SC and F-specific RNA. In fact, bacteriophages of Bacteroides fragilis were not affected during UV exposure. A UV dose ranging from 40 to 80 mW.s/cm2 marks the borderline beyond which inactivation rates of SC are

  5. [Effect of photoreactivating light intensity on photoreactivation of Escherichia coli and fecal coliform in the tertiary effluent disinfected by UV].

    PubMed

    Guo, Mei-ting; Hu, Hong-ying; Liu, Wen-jun

    2008-09-01

    The effect of photoreactivating light intensity on photoreactivation of E. coli and fecal coliform in tertiary effluent after UV disinfection were investigated. The response of the two species to intensity of photoreactivating light varied with UV dose and bacterial species. Photoreactivation of E. coli after UV irradiation of 5 mJ/cm2 achieved the same maximum under three selected intensities of photoreactivating light (0-43 microW/cm2). A threshold existed when UV dose increased to 20 mJ/cm2 and significant photoreactivation was detected only under intensity of light 43 microW/cm2. With different UV doses irradiation, fecal coliform showed little difference under selected intensities of photoreactivating light in this study. The different effects of photoreactivating light intensity on photoreactivation of different bacteria should be considered when proposing the control measurements.

  6. Eggcrate UV: a whole ceiling upper-room ultraviolet germicidal irradiation system for air disinfection in occupied rooms.

    PubMed

    Linnes, J C; Rudnick, S N; Hunt, G M; McDevitt, J J; Nardell, E A

    2014-04-01

    A novel whole ceiling upper-room ultraviolet germicidal irradiation (UVGI) system [eggcrate ultraviolet (UV)] has been developed that incorporates open-cell 'eggcrate'-suspended ceiling panels and bare UV lamps with a ceiling fan. Upper-room UVGI is more effective for air disinfection than mechanical ventilation at much lower installation and operating costs. Conventional upper-room UVGI fixtures employ multiple tightly spaced horizontal louvers to confine UV to the upper-room. These louvered fixtures protect occupants in the lower-room from UV-induced eye and skin irritation, but at a major cost to fixture efficiency. Using a lamp and ballast from a conventional upper-room UVGI fixture in the eggcrate UV system, the germicidal efficacy was markedly improved even though the UV radiation emitted by the lamp was unchanged. This fundamental change in the application of upper-room UVGI air disinfection should permit wider, more effective application of UVGI globally to reduce the spread of airborne infection.

  7. Application of a molecular biology concept for the detection of DNA damage and repair during UV disinfection.

    PubMed

    Süss, Jacqueline; Volz, Sabrina; Obst, Ursula; Schwartz, Thomas

    2009-08-01

    As nucleic acids are major targets in bacteria during standardised UV disinfection (254 nm), inactivation rates also depend on bacterial DNA repair. Due to UV-related DNA modifications, PCR-based approaches allow for a direct detection of DNA damage and repair during UV disinfection. By applying different primer sets, the correlation between amplicon length and PCR amplification became obvious. The longer the targeted DNA fragment was, the more UV-induced DNA lesions inhibited the PCR. Regeneration of Pseudomonas aeruginosa, Enterococcus faecium, and complex wastewater communities was recorded over a time period of 66 h. While phases of intensive repair and proliferation were found for P. aeruginosa, no DNA repair was detected by qPCR in E. faecium. Cultivation experiments verified these results. Despite high UV mediated inactivation rates original wastewater bacteria seem to express an enhanced robustness against irradiation. Regeneration of dominant and proliferation of low-abundant, probably UV-resistant species contributed to a strong post-irradiation recovery accompanied by a selection for beta-Proteobacteria.

  8. Impact of UV and Peracetic Acid Disinfection on the Prevalence of Virulence and Antimicrobial Resistance Genes in Uropathogenic Escherichia coli in Wastewater Effluents

    PubMed Central

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke

    2014-01-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2 and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters. PMID:24727265

  9. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents.

    PubMed

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic

    2014-06-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.

  10. Efficacy of Nucleic Acid Probes for Detection of Poliovirus in Water Disinfected by Chlorine, Chlorine Dioxide, Ozone, and UV Radiation

    PubMed Central

    Moore, Norman J.; Margolin, Aaron B.

    1994-01-01

    MilliQ water was inoculated with poliovirus type 1 strain LSc-1 and was treated with disinfectants, including chlorine, chlorine dioxide, ozone, and UV light. No relationship between probes and plaque assays were seen, demonstrating that viral nucleic acids were not destroyed. These findings suggest that nucleic acid probes cannot distinguish between infectious and noninfectious viruses and cannot be used in the evaluation of treated waters. PMID:16349448

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT FOR THE UV DISINFECTION OF SECONDARY EFFLUENTS, SUNTEC, INC. MODEL LPX200 DISINFECTION SYSTEM - 03/09/WQPC-SWP

    EPA Science Inventory

    Verification testing of the SUNTEC LPX200 UV Disinfection System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills wastewater treatment plant test site in Parsippany, New Jersey. Two lamp modules were mounted parallel in a 6.5-meter lon...

  12. A comparative study of disinfection efficiency and regrowth control of microorganism in secondary wastewater effluent using UV, ozone, and ionizing irradiation process.

    PubMed

    Lee, O-Mi; Kim, Hyun Young; Park, Wooshin; Kim, Tae-Hun; Yu, Seungho

    2015-09-15

    Ionizing radiation technology was suggested as an alternative method to disinfection processes, such as chlorine, UV, and ozone. Although many studies have demonstrated the effectiveness of irradiation technology for microbial disinfection, there has been a lack of information on comparison studies of disinfection techniques and a regrowth of each treatment. In the present study, an ionizing radiation was investigated to inactivate microorganisms and to determine the critical dose to prevent the regrowth. As a result, it was observed that the disinfection efficiency using ionizing radiation was not affected by the seasonal changes of wastewater characteristics, such as temperature and turbidity. In terms of bacterial regrowth after disinfection, the ionizing radiation showed a significant resistance of regrowth, whereas, on-site UV treatment is influenced by the suspended solid, temperature, or precipitation. The electric power consumption was also compared for the economic feasibility of each technique at a given value of disinfection efficiency of 90% (1-log), showing 0.12, 36.80, and 96.53 Wh/(L/day) for ionizing radiation, ozone, and UV, respectively. The ionizing radiation requires two or three orders of magnitude lower power consumption than UV and ozone. Consequently, ionizing radiation can be applied as an effective and economical alternative technique to other conventional disinfection processes. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Field test of a new instrument to measure UV/Vis (300-700 nm) ambient aerosol extinction spectra in Colorado during DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Dibb, J. E.; Greenslade, M. E.; Martin, R.; Scheuer, E. M.; Shook, M.; Thornhill, K. L., II; Troop, D.; Winstead, E.; Ziemba, L. D.

    2014-12-01

    An optical instrument has been developed to investigate aerosol extinction spectra in the ambient atmosphere. Based on a White-type cell design and using a differential optical approach, aerosol extinction spectra over the 300-700 nm ultraviolet and visible (UV/Vis) wavelength range are obtained. Laboratory tests conducted at NASA Langley Research Center (NASA LaRC) in March 2014 showed good agreement with Cavity Attenuated Phase Shift (CAPS PMex, Aerodyne Research) extinction measurements (at 450, 530, and 630 nm) for a variety of aerosols, e.g., scatterers such as polystyrene latex spheres and ammonium sulfate; absorbers such as dust (including pigmented minerals), smoke (generated in a miniCAST burning propane) and laboratory smoke analogs (e.g., fullerene soot and aquadag). The instrument was field tested in Colorado in July and August 2014 aboard the NASA mobile laboratory at various ground sites during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) field campaign. A description of the instrument, results from the laboratory tests, and summer field data will be presented. The instrument provides a new tool for probing in situ aerosol optical properties that may help inform remote sensing approaches well into the UV range.

  14. Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2.

    PubMed

    Pablos, Cristina; Marugán, Javier; van Grieken, Rafael; Serrano, Elena

    2013-03-01

    Regeneration of wastewater treatment plant effluents constitutes a solution to increase the availability of water resources in arid regions. Water reuse legislation imposes an exhaustive control of the microbiological quality of water in the operation of disinfection tertiary treatments. Additionally, recent reports have paid increasing attention to emerging micropollutants with potential biological effects even at trace level concentration. This work focuses on the evaluation of several photochemical technologies as disinfection processes with the aim of simultaneously achieving bacterial inactivation and oxidation of pharmaceuticals as examples of emerging micropollutants typically present in water and widely studied in the literature. UV-C-based processes show a high efficiency to inactivate bacteria. However, the bacterial damages are reversible and only when using H(2)O(2), bacterial reproduction is affected. Moreover, a complete elimination of pharmaceutical compounds was not achieved at the end of the inactivation process. In contrast, UV-A/TiO(2) required a longer irradiation time to inactivate bacteria but pharmaceuticals were completely removed along the process. In addition, its oxidation mechanism, based on hydroxyl radicals (OH), leads to irreversible bacterial damages, not requiring of chemicals to avoid bacterial regrowth. For UV-A/TiO(2)/H(2)O(2) process, the addition of H(2)O(2) improved Escherichia coli inactivation since the cell wall weakening, due to OH attacks, allowed H(2)O(2) to diffuse into the bacteria. However, a total elimination of the pharmaceuticals was not achieved during the inactivation process.

  15. Degradation of carbamazepine by UV/chlorine advanced oxidation process and formation of disinfection by-products.

    PubMed

    Zhou, Shiqing; Xia, Ying; Li, Ting; Yao, Tian; Shi, Zhou; Zhu, Shumin; Gao, Naiyun

    2016-08-01

    Pharmaceuticals in water are commonly found and are not efficiently removed by current treatment processes. Degradation of antiepileptic drug carbamazepine (CBZ) by UV/chlorine advanced oxidation process was systematically investigated in this study. The results showed that the UV/chlorine process was more effective at degrading CBZ than either UV or chlorination alone. The CBZ degradation followed pseudo-first order reaction kinetics, and the degradation rate constants (kobs) were affected by the chlorine dose, solution pH, and natural organic matter concentration to different degrees. Degradation of CBZ greatly increased with increasing chlorine dose and decreasing solution pH during the UV/chlorine process. Additionally, the presence of natural organic matter in the solution inhibited the degradation of CBZ. UV photolysis, chlorination, and reactive species (hydroxyl radical •OH and chlorine atoms •Cl) were identified as responsible for CBZ degradation in the UV/chlorine process. Finally, a degradation pathway for CBZ in the UV/chlorine process was proposed and the formation potentials of carbonaceous and nitrogenous disinfection by-products were evaluated. Enhanced formation of trichloroacetic acid, dichloroacetonitrile, and trichloronitromethane precursors should be considered when applying UV/chlorine advanced oxidation process to drinking water.

  16. [Disinfection and degradation of 2,4-DCP with UV-radiation and on-line ozone in drinking water treatmeant].

    PubMed

    Ma, Xiaomin; Song, Qiang; Hu, Chun; Wang, Yizhong; Qu, Jiuhui

    2002-09-01

    A type reactor with on-line O3 was used to do further research of the disinfection of total bacteria, E. coli and degradation of 2,4-DCP. The result was obtained in the following conditions. Only UV-radiation, O3 applied by other machine and by the reactor itself, and other conditions were changed to study the disinfection and degradation. The result showed the satisfied effect of disinfection and degradation would be achieved by using UV/O3 applied outside and when the flow rate was about 400 L.h-1, on-line O3 could be produced and make high efforts to enhance disinfection and degradation. The method of UV/O3 was a promising technology in the treatment of drinking water.

  17. Role of ozone in UV-C disinfection, demonstrated by comparison between wild-type and mutant conidia of Aspergillus niger.

    PubMed

    Liu, Jing; Zhou, Lin; Chen, Ji-Hong; Mao, Wang; Li, Wen-Jian; Hu, Wei; Wang, Shu-Yang; Wang, Chun-Ming

    2014-01-01

    This study aimed to investigate the tolerance of a melanized wild-type strain of Aspergillus niger (CON1) and its light-colored mutant (MUT1) to UV-C light and the concomitantly generated ozone. Treatments were segregated into four groups based on whether UV irradiation was used and the presence or absence of ozone: (-UV, -O3), (-UV, +O3), (+UV, -O3) and (+UV, +O3). The survival of CON1 and MUT1 conidia under +UV decreased as the exposure time increased, with CON1 showing greater resistance to UV irradiation than MUT1. Ozone induced CON1 conidium inactivation only under conditions of UV radiation exposure. While, the inactivation effect of ozone on MUT1 was always detectable regardless of the presence of UV irradiation. Furthermore, the CON1 conidial suspension showed lower UV light transmission than MUT1 when examined at the same concentration. Compared with the pigment in MUT1, the melanin in CON1 exhibited more potent radical-scavenging activity and stronger UV absorbance. These results suggested that melanin protected A. niger against UV disinfection via UV screening and free radical scavenging. The process by which UV-C disinfection induces a continual decrease in conidial survival suggests that UV irradiation and ozone exert a synergistic fungicidal effect on A. niger prior to reaching a plateau.

  18. Inactivation and tailing during UV254 disinfection of viruses: contributions of viral aggregation, light shielding within viral aggregates, and recombination.

    PubMed

    Mattle, Michael J; Kohn, Tamar

    2012-09-18

    UV disinfection of viruses frequently leads to tailing after an initial exponential decay. Aggregation, light shielding, recombination, or resistant virus subpopulations have been proposed as explanations; however, none of these options has been conclusively demonstrated. This study investigates how aggregation affects virus inactivation by UV(254) in general, and the tailing phenomenon in particular. Bacteriophage MS2 was aggregated by lowering the solution pH before UV(254) disinfection. Aggregates were redispersed prior to enumeration to obtain the remaining fraction of individual infectious viruses. Results showed that initial inactivation kinetics were similar for viruses incorporated in aggregates (up to 1000 nm in radius) and dispersed viruses; however, aggregated viruses started to tail more readily than dispersed ones. Neither light shielding, nor the presence of resistant subpopulations could account for the tailing. Instead, tailing was consistent with recombination arising from the simultaneous infection of the host by several impaired viruses. We argue that UV(254) treatment of aggregates permanently fused a fraction of viruses, which increased the likelihood of multiple infection of a host cell and ultimately enabled the production of infective viruses via recombination.

  19. Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection.

    PubMed

    Zhu, Ying; Wang, Haibo; Li, Xiaoxiao; Hu, Chun; Yang, Min; Qu, Jiuhui

    2014-09-01

    The effect of UV/Cl2 disinfection on the biofilm and corrosion of cast iron pipes in drinking water distribution system were studied using annular reactors (ARs). Passivation occurred more rapidly in the AR with UV/Cl2 than in the one with Cl2 alone, decreasing iron release for higher corrosivity of water. Based on functional gene, pyrosequencing assays and principal component analysis, UV disinfection not only reduced the required initial chlorine dose, but also enhanced denitrifying functional bacteria advantage in the biofilm of corrosion scales. The nitrate-reducing bacteria (NRB) Dechloromonas exhibited the greatest corrosion inhibition by inducing the redox cycling of iron to enhance the precipitation of iron oxides and formation of Fe3O4 in the AR with UV/Cl2, while the rhizobia Bradyrhizobium and Rhizobium, and the NRB Sphingomonas, Brucella producing siderophores had weaker corrosion-inhibition effect by capturing iron in the AR with Cl2. These results indicated that the microbial redox cycling of iron was possibly responsible for higher corrosion inhibition and lower effect of water Larson-Skold Index (LI) changes on corrosion. This finding could be applied toward the control of water quality in drinking water distribution systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  1. Applicability of integrated cell culture quantitative PCR (ICC-qPCR) for the detection of infectious adenovirus type 2 in UV disinfection studies

    EPA Science Inventory

    Human adenovirus is relatively resistant to UV radiation and has been used as a conservative testing microbe for evaluations of UV disinfection systems as components of water treatment processes. In this study, we attempted to validate the applicability of integrated cell culture...

  2. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters

    USGS Publications Warehouse

    Francy, Donna S.; Erin, A. Stelzer; Bushon, Rebecca N.; Brady, Amie M.G.; Williston, Ashley G.; Riddell, Kimberly R.; Borchardt, Mark A.; Spencer, Susan K.; Gellner, Terry M.

    2012-01-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  3. Comparative effectiveness of membrane bioreactors, conventional secondary treatment, and chlorine and UV disinfection to remove microorganisms from municipal wastewaters.

    PubMed

    Francy, Donna S; Stelzer, Erin A; Bushon, Rebecca N; Brady, Amie M G; Williston, Ashley G; Riddell, Kimberly R; Borchardt, Mark A; Spencer, Susan K; Gellner, Terry M

    2012-09-01

    Log removals of bacterial indicators, coliphage, and enteric viruses were studied in three membrane bioreactor (MBR) activated-sludge and two conventional secondary activated-sludge municipal wastewater treatment plants during three recreational seasons (May-Oct.) when disinfection of effluents is required. In total, 73 regular samples were collected from key locations throughout treatment processes: post-preliminary, post-MBR, post-secondary, post-tertiary, and post-disinfection (UV or chlorine). Out of 19 post-preliminary samples, adenovirus by quantitative polymerase chain reaction (qPCR) was detected in all 19, enterovirus by quantitative reverse transcription polymerase chain reaction (qRT-PCR) was detected in 15, and norovirus GI by qRT-PCR was detected in 11. Norovirus GII and Hepatitis A virus were not detected in any samples, and rotavirus was detected in one sample but could not be quantified. Although culturable viruses were found in 12 out of 19 post-preliminary samples, they were not detected in any post-secondary, post-MBR, post-ultraviolet, or post-chlorine samples. Median log removals for all organisms were higher for MBR secondary treatment (3.02 to >6.73) than for conventional secondary (1.53-4.19) treatment. Ultraviolet disinfection after MBR treatment provided little additional log removal of any organism except for somatic coliphage (>2.18), whereas ultraviolet or chlorine disinfection after conventional secondary treatment provided significant log removals (above the analytical variability) of all bacterial indicators (1.18-3.89) and somatic and F-specific coliphage (0.71 and >2.98). Median log removals of adenovirus across disinfection were low in both MBR and conventional secondary plants (no removal detected and 0.24), and few removals of individual samples were near or above the analytical variability of 1.2 log genomic copies per liter. Based on qualitative examinations of plots showing reductions of organisms throughout treatment

  4. The combined performance of UV light and chlorine during reclaimed water disinfection.

    PubMed

    Montemayor, M; Costan, A; Lucena, F; Jofre, J; Muñoz, J; Dalmau, E; Mujeriego, R; Sala, L

    2008-01-01

    The combined effects of disinfectant agents on the microbiological quality of reclaimed water produced by two full-scale water reclamation plants in Catalonia, Spain, were examined in this work. All the disinfectant treatments tested led to the absence, or near absence, of E. coli in 100 mL samples of water, with log reductions of more than 3 log u. Hypochlorite reduced the bacterial concentrations. However, ultraviolet light was more effective than hypochlorite at reducing the concentrations of bacteriophages, viruses and pathogenic protozoa such as Cryptosporidium spp. We conclude that a combination of these two disinfectant agents is effective in protecting public health, as each agent acts to a different degree against the different groups of microorganisms studied. Further studies should investigate the combined action of disinfectant agents at water reclamation plants with ultraviolet light equipment in more favourable working conditions in order to assess their capacity to inactivate microorganisms.

  5. UV/TiO2 photocatalytic disinfection of carbon-bacteria complexes in activated carbon-filtered water: Laboratory and pilot-scale investigation.

    PubMed

    Zhao, Jin Hui; Chen, Wei; Zhao, Yaqian; Liu, Cuiyun; Liu, Ranbin

    2015-01-01

    The occurrence of carbon-bacteria complexes in activated carbon filtered water has posed a public health problem regarding the biological safety of drinking water. The application of combined process of ultraviolet radiation and nanostructure titanium dioxide (UV/TiO2) photocatalysis for the disinfection of carbon-bacteria complexes were assessed in this study. Results showed that a 1.07 Lg disinfection rate can be achieved using a UV dose of 20 mJ cm(-2), while the optimal UV intensity was 0.01 mW cm(-2). Particle sizes ≥8 μm decreased the disinfection efficiency, whereas variation in particle number in activated carbon-filtered water did not significantly affect the disinfection efficiency. Photoreactivation ratio was reduced from 12.07% to 1.69% when the UV dose was increased from 5 mJ cm(-2) to 20 mJ cm(-2). Laboratory and on-site pilot-scale experiments have demonstrated that UV/TiO2 photocatalytic disinfection technology is capable of controlling the risk posed by carbon-bacteria complexes and securing drinking water safety.

  6. Pulsed UV-C disinfection of Escherichia coli with light-emitting diodes, emitted at various repetition rates and duty cycles.

    PubMed

    Wengraitis, Stephen; McCubbin, Patrick; Wade, Mary Margaret; Biggs, Tracey D; Hall, Shane; Williams, Leslie I; Zulich, Alan W

    2013-01-01

    A 2010 study exposed Staphylococcus aureus to ultraviolet (UV) radiation and thermal heating from pulsed xenon flash lamps. The results suggested that disinfection could be caused not only by photochemical changes from UV radiation, but also by photophysical stress damage caused by the disturbance from incoming pulses. The study called for more research in this area. The recent advances in light-emitting diode (LED) technology include the development of LEDs that emit in narrow bands in the ultraviolet-C (UV-C) range (100-280 nm), which is highly effective for UV disinfection of organisms. Further, LEDs would use less power, and allow more flexibility than other sources of UV energy in that the user may select various pulse repetition frequencies (PRFs), pulse irradiances, pulse widths, duty cycles and types of waveform output (e.g. square waves, sine waves, triangular waves, etc.). Our study exposed Escherichia coli samples to square pulses of 272 nm radiation at various PRFs and duty cycles. A statistically significant correlation was found between E. coli's disinfection sensitivity and these parameters. Although our sample size was small, these results show promise and are worthy of further investigation. Comparisons are also made with pulsed disinfection by LEDs emitting at 365 nm, and pulsed disinfection by xenon flash lamps.

  7. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  8. Effect of pre- and post-UV disinfection conditions on photoreactivation of fecal coliforms in wastewater effluents.

    PubMed

    Hallmich, Catherine; Gehr, Ronald

    2010-05-01

    Photoreactivation of microorganisms following UV disinfection can represent a disadvantage to using UV technology for wastewater treatment since recovery may, in some cases, reach several logs. Thus, decreasing photoreactivation can lead to considerable savings in capital and operating costs. Objectives of this study were to determine pre- and post-UV irradiation conditions which could decrease fecal coliform (FC) photoreactivation in wastewater effluents. Results indicated that delaying exposure to photoreactivating light for 3 h suppressed photoreactivation after relatively low UV doses of 10 and 20 mJ/cm(2). Moreover, at least 440 lux (0.065 mW/cm(2)) of visible light was needed to initiate photoreactivation. Additionally, photoreactivation decreased significantly when samples were exposed to visible light simultaneously or prior to UV irradiation. This was more significantly observed for winter samples, where photoreactivation decreased by nearly 50%. Finally, summer FC populations were more sensitive to inactivation and less able to photoreactivate than winter populations. The effect of visible light on photoreactivation levels may be explained by several photo-mechanisms of FC photolyase, such as photodecomposition of the MTHF co-factor and reduction of FAD. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Changes in dissolved organic matter fluorescence and disinfection byproduct formation from UV and subsequent chlorination/chloramination.

    PubMed

    Lyon, Bonnie A; Cory, Rose M; Weinberg, Howard S

    2014-01-15

    Ultraviolet (UV) irradiation is being increasingly used to help drinking water utilities meet finished water quality regulations, but its influence on disinfection byproduct (DBP) precursors and DBP formation is not completely understood. This study investigated the effect of medium pressure (MP) UV combined with chlorination/chloramination on the fluorescent fraction of dissolved organic matter (DOM) isolated from a United States surface water with median total organic carbon content. Parallel factor analysis was used to understand how UV may alter the capacity of DOM to form DBPs of potential human health concern. The production of chloral hydrate and cyanogen chloride from MP UV followed by chlorine or chloramine, respectively, correlated with a decrease in fluorescence intensity of a protein/tryptophan-like component (R(2)=0.79-0.99) and a humic-like component (R(2)=0.91-1.00). This suggests that the UV-induced precursors to these compounds originated from DOM with similar characteristics to these components. The fluorescent DOM components identified in this study are similar to reoccurring components that have been previously identified in a range of raw and treated waters, and this work demonstrates the value of using fluorescence analysis of DOM to understand the relationships between DOM source and DBP formation under a range of treatment conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Micro-organism re-growth in wastewater disinfected by UV radiation and ozone: a micro-biological study.

    PubMed

    Alonso, E; Santos, A; Riesco, P

    2004-04-01

    A series of disinfection experiments using UV radiation and ozone was performed on the secondary effluent from a wastewater treatment plant at a pilot plant scale. The microbial population in the inflowing wastewater and the treated outflow water were quantified for each of the treatment modules (fecal coliforms, fecal streptococci, Salmonella spp. (presence/absence), Clostridium Sulphite-reducers, Pseudomonas aeruginosa, Staphylococcus aureus, coliphages, nematodes, intestinal nematodes and pathogenic fungi). Treated water was stored in opaque tanks at a temperature between 20 and 22 degrees C, after which, a one-month study of the regrowth of the bacterial flora, nematodes and fungi was carried out. Clostridium Sulphite-reducers, pathogenic fungi and nematodes were the micro-organisms showing a greatest degree of resistence to UV- and Ozone-treatment. It was only concerning Clostridium and Pseudomonas abatement that significant elimination results were achieved with both technologies.

  11. Solar disinfection of drinking water (SODIS): an investigation of the effect of UV-A dose on inactivation efficiency.

    PubMed

    Ubomba-Jaswa, Eunice; Navntoft, Christian; Polo-López, M Inmaculada; Fernandez-Ibáñez, Pilar; McGuigan, Kevin G

    2009-05-01

    The effect of solar UV-A irradiance and solar UV-A dose on the inactivation of Escherichia coli K-12 using solar disinfection (SODIS) was studied. E. coli K-12 was seeded in natural well-water contained in borosilicate glass tubes and exposed to sunlight at different irradiances and doses of solar UV radiation. In addition, E. coli K-12 was also inoculated into poly(ethylene) terephthalate (PET) bottles and in a continuous flow system (10 L min(-1)) to determine the effect of an interrupted and uninterrupted solar dose on inactivation. Results showed that inactivation from approximately 10(6) CFU mL(-1) to below the detection level (4 CFU/mL) for E. coli K-12, is a function of the total uninterrupted dose delivered to the bacteria and that the minimum dose should be >108 kJ m(-2) for the conditions described (spectral range of 0.295-0.385 microm). For complete inactivation to below the limit of detection, this dose needs to be received regardless of the incident solar UV intensity and needs to be delivered in a continuous and uninterrupted manner. This is illustrated by a continuous flow system in which bacteria were not fully inactivated (residual viable concentration approximately 10(2) CFU/mL) even after 5 h of exposure to strong sunlight and a cumulative dose of >108 kJ m(-2). This has serious implications for attempts to scale-up solar disinfection through the use of re-circulatory continuous flow reactors.

  12. Multiple transformation pathways of p-arsanilic acid to inorganic arsenic species in water during UV disinfection.

    PubMed

    Li, Suqi; Xu, Jing; Chen, Wei; Yu, Yingtan; Liu, Zizheng; Li, Jinjun; Wu, Feng

    2016-09-01

    p-Arsanilic acid (p-ASA) is widely used in China as livestock and poultry feed additive for promoting animal growth. The use of organoarsenics poses a potential threat to the environment because it is mostly excreted by animals in its original form and can be transformed by UV-Vis light excitation. This work examined the initial rate and efficiency of p-ASA phototransformation under UV-C disinfection lamp. Several factors influencing p-ASA phototransformation, namely, pH, initial concentration, temperature, as well as the presence of NaCl, NH4(+), and humic acid, were investigated. Quenching experiments and LC-MS were performed to investigate the mechanism of p-ASA phototransformation. Results show that p-ASA was decomposed to inorganic arsenic (including As(III) and As(V)) and aromatic products by UV-C light through direct photolysis and indirect oxidation. The oxidation efficency of p-ASA by direct photosis was about 32%, and those by HO and (1)O2 were 19% and 49%, respectively. Cleavage of the arsenic-benzene bond through direct photolysis, HO oxidation or (1)O2 oxidation results in simultaneous formation of inorganic As(III), As(IV), and As(V). Inorganic As(III) is oxidized to As(IV) and then to As(V) by (1)O2 or HO. As(IV) can undergo dismutation or simply react with oxygen to produce As(V) as well. Reactions of the organic moieties of p-ASA produce aniline, aminophenol and azobenzene derivatives as main products. The photoconvertible property of p-ASA implies that UV disinfection of wastewaters from poultry and swine farms containing p-ASA poses a potential threat to the ecosystem, especially agricultural environments. Copyright © 2016. Published by Elsevier B.V.

  13. Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry.

    PubMed

    Kolkman, Annemieke; Martijn, Bram J; Vughs, Dennis; Baken, Kirsten A; van Wezel, Annemarie P

    2015-04-07

    Advanced oxidation processes are important barriers for organic micropollutants (e.g., pharmaceuticals, pesticides) in (drinking) water treatment. Studies indicate that medium pressure (MP) UV/H2O2 treatment leads to a positive response in Ames mutagenicity tests, which is then removed after granulated activated carbon (GAC) filtration. The formed potentially mutagenic substances were hitherto not identified and may result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM). In this study we present an innovative approach to trace the formation of disinfection byproducts (DBPs) of MP UV water treatment, based on stable isotope labeled nitrate combined with high resolution mass spectrometry. It was shown that after MP UV treatment of artificial water containing NOM and nitrate, multiple nitrogen containing substances were formed. In total 84 N-DBPs were detected at individual concentrations between 1 to 135 ng/L bentazon-d6 equivalents, with a summed concentration of 1.2 μg/L bentazon-d6 equivalents. The chemical structures of three byproducts were confirmed. Screening for the 84 N-DBPs in water samples from a full-scale drinking water treatment plant based on MP UV/H2O2 treatment showed that 22 of the N-DBPs found in artificial water were also detected in real water samples.

  14. Exploring the potential synergistic effects of chemical disinfectants and UV on the inactivation of free-living bacteria and treatment of biofilms in a pilot-scale system.

    PubMed

    Vankerckhoven, E; Verbessem, B; Crauwels, S; Declerck, P; Muylaert, K; Willems, K A; Rediers, H

    2011-01-01

    The main objective of this study is to explore possible synergistic or additive effects of combinations of chemical disinfectants (sodium hypochlorite, peracetic acid, hydrogen peroxide, chlorine dioxide) and UV in their efficacy in inactivating free-living bacteria and removing biofilms. In contrast to most studies, this study examines disinfection of municipal water in a pilot-scale system using a mixed bacterial suspension, which enables a better simulation of the conditions encountered in actual industrial environments. It was shown that the combination of either hypochlorite, hydrogen peroxide, peracetic acid, or chlorine dioxide with UV yielded additive effects on the inactivation of free-living bacteria. Actual synergy was observed for the combination of UV and 5 ppm hydrogen peroxide. Regarding biofilm treatment, additive effects were observed using the combination of hydrogen peroxide and UV. The promising results obtained in this study indicate that the combination of UV and chemical disinfectants can considerably reduce the amount of chemicals required for the effective disinfection and treatment of biofilms.

  15. Effect of UV Light on Disinfection of Peritoneal Dialysis Catheter Connections.

    PubMed

    Ashley, John; Rasooly, Julia A; Tran, Ian; Yost, Lawrence E; Chertow, Glenn M

    We evaluated the microbiological performance of an ultraviolet (UV) light-based peritoneal dialysis catheter connection system. The system includes a UV light-generating device combined with a UV transmissive window incorporated into the transfer set. Each UV transparent transfer set was inoculated with 10 μL of cultured inoculum consisting of either S. aureus, E. coli, or C. albicans After being inoculated, we attached a solution set connector to the transfer catheter, and exposed that connection to a UV light dose of approximately 340 mJoules/cm(2) After exposure to UV light, we broke the seal of the solution set and opened the plunger valve on the UV transmissive transfer catheter. We then flushed 10 mL of dialysate through the connection. The flushed solution was collected, diluted, plated on agar medium, and incubated for 24 hours. Results were compared to positive controls collected in an identical manner without exposure to UV light. Thirty test samples and 3 positive controls were collected for each organism. All test samples exposed to UV light had complete kill of bacteria except 1 colony on a single plate in the S. aureus group. Mean log reduction was 4.03 for C. albicans, 4.73 for S. aureus, and 5.29 for E. coli All positive control samples had significant bacterial growth. Our results demonstrate that the application of UV light within a UV transmissive transfer catheter window produces a germicidal effect upon microorganisms known to be associated with peritonitis.

  16. Antibiotic resistance spread potential in urban wastewater effluents disinfected by UV/H2O2 process.

    PubMed

    Ferro, Giovanna; Guarino, Francesco; Castiglione, Stefano; Rizzo, Luigi

    2016-08-01

    Urban wastewater treatment plants (UWTPs) are among the main hotspots of antibiotic resistance (AR) spread into the environment and the role of conventional and new disinfection processes as possible barrier to minimise the risk for AR transfer is presently under investigation. Accordingly, the aim of this work was to evaluate the effect of an advanced oxidation process (AOP) (specifically UV/H2O2) on AR transfer potential. UV/H2O2 disinfection experiments were carried out on real wastewater samples to evaluate the: i) inactivation of total coliforms, Escherichia coli and antibiotic resistant E. coli as well as ii) possible removal of target antibiotic resistance genes (ARGs) (namely, blaTEM, qnrS and tetW). In particular, DNA was extracted from both antibiotic resistant E. coli bacterial cells (intracellular DNA), grown on selective culture media, and the whole water suspension (total DNA) collected at different treatment times. Polymerase chain reaction (PCR) assay was performed to detect the absence/presence of the selected ARGs. Real Time quantitative Polymerase Chain Reaction (qPCR) was used to quantify the investigated ARGs in terms of copiesmL(-1). In spite of the bacterial inactivation and a decrease of ARGs in intracellular DNA after 60min treatment, UV/H2O2 process was not effective in ARGs removal from water suspension (total DNA). Particularly, an increase up to 3.7×10(3)copiesmL(-1) (p>0.05) of blaTEM gene was observed in total DNA after 240min treatment, while no difference (p>0.05) was found for qnrS gene between the initial (5.1×10(4)copiesmL(-1)) and the final sample (4.3×10(4)copiesmL(-1)). On the base of the achieved results, the investigated disinfection process may not be effective in minimising AR spread potential into the environment. The death of bacterial cells, which results in DNA release in the treated water, may pose a risk for AR transfer to other bacteria present in the receiving water body.

  17. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works (POTWs).

    PubMed

    Zhao, Renzun; Gupta, Abhinav; Novak, John T; Goldsmith, C Douglas; Driskill, Natalie

    2013-08-15

    Landfill leachates strongly quench UV light. When discharged to POTWs, leachates can interfere with UV disinfection. To investigate the UV quenching problem of landfill leachates, a variety of landfill leachates with a range of conditions were collected and characterized. The UV blocking component was found to be resistant to biological degradation so they pass through wastewater treatment plants and impact the subsequent UV disinfection system. Leachate samples were fractionated into humic acids (HAs), fulvic Acids (FAs) and hydrophilic (Hpi) fractions to investigate the source of UV absorbing materials. Results show that for all leachates examined, the specific UV254 absorbance (SUVA254) of the three fractions follows: HA>FA>Hpi. However, the overall UV254 absorbance of the Hpi fraction was important because there was more hydrophilic organic matter than humic or fulvic acids. The size distribution was also investigated to provide information about the potential for membrane treatment. It was found that the size distribution of the three fractions follows: HA>FA>Hpi. This indicates that membrane separation following biological treatment is a promising technology for removal of humic substances from landfill leachates. Leachate samples treated in this manner could meet the UV transmittance requirement of the POTWs. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Does UV disinfection compromise sutures? An evaluation of tissue response and suture retention in salmon surgically implanted with transmitters

    SciTech Connect

    Walker, Ricardo W.; Brown, Richard S.; Deters, Katherine A.; Eppard, M. B.; Cooke, Steven J.

    2013-10-01

    Ultraviolet radiation (UVR) can be used as a tool to disinfect surgery tools used for implanting transmitters into fish. However, the use of UVR could possibly degrade monofilament suture material used to close surgical incisions. This research examined the effect of UVR on monofilament sutures to determine if they were compromised and negatively influenced tag and suture retention, incision openness, or tissue reaction. Eighty juvenile Chinook salmon Oncorhynchus tshawytscha were surgically implanted with an acoustic transmitter and a passive integrated transponder. The incision was closed with a single stitch of either a suture exposed to 20 doses of UV radiation (5 minute duration per dose) or a new, sterile suture. Fish were then held for 28 d and examined under a microscope at day 7, 14, 21 and 28 for incision openness, ulceration, redness, and the presence of water mold. There was no significant difference between treatments for incision openness, redness, ulceration or the presence of water mold on any examination day. On day 28 post-surgery, there were no lost sutures; however, 2 fish lost their transmitters (one from each treatment). The results of this study do not show any differences in negative influences such as tissue response, suture retention or tag retention between a new sterile suture and a suture disinfected with UVR.

  19. Mutagenic activity associated with by-products of drinking water disinfection by chlorine, chlorine dioxide, ozone and UV-irradiation.

    PubMed Central

    Zoeteman, B C; Hrubec, J; de Greef, E; Kool, H J

    1982-01-01

    A retrospective epidemiological study in The Netherlands showed a statistical association between chlorination by-products in drinking water and cancer of the esophagus and stomach for males. A pilot-plant study with alternative disinfectants was carried out with stored water of the Rivers Rhine and Meuse. It was demonstrated that the increase of direct acting mutagens after treatment with chlorine dioxide is similar to the effect of chlorination. Ozonation of Rhine water reduced the mutagenic activity for Salmonella typhimurium TA 98 both with and without metabolic activation. UV alone hardly affects the mutagenicity of the stored river water for S. typh. TA 98. In all studies, practically no mutagenic activity for S. typh. TA 100 was found. Although remarkable changes in the concentration of individual organic compounds are reported, the identity of the mutagens detected is yet unclear. Compounds of possible interest due to their removal by ozonation are 1,3,3-trimethyloxindole, dicyclopentadiene and several alkylquinolines. Compounds which might be responsible for the increased mutagenicity after chlorination are two brominated acetonitriles and tri(2-chlorethyl) phosphate. Furthermore, the concentration procedure with adsorption on XAD resin and the subsequent elution step may have affected the results. It is proposed to focus further research more on the less volatile by-products of disinfection than on the trihalomethanes. PMID:7151762

  20. UV-laser-based longitudinal illuminated diffuser (LID) incorporating diffractive and Lambertian reflectance for the disinfection of beverages

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    A novel laser beam shaping system was designed to demonstrate the potential of using high power UV laser sources for large scale disinfection of liquids used in the production of food products, such as juices, beer, milk and other beverage types. The design incorporates a patented assembly of optical components including a diffractive beam splitting/shaping element and a faceted pyramidal or conically shaped Lambertian diffuser made from a compression molded PTFE compounds. When properly sintered to an appropriate density, as an example between 1.10 and 1.40 grams per cubic centimeter, the compressed PTFE compounds show a ~99% reflectance at wavelengths ranging from 300 nm to 1500 nm, and a ~98.5% refection of wavelengths from 250 nm to 2000 nm [1]. The unique diffuser configuration also benefits from the fact that the PTFE compounds do not degrade when exposed to ultraviolet radiation as do barium sulfate materials and silver or aluminized mirror coatings [2]. These components are contained within a hermetically sealed quartz tube. Once assembled a laser beam is directed through one end of the tube. This window takes the form of a computer generated diffractive splitter or other diffractive shaper element to split the laser beam into a series of spot beamlets, circular rings or other geometric shapes. As each of the split beamlets or rings cascade downward, they illuminate various points along the tapered PTFE cone or faceted pyramidal form. As they strike the surface they each diffuse in a Lambertian reflectance pattern creating a pseudo-uniform circumferential illuminator along the length of the quartz tube enclosing the assembly. The compact tubular structure termed Longitudinal Illuminated Diffuser (LID) provides a unique UV disinfection source that can be placed within a centrifugal reactor or a pipe based reactor chamber. This paper will review the overall design principle, key component design parameters, preliminary analytic and bench operational testing

  1. Multiple-barrier disinfection by chlorination and UV irradiation for desalinated drinking waters: chlorine photolysis and accelerated lamp-sleeve fouling effects.

    PubMed

    Wait, Isaac W

    2008-11-01

    Experiments were conducted to quantify interaction effects between UV irradiation and chlorination for desalinated drinking water. The rate of chlorine photolysis in desalinated water was characterized using a low-pressure UV lamp and chlorine doses typical of drinking water treatment and was found to be lower than reported photolysis rates for treated surface water. Results indicate that, for most desalinated water applications, reduction in free chlorine is likely to be limited, but, depending on the UV dose used, not necessarily negligible. Investigation of the potential for reactor lamp-sleeve fouling included mineral speciation and solubility modeling and showed that chlorination of desalinated water before UV disinfection may increase lamp-sleeve fouling, particularly for point-of-use reactors. UV irradiation before chlorination may minimize fouling. Overall results point to the variable nature of UV lamp-sleeve fouling and chlorine photolysis and an intrinsic dependence on local water chemistry conditions.

  2. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    EPA Science Inventory

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...

  3. Innovative Approach to Validation of Ultraviolet (UV) Reactors for Disinfection in Drinking Water Systems

    EPA Science Inventory

    Slide presentation at Conference: ASCE 7th Civil Engineering Conference in the Asian Region. USEPA in partnership with the Cadmus Group, Carollo Engineers, and other State & Industry collaborators, are evaluating new approaches for validating UV reactors to meet groundwater & sur...

  4. UV/chlorine process for ammonia removal and disinfection by-product reduction: comparison with chlorination.

    PubMed

    Zhang, Xinran; Li, Weiguang; Blatchley, Ernest R; Wang, Xiaoju; Ren, Pengfei

    2015-01-01

    The combined application of UV irradiation at 254 nm and chlorination (UV/chlorine process) was investigated for ammonia removal in water treatment. The UV/chlorine process led to higher ammonia removal with less chlorine demand, as compared to breakpoint chlorination. Chlorination of NH₃ led to NH₂Cl formation in the first step. The photolysis of NH₂Cl and radical- mediated oxidation of ammonia appeared to represent the main pathways for ammonia removal. The trivalent nitrogen of ammonia was oxidized, presumably by reactions with aminyl radicals and chlorine radicals. Measured products included NO₃⁻and NO₂⁻; it is likely that N₂ and N₂O were also generated. In addition, UV irradiation appeared to have altered the reactivity of NOM toward free chlorine. The UV/chlorine process had lower chlorine demand, less C-DBPs (THMs and HAAs), but more HANs than chlorination. These results indicate that the UV/chlorine process could represent an alternative to conventional breakpoint chlorination for ammonia-containing water, with several advantages in terms of simplicity, short reaction time, and reduced chemical dosage.

  5. Validation of large-scale, monochromatic UV disinfection systems for drinking water using dyed microspheres.

    PubMed

    Blatchley, E R; Shen, C; Scheible, O K; Robinson, J P; Ragheb, K; Bergstrom, D E; Rokjer, D

    2008-02-01

    Dyed microspheres have been developed as a new method for validation of ultraviolet (UV) reactor systems. When properly applied, dyed microspheres allow measurement of the UV dose distribution delivered by a photochemical reactor for a given operating condition. Prior to this research, dyed microspheres had only been applied to a bench-scale UV reactor. The goal of this research was to extend the application of dyed microspheres to large-scale reactors. Dyed microsphere tests were conducted on two prototype large-scale UV reactors at the UV Validation and Research Center of New York (UV Center) in Johnstown, NY. All microsphere tests were conducted under conditions that had been used previously in biodosimetry experiments involving two challenge bacteriophage: MS2 and Qbeta. Numerical simulations based on computational fluid dynamics and irradiance field modeling were also performed for the same set of operating conditions used in the microspheres assays. Microsphere tests on the first reactor illustrated difficulties in sample collection and discrimination of microspheres against ambient particles. Changes in sample collection and work-up were implemented in tests conducted on the second reactor that allowed for improvements in microsphere capture and discrimination against the background. Under these conditions, estimates of the UV dose distribution from the microspheres assay were consistent with numerical simulations and the results of biodosimetry, using both challenge organisms. The combined application of dyed microspheres, biodosimetry, and numerical simulation offers the potential to provide a more in-depth description of reactor performance than any of these methods individually, or in combination. This approach also has the potential to substantially reduce uncertainties in reactor validation, thereby leading to better understanding of reactor performance, improvements in reactor design, and decreases in reactor capital and operating costs.

  6. Evaluating UV-C LED disinfection performance and investigating potential dual-wavelength synergy

    EPA Science Inventory

    This study evaluated ultraviolet (UV) light emitting diodes (LEDs) emitting at 260 nm, 280 nm, and the combination of 260|280 nm together for their efficacy at inactivating Escherichia. coli, MS2 coliphage, human adenovirus type 2 (HAdV2), and Bacillus pumilus spores; research in...

  7. Implementing Ultraviolet (UV) Disinfection for Treatment of Groundwater for Small and Medium Sized Utilities - abstract

    EPA Science Inventory

    This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...

  8. Use of Aqueous Silver To Enhance Inactivation of Coliphage MS-2 by UV Disinfection

    PubMed Central

    Butkus, Michael A.; Labare, Michael P.; Starke, Jeffrey A.; Moon, King; Talbot, Mark

    2004-01-01

    A synergistic effect between silver and UV radiation has been observed that can appreciably enhance the effectiveness of UV radiation for inactivation of viruses. At a fluence of ca. 40 mJ/cm2, the synergistic effect between silver and UV was observed at silver concentrations as low as 10 μg/liter (P < 0.0615). At the same fluence, an MS-2 inactivation of ca. 3.5 logs (99.97%) was achieved at a silver concentration of 0.1 mg/liter, a significant improvement (P < 0.0001) over the ca. 1.8-log (98.42%) inactivation of MS-2 at ca. 40 mJ/cm2 in the absence of silver. Modified Chick-Watson kinetics were used to model the synergistic effect of silver and UV radiation. For an MS-2 inactivation of 4 logs (99.99%), the coefficient of dilution (n) was determined to be 0.31, which suggests that changes in fluence have a greater influence on inactivation than does a proportionate change in silver concentration. PMID:15128542

  9. Implementing Ultraviolet (UV) Disinfection for Treatment of Groundwater for Small and Medium Sized Utilities - abstract

    EPA Science Inventory

    This presentation will focus on validation testing performed on a three-lamp low-pressure high-output (LPHO) TrojanUVSwiftTM UV reactor using MS2, Bacillus Pumilus, and live adenovirus as the test microbes. An adjustable sensor was used to help determine the optimal sensor locati...

  10. Impact of UV/H2O2 pre-oxidation on the formation of haloacetamides and other nitrogenous disinfection byproducts during chlorination.

    PubMed

    Chu, Wenhai; Gao, Naiyun; Yin, Daqiang; Krasner, Stuart W; Mitch, William A

    2014-10-21

    Haloacetamides (HAcAms), an emerging class of nitrogen-based disinfection byproducts (N-DBPs) of health concern in drinking water, have been found in drinking waters at μg/L levels. However, there is a limited understanding about the formation, speciation, and control of halogenated HAcAms. Higher ultraviolet (UV) doses and UV advanced oxidation (UV/H2O2) processes (AOPs) are under consideration for the treatment of trace organic pollutants. The objective of this study was to examine the potential of pretreatment with UV irradiation, H2O2 oxidation, and a UV/H2O2 AOP for minimizing the formation of HAcAms, as well as other emerging N-DBPs, during postchlorination. We investigated changes in HAcAm formation and speciation attributed to UV, H2O2 or UV/H2O2 followed by the application of free chlorine to quench any excess hydrogen peroxide and to provide residual disinfection. The results showed that low-pressure UV irradiation alone (19.5-585 mJ/cm(2)) and H2O2 preoxidation alone (2-20 mg/L) did not significantly change total HAcAm formation during subsequent chlorination. However, H2O2 preoxidation alone resulted in diiodoacetamide formation in two iodide-containing waters and increased bromine utilization. Alternatively, UV/H2O2 preoxidation using UV (585 mJ/cm(2)) and H2O2 (10 mg/L) doses typically employed for trace contaminant removal controlled the formation of HAcAms and several other N-DBPs in drinking water.

  11. Removal of particle-associated bacteriophages by dual-media filtration at different filter cycle stages and impacts on subsequent UV disinfection.

    PubMed

    Templeton, Michael R; Andrews, Robert C; Hofmann, Ron

    2007-06-01

    This bench-scale study investigated the passage of particle-associated bacteriophage through a dual-media (anthracite-sand) filter over a complete filter cycle and the effect on subsequent ultraviolet (UV) disinfection. Two model viruses, bacteriophages MS2 and T4, were considered. The water matrix was de-chlorinated tap water with either kaolin or Aldrich humic acid (AHA) added and coagulated with alum to form floc before filtration. The turbidity of the influent flocculated water was 6.4+/-1.5 NTU. Influent and filter effluent turbidity and particle counts were measured as well as headloss across the filter media. Filter effluent samples were collected for phage enumeration during three filter cycle stages: (i) filter ripening; (ii) stable operation; and (iii) end of filter cycle. Stable filter operation was defined according to a filter effluent turbidity goal of <0.3 NTU. Influent and filter effluent samples were subsequently exposed to UV light (254 nm) at 40 mJ/cm(2) using a low pressure UV collimated beam. The study found statistically significant differences (alpha=0.05) in the quantity of particle-associated phage present in the filter effluent during the three stages of filtration. There was reduced UV disinfection efficiency due to the presence of particle-associated phage in the filter effluent in trials with bacteriophage MS2 and humic acid floc. Unfiltered influent water samples also resulted in reduced UV inactivation of phage relative to particle-free control conditions for both phages. Trends in filter effluent turbidity corresponded with breakthrough of particle-associated phage in the filter effluent. The results therefore suggest that maintenance of optimum filtration conditions upstream of UV disinfection is a critical barrier to particle-associated viruses.

  12. Effects of salinity on photoreactivation of Escherichia coli after UV disinfection.

    PubMed

    Oguma, Kumiko; Izaki, Kentaro; Katayama, Hiroyuki

    2013-09-01

    The effects of sodium chloride on photoreactivation of Escherichia coli were examined, assuming the discharge of ultraviolet (UV)-treated wastewater to water environment at different salinities. Suspensions of E. coli were first exposed to a low-pressure UV lamp in phosphate buffer to achieve 3 log inactivation, followed by an exposure to fluorescent light in NaCl solutions at the concentration of 1.0, 1.4, 1.9, 2.4 and 2.9 weight/volume %. When photoreactivation was completed in 3 h, survival ratio was recovered about 2 log in 1.0, 1.4, and 1.9% NaCl solutions, which was equivalent to the recovery observed in phosphate-buffered solution. Meanwhile, the recovery was suppressed to 0.8 log and -0.2 log in 2.4 and 2.9% NaCl solutions, respectively, which was significantly less than the recovery in phosphate buffer according to the t-test (p < 0.05). An endonuclease sensitive site assay demonstrated that the suppressed photoreactivation in 2.9% NaCl solution was due to the failure at repairing UV-induced pyrimidine dimers in the genome. In conclusion, photoreactivation of E. coli was significantly suppressed in NaCl solution at 2.4% or higher but not affected in NaCl solution at 1.9% or lower. This implies that photoreactivation of E. coli may potentially occur in brackish and coastal areas where salinity is rather low.

  13. Nitrifying-denitrifying filters and UV-C disinfection reactor: a combined system for wastewater treatment.

    PubMed

    Ben Rajeb, Asma; Mehri, Inès; Nasr, Houda; Najjari, Afef; Saidi, Neila; Hassen, Abdennaceur

    2017-03-01

    Biological treatment systems use the natural processes of ubiquitous organisms to remove pollutants and improve the water quality before discharge to the environment. In this paper, the nitrification/denitrification reactor allowed a reduction in organic load, but offered a weak efficiency in nitrate reduction. However, the additions of the activated sludge in the reactor improve this efficiency. A decrease of [Formula: see text] values from 13.3 to 8 mg/l was noted. Nevertheless, sludge inoculation led to a net increase of the number of pathogenic bacteria. For this reason, a UV-C pilot reactor was installed at the exit of the biological nitrification-denitrification device. Thus, a fluence of 50 mJ.cm(-2) was sufficient to achieve values of 20 MPN/100 ml for fecal coliform and 6 MPN/100 ml for fecal streptococci, conforms to Tunisian Standards of Rejection. On the other hand, the DGGE approach has allowed a direct assessment of the bacterial community changes upon the treated wastewater.

  14. Determination of phenols and phenates in disinfectant formulations by liquid chromatography with UV detection: collaborative study.

    PubMed

    Phillips, Tom; Burns, Adrian

    2012-01-01

    Fourteen collaborating laboratories assayed o-phenylphenol (OPP), p-t-amylphenol (PTAP), and o-benzyl-p-chlorophenol (OBPCP) in formulated products, both ready-to-use and concentrates, by RP-HPLC. The actives in the samples ranged from 0.03 to 11% OPP, 0.06 to 4% PTAP, and 0.07 to 10% OBPCP either in free forms or as salts. Seven blind duplicates were analyzed. The samples were diluted/extracted with acidified methanol, filtered, and analyzed by LC on a C18 column using gradient elution and UV detection at 285 nm. The concentration of the active ingredients was calculated from a standard curve. Each laboratory weighed each test sample twice within a single analytical run. The data were analyzed using all 14 laboratory results, with appropriate statistical tests to detect outliers. The repeatability RSDs ranged from 0.98 to 3.40% for the free phenols, and 1.26 to 2.51% for the salts. The reproducibility RSDs ranged from 5.31 to 7.80% for the free phenols, and 5.50 to 8.67% for the salts. The HorRat ranged from 0.86 to 2.17 for the free phenols, and 1.54 to 2.72 for the salts.

  15. Evaluation of fungicidal efficacy of benzalkonium chloride (Steramina G u.v.) and Virkon-S against Microsporum canis for environmental disinfection.

    PubMed

    Marchetti, V; Mancianti, F; Cardini, G; Luchetti, E

    2006-04-01

    The aim of this study is to evaluate the antifungal efficacy of Steramina G u.v. (10% solution of alkyldimetylbenzylammonium chloride; Formenti Grünenthal) and Virkon-S (multipurpose system; Antec International) against Microsporum canis-infected hairs and spores. Samples were collected from a random sample of household cats and from subjects from catteries. Seventy M. canis-positive hairbrushes containing furs, keratin scales and other organic material were treated with each of the two disinfectants, using concentrations recommended by the manufacturer's instructions (2% and 1% for Steramina G u.v. and Virkon-S, respectively). Each brush remained in contact with the antifungal solution for 10 min. After this period, the brushes were air-dried, then seeded into mycobiotic agar, and incubated for up to 21 days at 28 degrees C. The disinfectants were considered effective if dermatophytes failed to grow. Steramina G u.v. was effective in 97.14% of samples and Virkon-S in 87.14%. The antifungal activity of Steramina G u.v. against M. canis was significantly higher (p < 0.05) than that of Virkon-S.

  16. Simultaneous degradation of disinfection byproducts and earthy-musty odorants by the UV/H2O2 advanced oxidation process.

    PubMed

    Jo, Chang Hyun; Dietrich, Andrea M; Tanko, James M

    2011-04-01

    Advanced treatment technologies that control multiple contaminants are beneficial to drinking water treatment. This research applied UV/H(2)O(2) for the simultaneous degradation of geosmin, 2-methylisoborneol, four trihalomethanes and six haloacetic acids. Experiments were conducted in de-ionized water at 24 ± 1.0 °C with ng/L amounts of odorants and μg/L amounts of disinfection byproducts. UV was applied with and without 6 mg/L H(2)O(2.) The results demonstrated that brominated trihalomethanes and brominated haloacetic acids were degraded to a greater extent than geosmin and 2-methylisoborneol. Tribromomethane and dibromochloromethane were degraded by 99% and 80% respectively at the UV dose of 1200 mJ/cm(2) with 6 mg/L H(2)O(2), whereas 90% of the geosmin and 60% of the 2-methylisoborneol were removed. Tribromoacetic acid and dibromoacetic acid were degraded by 99% and 80% respectively under the same conditions. Concentrations of trichloromethane and chlorinated haloacetic acids were not substantially reduced under these conditions and were not effectively removed at doses designed to remove geosmin and 2-methylisoborneol. Brominated compounds were degraded primarily by direct photolysis and cleavage of the C-Br bond with pseudo first order rate constants ranging from 10(-3) to 10(-2) s(-1). Geosmin and 2-methylisoborneol were primarily degraded by reaction with hydroxyl radical with direct photolysis as a minor factor. Perchlorinated disinfection byproducts were degraded by reaction with hydroxyl radicals. These results indicate that the UV/H(2)O(2) can be applied to effectively control both odorants and brominated disinfection byproducts.

  17. Evaluation of Filtration and UV Disinfection for Inactivation of Viruses in Non-Community Water Systems in Minnesota

    EPA Science Inventory

    This study evaluated filtration and disinfection processes for removal and inactivation of pathogens in non-community water systems (NCWS) in two surface water supplies. Pretreatment systems included 1) pressure sand filtration, and 2) granular activated carbon adsorption, and 3...

  18. Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the Nanoclave Cabinet

    PubMed Central

    2012-01-01

    Background The near-patient environment is often heavily contaminated, yet the decontamination of near-patient surfaces and equipment is often poor. The Nanoclave Cabinet produces large amounts of ultraviolet-C (UV-C) radiation (53 W/m2) and is designed to rapidly disinfect individual items of clinical equipment. Controlled laboratory studies were conducted to assess its ability to eradicate a range of potential pathogens including Clostridium difficile spores and Adenovirus from different types of surface. Methods Each test surface was inoculated with known levels of vegetative bacteria (106 cfu/cm2), C. difficile spores (102-106 cfu/cm2) or Adenovirus (109 viral genomes), placed in the Nanoclave Cabinet and exposed for up to 6 minutes to the UV-C light source. Survival of bacterial contaminants was determined via conventional cultivation techniques. Degradation of viral DNA was determined via PCR. Results were compared to the number of colonies or level of DNA recovered from non-exposed control surfaces. Experiments were repeated to incorporate organic soils and to compare the efficacy of the Nanoclave Cabinet to that of antimicrobial wipes. Results After exposing 8 common non-critical patient care items to two 30-second UV-C irradiation cycles, bacterial numbers on 40 of 51 target sites were consistently reduced to below detectable levels (≥ 4.7 log10 reduction). Bacterial load was reduced but still persisted on other sites. Objects that proved difficult to disinfect using the Nanoclave Cabinet (e.g. blood pressure cuff) were also difficult to disinfect using antimicrobial wipes. The efficacy of the Nanoclave Cabinet was not affected by the presence of organic soils. Clostridium difficile spores were more resistant to UV-C irradiation than vegetative bacteria. However, two 60-second irradiation cycles were sufficient to reduce the number of surface-associated spores from 103 cfu/cm2 to below detectable levels. A 3 log10 reduction in detectable Adenovirus DNA

  19. Synergistic effect of sequential or combined use of ozone and UV radiation for the disinfection of Bacillus subtilis spores.

    PubMed

    Jung, Yeon Jung; Oh, Byung Soo; Kang, Joon-Wun

    2008-03-01

    This study was performed to evaluate the inactivation efficiency or synergy of combined ozone and UV processes (combined ozone/UV process) or sequential processes (ozone-UV, UV-ozone) compared with individual unit processes and to investigate the specific roles of ozone, UV and the hydroxyl radical, which is formed as an intermediate in the combined ozone/UV process. The Bacillus subtilis spore, which has often been used as a surrogate microorganism for Cryptosporidium parvum oocysts, was used as a target microorganism. Compared to individual unit processes with ozone or UV, the inactivation of B. subtilis spores by the combined ozone/UV process was enhanced under identical conditions. To investigate the specific roles of ozone and UV in the combined ozone/UV process, sequential ozone-UV and UV-ozone processes were tested for degrees of inactivation. Additionally, the experiment was performed in the presence and absence of tert-butyl alcohol, which acted as a hydroxyl radical scavenger to assess the role of inactivation by the hydroxyl radical in the combined ozone/UV process. Among the five candidate processes, the greatest synergistic effect was observed in the combined ozone/UV process. From the comparison of five candidate processes, the hydroxyl radical and ozone were each determined to significantly enhance the overall inactivation efficiency in the combined ozone/UV process.

  20. The effect of UV/H2O2 treatment on disinfection by-product formation potential under simulated distribution system conditions.

    PubMed

    Metz, D H; Meyer, M; Dotson, A; Beerendonk, E; Dionysiou, D D

    2011-07-01

    Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H(2)O(2)) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H(2)O(2) while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H(2)O(2) pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H(2)O(2) reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H(2)O(2) pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.

  1. Pilot Field Test Study

    NASA Technical Reports Server (NTRS)

    Sherriff, Abigail

    2015-01-01

    The Field Test study is currently in full swing, preceded by the successful completion of the Pilot Field Test study that paved the way for collecting data on the astronauts in the medical tent in Kazakhstan. Abigail Sherriff worked alongside Logan Dobbe on one Field Test aspect to determine foot clearance over obstacles (5cm, 10cm, and 15cm) using APDM Inc. Internal Measurement Units (IMU) worn by the astronauts. They created a program to accurately calculate foot clearance using the accelerometer, magnetometer, and gyroscope data with the IMUs attached to the top of the shoes. To validate the functionality of their program, they completed a successful study on test subjects performing various tasks in an optical motion studio, considered a gold standard in biomechanics research. Future work will include further validation and expanding the program to include other analyses.

  2. Disinfection of biologically treated wastewater and prevention of biofouling by UV/electrolysis hybrid technology: influence factors and limits for domestic wastewater reuse.

    PubMed

    Haaken, Daniela; Dittmar, Thomas; Schmalz, Viktor; Worch, Eckhard

    2014-04-01

    Reuse of wastewater contributes significantly to an efficient and sustainable water usage. However, due to the presence of a multitude of pathogens (e.g. bacteria, viruses, worms, protozoa) in secondary effluents, disinfection procedures are indispensable. In decentralized wastewater treatment, UV irradiation represents one of the most common disinfection methods in addition to membrane processes and to a certain extent electrochemical procedures. However, the usage of UV disinfected secondary effluents for domestic (sanitary) or irrigation purposes bears a potential health risk due to the possible photo and dark repair of reversibly damaged bacteria. Against this background, the application of the UV/electrolysis hybrid technology for disinfection and prevention of bacterial reactivation in biologically treated wastewater was investigated in view of relevant influence factors and operating limits. Furthermore, the influence of electrochemically generated total oxidants on the formation of biofilms on quartz glass surfaces was examined, since its preventive avoidance contributes to an enhanced operational safety of the hybrid reactor. It was found that reactivation of bacteria in UV irradiated, biologically treated wastewater can be prevented by electrochemically produced total oxidants. In this regard, the influence of the initial concentration of the microbiological indicator organism Escherichia coli (E. coli) (9.3*10(2)-2.2*10(5) per 100 mL) and the influence of total suspended solids (TSS) in the range of 11-75 mg L(-1) was examined. The concentration of total oxidants necessary for prevention of bacterial regrowth increases linearly with the initial E. coli and TSS concentration. At an initial concentration of 933 E. coli per 100 mL, a total oxidants concentration of 0.4 mg L(-1) is necessary to avoid photo reactivation (at 4200 Lux), whereas 0.67 mg L(-1) is required if the E. coli concentration is enhanced by 2.4 log levels (cTSS = constant = 13 mg

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT; UV DISINFECTION FOR REUSE APPLICATION, AQUIONICS, INC. BERSONINLINE 4250 UV SYSTEM

    EPA Science Inventory

    Verification testing of the Aquionics, Inc. bersonInLine® 4250 UV System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills Wastewater Treatment Plant test site in Parsippany, New Jersey. Two full-scale reactors were mounted in series. T...

  4. ENVIRONMENTAL TECHNOLOGY VERIFICATION: JOINT (NSF-EPA) VERIFICATION STATEMENT AND REPORT; UV DISINFECTION FOR REUSE APPLICATION, AQUIONICS, INC. BERSONINLINE 4250 UV SYSTEM

    EPA Science Inventory

    Verification testing of the Aquionics, Inc. bersonInLine® 4250 UV System to develop the UV delivered dose flow relationship was conducted at the Parsippany-Troy Hills Wastewater Treatment Plant test site in Parsippany, New Jersey. Two full-scale reactors were mounted in series. T...

  5. Photoreactivation of Escherichia coli after Low- or Medium-Pressure UV Disinfection Determined by an Endonuclease Sensitive Site Assay

    PubMed Central

    Oguma, Kumiko; Katayama, Hiroyuki; Ohgaki, Shinichiro

    2002-01-01

    Photoreactivation of Escherichia coli after inactivation by a low-pressure (LP) UV lamp (254 nm), by a medium-pressure (MP) UV lamp (220 to 580 nm), or by a filtered medium-pressure (MPF) UV lamp (300 to 580 nm) was investigated. An endonuclease sensitive site (ESS) assay was used to determine the number of UV-induced pyrimidine dimers in the genomic DNA of E. coli, while a conventional cultivation assay was used to investigate the colony-forming ability (CFA) of E. coli. In photoreactivation experiments, more than 80% of the pyrimidine dimers induced by LP or MPF UV irradiation were repaired, while almost no repair of dimers was observed after MP UV exposure. The CFA ratios of E. coli recovered so that they were equivalent to 0.9-, 2.3-, and 1.7-log inactivation after 3-log inactivation by LP, MP, and MPF UV irradiation, respectively. Photorepair treatment of DNA in vitro suggested that among the MP UV emissions, wavelengths of 220 to 300 nm reduced the subsequent photorepair of ESS, possibly by causing a disorder in endogenous photolyase, an enzyme specific for photoreactivation. On the other hand, the MP UV irradiation at wavelengths between 300 and 580 nm was observed to play an important role in reducing the subsequent recovery of CFA by inducing damage other than damage to pyrimidine dimers. Therefore, it was found that inactivating light at a broad range of wavelengths effectively reduced subsequent photoreactivation, which could be an advantage that MP UV irradiation has over conventional LP UV irradiation. PMID:12450825

  6. Mobilestar field test program

    NASA Technical Reports Server (NTRS)

    Rubow, Wayne

    1988-01-01

    Various field tests were performed in order to gain practical experience and a broader understanding of mobile communications. The first phase consisted of CW propagation tests to develop firsthand experience of propagation phenomena. From this information, estimates of the feasibility and accuracy of power control were possible. The next phase tested the idea of power control. Equipment representative of that expected to be used in an actual mobile satellite communication system was assembled and tested under a variety of environments.

  7. AOPs with ozone and UV radiation in drinking water: contaminants removal and effects on disinfection byproducts formation.

    PubMed

    Collivignarelli, C; Sorlini, S

    2004-01-01

    In this study, the advanced oxidation with ozone and UV radiation (with two low pressure UV lamps, at 254 and 185 nm wavelength) were experimented on a surface water in order to study the removal of two odorous compounds (geosmin and 2-methylisoborneol) and a pesticide (metolachlor), the influence on organic compounds (UV absorbance and THM precursors) and bromate formation. Different batch tests were performed with ozone concentration up to 10 mg/L, UV dose up to 14,000 J/m2 and a maximum contact time of 10 minutes. The main results show that metolachlor can be efficiently removed with ozone alone while for geosmin and MIB a complete removal can be obtained with the advanced oxidation of ozone (with concentration of 1.5-3 mg/L and contact time of 2-3 minutes) with UV radiation (with doses of 5,000-6,000 J/m2). As concerns the influence on the organic precursors, all the experimented processes show a medium removal of about 20-40% for UV absorbance and 15-30% for THMFP (trihalomethanes formation potential). As concerns bromate formation, the advanced oxidation of ozone/UV 254 nm shows a bromate formation that is about 40% lower with respect to conventional oxidation with ozone.

  8. Development of Predictive Models for the Degradation of Halogenated Disinfection Byproducts during the UV/H2O2 Advanced Oxidation Process.

    PubMed

    Chuang, Yi-Hsueh; Parker, Kimberly M; Mitch, William A

    2016-10-18

    Previous research has demonstrated that the reverse osmosis and advanced oxidation processes (AOPs) used to purify municipal wastewater to potable quality have difficulty removing low molecular weight halogenated disinfection byproducts (DBPs) and industrial chemicals. Because of the wide range of chemical characteristics of these DBPs, this study developed methods to predict their degradation within the UV/H2O2 AOP via UV direct photolysis and hydroxyl radical ((•)OH) reaction, so that DBPs most likely to pass through the AOP could be predicted. Among 26 trihalomethanes, haloacetonitriles, haloacetaldehydes, halonitromethanes and haloacetamides, direct photolysis rate constants (254 nm) varied by ∼3 orders of magnitude, with rate constants increasing with Br and I substitution. Quantum yields varied little (0.12-0.59 mol/Einstein), such that rate constants were driven by the orders of magnitude variation in molar extinction coefficients. Quantum chemical calculations indicated a strong correlation between molar extinction coefficients and decreasing energy gaps between the highest occupied and lowest unoccupied orbitals (i.e., ELUMO-EHOMO). Rate constants for 37 trihalomethanes, haloacetonitriles, haloacetaldehydes, halonitromethanes, haloacetamides, and haloacetic acids with (•)OH measured by gamma radiolysis spanned 4 orders of magnitude. Based on these rate constants, a quantitative structure-reactivity relationship model (Group Contribution Method) was developed which predicted (•)OH rate constants for 5 additional halogenated compounds within a factor of 2. A kinetics model combining the molar extinction coefficients, quantum yields and (•)OH rate constants predicted experimental DBP loss in a lab-scale UV/H2O2 AOP well. Highlighting the difficulty associated with degrading these DBPs, at the 500-1000 mJ/cm(2) UV fluence applied in potable reuse trains, 50% removal would be achieved generally only for compounds with several -Br or -I substituents

  9. ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS

    EPA Science Inventory

    Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...

  10. ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS

    EPA Science Inventory

    Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...

  11. [Comparison of the quality and toxicity of wastewater after chlorine and chlorine dioxide disinfections].

    PubMed

    Wang, Li-sha; Zhang, Tong; Hu, Hong-ying

    2005-11-01

    The effects of chlorine and chlorine dioxide disinfections on quality and toxicity of wastewater were compared. The experiment results showed that chlorine disinfection had no obvious effect on wastewater color, while chlorine dioxide disinfection decreased wastewater color observably. The DOC of wastewater did not change much after chlorine and chlorine dioxide disinfections. Chlorine disinfection significantly increased UV230 of wastewater and chlorine dioxide disinfection slightly decreased UV230 of wastewater. When the disinfectants dosage was 30 mg/L, UV230 increased about 0.7 cm(-1) after chlorine disinfection and decreased about 0.05 cm(-1) after chlorine dioxide disinfection. The acute toxicity of wastewater increased with increasing disinfectants dosage for both chlorine and chlorine dioxide disinfections and the acute toxicity after chlorine disinfection is much stronger than that after chlorine dioxide disinfection. The genotoxicity of wastewater increased slightly after chlorine disinfection and decreased slightly after chlorine dioxide disinfection.

  12. Controlling Legionella and Pseudomonas aeruginosa re-growth in therapeutic spas: implementation of physical disinfection treatments, including UV/ultrafiltration, in a respiratory hydrotherapy system.

    PubMed

    Leoni, E; Sanna, T; Zanetti, F; Dallolio, L

    2015-12-01

    The study aimed to assess the efficacy of an integrated water safety plan (WSP) in controlling Legionella re-growth in a respiratory hydrotherapy system located in a spa centre, supplied with sulphurous water, which was initially colonized by Legionella pneumophila. Heterotrophic plate counts, Pseudomonas aeruginosa, Legionella spp. were detected in water samples taken 6-monthly from the hydrotherapy equipment (main circuit, entry to benches, final outlets). On the basis of the results obtained by the continuous monitoring and the changes in conditions, the original WSP, including physical treatments of water and waterlines, environmental surveillance and microbiological monitoring, was integrated introducing a UV/ultrafiltration system. The integrated treatment applied to the sulphurous water (microfiltration/UV irradiation/ultrafiltration), waterlines (superheated stream) and distal outlets (descaling/disinfection of nebulizers and nasal irrigators), ensured the removal of Legionella spp. and P. aeruginosa and a satisfactory microbiological quality over time. The environmental surveillance was successful in evaluating the hazard and identifying the most suitable preventive strategies to avoid Legionella re-growth. Ultrafiltration is a technology to take into account in the control of microbial contamination of therapeutic spas, since it does not modify the chemical composition of the water, thus allowing it to retain its therapeutic properties.

  13. Single-laboratory validation of a method for the determination of phenols and phenates in disinfectant formulations by liquid chromatography with UV detection.

    PubMed

    Phillips, Tommy; Burns, Adrian; McManus, Kenneth; Bontoyan, Warren

    2010-01-01

    A single-laboratory validation study was conducted for an LC method using UV detection for the simultaneous determination of the active ingredients o-phenylphenol (OPP), p-tert-amylphenol (PTAP), and o-benzyl-p-chlorophenol (OBPCP) in disinfectant formulations. Samples were extracted, the extracts diluted with acidified methanol, and the active ingredients separated by LC with a gradient mobile phase and quantified by using UV detection at 285 nm. For each active ingredient, the RSD was < or = 3.7%, and the intermediate reproducibility was < or = 3.4%. The active ingredient content of the spiked samples analyzed in this study ranged from 0.075 to 10.1% for the individual phenol active ingredients. The average recovery ranges were 86.7-104.9, 82.8-115.6, and 91.6-114.7% for the active ingredients OPP, PTAP, and OBPCP, respectively, for the concentration range of 0.075-10.1%. This method, with a relatively short chromatographic run time (about 15 min), proved to be reliable and convenient for analyses of products or samples containing all or a combination of these phenol active ingredients.

  14. RESOLVE 2010 Field Test

    NASA Technical Reports Server (NTRS)

    Captain, J.; Quinn, J.; Moss, T.; Weis, K.

    2010-01-01

    This slide presentation reviews the field tests conducted in 2010 of the Regolith Environment Science & Oxygen & Lunar Volatile Extraction (RESOLVE). The Resolve program consist of several mechanism: (1) Excavation and Bulk Regolith Characterization (EBRC) which is designed to act as a drill and crusher, (2) Regolith Volatiles Characterization (RVC) which is a reactor and does gas analysis,(3) Lunar Water Resources Demonstration (LWRD) which is a fluid system, water and hydrogen capture device and (4) the Rover. The scientific goal of this test is to demonstrate evolution of low levels of hydrogen and water as a function of temperature. The Engineering goals of this test are to demonstrate:(1) Integration onto new rover (2) Miniaturization of electronics rack (3) Operation from battery packs (elimination of generator) (4) Remote command/control and (5) Operation while roving. Views of the 2008 and the 2010 mechanisms, a overhead view of the mission path, a view of the terrain, the two drill sites, and a graphic of the Master Events Controller Graphical User Interface (MEC GUI) are shown. There are descriptions of the Gas chromatography (GC), the operational procedure, water and hydrogen doping of tephra. There is also a review of some of the results, and future direction for research and tests.

  15. Assessment of a portable handheld UV light device for the disinfection of viruses and bacteria in water.

    PubMed

    Abd-Elmaksoud, Sherif; Naranjo, Jaime E; Gerba, Charles P

    2013-06-01

    Effective individual microbiological water purifiers are needed for consumption of untreated water sources by campers, emergency use, military, and in developing counties. A handheld UV light device was tested to assess if it could meet the virus reduction requirements established by the United State Environmental Protection Agency, National Science Foundation and the World Health Organization. The device was found capable of inactivating at least 4 log₁₀ of poliovirus type 1, rotavirus SA-11 and MS-2 virus in 500 mL volumes of general case test water. But in the presence of high turbidity and organic matter, filtration was necessary to achieve a 4 log₁₀ reduction of the test viruses.

  16. Synergistic effect of heat and solar UV on DNA damage and water disinfection of E. coli and bacteriophage MS2.

    PubMed

    Theitler, Dana Jennifer; Nasser, Abid; Gerchman, Yoram; Kribus, Abraham; Mamane, Hadas

    2012-12-01

    The response of a representative virus and indicator bacteria to heating, solar irradiation, or their combination, was investigated in a controlled solar simulator and under real sun conditions. Heating showed higher inactivation of Escherichia coli compared to the bacteriophage MS2. Heating combined with natural or simulated solar irradiation demonstrated a synergistic effect on the inactivation of E. coli, with up to 3-log difference for 50 °C and natural sun insolation of 2,000 kJ m(-2) (compared to the sum of the separate treatments). Similar synergistic effect was also evident when solar-UV induced DNA damage to E. coli was assessed using the endonuclease sensitive site assay (ESS). MS2 was found to be highly resistant to irradiation and heat, with a slightly synergistic effect observed only at 59 °C and natural sun insolation of 5,580 kJ m(-2). Heat treatment also hindered light-dependent recovery of E. coli making the treatment much more effective.

  17. Disinfection of urban wastewater by solar driven and UV lamp - TiO₂ photocatalysis: effect on a multi drug resistant Escherichia coli strain.

    PubMed

    Rizzo, L; Della Sala, A; Fiorentino, A; Li Puma, G

    2014-04-15

    The effect of TiO₂ photocatalysis on the inactivation of an antibiotic resistant Escherichia coli strain selected from an urban wastewater treatment plant (UWWTP) effluent was investigated. Different light sources including a 250 W wide spectrum lamp, a 125 W UV-A lamp and solar radiation, as well as, photocatalysts loadings (TiO₂ Degussa P25) in the range from 0.05 to 2.00 g TiO₂ L(-1) were evaluated. The higher efficiency (total bacterial inactivation after 10 min of irradiation) was observed in the absence of TiO₂ when the wastewater was irradiated using the 250 W lamp. In the presence of TiO₂ a decreasing inactivation trend was observed (99.76% and 72.22% inactivation after 10 min irradiation at 0.10 and 2.00 g TiO₂ L(-1) respectively). Under solar simulated conditions the highest inactivation efficiency (93.17%) after 10 min of irradiation was achieved at the lower photocatalyst loading (0.05 g TiO₂ L(-1)). The concept of "reactor optical thickness" was introduced to explain the rates of disinfection observed. The optimum photocatalyst loading estimated by radiation absorption-scattering modeling was found to be 0.1 g TiO₂ L(-1) for all lamps. The difference between experimental tests and modeling may be due to TiO₂ particles aggregation. Comparative kinetic tests between solar and solar simulated photocatalytic (SSP) processes using 0.05 g TiO₂ L(-1) in suspension showed a quite similar inactivation behavior up to 30 min of irradiation, but only the SSP process resulted in a total inactivation of bacteria after 60 min of exposure. Antibiotic resistant test (Kirby-Bauer) on survived colonies showed that the SSP and SP processes affected in different ways the resistance of E. coli strain to the target antibiotics.

  18. Disinfection and toxicological assessments of pulsed UV and pulsed-plasma gas-discharge treated-water containing the waterborne protozoan enteroparasite Cryptosporidium parvum.

    PubMed

    Hayes, Jennifer; Kirf, Dominik; Garvey, Mary; Rowan, Neil

    2013-09-01

    We report for the first time on the comparative use of pulsed-plasma gas-discharge (PPGD) and pulsed UV light (PUV) for the novel destruction of the waterborne enteroparasite Cryptosporidium parvum. It also describes the first cyto-, geno- and ecotoxicological assays undertaken to assess the safety of water decontaminated using PPGD and PUV. During PPGD treatments, the application of high voltage pulses (16 kV, 10 pps) to gas-injected water (N2 or O2, flow rate 2.5L/min) resulted in the formation of a plasma that generated free radicals, ultraviolet light, acoustic shock waves and electric fields that killed ca. 4 log C. parvum oocysts in 32 min exposure. Findings showed that PPGD-treated water produced significant cytotoxic properties (as determined by MTT and neutral red assays), genotoxic properties (as determined by comet and Ames assays), and ecotoxic properties (as determined by Microtox™, Thamnotox™ and Daphnotox™ assays) that are representative of different trophic levels in aquatic environment (p<0.05). Depending in part on the type of injected gas used, PPGD-treated water became either alkaline (pH ≤ 8.58, using O2) or acidic (pH ≥ 3.21, using N2) and contained varying levels of reactive free radicals such as ozone (0.8 mg/L) and/or dissociated nitric and nitrous acid that contributed to the observed disinfection and toxicity. Chemical analysis of PPGD-treated water revealed increasing levels of electrode metals that were present at ≤ 30 times the tolerated respective values for EU drinking water. PUV-treated water did not exhibit any toxicity and was shown to be far superior to that of PPGD for killing C. parvum oocysts taking only 90 s of pulsing [UV dose of 6.29 μJ/cm(2)] to produce a 4-log reduction compared to a similar reduction level achieved after 32min PPGD treatment as determined by combined in vitro CaCo-2 cell culture-qPCR.

  19. Guidelines for ultraviolet disinfection of drinking water: considerations for Ontario.

    PubMed

    Hofmann, Ron; Andrews, Bob; Lachmaniuk, Pat

    The Ontario Ministry of the Environment is actively investigating protocols for approving the installation of ultraviolet (UV) disinfection systems for drinking water disinfection. This paper discusses issues that may be considered for selecting the appropriate UV dose, validating UV reactor performance, and monitoring the performance of the reactor once installed.

  20. High-performance, low-cost solar collectors for disinfection of contaminated water.

    PubMed

    Vidal, A; Diaz, A I

    2000-01-01

    Although the germicidal action of sunlight has long been recognized, its potential for practical applications has to be researched more thoroughly. This paper summarizes the progress made toward a commercially practical collector for solar disinfection applications. Nontracking compound parabolic collectors (CPCs), developed originally for capturing solar photons for thermal energy applications, were examined as potential solar photoreactors. A field demonstration of solar disinfection treatment using commercially manufactured solar reactors was conducted. Field tests showed successful destruction of Escherichia coli and Enterococcus faecalis and have provided data for full-scale design of water treatment systems. From above observations, a throughput value of 50 L/m2 h for the low-cost CPC reactor tested was estimated. For a 190 m3/d (0.05 MGD) facility, the estimated total costs for disinfection using UV-A is U.S. $0.19/m3 ($0.70/1000 gal). The use of near-UV sunlight to disinfect water supplies seems promising in rural communities of developing countries where treated water is unavailable.

  1. Micropollutants produced by disinfection of wastewater effluents

    SciTech Connect

    Jolley, R.L.; Cumming, R.B.; Lee, N.E.; Thompson, J.E.; Lewis, L.R.

    1981-01-01

    Recent research conducted with the objective of determining some of the chemical mutagenic characteristics of nonvolatile micropollutants in treated wastewater effluents is summarized. The effluents from nine wastewater plants were examined relative to the chemical effects of the disinfectants chlorine, ozone, and uv light on nonvolatile organic constituents and the formation of mutagenic constituents during disinfection. Results indicate that disinfection by chlorine or ozone can lead to an increase in the number of mutagenic materials in the effluents. (JGB)

  2. The North Carolina Field Test

    SciTech Connect

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  3. Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities.

    PubMed

    Barstow, Christina K; Dotson, Aaron D; Linden, Karl G

    2014-12-01

    Residents of urban developing communities often have a tap in their home providing treated and sometimes filtered water but its microbial quality cannot be guaranteed. Point-of-use (POU) disinfection systems can provide safe drinking water to the millions who lack access to clean water in urban communities. While many POU systems exist, there are several concerns that can lead to low user acceptability, including low flow rate, taste and odor issues, high cost, recontamination, and ineffectiveness at treating common pathogens. An ultraviolet (UV) POU system was constructed utilizing developing community-appropriate materials and simple construction techniques based around an inexpensive low-wattage, low pressure UV bulb. The system was tested at the bench scale to characterize its hydrodynamic properties and microbial disinfection efficacy. Hydraulically the system most closely resembled a plug flow reactor with minor short-circuiting. The system was challenge tested and validated for a UV fluence of 50 mJ/cm(2) and greater, over varying flow rates and UV transmittances, corresponding to a greater than 4 log reduction of most pathogenic bacteria, viruses, and protozoa of public health concern. This study presents the designed system and testing results to demonstrate the potential architecture of a low-cost, open-source UV system for further prototyping and field-testing.

  4. Production Hydraulic Packer Field Test

    SciTech Connect

    Schneller, Tricia; Salas, Jose

    2000-06-30

    In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

  5. Computational modeling of ultraviolet disinfection.

    PubMed

    Younis, B A; Yang, T H

    2010-01-01

    The efficient design of ultraviolet light (UV) systems for water and wastewater treatment requires detailed knowledge of the patterns of fluid motion that occur in the disinfection channel. This knowledge is increasingly being obtained using Computational Fluid Dynamics (CFD) software packages that solve the equations governing turbulent fluid-flow motion. In this work, we present predictions of the patterns of flow and the extent of disinfection in a conventional reactor consisting of an open channel with an array of UV lamps placed with their axes perpendicular to the direction of flow. It is shown that the resulting flow is inherently unsteady due to the regular shedding of vortices from the submerged lamps. It is also shown that the accurate prediction of the hydraulic residence time and, consequently, the extent of disinfection is strongly dependent on the ability of the CFD method to capture the occurrence and strength of the vortex shedding, and its effects on the turbulent mixing processes.

  6. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  7. ULTRAVIOLET LIGHT DISINFECTION OF COMBINED SEWER OVERFLOW (NEW ORLEANS)

    EPA Science Inventory

    The objective of this state-of-the-art review is to examine the performance and effectiveness of ultraviolet (UV) light disinfection for combined sewer overflow (CSO) applications. Topics presented include the use of UV light as a disinfecting agent, its practical applications, d...

  8. CHALLENGES OF COMBINED SEWER OVERFLOW DISINFECTION BY ULTRAVIOLET LIGHT IRRADIATION

    EPA Science Inventory

    This article examines the performance and effectiveness of ultraviolet (UV) light irradiation for disinfection of combined sewer overflow (CSO). Due to the negative impact of conventional water disinfectants on aquatic life, new agents (e.g., UV light) are being investigated for ...

  9. Real Time Monitoring of Dissolved Organic Carbon Concentration and Disinfection By-Product Formation Potential in a Surface Water Treatment Plant with Simulaneous UV-VIS Absorbance and Fluorescence Excitation-Emission Mapping

    NASA Astrophysics Data System (ADS)

    Gilmore, A. M.

    2015-12-01

    This study describes a method based on simultaneous absorbance and fluorescence excitation-emission mapping for rapidly and accurately monitoring dissolved organic carbon concentration and disinfection by-product formation potential for surface water sourced drinking water treatment. The method enables real-time monitoring of the Dissolved Organic Carbon (DOC), absorbance at 254 nm (UVA), the Specific UV Absorbance (SUVA) as well as the Simulated Distribution System Trihalomethane (THM) Formation Potential (SDS-THMFP) for the source and treated water among other component parameters. The method primarily involves Parallel Factor Analysis (PARAFAC) decomposition of the high and lower molecular weight humic and fulvic organic component concentrations. The DOC calibration method involves calculating a single slope factor (with the intercept fixed at 0 mg/l) by linear regression for the UVA divided by the ratio of the high and low molecular weight component concentrations. This method thus corrects for the changes in the molecular weight component composition as a function of the source water composition and coagulation treatment effects. The SDS-THMFP calibration involves a multiple linear regression of the DOC, organic component ratio, chlorine residual, pH and alkalinity. Both the DOC and SDS-THMFP correlations over a period of 18 months exhibited adjusted correlation coefficients with r2 > 0.969. The parameters can be reported as a function of compliance rules associated with required % removals of DOC (as a function of alkalinity) and predicted maximum contaminant levels (MCL) of THMs. The single instrument method, which is compatible with continuous flow monitoring or grab sampling, provides a rapid (2-3 minute) and precise indicator of drinking water disinfectant treatability without the need for separate UV photometric and DOC meter measurements or independent THM determinations.

  10. UV waterworks outreach support. Final report

    SciTech Connect

    Miller, P.

    1998-12-31

    A recently invented device uses UV light (254 nm) to inexpensively disinfect community drinking water supplies. Its novel features are: low cost (about US $600), robust design, rapid disinfection (12 seconds), low electricity use (40W), low maintenance (every 6 months), high flow rate (15 l/min) and ability to work with unpressurized water sources. The device could service a community of 1,000 persons, at an annual total cost of 14 cents US per person. This device has been tested in a number of independent laboratories worldwide. The laboratory tests have confirmed that the unit is capable of disinfecting waters to drinking water standards for bacteria and viruses. An extended field trial of the device began in South Africa in February 1997, with lab testing at the municipal water utility. A unit installed at the first field site, an AIDS hospice near Durban, has been in continuous operation since August, 1997. Additional test sites are being identified. The author describes the results of the initial lab tests, reports the most recent findings from the ongoing field test-monitoring program, and discusses plans for future tests.

  11. UV Waterworks Outreach Support. Final Report

    DOE R&D Accomplishments Database

    Miller, P.

    1998-05-01

    A recently invented device uses UV light (254 nm) to inexpensively disinfect community drinking water supplies. Its novel features are: low cost (about US $600), robust design, rapid disinfection (12 seconds), low electricity use (40W), low maintenance (every 6 months), high flow rate (15 l/min) and ability to work with unpressurized water sources. The device could service a community of 1,000 persons, at an annual total cost of 14 cents US per person. This device has been tested in a number of independent laboratories worldwide. The laboratory tests have confirmed that the unit is capable of disinfecting waters to drinking water standards for bacteria and viruses. An extended field trial of the device began in South Africa in February 1997, with lab testing at the municipal water utility. A unit installed at the first field site, an AIDS hospice near Durban, has been in continuous operation since August, 1997. Additional test sites are being identified. The author describes the results of the initial lab tests, reports the most recent findings from the ongoing field test-monitoring program, and discusses plans for future tests.

  12. Descent advisor preliminary field test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were to evaluate the accuracy of DA trajectory predictions for conventional- and flight-management-system-equipped jet transports, to identify significant sources of trajectory prediction error, and to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 sec late with a standard deviation of 13.1 sec. This paper describes the field test and presents preliminary results for the commercial flights.

  13. Descent Advisor Preliminary Field Test

    NASA Technical Reports Server (NTRS)

    Green, Steven M.; Vivona, Robert A.; Sanford, Beverly

    1995-01-01

    A field test of the Descent Advisor (DA) automation tool was conducted at the Denver Air Route Traffic Control Center in September 1994. DA is being developed to assist Center controllers in the efficient management and control of arrival traffic. DA generates advisories, based on trajectory predictions, to achieve accurate meter-fix arrival times in a fuel efficient manner while assisting the controller with the prediction and resolution of potential conflicts. The test objectives were: (1) to evaluate the accuracy of DA trajectory predictions for conventional and flight-management system equipped jet transports, (2) to identify significant sources of trajectory prediction error, and (3) to investigate procedural and training issues (both air and ground) associated with DA operations. Various commercial aircraft (97 flights total) and a Boeing 737-100 research aircraft participated in the test. Preliminary results from the primary test set of 24 commercial flights indicate a mean DA arrival time prediction error of 2.4 seconds late with a standard deviation of 13.1 seconds. This paper describes the field test and presents preliminary results for the commercial flights.

  14. Digital Audio Radio Field Tests

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1997-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).

  15. Digital Audio Radio Field Tests

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1997-01-01

    Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).

  16. Equivalency testing of ultraviolet disinfection for wastewater reclamation

    SciTech Connect

    Oppenheimer, J.A.; Jacangelo, J.G.; Laine, J.M.

    1996-11-01

    UV light disinfection was shown to continuously provide microbial inactivation equivalent to chlorine while reducing the formation of known carcinogenic disinfection by-products and the formation of chronic whole effluent toxicity. This was the first study to demonstrate UV`s performance relative to chlorination over an extended timeframe at a full-scale facility treating to meet the most stringent California reclamation standards.

  17. Disinfection of Burkholderia pseudomallei in potable water.

    PubMed

    Howard, Kay; Inglis, Timothy J J

    2005-03-01

    The effect of chlorine, monochloramine and UV disinfection on the water-borne pathogen Burkholderia pseudomallei was assessed. Persistence of B. pseudomallei was verified by MPN involving a one-step recovery procedure. Chlorine proved the most effective disinfectant with a 99.99% reduction of a 10(6) CFU/mL pure bacterial culture followed by 99.9% reduction by monochloramine and 99% reduction by UV. Co-culture of B. pseudomallei with Acanthamoeba astronyxis was found to greatly enhance survival of B. pseudomallei in the presence of all disinfecting agents tested. For example, when amoebae were present 100 times more monochloramine was required to maintain the disinfectant efficacy. Given the results obtained from these co-culture experiments, more research is needed to investigate the role of amoeba and biofilms in survival of B. pseudomallei in potable water.

  18. A Stepped Wedge, Cluster-Randomized Trial of a Household UV-Disinfection and Safe Storage Drinking Water Intervention in Rural Baja California Sur, Mexico

    PubMed Central

    Gruber, Joshua S.; Reygadas, Fermin; Arnold, Benjamin F.; Ray, Isha; Nelson, Kara; Colford, John M.

    2013-01-01

    In collaboration with a local non-profit organization, this study evaluated the expansion of a program that promoted and installed Mesita Azul, an ultraviolet-disinfection system designed to treat household drinking water in rural Mexico. We conducted a 15-month, cluster-randomized stepped wedge trial by randomizing the order in which 24 communities (444 households) received the intervention. We measured primary outcomes (water contamination and diarrhea) during seven household visits. The intervention increased the percentage of households with access to treated and safely stored drinking water (23–62%), and reduced the percentage of households with Escherichia coli contaminated drinking water (risk difference (RD): −19% [95% CI: −27%, −14%]). No significant reduction in diarrhea was observed (RD: −0.1% [95% CI: −1.1%, 0.9%]). We conclude that household water quality improvements measured in this study justify future promotion of the Mesita Azul, and that future studies to measure its health impact would be valuable if conducted in populations with higher diarrhea prevalence. PMID:23732255

  19. A stepped wedge, cluster-randomized trial of a household UV-disinfection and safe storage drinking water intervention in rural Baja California Sur, Mexico.

    PubMed

    Gruber, Joshua S; Reygadas, Fermin; Arnold, Benjamin F; Ray, Isha; Nelson, Kara; Colford, John M

    2013-08-01

    In collaboration with a local non-profit organization, this study evaluated the expansion of a program that promoted and installed Mesita Azul, an ultraviolet-disinfection system designed to treat household drinking water in rural Mexico. We conducted a 15-month, cluster-randomized stepped wedge trial by randomizing the order in which 24 communities (444 households) received the intervention. We measured primary outcomes (water contamination and diarrhea) during seven household visits. The intervention increased the percentage of households with access to treated and safely stored drinking water (23-62%), and reduced the percentage of households with Escherichia coli contaminated drinking water (risk difference (RD): -19% [95% CI: -27%, -14%]). No significant reduction in diarrhea was observed (RD: -0.1% [95% CI: -1.1%, 0.9%]). We conclude that household water quality improvements measured in this study justify future promotion of the Mesita Azul, and that future studies to measure its health impact would be valuable if conducted in populations with higher diarrhea prevalence.

  20. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  1. HIGH-RATE DISINFECTION TECHNIQUES FOR COMBIND SEWER OVERFLOW

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH )...

  2. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  3. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  4. Kinetics of UV inactivation of wastewater bioflocs.

    PubMed

    Azimi, Y; Allen, D G; Farnood, R R

    2012-08-01

    Ultraviolet disinfection is a physical method of disinfecting secondary treated wastewaters. Bioflocs formed during secondary treatment harbor and protect microbes from exposure to ultraviolet (UV) light, and significantly decrease the efficiency of disinfection at high UV doses causing the tailing phenomena. However, the exact mechanism of tailing and the role of biofloc properties and treatment conditions are not widely understood. It is hypothesized that sludge bioflocs are composed of an easily disinfectable loose outer shell, and a physically stronger compact core inside that accounts for the tailing phenomena. Hydrodynamic shear stress was applied to the bioflocs to peel off the looser outer shell to isolate the cores. Biofloc and core samples were fractionated into narrow size distributions by sieving and their UV disinfection kinetics were determined and compared. The results showed that for bioflocs, the tailing level elevates as the biofloc size increases, showing greater resistance to disinfection. However, for the cores larger than 45μm, it was found that the UV inactivation curves overlap, and show very close to identical inactivation kinetics. Comparing bioflocs and cores of similar size fraction, it was found that in all cases cores were harder to disinfect with UV light, and showed a higher tailing level. This study suggests that physical structure of bioflocs plays a significant role in the UV inactivation kinetics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Field Test of the Verbal Skills Curriculum.

    DTIC Science & Technology

    1982-08-01

    twon.) A Verbal Skills Curriculum program, designed for recruits with deficiencies in English language listening and speaking , was field-tested at... Skills program and presents the results of a field test of the program with recruits who speak English as a second language. The reoort also presents... Skills Curriculum provides remedial instruction to recruits experiencing difficulty in English language speaking or listening skills . English language

  6. Disinfection of contaminated water by using solar irradiation.

    PubMed

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  7. Disinfection of Contaminated Water by Using Solar Irradiation

    PubMed Central

    Caslake, Laurie F.; Connolly, Daniel J.; Menon, Vilas; Duncanson, Catriona M.; Rojas, Ricardo; Tavakoli, Javad

    2004-01-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min. PMID:14766599

  8. Effects of water matrix on virus inactivation using common virucidal techniques for condensate urine disinfection.

    PubMed

    Zuo, Xiaojun; Chu, Xiaona; Hu, Jiangyong

    2015-10-01

    Three common virucidal techniques (chlorine, UV and UV/TiO2) were applied to inactivate virus (MS2 and Phi X174) in condensate water after the evaporation of source-separated urine for reclaimed water. The inactivation efficiencies were compared with the results of previous studies, with the emphasis on the analysis of water matrix effects. Results showed that all virus inactivation in condensate water were lower than the control (in sterilized DI water). As for UV/TiO2 disinfection, both nitrate and ammonia nitrogen could promote slightly viral inactivation, while the inhibition by urea was dominant. Similarly, ammonia nitrogen had greater impacts on chlorine disinfection than urea and nitrate. In contrast, all water matrices (urea, nitrate and ammonia nitrogen) had little influence on UV disinfection. Based on the findings in this study, UV disinfection could be recommended for disinfecting the reclaimed water from the evaporation of source-separated urine. Copyright © 2015. Published by Elsevier Ltd.

  9. Peracetic acid for secondary effluent disinfection: a comprehensive performance assessment.

    PubMed

    Antonelli, M; Turolla, A; Mezzanotte, V; Nurizzo, C

    2013-01-01

    The paper is a review of previous research on secondary effluent disinfection by peracetic acid (PAA) integrated with new data about the effect of a preliminary flash-mixing step. The process was studied at bench and pilot scale to assess its performance for discharge in surface water and agricultural reuse (target microorganisms: Escherichia coli and faecal coliform bacteria). The purposes of the research were: (1) determining PAA decay and disinfection kinetics as a function of operating parameters, (2) evaluating PAA suitability as a disinfectant, (3) assessing long-term disinfection efficiency, (4) investigating disinfected effluent biological toxicity on some aquatic indicator organisms (Vibrio fischeri, Daphnia magna and Selenastrum capricornutum), (5) comparing PAA with conventional disinfectants (sodium hypochlorite, UV irradiation). PAA disinfection was capable of complying with Italian regulations on reuse (10 CFU/100 mL for E. coli) and was competitive with benchmarks. No regrowth phenomena were observed, as long as needed for agricultural reuse (29 h after disinfection), even at negligible concentrations of residual disinfectant. The toxic effect of PAA on the aquatic environment was due to the residual disinfectant in the water, rather than to chemical modification of the effluent.

  10. Disinfection of low quality wastewaters by ultraviolet irradiation

    SciTech Connect

    Zukovs, G.; Kollar, J.; Monteith, H.D.; Ho, K.W.A.; Ross, S.A.

    1986-03-01

    Pilot-scale disinfection of simulated combined sewer overflow (CSO) by ultraviolet light (UV) and by high-rate chlorination were compared. Disinfection efficiency was evaluated over a range of dosages and contact times for fecal coliforms, enterococci, P. Aeruginosa, and Salmonella spp. Fecal coliform were reduced 3.0 to 3.2 logs at a UV dose of approximately 350,000..mu.. W s/cm/sup 2/. High-rate chlorination, at a contact time of 2.0 minutes and total residual chlorine concentration of approximately 25 mg/L (as Cl/sub 2/), reduced fecal coliforms by 4.0 logs. Pathogens were reduced to detection limits by both processes. Neither photoreactivation nor regrowth occurred int he disinfected effluents. The estimated capital costs of CSO disinfection by UV irradiation were consistently higher than for chlorination/dechlorination; operation and maintenance costs were similar. 19 references.

  11. UV RESEARCH - FUNDED AND IN HOUSE EFFORTS

    EPA Science Inventory

    The National Risk Management research Laboratory (NRMRL) has performed or funded limited in-house and extramural research on the disinfection of CCL listed organisms using ultraviolet (UV) irradiation. In addition, multiple extramural efforts have been funded to assess operation...

  12. UV RESEARCH - FUNDED AND IN HOUSE EFFORTS

    EPA Science Inventory

    The National Risk Management research Laboratory (NRMRL) has performed or funded limited in-house and extramural research on the disinfection of CCL listed organisms using ultraviolet (UV) irradiation. In addition, multiple extramural efforts have been funded to assess operation...

  13. SRS environmental technology development field test platform

    SciTech Connect

    Riha, B.D.; Rossabi, J.; Eddy-Dilek, C.A.

    1995-09-01

    A critical and difficult step in the development and implementation of new technologies for environmental monitoring and characterization is successfully transferring these technologies to industry and government users for routine assessment and compliance activities. The Environmental Sciences Section of the DOE Savannah River Technology Center provides a forum for developers, potential users, and regulatory organizations to evaluate new technologies in comparison with baseline technologies in a well characterized field test bed. The principal objective of this project is to conduct comprehensive, objective field tests of monitoring and characterization technologies that are not currently used in EPA standard methods and evaluate their performance during actual operating conditions against baseline methods. This paper provides an overview of the field test site and a description of some of the technologies demonstrated at the site including their field applications.

  14. WATER DISINFECTION PRACTICE

    DTIC Science & Technology

    The current review of canteen water disinfection proceeded along three general lines. A summary has been prepared of the information available from...the literature on canteen water disinfection. The current opinions of two outstanding investigators in the field of disinfection have been solicited in

  15. Lighting the way to improved disinfection

    SciTech Connect

    Valenti, M.

    1997-07-01

    Ultraviolet light has a proven track record of killing bacteria and viruses found in municipal wastewater. In addition, environmental concerns over the use of chemical disinfectants, coupled with improvements in ultraviolet-lighting technology, have led to the development of UV systems that treat spent metalworking fluids in the industrialized world; disinfect drinking water in developing countries; and clean aquaculture water, ballast water, and hospital air everywhere. A large-scale pilot plant capable of treating less than 1 million gallons per day was built on-site by Los Angeles-based Montgomery Watson and CCCSD in 1992. It demonstrated that UV was just as effective as chlorination in killing bacteria and slightly more effective in destroying viruses found in the Martinez plant`s wastewater. It also showed the lamps would need to be cleaned of fouling every two to four weeks. The paper discusses this plant and the use of UV light in the above-mentioned water treatment processes.

  16. Initial Field Testing for Forest Tree Improvement

    Treesearch

    C. B. Briscoe

    1963-01-01

    Initial field testing for forest tree improvement is essentially a comparison of genetic groups whether the level of comparison is of species, provenances, or individual trees. A good study design should be as economical as possible, for a given precision, and must be accurate. The latter is simply obtained by restricting the study to a specified set of conditions,...

  17. UV Inactivation of Cryptosporidium hominis as Measured in Cell Culture

    PubMed Central

    Johnson, Anne M.; Linden, Karl; Ciociola, Kristina M.; De Leon, Ricardo; Widmer, Giovanni; Rochelle, Paul A.

    2005-01-01

    The Cryptosporidium spp. UV disinfection studies conducted to date have used Cryptosporidium parvum oocysts. However, Cryptosporidium hominis predominates in human cryptosporidiosis infections, so there is a critical need to assess the efficacy of UV disinfection of C. hominis. This study utilized cell culture-based methods to demonstrate that C. hominis oocysts displayed similar levels of infectivity and had the same sensitivity to UV light as C. parvum. Therefore, the water industry can be confident about extrapolating C. parvum UV disinfection data to C. hominis oocysts. PMID:15870378

  18. Ice slurry cooling development and field testing

    SciTech Connect

    Kasza, K.E.; Hietala, J.; Wendland, R.D.; Collins, F.

    1992-07-01

    A new advanced cooling technology collaborative program is underway involving Argonne National Laboratory (ANL), Northern States Power (NSP) and the Electric Power Research Institute (EPRI). The program will conduct field tests of an ice slurry distributed load network cooling concept at a Northern States Power utility service center to further develop and prove the technology and to facilitate technology transfer to the private sector. The program will further develop at Argonne National Laboratory through laboratory research key components of hardware needed in the field testing and develop an engineering data base needed to support the implementation of the technology. This program will sharply focus and culminate research and development funded by both the US Department of Energy and the Electric Power Research Institute on advanced cooling and load management technology over the last several years.

  19. Ice slurry cooling development and field testing

    SciTech Connect

    Kasza, K.E. ); Hietala, J. ); Wendland, R.D. ); Collins, F. )

    1992-01-01

    A new advanced cooling technology collaborative program is underway involving Argonne National Laboratory (ANL), Northern States Power (NSP) and the Electric Power Research Institute (EPRI). The program will conduct field tests of an ice slurry distributed load network cooling concept at a Northern States Power utility service center to further develop and prove the technology and to facilitate technology transfer to the private sector. The program will further develop at Argonne National Laboratory through laboratory research key components of hardware needed in the field testing and develop an engineering data base needed to support the implementation of the technology. This program will sharply focus and culminate research and development funded by both the US Department of Energy and the Electric Power Research Institute on advanced cooling and load management technology over the last several years.

  20. NLS-Scholar: Modifications and Field Testing

    DTIC Science & Technology

    1975-11-01

    environments, we greatly improved the efficiency of NLS-SCHOLAR; not only is the output package 5 times faster, but the overall efficiency is twice as...performance as an on-line help facility needs improvement . Most of the problems encountered are very easy to fix. The techniques used in NLS-SCHOLAR are...review 74 REFERENCES 77 SECTION I - INTRODUCTION This is the Final Report on a six-month effort to improve and field test NLS-SCHOLAR

  1. Cold chain: solar refrigerator field tested.

    PubMed

    1983-04-01

    The Health Ministries of Colombia and Peru, in collaboration with the Expanded Program on Immunization (EPI)/Pan American Health Organization (PAHO) and the Centers for Disease Control (CDC), have begun field testing a solar-powered vaccine refrigerator. The aim of the fields trials is to determine whether solar refrigerators can maintain the temperatures required for vaccine storage (+4-8 degrees Celsius) and produce ice at a rate of 2 kg/24 hours under different environmental conditions. these refrigerators would be particularly useful in areas that lack a consistent supply of good quality fuel or where the electrical supply is intermittent or nonexistent. Full appraisal of this technology will require 2 years of field testing; Colombia and Peru expect to complete testing in 1985. To date, 5 models have passed CDC-developed specifications, all of which are manufactured in the US. PAHO/WHO recommends that health ministries should consider the following guidelines in considering the purchase of a particular system: the initial purchase should be for a limited quantity (about 5) of refrigerators to permit field testing; solar panels should meet specific criteria; consideration should be given only to those models that have passed qualification tests; each unit should be fully equipped with monitoring devices and spare parts; and a trained refrigerator technician should be available to repair the equipment.

  2. Suspended particle effects on ClO2/ultraviolet light combined disinfection of effluent.

    PubMed

    Wang, Jian-ling; Wang, Bao-zhen; Wang, Lin; Zhang, Jin-song; Huang, Wen-zhang

    2006-01-01

    The concentration of suspended solids of effluent often varies in a wide range, therefore the dose of ultraviolet light (UV) in disinfection process needs to be adjusted to meet the disinfection criterion at a high frequency, and the desired disinfection effect is difficult to be ensured. The particles size and particle-associated fecal coliform (F.C.) contribution, and their influence on UV disinfection were investigated when ClO2 and UV combined disinfection process was used. The results showed that suspended solids content had a major impact on UV disinfection efficiency, especially the large particle size fraction. Particles (D>10 microm) associated F. C. were difficult to be disinfected and were the main part of the tailings of F.C. inactivation curve. Pre-ClO2 oxidation could reduce the number of particles in effluent, and make large particles decrease to small ones. Therefore, the influence of particles on UV disinfection could be reduced after pre-ClO2 oxidation, and the resistance ability to particle loadings of combined process was enhanced. Moreover, the combined process has a lot of advantages, such as low toxicity, low operational/maintenance costs; it is also convenient to be established in the existing wastewater plant or the new planned one.

  3. Goldstone field test activities: Target search

    NASA Technical Reports Server (NTRS)

    Tarter, J.

    1986-01-01

    In March of this year prototype SETI equipment was installed at DSS13, the 26 meter research and development antenna at NASA's Goldstone complex of satellite tracking dishes. The SETI equipment will remain at this site at least through the end of the summer so that the hardware and software developed for signal detection and recognition can be fully tested in a dynamic observatory environment. The field tests are expected to help understand which strategies for observing and which signal recognition algorithms perform best in the presence of strong man-made interfering signals (RFI) and natural astronomical sources.

  4. Antiscalent Field Testing for the LBNE Facility

    SciTech Connect

    Daily, William D.; Bahowick, Sally

    2011-10-12

    This paper was intended as an overview of options and considerations related to the field testing of an antiscalant injection system to be used on a cooling water system where minimal equipment, costs, energy, footprint, and maintenance are desired. It is anticipated that engineering oversight and judgment will be utilized to determine the applicability of each parameter and process suggested herein and modify the plan as necessary prior to implementation. Comparisons between options are given to weigh the benefits of each approach. Suggestions for equipment, materials, automation, monitoring and analytical are provided based on experience and industrial standards and may not be applicable for specific field applications.

  5. Biodiesel from wastewater: lipid production in high rate algal pond receiving disinfected effluent.

    PubMed

    Assemany, Paula Peixoto; Calijuri, Maria Lucia; do Couto, Eduardo de Aguiar; Santiago, Aníbal Fonseca; Dos Reis, Alberto José Delgado

    2015-01-01

    The production of different species of microalgae in consortium with other micro-organisms from wastewaters may represent an alternative process, to reduce the costs, for obtaining biofuels. The aim of this study was to evaluate the influence of pre-ultraviolet disinfection (UV) in the production of lipids from biomass produced in high rate ponds. Two high rate algal ponds were evaluated: a pond that received domestic sewage without disinfection and the other receiving domestic sewage previously disinfected by UV radiation (uvHRAP). The UV disinfection did not lead to significant differences in fatty acid profile and total lipid productivities, although it increased algal biomass concentration and productivity as well as lipid content. Moreover, the overall biomass concentrations and productivities decreased with the UV disinfection, mostly as a consequence of a loss in bacterial load. We thus conclude that uvHRAP disinfection may represent a potential strategy to promote the cleaner and safer growth of algal biomass when cultivated in consortium with other micro-organisms. Mainly regarding the use of wastewater as culture medium, together with a cheaper production of lipids for biodiesel, pre-disinfection may represent an advance since extraction costs could be significantly trimmed due to the increase in lipid content.

  6. 49 CFR 236.1035 - Field testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Field testing requirements. 236.1035 Section 236... Train Control Systems § 236.1035 Field testing requirements. (a) Before any field testing of an... A through G of this part that the railroad believes are necessary to support the field testing,...

  7. 49 CFR 236.1035 - Field testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Field testing requirements. 236.1035 Section 236... Train Control Systems § 236.1035 Field testing requirements. (a) Before any field testing of an... A through G of this part that the railroad believes are necessary to support the field testing,...

  8. 40 CFR 1065.925 - PEMS preparation for field testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false PEMS preparation for field testing... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065.925 PEMS preparation for field testing. Take the following steps to prepare PEMS for field testing:...

  9. 49 CFR 236.1035 - Field testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Field testing requirements. 236.1035 Section 236... Train Control Systems § 236.1035 Field testing requirements. (a) Before any field testing of an... A through G of this part that the railroad believes are necessary to support the field testing,...

  10. 49 CFR 236.1035 - Field testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Field testing requirements. 236.1035 Section 236... Train Control Systems § 236.1035 Field testing requirements. (a) Before any field testing of an... A through G of this part that the railroad believes are necessary to support the field testing,...

  11. 49 CFR 236.1035 - Field testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Field testing requirements. 236.1035 Section 236... Train Control Systems § 236.1035 Field testing requirements. (a) Before any field testing of an... A through G of this part that the railroad believes are necessary to support the field testing,...

  12. Deep Borehole Field Test Conceptual Design Report

    SciTech Connect

    Hardin, Ernest L.

    2016-09-30

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBD concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.

  13. Numerical simulations of capillary barrier field tests

    SciTech Connect

    Morris, C.E.; Stormont, J.C.

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  14. Comparative Field Tests of Pressurised Rover Prototypes

    NASA Astrophysics Data System (ADS)

    Mann, G. A.; Wood, N. B.; Clarke, J. D.; Piechochinski, S.; Bamsey, M.; Laing, J. H.

    The conceptual designs, interior layouts and operational performances of three pressurised rover prototypes - Aonia, ARES and Everest - were field tested during a recent simulation at the Mars Desert Research Station in Utah. A human factors experiment, in which the same crew of three executed the same simulated science mission in each of the three vehicles, yielded comparative data on the capacity of each vehicle to safely and comfortably carry explorers away from the main base, enter and exit the vehicle in spacesuits, perform science tasks in the field, and manage geological and biological samples. As well as offering recommendations for design improvements for specific vehicles, the results suggest that a conventional Sports Utility Vehicle (SUV) would not be suitable for analog field work; that a pressurised docking tunnel to the main habitat is essential; that better provisions for spacesuit storage are required; and that a crew consisting of one driver/navigator and two field science crew specialists may be optimal. From a field operations viewpoint, a recurring conflict between rover and habitat crews at the time of return to the habitat was observed. An analysis of these incidents leads to proposed refinements of operational protocols, specific crew training for rover returns and again points to the need for a pressurised docking tunnel. Sound field testing, circulating of results, and building the lessons learned into new vehicles is advocated as a way of producing ever higher fidelity rover analogues.

  15. Disinfection. [Wastewater treatment

    SciTech Connect

    Haas, C.N.; McCreary, J.J.

    1982-06-01

    Methods of disinfection of wastewater including chlorination, ultraviolet radiation, ozone, and quaternary compounds are reviewed. Various analytical methods to detect residues of the disinfectants are described. The production of inorganic and nonvolatile organic compounds in conventional water treatment processes is reviewed. (KRM)

  16. High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...

  17. High-Rate Disinfection Techniques for Combined Sewer Overflow (Proceedings Paper)

    EPA Science Inventory

    This paper presents high-rate disinfection technologies for combined sewer overflow (CSO). The high-rate disinfection technologies of interest are: chlorination/dechlorination, ultraviolet light irradiation (UV), chlorine dioxide (ClO2 ), ozone (O3), peracetic acid (CH3COOOH ), a...

  18. UV/H(2)O(2) treatment of drinking water increases post-chlorination DBP formation.

    PubMed

    Dotson, Aaron D; Keen, Volha Olya S; Metz, Debbie; Linden, Karl G

    2010-06-01

    Ultraviolet (UV) irradiation has become popular as a primary disinfectant because it is very effective against Cryptosporidium and does not directly form regulated disinfection by-products. Higher UV doses and UV advanced oxidation (UV/H2O2) processes are under consideration for the treatment of trace organic pollutants (e.g. pharmaceuticals, personal care products). Despite the disinfection effectiveness of UV light, a secondary disinfectant capable of maintaining a distribution system residual is required to meet current U.S. regulation. This study investigated changes in disinfection by-product (DBP) formation attributed to UV or UV/H2O2 followed by application of free chlorine to quench hydrogen peroxide and provide residual disinfectant. At a UV dose of 1000 mJ/cm(2), trihalomethane (THM) yield increased by up to 4 microg/mg-C and 13 microg/mg-C when treated with low and medium pressure UV, respectively. With the addition of hydrogen peroxide, THM yield increased by up to 25 microg/mg-C (5mg-H2O2/L) and 37 microg/mg-C (10 mg-H2O2/L). Although no changes in DBPs are expected during UV disinfection, application of UV advanced oxidation followed by chlorine addition was assessed with regard to impacts on DBP formation.

  19. Field Test Kit for Gun Residue Detection

    SciTech Connect

    WALKER, PAMELA K.; RODACY, PHILIP J.

    2002-01-01

    One of the major needs of the law enforcement field is a product that quickly, accurately, and inexpensively identifies whether a person has recently fired a gun--even if the suspect has attempted to wash the traces of gunpowder off. The Field Test Kit for Gunshot Residue Identification based on Sandia National Laboratories technology works with a wide variety of handguns and other weaponry using gunpowder. There are several organic chemicals in small arms propellants such as nitrocellulose, nitroglycerine, dinitrotoluene, and nitrites left behind after the firing of a gun that result from the incomplete combustion of the gunpowder. Sandia has developed a colorimetric shooter identification kit for in situ detection of gunshot residue (GSR) from a suspect. The test kit is the first of its kind and is small, inexpensive, and easily transported by individual law enforcement personnel requiring minimal training for effective use. It will provide immediate information identifying gunshot residue.

  20. Design, development and field testing of Cecil

    SciTech Connect

    Trovato, S.A. ); Ruggieri, S.K. )

    1990-01-01

    Inspection and cleaning of the secondary side of a pressurized water reactor (PWR) steam generator should be performed on a regular basis to prevent the degradation and early replacement of this equipment due to corrosion. Corrosion products, or sludge, settle in the secondary side of the steam generator and promote corrosion of the tube bundle. The CECIL robot was developed to improve inspection and cleaning of the secondary side of a steam generator. This paper describes the evolution in design of the CECIL robot. The design, development and field testing of the robot at India Point 2 nuclear station are discussed. Particular emphasis is placed on the fourth generation of its design, CECIL-4. The importance of iteration in design, test, fabrication and field application of mobile robots in a nuclear power station is discussed.

  1. Field testing of the Cobra Seal System

    SciTech Connect

    Yellin, E.; Vodrazka, P. ); Ystesund, K.; Drayer, D. )

    1990-01-01

    The Cobra Seal System consists of a passive fiber optic seal and verification equipment which have been modified to take advantage of current technology. The seal permits on-site verification without requiring replacement of the seal. The modifications to the original Cobra Seal System extended the maximum fiber optic cable length from 1 meter to 10 meters. This improvement allowed the Cobra Seal to be considered for application on dry irradiated fuel storage canisters at two Canadian facilities. These canisters are located in an exterior environment exposed to extreme weather conditions. This paper describe the application of the Cobra Seal to these canisters, a housing for the protection of the Cobra Seal body from the environment, and some preliminary results of the IAEA field tests. 4 refs.

  2. First Astronaut- Rover Interaction Field Test

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.; Ross, Amy; Cabrol, Nathalie A.

    2000-01-01

    The first Astronaut - Rover (ASRO) Interaction field test was conducted successfully on February 22-27, 1999, in Silver Lake, Mojave Desert, California in a representative planetary surface terrain. This test was a joint effort between the NASA Ames Research Center , Moffett Field, California and the NASA Johnson Space Center, Houston, Texas. As prototype advanced planetary surface space suit and rover technologies are being developed for human planetary surface exploration , it has been determined that it is important to better understand the potential interaction and benefits of an EVA astronaut interacting with a robotic rover . This interaction between an EVA astronaut and a robotic rover is seen as complementary and can greatly enhance the productivity and safety of surface excursions . This test also identified design requirements and options in an advanced space suit and robotic rover. The test objectives were: 1. To identify the operational domains where the EVA astronauts and rover are complementary and can interact and thus collaborate in a safe , productive and cost- effective way, 2. To identify preliminary requirements and recommendations for advanced space suits and rovers that facilitate their cooperative and complementary interaction, 3. To develop operational procedures for the astronaut-rover teams in the identified domains, 4. To test these procedures during representative mission scenarios during field tests by simulating the exploration of a planetary surface by an EVA crew interacting with a robotic rover, 5. To train a space suited test subject, simulated Earth-based and l or lander-based science teams, and robotic vehicle operators in mission configurations, and 6. To evaluate and understand socio-technical aspects of the astronaut - rover interaction experiment in order to guide future technologies and designs. Test results and areas for future research in the design of planetary space suits will be discussed .

  3. Differential toxicity of drinking water disinfected with combinations of ultraviolet radiation and chlorine.

    PubMed

    Plewa, Michael J; Wagner, Elizabeth D; Metz, Deborah H; Kashinkunti, Ramesh; Jamriska, Katherine J; Meyer, Maria

    2012-07-17

    Alternative technologies to disinfect drinking water such as ultraviolet (UV) disinfection are becoming more widespread. The benefits of UV disinfection include reduced risk of microbial pathogens such as Cryptosporidium and reduced production of regulated drinking water disinfection byproducts (DBPs). The objective of this research was to determine if mammalian cell cytotoxicity and genotoxicity varied in response to different chlorination protocols with and without polychromatic medium pressure UV (MPUV) and monochromatic low pressure UV (LPUV) disinfection technologies. The specific aims were to analyze the mammalian cell cytotoxicity and genotoxicity of concentrated organic fractions from source water before and after chlorination and to determine the cytotoxicity and genotoxicity of the concentrated organic fractions from water samples treated with UV alone or UV before or after chlorination. Exposure of granular activated carbon-filtered Ohio River water to UV alone resulted in the lowest levels of mammalian cell cytotoxicity and genotoxicity. With combinations of UV and chlorine, the lowest levels of cytotoxicity and genotoxicity were observed with MPUV radiation. The best combined UV plus chlorine methodology that generated the lowest cytotoxicity and genotoxicity employed chlorination first followed by MPUV radiation. These data may prove important in the development of multibarrier methods of pathogen inactivation of drinking water, while limiting unintended toxic consequences.

  4. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs

    EPA Science Inventory

    Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment applications, suc...

  5. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs - abstract

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  6. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs - abstract

    EPA Science Inventory

    Background: Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment appli...

  7. Efficacy of Inactivation of Human Enteroviruses by Multiple-Wavelength UV LEDs

    EPA Science Inventory

    Ultraviolet (UV) light has been successfully used for treating a broad suite of pathogens without the concomitant formation of carcinogenic disinfection by-products (DBPs). However, conventional mercury UV lamps have some practical limitations in water treatment applications, suc...

  8. MONITORING FOR AEROMONAS SPECIES AFTER TREATMENT WITH COMMON DRINKING WATER DISINFECTANTS

    EPA Science Inventory

    The sensitivity of Aeromonas spp. To free chlorine, chloramine and ultraviolet (UV) disinfection was determined. Aeromonas hydrophila is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Experiments using free chlorine indicated that the Aeromonas spp. ...

  9. MONITORING FOR AEROMONAS SPECIES AFTER TREATMENT WITH COMMON DRINKING WATER DISINFECTANTS

    EPA Science Inventory

    The sensitivity of Aeromonas spp. To free chlorine, chloramine and ultraviolet (UV) disinfection was determined. Aeromonas hydrophila is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Experiments using free chlorine indicated that the Aeromonas spp. ...

  10. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and

  11. Humidifier disinfectants, unfinished stories.

    PubMed

    Choi, Yeyong; Paek, Domyung

    2016-01-01

    Once released into the air, humidifier disinfectants became tiny nano-size particles, and resulted in chemical bronchoalveolitis. Families had lost their most beloved members, and even some of them became broken. Based on an estimate of two million potential victims who had experienced adverse effects from the use of humidifier disinfectants, we can say that what we have observed was only the tip of the iceberg. Problems of entire airways, as well as other systemic effects, should be examined, as we know these nano-size particles can irritate cell membranes and migrate into systemic circulation. The story of humidifier disinfectant is not finished yet.

  12. Effects of wastewater disinfection on waterborne bacteria and viruses

    USGS Publications Warehouse

    Blatchley, E. R.; Gong, W.-L.; Alleman, J.E.; Rose, J.B.; Huffman, D.E.; Otaki, M.; Lisle, J.T.

    2007-01-01

    Wastewater disinfection is practiced with the goal of reducing risks of human exposure to pathogenic microorganisms. In most circumstances, the efficacy of a wastewater disinfection process is regulated and monitored based on measurements of the responses of indicator bacteria. However, inactivation of indicator bacteria does not guarantee an acceptable degree of inactivation among other waterborne microorganisms (e.g., microbial pathogens). Undisinfected effluent samples from several municipal wastewater treatment facilities were collected for analysis. Facilities were selected to provide a broad spectrum of effluent quality, particularly as related to nitrogenous compounds. Samples were subjected to bench-scale chlorination and dechlorination and UV irradiation under conditions that allowed compliance with relevant discharge regulations and such that disinfectant exposures could be accurately quantified. Disinfected samples were subjected to a battery of assays to assess the immediate and long-term effects of wastewater disinfection on waterborne bacteria and viruses. In general, (viable) bacterial populations showed an immediate decline as a result of disinfectant exposure; however, incubation of disinfected samples under conditions that were designed to mimic the conditions in a receiving stream resulted in substantial recovery of the total bacterial community. The bacterial groups that are commonly used as indicators do not provide an accurate representation of the response of the bacterial community to disinfectant exposure and subsequent recovery in the environment. UV irradiation and chlorination/dechlorination both accomplished measurable inactivation of indigenous phage; however, the extent of inactivation was fairly modest under the conditions of disinfection used in this study. UV irradiation was consistently more effective as a virucide than chlorination/dechlorination under the conditions of application, based on measurements of virus (phage

  13. Trip Report-Produced-Water Field Testing

    SciTech Connect

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  14. Cooperative field test program for wind systems

    SciTech Connect

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  15. Results of the fourth Hanna field test

    SciTech Connect

    Covell, J. R.; Wojdac, L. F.; Barbour, F. A.; Gardner, G. W.; Glass, R.; Hommert, P. J.

    1980-01-01

    The second phase (Hanna IVB) of a coal gasification experiment near Hanna, Wyoming, was completed in September 1979. The experiment attempted to link and gasify coal between process wells spaced 34.3 meters apart. Intermediate wells were positioned between the process wells so that the link could be relayed over shorter distances. Reverse combustion linking was attempted over a 22.9-meter and a 11.4-meter distance of the total well spacing. Thermal activity was generally noted in the upper 3 meters of the coal seam during the link. Two attempts to gasify over the 34.3-meter distance resulted in the propagation of the burn front at the coal overburden interface. Post-burn evaluation indicates fractures as major influencing factors of the combustion process. The Hanna IVB field test provided much insight into influence that geologic features have on in situ coal combustion. The influence of these faults, permeable zones, and cleats, on the air flow patterns can drastically change the overall results of a gasification experiment and should be studied further. The overall results of Hanna IVB were discouraging because of the rapid decline in the heating values for the production gas and the amount of coal gasified. With more complete geologic characerization prior to experimentation and proper well completions, it is believed that most of the subsurface operational problems encountered during Hanna IV could have been avoided.

  16. 3X-100 blade field test.

    SciTech Connect

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  17. Validity of Field Tests of Upper Body Muscular Strength.

    ERIC Educational Resources Information Center

    Pate, Russell, R; And Others

    1993-01-01

    Examined the validity of field tests of elementary students' upper body muscular strength and endurance. Field tests were found to be moderately valid measures of weight-relative muscular strength but not of absolute strength and muscular endurance. (SM)

  18. Validity of Field Tests of Upper Body Muscular Strength.

    ERIC Educational Resources Information Center

    Pate, Russell, R; And Others

    1993-01-01

    Examined the validity of field tests of elementary students' upper body muscular strength and endurance. Field tests were found to be moderately valid measures of weight-relative muscular strength but not of absolute strength and muscular endurance. (SM)

  19. 40 CFR 35.2262 - Funding of field testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Funding of field testing. 35.2262... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2262 Funding of field testing. In the case of grant assistance for field testing of innovative or alternative wastewater...

  20. 40 CFR 35.2262 - Funding of field testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Funding of field testing. 35.2262... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2262 Funding of field testing. In the case of grant assistance for field testing of innovative or alternative wastewater...

  1. In Situ Field Testing of Processes

    SciTech Connect

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  2. Recent advances in drinking water disinfection: successes and challenges.

    PubMed

    Ngwenya, Nonhlanhla; Ncube, Esper J; Parsons, James

    2013-01-01

    , it is recommended that water disinfection should never be compromised by attempting to control DBPs. The reason for this is that the risks of human illness and death from pathogens in drinking water are much greater than the risks from exposure to disinfectants and disinfection by-products. Nevertheless, if DBP levels exceed regulatory limits, strategies should focus on eliminating organic impurities that foster their formation, without compromising disinfection. As alternatives to chlorine, disinfectants such as chloramines, ozone, chlorine dioxide, and UV disinfection are gaining popularity. Chlorine and each of these disinfectants have individual advantage and disadvantage in terms of cost, efficacy-stability, ease of application, and nature of disinfectant by-products (DBPs). Based on efficiency, ozone is the most efficient disinfectant for inactivating bacteria, viruses, and protozoa. In contrast, chloramines are the least efficient and are not recommended for use as primary disinfectants. Chloramines are favored for secondary water disinfection, because they react more slowly than chlorine and are more persistent in distribution systems. In addition, chloramines produce lower DBP levels than does chlorine, although microbial activity in the distribution system may produce nitrate from monochloramine, when it is used as a residual disinfectant, Achieving the required levels of water quality, particularly microbial inactivation levels, while minimizing DBP formation requires the application of proper risk and disinfection management protocols. In addition, the failure of conventional treatment processes to eliminate critical waterborne pathogens in drinking water demand that improved and/or new disinfection technologies be developed. Recent research has disclosed that nanotechnology may offer solutions in this area, through the use of nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes, and nanoparticle-enhanced filtration.

  3. Field testing of asphalt-emulsion radon-barrier system

    SciTech Connect

    Hartley, J.N.; Freeman, H.D.; Baker, E.G.; Elmore, M.R.; Nelson, D.A.; Voss, C.F.; Koehmstedt, P.L.

    1981-09-01

    Three years of laboratory and field testing have demonstrated that asphalt emulsion seals are effective radon diffusion barriers. Both laboratory and field tests in 1979, 1980 and 1981 have shown that an asphalt emulsion seal can reduce radon fluxes by greater than 99.9%. The effective diffusion coefficient for the various asphalt emulsion admix seals averages about 10/sup -6/ cm/sup 2//s. The 1981 joint field test is a culmination of all the technology developed to date for asphalt emulsion radon barrier systems. Preliminary results of this field test and the results of the 1980 field test are presented. 18 figures, 6 tables.

  4. A novel fiber optical device for ultraviolet disinfection of water.

    PubMed

    Lu, Gang; Li, Chaolin; Zheng, Yinggang; Zhang, Qian; Peng, Juan; Fu, Ming

    2008-07-24

    Since there are several problems in traditional UV disinfection techniques, a highly efficient, reliable and economical method, using quartz optical fibers to deliver UV light is proposed. The principle of the experimental setup is that ultraviolet rays are gathered by a reflector and converge on a light point, the diameter of approximately 5mm. In this way UV light can be transferred into water to kill the bacteria in the water. This paper presents preliminary results on water disinfection using this new UV disinfection setup. Its suitability for application could be shown in experiments with E. coli (ATCC8099) as test microorganisms. We have optimized the distribution of the optical fibers in the water in bench-scale study. This result can provide guidance for pilot-scale and field-scale study of this new technique. The results show that the new technique had a good performance under different conditions as follows: (a) turbidity level=10.2 NTU, (b) ferric ion concentration=0.3 mg/L, and (c) humic acid concentration=5 mg/L. The new technique provides a promising approach to disinfection treatment of drinking water.

  5. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals.

    PubMed

    Boyce, John M

    2016-01-01

    Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer's recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating "self-disinfecting" surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer "no-touch" (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These "no-touch" technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to

  6. The four-meter confrontation visual field test.

    PubMed

    Kodsi, S R; Younge, B R

    1992-01-01

    The 4-m confrontation visual field test has been successfully used at the Mayo Clinic for many years in addition to the standard 0.5-m confrontation visual field test. The 4-m confrontation visual field test is a test of macular function and can identify small central or paracentral scotomas that the examiner may not find when the patient is tested only at 0.5 m. Also, macular sparing in homonymous hemianopias and quadrantanopias may be identified with the 4-m confrontation visual field test. We recommend use of this confrontation visual field test, in addition to the standard 0.5-m confrontation visual field test, on appropriately selected patients to obtain the most information possible by confrontation visual field tests.

  7. III-Nitride UV Devices

    NASA Astrophysics Data System (ADS)

    Asif Khan, M.; Shatalov, M.; Maruska, H. P.; Wang, H. M.; Kuokstis, E.

    2005-10-01

    The need for efficient, compact and robust solid-state UV optical sources and sensors had stimulated the development of optical devices based on III-nitride material system. Rapid progress in material growth, device fabrication and packaging enabled demonstration of high efficiency visible-blind and solar-blind photodetectors, deep-UV light-emitting diodes with emission from 400 to 250 nm, and UV laser diodes with operation wavelengths ranging from 340 to 350 nm. Applications of these UV optical devices include flame sensing; fluorescence-based biochemical sensing; covert communications; air, water and food purification and disinfection; and biomedical instrumentation. This paper provides a review of recent advances in the development of UV optical devices. Performance of state-of-the-art devices as well as future prospects and challenges are discussed.

  8. FIELD TEST OF THE FLAME QUALITY INDICATOR

    SciTech Connect

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel

  9. Optimum Disinfection Properties and Commercially Available Disinfectants

    DTIC Science & Technology

    1989-07-01

    and its oyproducts have been negative (25). Sodium dichloro-s-triaztnetrione, also known as sodium dichloroisocyanurate , is the only promising...Candidates Criterion Chlorine dioxide Sodium dichloro-s- triazinetrione * Health effects : toxicity of chemical and byproducts less than HTH no more than...necesary and identify by block number) FIELD GROUP SU -GROUP :potable water, disinfectant; chlorine dioxide; sodium dichloro-s-triazinetrione, 3-Chloro-4,4

  10. Genotoxicity of water concentrates from recreational pools after various disinfection methods.

    PubMed

    Liviac, Danae; Wagner, Elizabeth D; Mitch, William A; Altonji, Matthew J; Plewa, Michael J

    2010-05-01

    Swimming and hot tub bathing are popular exercises and diversions. Disinfection of recreational pools is essential to prevent outbreaks of infectious disease. Recent research demonstrated an association between the application of disinfectants to recreational pools and adverse health outcomes. These pool waters represent extreme cases of disinfection that differ from disinfecting drinking waters. Pool waters are continuously exposed to disinfectants over average residence times extending to months. Disinfection byproduct (DBP) precursors include natural humic substances plus inputs from bathers through urine, sweat, hair, skin, and consumer products including cosmetics and sunscreens. This study presents a systematic mammalian cell genotoxicity analysis to evaluate different recreational waters derived from a common tap water source. The data demonstrated that all disinfected recreational pool water samples induced more genomic DNA damage than the source tap water. The type of disinfectant and illumination conditions altered the genotoxicity of the water. Accordingly, care should be taken in the disinfectant employed to treat recreational pool waters. The genotoxicity data suggest that brominating agents should be avoided. Combining chlorine with UV may be beneficial as compared to chlorination alone. During the recycling of pool water the organic carbon could be removed prior to disinfection. Behavior modification by swimmers may be critical in reducing the genotoxicity of pool water. Actions such as showering before entering the water and informing patrons about the potential harm from urinating in a pool could reduce the precursors of toxic DBPs.

  11. Is the pulsed xenon ultraviolet light no-touch disinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Restrepo, Marcos I; Ganachari-Mallappa, Nagaraja; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been shown to survive on ambient surfaces for extended periods of time. Leftover MRSA environmental contamination in a hospital room places future patients at risk. Manual disinfection supplemented by pulsed xenon ultraviolet (PX-UV) light disinfection has been shown to greatly decrease the MRSA bioburden in hospital rooms. However, the effect of PX-UV in the absence of manual disinfection has not been evaluated. Rooms that were previously occupied by a MRSA-positive patient (current colonization or infection) were selected for the study immediately postdischarge. Five high-touch surfaces were sampled, before and after PX-UV disinfection, in each hospital room. The effectiveness of the PX-UV device on the concentration of MRSA was assessed employing a Wilcoxon signed-rank test for all 70 samples with MRSA in 14 rooms, as well as by surface location. The final analysis included 14 rooms. Before PX-UV disinfection there were a total of 393 MRSA colonies isolated from the 5 high-touch surfaces. There were 100 MRSA colonies after disinfection by the PX-UV device and the overall reduction was statistically significant (P < .01). Our study results suggest that PX-UV light effectively reduces MRSA colony counts in the absence of manual disinfection. These findings are important for hospital and environmental services supervisors who plan to adapt new technologies as an adjunct to routine manual disinfection. Published by Elsevier Inc.

  12. Emergency Disinfection of Drinking Water

    EPA Pesticide Factsheets

    How to boil and disinfect water to kill most disease-causing microorganisms during emergency situations where regular water service has been interrupted and local authorities recommend using only bottled water, boiled water, or disinfected water.

  13. An Efficient Method for Transferring Adult Mosquitoes during Field Tests,

    DTIC Science & Technology

    CULICIDAE, *COLLECTING METHODS, REPRINTS, BLOOD SUCKING INSECTS, FIELD TESTS, HAND HELD, EFFICIENCY, LABORATORY EQUIPMENT, MORTALITY RATES , ADULTS, AEDES, ASPIRATORS, CULICIDAE, TEST AND EVALUATION, REPRINTS

  14. Electrodeless microwave source of UV radiation

    NASA Astrophysics Data System (ADS)

    Barkhudarov, E. M.; Kozlov, Yu. N.; Kossyi, I. A.; Malykh, N. I.; Misakyan, M. A.; Taktakishvili, I. M.; Khomichenko, A. A.

    2012-06-01

    The parameters of an electrodeless microwave low-pressure discharge in an Ar + Hg vapor mixture are studied, the design of a UV radiation source for water disinfection is suggested, and its main characteristics are presented. The domestic microwave oven ( f = 2.45 GHz; N = kW) is used as a microwave radiation source. The maximal UV power at wavelength λ = 254 nm amounts to 120-130 W.

  15. The Design and Field Test of the ACT Portfolio System.

    ERIC Educational Resources Information Center

    Reckase, Mark D.

    The American College Testing Program (ACT) is field testing a portfolio assessment model. The field test is designed to determine whether it is possible to implement a portfolio assessment model on a national level that will result in scores that are of sufficient reliability and validity that they can be used for decisions at the student level.…

  16. CALIPERS. Planning the Systems Approach to Field Testing Educational Products.

    ERIC Educational Resources Information Center

    Southwest Educational Development Lab., Austin, TX.

    Field testing, the last step in the developmental cycle for educational products, must ascertain whether the test product, placed in a natural environment, will actually elicit the behavioral changes it was designed to effect. A systems approach to field testing requires that certain basic areas of investigation first be established. Specific…

  17. Field testing a soil site field guide for Allegheny hardwoods

    Treesearch

    S.B. Jones

    1991-01-01

    A site quality evaluation decision model, developed for Allegheny hardwoods on the non-glaciated Allegheny Plateau of Pennsylvania and New York, was field tested by International Paper (IP) foresters and the author, on sites within the region of derivation and on glaciated sites north and west of the Wisconsin drift line. Results from the field testing are presented...

  18. Developing, Field Testing and Calibrating a Word Analysis Skill Inventory.

    ERIC Educational Resources Information Center

    Avant, Glen R.; O'Brien, Michael L.

    The Rasch Model was used to define the word analysis skill variable and to develop, field test, and calibrate a corresponding test for grades 2-12: the Emory Word Analysis Skill Inventory (EWASI). Word analysis objectives focusing on content and hierarchical levels of difficulty were identified and field tested with 78 students, grades 2-12,…

  19. [Optimizing surgical hand disinfection].

    PubMed

    Kampf, G; Kramer, A; Rotter, M; Widmer, A

    2006-08-01

    For more than 110 years hands of surgeons have been treated before a surgical procedure in order to reduce the bacterial density. The kind and duration of treatment, however, has changed significantly over time. Recent scientific evidence suggests a few changes with the aim to optimize both the efficacy and the dermal tolerance. Aim of this article is the presentation and discussion of new insights in surgical hand disinfection. A hand wash should be performed before the first disinfection of a day, ideally at least 10 min before the beginning of the disinfection as it has been shown that a 1 min hand wash significantly increases skin hydration for up to 10 min. The application time may be as short as 1.5 min depending on the type of hand rub. Hands and forearms should be kept wet with the hand rub for the recommended application time in any case. A specific rub-in procedure according to EN 12791 has been found to be suitable in order to avoid untreated skin areas. The alcohol-based hand rub should have a proven excellent dermal tolerance in order to ensure appropriate compliance. Considering these elements in clinical practice can have a significant impact to optimize the high quality of surgical hand disinfection for prevention of surgical site infections.

  20. CHLORINE DISINFECTION OF AEROMONAS

    EPA Science Inventory

    The bacterial genus Aeromonas is currently listed on the USEPA's Candidate Contaminant List (CCL). Resistance to chemical disinfection is an essential aspect regarding all microbial groups listed on the CCL. This study was designed to determine the inactivation kinetics of Aeromo...

  1. CHLORINE DISINFECTION OF AEROMONAS

    EPA Science Inventory

    The bacterial genus Aeromonas is currently listed on the USEPA's Candidate Contaminant List (CCL). Resistance to chemical disinfection is an essential aspect regarding all microbial groups listed on the CCL. This study was designed to determine the inactivation kinetics of Aeromo...

  2. Factors controlling sensitivity in ultraviolet disinfection of secondary effluents

    SciTech Connect

    Qualls, R.G.; Ossoff, S.F.; Chang, C.H.; Dorfman, M.H.; Dumais, C.M.; Lobe, D.C.; Johnson, D.

    1985-10-01

    Evaluation of ultraviolet (UV) light disinfection must distinguish between the UV-sensitivity of the bacteria themselves and the difference between the UV intensity applied and that received by the organism caused primarily by UV-absorbing materials. Samples from a variety of wastewater effluents were irradiated in a simplified system where the factors controlling disinfection could be accurately measured. Total coliform survival was determined as a function of UV dose for both unfiltered and 10-..mu..m filtered effluent samples. Particles were counted by size class. Coliforms not associated with larger particles were only slightly less sensitive to UV light than cultured and purified E. coli. Particulate-associated coliforms were more resistant; resistance was determined by the number and size of suspended particles. At a UV dose of 26 mW x s/cm/sup 2/, survival was correlated best with the number of particles greater than 40 ..mu..m (r/sup 2/ = 0.55), suspended solids (r/sup 2/ = 0.55), and suspended solids removed by 10-..mu..m filtration (r/sup 2/ = 0.65).

  3. Disinfection of secondary effluents by infiltration percolation.

    PubMed

    Makni, H

    2001-01-01

    Among the most attractive applications of reclaimed wastewater are: irrigation of public parks, sports fields, golf courses and market gardening. These uses require advanced wastewater treatment including disinfection. According to WHO guidelines (1989) and current rules and regulations in Tunisia, faecal coliform levels have to be reduced to < 10(3) or 10(2) CFU/100 mL. In Tunisia, most wastewater plants are only secondary treatment and, in order to meet health related regulations, the effluents need to be disinfected. However, it is usual for secondary effluents to need filtration prior to disinfection. Effectiveness of conventional disinfection processes, such as chlorination and UV radiation, are dependent upon the oxidation level and the levels of suspended solids of the treated water. Ozonation is relatively expensive and energy consuming. The consideration of the advantages and disadvantages of conventional techniques, their reliability, investment needs and operational costs will lead to the use of less sophisticated alternative techniques for certain facilities. Among alternative techniques, soil aquifer treatment and infiltration percolation through sand beds have been studied in Arizona, Israel, France, Spain and Morocco. Infiltration percolation plants have been intermittently fed with secondary or high quality primary effluents which percolated through 1.5-2 m unsaturated coarse sand and were recovered by under-drains. In such infiltration percolation facilities, microorganisms were eliminated through numerous physical, physicochemical and biological inter-related processes (mechanical filtration, adsorption and microbial degradation respectively). Efficiency of faecal coliform removal was dependent upon the water detention times in the filtering medium and on the oxidation of the filtered water. Effluents of Sfax town aerated ponds were infiltrated through 1.5 m deep sand columns in order to determine the performance of infiltration percolation in the

  4. Effects of ultraviolet light disinfection on tetracycline-resistant bacteria in wastewater effluents.

    PubMed

    Childress, H; Sullivan, B; Kaur, J; Karthikeyan, R

    2014-09-01

    The ubiquitous use of antibiotics has led to an increasing number of antibiotic-resistant bacterial strains, including strains that are multidrug-resistant, pathogenic, or both. There is also evidence to suggest that antibiotic resistance genes (ARGs) spread to the environment, humans, and animals through wastewater effluents. The overall objective of this study was to investigate the effect of ultraviolet (UV) light disinfection on antibiotic-resistant bacteria. Wastewater effluent samples from a wastewater treatment plant (WWTP) in Texas were evaluated for differences in tetracycline-resistant bacteria before and after UV treatment. The effects of photoreactivation or dark repair on the reactivation of bacteria present in WWTP effluent after UV disinfection were also examined. Culture-based methods were used to characterize viable heterotrophic, tetracycline-resistant heterotrophic, Escherichia coli, and tetracycline-resistant E. coli bacteria present before and after UV treatment. UV disinfection was found to be as effective at reducing concentrations of resistant heterotrophs and E. coli, as it was at reducing total bacterial concentrations. The lowest survival ratio following UV disinfection was observed in tetracycline-resistant E. coli showing particular susceptibility to UV treatment. Photoreactivation and dark repair rates were found to be comparable to each other for all bacterial populations.

  5. Commercial Disinfectants During Disinfection Process Validation: More Failures than Success

    PubMed Central

    Chumber, Sushil Kumar; Khanduri, Uma

    2016-01-01

    Introduction Disinfection process validation is mandatory before introduction of a new disinfectant in hospital services. Commercial disinfection brands often question existing hospital policy claiming greater efficacy and lack of toxicity of their products. Inadvertent inadequate disinfection leads to morbidity, patient’s economic burden, and the risk of mortality. Aim To evaluate commercial disinfectants for high, intermediate and low-level disinfection so as to identify utility for our routine situations. Materials and Methods This laboratory based experiment was conducted at St Stephen Hospital, Delhi during July-September 2013. Twelve commercial disinfectants: Sanidex®, Sanocid®, Cidex®, SekuSept Aktiv®, BIB Forte®, Alprojet W®, Desnet®, Sanihygiene®, Incidin®, D125®, Lonzagard®, and Glutishield® were tested. Time-kill assay (suspension test) was performed against six indicator bacteria (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella Typhi, Bacillus cereus, and Mycobacterium fortuitum). Low and high inoculum (final concentrations 1.5X106 and 9X106 cfu/ml) of the first five bacteria while only low level of M. fortuitum was tested. Results Cidex® (2.4% Glutaraldehyde) performed best as high level disinfectant while newer quarternary ammonium compounds (QACs) (Incidin®, D125®, and Lonzagard®) were good at low level disinfection. Sanidex® (0.55% Ortho-pthalaldehyde) though mycobactericidal took 10 minutes for sporicidal activity. Older QAC containing BIB Forte® and Desnet® took 20 minutes to fully inhibit P. aeruginosa. All disinfectants effectively reduced S. Typhi to zero counts within 5 minutes. Conclusion Cidex® is a good high-level disinfectant while newer QACs (Incidin®, D125®, and Lonzagard®) were capable low-level disinfectants. PMID:27656441

  6. Subtle Differences in Virus Composition Affect Disinfection Kinetics and Mechanisms

    PubMed Central

    Sigstam, Thérèse; Gannon, Greg; Cascella, Michele; Pecson, Brian M.; Wigginton, Krista Rule

    2013-01-01

    Viral disinfection kinetics have been studied in depth, but the molecular-level inactivation mechanisms are not understood. Consequently, it is difficult to predict the disinfection behavior of nonculturable viruses, even when related, culturable viruses are available. The objective of this work was to determine how small differences in the composition of the viral genome and proteins impact disinfection. To this end, we investigated the inactivation of three related bacteriophages (MS2, fr, and GA) by UV254, singlet oxygen (1O2), free chlorine (FC), and chlorine dioxide (ClO2). Genome damage was quantified by PCR, and protein damage was assessed by quantitative matrix-assisted laser desorption ionization (MALDI) mass spectrometry. ClO2 caused great variability in the inactivation kinetics between viruses and was the only treatment that did not induce genome damage. The inactivation kinetics were similar for all viruses when treated with disinfectants possessing a genome-damaging component (FC, 1O2, and UV254). On the protein level, UV254 subtly damaged MS2 and fr capsid proteins, whereas GA's capsid remained intact. 1O2 oxidized a methionine residue in MS2 but did not affect the other two viruses. In contrast, FC and ClO2 rapidly degraded the capsid proteins of all three viruses. Protein composition alone could not explain the observed degradation trends; instead, molecular dynamics simulations indicated that degradation is dictated by the solvent-accessible surface area of individual amino acids. Finally, despite the similarities of the three viruses investigated, their mode of inactivation by a single disinfectant varied. This explains why closely related viruses can exhibit drastically different inactivation kinetics. PMID:23542618

  7. New Water Disinfection Technology for Earth and Space Applications as Part of the NPP Fellowship Research

    NASA Technical Reports Server (NTRS)

    SilvestryRodriquez, Nadia

    2010-01-01

    There is the need for a safe, low energy consuming and compact water disinfection technology to maintain water quality for human consumption. The design of the reactor should present no overheating and a constant temperature, with good electrical and optical performance for a UV water treatment system. The study assessed the use of UVA-LEDs to disinfectant water for MS2 Bacteriophage. The log reduction was sufficient to meet US EPA standards as a secondary disinfectant for maintaining water quality control. The study also explored possible inactivation of Pseudomonas aeruginosa and E. coli.

  8. Visible light powered self-disinfecting coatings for influenza viruses

    NASA Astrophysics Data System (ADS)

    Weng, Ding; Qi, Hangfei; Wu, Ting-Ting; Yan, Ming; Sun, Ren; Lu, Yunfeng

    2012-04-01

    Influenza A viruses, the pathogens responsible for the recent swine flu outbreak and many historical pandemics, remain a threat to the public health. We report herein the fabrication of self-disinfecting surfaces from photoactive building nanocrystals, which can inactivate influenza viruses rapidly, spontaneously and continuously under visible light illumination.Influenza A viruses, the pathogens responsible for the recent swine flu outbreak and many historical pandemics, remain a threat to the public health. We report herein the fabrication of self-disinfecting surfaces from photoactive building nanocrystals, which can inactivate influenza viruses rapidly, spontaneously and continuously under visible light illumination. Electronic supplementary information (ESI) available: XRD, UV-Vis absorbance, TEM, AFM of as-prepared nanocrystals and as-fabricated self-disinfecting surfaces, disinfection of influenza A virus by TiO2 (P25) with UV irradiation as reference control, photoinactivation of influenza A virus envelope proteins and photoinactivation of trypsin. See DOI: 10.1039/c2nr30388d

  9. Photovoltaic-Powered Vaccine Refrigerator: Freezer Systems Field Test Results

    NASA Technical Reports Server (NTRS)

    Ratajczak, A. F.

    1985-01-01

    A project to develop and field test photovoltaic-powered refrigerator/freezers suitable for vaccine storage was undertaken. Three refrigerator/freezers were qualified; one by Solar Power Corp. and two by Solvolt. Follow-on contracts were awarded for 19 field test systems and for 10 field test systems. A total of 29 systems were installed in 24 countries between October 1981 and October 1984. The project, systems descriptions, installation experiences, performance data for the 22 systems for which field test data was reported, an operational reliability summary, and recommendations relative to system designs and future use of such systems are explained. Performance data indicate that the systems are highly reliable and are capable of maintaining proper vaccine storage temperatures in a wide range of climatological and user environments.

  10. Field Testing Research at the NWTC (Fact Sheet)

    SciTech Connect

    Not Available

    2015-02-01

    The National Wind Technology Center (NWTC) at the National Renewable Laboratory (NREL) has extensive field testing capabilities that have been used in collaboration with the wind industry to accelerate wind technology development and deployment for more than 30 years.

  11. Silver as a disinfectant.

    PubMed

    Silvestry-Rodriguez, Nadia; Sicairos-Ruelas, Enue E; Gerba, Charles P; Bright, Kelly R

    2007-01-01

    Silver has been used as an antimicrobial for thousands of years. Over the past several decades, it has been introduced into numerous new venues such as in the treatment of water, in dietary supplements, in medical applications, and to produce antimicrobial coatings and products. Silver is often used as an alternative disinfectant in applications in which the use of traditional disinfectants such as chlorine may result in the formation of toxic by-products or cause corrosion of surfaces. Silver has also been demonstrated to produce a synergistic effect in combination with several other disinfectants. Many mechanisms of the antibacterial effect of silver have been described, but its antiviral and antiprotozoal mechanisms are not well understood. Both microbial tolerance and resistance to silver have been reported; however, the effect of silver has been observed against a wide variety of microorganisms over a period of years. Further research is needed to determine the antimicrobial efficacy of silver in these new applications and the effects of its long-term usage.

  12. Methodology for HIV disinfectant testing.

    PubMed

    van Bueren, J

    1995-06-01

    Due to the variation in protocols from studies by different workers for the inactivation of HIV by chemical disinfectants, only limited comparisons of the results can be made. These variations include those which apply to disinfectant testing in general, such as the level of organic load and the form of neutralization of the disinfectant, and those which apply particularly to HIV inactivation, such as the method used to detect infectious virus. Our suspension and carrier tests to assess the efficacy of chemical disinfectants against HIV are described and problems with the interpretation and applicability of the results are discussed.

  13. Water disinfection through photoactive modified titania.

    PubMed

    Sethi, Diptipriya; Pal, Ajoy; Sakthivel, Ramasamy; Pandey, Sony; Dash, Tapan; Das, Trupti; Kumar, Rohit

    2014-01-05

    TiO(2), N-TiO(2) and S-TiO(2) samples have been prepared by various chemical methods. These samples were characterized by X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), Laser Raman spectrometer, UV-Visible spectrophotometer, field emission scanning electron microscope (FE-SEM) and transmission electron microscope (TEM). X-ray powder diffraction study reveals that all three samples are single anatase phase of titania and the crystallinity of titania decreases with sulphur doping whereas nitrogen doping does not affect it. UV-Visible (diffuse) reflectance spectra shows that doping of titania with nitrogen and sulphur shift the absorption edge of titania from ultraviolet to visible region. XPS study confirms that both nitrogen and sulphur are well doped in the titania lattice. It is observed that nitrogen occupies at both substitutional and interstitial position in the lattice of titania. FE-SEM and TEM studies demonstrate that the particles are below 50nm range. It is found that S and N doping of titania increased its water disinfection property in the order TiO(2)UV/UV-Visible light irradiation.

  14. Tailing propensity in the ultraviolet disinfection of trickling filter and activated sludge wastewater treatment processes.

    PubMed

    Tan, Thiam C; Azimi, Yaldah; Farnood, Ramin R

    2017-07-01

    In this paper, the effect of suspended flocs on the tailing of ultraviolet (UV) disinfection kinetics of secondary effluents was examined. To achieve this goal, final effluents produced in two processes for treating wastewater; namely, a trickling filter system and an activated sludge system, were collected and their UV disinfection were compared. Tailing of the UV dose response curve was controlled by the fraction of flocs that are both culturable and UV-resistant, referred to as the 'tailing propensity'. Using this parameter, the contribution of various floc size fractions in reducing the UV disinfection efficiency of wastewater samples was quantified. Activated sludge flocs larger than 125 μm exhibited as much as 35 times greater tailing propensity than smaller flocs in the range of 20-25 μm. Within a fixed size range, the tailing propensity of flocs generated in the trickling filter system was 3 to 8 times higher than that of activated sludge flocs, and this difference increased with the floc size. A mathematical model was developed to predict the UV disinfection of secondary effluents from suspended particle size distribution data. The model showed good agreement with experimental results.

  15. Inactivation of human adenovirus by sequential disinfection with an alternative ultraviolet technology and monochloramine.

    PubMed

    Shin, Gwy-Am; Lee, Jung-Keun

    2010-07-01

    In an effort to reduce human exposure to adenoviruses through drinking water, we determined the effectiveness of sequential disinfection with an alternative ultraviolet (UV) technology (medium-pressure (MP) UV) and monochloramine. The results of this study showed that MP UV was much more effective than traditional UV technology (low-pressure (LP) UV) against human adenovirus 2 (Ad2). Specifically, an inactivation of approximately 3 log10 was achieved by a dose of 40 mJ/cm2 of MP UV compared to ~1 log10 by the same dose of LP UV. However, because of the ineffective inactivation of Ad2 by monochloramine, a very high dose (40 mJ/cm2) of MP UV and a very large Ct99 value (approximately 1200 mg/L.min) was still needed to achieve a significant inactivation (e.g., 4 log10) of Ad2. Also, it appears that the inactivation of Ad2 by monochloramine is not enhanced by prior exposure to MP UV. Overall, the results of this study indicated that, in spite of the enhanced effectiveness of alternative UV technologies on human adenoviruses, sequential disinfection with an alternative UV technology (MP UV) and monochloramine still may not provide adequate inactivation of human adenoviruses - especially at high pH and low temperature - in drinking water treatment processes.

  16. [Aerosol disinfection of bacterial spores].

    PubMed

    Theilen, U; Wilsberg, F J; Böhm, R; Strauch, D

    1987-06-01

    The present investigations are divided into two parts. First it is tested which commercial disinfectants are efficient in aerosol disinfection of bacterial spores. This part is carried out in an aerosol chamber with airborne spores (laboratory experiments). The best results are obtained with peracetic acid, hydrogen peroxide and formaldehyde are effective with some restrictions. With these disinfectants it is tested in the second part if the aerosol disinfecting-method is capable for disinfecting rooms with electronic equipment. This part is carried out in a vessel under open air conditions (field experiments). Bacterial spores dried on germ carriers of limewood, aluminium and rusty iron are exposed to disinfectant aerosols under those temperature and relative humidity conditions which are representative for the four seasons in Germany. In these investigations there are also included germ carriers with spores, that have been lyophilized without any protective substances respectively with Bentonite, Mixtura desiccans and Silicagel + Serum as protective substances. To check the corrosive effect of disinfectant aerosols electronic pocket calculators and pocket transistor receivers have been exposed to the aerosols. The best results are obtained with formaldehyde at temperatures above 10 degrees C and relative humidities within 65% to 95%. At temperatures and relative humidity conditions outside of this optimal range the effectiveness of formaldehyde tends to zero. Hydrogen peroxide is capable for disinfecting spores on germ carriers of limewood and aluminium at all temperature and relative humidity conditions; on germ carriers of rusty iron the effectiveness is reduced strongly. Same results could be obtained with peracetic acid respectively a mixture of peracetic acid and hydrogen peroxide. With these disinfectants a decontamination of rusty iron surfaces is impossible too except the germ concentration on the surface is below 10(4) CFU/cm2. As to the protective

  17. Norovirus and MS2 inactivation kinetics of UV-A and UV-B with and without TiO2.

    PubMed

    Lee, Jung Eun; Ko, GwangPyo

    2013-10-01

    Germicidal ultraviolet, such as 254-nm UV-C, is a common method of disinfection of pathogenic enteric viruses. However, the disinfection efficacies of UV-A or -B in terms of inactivating waterborne viruses such as norovirus have not been characterized. We evaluated the inactivation kinetics of MS2 bacteriophage and murine norovirus (MNV), a surrogate of human norovirus (NoV), by UV-A and -B. In addition to UV disinfection, we further investigated whether the presence of TiO2 could enhance the virus inactivation kinetics of UV-A and -B. Both MS2 and MNV were highly resistant to UV-A. However, the addition of TiO2 enhanced the efficacy of UV-A for inactivating these viruses. UV-A dose of 1379 mJ/cm(2) resulted in a 4 log10 reduction. In comparison, UV-B alone effectively inactivated both MS2 and MNV, as evidenced by the 4 log10 reduction by 367 mJ/cm(2) of UV-B. The addition of TiO2 increased the inactivation of MS2; however, it did not significantly increase the efficacy of UV-B disinfection for inactivating MNV. When these treatments were applied to field water such as groundwater, the results were generally consistent with the laboratory findings. Our results clearly indicated that UV-B is useful for the disinfection of waterborne norovirus. However, MNV was quite resistant to UV-A, and UV-A effectively inactivated the tested viruses only when used in combination with TiO2.

  18. Point-of-use water disinfection using ultraviolet and visible light-emitting diodes.

    PubMed

    Lui, Gough Yumu; Roser, David; Corkish, Richard; Ashbolt, Nicholas J; Stuetz, Richard

    2016-05-15

    Improvements in point-of-use (POU) drinking water disinfection technologies for remote and regional communities are urgently needed. Conceptually, UV-C light-emitting diodes (LEDs) overcome many drawbacks of low-pressure mercury tube based UV devices, and UV-A or visible light LEDs also show potential. To realistically evaluate the promise of LED disinfection, our study assessed the performance of a model 1.3 L reactor, similar in size to solar disinfection bottles. In all, 12 different commercial or semi-commercial LED arrays (270-740 nm) were compared for their ability to inactivate Escherichia coli K12 ATCC W3110 and Enterococcus faecalis ATCC 19433 over 6h. Five log10 and greater reductions were consistently achieved using the 270, 365, 385 and 405 nm arrays. The output of the 310 nm array was insufficient for useful disinfection while 430 and 455 nm performance was marginal (≈ 4.2 and 2.3-log10s E. coli and E. faecalis over the 6h). No significant disinfection was observed with the 525, 590, 623, 660 and 740 nm arrays. Delays in log-phase inactivation of E. coli were observed, particularly with UV-A wavelengths. The radiation doses required for >3-log10 reduction of E. coli and E. faecalis differed by 10 fold at 270 nm but only 1.5-2.5 fold at 365-455 nm. Action spectra, consistent with the literature, were observed with both indicators. The design process revealed cost and technical constraints pertaining to LED electrical efficiency, availability and lifetime. We concluded that POU LED disinfection using existing LED technology is already technically possible. UV-C LEDs offer speed and energy demand advantages, while UV-A/violet units are safer. Both approaches still require further costing and engineering development. Our study provides data needed for such work. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Ultraviolet radiation as disinfection for fish surgical tools

    SciTech Connect

    Walker, Ricardo W.; Markillie, Lye Meng; Colotelo, Alison HA; Geist, David R.; Gay, Marybeth E.; Woodley, Christa M.; Eppard, M. B.; Brown, Richard S.

    2013-04-04

    Telemetry is frequently used to examine the behavior of fish, and the transmitters used are normally surgically implanted into the coelomic cavity of fish. Implantation requires the use of surgical tools such as scalpels, forceps, needle holders, and sutures. When fish are implanted consecutively, as in large telemetry studies, it is common for surgical tools to be sterilized or, at minimum, disinfected between each use so that pathogens that may be present are not spread among fish. To determine the efficacy for this application, ultraviolet (UV) radiation was used to disinfect surgical tools exposed to one of four aquatic organisms that typically lead to negative health issues for salmonids. These organisms included Aeromonas salmonicida, Flavobacterium psychrophilum, Renibacterium salmoninarum, and Saprolegnia parasitica, causative agents of furunculosis, coldwater disease, bacterial kidney disease, and saprolegniasis (water mold), respectively. Four experiments were conducted to address the question of UV efficacy. In the first experiment, forceps were exposed to the three bacteria at three varying concentrations. After exposure to the bacterial culture, tools were placed into a mobile Millipore UV sterilization apparatus. The tools were then exposed for three different time periods – 2, 5, or 15 min. UV radiation exposures at all durations were effective at killing all three bacteria on forceps at the highest bacteria concentrations. In the second experiment, stab scalpels, sutures, and needle holders were exposed to A. salmonicida using the same methodology as used in Experiment 1. UV radiation exposure at 5 and 15 min was effective at killing A. salmonicida on stab scalpels and sutures but not needle holders. In the third experiment, S. parasitica, a water mold, was tested using an agar plate method and forceps-pinch method. UV radiation was effective at killing the water mold at all three exposure durations. Collectively, this study shows that UV

  20. Detection of viable but non cultivable Escherichia coli after UV irradiation using a lytic Qbeta phage.

    PubMed

    Ben Said, Myriam; Masahiro, Otaki; Hassen, Abdennaceur

    2010-03-01

    In order to qualify the germicidal efficacy of ultraviolet (UV) disinfection system, we generally determine the reduction of viable bacteria after UV-C irradiation. However, the simple count of viable and cultivable bacteria in usual media cannot reflect whether or not the UV dose applied to disinfect water is sufficient to inactivate bacteria. Indeed, there is a bacterial mix in the UV-treated water: dead bacteria, viable and cultivable bacteria and viable but noncultivable bacteria (VBNC). The third type of bacteria can constitute a potential risk for public health. In fact, VBNC bacteria can be active and cause diseases. Consequently, the combination of a conventional method used to measure colony-forming ability after UV disinfection and the determination of adsorption constants of a lytic Qbeta phage in relation to irradiated host cells by an increased UV dose (Escherichia coli ATCC 13965) allows the detection of active bacteria, which lose their cultivability in usual growth media, but keep the phage susceptibility.

  1. DISINFECTION BYPRODUCTS: THE NEXT GENERATION

    EPA Science Inventory

    Disinfection of drinking water is rightly hailed as a major public health triumph of the 20th Century. Before widespread disinfection of drinking water in the U.S. and Europe, millions of people died from infectious waterborne diseases, such as typhoid and cholera. The microbia...

  2. DISINFECTION BYPRODUCTS: THE NEXT GENERATION

    EPA Science Inventory

    Disinfection of drinking water is rightly hailed as a major public health triumph of the 20th Century. Before widespread disinfection of drinking water in the U.S. and Europe, millions of people died from infectious waterborne diseases, such as typhoid and cholera. The microbia...

  3. New Disinfection Agents for Water.

    DTIC Science & Technology

    1985-03-01

    with HTH being the better disinfectant. In similar experiments involving Entamoeba invadens and Giardia Lamblia Compound I was more effective than...different and dependent upon the nature of the organism. Keywords: Water disinfections; N-Chloramines; HTH; Bacteria; Viruses; Protozoa; Giardia lamblia ; Stability in water; 3-Chloro-4,4-dimethy1-2-oxazolidinone; Calcium hypochlorite.

  4. Sanitizers and Disinfectants Guide. Revised

    ERIC Educational Resources Information Center

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Sanitizers and disinfectants can play an important role in protecting public health. They are designed to kill "pests," including infectious germs and other microorganisms such as bacteria, viruses, and fungi. Unfortunately, sanitizers and disinfectants also contain chemicals that are "pesticides." Exposure to persistent toxic…

  5. Inactivation of antibiotic resistance genes in municipal wastewater by chlorination, ultraviolet, and ozonation disinfection.

    PubMed

    Zhuang, Yao; Ren, Hongqiang; Geng, Jinju; Zhang, Yingying; Zhang, Yan; Ding, Lili; Xu, Ke

    2015-05-01

    This study investigated the inactivation of two antibiotic resistance genes (ARGs)-sul1 and tetG, and the integrase gene of class 1 integrons-intI1 by chlorination, ultraviolet (UV), and ozonation disinfection. Inactivation of sul1, tetG, and intI1 underwent increased doses of three disinfectors, and chlorine disinfection achieved more inactivation of ARGs and intI1 genes (chlorine dose of 160 mg/L with contact time of 120 min for 2.98-3.24 log reductions of ARGs) than UV irradiation (UV dose of 12,477 mJ/cm(2) for 2.48-2.74 log reductions of ARGs) and ozonation disinfection (ozonation dose of 177.6 mg/L for 1.68-2.55 log reductions of ARGs). The 16S rDNA was more efficiently removed than ARGs by ozone disinfection. The relative abundance of selected genes (normalized to 16S rDNA) increased during ozonation and with low doses of UV and chlorine disinfection. Inactivation of sul1 and tetG showed strong positive correlations with the inactivation of intI1 genes (for sul1, R (2)  = 0.929 with p < 0.01; for tetG, R (2)  = 0.885 with p < 0.01). Compared to other technologies (ultraviolet disinfection, ozonation disinfection, Fenton oxidation, and coagulation), chlorination is an alternative method to remove ARGs from wastewater effluents. At a chlorine dose of 40 mg/L with 60 min contact time, the selected genes inactivation efficiency could reach 1.65-2.28 log, and the cost was estimated at 0.041 yuan/m(3).

  6. Automated particulate sampler field test model operations guide

    SciTech Connect

    Bowyer, S.M.; Miley, H.S.

    1996-10-01

    The Automated Particulate Sampler Field Test Model Operations Guide is a collection of documents which provides a complete picture of the Automated Particulate Sampler (APS) and the Field Test in which it was evaluated. The Pacific Northwest National Laboratory (PNNL) Automated Particulate Sampler was developed for the purpose of radionuclide particulate monitoring for use under the Comprehensive Test Ban Treaty (CTBT). Its design was directed by anticipated requirements of small size, low power consumption, low noise level, fully automatic operation, and most predominantly the sensitivity requirements of the Conference on Disarmament Working Paper 224 (CDWP224). This guide is intended to serve as both a reference document for the APS and to provide detailed instructions on how to operate the sampler. This document provides a complete description of the APS Field Test Model and all the activity related to its evaluation and progression.

  7. Disinfection of pumice.

    PubMed

    Setz, J; Heeg, P

    1996-10-01

    Pumice is a potential source of infection for the dental technician and of cross-contamination between different dentures and patients. In this study, the number of microorganisms in two different combinations of pumice and disinfectant was compared with a conventional mixture of pumice and water. The results revealed that under practical conditions the mix of Steribim (pumice containing benzoic acid added by the manufacturer) with water reduced the number of bacteria by 99% compared with a mix of a conventional pumice and water. The addition of an antiseptic product that contained octenidine as active agent to conventional pumice reduced the number of microorganisms by 99.999%.

  8. UV irradiation responses in Giardia intestinalis.

    PubMed

    Einarsson, Elin; Svärd, Staffan G; Troell, Karin

    2015-07-01

    The response to ultraviolet light (UV) radiation, a natural stressor to the intestinal protozoan parasite Giardia intestinalis, was studied to deepen the understanding of how the surrounding environment affects the parasite during transmission. UV radiation at 10 mJ/cm(2) kills Giardia cysts effectively whereas trophozoites and encysting parasites can recover from UV treatment at 100 mJ/cm(2) and 50 mJ/cm(2) respectively. Staining for phosphorylated histone H2A showed that UV treatment induces double-stranded DNA breaks and flow cytometry analyses revealed that UV treatment of trophozoites induces DNA replication arrest. Active DNA replication coupled to DNA repair could be an explanation to why UV light does not kill trophozoites and encysting cells as efficiently as the non-replicating cysts. We also examined UV-induced gene expression responses in both trophozoites and cysts using RNA sequencing (RNA seq). UV radiation induces small overall changes in gene expression in Giardia but cysts show a stronger response than trophozoites. Heat shock proteins, kinesins and Nek kinases are up-regulated, whereas alpha-giardins and histones are down-regulated in UV treated trophozoites. Expression of variable surface proteins (VSPs) is changed in both trophozoites and cysts. Our data show that Giardia cysts have limited ability to repair UV-induced damage and this may have implications for drinking- and waste-water treatment when setting criteria for the use of UV disinfection to ensure safe water.

  9. Toward a Model for Field-Testing Patient Decision-Support Technologies: A Qualitative Field-Testing Study

    PubMed Central

    Elwyn, Glyn; Edwards, Adrian; Watson, Eila; Austoker, Joan; Grol, Richard

    2007-01-01

    Background Field-testing is a quality assurance criterion in the development of patient decision-support technologies (PDSTs), as identified in the consensus statement of the International Patient Decision Aids Standards Collaboration. We incorporated field-testing into the development of a Web-based, prostate-specific antigen PDST called Prosdex, which was commissioned as part of the UK Prostate Cancer Risk Management Programme. Objectives The aim of this study was to develop a model for the future field-testing of PDSTs, based on the field-testing of Prosdex. Our objectives were (1) to explore the reactions of men to evolving prototypes of Prosdex, (2) to assess the effect of these responses on the development process, and (3) to develop a model for field-testing PDSTs based on the responses and their effect on the development process. Methods Semistructured interviews were conducted with the men after they had viewed evolving prototypes of Prosdex in their homes. The men were grouped according to the prototype viewed. Men between 40 and 75 years of age were recruited from two family practices in different parts of Wales, United Kingdom. In the interviews, the men were asked for their views on Prosdex, both as a whole and in relation to specific sections such as the introduction and video clips. Comments and technical issues that arose during the viewings were noted and fed back to the developers in order to produce subsequent prototypes. Results A total of 27 men were interviewed, in five groups, according to the five prototypes of Prosdex that were developed. The two main themes from the interviews were the responses to the information provided in Prosdex and the responses to specific features of Prosdex. Within these themes, two of the most frequently encountered categories were detail of the information provided and balance between contrasting viewpoints. Criticisms were encountered, particularly with respect to navigation of the site. In addition, we found

  10. Field test of fiber optic ocean bottom seismograph

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Wang, Zhaogang; Huang, Wenzhu; Li, Li; Liu, Wenyi; Luo, Yingbo; Li, Fang

    2016-05-01

    In this paper we report the field test of fiber optic ocean bottom seismograph (OOBS) which can be used in the active source seismic research. There are three fiber laser accelerometers (FLAs) and one fiber laser hydrophone (FLH), which is wavelength division multiplexed, in the OOBS. The interrogation system is put on shore and is connected with the OOBS with optical fiber cable. The field test of using an air gun is carried out under water with a depth of 30 m. The results show that the OOBS has similar performance as conventional electric OBS.

  11. Evaluation of Combined Peracetic acid and UV treatment for ...

    EPA Pesticide Factsheets

    The current study evaluates the effectiveness of the combined application of Peracetic acid and ultraviolet radiation as alternative disinfectant agents to the traditional chlorination of wastewater effluents. Various pathogens (E. coli, enterococci and fecal coliforms) were evaluated in the study. Four experiments were conducted using low to high PAA levels and UV dosages. E. coli and enterococci were resistant to low to moderate PAA dosage (0.5- 1 mg/L). These microbes can be removed effectively at high PAA dosage (2.5 mg/L) with 30 min contact time. Fecal coliforms were completely inactivated even at a low PAA dose of 0.7 mg/L. E. coli was more susceptible to UV disinfection than enterococci at low UV dosages. Enterococci required at least 40 mJ/cm2 for 2.5 log inactivation. In combined PAA + UV treatment, low UV intensities between 7 – 40 mJ/cm2 showed poor disinfection performance at a low PAA concentration of 1.5 mg/L. High UV intensities of 120 and 60 mJ/cm2 inactivated all the pathogens to below detection levels even at low to moderate PAA (0.7 mg/L and 1 mg/L) pretreatment concentration. Combined PAA + UV treatment at 1 mg/L (for 15 and 30 min contact time) + 120 and 60 mJ/cm2 did not show any regrowth of microbes, whereas PAA only disinfection with 15 min contact time showed regrowth of enterococci and fecal coliforms. UV only disinfection showed E. coli regrowth. • This pilot scale study was designed for providing necessary parameter optimization

  12. Occurrence and exposures to disinfectants and disinfection by-products

    SciTech Connect

    Cumming, R.B.; Jolley, R.L.

    1992-01-01

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBP precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of new'' DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.

  13. Occurrence and exposures to disinfectants and disinfection by-products

    SciTech Connect

    Cumming, R.B.; Jolley, R.L.

    1992-12-31

    Disinfection by-products are associated with all chemical disinfectants. The concentration and toxic nature of the disinfection byproducts (DBPs) is a direct function of the chemical nature of the disinfectant itself and/or of the chemical reactions of the disinfectant with reaction substrates in the water, especially organic constituents. A principal advantage of biological and physical water treatment processes, such as filtration, is the lack of chemical reactions producing disinfectant-related DBPs. The use of the highest quality source water available is important for minimization of DBP formation. In lieu of such high quality water, improvement of water quality by removal of DBP precursors through filtration or other means before application of chemical disinfectants is important. Most, if not all, water treatment experts are aware of these simplistic axioms. In view of the increasing knowledge being developed concerning DBPs including the identification of ``new`` DBPs, prudence dictates minimization of DBP formation. Wholesome drinking water is perhaps the biggest economic bargain available to consumers. The cost-effectiveness of water quality improvement should be evaluated with that in mind.

  14. Solar water disinfection

    SciTech Connect

    Anderson, R.; Collier, R.

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  15. Designing plasmas for chronic wound disinfection

    NASA Astrophysics Data System (ADS)

    Nosenko, T.; Shimizu, T.; Morfill, G. E.

    2009-11-01

    Irradiation with low-temperature atmospheric-pressure plasma provides a promising method for chronic wound disinfection. To be efficient for this purpose, plasma should meet the following criteria: it should significantly reduce bacterial density in the wounded area, cause a long-term post-irradiation inhibition of bacterial growth, yet without causing any negative effect on human cells. In order to design plasmas that would satisfy these requirements, we assessed the relative contribution of different components with respect to bactericidal properties due to irradiation with argon plasma. We demonstrate that plasma-generated UV radiation is the main short-term sterilizing factor of argon plasma. On the other hand, plasma-generated reactive nitrogen species (RNS) and reactive oxygen species (ROS) cause a long-term 'after-irradiation' inhibition of bacterial growth and, therefore, are important for preventing wound recolonization with bacteria between two treatments. We also demonstrate that at certain concentrations plasma-generated RNS and ROS cause significant reduction of bacterial density, but have no adverse effect on human skin cells. Possible mechanisms of the different effects of plasma-generated reactive species on bacteria and human cells are discussed. The results of this study suggest that argon plasma for therapeutic purposes should be optimized in the direction of reducing the intensity of plasma-generated UV radiation and increasing the density of non-UV plasma products.

  16. On-Site Determination and Monitoring of Real-Time Fluence Delivery for an Operating UV Reactor Based on a True Fluence Rate Detector.

    PubMed

    Li, Mengkai; Li, Wentao; Qiang, Zhimin; Blatchley, Ernest R

    2017-07-18

    At present, on-site fluence (distribution) determination and monitoring of an operating UV system represent a considerable challenge. The recently developed microfluorescent silica detector (MFSD) is able to measure the approximate true fluence rate (FR) at a fixed position in a UV reactor that can be compared with a FR model directly. Hence it has provided a connection between model calculation and real-time fluence determination. In this study, an on-site determination and monitoring method of fluence delivery for an operating UV reactor was developed. True FR detectors, a UV transmittance (UVT) meter, and a flow rate meter were used for fundamental measurements. The fluence distribution, as well as reduction equivalent fluence (REF), 10th percentile dose in the UV fluence distribution (F10), minimum fluence (Fmin), and mean fluence (Fmean) of a test reactor, was calculated in advance by the combined use of computational fluid dynamics and FR field modeling. A field test was carried out on the test reactor for disinfection of a secondary water supply. The estimated real-time REF, F10, Fmin, and Fmean decreased 73.6%, 71.4%, 69.6%, and 72.9%, respectively, during a 6-month period, which was attributable to lamp output attenuation and sleeve fouling. The results were analyzed with synchronous data from a previously developed triparameter UV monitoring system and water temperature sensor. This study allowed demonstration of an accurate method for on-site, real-time fluence determination which could be used to enhance the security and public confidence of UV-based water treatment processes.

  17. A Field Test of the TIME Patient Simulation Model.

    ERIC Educational Resources Information Center

    Harless, William G.; And Others

    1990-01-01

    The Technological Innovations in Medical Education (TIME) model, designed to be controlled by a professor in the classroom, incorporates voice recognition technology and video dramatization to create a believable patient encounter. A field test finding was that the students became committed to the care and management of the simulated patient.…

  18. Injury Prevention for the Elderly. Field Test Instructor Coursebook.

    ERIC Educational Resources Information Center

    Walker, Bonnie

    This coursebook is intended for use by the instructors presenting a workshop on preventing injuries in the elderly that was developed as a field test of a larger 10-module training program for staff of long-term health care facilities, senior center and adult day care staff, and home health aides. The curriculum guide served as a blueprint for the…

  19. Development and Field Tests of the Army Work Environment Questionnaire

    DTIC Science & Technology

    1987-05-01

    from the low teens to the mid-twenties), a number of consistent trends were found in the pattern of relationships. In both field tests, the largest...identifying impediments to productivity (UPRDC TR-81-18). San Diego, CA: Navy Personnel Research and Development Center. 39 Appendix A iiOONMwc IUCIDU PORN

  20. Differential Gender Performance on the Major Field Test-Business

    ERIC Educational Resources Information Center

    Bielinska-Kwapisz, Agnieszka; Brown, F. William

    2013-01-01

    The Major Field Test in Business (MFT-B), a standardized assessment test of business knowledge among undergraduate business seniors, is widely used to measure student achievement. Many previous studies analyzing scores on the MFT-B report gender differences on the exam even after controlling for student's aptitude, general intellectual ability,…

  1. Field Testing Vocational Education Metric Modules. Final Report.

    ERIC Educational Resources Information Center

    Oldsen, Carl F.

    A project was conducted for the following purposes: (1) to develop a workshop training package to prepare vocational education teachers to use vocational subject-specific modules; (2) to train those teachers to use the workshop package; (3) to conduct field tests of the metric modules with experimental and control groups; (4) to analyze, describe,…

  2. 40 CFR 35.2262 - Funding of field testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Funding of field testing. 35.2262 Section 35.2262 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2262 Funding of field...

  3. 40 CFR 35.2262 - Funding of field testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Funding of field testing. 35.2262 Section 35.2262 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2262 Funding of field...

  4. 40 CFR 35.2262 - Funding of field testing.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Funding of field testing. 35.2262 Section 35.2262 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2262 Funding of field...

  5. Electrophysiological systems for neurotoxicity field testing: PEARL II and alternatives

    SciTech Connect

    Otto, D.A.; Hudnell, H.K.

    1989-02-10

    PEARL II, a computerized battery of electrophysiological tests designed for neurotoxicity field testing, was developed a decade ago. The battery includes sensory evoked potentials (auditory, somatosensory, and visual), event-related slow brain potentials (CNV, P300), and associated behavioral measures. Field-testing capabilities have been demonstrated in pediatric lead studies. Several dozen PEARL II systems are currently being used in fixed-base laboratories. Factors which limit the use of PEARL II in neurotoxicity field testing include: operation and maintenance of the system requires a highly trained staff; PEARL II is a relatively expensive system; it is not commercially available or serviced; the hardware is obsolescent. Although sensory-evoked potential tests have proven to be very sensitive to chemical exposure in humans and animals, the effectiveness of such tests for neurotoxicity screening of exposed populations has not been demonstrated. Several commercial systems suitable for neurotoxicity field testing are reviewed briefly. Electrophysiological tests of visual toxicity currently under development are also described.

  6. Field test of a new Australian method of rangeland monitoring

    Treesearch

    Suzanne Mayne; Neil West

    2001-01-01

    Managers need more efficient means of monitoring changes on the lands they manage. Accordingly, a new Australian approach was field tested and compared to the Daubenmire method of assessing plant cover, litter, and bare soil. The study area was a 2 mile wide by 30.15 mile long strip, mostly covered by salt desert shrub ecosystem types, centered along the SE boundary of...

  7. 29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. PLAN OF THE ARVFS FIELD TEST FACILITY SHOWING BUNKER, CABLE CHASE, SHIELDING TANK AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-1. INEL INDEX CODE NUMBER: 075 0701 851 151970. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  8. 30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. ELEVATION OF ARVFS FIELD TEST FACILITY SHOWING VIEW OF SOUTH SIDE OF FACILITY, INCLUDING BUNKER, CABLE CHASE, SHIELDING TANK, AND FRAME ASSEMBLY. F.C. TORKELSON DRAWING NUMBER 842-ARVFS-701-2. INEL INDEX CODE NUMBER: 075 0701 851 151971. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  9. Differential Gender Performance on the Major Field Test-Business

    ERIC Educational Resources Information Center

    Bielinska-Kwapisz, Agnieszka; Brown, F. William

    2013-01-01

    The Major Field Test in Business (MFT-B), a standardized assessment test of business knowledge among undergraduate business seniors, is widely used to measure student achievement. Many previous studies analyzing scores on the MFT-B report gender differences on the exam even after controlling for student's aptitude, general intellectual ability,…

  10. 27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. AERIAL VIEW OF ARVFS FIELD TEST SITE AS IT LOOKED IN 1983. OBLIQUE VIEW FACING EAST. BUNKER IS IN FOREGROUND, PROTECTIVE SHED FOR WFRP AT TOP OF IMAGE. INEL PHOTO NUMBER 83-574-12-1, TAKEN IN 1983. PHOTOGRAPHER: ROMERO. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID

  11. Results of field tests of a transportable calorimeter assay system

    SciTech Connect

    Rakel, D.A.; Lemming, J.F.; Rodenburg, W.W.; Duff, M.F.; Jarvis, J.Y.

    1981-01-01

    A transportable calorimetric assay system, developed for use by US Department of Energy inspectors, is described. The results of field tests at three DOE sites are presented. The samples measured in these tests represent a variety of forms (ash, oxide, metal buttons), isotopic composition, and total plutonium content.

  12. A Field Test of the TIME Patient Simulation Model.

    ERIC Educational Resources Information Center

    Harless, William G.; And Others

    1990-01-01

    The Technological Innovations in Medical Education (TIME) model, designed to be controlled by a professor in the classroom, incorporates voice recognition technology and video dramatization to create a believable patient encounter. A field test finding was that the students became committed to the care and management of the simulated patient.…

  13. FIELD TEST AND EVALUATION OF SELECTED ADULT BASIC EDUCATION SYSTEMS.

    ERIC Educational Resources Information Center

    Greenleigh Associates, Inc., New York, NY.

    IN A LARGE-SCALE FIELD TEST WITH FUNCTIONALLY ILLITERATE ADULTS, THIS PROJECT EVALUATED FOUR READING SYSTEMS--LEARNING TO READ AND SPELL, READING IN HIGH GEAR, MOTT BASIC LANGUAGE SKILLS PROGRAM, AND SYSTEMS FOR SUCCESS. TESTING WAS CONDUCTED IN SEVEN COMMUNITIES IN NEW YORK, THREE IN NEW JERSEY, AND FIVE IN CALIFORNIA, PROVIDING A MIXTURE OF…

  14. Analyzing Educational Testing Service Graduate Major Field Test Results

    ERIC Educational Resources Information Center

    Thornton, Barry; Arbogast, Gordon

    2012-01-01

    The Educational Testing Service (ETS) created the Graduate Major Field Test in Business (GMFT-B) for MBA students. This test is administered to all MBA classes at Jacksonville University for the purpose of measuring student academic achievement and growth, as well as to assess educational outcomes. The test is given in the capstone course,…

  15. 40 CFR 1065.925 - PEMS preparation for field testing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the contamination and take corrective action, such as purging the system or replacing contaminated... contaminated HC system if it does not prevent you from demonstrating compliance with the applicable emission... POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Field Testing and Portable Emission Measurement Systems § 1065...

  16. Effect of chlorination and ultraviolet disinfection on tetA-mediated tetracycline resistance of Escherichia coli.

    PubMed

    Huang, Jing-Jing; Hu, Hong-Ying; Wu, Yin-Hu; Wei, Bin; Lu, Yun

    2013-02-01

    Antibiotic-resistant bacteria are an emerging threat to public health during drinking water consumption and reclaimed water reuse. Several studies have shown that the proportions of antibiotic-resistant bacteria in waters may increase when exposed to low doses of UV light or chlorine. In this study, inactivation of tetracycline-resistant Escherichia coli and antibiotic-sensitive E. coli by UV disinfection and chlorination was compared to determine the tolerance of tetracycline-resistant E. coli to UV light and chlorine, and tetracycline resistance of a tetracycline-resistant E. coli population was studied under different doses of the disinfectants. Our results showed that relative to antibiotic-sensitive E. coli, tetracycline-resistant E. coli had the same tolerance to UV light and a potentially higher tolerance to chlorination. The mortality frequency distributions of tetracycline-resistant E. coli exposed to tetracycline were shifted by both chlorination and UV disinfection. When compared to the hemi-inhibitory concentrations (IC(50)) of tetracycline-resistant E. coli with no exposure to UV or chlorination, the IC(50) of tetracycline-resistant E. coli treated with tetracycline was 40% lower when inactivation by UV light or chlorination reached 3-log but was 1.18 times greater when inactivation by chlorination reached 4.3-log. Chlorination applied to drinking water or reclaimed water treatment may increase the risk of selection for highly tetracycline-resistant E. coli.

  17. Sequential and Simultaneous Applications of UV and Chlorine for Adenovirus Inactivation.

    PubMed

    Rattanakul, Surapong; Oguma, Kumiko; Takizawa, Satoshi

    2015-09-01

    Adenoviruses are water-borne human pathogens with high resistance to UV disinfection. Combination of UV treatment and chlorination could be an effective approach to deal with adenoviruses. In this study, human adenovirus 5 (HAdV-5) was challenged in a bench-scale experiment by separate applications of UV or chlorine and by combined applications of UV and chlorine in either a sequential or simultaneous manner. The treated samples were then propagated in human lung carcinoma epithelial cells to quantify the log inactivation of HAdV-5. When the processes were separate, a fluence of 100 mJ/cm(2) and a CT value of 0.02 mg min/L were required to achieve 2 log inactivation of HAdV-5 by UV disinfection and chlorination, respectively. Interestingly, synergistic effects on the HAdV-5 inactivation rates were found in the sequential process of chlorine followed by UV (Cl2-UV) (p < 0.05, ANCOVA) in comparison to the separate processes or the simultaneous application of UV/Cl2. This implies that a pretreatment with chlorine may increase the sensitivity of the virus to the subsequent UV disinfection. In conclusion, this study suggests that the combined application of UV and chlorine could be an effective measure against adenoviruses as a multi-barrier approach in water disinfection.

  18. Seasonal variations of grounding parameters by field tests

    SciTech Connect

    Patel, S.G.

    1992-07-01

    The past fifteen years have seen considerable research in the area of substation grounding design, analysis and testing. These research include the revision of the IEEE Std.-80, the development of PC based computer programs, the in depth analysis of grounding parameters and the development of new field testing methods and devices. In spite of these advances, several questions were often asked, primarily due to safety concerns. The questions were related to the seasonal variation of critical grounding parameters such as the soil and gravel resistivities and their influence on the body current in an accidental circuit. There was also a need to study the total behavior of a substation ground grid with respect to different weather conditions by performing field tests. In response to the above needs, a comprehensive field test program was developed and implemented. The field test consisted of flowing approximately 150 amperes through the Texas Valley ground grid from a remote substation. The parameters investigated in this project were the grid impedance, the grid potential rise (GPR) , the fault current distribution, the touch/step voltages, the body current on different gravel beds and the soil/gravel resistivities. The measurements were performed in the rainy, winter and summer weather conditions during 1989--1990. The field test results, overall, indicate that the rainy weather is the worst condition for the substation safety because of the substantial reduction in the protective characteristics of the gravel. Among the gravel types, the washed gravel has much superior protective characteristics compared to the crusher run type of gravel. A comparison of SGSYS computed grounding parameters with measured results indicates that the grid resistance and GPR compare well but the computed touch voltage and body current are substantially higher than the measured values.

  19. Observations on a new disinfectant

    PubMed Central

    Gordon, A. M.

    1969-01-01

    A disinfectant formula (Resiguard) containing picloxydine digluconate, benzalkonium chloride, and a detergent was examined for antibacterial activity. Studies in vitro with simulated organic contamination were followed by realistic in-use tests employing items of anaesthetic and urological equipment heavily infected with Pseudomonas aeruginosa and contaminated with blood. These showed that a dilution of 1/80 was reliably bactericidal to this resistant organism. It is concluded that Resiguard is a valuable disinfectant which may reliably be employed in the cleaning and disinfection of items of delicate, non-autoclavable, hospital equipment. PMID:4978998

  20. [Impacts of the hydraulic characteristics of pilot clearwell on chlorine disinfection efficiency].

    PubMed

    Liu, Qing; Liu, Wen-Jun; Gao, Jing-Wei; Zhang, Su-Xia

    2009-09-15

    A pilot clearwell was used to simulate the chlorine disinfection process with the Bacillus subtilis spores as the target microbe. The effluent of the activated carbon filter tank was radiated by low pressure UV lamp and then used as the influent the pilot clearwell. The impacts of hydraulic characteristics of pilot clearwell on disinfection efficiency of Bacillus subtilis spores was studied under different hydraulic characteristics which was changed by the number of the baffles. Under the conditions of this experiment, the inactivation coefficients of Bacillus subtilis spores with NaC10 as disinfectant which were calculated by Ct10 value were almost same under different hydraulic characteristics, but the inactivation coefficients which were calculated by CT value were very different under different hydraulic characteristics. This verified that it was more reasonable to evaluate the disinfection efficiency by Ct10 value than CT value. When Ct10 value was in the range of 100 - 300 mg x min/L, the inactivation coefficient of Bacillus subtilis spores with NaClO as disinfectant was 0.001 6 L(mg x min), which highly coincided with others' results. When CT value was in the range of 100 - 700 mg x min/L, under the same CT value, the disinfection efficiency of target microbe would be notably enhanced by increasing the number of baffles which would improve the hydraulic characteristics. So the results verified that the disinfection efficiency could be enhanced by improving the hydraulic characteristics of the clearwell.

  1. Dental unit waterlines disinfection using hypochlorous acid-based disinfectant

    PubMed Central

    Shajahan, Irfana Fathima; Kandaswamy, D; Srikanth, Padma; Narayana, L Lakshmi; Selvarajan, R

    2016-01-01

    Objective: The purpose of the study was to investigate the efficacy of a new disinfectant to disinfect the dental unit waterlines. Materials and Methods: New dental unit waterlines were installed in 13 dental chairs, and biofilm was allowed to grow for 10 days. Disinfection treatment procedure was carried out in the 12 units, and one unit was left untreated. The dental unit waterlines were removed and analyzed using the scanning electron microscope (SEM) (TESCAN VEGA3 SBU). Result: On examination, SEM images showed that there was no slime layer or bacterial cells seen in any of the 12 cut sections obtained from the treated dental waterlines which mean that there was no evident of biofilm formation. Untreated dental unit waterlines showed a microbial colonization with continuous filamentous organic matrix. There was significant biofilm formation in the control tube relative to the samples. Conclusion: The tested disinfectant was found to be effective in the removal of biofilm from the dental unit waterlines. PMID:27563184

  2. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone.

    PubMed

    Macauley, John J; Qiang, Zhimin; Adams, Craig D; Surampalli, Rao; Mormile, Melanie R

    2006-06-01

    Veterinary antibiotics are widely used at concentrated animal feeding operations (CAFOs) to prevent disease and promote growth of livestock. However, the majority of antibiotics are excreted from animals in urine, feces, and manure. Consequently, the lagoons used to store these wastes can act as reservoirs of antibiotics and antibiotic-resistant bacteria. There is currently no regulation or control of these systems to prevent the spread of these bacteria and their genes for antibiotic resistance into other environments. This study was conducted to determine the disinfection potential of chlorine, ultraviolet light and ozone against swine lagoon bacteria. Results indicate that a chlorine dose of 30 mg/L could achieve a 2.2-3.4 log bacteria reduction in lagoon samples. However, increasing the dose of chlorine did not significantly enhance the disinfection activity due to the presence of chlorine-resistant bacteria. The chlorine resistant bacteria were identified to be closely related to Bacillus subtilis and Bacillus licheniformis. A significant percentage of lagoon bacteria were not susceptible to the four selected antibiotics: chlortetracycline, lincomycin, sulfamethazine and tetracycline (TET). However, the presence of both chlorine and TET could inactivate all bacteria in one lagoon sample. The disinfection potential of UV irradiation and ozone was also examined. Ultraviolet light was an effective bacterial disinfectant, but was unlikely to be economically viable due to its high energy requirements. At an ozone dose of 100 mg/L, the bacteria inactivation efficiency could reach 3.3-3.9 log.

  3. Vortex Stabilized Plasma for Rapid Water Disinfection & Pharmaceutical Degradation

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2016-10-01

    Good quality drinking water is dwindling for large segments of the world population. Aggravating the problem is proliferation of antibiotics in the water supply, which give rise to drug resistant pathogens. One option for water supply increase is recycling waste and polluted water by inexpensive, environmentally friendly methods. Presently disinfection uses chemicals and UV radiation. Chemicals are limited by residual toxicity, while UV consumes much electricity. Current methods can remove only certain classes of drugs due to their large variety of physical and chemical properties. Plasmas in water are very attractive for degrading all pharmaceuticals and deactivating pathogens: intense arc current can physically break up any molecular bonds. UV radiation, ozone, etc. generation inside the water volume disinfects. Present utilized plasmas: glow, pulsed arcs are not power efficient; vortex stabilized plasmas are power efficient that can advance water treatment state-of-the-art by orders of magnitude. Proposed techniquefeatures novel components facilitating large diameter vortex stabilized in-water arcs with optimized plasma parameters for maximal UV-C emission; and harvests hydrogen centered by the vortex.

  4. Minimization of the formation of disinfection by-products.

    PubMed

    Badawy, Mohamed I; Gad-Allah, Tarek A; Ali, Mohamed E M; Yoon, Yeoman

    2012-09-01

    The drinking water industry is required to minimize DBPs levels while ensuring adequate disinfection. In this study, efficient and appropriate treatment scheme for the reduction of disinfection by-product (DBPs) formation in drinking water containing natural organic matter has been established. This was carried out by the investigation of different treatment schemes consisting of enhanced coagulation, sedimentation, disinfection by using chlorine dioxide/ozone, filtration by sand filter, or granular activated carbon (GAC). Bench scale treatment schemes were applied on actual samples from different selected sites to identify the best conditions for the treatment of water. Samples were collected from effluent of each step in the treatment train in order to analyze pH, UV absorbance at 254 nm (UVA(254)), specific UV absorbance at 254 nm (SUVA(254)), dissolved organic carbon (DOC), haloacetic acids (HAAs) and trihalomethanes (THMs). The obtained results indicated that using pre-ozonation/enhanced coagulation/activated carbon filtration treatment train appears to be the most effective method for reducing DBPs precursors in drinking water treatment.

  5. Stery-hand: A new device to support hand disinfection.

    PubMed

    Szilagyi, Laszlo; Lehotsky, Akos; Nagy, Melinda; Haidegger, Tamas; Benyo, Balazs; Benyo, Zoltan

    2010-01-01

    Incomplete disinfection can cause serious complications in surgical care. The teaching of effective hand washing is crucial in modern medical training. To support the objective evaluation of hand disinfection, we developed a compact, mobile device, relying on digital imaging and image processing. The hardware consists of a metal case with matte black interior, ultra-violet lighting and a digital camera. Image segmentation and clustering are performed on a regular notebook. The hand washing procedures performed with a soap mixed with UV-reflective powder. This results the skin showing bright under UV light only on the treated (sterile) surfaces. When the surgeon inserts its hands into the box, the camera placed on the top takes an image of the hand for evaluation. The software performs the segmentation and clustering automatically. First, the hand contour is determined from the green intensity channel of the recorded RGB image. Then, the pixels of the green channel belonging to the hand are partitioned to three clusters using a quick, histogram based fuzzy c-means algorithm. The optimal threshold between the intensities of clean and dirty areas is extracted using these clusters, while the final approximated percentage of the clean area is computed using a weighting formula. The main advantage of our device is the ability to obtain objective and comparable result on the quality of hand disinfection. It may find its best use in the clinical education and training.

  6. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    EPA Science Inventory

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  7. Applicability of UV resistant Bacillus pumilus endospores as a human adenovirus surrogate for evaluating the effectiveness of virus inactivation in low-pressure UV treatment systems

    EPA Science Inventory

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a pr...

  8. Disinfecting capabilities of oxychlorine compounds.

    PubMed Central

    Noss, C I; Olivieri, V P

    1985-01-01

    The bacterial virus f2 was inactivated by chlorine dioxide at acidic, neutral, and alkaline pH values. The rate of inactivation increased with increasing pH. Chlorine dioxide disproportionation products, chlorite and chlorate, were not active disinfectants. As chlorine dioxide solutions were degraded under alkaline conditions, they displayed reduced viricidal effectiveness, thereby confirming the chlorine dioxide free radical as the active disinfecting species. PMID:3911893

  9. Estimating Retrospective Exposure of Household Humidifier Disinfectants

    PubMed Central

    Park, Dong-Uk; Friesen, Melissa C; Roh, Hyun-Suk; Choi, Ye-Yong; Ahn, Jong-Ju; Lim, Heung-Kyu; Kim, Sun-Kyung; Koh, Dong-Hee; Jung, Hye-Jung; Lee, Jong-Hyeon; Cheong, Hae-Kwan; Lim, Sin-Ye; Leem, Jong-Han; Kim, Yong-Hwa; Paek, Do-Myung

    2014-01-01

    We conducted a comprehensive humidifier disinfectant exposure characterization for 374 subjects with lung disease who presumed their disease was related to humidifier disinfectant use (patient group) and for 303 of their family members (family group) for an ongoing epidemiological study. We visited the homes of the registered patients to investigate disinfectant use characteristics. Probability of exposure to disinfectants was determined from the questionnaire and supporting evidence from photographs demonstrating the use of humidifier disinfectant, disinfectant purchase receipts, any residual disinfectant and the consistency of their statements. Exposure duration was estimated as cumulative disinfectant use hours from the questionnaire. Airborne disinfectant exposure intensity (μg/m3) was estimated based on the disinfectant volume (mL) and frequency added to the humidifier per day, disinfectant bulk level (μg/mL), the volume of the room (m3) with humidifier disinfectant, and the degree of ventilation. Overall, the distribution patterns of the intensity, duration and cumulative exposure to humidifier disinfectants for the patient group were higher than those of the family group, especially for pregnant women and patients ≤ 6 years old. Further study is underway to evaluate the association between the disinfectant exposure estimated here with clinically diagnosed lung disease. PMID:25557769

  10. Multiphase pumping: The lessons of long-term field testing

    SciTech Connect

    Elf-Aquitaine, E.L.; Taiani, S.

    1995-12-31

    The field testing of a POSEIDON rotodynamic helicoaxial pump (P302) manufactured by SULZER is being conducted since June 1994 on the Elf Aquitaine`s onshore site of the PECORADE oil field located in the south-west of France. This one-year testing program is aimed at qualifying this design of multiphase pump for future field applications. The multiphase pump has been previously tested at the IFP`s test loop of SOLAIZE for factory acceptance and performance test. This paper describes the PECORADE multiphase loop, the multiphase pump testing procedures and the results obtained in the field of performance, sensitivity, and endurance. The operational and maintenance lessons to be learned from this long-term field testing are presented from the point of view of the operator.

  11. Field Test of Wake Steering at an Offshore Wind Farm

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Shah, Jigar J.; ...

    2017-02-06

    In this paper, a field test of wake steering control is presented. The field test is the result of a collaboration between the National Renewable Energy Laboratory (NREL) and Envision Energy, a smart energy management company and turbine manufacturer. In the campaign, an array of turbines within an operating commercial offshore wind farm in China have the normal yaw controller modified to implement wake steering according to a yaw control strategy. The strategy was designed using NREL wind farm models, including a computational fluid dynamics model, SOWFA, for understanding wake dynamics and an engineering model, FLORIS, for yaw control optimization.more » Results indicate that, within the certainty afforded by the data, the wake-steering controller was successful in increasing power capture, by amounts similar to those predicted from the models.« less

  12. On-site cell field test support program

    NASA Astrophysics Data System (ADS)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  13. The Center-TRACON Automation System: Simulation and field testing

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz

    1995-01-01

    A new concept for air traffic management in the terminal area, implemented as the Center-TRACON Automation System, has been under development at NASA Ames in a cooperative program with the FAA since 1991. The development has been strongly influenced by concurrent simulation and field site evaluations. The role of simulation and field activities in the development process will be discussed. Results of recent simulation and field tests will be presented.

  14. U.S. field testing programs and results

    SciTech Connect

    Wicks, G.G.

    2000-06-09

    The United States has been active in four major international in-situ or field testing programs over the past two decades, involving the burial of simulated high-level waste forms and package components. These programs are designed to supplement laboratory testing studies in order to obtain the most complete and realistic picture possible of waste glass behavior under realistic repository-relevant conditions.

  15. Development of a field test for upper-body power.

    PubMed

    Shim, A L; Bailey, M L; Westings, S H

    2001-05-01

    The purpose of this study was to develop a field test capable of measuring upper-body power through the use of a common weight-training apparatus, a Smith machine (SM), set up for bench press (BP) movement. A small, battery-operated digital timing device was designed and constructed to allow a precise calculation of power (in conjunction with measures of distance and force) for this specific movement, which involved an explosive press from the chest to a position just short of full arm extension. In pilot work, 1 repetition maximums (1RM) were determined on the SM BP for 3 male subjects, and by subsequently testing power on the same subjects at varying resistances, an average relative percentage of the 1RM-producing peak power values was found by power curve analysis for test standardization. Reliability was assessed (using 11 men) by SM power measurements taken over 3 days on the SM fitted with the timer. An intraclass R (0.998) indicated a high correlation between the 3 separate field-test trials. Finally, 8 male subjects were used to compare SM scores with a criterion measure, the Linea Isokinetic BP station (Loredan Biomedical, Inc., Sacramento CA). A Pearson product moment coefficient found a high correlation between the field test (SM) and Linea power scores (r = 0.987). A 2-tailed dependent t-test between the field and criterion scores was not significant, suggesting that no consistent error variable was present. It can be concluded that this is a valid field test of power for this movement.

  16. Lidar Tracking of Multiple Fluorescent Tracers: Method and Field Test

    NASA Technical Reports Server (NTRS)

    Eberhard, Wynn L.; Willis, Ron J.

    1992-01-01

    Past research and applications have demonstrated the advantages and usefulness of lidar detection of a single fluorescent tracer to track air motions. Earlier researchers performed an analytical study that showed good potential for lidar discrimination and tracking of two or three different fluorescent tracers at the same time. The present paper summarizes the multiple fluorescent tracer method, discusses its expected advantages and problems, and describes our field test of this new technique.

  17. Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters.

    PubMed

    Zhao, Yuan-Yuan; Boyd, Jessica M; Woodbeck, Matthew; Andrews, Robert C; Qin, Feng; Hrudey, Steve E; Li, Xing-Fang

    2008-07-01

    Formation of nine N-nitrosamines has been investigated when seven different source waters representing various qualities were each treated with eleven bench-scale disinfection processes, without addition of nitrosamine precursors. These disinfection treatments included chlorine (OCl-), chloramine (NH2Cl), chlorine dioxide (ClO2), ozone (O3), ultraviolet (UV), advanced oxidation processes (AOP), and combinations. The total organic carbon (TOC) of the seven source waters ranged from 2 to 24 mg x L(-1). The disinfected water samples and the untreated source waters were analyzed for nine nitrosamines using a solid phase extraction and liquid chromatography-tandem mass spectrometry method. Prior to any treatment, N-nitrosodimethylamine (NDMA) was detected ranging from 0 to 53 ng x L(-1) in six of the seven source waters, and its concentrations increased in the disinfected water samples (0-118 ng x L(-1)). N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMor), and N-nitrosodiphenylamine (NDPhA) were also identified in some of the disinfected water samples. NDPhA (0.2-0.6 ng x L(-1)) was formed after disinfection with OCl-, NH2Cl, O3, and MPUV/OCl-. NMEA was produced with OCl- and MPUV/OCl-, and NMor formation was associated with O3. In addition, UVtreatment alone degraded NDMA; however, UV/ OCl- and AOP/OCl- treatments produced higher amounts of NDMA compared to UV and AOP alone, respectively. These results suggest that UV degradation or AOP oxidation treatment may provide a source of NDMA precursors. This study demonstrates that environmental concentrations and mixtures of unknown nitrosamine precursors in source waters can form NDMA and other nitrosamines.

  18. Effects of UV irradiation and UV/chlorine co-exposure on natural organic matter in water.

    PubMed

    Liu, Wei; Zhang, Zaili; Yang, Xin; Xu, Yiyue; Liang, Yongmei

    2012-01-01

    The effects of co-exposure to ultraviolet (UV) irradiation (with either low- or medium-pressure UV lamps) and free chlorine (chloramine) at practical relevant conditions on changes in natural organic matter (NOM) properties were investigated using four waters. The changes were characterized using the specific disinfection by-product formation potential (SDBPFP), specific total organic halogen formation potential (STOXFP), differential UV absorbance (∆UVA), and size-exclusion chromatography (SEC). The results for exposure to UV irradiation alone and for samples with no exposure were also obtained. The SDBPFPs in all UV-irradiated NOM waters observed were higher than those of non-irradiated samples. UV irradiation led to increases in STOXFPs as a result of chlorination, but no changes, or only small decreases, from chloramination. UV irradiation alone led to positive ∆UVA spectra of the four NOM waters; co-exposure to UV and chlorine gave larger negative ∆UVA spectra than those obtained by chlorine exposure alone. No obvious changes in SEC results were observed for samples only irradiated with UV light; co-exposure gave no detectable changes in the abundances of small fractions for exposure to chlorine only. Both UV photooxidation and photocatalytic oxidation appear to affect the reactivity of the NOM toward subsequent chlorination, and the magnitude of the changes is generally greater for medium-pressure lamps than for low-pressure lamps. These results suggest that applying UV disinfection technology to a particular source may not always be disinfection by-product-problem-free, and the interactions between UV light, chlorine, and NOM may need to be considered.

  19. [A literature analysis of power frequency electric field testing data].

    PubMed

    Zhang, Suli; Guo, Zehua; Yu, Xintian; Ding, Yan; Zhu, Zhiliang

    2015-06-01

    To analyze the literature on power frequency electric field testing data and to propose views and suggestions for current testing. The literature on power frequency electric field testing data published in the previous years was searched to identify 306 articles involving 193 valid testing data. Mann-Whitney test and Wilcoxon W test were used for analyzing the testing data. The classification of data was carried out according to one quarter of occupational exposure limit (1.25 kV/m), one half of the exposure limit (2.5 kV/m), and the exposure limit (5 kV/m). The structure of testing data showed a significant difference between the non-power facility group and the power facility group (P<0.05). As occupational hazard factors, the radiation exposure from power frequency electric field is extensive. However, the power frequency electric field testing data in actual workplaces except high-voltage power facilities are far less than the occupational exposure limit with little harmfulness. There is a phenomenon of excessive testing at present.

  20. Deep Borehole Field Test Research Activities at LBNL

    SciTech Connect

    Dobson, Patrick; Tsang, Chin-Fu; Kneafsey, Timothy; Borglin, Sharon; Piceno, Yvette; Andersen, Gary; Nakagawa, Seiji; Nihei, Kurt; Rutqvist, Jonny; Doughty, Christine; Reagan, Matthew

    2016-08-19

    The goal of the U.S. Department of Energy Used Fuel Disposition’s (UFD) Deep Borehole Field Test is to drill two 5 km large-diameter boreholes: a characterization borehole with a bottom-hole diameter of 8.5 inches and a field test borehole with a bottom-hole diameter of 17 inches. These boreholes will be used to demonstrate the ability to drill such holes in crystalline rocks, effectively characterize the bedrock repository system using geophysical, geochemical, and hydrological techniques, and emplace and retrieve test waste packages. These studies will be used to test the deep borehole disposal concept, which requires a hydrologically isolated environment characterized by low permeability, stable fluid density, reducing fluid chemistry conditions, and an effective borehole seal. During FY16, Lawrence Berkeley National Laboratory scientists conducted a number of research studies to support the UFD Deep Borehole Field Test effort. This work included providing supporting data for the Los Alamos National Laboratory geologic framework model for the proposed deep borehole site, conducting an analog study using an extensive suite of geoscience data and samples from a deep (2.5 km) research borehole in Sweden, conducting laboratory experiments and coupled process modeling related to borehole seals, and developing a suite of potential techniques that could be applied to the characterization and monitoring of the deep borehole environment. The results of these studies are presented in this report.

  1. Field tests of the high gas volume fraction multiphase meter

    SciTech Connect

    Tuss, B.; Perry, D.; Shoup, G.

    1996-12-31

    Tests were conducted during November, 1995 by Agar Corporation, Conoco, Inc., and Amoco Corporation at the Conoco Multiphase Test Facility near Lafayette, Louisiana, to demonstrate the performance of a novel high gas volume fraction multiphase meter. This paper describes how the meter works, summarizes the results of these field tests and discusses the application of the meter. The high gas volume fraction meter (MPFM-400 Series) utilizes a Fluidic Flow Diverter (FFD{trademark}) to divert most of the free gas in a multiphase stream around an MPFM-300 multiphase meter and into an ancillary gas measurement loop. The gas in the bypass loop is metered accurately and added to the oil, water, and gas measured by the multiphase meter. The result is a high void fraction multiphase meter which can accurately meter flow streams where the gas phase is a dominant component of the flow. This novel concept reduces the size and the cost of the multiphase meter while improving its capacity and accuracy. The field tests conducted at the Conoco Multiphase Test Facility have shown that the meter can handle flow conditions with the GOR of 20 to 90,000 SCF/BBL with very good accuracy. This paper describes the performance and accuracy of this new concept multiphase meter as demonstrated by the field tests. The MPFM400 Series Meter has important applications for metering high GOR wells or wells with moderate GOR that are tested at low pressure.

  2. Field testing of high-efficiency supermarket refrigeration

    SciTech Connect

    Walker, D. )

    1992-12-01

    The Electric Power Research Institute (EPRI) has undertaken a field test to quantify the performance of high-efficiency supermarket refrigeration. The initial work on this project was presented in EPRI report CU-6268 Supermarket Refrigeration Modeling and Field Demonstration.'' The information given here was generated through continued testing at the field test site. The field test was conducted at a supermarket owned by Safeway Stores, Inc., that was located in Menlo Park, CA. Testing was performed with the existing conventional refrigeration system and a high-efficiency multiplex refrigeration system that was installed for these tests. The results of the testing showed that the high-efficiency multiplex system reduced refrigeration energy consumption by 23.9% and peak electric demand for refrigeration by 30.0%. Analyses of these savings showed that the largest portion was due to the use of high-efficiency compressors (29.5% of total saving). Floating head pressure control, ambient and mechanical subcooling, compressor multiplexing and hot gas defrost accounted for 50% of total savings. The remainder of the savings (20.5%) were attributed to the use of an evaporative condenser. Tests were also conducted with several retrofit technologies. The most promising results were obtained with external liquid-suction heat exchangers installed at the outlets of the display cases. Favorable paybacks were calculated for these exchangers when they were used with very low and low temperature refrigeration.

  3. Field testing of high-efficiency supermarket refrigeration. Final report

    SciTech Connect

    Walker, D.

    1992-12-01

    The Electric Power Research Institute (EPRI) has undertaken a field test to quantify the performance of high-efficiency supermarket refrigeration. The initial work on this project was presented in EPRI report CU-6268 ``Supermarket Refrigeration Modeling and Field Demonstration.`` The information given here was generated through continued testing at the field test site. The field test was conducted at a supermarket owned by Safeway Stores, Inc., that was located in Menlo Park, CA. Testing was performed with the existing conventional refrigeration system and a high-efficiency multiplex refrigeration system that was installed for these tests. The results of the testing showed that the high-efficiency multiplex system reduced refrigeration energy consumption by 23.9% and peak electric demand for refrigeration by 30.0%. Analyses of these savings showed that the largest portion was due to the use of high-efficiency compressors (29.5% of total saving). Floating head pressure control, ambient and mechanical subcooling, compressor multiplexing and hot gas defrost accounted for 50% of total savings. The remainder of the savings (20.5%) were attributed to the use of an evaporative condenser. Tests were also conducted with several retrofit technologies. The most promising results were obtained with external liquid-suction heat exchangers installed at the outlets of the display cases. Favorable paybacks were calculated for these exchangers when they were used with very low and low temperature refrigeration.

  4. Applicability of UV resistant Bacillus pumilus endospores as a ...

    EPA Pesticide Factsheets

    Recent studies have demonstrated the potential to use Bacillus pumilus endospores as a surrogate of human adenovirus (HAdV) in UV disinfection studies. The use of endospores has been limited by observations of batch-to-batch variation in UV sensitivity. This study reports on a propagation method that utilizes a commercially available medium to produce UV tolerant B. pumilus endospores with a consistent UV sensitivity. It is further demonstrated that the endospores B. pumilus strain (ATCC 27142), produced using this protocol (half strength Columbia broth, 5 days incubation, with 0.1mM MnSO4), display a UV dose-response that is similar to that of HAdV. Endospore stocks could be stored in ethanol for up to two month at 4C without a significant change in UV sensitivity. Synergistic endospore damage by pre-pasteurization of water samples was observed, suggesting post-pasteurization only of UV treated water samples. UV tolerant B. pumilus endospores are a potential surrogate of HAdV for UV treatment performance tests in water utilities which do not have in-house research virology laboratories. This article describes the usefulness of Bacillus pumilus endspores as a viable surrogate for adeno virus in UV disinfection studies.

  5. Photocatalytic disinfection of Giardia intestinalis and Acanthamoeba castellani cysts in water.

    PubMed

    Sökmen, Münevver; Değerli, Serpil; Aslan, Alper

    2008-05-01

    In this study, disinfection of water containing Giardia intestinalis and Acanthamoeba castellani cysts with TiO2 and modified catalyst silver loaded TiO2 (Ag-TiO2) was investigated. Destruction of the parasites was evaluated after UV illumination of the suspension consisting 5 x 10(8)-13.5 x 10(8)cysts/mL in the presence of 2g/L neat or modified TiO2 at neutral pH. In the initial stage, the solid photocatalyst particles penetrated the cyst wall and then oxidant species produced by TiO2/UV destroyed both cell wall and intracellular structure. In the case of G. intestinalis inactivation (disinfection) performance of TiO2/UV system reached 52.5% only after 25 min illumination and total parasite disinfection was achieved after 30 min illumination. However, silver loaded TiO2 seemed to be more effective as this loading provided better catalytic action as well as additional antimicrobial properties. Cell viability tests showed that parasite cysts, their walls in particular, were irreversibly damaged and cysts did not re-grow. Nevertheless the studied system seemed to be ineffective for the inactivation of A. castellani. Inactivation percentages of TiO2/UV and Ag-TiO2/UV systems were far lower than that of UV alone, being 50.1% and 46.1%, respectively.

  6. Ultraviolet disinfection of water for small water supplies

    NASA Astrophysics Data System (ADS)

    Carlson, D. A.; Seabloom, R. W.; Dewalle, F. B.; Wetzler, T. F.; Engeset, J.

    1985-07-01

    In the study ultraviolet radiation was considered as an alternative means of disinfection of small drinking water supplies. A major impetus for the study was the large increase in waterborne disease episodes in the United States whose etiologic agent, Giardia lamblia, was found to be highly resistant to conventional chlorination. While the germicidal effect of sunlight has long been known, it has been found that artificial UV radiation with a wavelength of 253.7 nm, can be produced by low pressure mercury vapor lamps. The inactivation of microorganisms by UV radiation is based upon photochemical reactions in DNA which result in errors in the coding system. Inactivation of microorganisms due to exposure to UV is proportional to the intensity multiplied by the time of exposure.

  7. Laboratory or Field Tests for Evaluating Firefighters' Work Capacity?

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity. PMID:24614596

  8. Disinfection of the Peritoneal Dialysis Bag Medication Port: Comparison of Disinfectant Agent and Disinfection Time.

    PubMed

    Conti, Adriana; Katzap, Roberta Monteiro; Poli-de-Figueiredo, Carlos Eduardo; Pagnussatti, Vany; Figueiredo, Ana Elizabeth

    2017-07-13

    To compare different disinfection techniques for the peritoneal dialysis bag medication port (MP). An experimental study was conducted testing different cleaning agents (70% alcohol vs 2% chlorhexidine) and time periods (5, 10 and 60 seconds) for disinfection of the MP. Five microorganisms (S. aureus, E.coli, A. baumannii and C. parapsilosis, CNS) were prepared for use as contaminants of the MP. MP were incubated in Tryptic soy broth at 36 °C for 24 h, after which, they were seeded on a Biomérieux® blood agar plate and incubated for 24 h at 36 °C. 300 peritoneal dialysis bags were analyzed regarding the time expose to the disinfectant showed a statistically significant difference in the number of culture positive (7/100) p = 0.001; Gram positive (6/100) p = 0.006 for five seconds, one positive culture and turbid bag with ten seconds, while friction for 60 seconds showed all negative results. The comparison between disinfectant, alcohol or chlorhexidine, 150 bag in each group, showed that the ones disinfected with alcohol had 5 turbid bags, 8 positive cultures and 7 germs identified, while all bags disinfected with chlorhexidine were negative for all parameters, with a difference statistically significant (p = 0.004). Our results suggest that the MP should be scrubbed with 2% chlorhexidine for at least 5 seconds; if alcohol 70% is used the length of friction should not be inferior to 10 seconds. This article is protected by copyright. All rights reserved.

  9. Field testing of fugitive dust control techniques at a uranium mill tailings pile - 1982 Field Test, Gas Hills, Wyoming.

    SciTech Connect

    Elmore, M.R.; Hartley, J.N.

    1983-12-01

    A field test was conducted on a uranium tailings pile to evaluate the effectiveness of 15 chemical stabilizers for control of fugitive dust from uranium mill tailings. A tailings pile at the Federal American Partners (FAP) Uranium Mill, Gas Hills, Wyoming, was used for the field test. Preliminary laboratory tests using a wing tunnel were conducted to select the more promising stabilizers for field testing. Fourteen of the chemical stabilizers were applied with a field spray system pulled behind a tractor; one--Hydro Mulch--was applied with a hydroseeder. A portable weather station and data logger were installed to record the weather conditions at the test site. After 1 year of monitoring (including three site visits), all of the stabilizers have degraded to some degree; but those applied at the manufacturers' recommended rate are still somewhat effective in reducing fugitive emissions. The following synthetic polymer emulsions appear to be the more effective stabilizers: Wallpol 40-133 from Reichold Chemicals, SP-400 from Johnson and March Corporation, and CPB-12 from Wen Don Corporation. Installed costs for the test plots ranged from $8400 to $11,300/ha; this range results from differences in stabilizer costs. Large-scale stabilization costs of the test materials are expected to range from $680 to $3600/ha based on FAP experience. Evaluation of the chemical stabilizers will continue for approximately 1 year. 2 references, 33 figures, 22 tables.

  10. A pulsed light system for the disinfection of flow through water in the presence of inorganic contaminants.

    PubMed

    Garvey, Mary; Rowan, Neil

    2015-06-01

    The use of ultraviolet (UV) light for water disinfection has become increasingly popular due to on-going issues with drinking water and public health. Pulsed UV light has proved to be an effective form of inactivating a range of pathogens including parasite species. However, there are limited data available on the use of pulsed UV light for the disinfection of flowing water in the absence or presence of inorganic contaminants commonly found in water sources. Here, we report on the inactivation of test species including Bacillus endospores following pulsed UV treatment as a flow through system. Significant levels of inactivation were obtained for both retention times tested. The presence of inorganic contaminants iron and/or manganese did affect the rate of disinfection, predominantly resulting in an increase in the levels of inactivation at certain UV doses. The findings of this study suggest that pulsed UV light may provide a method of water disinfection as it successfully inactivated bacterial cells and bacterial endospores in the absence and presence of inorganic contaminants.

  11. Disinfection potential of ozone, ultraviolet-C and their combination in wash water for the fresh-cut vegetable industry.

    PubMed

    Selma, María V; Allende, Ana; López-Gálvez, Francisco; Conesa, María A; Gil, María I

    2008-09-01

    The purpose of this research was to investigate the disinfection efficacy of ozone (O(3)) and UV-C illumination (UV), and their combination (O(3)-UV) for reducing microbial flora of fresh-cut onion, escarole, carrot, and spinach wash waters collected from the industry. Furthermore, the influence of water physicochemical parameters on the decontamination efficacy and the effect of these technologies on physicochemical quality of wash water were analyzed. O(3), UV, and O(3)-UV were effective disinfection treatments on vegetable wash water, with a maximum microbial reduction of 6.6 log CFU mL(-1) after 60 min treatment with O(3)-UV. However, maximum total microbial reductions achieved by UV and O(3) treatments after 60 min were 4.0 and 5.9 log CFU mL(-1), lower than by O(3)-UV treatment. Furthermore, turbidity of wash water was reduced significantly by O(3) and O(3)-UV treatments, while UV treatment did not affect the physicochemical quality of the water. Conclusions derived from this study illustrate that O(3) and O(3)-UV are alternatives to other sanitizers used in the fresh-cut washing processes. The use of these technologies would allow less frequent changing of spent water and the use of much lower sanitizer doses. Nevertheless, in specific applications such as carrot wash water, where levels of undesirable microbial and chemical constituents are lower than other vegetable wash water, UV treatment could be an appropriate treatment considering cost-effectiveness criteria.

  12. Health effects of drinking water disinfectants and disinfection by-products

    SciTech Connect

    Condie, L.W.; Bercz, J.P.

    1986-01-01

    This paper summarizes toxicological studies conducted with drinking water disinfectants. Toxicological effects, which are associated with the disinfectants themselves as well as with the by-products formed when disinfectants react with organic material present in water, are considered. The health impact of chemical reactions occurring between residual disinfectants and nutrients in the gastrointestinal tract is also discussed. 40 references, 5 tables.

  13. 40 CFR 141.54 - Maximum residual disinfectant level goals for disinfectants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum residual disinfectant level goals for disinfectants. 141.54 Section 141.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.54 Maximum residual disinfectant level goals...

  14. 40 CFR 141.54 - Maximum residual disinfectant level goals for disinfectants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Maximum residual disinfectant level goals for disinfectants. 141.54 Section 141.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.54 Maximum residual disinfectant level goals...

  15. 40 CFR 141.54 - Maximum residual disinfectant level goals for disinfectants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Maximum residual disinfectant level goals for disinfectants. 141.54 Section 141.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.54 Maximum residual disinfectant level goals...

  16. 40 CFR 141.54 - Maximum residual disinfectant level goals for disinfectants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum residual disinfectant level goals for disinfectants. 141.54 Section 141.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Goals and Maximum Residual Disinfectant Level Goals § 141.54 Maximum residual disinfectant level goals...

  17. Studies on egg disinfection.

    PubMed

    Adler, H E; DaMassa, A J; Scott, W F

    1979-07-01

    Various concentrations of alkyldimethylbenzyl ammonium chloride (QAC), Na2CO3, and ethylenediaminetetracetic acid (EDTA) were tested for antimicrobial activity singly and in combination against Escherichia coli, Arizona hinshawii, and Pseudomonas aeruginosa. Bactericidal activity of the reagents were evaluated in embryonating eggs, trypticase soy broth, and a medium containing lecithin. Toxicity of the chemicals was assayed in embryonating eggs. An appraisal was made of an egg-washing solution composed of 250 ppm QAC, 100 ppm Na2CO3, and 10 and 100 ppm EDTA. The mixture was effective and nontoxic for this purpose. All egg treatments had an adverse effect on fertility and hatchability. Using the temperature differential procedure in egg dipping, the disinfectant mixture was relatively nontoxic if 10 ppm EDTA was used with 3000 ppm tylosin tartrate. One hundred parts per million of the chelator in the dip solution caused excessive embryo mortality due to synergistic toxicity with the antibiotic. The germicidal action of the QAC solution was markedly increased with Na2CO3. Ten parts per million EDTA did not improve the biocidal effect of QAC solutions in distilled water but increased bactericidal activity in tap water that contained 16 ppm Ca and 22 ppm Mg.

  18. Deep Borehole Field Test Laboratory and Borehole Testing Strategy

    SciTech Connect

    Kuhlman, Kristopher L.; Brady, Patrick V.; MacKinnon, Robert J.; Heath, Jason E.; Herrick, Courtney G.; Jensen, Richard P.; Gardner, W. Payton; Sevougian, S. David; Bryan, Charles R.; Jang, Je-Hun; Stein, Emily R.; Bauer, Stephen J.; Daley, Tom; Freifeld, Barry M.; Birkholzer, Jens; Spane, Frank A.

    2016-09-19

    Deep Borehole Disposal (DBD) of high-level radioactive wastes has been considered an option for geological isolation for many years (Hess et al. 1957). Recent advances in drilling technology have decreased costs and increased reliability for large-diameter (i.e., ≥50 cm [19.7”]) boreholes to depths of several kilometers (Beswick 2008; Beswick et al. 2014). These advances have therefore also increased the feasibility of the DBD concept (Brady et al. 2009; Cornwall 2015), and the current field test design will demonstrate the DBD concept and these advances. The US Department of Energy (DOE) Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste (DOE 2013) specifically recommended developing a research and development plan for DBD. DOE sought input or expression of interest from States, local communities, individuals, private groups, academia, or any other stakeholders willing to host a Deep Borehole Field Test (DBFT). The DBFT includes drilling two boreholes nominally 200m [656’] apart to approximately 5 km [16,400’] total depth, in a region where crystalline basement is expected to begin at less than 2 km depth [6,560’]. The characterization borehole (CB) is the smaller-diameter borehole (i.e., 21.6 cm [8.5”] diameter at total depth), and will be drilled first. The geologic, hydrogeologic, geochemical, geomechanical and thermal testing will take place in the CB. The field test borehole (FTB) is the larger-diameter borehole (i.e., 43.2 cm [17”] diameter at total depth). Surface handling and borehole emplacement of test package will be demonstrated using the FTB to evaluate engineering feasibility and safety of disposal operations (SNL 2016).

  19. Field Tests for Evaluating the Aerobic Work Capacity of Firefighters

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Gavhed, Désirée; Malm, Christer

    2013-01-01

    Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter’s ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters’ aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (rs = −0.65 and −0.63, p<0.01, respectively). Absolute (mL·min−1) and relative (mL·kg−1·min−1) maximal aerobic capacity was correlated to all but one of the work tasks (rs = −0.79 to 0.55 and −0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters’ work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s·kg−1), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter’s aerobic work capacity. PMID:23844153

  20. Field tests for evaluating the aerobic work capacity of firefighters.

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Gavhed, Désirée; Malm, Christer

    2013-01-01

    Working as a firefighter is physically strenuous, and a high level of physical fitness increases a firefighter's ability to cope with the physical stress of their profession. Direct measurements of aerobic capacity, however, are often complicated, time consuming, and expensive. The first aim of the present study was to evaluate the correlations between direct (laboratory) and indirect (field) aerobic capacity tests with common and physically demanding firefighting tasks. The second aim was to give recommendations as to which field tests may be the most useful for evaluating firefighters' aerobic work capacity. A total of 38 subjects (26 men and 12 women) were included. Two aerobic capacity tests, six field tests, and seven firefighting tasks were performed. Lactate threshold and onset of blood lactate accumulation were found to be correlated to the performance of one work task (r(s) = -0.65 and -0.63, p<0.01, respectively). Absolute (mL · min(-1)) and relative (mL · kg(-1) · min(-1)) maximal aerobic capacity was correlated to all but one of the work tasks (r(s) = -0.79 to 0.55 and -0.74 to 0.47, p<0.01, respectively). Aerobic capacity is important for firefighters' work performance, and we have concluded that the time to row 500 m, the time to run 3000 m relative to body weight (s · kg(-1)), and the percent of maximal heart rate achieved during treadmill walking are the most valid field tests for evaluating a firefighter's aerobic work capacity.

  1. Field Test: Results from the One Year Mission

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Rosenberg, M. J. F.; Bloomberg, J. J.; Stenger, M. B.; Lee, S. M. C.; Laurie, S. S.; Rukavishnikov, I. V.; Fomina, E. V.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.; Phillips, T.; Ribeiro, C.; Taylor, L. C.; Miller, C. A.; Gadd, N. E.; Peters, B. T.; Kitov, V. V.; Lysova, N. Yu; Holden, K. L.; De Dios, Y.

    2017-01-01

    The One Year Mission was designed to aid in determining the effect that extending the duration on orbit aboard the International Space Station (ISS) would have on a number of biological and physiological systems. Two crewmembers were selected to participate in this endeavor, one U.S. On-Orbit Segment (USOS) astronaut and one Russian cosmonaut. The Neuroscience and Cardiovascular and Vision Laboratories at the Johnson Space Center and the Sensory-Motor and Countermeasures Division within the Institute for Biomedical Problems were selected to investigate vestibular, sensorimotor and cardiovascular function with the two long-duration crewmembers using the established methodology developed for the Field Test (FT).

  2. Field test of the bulk-assay calorimeter

    SciTech Connect

    Perry, R.B.; Keddar, A.

    1982-10-01

    The Bulk-Assay Calorimeter described in ANL-NDA-9/ISPO-14 was field tested at the Belgonucleaire mixed-oxide fuel fabrication plant at Dessel, Belgium, May 13-19, 1982. This instrument was developed under ISPO Tasks A-9 and A-47 at Argonne National Laboratory and was supplied to the IAEA through the U.S support program. Five containers of plutonium-oxide feed stock used in the manufacture of mixed-oxide LMFBR-type fuel were assayed during the test. Electrical measurements to verify the calibration of the calorimeter were also made.

  3. Operation and design of selected industrial process heat field tests

    SciTech Connect

    Kearney, D. W.

    1981-02-01

    The DOE program of solar industrial process heat field tests has shown solar energy to be compatible with numerous industrial needs. Both the operational projects and the detailed designs of systems that are not yet operational have resulted in valuable insights into design and hardware practice. Typical of these insights are the experiences discussed for the four projects reviewed. Future solar IPH systems should benefit greatly not only from the availability of present information, but also from the wealth of operating experience from projects due to start up in 1981.

  4. Field Testing of Utility Robots for Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Fong, Terrence; Bualat, Maria; Deans, Matt; Allan, Mark; Bouyssounouse, Xavier; Broxton, Michael; Edwards, Laurence; Lee, Pascal; Lee, Susan Y.; Lees, David; hide

    2008-01-01

    Since 2004, NASA has been working to return to the Moon. In contrast to the Apollo missions, two key objectives of the current exploration program is to establish significant infrastructure and an outpost. Achieving these objectives will enable long-duration stays and long-distance exploration of the Moon. To do this, robotic systems will be needed to perform tasks which cannot, or should not, be performed by crew alone. In this paper, we summarize our work to develop "utility robots" for lunar surface operations, present results and lessons learned from field testing, and discuss directions for future research.

  5. Uv Throughput

    NASA Astrophysics Data System (ADS)

    Casertano, Stefano

    1995-07-01

    GRW+70d5824 is observed shortly before and after a DECON through all the UV filters in each chip and through F160BW crossed with F130LP, F185LP, and F165LP (where applicable) to determine the wavelength dependence of the throughput across the bandpass (hence color terms). Based on no particular cycle 4 program, this program is designed to better characterize the spectral response curve in the UV, and the spectral shape introduced by the contamination. Overall discrepencies between the updated synthetic photometric products and the results of this test should be 1-2% rms. This does not mean that the UV throughput will be known to this accuracy primarily because of uncertainties in the flux calibration of the standard used (5%) uncertainties in the UV flatfields (maybe 3% near the chip center), and time dependent contamination corrections (3% error), and uncertainties in the CTE correction (2%). The derived UV absolute photometry accuracy at the center of the chips should therefore be about 10%. After pipeline processing, each image will be reduced by aperture photometry. The throughput curves and their normalizations can be updated by trial and error. Expected to run 8/95. NOTE: crossed filters exposures should be observed in ALL chips after decontamination, but just in WF3 before decontamination.

  6. UV Throughput

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    1996-07-01

    This proposal has 2 main sections: 1} GRW+70d5824 is observed shortly before and after a DECON through all the UV filters in each chip and through F160BW crossed with F130LP, F185LP, and F165LP {where applicable}. 2} BD+75D325 is observed in a subset of chips and uv filters {including Lyman alpha}, shortly before and after a Decon; to be done before SMOV. These observations will be used to determine the wavelength dependence of the throughput across the bandpass {hence color terms}. Based on the Cycle 5 UV Throughput proposal {6186} and the Cycle 4 Lyman alpha throughput proposal {5778}, this program is designed to better characterize the spectral response curve in the UV, and the spectral shape introduced by the contamination as well as provide baseline measurements in preparation for SMOV 1997. The Lyman alpha observations will provide a measure of possible contamination on the pickoff mirror. The UV throughput should be measured to better than 3%. Accuracy in the Lyman alpha throughput is expected to be between 5% and 10%, due to the residual uncertainty of the red leak correction determined from observations of F122M crossed with F130LP. Results will be presented at TIPS, in WFPC2 ISR, and used to update SYNPHOT tables if necessary. NOTE: crossed filters exposures should be observed in ALL chips after decontamination, but just in WF3 before decontamination.

  7. Colonic mucosal pseudolipomatosis: disinfectant colitis?

    PubMed

    Kim, Su Jin; Baek, Il Hyun

    2012-01-01

    Colonic pseudolipomatosis is rare and its pathogenesis is still unclear. A number of mechanisms, including mechanical injury during an endoscopic procedure or chemical injury by disinfectant, seem to contribute to its pathogenesis. In our endoscopy unit, pseudolipomatosis occurred in an epidemic pattern after changing the endoscopic disinfectant from 2% glutaraldehyde to peracetic acid compound to decrease the length of endoscope reprocessing time. We assumed that pseudolipomatosis could be a type of chemical colitis produced by the residual disinfectant solution that remained on the surface or in a channel of the endoscope after reprocessing. The aim of this report was to highlight a series of 12 cases of colonic pseudolipomatosis in order to describe the endoscopic and pathological features and discuss the harmful effect of disinfectants as a possible cause of pseudolipomatosis. To identify the cause of the lesions, we systematically reviewed each patient history and the endoscopic and histological features. From March 2004 to February 2005, 1276 colonoscopies were performed and 12 cases (0.94%) of colonic pseudolipomatosis were diagnosed at the Kangnam Sacred Heart Hospital of Hallym University. The pathogenesis of colonic pseudolipomatosis is not well-known, but our experience indicates the endoscopic disinfectant as the probable cause of pseudolipomatosis rather than either mechanical traumatic injury or intraluminal air pressure-related injury.

  8. Determining UV Inactivation of Toxoplasma gondii Oocysts by Using Cell Culture and a Mouse Bioassay

    EPA Science Inventory

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated UV irradiated oocysts by three assays: a SCID mouse bioassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reve...

  9. Determining UV Inactivation of Toxoplasma gondii Oocysts by Using Cell Culture and a Mouse Bioassay

    EPA Science Inventory

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated UV irradiated oocysts by three assays: a SCID mouse bioassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reve...

  10. Estimating retrospective exposure of household humidifier disinfectants.

    PubMed

    Park, D U; Friesen, M C; Roh, H S; Choi, Y Y; Ahn, J J; Lim, H K; Kim, S K; Koh, D H; Jung, H J; Lee, J H; Cheong, H K; Lim, S Y; Leem, J H; Kim, Y H; Paek, D M

    2015-12-01

    We conducted a comprehensive humidifier disinfectant exposure characterization for 374 subjects with lung disease who presumed their disease was related to humidifier disinfectant use (patient group) and for 303 of their family members (family group) for an ongoing epidemiological study. We visited the homes of the registered patients to investigate disinfectant use characteristics. Probability of exposure to disinfectants was determined from the questionnaire and supporting evidence from photographs demonstrating the use of humidifier disinfectant, disinfectant purchase receipts, any residual disinfectant, and the consistency of their statements. Exposure duration was estimated as cumulative disinfectant use hours from the questionnaire. Airborne disinfectant exposure intensity (μg/m(3)) was estimated based on the disinfectant volume (ml) and frequency added to the humidifier per day, disinfectant bulk level (μg/ml), the volume of the room (m(3)) with humidifier disinfectant, and the degree of ventilation. Overall, the distribution patterns of the intensity, duration, and cumulative exposure to humidifier disinfectants for the patient group were higher than those of the family group, especially for pregnant women and patients ≤6 years old. Further study is underway to evaluate the association between the disinfectant exposures estimated here with clinically diagnosed lung disease. Retrospective exposure to household humidifier disinfectant as estimated here can be used to evaluate associations with clinically diagnosed lung disease due to the use of humidifier disinfectant in Korea. The framework, with modifications to account for dispersion and use patterns, can also be potentially adapted to assessment of other household chemical exposures. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of a municipal wastewater treatment plant.

    PubMed

    Guo, Mei-Ting; Yuan, Qing-Bin; Yang, Jian

    2013-10-15

    Little is known about the microbial selectivity of UV treatment for antibiotic resistant bacteria, and the results of limited studies are conflicting. To understand the effect of UV disinfection on antibiotic resistant bacteria, both total heterotrophic bacteria and antibiotic resistant bacteria (including cephalexin-, ciprofloxacin-, erythromycin-, gentamicin-, vancomycin-, sulfadiazine-, rifampicin-, tetracycline- and chloramphenicol-resistant bacteria) were examined in secondary effluent samples from a municipal wastewater treatment plant. Bacteria resistant to both erythromycin and tetracycline were chosen as the representative of multiple-antibiotic-resistant bacteria and their characteristics after UV treatment were also investigated. UV disinfection results in effective inactivation for total heterotrophic bacteria, as well as all antibiotic resistant bacteria. After UV treatment at a fluence of 5 mJ/cm(2), the log reductions of nine types of antibiotic resistant bacteria varied from 1.0 ± 0.1 to 2.4 ± 0.1. Bacteria resistant to both erythromycin and tetracycline had a similar fluence response as did total heterotrophic bacteria. The findings suggest that UV disinfection could eliminate antibiotic resistance in wastewater treatment effluents and thus ensure public health security. Our experimental results indicated that UV disinfection led to enrichment of bacteria with resistance to sulfadiazine, vancomycin, rifampicin, tetracycline and chloramphenicol, while the proportions of cephalexin-, erythromycin-, gentamicin- and ciprofloxacin-resistant bacteria in the wastewater decreased. This reveals the microbial selectivity of UV disinfection for antibiotic resistant bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    PubMed

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  13. [Drinking water decontamination with isolative sorbent disinfectants].

    PubMed

    Krasnov, M S

    2004-01-01

    Drinking water can be decontaminated with the use of isolative sorbent disinfectants. Consideration of the effectiveness of water disinfectants and the sorptive power of porous materials against bacteria and viruses attested to the favour of iodine and silver-containing disinfectants and their compositions on porous aggressive carriers to be employed in extreme conditions such as on board crewed space vehicles.

  14. Disinfection of Human Teeth for Educational Purposes.

    ERIC Educational Resources Information Center

    Tate, William H.; White, Robert S.

    1991-01-01

    A study investigated the efficacy of glutaraldehyde and several other disinfectants for disinfecting teeth to be used for teaching and research, as an alternative to autoclaving for teeth with amalgam restorations. Results indicate that formalin was the only disinfectant that penetrated tooth pulp chambers in effective antimicrobial…

  15. Disinfection of Human Teeth for Educational Purposes.

    ERIC Educational Resources Information Center

    Tate, William H.; White, Robert S.

    1991-01-01

    A study investigated the efficacy of glutaraldehyde and several other disinfectants for disinfecting teeth to be used for teaching and research, as an alternative to autoclaving for teeth with amalgam restorations. Results indicate that formalin was the only disinfectant that penetrated tooth pulp chambers in effective antimicrobial…

  16. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  17. Scientific investigation plan for initial engineered barrier system field tests

    SciTech Connect

    Wunan Lin

    1993-02-01

    The purpose of this Scientific Investigation Plan (SIP) is to describe tests known as Initial Engineered Barrier System Field Tests (IEBSFT) and identified by Work Breakdown Structure as WBS 1.2.2.2.4. The IEBSFT are precursors to the Engineered Barrier System Field Test (EBSFT), WBS 1.2.2.2.4, to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain. The EBSFT and IEBSFT are designed to provide information on the interaction between waste packages (simulated by heated containers) and the surrounding rock mass, its vadose water, and infiltrated water. Heater assemblies will be installed in drifts or boreholes openings and heated to measure moisture movement during heat-up and subsequent cool-down of the rock mass. In some of the tests, infiltration of water into the heated rock mass will be studied. Throughout the heating and cooling cycle, instruments installed in the rock will monitor such parameters as temperature, moisture content, concentration of some chemical species, and stress and strain. Rock permeability measurements, rock and fluid (water and gas) sampling, and fracture pattern measurements will also be made before and after the test.

  18. Field tests-low input, side-wall vented boiler

    SciTech Connect

    Litzke, W.L.; Butcher, T.A.; Celebi, Y.

    1996-07-01

    The Fan Atomized Burner (FAB) was developed at Brookhaven National Laboratory as part of the Oil Heat Combustion Equipment Technology Program to provide a practical low-firing rate technology leading to new, high efficiency oil-fired appliances. The development of the burner design and results of application testing have been presented in prior oil heat conferences over the past several years. This information is also summarized in a more comprehensive BNL report. The first field trial of a prototype unit was initiated during the 1994-95 heating season. This paper presents the results of the second year of testing, during the 1995-96 heating season. The field tests enable the demonstration of the reliability and performance of the FAB under practical, typical operating conditions. Another important objective of the field test was to demonstrate that the low input is adequate to satisfy the heating and hot water demands of the household. During the first field trial it was shown that at a maximum input rate of 0.4 gph (55,000 Btu/hr) the burner was able to heat a home with over 2,000 square feet of conditioned living space and provide adequate supply of domestic hot water for a family of six. The test is located in Long Island, NY.

  19. Performance evaluation of infrared imaging system in field test

    NASA Astrophysics Data System (ADS)

    Wang, Chensheng; Guo, Xiaodong; Ren, Tingting; Zhang, Zhi-jie

    2014-11-01

    Infrared imaging system has been applied widely in both military and civilian fields. Since the infrared imager has various types and different parameters, for system manufacturers and customers, there is great demand for evaluating the performance of IR imaging systems with a standard tool or platform. Since the first generation IR imager was developed, the standard method to assess the performance has been the MRTD or related improved methods which are not perfect adaptable for current linear scanning imager or 2D staring imager based on FPA detector. For this problem, this paper describes an evaluation method based on the triangular orientation discrimination metric which is considered as the effective and emerging method to evaluate the synthesis performance of EO system. To realize the evaluation in field test, an experiment instrument is developed. And considering the importance of operational environment, the field test is carried in practical atmospheric environment. The test imagers include panoramic imaging system and staring imaging systems with different optics and detectors parameters (both cooled and uncooled). After showing the instrument and experiment setup, the experiment results are shown. The target range performance is analyzed and discussed. In data analysis part, the article gives the range prediction values obtained from TOD method, MRTD method and practical experiment, and shows the analysis and results discussion. The experimental results prove the effectiveness of this evaluation tool, and it can be taken as a platform to give the uniform performance prediction reference.

  20. Site Guidelines for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Sassani, D.; Kuhlman, K. L.; Freeze, G. A.; MacKinnon, R. J.; Perry, F.

    2015-12-01

    The US DOE Office of Nuclear Energy Used Nuclear Fuel Disposition Campaign (UFDC) is initiating a Deep Borehole Field Test (DBFT), without use of any radioactive waste, to evaluate the geoscience of the approach and technical capabilities for implementation. DOE has identified Sandia National Laboratories (SNL) as the Technical Lead for the UFDC DBFT Project, with the role of supporting DOE in (i) developing the overall DBFT Project Plan, (ii) management and integration of all DBFT Project activities, and (iii) providing Project technical guidance to DOE, other DOE National Laboratories, and university partners. The DBFT includes drilling one Characterization Borehole (CB-8.5" diameter), followed by an optional Field Test Borehole (FTB), to a depth of about 5,000 m (16,400 feet) into crystalline basement rock in a geologically stable continental location. The DBFT CB will be drilled and completed to facilitate downhole scientific testing and analyses. If site conditions are found to be favorable, DOE may drill the larger-diameter (17") FTB to facilitate proof-of-concept of handling, emplacement, and retrieval activities using surrogate waste containers. Guidelines for favorable DBFT site geohydrochemical and geomechanical conditions will be discussed and status of the DBFT Project will be provided. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6426A.

  1. Field test of an alternative longwall gate road design

    SciTech Connect

    Cox, R.M.; Vandergrift, T.L.; McDonnell, J.P.

    1994-01-01

    The US Bureau of Mines (USBM) MULSIM/ML modeling technique has been used to analyze anticipated stress distributions for a proposed alternative longwall gate road design for a western Colorado coal mine. The model analyses indicated that the alternative gate road design would reduce stresses in the headgate entry. To test the validity of the alternative gate road design under actual mining conditions, a test section of the alternative system was incorporated into a subsequent set of gate roads developed at the mine. The alternative gate road test section was instrumented with borehole pressure cells, as part of an ongoing USBM research project to monitor ground pressure changes as longwall mining progressed. During the excavation of the adjacent longwall panels, the behavior of the alternative gate road system was monitored continuously using the USBM computer-assisted Ground Control Management System. During these field tests, the alternative gate road system was first monitored and evaluated as a headgate, and later monitored and evaluated as a tailgate. The results of the field tests confirmed the validity of using the MULSIM/NL modeling technique to evaluate mine designs.

  2. Microseismic Monitoring of a Carbon Sequestration Field Test

    NASA Astrophysics Data System (ADS)

    Urbancic, T. I.; Daugherty, J.; Baig, A. M.

    2009-12-01

    Microseismic monitoring was implemented as part of a comprehensive carbon sequestration monitoring program at the Midwest Regional Carbon Sequestration Partnership's geologic field test site in Otsego County, Michigan. The field test itself consisted of the injection of ~10,000 tonnes of CO2 over 31 days. The intent of the microseismic monitoring program was to understand its potential for verifying cap rock integrity and for identifying the position of the CO2 plume. Microseismic monitoring was achieved using two downhole geophone arrays located in observation wells within 750m of the injection well. One event was recorded during a period of higher relative injection rate and located at the base of the cap rock within the permitted injection interval, suggesting a possible linkage with pressure change or fluid mobilization caused by the CO2 injection processes. The full seismic moment tensor was determined for the injection related event revealing a complex failure mechanism that is consistent with a fracture initiation. The orientation of the fracture is consistant with the maximum horizontal stress in the region. In this context, failure mechanism is taken to be the description of the movement of the rocks. Microseismic monitoring has proved to be a valuable tool for monitoring cap rock integrity.

  3. A prototype tap test imaging system: Initial field test results

    NASA Astrophysics Data System (ADS)

    Peters, J. J.; Barnard, D. J.; Hudelson, N. A.; Simpson, T. S.; Hsu, D. K.

    2000-05-01

    This paper describes a simple, field-worthy tap test imaging system that gives quantitative information about the size, shape, and severity of defects and damages. The system consists of an accelerometer, electronic circuits for conditioning the signal and measuring the impact duration, a laptop PC and data acquisition and processing software. The images are generated manually by tapping on a grid printed on a plastic sheet laid over the part's surface. A mechanized scanner is currently under development. The prototype has produced images for a variety of aircraft composite and metal honeycomb structures containing flaws, damages, and repairs. Images of the local contact stiffness, deduced from the impact duration using a spring model, revealed quantitatively the stiffness reduction due to flaws and damages, as well as the stiffness enhancement due to substructures. The system has been field tested on commercial and military aircraft as well as rotor blades and engine decks on helicopters. Field test results will be shown and the operation of the system will be demonstrated.—This material is based upon work supported by the Federal Aviation Administration under Contract #DTFA03-98-D-00008, Delivery Order No. IA016 and performed at Iowa State University's Center for NDE as part of the Center for Aviation Systems Reliability program.

  4. Development of a new field-test procedure for cocaine.

    PubMed

    Tsujikawa, Kenji; Iwata, Yuko T; Segawa, Hiroki; Yamamuro, Tadashi; Kuwayama, Kenji; Kanamori, Tatsuyuki; Inoue, Hiroyuki

    2017-01-01

    The Scott test, widely used as the field test for cocaine, is performed in three steps. If a sample contains cocaine, blue precipitates appear in step 1, the precipitates are dissolved and the solution turns pink in step 2, and the lower layer turns blue in step 3. However, some pyrrolidine-type cathinones produce cocaine-like results when tested, necessitating modification of the test procedure. Filtration of the second-step mixture weakened the blue color in step 3; however, the blue color did not completely disappear. Adding the Chen-Kao reagent to the test procedure enhanced the differentiation: when the reagent was added to cocaine, the solution was initially turbid, but then became clear over time; its addition to cathinones resulted in turquoise or light sky-blue precipitation. These results indicated that the Chen-Kao test was useful for exclusion of cathinones. A combination of the modified Scott test and the Chen-Kao test was successfully applied to the forensic samples containing cocaine or pyrrolidine-type cathinones. In conclusion, a combination of these tests will be the useful field-test procedure for cocaine.

  5. Review of water disinfection techniques

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Sauer, Richard L.

    1987-01-01

    Throughout the history of manned space flight the supply of potable water to the astronauts has presented unique problems. Of particular concern has been the microbiological quality of the potable water. This has required the development of both preflight water system servicing procedures to disinfect the systems and inflight disinfectant addition and monitoring devices to ensure continuing microbiological control. The disinfectants successfully used to date have been aqueous chlorine or iodine. Because of special system limitations the use of iodine has been the most successful for inflight use and promises to be the agent most likely to be used in the future. Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control. NASA is currently conducting research and development to solve these problems.

  6. Review of water disinfection techniques

    NASA Technical Reports Server (NTRS)

    Colombo, Gerald V.; Sauer, Richard L.

    1987-01-01

    Throughout the history of manned space flight the supply of potable water to the astronauts has presented unique problems. Of particular concern has been the microbiological quality of the potable water. This has required the development of both preflight water system servicing procedures to disinfect the systems and inflight disinfectant addition and monitoring devices to ensure continuing microbiological control. The disinfectants successfully used to date have been aqueous chlorine or iodine. Because of special system limitations the use of iodine has been the most successful for inflight use and promises to be the agent most likely to be used in the future. Future spacecraft potable, hygiene, and experiment water systems will utilize recycled water. This will present special problems for water quality control. NASA is currently conducting research and development to solve these problems.

  7. A possible field test for marine cloud brightening geoengineering. A possible field test for marine cloud brightening geoengineering

    NASA Astrophysics Data System (ADS)

    Gadian, A.; Wood, R.; Coe, H.; Latham, J.

    2011-12-01

    A possible field test for marine cloud brightening geoengineering. Abstract: The Marine Cloud Brightening (MCB) geoengineering technique (Latham et al 2008) hypothesizes that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre seawater particles can enhance the cloud droplet number concentration and increase cloud albedo. Here, we propose a set of field tests to critically assess the efficacy of the MCB geoengineering proposal over a limited area. The tests are de minimus with respect to their climate effects. The tests involve three phases, with increasing logistical complexity, each of which is designed to test one or more important components of the cloud brightening scheme. Each involves the introduction and monitoring of controlled aerosol perturbations from one or more ship-based seeding platforms up to a limited area of 100x100 km2. A suite of observational platforms of increasing number and complexity, including aircraft, ships and satellites, will observe the aerosol plume and in the later experiments the cloud and albedo responses to the aerosol perturbations. These responses must include the necessary cloud physical and chemical processes which determine the efficacy of the cloud brightening scheme. Since these processes are also central to the broader problem of aerosol-cloud-climate interactions, such field tests would have significant benefits for climate science in addition to providing a critical test of the MCB hypothesis. Such field experiments should be designed and conducted in an objective manner within the framework of emerging geoengineering research governance structures. Reference: Latham J. et al.. (2008) Global temperature stabilization via controlled albedo enhancement of low-level maritime clouds. Phil. Trans. R. Soc. A doi:10.1098/rsta.2008.0137

  8. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater.

    PubMed

    Rubio, D; Nebot, E; Casanueva, J F; Pulgarin, C

    2013-10-15

    Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the

  9. Cell Culture-Taqman PCR Assay for Evaluation of Cryptosporidium parvum Disinfection

    PubMed Central

    Keegan, Alexandra R.; Fanok, Stella; Monis, Paul T.; Saint, Christopher P.

    2003-01-01

    Cryptosporidium parvum represents a challenge to the water industry and a threat to public health. In this study, we developed a cell culture-quantitative PCR assay to evaluate the inactivation of C. parvum with disinfectants. The assay was validated by using a range of disinfectants in common use in the water industry, including low-pressure UV light (LP-UV), ozone, mixed oxidants (MIOX), and chlorine. The assay was demonstrated to be reliable and sensitive, with a lower detection limit of a single infectious oocyst. Effective oocyst inactivation was achieved (>2 log10 units) with LP-UV (20 mJ/cm2) or 2 mg of ozone/liter (for 10 min). MIOX and chlorine treatments of oocysts resulted in minimal effective disinfection, with <0.1 log10 unit being inactivated. These results demonstrate the inability of MIOX to inactivate Cryptosporidium. The assay is a valuable tool for the evaluation of disinfection systems for drinking water and recycled water. PMID:12732515

  10. New disinfection and sterilization methods.

    PubMed Central

    Rutala, W. A.; Weber, D. J.

    2001-01-01

    New disinfection methods include a persistent antimicrobial coating that can be applied to inanimate and animate objects (Surfacine), a high-level disinfectant with reduced exposure time (ortho-phthalaldehyde), and an antimicrobial agent that can be applied to animate and inanimate objects (superoxidized water). New sterilization methods include a chemical sterilization process for endoscopes that integrates cleaning (Endoclens), a rapid (4-hour) readout biological indicator for ethylene oxide sterilization (Attest), and a hydrogen peroxide plasma sterilizer that has a shorter cycle time and improved efficacy (Sterrad 50). PMID:11294738

  11. Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine.

    PubMed

    Cho, Min; Gandhi, Varun; Hwang, Tae-Mun; Lee, Sangho; Kim, Jae-Hong

    2011-01-01

    A sequential application of UV as a primary disinfectant with and without H(2)O(2) addition followed by free chlorine as secondary, residual disinfectant was performed to evaluate the synergistic inactivation of selected indicator microorganisms, MS-2 bacteriophage and Bacillus subtilis spores. No synergism was observed when the UV irradiation treatment was followed by free chlorine, i.e., the overall level of inactivation was the same as the sum of the inactivation levels achieved by each disinfection step. With the addition of H(2)O(2) in the primary UV disinfection step, however, enhanced microbial inactivation was observed. The synergism was observed in two folds manners: (1) additional inactivation achieved by hydroxyl radicals generated from the photolysis of H(2)O(2) in the primary UV disinfection step, and (2) damage to microorganisms in the primary step which facilitated the subsequent chlorine inactivation. Addition of H(2)O(2) in the primary disinfection step was also found to be beneficial for the degradation of selected model organic pollutants including bisphenol-A (endocrine disruptor), geosmin (taste and odor causing compound) and 2,4-D (herbicide). The results suggest that the efficiency of UV/free chlorine sequential disinfection processes, which are widely employed in drinking water treatment, could be significantly enhanced by adding H(2)O(2) in the primary step and hence converting the UV process to an advanced oxidation process.

  12. Lessons Learned From Field Tests Of Planetary Surface Rovers

    NASA Astrophysics Data System (ADS)

    Stoker, C. R.

    2003-04-01

    I review results and lessons learned from field tests of planetary surface rovers. Terrestrial field tests help to train scientists in rover capabilities, and guides developments to improve them. Key metrics of rover science performance include distance traveled and number of science targets studied using instrument placement or sample manipulation. Field tests show that traverse range is governed primarily by commanding frequency rather than a rover’s maximum speed. With real-time feedback, teleoperated rovers can traverse kilometers per day. With commanded operations, typical traverses are a few meters. Longer traverses are risky and error prone. Tasks requiring moving a few meters to a target followed by manipulation or instrument placement take several command cycles per target. Higher level autonomy for navigation and manipulation is needed to improve performance. Rovers are being called upon to play a key role in the search for evidence of life on Mars. Conditions on the Martian surface today appear to preclude living organisms, but more clement conditions in the past may have supported the formation of a fossil record. However, any fossil record on Mars is likely to be produced by microbial life, and to be extremely ancient. Finding unambiguous evidence of biogenic origin of putative fossil structures will require collecting high priority samples and returning them to Earth. Recognition of fossiliferous deposits using rover data is problematical. Information provided by a rover is of very low bandwidth and fidelity compared to that observed by a field geologist. Limitations arise in both quality and quantity of data transmitted to Earth. In a rover mission simulation performed in a fossil-rich terrestrial field site hosting dinosaur tracks and stromatolites, science teams did not find any evidence of fossils. However, living organisms such as endolithic microorganisms and lichens have been identified in field experiments using color imaging and

  13. Hydrogen Field Test Standard: Laboratory and Field Performance

    PubMed Central

    Pope, Jodie G.; Wright, John D.

    2015-01-01

    The National Institute of Standards and Technology (NIST) developed a prototype field test standard (FTS) that incorporates three test methods that could be used by state weights and measures inspectors to periodically verify the accuracy of retail hydrogen dispensers, much as gasoline dispensers are tested today. The three field test methods are: 1) gravimetric, 2) Pressure, Volume, Temperature (PVT), and 3) master meter. The FTS was tested in NIST's Transient Flow Facility with helium gas and in the field at a hydrogen dispenser location. All three methods agree within 0.57 % and 1.53 % for all test drafts of helium gas in the laboratory setting and of hydrogen gas in the field, respectively. The time required to perform six test drafts is similar for all three methods, ranging from 6 h for the gravimetric and master meter methods to 8 h for the PVT method. The laboratory tests show that 1) it is critical to wait for thermal equilibrium to achieve density measurements in the FTS that meet the desired uncertainty requirements for the PVT and master meter methods; in general, we found a wait time of 20 minutes introduces errors < 0.1 % and < 0.04 % in the PVT and master meter methods, respectively and 2) buoyancy corrections are important for the lowest uncertainty gravimetric measurements. The field tests show that sensor drift can become a largest component of uncertainty that is not present in the laboratory setting. The scale was calibrated after it was set up at the field location. Checks of the calibration throughout testing showed drift of 0.031 %. Calibration of the master meter and the pressure sensors prior to travel to the field location and upon return showed significant drifts in their calibrations; 0.14 % and up to 1.7 %, respectively. This highlights the need for better sensor selection and/or more robust sensor testing prior to putting into field service. All three test methods are capable of being successfully performed in the field and give

  14. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater.

    PubMed

    McKinney, Chad W; Pruden, Amy

    2012-12-18

    Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r < -0.9; p < 0.0001). ARBs surviving UV treatment were negatively correlated with total genome size (Pearson r < -0.9; p < 0.0001) and adjacent cytosines (Pearson r < -0.88; p < 0.0001) but positively correlated with adjacent thymines (Pearson r

  15. EPIDEMIOLOGIC STUDIES OF DISINFECTANTS AND DISINFECTANT BY-PRODUCTS

    EPA Science Inventory

    This article provides a review of the epidemiologic evidence for human health effects that may be associated with the disinfection of drinking water. An epidemiologic study attempts to link human health effects with exposure to a specific agent (e.g., DBCM), agents (e.g., THMs or...

  16. A membrane filter technique for testing disinfectants.

    PubMed Central

    Prince, J; Deverill, C E; Ayliffe, G A

    1975-01-01

    A membrane filter was used for assessing the surface disinfecting activity of phenolic disinfectants and a chloroxylenol disinfectant. The influence of the type of organism, inoculum size, and hardness of water was investigated. Pseudomonas aeruginosa was chosen for the standardized test. Disinfectant solutions were prepared in water of 300 ppm hardness and applied for two and a half minutes and eight minutes to the bacteria deposited from filtration of 1 ml of a suspension containing 10-6 bacteria. The membrane filter test has certain advantages over many tests, eg, all organisms surviving after treatment can be counted and residual disinfectant is easily removed. PMID:804497

  17. A membrane filter technique for testing disinfectants.

    PubMed

    Prince, J; Deverill, C E; Ayliffe, G A

    1975-01-01

    A membrane filter was used for assessing the surface disinfecting activity of phenolic disinfectants and a chloroxylenol disinfectant. The influence of the type of organism, inoculum size, and hardness of water was investigated. Pseudomonas aeruginosa was chosen for the standardized test. Disinfectant solutions were prepared in water of 300 ppm hardness and applied for two and a half minutes and eight minutes to the bacteria deposited from filtration of 1 ml of a suspension containing 10-6 bacteria. The membrane filter test has certain advantages over many tests, eg, all organisms surviving after treatment can be counted and residual disinfectant is easily removed.

  18. Experimental study on the disinfection efficiencies of a continuous-flow ultrasound/ultraviolet baffled reactor.

    PubMed

    Zhou, Xiaoqin; Guo, Hao; Li, Zifu; Zhao, Junyuan; Yun, Yupan

    2015-11-01

    A self-designed continuous-flow ultrasound/ultraviolet (US/UV) baffled reactor was tested in this work, and the disinfection efficiency of secondary effluent from a wastewater treatment plant (WWTP) was investigated in terms of the different locations of ultrasonic transducers inside the reactor under similar input power densities and specific energy consumptions. Results demonstrated that the two-stage simultaneous US/UV irradiation in both chambers 2 and 3 at a flow rate of 1200 L/h performed excellent disinfection efficiency. It achieved an average feacal coliforms concentration of 201±78 colony forming unit (CFU)/L in the effluent and an average of (4.24±0.26) log10 reduction. Thereafter, 8 days of continuous operation was performed under such a condition. A total of 31 samples were taken, and all the samples were analyzed in triplicate for feacal coliforms analysis. Experimental results showed that feacal coliforms concentrations remained at about 347±174 CFU/L under the selected optimum disinfection condition, even if the influent concentrations fluctuated from 3.97×10(5) to 3.57×10(6) CFU/L. This finding implied that all effluents of continuous-flow-baffled-reactor with simultaneous US/UV disinfection could meet the requirements of the discharge standard of pollutants for municipal WWTP (GB 18918-2002) Class 1-A (1000 CFU/L) with a specific energy consumption of 0.219 kWh/m(3). Therefore, the US/UV disinfection process has great potential for practical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Non-contact rail flaw detection system: first field test

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Coccia, Stefano; Lanza di Scalea, Francesco; Bartoli, Ivan; Fateh, Mahmood

    2007-04-01

    Researchers at UCSD, with the initial support of NSF and the current support of the Federal Railroad Administration (FRA), have been working on a flaw detection prototype for rails that uses non-contact ultrasonic probing and robust data processing algorithms to provide high speed and high reliability defect detection in these structures. Besides the obvious advantages of non-contact probing, the prototype uses ultrasonic guided waves able to detect and quantify transverse cracks in the rail head, notoriously the most dangerous of all rail track defects. This paper will report on the first field test which was conducted in Gettysburg, PA in March 2006 with the technical support of ENSCO, Inc. Good results were obtained for the detection of both surface-breaking and internal cracks ranging in size from 2% cross-sectional head area (H.A.) reduction to 80% H.A. reduction.

  20. Detailed field test of yaw-based wake steering

    SciTech Connect

    Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew; Clifton, Andrew; Schreck, Scott; Johnson, Kathryn; Wright, Alan; Gebraad, Pieter; Annoni, Jennifer; Naughton, Brian; Berg, Jon; Herges, Tommy; White, Jon; Mikkelsen, Torben; Sjoholm, Mikael; Angelou, Nicolas

    2016-10-03

    This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as part of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.

  1. SMART wind turbine rotor. Design and field test

    SciTech Connect

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  2. Field test of the Rapid Transuranic Monitoring Laboratory

    SciTech Connect

    McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.; Amaro, C.R.

    1993-12-01

    A field test of the Rapid Transuranic Monitoring Laboratory (RTML) developed at the Idaho National Engineering Laboratory (INEL) was conducted as part of a demonstration sponsored by the Buried Waste Integrated Demonstration (BWID). The RTML is a mobile, field- deployable laboratory developed for use at buried radioactive waste remediation sites to allow onsite preparation and analysis of soil, smear, and air filter samples for alpha and gamma-emitting contaminants. Analytical instruments installed in the RTML include an extended range, germanium photon analysis spectrometer with an automatic sample changer, two large-area ionization chamber alpha spectrometers, and four alpha continuous air monitors. The performance of the RTML was tested at the Test Reactor Area and Cold Test Pit near the Radioactive Waste Management Complex at the INEL. Objectives, experimental procedures, and an evaluation of the performance of the RTML are presented.

  3. Results of field testing the cement evaluation tool

    SciTech Connect

    Leigh, C.A.; Finlayson, C.G.; Van der Kolk, C.

    1984-01-01

    The Cement Evaluation Tool (CET) developed by Schlumberger employs a pulse-echo technique using eight sonic transducers to investigate the casing cement bond. The tool has been widely field tested in a clastic environment in Brunei (N.W. Borneo), across both oil and gas bearing reservoirs. Numerous comparisons of the CET with conventional CBL/VDL logs have been made. Across oil and water bearing intervals the CET is shown to compare favourably with the CBL/VDL and yields significant additional information on channeling, cement distribution, and the success of casing centralization. In addition, the accuracy of the acoustic calipers have proved sufficient to be used in assisting drilling and completion operations. The response of the tool to a microannulus has also been demonstrated by multiple runs under varying wellbore pressures.

  4. Full-Scale Field Test of Wake Steering

    DOE PAGES

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; ...

    2017-06-13

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidarmore » scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. In conclusion, these measurements are then compared to the predictions of a wind farm control-oriented model of wakes.« less

  5. Full-Scale Field Test of Wake Steering

    NASA Astrophysics Data System (ADS)

    Fleming, Paul; Annoni, Jennifer; Scholbrock, Andrew; Quon, Eliot; Dana, Scott; Schreck, Scott; Raach, Steffen; Haizmann, Florian; Schlipf, David

    2017-05-01

    Wind farm control, in which turbine controllers are coordinated to improve farmwide performance, is an active field of research. One form of wind farm control is wake steering, in which a turbine is yawed to the inflow to redirect its wake away from downstream turbines. Wake steering has been studied in depth in simulations as well as in wind tunnels and scaled test facilities. This work performs a field test of wake steering on a full-scale turbine. In the campaign, the yaw controller of the turbine has been set to track different yaw misalignment set points while a nacelle-mounted lidar scans the wake at several ranges downwind. The lidar measurements are combined with turbine data, as well as measurements of the inflow made by a highly instrumented meteorological mast. These measurements are then compared to the predictions of a wind farm control-oriented model of wakes.

  6. Detailed field test of yaw-based wake steering

    NASA Astrophysics Data System (ADS)

    Fleming, P.; Churchfield, M.; Scholbrock, A.; Clifton, A.; Schreck, S.; Johnson, K.; Wright, A.; Gebraad, P.; Annoni, J.; Naughton, B.; Berg, J.; Herges, T.; White, J.; Mikkelsen, T.; Sjöholm, M.; Angelou, N.

    2016-09-01

    This paper describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. All data collected as part of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.

  7. Simple and rapid field tests for brucellosis in livestock.

    PubMed

    Abdoel, Theresia; Dias, Isabel Travassos; Cardoso, Regina; Smits, Henk L

    2008-08-25

    Four simple and rapid field tests for the serodiagnosis of brucellosis in cattle, goat, sheep and swine were developed. The performance of the assays was investigated using serum samples collected in Portugal from animals originating from herds with a defined sanitary status with respect to the presence of brucellosis. The sensitivity calculated for the bovine, caprine, ovine and swine Brucella lateral flow assays based on results obtained for samples collected from animals with culture confirmed brucellosis was 90%, 100%, 90% and 73%, respectively. None of the samples from animals from herds free of brucellosis reacted in the flow assays indicating a high specificity. However, as expected, some degree of reactivity was observed when testing selected serum samples that reacted non-specific in reference tests for brucellosis.

  8. Field Tested Service Oriented Robotic Architecture: Case Study

    NASA Technical Reports Server (NTRS)

    Flueckiger, Lorenzo; Utz, Hanz

    2012-01-01

    This paper presents the lessons learned from six years of experiments with planetary rover prototypes running the Service Oriented Robotic Architecture (SORA) developed by the Intelligent Robotics Group (IRG) at NASA Ames Research Center. SORA relies on proven software methods and technologies applied to the robotic world. Based on a Service Oriented Architecture and robust middleware, SORA extends its reach beyond the on-board robot controller and supports the full suite of software tools used during mission scenarios from ground control to remote robotic sites. SORA has been field tested in numerous scenarios of robotic lunar and planetary exploration. The results of these high fidelity experiments are illustrated through concrete examples that have shown the benefits of using SORA as well as its limitations.

  9. Antarctic field tests of SARSAT personal locater beacons

    NASA Technical Reports Server (NTRS)

    Bindschadler, Robert

    1987-01-01

    Field tests of SARSAT personal locater beacons were conducted in the Antarctic to assess the viability of using these beacons to increase the safety of Antarctic field parties. Data were collected on the extent to which dry or wet snow, melting conditions, crevasse walls and snow bridges affected the ability of the SARSAT satellite to calculate an accurate position of the beacon. Average response time between beacon turn on and alert reception in McMurdo was between 4 and 5 hours for these tests. It is concluded that the SARSAT system is viable for Antarctic operations and it is recommended that it be implemented for future field operations. Because of obstruction of line-of-sight between beacon and satellite degrades the accuracy of the location calculation (particularly in wet snow), it is further recommended that field parties have sufficient numbers of beacons to insure that in an emergency, one will be able to operate from the surface.

  10. Detailed field test of yaw-based wake steering

    DOE PAGES

    Fleming, Paul; Churchfield, Matt; Scholbrock, Andrew; ...

    2016-10-03

    This study describes a detailed field-test campaign to investigate yaw-based wake steering. In yaw-based wake steering, an upstream turbine intentionally misaligns its yaw with respect to the inflow to deflect its wake away from a downstream turbine, with the goal of increasing total power production. In the first phase, a nacelle-mounted scanning lidar was used to verify wake deflection of a misaligned turbine and calibrate wake deflection models. In the second phase, these models were used within a yaw controller to achieve a desired wake deflection. This paper details the experimental design and setup. Lastly, all data collected as partmore » of this field experiment will be archived and made available to the public via the U.S. Department of Energy's Atmosphere to Electrons Data Archive and Portal.« less

  11. Development and field testing of an adaptive power factor controller

    SciTech Connect

    El-Sharkawi, M.; Venkata, S.S.; Butler, N.G.; Yinger, R.W.

    1987-12-01

    The Adaptive Power Factor Controller (APFC) is a device that switches capacitors electronically to achieve almost unity power factor at the point of installation. It was designed and developed at the University of Washington (UW), and is being tested at the R and D facility of the Southern California Edison Company (SCE). It is particularly intended for loads with dynamically varying reactive power demands such as induction generators in wind power stations, or cyclically changing loads such as induction motors in process industries. It is also ideally suited for improving the power factor profile of a distribution line. The purposes of this paper are two-fold: to explain the most recent design of the 50-kVAR APFC and to report the results of the field testing program on the device after it was installed at the terminals of a 50-kW three-phase induction generator located at the Dever Wind R and D site of SCE.

  12. Field test plan: Buried waste technologies, Fiscal Year 1995

    SciTech Connect

    Heard, R.E.; Hyde, R.A.; Engleman, V.S.; Evans, J.D.; Jackson, T.W.

    1995-06-01

    The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

  13. A field test of a simple stochastic radiative transfer model

    SciTech Connect

    Byrne, N.

    1995-09-01

    The problem of determining the effect of clouds on the radiative energy balance of the globe is of well-recognized importance. One can in principle solve the problem for any given configuration of clouds using numerical techniques. This knowledge is not useful however, because of the amount of input data and computer resources required. Besides, we need only the average of the resulting solution over the grid scale of a general circulation model (GCM). Therefore, we are interested in estimating the average of the solutions of such fine-grained problems using only coarse grained data, a science or art called stochastic radiation transfer. Results of the described field test indicate that the stochastic description is a somewhat better fit to the data than is a fractional cloud cover model, but more data are needed. 1 ref., 3 figs.

  14. A field test of the TIME patient simulation model.

    PubMed

    Harless, W G; Duncan, R C; Zier, M A; Ayers, W R; Berman, J R; Pohl, H S

    1990-05-01

    The Technological Innovations in Medical Education (TIME) Project has created an interactive videodisc patient-simulation model that provides faculty with a new method for patient-centered teaching in the medical school classroom. The TIME model is designed to be controlled by a professor in the classroom setting, and incorporates voice recognition technology and video dramatization to create a believable patient encounter. Under the auspices of the Lister Hill National Center for Biomedical Communications, National Library of Medicine, where the Project originated in 1983, three medical schools participated in a field test of this "high-tech" model. Six faculty members made ten classroom presentations of two TIME simulations to 306 second-year medical students. The principal finding was that, in a group setting, a large majority of the students at all three schools became individually committed to the care and management of the simulated patient. They acted as if the patient's problems were real and left the session feeling as though they had interacted with an actual person. Therefore, in terms of simulating a real patient, the TIME patient-simulation model was validated, providing the basis for the development of new patient-centered methods to teach and test medical students in the classroom setting. The Project has been at the Georgetown University School of Medicine, where the model is being introduced into the existing curriculum, since 1988. It is currently being used as a part of the final examination for second-year students and in discussion-group settings for fourth-year students in the internal medicine clerkship. A field test is also under way using the TIME model to assess the clinical performance of third-year students.

  15. The effect of performance feedback on cardiorespiratory fitness field tests.

    PubMed

    Metsios, G S; Flouris, A D; Koutedakis, Y; Theodorakis, Y

    2006-06-01

    We investigated the effects of performance feedback (PF) on predicting maximal oxygen uptake (VO2 max) using the 20 m Multistage Shuttle Run Test (MST) and 20 m Square Shuttle Test (SST). The agreement between these two field tests in relation to laboratory VO2 max was also examined. Forty healthy males (age: 21.5+/-2.3; BMI: 23.7+/-2.0) randomly performed four indirect VO2 max tests; that is the MST and SST, as well as a modified version of MST (MSTMD) and SST (SSTMD). During MST and SST subjects received PF with respect to both test stage and running pace. In contrast, MSTMD and SSTMD incorporated auditory feedback which solely emitted signals regulating the running pace. Participants also performed a laboratory VO2 max treadmill test (TT). ANOVA demonstrated significant mean predicted VO2 max decrements in both MSTMD (p<0.001) and SSTMD (p<0.05) compared to MST and SST, respectively. In predicting TTVO2 max, the '95% limits of agreement' analysis indicated errors equal to 3.6+/-9.6 and 1.4+/-10.3 ml kg-1 min-1 with coefficients of variation of +/-10.0% and +/-10.9%, for MST and MSTMD, respectively. The corresponding '95% limits of agreement' values for SST and SSTMD were 0.1+/-5.0 and -1.1+/-6.1 ml kg-1 min-1 with coefficients of variation of +/-5.4% and +/-6.7%, respectively. It is concluded that the application of PF leads to superior field testing performances.

  16. Comparison of two aerobic field tests in young tennis players.

    PubMed

    Fargeas-Gluck, Marie-Agnès; Léger, Luc A

    2012-11-01

    This study compares the maximal responses of a new aerobic tennis field test, the NAVTEN to a known aerobic field test, often used with young tennis players, that is, the continuous multistage 20-m shuttle run test (20-m SRT). The NAVTEN is an intermittent (1-minute/1-minute) multistage test with side-to-side displacements and ball hitting. Ten young elite tennis players aged 12.9 ± 0.3 (mean ± SD) randomly performed both tests and were continuously monitored for heart rate (HR) and oxygen uptake (V[Combining Dot Above]O2) using the Vmax ST (Sensormedics). The 20-m SRT and NAVTEN show similar HRpeak (202 ± 6.1 vs. 208 ± 9.5, respectively) and V[Combining Dot Above]O2peak (54.2 ± 5.9 vs. 54.9 ± 6.0 ml·kg·min). Pearson correlations between both tests were 0.88 and 0.92 for V[Combining Dot Above]O2peak and maximal speed, respectively. The NAVTEN yielded V[Combining Dot Above]O2peak values that are typical for active subjects of that age and are similar to the 20-m SRT supporting its use to measure aerobic fitness of young tennis players in specific and entertaining field conditions. The fact that two-thirds of the tennis players achieved a different ranking (±1 rank) with the NAVTEN and the 20-m SRT suggests that the NAVTEN may be more specific than the 20-m SRT to assess aerobic fitness of tennis players. From a practical point of view, the NAVTEN test is more specific and pedagogical for young tennis players even though both tests yield similar maximal values.

  17. Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.

    2012-05-01

    U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.

  18. Remote sensing and field test capabilities at U.S. Army Dugway Proving Ground

    NASA Astrophysics Data System (ADS)

    Pearson, James T.; Herron, Joshua P.; Marshall, Martin S.

    2011-11-01

    U.S. Army Dugway Proving Ground (DPG) is a Major Range and Test Facility Base (MRTFB) with the mission of testing chemical and biological defense systems and materials. DPG facilities include state-of-the-art laboratories, extensive test grids, controlled environment calibration facilities, and a variety of referee instruments for required test measurements. Among these referee instruments, DPG has built up a significant remote sensing capability for both chemical and biological detection. Technologies employed for remote sensing include FTIR spectroscopy, UV spectroscopy, Raman-shifted eye-safe lidar, and other elastic backscatter lidar systems. These systems provide referee data for bio-simulants, chemical simulants, toxic industrial chemicals (TICs), and toxic industrial materials (TIMs). In order to realize a successful large scale open-air test, each type of system requires calibration and characterization. DPG has developed specific calibration facilities to meet this need. These facilities are the Joint Ambient Breeze Tunnel (JABT), and the Active Standoff Chamber (ASC). The JABT and ASC are open ended controlled environment tunnels. Each includes validation instrumentation to characterize simulants that are disseminated. Standoff systems are positioned at typical field test distances to measure characterized simulants within the tunnel. Data from different types of systems can be easily correlated using this method, making later open air test results more meaningful. DPG has a variety of large scale test grids available for field tests. After and during testing, data from the various referee instruments is provided in a visual format to more easily draw conclusions on the results. This presentation provides an overview of DPG's standoff testing facilities and capabilities, as well as example data from different test scenarios.

  19. Postoutbreak disinfection of mobile equipment.

    PubMed

    Alphin, R L; Ciaverelli, C D; Hougentogler, D P; Johnson, K J; Rankin, M K; Benson, E R

    2010-03-01

    Current control strategies for avian influenza virus, exotic Newcastle disease, and other highly contagious poultry diseases include surveillance, quarantine, depopulation, disposal, and decontamination. Skid steer loaders and other mobile equipment are extensively used during depopulation and disposal. Movement of contaminated equipment has been implicated in the spread of disease in previous outbreaks. One approach to equipment decontamination is to power wash the equipment, treat with a liquid disinfectant, change any removable filters, and let it sit idle for several days. In this project, multiple disinfectant strategies were individually evaluated for their effectiveness at inactivating Newcastle disease virus (NDV) on mechanical equipment seeded with the virus. A small gasoline engine was used to simulate typical mechanical equipment. A high titer of LaSota strain, NDV was applied and dried onto a series of metal coupons. The coupons were then placed on both interior and exterior surfaces of the engine. Liquid disinfectants that had been effective in the laboratory were not as effective at disinfecting the engine under field conditions. Indirect thermal fog showed a decrease in overall virus titer or strength. Direct thermal fog was more effective than liquid spray application or indirect thermal fog application.

  20. Recycled Water Poses Disinfectant Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses the possible health hazards resulting from released nucleic acid of inactivated viruses, chlorinated nonliving organic molecules, and overestimated reliability of waste treatment standards. Suggests the recycle system use a dual disinfectant such as chlorine and ozone in water treatment. (CC)

  1. Recycled Water Poses Disinfectant Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1973

    1973-01-01

    Discusses the possible health hazards resulting from released nucleic acid of inactivated viruses, chlorinated nonliving organic molecules, and overestimated reliability of waste treatment standards. Suggests the recycle system use a dual disinfectant such as chlorine and ozone in water treatment. (CC)

  2. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test.

    PubMed

    Nie, Xuebiao; Liu, Wenjun; Zhang, Liping; Liu, Qing

    2017-06-01

    The genotoxicity of drinking water treated with 6 disinfection methods and the effects of disinfection conditions were investigated using the umu-test. The pretreatment procedure of samples for the umu-test was optimized for drinking water analysis. The results of the umu-test were in good correlation with those of the Ames-test. The genotoxicity and production of haloacetic acids (HAAs) were the highest for chlorinated samples. UV+chloramination is the safest disinfection method from the aspects of genotoxicity, HAA production and inactivation effects. For chloramination, the effects of the mass ratio of Cl2 to N of chloramine on genotoxicity were also studied. The changes of genotoxicity were different from those of HAA production, which implied that HAA production cannot represent the genotoxic potential of water. The genotoxicity per chlorine decay of chlorination and chloramination had similar trends, indicating that the reaction of organic matters and chlorine made a great contribution to the genotoxicity. The results of this study are of engineering significance for optimizing the operation of waterworks. Copyright © 2016. Published by Elsevier B.V.

  3. Evaluation of propidium monoazide-quantitative PCR to detect viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet disinfection.

    PubMed

    Lee, Eun-Sook; Lee, Man-Ho; Kim, Bog-Soon

    2015-10-01

    We evaluated whether propidium monoazide (PMA) combined with real-time quantitative PCR (qPCR) is suitable for detecting viable Mycobacterium fortuitum after chlorine, ozone, and ultraviolet (UV) disinfection. PMA-qPCR was effective in determining the viability of M. fortuitum compared with qPCR based on the membrane integrity. However, with a mild chlorine concentration, PMA-qPCR as an alternative method was not applicable due to a large gap between loss of culturability and membrane integrity damage. In ozonation, PMA-qPCR was able to differentiate between viable and injured mycobacteria, and the results were similar to those obtained by the culture method. Interestingly, PMA-qPCR was successful in monitoring the viability after UV disinfection due to the long UV exposure needed to effectively inactivate M. fortuitum. The findings of the present study suggested that the characteristics of disinfectants and the M. fortuitum resistance to disinfectants play critical roles in determining the suitability of PMA-qPCR for evaluating the efficacy of disinfection methods.

  4. Waterborne outbreak control: which disinfectant?

    PubMed

    Akin, E W; Hoff, J C; Lippy, E C

    1982-12-01

    Drinking water disinfection was shown to be an important public health measure around the turn of the century. In the United States, it was perhaps the single most important factor in controlling typhoid fever, a waterborne disease that was rampant throughout the world during the last century. It may also be assumed that disinfection was important in limiting the number of cases of other diseases known to be capable of waterborne transmission, i.e., cholera, amebiasis, shigellosis, salmonellosis, and hepatitis A. Even though modern treatment has eliminated water as a major vehicle of infectious disease transmission, outbreaks still occur. In fact, the annual number has been increasing since 1966. Interruption in chlorination or failure to achieve adequate levels of chlorine residual is the most often identified deficiency of the involved water supplies. This finding indicates that waterborne microbial pathogens remain as a potential health threat and underscores the importance of disinfection. From the outset, chlorination has been the drinking water disinfectant of choice in the country. Numerous studies have demonstrated its ability to inactivate bacterial, viral, and protozoal pathogens when applied under proper conditions. However, the finding that chlorinated organics that are potentially carcinogenic are formed has prompted an evaluation of alternative disinfectants. The viable alternatives to chlorine currently under consideration for widespread use are ozone, chlorine dioxide, and chloramines. In terms of biocidal efficiency, ozone is the most potent of the three. Chlorine dioxide is about the equivalent of free chlorine in the hypochlorous acid form but much more efficient than the hypochlorite form of free chlorine. The chloramines are weaker biocides than hypochlorite. Although this general order of ranking of efficiency holds for diverse types of microorganisms, quantitative comparisons vary with different microorganisms and experimental conditions.

  5. Formation and modeling of disinfection by-products in drinking water of six cities in China.

    PubMed

    Ye, Bixiong; Wang, Wuyi; Yang, Linsheng; Wei, Jianrong; E, Xueli

    2011-05-01

    Water quality parameters including TOC, UV(254), pH, chlorine dosage, bromide concentration and disinfection by-products were measured in water samples from 41 water treatment plants of six selected cities in China. Chloroform, bromodichloromethane, dibromochloromethane, dichloroacetic acid and trichloroacetic acid were the major disinfection by-products in the drinking water of China. Bromoform and dibromoacetic acid were also detected in many water samples. Higher concentrations of trihalomethanes and haloacetic acids were measured in summer compared to winter. The geographical variations in DBPs showed that TTHM levels were higher in Zhengzhou and Tianjin than other selected cities. And the HAA5 levels were highest in Changsha and Tianjin. The modeling procedure that predicts disinfection by-products formation was studied and developed using artificial neural networks. The performance of the artificial neural networks model was excellent (r > 0.84).

  6. Laboratory and field testing of improved geothermal rock bits

    SciTech Connect

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-07-01

    The development and testing of 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bits are described. The new bits were fabricated by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability, and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Two types of experimental bits were subjected to laboratory air drilling tests at 250/sup 0/C (482/sup 0/F) in cast iron. These tests indicated field testing could be conducted without danger to the hole, and that bearing wear would be substantially reduced. Six additional experimental bits, and eight conventional bits were then subjected to air drilling a 240/sup 0/C (464/sup 0/F) in Francisan Graywacke at The Geysers, CA. The materials selected improved roller wear by 200%, friction-pin wear by 150%, and lug wear by 150%. Geysers drilling performances compared directly to conventional bits indicate that in-gage drilling life was increased by 70%. All bits at The Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole over the conventional bits. These tests demonstrated a potential well cost reduction of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  7. Characterization Efforts in a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Sassani, D.; Freeze, G. A.; Hardin, E. L.; Brady, P. V.

    2016-12-01

    The US Department of Energy Office of Nuclear Energy is embarking on a Deep Borehole Field Test to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages, including incremental construction and loading and the enhanced natural barriers provided by deep continental crystalline basement. Site characterization activities will include geomechanical (i.e., hydrofracture stress measurements), geological (i.e., core and mud logging), hydrological (i.e., packer-based pulse and pumping tests), and chemical (i.e., fluids sampled in situ from packer intervals and extracted from cores) tests. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth and interpretation of material and system parameters relevant to numerical site simulation. We explore the effects fluid density and geothermal temperature gradients (i.e., thermohaline convection) have on characterization goals in light of expected downhole conditions, including a disturbed rock zone surrounding the borehole. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Background field coils for the High Field Test Facility

    SciTech Connect

    Zbasnik, J.P.; Cornish, D.N.; Scanlan, R.M.; Jewell, A.M.; Leber, R.L.; Rosdahl, A.R.; Chaplin, M.R.

    1980-09-22

    The High Field Test Facility (HFTF), presently under construction at LLNL, is a set of superconducting coils that will be used to test 1-m-o.d. coils of prototype conductors for fusion magnets in fields up to 12 T. The facility consists of two concentric sets of coils; the outer set is a stack of Nb-Ti solenoids, and the inner set is a pair of solenoids made of cryogenically-stabilized, multifilamentary Nb/sub 3/Sn superconductor, developed for use in mirror-fusion magnets. The HFTF system is designed to be parted along the midplane to allow high-field conductors, under development for Tokamak fusion machines, to be inserted and tested. The background field coils were wound pancake-fashion, with cold-welded joints at both the inner and outer diameters. Turn-to-turn insulation was fabricated at LLNL from epoxy-fiberglass strip. The coils were assembled and tested in our 2-m-diam cryostat to verify their operation.

  9. Field test of a post-closure radiation monitor

    SciTech Connect

    Reed, S.E.; Christy, C.E.; Heath, R.E.

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  10. The Savannah River Technology Center environmental monitoring field test platform

    SciTech Connect

    Rossabi, J.

    1993-03-05

    Nearly all industrial facilities have been responsible for introducing synthetic chemicals into the environment. The Savannah River Site is no exception. Several areas at the site have been contaminated by chlorinated volatile organic chemicals. Because of the persistence and refractory nature of these contaminants, a complete clean up of the site will take many years. A major focus of the mission of the Environmental Sciences Section of the Savannah River Technology Center is to develop better, faster, and less expensive methods for characterizing, monitoring, and remediating the subsurface. These new methods can then be applied directly at the Savannah River Site and at other contaminated areas in the United States and throughout the world. The Environmental Sciences Section has hosted field testing of many different monitoring technologies over the past two years primarily as a result of the Integrated Demonstration Program sponsored by the Department of Energy`s Office of Technology Development. This paper provides an overview of some of the technologies that have been demonstrated at the site and briefly discusses the applicability of these techniques.

  11. Cooperative field test program for wind systems. Final report

    SciTech Connect

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  12. Portable narcotics detector and the results obtained in field tests

    NASA Astrophysics Data System (ADS)

    Tumer, Tumay O.; Su, Chih-Wu; Kaplan, Christopher R.; Rigdon, Stephen W.

    1997-02-01

    A compact integrated narcotics detection instrument (CINDI) has been developed at NOVA R&D, Inc. with funding provided by the U.S. Coast Guard. CINDI is designed as a portable sensitive neutron backscatter detector which has excellent penetration for thick and high Z compartment barriers. It also has a highly sensitive detection system for backscattered neutrons and, therefore, uses a very weak californium-252 neutron source. Neutrons backscatter profusely from materials that have a large hydrogen content, such as narcotics. The rate of backscattered neutrons detected is analyzed by a microprocessor and displayed on the control panel. The operator guides the detector along a suspected area and displays in real time the backscattered neutron rate. CINDI is capable of detecting narcotics effectively behind panels made of steel, wood, fiberglass, or even lead-lined materials. This makes it useful for inspecting marine vessels, ship bulkheads, automobiles, structure walls or small sealed containers. The strong response of CINDI to hydrogen-rich materials such as narcotics makes it an effective tool for detecting concealed drugs. Its response has been field tested by NOVA, the U.S. Coast Guard and Brewt Power Systems. The results of the tests show excellent response and specificity to narcotic drugs. Several large shipments of concealed drugs have been discovered during these trials and the results are presented and discussed.

  13. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  14. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Reliability and validity of the soccer specific INTER field test.

    PubMed

    Aandstad, Anders; Simon, Elena V

    2013-01-01

    The aims of this study were to explain how the Intermittent Endurance Running (INTER) test is executed, describe physiological responses during testing, and evaluate reliability and content validity in this new soccer specific test. The test consists of 20 m shuttle running, interspersed with straight sprints, agility sprints, walking and resting. Shuttle run speed is increased at each level until exhaustion. Thirteen male professional players participated in the present study. Exercise tolerance time, distance covered, mean blood lactate and mean heart rate were 25:51 ± 2:41 min, 2892 ± 324 m, 5.5 ± 1.2 mmol · L(-1) and 161 ± 11 beats · min(-1), respectively, during the INTER test. Sprint and agility performance decreased significantly at higher levels. Eight of the players performed a retest for reliability evaluations. Mean difference ± 95% limits of agreement, coefficient of variation (CV) and intraclass correlation coefficient (ICC) for exercise tolerance time between test and retest were -00:41 ± 02:25 min, 2.5% and 0.75, respectively. The CV for sprint and agility performance between test and retest was <1%. The INTER test mimics soccer games on distance/time ratio, frequency of sprints, heart rate and blood lactate values, and could be an alternative field test for evaluating essential physical performance aspects in soccer players.

  16. Results of field testing of waste forms using lysimeters

    SciTech Connect

    McConnell, J.W., Jr.; Rogers, R.D.

    1988-01-01

    The purpose of the field testing task, using lysimeter arrays, is to expose samples of solidified resin waste to the actual physical, chemical, and microbiological conditions of disposal enviroment. Wastes used in the experiment include a mixture of synthetic organic ion exchange resins and a mixture of organic exchange resins and an inorganic zeolite. Solidification agents used to produce the 4.8-by 7.6-cm cylindrical waste forms used in the study were Portland Type I-II cement and Dow vinyl ester-styrene. Seven of these waste forms were stacked end-to-end and inserted into each lysimeter to provide a 1-L volume. There are 10 lysimeters, 5 at ORNL and 5 at ANL-E. Lysimeters used in this study were designed to be self-contained units which will be disposed at the termination of the 20-year study. Each is a 0.91-by 3.12-m right-circular cylinder divided into an upper compartment, which contains fill material, waste forms, and instrumentation, and an empty lower compartment, which collects leachate. Four lysimeters at each site are filled with soil, while a fifth (used as a control) is filled with inert silica oxide sand. Instrumentation within each lysimeter includes porous cup soil-water samplers and soil moisture/temperature probes. The probes are connected to an on-site data acquisition and storage system (DAS) which also collects data from a field meteorological station located at each site. 9 refs.

  17. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants.

    PubMed

    Hua, Guanghui; Reckhow, David A

    2007-04-01

    Seven diverse natural waters were collected and treated in the laboratory under five oxidation scenarios (chlorine, chloramine, both with and without preozonation, and chlorine dioxide). The impact of these disinfectants on the formation of disinfection byproducts was investigated. Results showed that preozonation decreased the formation of trihalomethanes (THMs), haloacetic acids (HAAs) and total organic halogen (TOX) for most waters during postchlorination. A net increase in THMs, HAAs and TOX was observed for a water of low humic content. Either decreases or increases were observed in dihaloacetic acids and unknown TOX (UTOX) as a result of preozonation when used with chloramination. Chloramines and chlorine dioxide produced a higher percentage of UTOX than free chlorine. They also formed more iodoform and total organic iodine (TOI) than free chlorine in the presence of iodide. Free chlorine produced a much higher level of total organic chlorine (TOCl) and bromine (TOBr) than chloramines and chlorine dioxide in the presence of bromide.

  18. Molecular Viability Testing of UV-Inactivated Bacteria.

    PubMed

    Weigel, Kris M; Nguyen, Felicia K; Kearney, Moira R; Meschke, John S; Cangelosi, Gerard A

    2017-03-10

    The polymerase chain reaction (PCR) is effective at detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific ribosomal RNA precursor (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli, Aeromonas hydrophila, and Enterococcus faecalis cells by ultraviolet (UV) irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA post-irradiation (generating false-positive MVT results), but this activity ceased within one hour following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment.IMPORTANCE Ultraviolet (UV) irradiation is increasingly used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results. This is due to the detection of "remnant" DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living from dead microbial cells after UV disinfection.

  19. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review.

    PubMed

    Gassie, Lucien W; Englehardt, James D

    2017-08-30

    Net-zero greywater (NZGW) reuse, or nearly closed-loop recycle of greywater for all original uses, can recover both water and its attendant hot-water thermal energy, while avoiding the installation and maintenance of a separate greywater sewer in residential areas. Such a system, if portable, could also provide wash water for remote emergency health care units. However, such greywater reuse engenders human contact with the recycled water, and hence superior treatment. The purpose of this paper is to review processes applicable to the mineralization of organics, including control of oxidative byproducts such as bromate, and maintenance of disinfection consistent with potable reuse guidelines, in NZGW systems. Specifically, TiO2-UV, UV-hydrogen peroxide, hydrogen peroxide-ozone, ozone-UV advanced oxidation processes, and UV, ozone, hydrogen peroxide, filtration, and chlorine disinfection processes were reviewed for performance, energy demand, environmental impact, and operational simplicity. Based on the literature reviewed, peroxone is the most energy-efficient process for organics mineralization. However, in portable applications where delivery of chemicals to the site is a concern, the UV-ozone process appears promising, at higher energy demand. In either case, reverse osmosis, nanofiltration, or ED may be useful in controlling the bromide precursor in make-up water, and a minor side-stream of ozone may be used to prevent microbial regrowth in the treated water. Where energy is not paramount, UV-hydrogen peroxide and UV-TiO2 can be used to mineralize organics while avoiding bromate formation, but may require a secondary process to prevent microbial regrowth. Chlorine and ozone may be useful for maintenance of disinfection residual. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. DISINFECTION BY-PRODUCT FORMATION BY ALTERNATIVE DISINFECTANTS AND REMOVAL BY GRANULAR ACTIVATED CARBON

    EPA Science Inventory

    The effects of the use of the alternative disinfectants on the formation of halogenated disinfection by–products (DBPs) including total organic halide, trihalomethanes, haloacetic acids, haloacetonitriles, haloketones, chloral hydrate, and chloropicrin, were examined along ...

  1. UV Discharge Lamp on Alcohol Vapor

    NASA Astrophysics Data System (ADS)

    Avtaeva, Svetlana; Heneral, Andrij

    2009-10-01

    The non coherent sources of UV radiation based on safe and nontoxic gaseous mixtures have good aspects for different applications. The paper reports about experimental investigations of the high voltage capacitive discharge in alcohol vapor. The time-integrated emission spectra have been studied in the wavelength interval from 200 to 400 nm at alcohol vapor pressure of 1 Torr. In the spectra the most intensive bands were vibrational bands of the CO(b->a) transition with heads at 283.3 (0-0), 297.7 (0-1), 313.4 (0-2), 330.5 (0-3) and 349.3 nm (0-4). The (0-2) band of CO molecules superimposes with (0-0) and (1-1) vibrational bands of the CH(C->X) transition with Q-heads at 314.49 and 315.66 nm on the long wavelength side and with bands of OH radicals with intensity maximums at 308.1 and 309.2 nm (A->X transition) on the short wavelength side. No other radiating species were detected. The emitting surface area of the lamp is 220 cm^2, average output power of the UV radiation is 70 mW and the estimated efficiency is 0.2%. This source of UV radiation can be applied in photochemistry, in medicine, for disinfection of medical tools, in ecology and for purification and disinfection of water from different pathogenic microorganisms.

  2. 40 CFR 270.63 - Permits for land treatment demonstrations using field test or laboratory analyses.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the field test or laboratory analyses, or as a two-phase facility permit covering the field tests, or... laboratory analyses. (b) If the Director finds that a phased permit may be issued, he will establish, as requirements in the first phase of the facility permit, conditions for conducting the field tests or...

  3. 40 CFR 270.63 - Permits for land treatment demonstrations using field test or laboratory analyses.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the field test or laboratory analyses, or as a two-phase facility permit covering the field tests, or... laboratory analyses. (b) If the Director finds that a phased permit may be issued, he will establish, as requirements in the first phase of the facility permit, conditions for conducting the field tests or...

  4. 40 CFR 270.63 - Permits for land treatment demonstrations using field test or laboratory analyses.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the field test or laboratory analyses, or as a two-phase facility permit covering the field tests, or... laboratory analyses. (b) If the Director finds that a phased permit may be issued, he will establish, as requirements in the first phase of the facility permit, conditions for conducting the field tests or...

  5. 40 CFR 270.63 - Permits for land treatment demonstrations using field test or laboratory analyses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the field test or laboratory analyses, or as a two-phase facility permit covering the field tests, or... laboratory analyses. (b) If the Director finds that a phased permit may be issued, he will establish, as requirements in the first phase of the facility permit, conditions for conducting the field tests or...

  6. 40 CFR 1048.515 - What are the field-testing procedures?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What are the field-testing procedures... § 1048.515 What are the field-testing procedures? (a) This section describes the procedures to determine whether your engines meet the field-testing emission standards in § 1048.101(c). These procedures...

  7. 40 CFR 35.2211 - Field testing for Innovative and Alternative Technology Report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Field testing for Innovative and... Treatment Works § 35.2211 Field testing for Innovative and Alternative Technology Report. The grantee shall submit a report containing the procedure, cost, results and conclusions of any field testing. The...

  8. 40 CFR 1048.515 - What are the field-testing procedures?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What are the field-testing procedures... § 1048.515 What are the field-testing procedures? (a) This section describes the procedures to determine whether your engines meet the field-testing emission standards in § 1048.101(c). These procedures...

  9. 40 CFR 35.2211 - Field testing for Innovative and Alternative Technology Report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Field testing for Innovative and... Treatment Works § 35.2211 Field testing for Innovative and Alternative Technology Report. The grantee shall submit a report containing the procedure, cost, results and conclusions of any field testing. The...

  10. Comparative evaluation of iodoacids removal by UV/persulfate and UV/H2O2 processes.

    PubMed

    Xiao, Yongjun; Zhang, Lifeng; Zhang, Wei; Lim, Kok-Yong; Webster, Richard D; Lim, Teik-Thye

    2016-10-01

    To develop a cost-effective method for post-formation mitigation of iodinated disinfection by-products, degradation of iodoacids by UV, UV/PS (persulfate), and UV/H2O2 was extensively investigated in this study. UV direct photolysis of 4 iodoacids followed first-order kinetics with rate constants in the range of 2.43 × 10(-4)-3.02 × 10(-3) cm(2) kJ(-1). The derived quantum yields (Ф254) of the 4 iodoacids range from 0.13 to 0.34, respectively. A quantitative structure-activity relationship (QSAR) model was subsequently established and applied to predict the direct photolysis rates of 6 other structurally similar iodoacids whose standards are commercially unavailable. At a UV dose of 140 mJ cm(-2) which is typically applied for disinfection of drinking water, the removal percentages of 4 iodoacids were only between 3.35% and 34.7%. Thus, ICH2CO2H (IAA), the most photo-recalcitrant species, was selected as the target compound for removal in the UV/PS and UV/H2O2 processes. The IAA degradation rates decreased with increasing pH from 3 to 11 in both processes. Humic acid (HA) and HCO3(-) had inhibitory effects on IAA degradation in both processes. Cl(-) adversely affected the IAA degradation in the UV/PS process but had no effect in the UV/H2O2 process. Generally, in the deionized (DI) water, surface water, treated drinking water, and secondary effluent, UV/PS process is more effective than UV/H2O2 process for IAA removal, based on the same molar ratio of oxidant: IAA. SO4(-) generated in the UV/PS process yields a greater mineralization of IAA than HO in the UV/H2O2 process. IO3(-) was the predominant end-product in the UV/PS process, while I(-) was the major end-product in the UV/H2O2 process. The respective contributions of UV, HO, and SO4(-) for IAA removal in the UV/PS process were 7.8%, 14.7%, and 77.5%, respectively, at a specific condition (1.5 μM IAA, 60 μM oxidant, and pH 7). Compared to UV/H2O2 process, UV/PS was also observed as more cost

  11. Transformation pathways and acute toxicity variation of 4-hydroxyl benzophenone in chlorination disinfection process.

    PubMed

    Liu, Wei; Wei, Dongbin; Liu, Qi; Du, Yuguo

    2016-07-01

    Benzophenones compounds (BPs) are widely used as UV filters, and have been frequently found in multiple environmental matrices. The residual of BPs in water would cause potential threats on ecological safety and human health. Chlorination disinfection is necessary in water treatment process, in which many chemicals remained in water would react with disinfectant chlorine and form toxic by-products. By using ultra performance liquid phase chromatography quadrupole time of flight mass spectrometer (UPLC-QTOF-MS), nuclear magnetic resonance (NMR), the transformation of 4-hydroxyl benezophenone (4HB) with free available chlorine (FAC) was characterized. Eight major products were detected and seven of them were identified. Transformation pathways of 4HB under acid, neutral, and alkaline conditions were proposed respectively. The transformation mechanisms involved electrophilic chlorine substitution of 4HB, Baeyer-Villiger oxidation of ketones, hydrolysis of esters and oxidative breakage of benzene ring. The orthogonal experiments of pH and dosages of disinfectant chlorine were conducted. The results suggested that pH conditions determined the occurrence of reaction types, and the dosages of disinfectant chlorine affected the extent of reactions. Photobacterium assay demonstrated that acute toxicity had significant increase after chlorination disinfection of 4HB. It was proved that 3,5-dichloro-4HB, one of the major transformation products, was responsible for the increasing acute toxicity after chlorination. It is notable that, 4HB at low level in real ambient water matrices could be transformed during simulated chlorination disinfection practice. Especially, two major products 3-chloro-4HB and 3,5-dichloro-4HB were detected out, implying the potential ecological risk after chlorination disinfection of 4HB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Toxicity evaluation of surface water treated with different disinfectants in HepG2 cells.

    PubMed

    Marabini, Laura; Frigerio, Silvia; Chiesara, Enzo; Radice, Sonia

    2006-01-01

    It is well known that water disinfection through chlorination causes the formation of a mixture of disinfection by-products (DBPs), many of which are genotoxic and carcinogenic. To demonstrate the formation of such compounds, a pilot water plant supplied with water from Lake Trasimeno was set up at the waterworks of Castiglione del Lago (PG, Italy). The disinfectants, continuously added to pre-filtered lake water flowing into three different basins, were sodium hypochlorite, chlorine dioxide and peracetic acid, an alternative disinfectant used until now for disinfecting waste waters, but not yet studied for a possible use in drinking water treatment. The aim of this study was to evaluate the formation during the disinfection processes of some toxic compounds that could explain the genotoxic effects of drinking waters. Differently treated waters were concentrated by solid-phase adsorption on silica C(18) columns and toxicity was assessed in a line of human hepatoma cells (HepG2), a metabolically competent cellular line very useful for human risk evaluation. The seasonal variability of the physical-chemical water characteristics (AOX, UV 254 nm, potential formation of THM, pH and temperature) made indispensable experimentation with water samples taken during the various seasons. Autumn waters cause greater toxicity compared to those of other seasons, in particular dilution of the concentrate at 0.5l equivalent of disinfected waters with chlorine dioxide and peracetic acid causes a 55% reduction in cellular vitality while the cellular vitality is over 80% with the all other water concentrates. Moreover it is very interesting underline that non-cytotoxic quantities of the autumnal water concentrates cause, after 2h treatment, a decrease in GSH and a statistically significant increase in oxygen radicals, while after prolonged treatment (24h) cause a GSH increase, without variations in the oxygen radical content. This phenomenon could be interpreted as the cellular

  13. Status report on analytical methods to support the disinfectant/disinfection by-products regulation

    SciTech Connect

    Not Available

    1992-08-01

    The U.S. EPA is developng national regulations to control disinfectants and disinfection by-products in public drinking water supplies. Twelve disinfectants and disinfection by-products are identified for possible regulation under this rule. The document summarizes the analytical methods that EPA intends to propose as compliance monitoring methods. A discussion of surrogate measurements that are being considered for inclusion in the regulation is also provided.

  14. Effect of Exposure to UV-C Irradiation and Monochloramine on Adenovirus Serotype 2 Early Protein Expression and DNA Replication▿

    PubMed Central

    Sirikanchana, Kwanrawee; Shisler, Joanna L.; Mariñas, Benito J.

    2008-01-01

    The mechanisms of adenovirus serotype 2 inactivation with either UV light (with a narrow emission spectrum centered at 254 nm) or monochloramine were investigated by assessing the potential inhibition of two key steps of the adenovirus life cycle, namely, E1A protein synthesis and viral genomic replication. E1A early protein synthesis was assayed by using immunoblotting, while the replication of viral DNA was analyzed by using slot blotting. Disinfection experiments were performed in phosphate buffer solutions at pH 8 and room temperature (UV) or 20°C (monochloramine). Experimental results revealed that normalized E1A levels at 12 h postinfection (p.i.) were statistically the same as the corresponding decrease in survival ratio for both UV and monochloramine disinfection. Normalized DNA levels at 24 h p.i. were also found to be statistically the same as the corresponding decrease in survival ratio for monochloramine disinfection. In contrast, for UV disinfection, genomic DNA levels were much lower than E1A or survival ratios, possibly as a result of a delay in DNA replication for UV-treated virions compared to that for controls. Future efforts will determine the pre-E1A synthesis step in the adenovirus life cycle affected by exposure to UV and monochloramine, with the goal of identifying the viral molecular target of these two disinfectants. PMID:18424543

  15. Effect of exposure to UV-C irradiation and monochloramine on adenovirus serotype 2 early protein expression and DNA replication.

    PubMed

    Sirikanchana, Kwanrawee; Shisler, Joanna L; Mariñas, Benito J

    2008-06-01

    The mechanisms of adenovirus serotype 2 inactivation with either UV light (with a narrow emission spectrum centered at 254 nm) or monochloramine were investigated by assessing the potential inhibition of two key steps of the adenovirus life cycle, namely, E1A protein synthesis and viral genomic replication. E1A early protein synthesis was assayed by using immunoblotting, while the replication of viral DNA was analyzed by using slot blotting. Disinfection experiments were performed in phosphate buffer solutions at pH 8 and room temperature (UV) or 20 degrees C (monochloramine). Experimental results revealed that normalized E1A levels at 12 h postinfection (p.i.) were statistically the same as the corresponding decrease in survival ratio for both UV and monochloramine disinfection. Normalized DNA levels at 24 h p.i. were also found to be statistically the same as the corresponding decrease in survival ratio for monochloramine disinfection. In contrast, for UV disinfection, genomic DNA levels were much lower than E1A or survival ratios, possibly as a result of a delay in DNA replication for UV-treated virions compared to that for controls. Future efforts will determine the pre-E1A synthesis step in the adenovirus life cycle affected by exposure to UV and monochloramine, with the goal of identifying the viral molecular target of these two disinfectants.

  16. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  17. DRINKING WATER DISINFECTION BY-PRODUCTS: WHAT IS KNOWN

    EPA Science Inventory

    Chlorine, ozone, chlorine dioxide, and chloramine are currently the major disinfectants being used to disinfect drinking water. Although the alternative disinfectants (ozone, chlorine dioxide, and chloramine) are increasing in popularity in the United States, chlorine is still us...

  18. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... animals on the aircraft shall be cleaned and disinfected using an approved disinfectant listed in § 71.10... stowage area. The disinfectant solution must be applied with a device that creates an aerosol or mist that...

  19. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... animals on the aircraft shall be cleaned and disinfected using an approved disinfectant listed in § 71.10... stowage area. The disinfectant solution must be applied with a device that creates an aerosol or mist that...

  20. 9 CFR 91.41 - Cleaning and disinfecting of aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... animals on the aircraft shall be cleaned and disinfected using an approved disinfectant listed in § 71.10... stowage area. The disinfectant solution must be applied with a device that creates an aerosol or mist that...