Electric field control of the skyrmion lattice in Cu2OSeO3
NASA Astrophysics Data System (ADS)
White, J. S.; Levatić, I.; Omrani, A. A.; Egetenmeyer, N.; Prša, K.; Živković, I.; Gavilano, J. L.; Kohlbrecher, J.; Bartkowiak, M.; Berger, H.; Rønnow, H. M.
2012-10-01
Small-angle neutron scattering has been employed to study the influence of applied electric (E-)fields on the skyrmion lattice in the chiral lattice magnetoelectric Cu2OSeO3. Using an experimental geometry with the E-field parallel to the [111] axis, and the magnetic field parallel to the [1\\bar {1}0] axis, we demonstrate that the effect of applying an E-field is to controllably rotate the skyrmion lattice around the magnetic field axis. Our results are an important first demonstration for a microscopic coupling between applied E-fields and the skyrmions in an insulator, and show that the general emergent properties of skyrmions may be tailored according to the properties of the host system.
Ion manipulation method and device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.
2017-11-07
An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electricmore » field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Gordon A.; Baker, Erin M.; Smith, Richard D.
2018-05-08
An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electricmore » field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area.« less
Vacuum chamber for ion manipulation device
Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M
2014-12-09
An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. A predetermined number of pairs of surfaces are disposed in one or more chambers, forming a multiple-layer ion mobility cyclotron device.
Local and nonlocal parallel heat transport in general magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del-Castillo-Negrete, Diego B; Chacon, Luis
2011-01-01
A novel approach for the study of parallel transport in magnetized plasmas is presented. The method avoids numerical pollution issues of grid-based formulations and applies to integrable and chaotic magnetic fields with local or nonlocal parallel closures. In weakly chaotic fields, the method gives the fractal structure of the devil's staircase radial temperature profile. In fully chaotic fields, the temperature exhibits self-similar spatiotemporal evolution with a stretched-exponential scaling function for local closures and an algebraically decaying one for nonlocal closures. It is shown that, for both closures, the effective radial heat transport is incompatible with the quasilinear diffusion model.
Ion manipulation device with electrical breakdown protection
Chen, Tsung-Chi; Tang, Keqi; Ibrahim, Yehia M; Smith, Richard D; Anderson, Gordon A; Baker, Erin M
2014-12-02
An ion manipulation method and device is disclosed. The device includes a pair of substantially parallel surfaces. An array of inner electrodes is contained within, and extends substantially along the length of, each parallel surface. The device includes a first outer array of electrodes and a second outer array of electrodes. Each outer array of electrodes is positioned on either side of the inner electrodes, and is contained within and extends substantially along the length of each parallel surface. A DC voltage is applied to the first and second outer array of electrodes. A RF voltage, with a superimposed electric field, is applied to the inner electrodes by applying the DC voltages to each electrode. Ions either move between the parallel surfaces within an ion confinement area or along paths in the direction of the electric field, or can be trapped in the ion confinement area. The surfaces are housed in a chamber, and at least one electrically insulative shield is coupled to an inner surface of the chamber for increasing a mean-free-path between two adjacent electrodes in the chamber.
Influence of magnetic field on evaporation of a ferrofluid droplet
NASA Astrophysics Data System (ADS)
Jadav, Mudra; Patel, R. J.; Mehta, R. V.
2017-10-01
This paper reports the influence of the static magnetic field on the evaporation of a ferrofluid droplet placed on a plane glass substrate. A water based ferrofluid drop is allowed to dry under ambient conditions. Like all other fluids, this fluid also exhibits well-known coffee ring patterns under zero field conditions. This pattern is shown to be modulated by applying the static magnetic field. When the field is applied in a direction perpendicular to the plane of the substrate, the thickness of the ring decreases with an increase in the field, and under a critical value of the field, the coffee-ring effect is suppressed. For the parallel field configuration, linear chains parallel to the plane of the substrate are observed. The effect of the field on the evaporation rate and temporal variation of the contact angle is also studied. The results are analyzed in light of available models. These findings may be useful in applications like ink-jet printing, lithography, and painting and display devices involving ferrofluids.
Parallel pumping of a ferromagnetic nanostripe: Confinement quantization and off-resonant driving
NASA Astrophysics Data System (ADS)
Yarbrough, P. M.; Livesey, K. L.
2018-01-01
The parametric excitation of spin waves in a rectangular, ferromagnetic nanowire in the parallel pump configuration and with an applied field along the long axis of the wire is studied theoretically, using a semi-classical and semi-analytic Hamiltonian approach. We find that as a function of static applied field strength, there are jumps in the pump power needed to excite thermal spin waves. At these jumps, there is the possibility to non-resonantly excite spin waves near kz = 0. Spin waves with negative or positive group velocity and with different standing wave structures across the wire width can be excited by tuning the applied field. By using a magnetostatic Green's function that depends on both the nanowire's width and thickness—rather than just its aspect ratio—we also find that the threshold field strength varies considerably for nanowires with the same aspect ratio but of different sizes. Comparisons between different methods of calculations are made and the advantages and disadvantages of each are discussed.
Effect of DC magnetic field on atmospheric pressure argon plasma jet
NASA Astrophysics Data System (ADS)
Safari, R.; Sohbatzadeh, F.
2015-05-01
In this work, external DC magnetic field effect on the atmospheric pressure plasma jet has been investigated, experimentally. The magnetic field has been produced using a Helmholtz coil configuration. It has been applied parallel and transverse to the jet flow. The strength of the DC magnetic field is 0-0.28 and 0-0.57 Tesla between the two coils in parallel and transverse applications, respectively. It has been shown that the plasma gas flow plays the main role in magneto-active collision-dominated plasma. The effect of plasma fluid velocity on the jet emission has been discussed, qualitatively. It has been observed that the external DC magnetic field has different trends in parallel and transverse applications. The measurements reveal that the plasma jet irradiance increases in parallel field, while it decreases in transverse field. The former has been attributed to increasing plasma number density and the latter to loss of plasma species that reduces the magneto-plasma jet irradiance and in turn shrinks plasma jet number density. As a result, the plasma fluid velocity is responsible for such trends though the magneto-active plasma remains isotropic.
ERIC Educational Resources Information Center
Skolnik, Michael L.
2016-01-01
During the last third of the twentieth century, college sectors in many countries took on the role of expanding opportunities for baccalaureate degree attainment in applied fields of study. In many European countries, colleges came to constitute a parallel higher education sector that offered degree programs of an applied nature in contrast to the…
NASA Astrophysics Data System (ADS)
Munira, Kamaram; Pandey, Sumeet C.; Kula, Witold; Sandhu, Gurtej S.
2016-11-01
Voltage-controlled magnetic anisotropy (VCMA) effect has attracted a significant amount of attention in recent years because of its low cell power consumption during the anisotropy modulation of a thin ferromagnetic film. However, the applied voltage or electric field alone is not enough to completely and reliably reverse the magnetization of the free layer of a magnetic random access memory (MRAM) cell from anti-parallel to parallel configuration or vice versa. An additional symmetry-breaking mechanism needs to be employed to ensure the deterministic writing process. Combinations of voltage-controlled magnetic anisotropy together with spin-transfer torque (STT) and with an applied magnetic field (Happ) were evaluated for switching reliability, time taken to switch with low error rate, and energy consumption during the switching process. In order to get a low write error rate in the MRAM cell with VCMA switching mechanism, a spin-transfer torque current or an applied magnetic field comparable to the critical current and field of the free layer is necessary. In the hybrid processes, the VCMA effect lowers the duration during which the higher power hungry secondary mechanism is in place. Therefore, the total energy consumed during the hybrid writing processes, VCMA + STT or VCMA + Happ, is less than the energy consumed during pure spin-transfer torque or applied magnetic field switching.
High order parallel numerical schemes for solving incompressible flows
NASA Technical Reports Server (NTRS)
Lin, Avi; Milner, Edward J.; Liou, May-Fun; Belch, Richard A.
1992-01-01
The use of parallel computers for numerically solving flow fields has gained much importance in recent years. This paper introduces a new high order numerical scheme for computational fluid dynamics (CFD) specifically designed for parallel computational environments. A distributed MIMD system gives the flexibility of treating different elements of the governing equations with totally different numerical schemes in different regions of the flow field. The parallel decomposition of the governing operator to be solved is the primary parallel split. The primary parallel split was studied using a hypercube like architecture having clusters of shared memory processors at each node. The approach is demonstrated using examples of simple steady state incompressible flows. Future studies should investigate the secondary split because, depending on the numerical scheme that each of the processors applies and the nature of the flow in the specific subdomain, it may be possible for a processor to seek better, or higher order, schemes for its particular subcase.
Nongyrotropic Electrons in Guide Field Reconnection
NASA Technical Reports Server (NTRS)
Wendel, D. E.; Hesse, M.; Bessho, N.; Adrian, M. L.; Kuznetsova, M.
2016-01-01
We apply a scalar measure of nongyrotropy to the electron pressure tensor in a 2D particle-in-cell simulation of guide field reconnection and assess the corresponding electron distributions and the forces that account for the nongyrotropy. The scalar measure reveals that the nongyrotropy lies in bands that straddle the electron diffusion region and the separatrices, in the same regions where there are parallel electric fields. Analysis of electron distributions and fields shows that the nongyrotropy along the inflow and outflow separatrices emerges as a result of multiple populations of electrons influenced differently by large and small-scale parallel electric fields and by gradients in the electric field. The relevant parallel electric fields include large-scale potential ramps emanating from the x-line and sub-ion inertial scale bipolar electron holes. Gradients in the perpendicular electric field modify electrons differently depending on their phase, thus producing nongyrotropy. Magnetic flux violation occurs along portions of the separatrices that coincide with the parallel electric fields. An inductive electric field in the electron EB drift frame thus develops, which has the effect of enhancing nongyrotropies already produced by other mechanisms and under certain conditions producing their own nongyrotropy. Particle tracing of electrons from nongyrotropic populations along the inflows and outflows shows that the striated structure of nongyrotropy corresponds to electrons arriving from different source regions. We also show that the relevant parallel electric fields receive important contributions not only from the nongyrotropic portion of the electron pressure tensor but from electron spatial and temporal inertial terms as well.
The Effect of External Magnetic Field on Dielectric Permeability of Multiphase Ferrofluids
NASA Astrophysics Data System (ADS)
Dotsenko, O. A.; Pavlova, A. A.; Dotsenko, V. S.
2018-03-01
Nowadays, ferrofluids are applied in various fields of science and technology, namely space, medicine, geology, biology, automobile production, etc. In order to investigate the feasibility of applying ferrofluids in magnetic field sensors, the paper presents research into the influence of the external magnetic field on dielectric permeability of ferrofluids comprising magnetite nanopowder, multiwall carbon nanotubes, propanetriol and deionized water. The real and imaginary parts of the dielectric permeability change respectively by 3.7 and 0.5% when applying the magnetic field parallel to the electric. The findings suggest that the considered ferrofluid can be used as a magnetic level gauge or in design of variable capacitors.
Plasma Generator Using Spiral Conductors
NASA Technical Reports Server (NTRS)
Szatkowski, George N. (Inventor); Dudley, Kenneth L. (Inventor); Ticatch, Larry A. (Inventor); Smith, Laura J. (Inventor); Koppen, Sandra V. (Inventor); Nguyen, Truong X. (Inventor); Ely, Jay J. (Inventor)
2016-01-01
A plasma generator includes a pair of identical spiraled electrical conductors separated by dielectric material. Both spiraled conductors have inductance and capacitance wherein, in the presence of a time-varying electromagnetic field, the spiraled conductors resonate to generate a harmonic electromagnetic field response. The spiraled conductors lie in parallel planes and partially overlap one another in a direction perpendicular to the parallel planes. The geometric centers of the spiraled conductors define endpoints of a line that is non-perpendicular with respect to the parallel planes. A voltage source coupled across the spiraled conductors applies a voltage sufficient to generate a plasma in at least a portion of the dielectric material.
High magnetic field processing of liquid crystalline polymers
Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.
1998-11-24
A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.
High magnetic field processing of liquid crystalline polymers
Smith, Mark E.; Benicewicz, Brian C.; Douglas, Elliot P.
1998-01-01
A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.
NASA Astrophysics Data System (ADS)
Zhou, Pengwei; Zhong, Yunbo; Wang, Huai; Long, Qiong; Li, Fu; Sun, Zongqian; Dong, Licheng; Fan, Lijun
2013-10-01
The influence of an external parallel strong parallel magnetic field (respect to current) on the electrocodeposition of nano-silicon particles into an iron matrix has been studied in this paper. Test results show that magnetic field has a great influence on the distribution of silicon, as well as the surface morphology and the thickness of the composite coatings. When no magnetic field was applied, a high current density was needed to get high concentration of silicon particles, while that could be easily obtained at a low current density with a 2 T parallel magnetic field. However, Owing to the unevenness of the current density J-distribution on the surface of the electrode in 8 T, the thicker and rougher composite deposits appear in the edge region (L or R region), and the thinner and smoother ones appear in the middle region (M). Meanwhile, the distribution curve of silicon content looks like a “pan” along the center line of coatings. A possible mechanism combining to the numerical simulation results was suggested out to illustrate the obtained experiment results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenrow, K.A.; Smith, C.H.; Liboff, A.R.
1996-12-31
The authors recently reported that cephalic regeneration in the planarian Dugesia tigrina was significantly delayed in populations exposed continuously to combined parallel DC and AC magnetic fields. This effect was consistent with hypotheses suggesting an underlying resonance phenomenon. The authors report here, in a parallel series of investigations on the same model system, that the incidence of regeneration anomalies presenting as tumor-like protuberances also increases significantly (P < .001) in association with exposure to weak 60 Hz magnetic fields, with peak intensities ranging between 1.0 and 80.0 {micro}T. These anomalies often culminate in the complete disaggregation of the organism. Similarmore » to regeneration rate effects, the incidence of regeneration anomalies is specifically dependent upon the planaria possessing a fixed orientation with respect to the applied magnetic field vectors. However, unlike the regeneration rate effects, the AC magnetic field alone, in the absence of any measurable DC field, is capable of producing these anomalies. Moreover, the incidence of regeneration anomalies follows a clear dose-response relationship as a function of AC magnetic field intensity, with the threshold for induced electric field intensity estimated at 5 {micro} V/m. The addition of either 51.1 or 78.4 {micro}T DC magnetic fields, applied in parallel combination with the AC field, enhances the appearance of anomalies relative to the 60 Hz AC field alone, but only at certain AC field intensities. Thus, whereas the previous study of regeneration rate effects appeared to involve exclusively resonance interactions, the regeneration anomalies reported here appear to result primarily from Faraday induction coupling.« less
Evidence for magnetic-field-induced decoupling of superconducting bilayers in La 2-xCa 1+xCu 2O 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Ruidan; Schneeloch, J. A.; Chi, Hang
We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La 2-xCa 1+xCu 2O 6 with x = 0.10 and 0.15 and transition temperature Tmore » $$m\\atop{c}$$ = 54 K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO 2 bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.« less
Evidence for magnetic-field-induced decoupling of superconducting bilayers in La 2-xCa 1+xCu 2O 6
Zhong, Ruidan; Schneeloch, J. A.; Chi, Hang; ...
2018-04-24
We report a study of magnetic susceptibility and electrical resistivity as a function of temperature and magnetic field in superconducting crystals of La 2-xCa 1+xCu 2O 6 with x = 0.10 and 0.15 and transition temperature Tmore » $$m\\atop{c}$$ = 54 K (determined from the susceptibility). When an external magnetic field is applied perpendicular to the CuO 2 bilayers, the resistive superconducting transition measured with currents flowing perpendicular to the bilayers is substantially lower than that found with currents flowing parallel to the bilayers. Intriguingly, this anisotropic behavior is quite similar to that observed for the magnetic irreversibility points with the field applied either perpendicular or parallel to the bilayers. We discuss the results in the context of other studies that have found evidence for the decoupling of superconducting layers induced by a perpendicular magnetic field.« less
Experimental signatures of the inverted phase in InAs/GaSb coupled quantum wells
NASA Astrophysics Data System (ADS)
Karalic, Matija; Mueller, Susanne; Mittag, Christopher; Pakrouski, Kiryl; Wu, QuanSheng; Soluyanov, Alexey A.; Troyer, Matthias; Tschirky, Thomas; Wegscheider, Werner; Ensslin, Klaus; Ihn, Thomas
2016-12-01
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the noninverted semiconducting regime. The activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by a strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.
Clem, John; Prozorov, Ruslan; Wijngaarden, Rinke J.
2013-09-04
The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated. Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as deformed by the presence of superconducting domains, is calculated in the same way for three different topologies and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields, normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy. Themore » range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is more in-plane oriented.« less
Molecular-dynamics simulations of self-assembled monolayers (SAM) on parallel computers
NASA Astrophysics Data System (ADS)
Vemparala, Satyavani
The purpose of this dissertation is to investigate the properties of self-assembled monolayers, particularly alkanethiols and Poly (ethylene glycol) terminated alkanethiols. These simulations are based on realistic interatomic potentials and require scalable and portable multiresolution algorithms implemented on parallel computers. Large-scale molecular dynamics simulations of self-assembled alkanethiol monolayer systems have been carried out using an all-atom model involving a million atoms to investigate their structural properties as a function of temperature, lattice spacing and molecular chain-length. Results show that the alkanethiol chains tilt from the surface normal by a collective angle of 25° along next-nearest neighbor direction at 300K. At 350K the system transforms to a disordered phase characterized by small tilt angle, flexible tilt direction, and random distribution of backbone planes. With increasing lattice spacing, a, the tilt angle increases rapidly from a nearly zero value at a = 4.7A to as high as 34° at a = 5.3A at 300K. We also studied the effect of end groups on the tilt structure of SAM films. We characterized the system with respect to temperature, the alkane chain length, lattice spacing, and the length of the end group. We found that the gauche defects were predominant only in the tails, and the gauche defects increased with the temperature and number of EG units. Effect of electric field on the structure of poly (ethylene glycol) (PEG) terminated alkanethiol self assembled monolayer (SAM) on gold has been studied using parallel molecular dynamics method. An applied electric field triggers a conformational transition from all-trans to a mostly gauche conformation. The polarity of the electric field has a significant effect on the surface structure of PEG leading to a profound effect on the hydrophilicity of the surface. The electric field applied anti-parallel to the surface normal causes a reversible transition to an ordered state in which the oxygen atoms are exposed. On the other hand, an electric field applied in a direction parallel to the surface normal introduces considerable disorder in the system and the oxygen atoms are buried inside.
Dynamics of magnetic single domain particles embedded in a viscous liquid
NASA Astrophysics Data System (ADS)
Usadel, K. D.; Usadel, C.
2015-12-01
Kinetic equations for magnetic nano particles dispersed in a viscous liquid are developed and analyzed numerically. Depending on the amplitude of an applied oscillatory magnetic field, the particles orient their time averaged anisotropy axis perpendicular to the applied field for low magnetic field amplitudes and nearly parallel to the direction of the field for high amplitudes. The transition between these regions takes place in a narrow field interval. In the low field region, the magnetic moment is locked to some crystal axis and the energy absorption in an oscillatory driving field is dominated by viscous losses associated with particle rotation in the liquid. In the opposite limit, the magnetic moment rotates within the particle while its easy axis being nearly parallel to the external field direction oscillates. The kinetic equations are generalized to include thermal fluctuations. This leads to a significant increase of the power absorption in the low and intermediate field regions with a pronounced absorption peak as function of particle size. In the high field region, on the other hand, the inclusion of thermal fluctuations reduces the power absorption. The illustrative numerical calculations presented are performed for magnetic parameters typical for iron oxide.
Parallel heat transport in reversed shear magnetic field configurations
NASA Astrophysics Data System (ADS)
Blazevski, D.; Del-Castillo-Negrete, D.
2012-03-01
Transport in magnetized plasmas is a key problem in controlled fusion, space plasmas, and astrophysics. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos; and (iii) Nonlocal parallel transport. We have recently developed a Lagrangian Green's function (LG) method to solve the local and non-local parallel (χ/χ->∞) transport equation applicable to integrable and chaotic magnetic fields. footnotetext D. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011); D. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, APS Invited paper, submitted (2011). The proposed method overcomes many of the difficulties faced by standard finite different methods related to the three issues mentioned above. Here we apply the LG method to study transport in reversed shear configurations. We focus on the following problems: (i) separatrix reconnection of magnetic islands and transport; (ii) robustness of shearless, q'=0, transport barriers; (iii) leaky barriers and shearless Cantori.
2014-01-01
Co-doped SnO2 thin films were grown by sputtering technique on SiO2/Si(001) substrates at room temperature, and then, thermal treatments with and without an applied magnetic field (HTT) were performed in vacuum at 600°C for 20 min. HTT was applied parallel and perpendicular to the substrate surface. Magnetic M(H) measurements reveal the coexistence of a strong antiferromagnetic (AFM) signal and a ferromagnetic (FM) component. The AFM component has a Néel temperature higher than room temperature, the spin axis lies parallel to the substrate surface, and the highest magnetic moment m =7 μB/Co at. is obtained when HTT is applied parallel to the substrate surface. Our results show an enhancement of FM moment per Co+2 from 0.06 to 0.42 μB/Co at. for the sample on which HTT was applied perpendicular to the surface. The FM order is attributed to the coupling of Co+2 ions through electrons trapped at the site of oxygen vacancies, as described by the bound magnetic polaron model. Our results suggest that FM order is aligned along [101] direction of Co-doped SnO2 nanocrystals, which is proposed to be the easy magnetization axis. PMID:25489286
Full range line-field parallel swept source imaging utilizing digital refocusing
NASA Astrophysics Data System (ADS)
Fechtig, Daniel J.; Kumar, Abhishek; Drexler, Wolfgang; Leitgeb, Rainer A.
2015-12-01
We present geometric optics-based refocusing applied to a novel off-axis line-field parallel swept source imaging (LPSI) system. LPSI is an imaging modality based on line-field swept source optical coherence tomography, which permits 3-D imaging at acquisition speeds of up to 1 MHz. The digital refocusing algorithm applies a defocus-correcting phase term to the Fourier representation of complex-valued interferometric image data, which is based on the geometrical optics information of the LPSI system. We introduce the off-axis LPSI system configuration, the digital refocusing algorithm and demonstrate the effectiveness of our method for refocusing volumetric images of technical and biological samples. An increase of effective in-focus depth range from 255 μm to 4.7 mm is achieved. The recovery of the full in-focus depth range might be especially valuable for future high-speed and high-resolution diagnostic applications of LPSI in ophthalmology.
New 2D diffraction model and its applications to terahertz parallel-plate waveguide power splitters
Zhang, Fan; Song, Kaijun; Fan, Yong
2017-01-01
A two-dimensional (2D) diffraction model for the calculation of the diffraction field in 2D space and its applications to terahertz parallel-plate waveguide power splitters are proposed in this paper. Compared with the Huygens-Fresnel principle in three-dimensional (3D) space, the proposed model provides an approximate analytical expression to calculate the diffraction field in 2D space. The diffraction filed is regarded as the superposition integral in 2D space. The calculated results obtained from the proposed diffraction model agree well with the ones by software HFSS based on the element method (FEM). Based on the proposed 2D diffraction model, two parallel-plate waveguide power splitters are presented. The splitters consist of a transmitting horn antenna, reflectors, and a receiving antenna array. The reflector is cylindrical parabolic with superimposed surface relief to efficiently couple the transmitted wave into the receiving antenna array. The reflector is applied as computer-generated holograms to match the transformed field to the receiving antenna aperture field. The power splitters were optimized by a modified real-coded genetic algorithm. The computed results of the splitters agreed well with the ones obtained by software HFSS verify the novel design method for power splitter, which shows good applied prospects of the proposed 2D diffraction model. PMID:28181514
Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farokhnezhad, Mohsen, E-mail: Mohsen-farokhnezhad@physics.iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir; Pournaghavi, Nezhat
2015-05-07
Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. Themore » spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.« less
Current distribution on a cylindrical antenna with parallel orientation in a lossy magnetoplasma
NASA Technical Reports Server (NTRS)
Klein, C. A.; Klock, P. W.; Deschamps, G. A.
1972-01-01
The current distribution and impedance of a thin cylindrical antenna with parallel orientation to the static magnetic field of a lossy magnetoplasma is calculated with the method of moments. The electric field produced by an infinitesimal current source is first derived. Results are presented for a wide range of plasma parameters. Reasonable answers are obtained for all cases except for the overdense hyperbolic case. A discussion of the numerical stability is included which not only applies to this problem but other applications of the method of moments.
Parallel mapping of optical near-field interactions by molecular motor-driven quantum dots.
Groß, Heiko; Heil, Hannah S; Ehrig, Jens; Schwarz, Friedrich W; Hecht, Bert; Diez, Stefan
2018-04-30
In the vicinity of metallic nanostructures, absorption and emission rates of optical emitters can be modulated by several orders of magnitude 1,2 . Control of such near-field light-matter interaction is essential for applications in biosensing 3 , light harvesting 4 and quantum communication 5,6 and requires precise mapping of optical near-field interactions, for which single-emitter probes are promising candidates 7-11 . However, currently available techniques are limited in terms of throughput, resolution and/or non-invasiveness. Here, we present an approach for the parallel mapping of optical near-field interactions with a resolution of <5 nm using surface-bound motor proteins to transport microtubules carrying single emitters (quantum dots). The deterministic motion of the quantum dots allows for the interpolation of their tracked positions, resulting in an increased spatial resolution and a suppression of localization artefacts. We apply this method to map the near-field distribution of nanoslits engraved into gold layers and find an excellent agreement with finite-difference time-domain simulations. Our technique can be readily applied to a variety of surfaces for scalable, nanometre-resolved and artefact-free near-field mapping using conventional wide-field microscopes.
Nanosecond liquid crystalline optical modulator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borshch, Volodymyr; Shiyanovskii, Sergij V.; Lavrentovich, Oleg D.
2016-07-26
An optical modulator includes a liquid crystal cell containing liquid crystal material having liquid crystal molecules oriented along a quiescent director direction in the unbiased state, and a voltage source configured to apply an electric field to the liquid crystal material wherein the direction of the applied electric field does not cause the quiescent director direction to change. An optical source is arranged to transmit light through or reflect light off the liquid crystal cell with the light passing through the liquid crystal material at an angle effective to undergo phase retardation in response to the voltage source applying themore » electric field. The liquid crystal material may have negative dielectric anisotropy, and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is transverse to the quiescent director direction. Alternatively, the liquid crystal material may have positive dielectric anisotropy and the voltage source configured to apply an electric field to the liquid crystal material whose electric field vector is parallel with the quiescent director direction.« less
Takae, Kyohei; Onuki, Akira
2013-09-28
We develop an efficient Ewald method of molecular dynamics simulation for calculating the electrostatic interactions among charged and polar particles between parallel metallic plates, where we may apply an electric field with an arbitrary size. We use the fact that the potential from the surface charges is equivalent to the sum of those from image charges and dipoles located outside the cell. We present simulation results on boundary effects of charged and polar fluids, formation of ionic crystals, and formation of dipole chains, where the applied field and the image interaction are crucial. For polar fluids, we find a large deviation of the classical Lorentz-field relation between the local field and the applied field due to pair correlations along the applied field. As general aspects, we clarify the difference between the potential-fixed and the charge-fixed boundary conditions and examine the relationship between the discrete particle description and the continuum electrostatics.
Spin resonance and spin fluctuations in a quantum wire
NASA Astrophysics Data System (ADS)
Pokrovsky, V. L.
2017-02-01
This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the measurement of spin correlations is a diagnostic tool to distinguish between the two states of electronic liquid in the quantum wire.
Idealized model of polar cap currents, fields, and auroras
NASA Technical Reports Server (NTRS)
Cornwall, J. M.
1985-01-01
During periods of northward Bz, the electric field applied to the magnetosphere is generally opposite to that occurring during southward Bz and complicated patterns of convection result, showing some features reversed in comparison with the southward Bz case. A study is conducted of a simple generalization of early work on idealized convection models, which allows for coexistence of sunward convection over the central polar cap and antisunward convection elsewhere in the cap. The present model, valid for By approximately 0, has a four-cell convection pattern and is based on the combination of ionospheric current conservation with a relation between parallel auroral currents and parallel potential drops. Global magnetospheric issues involving, e.g., reconnection are not considered. The central result of this paper is an expression giving the parallel potential drop for polar cap auroras (with By approximately 0) in terms of the polar cap convection field profile.
Parallel magnetic field suppresses dissipation in superconducting nanostrips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yong-Lei; Glatz, Andreas; Kimmel, Gregory J.
The motion of Abrikosov vortices in type-II superconductors results in a finite resistance in the presence of an applied electric current. Elimination or reduction of the resistance via immobilization of vortices is the "holy grail" of superconductivity research. Common wisdom dictates that an increase in the magnetic field escalates the loss of energy since the number of vortices increases. Here we show that this is no longer true if the magnetic field and the current are applied parallel to each other. Our experimental studies on the resistive behavior of a superconducting Mo0.79Ge0.21 nanostrip reveal the emergence of a dissipative statemore » with increasing magnetic field, followed by a pronounced resistance drop, signifying a reentrance to the superconducting state. Large-scale simulations of the 3D time-dependent Ginzburg-Landau model indicate that the intermediate resistive state is due to an unwinding of twisted vortices. When the magnetic field increases, this instability is suppressed due to a better accommodation of the vortex lattice to the pinning configuration. Our findings show that magnetic field and geometrical confinement can suppress the dissipation induced by vortex motion and thus radically improve the performance of superconducting materials.« less
Atkinson, Quentin D; Gray, Russell D
2005-08-01
In The Descent of Man (1871), Darwin observed "curious parallels" between the processes of biological and linguistic evolution. These parallels mean that evolutionary biologists and historical linguists seek answers to similar questions and face similar problems. As a result, the theory and methodology of the two disciplines have evolved in remarkably similar ways. In addition to Darwin's curious parallels of process, there are a number of equally curious parallels and connections between the development of methods in biology and historical linguistics. Here we briefly review the parallels between biological and linguistic evolution and contrast the historical development of phylogenetic methods in the two disciplines. We then look at a number of recent studies that have applied phylogenetic methods to language data and outline some current problems shared by the two fields.
Interface colloidal robotic manipulator
Aronson, Igor; Snezhko, Oleksiy
2015-08-04
A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.
Longitudinal disordering of vortex lattices in anisotropic superconductors
NASA Astrophysics Data System (ADS)
Harshman, D. R.; Brandt, E. H.; Fiory, A. T.; Inui, M.; Mitzi, D. B.; Schneemeyer, L. F.; Waszczak, J. V.
1993-02-01
Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi2Sr2CaCu2O8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa2Cu3O7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction.
NASA Astrophysics Data System (ADS)
Forbes, Richard G.
2008-10-01
This paper reports (a) a simple dimensionless equation relating to field-emitted vacuum space charge (FEVSC) in parallel-plane geometry, namely 9ζ2θ2-3θ-4ζ+3=0, where ζ is the FEVSC "strength" and θ is the reduction in emitter surface field (θ =field-with/field-without FEVSC), and (b) the formula j =9θ2ζ/4, where j is the ratio of emitted current density JP to that predicted by Child's law. These equations apply to any charged particle, positive or negative, emitted with near-zero kinetic energy. They yield existing and additional basic formulas in planar FEVSC theory. The first equation also yields the well-known cubic equation describing the relationship between JP and applied voltage; a method of analytical solution is described. Illustrative FEVSC effects in a liquid metal ion source and in field electron emission are discussed. For Fowler-Nordheim plots, a "turn-over" effect is predicted in the high FEVSC limit. The higher the voltage-to-local-field conversion factor for the emitter concerned, then the higher is the field at which turn over occurs. Past experiments have not found complete turn over; possible reasons are noted. For real field emitters, planar theory is a worst-case limit; however, adjusting ζ on the basis of Monte Carlo calculations might yield formulae adequate for real situations.
Thermal conductivity of Ho2Ti2O7 along the [111] direction.
Toews, W H; Zhang, Songtian S; Ross, K A; Dabkowska, H A; Gaulin, B D; Hill, R W
2013-05-24
Thermal transport measurements have been made on the spin-ice material Ho(2)Ti(2)O(7) in an applied magnetic field with both the heat current and the field parallel to the [111] direction for temperatures from 50 mK to 1.2 K. A large magnetic field >6 T is applied to suppress the magnetic contribution to the thermal conductivity in order to extract the lattice conductivity. The low field thermal conductivity thus reveals a magnetic field dependent contribution to the conductivity which both transfers heat and scatters phonons. We interpret these magnetic excitations as monopolelike excitations and describe their behavior via existing Debye-Hückel theory.
NASA Astrophysics Data System (ADS)
Tshipa, M.; Winkoun, D. P.; Nijegorodov, N.; Masale, M.
2018-04-01
Theoretical investigations are carried out of binding energies of a donor charge assumed to be located exactly at the center of symmetry of two concentric cylindrical quantum wires. The intrinsic confinement potential in the region of the inner cylinder is modeled in any one of the three profiles: simple parabolic, shifted parabolic or the polynomial potential. The potential inside the shell is taken to be a potential step or potential barrier of a finite height. Additional confinement of the charge carriers is due to the vector potential of the axial applied magnetic field. It is found that the binding energies attain maxima in their variations with the radius of the inner cylinder irrespective of the particular intrinsic confinement of the inner cylinder. As the radius of the inner cylinder is increased further, the binding energies corresponding to either the parabolic or the polynomial potentials attain minima at some critical core-radius. Finally, as anticipated, the binding energies increase with the increase of the parallel applied magnetic field. This behaviour of the binding energies is irrespective of the particular electric potential of the nanostructure or its specific dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agosta, C. C.; Jin, J.; Coniglio, W. A.
We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which ismore » calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.« less
High-frequency magnetodielectric response in yttrium iron garnet at room temperature
NASA Astrophysics Data System (ADS)
Zhu, Jie; Liu, Yuan; Jia, Longfei; Zhang, Baoshan; Yang, Yi; Tang, Dongming
2018-05-01
Magnetic and dielectric properties of Yttrium Iron Garnet are measured over a frequency ranging from 0.5 GHz to 10 GHz with a magnetic field applied parallel to the propagation direction of the microwave. At the same time, the magnetodielectric phenomena are detected quantitatively. The maximum amplitude of the magnetodielectric coefficient is acquired at the ferromagnetic resonance frequency, and the value is up to 1.2% with the magnetic field of 1500 Oe applied. The phenomena have been explained by the Faraday's electromagnetic induction of the precession of the magnetic moments in the electromagnetic field at the ferromagnetic resonance frequency.
Stability of parallel electroosmotic flow subject to an axial modulated electric field
NASA Astrophysics Data System (ADS)
Suresh, Vinod; Homsy, George
2001-11-01
The stability of parallel electroosmotic flow in a micro-channel subjected to an AC electric field is studied. A spatially uniform time harmonic electric field is applied along the length of a two-dimensional micro-channel containing a dilute electrolytic solution, resulting in a time periodic parallel flow. The top and bottom walls of the channel are maintained at constant potential. The base state ion concentrations and double layer potential are determined using the Poisson-Boltzmann equation in the Debye-Hückel approximation. Experiments by other workers (Santiago et. al., unpublished) have shown that such a system can exhibit instabilities that take the form of mixing motion occurring in the bulk flow outside the double layer. It is shown that such instabilities can potentially result from the coupling of disturbances in the ion concentrations or electric potential to the base state velocity or ion concentrations, respectively. The stability boundary of the system is determined using Floquet theory and its dependence on the modulation frequency and amplitude of the axial electric field is studied.
NASA Astrophysics Data System (ADS)
Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid
2017-02-01
In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.
Thermodynamics around the first-order ferromagnetic phase transition of Fe2P single crystals
NASA Astrophysics Data System (ADS)
Hudl, M.; Campanini, D.; Caron, L.; Höglin, V.; Sahlberg, M.; Nordblad, P.; Rydh, A.
2014-10-01
The specific heat and thermodynamics of Fe2P single crystals around the first-order paramagnetic to ferromagnetic (FM) phase transition at TC≃217 K are empirically investigated. The magnitude and direction of the magnetic field relative to the crystal axes govern the derived H -T phase diagram. Strikingly different phase contours are obtained for fields applied parallel and perpendicular to the c axis of the crystal. In parallel fields, the FM state is stabilized, while in perpendicular fields the phase transition is split into two sections, with an intermediate FM phase where there is no spontaneous magnetization along the c axis. The zero-field transition displays a textbook example of a first-order transition with different phase stability limits on heating and cooling. The results have special significance since Fe2P is the parent material to a family of compounds with outstanding magnetocaloric properties.
Numerical Simulation of Flow Field Within Parallel Plate Plastometer
NASA Technical Reports Server (NTRS)
Antar, Basil N.
2002-01-01
Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.
Parallel traveling-wave MRI: a feasibility study.
Pang, Yong; Vigneron, Daniel B; Zhang, Xiaoliang
2012-04-01
Traveling-wave magnetic resonance imaging utilizes far fields of a single-piece patch antenna in the magnet bore to generate radio frequency fields for imaging large-size samples, such as the human body. In this work, the feasibility of applying the "traveling-wave" technique to parallel imaging is studied using microstrip patch antenna arrays with both the numerical analysis and experimental tests. A specific patch array model is built and each array element is a microstrip patch antenna. Bench tests show that decoupling between two adjacent elements is better than -26-dB while matching of each element reaches -36-dB, demonstrating excellent isolation performance and impedance match capability. The sensitivity patterns are simulated and g-factors are calculated for both unloaded and loaded cases. The results on B 1- sensitivity patterns and g-factors demonstrate the feasibility of the traveling-wave parallel imaging. Simulations also suggest that different array configuration such as patch shape, position and orientation leads to different sensitivity patterns and g-factor maps, which provides a way to manipulate B(1) fields and improve the parallel imaging performance. The proposed method is also validated by using 7T MR imaging experiments. Copyright © 2011 Wiley-Liss, Inc.
6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni-Mn-Ga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, S. J.; Marioni, M.; Allen, S. M.
2000-08-07
Field-induced strains of 6% are reported in ferromagnetic Ni-Mn-Ga martensites at room temperature. The strains are the result of twin boundary motion driven largely by the Zeeman energy difference across the twin boundary. The strain measured parallel to the applied magnetic field is negative in the sample/field geometry used here. The strain saturates in fields of order 400 kA/m and is blocked by a compressive stress of order 2 MPa applied orthogonal to the magnetic field. The strain versus field curves exhibit appreciable hysteresis associated with the motion of the twin boundaries. A simple model accounts quantitatively for the dependencemore » of strain on magnetic field and external stress using as input parameters only measured quantities. (c) 2000 American Institute of Physics.« less
Yabu, Shuhei; Tanaka, Yuma; Tagashira, Kenji; Yoshida, Hiroyuki; Fujii, Akihiko; Kikuchi, Hirotsugu; Ozaki, Masanori
2011-09-15
Polarization-independent refractive index (RI) modulation can be achieved in blue phase (BP) liquid crystals (LCs) by applying an electric field parallel to the direction of light transmission. One of the problems limiting the achievable tuning range is the field-induced phase transition to the cholesteric phase, which is birefringent and chiral. Here we report the RI modulation capabilities of gold nanoparticle-doped BPs I and II, and we show that field-induced BP-cholesteric transition is suppressed in nanoparticle-doped BP II. Because the LC remains optically isotropic even at high applied voltages, a larger RI tuning range can be achieved.
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors
2017-01-01
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest. PMID:28745040
Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors.
Torabi, Solmaz; Cherry, Megan; Duijnstee, Elisabeth A; Le Corre, Vincent M; Qiu, Li; Hummelen, Jan C; Palasantzas, George; Koster, L Jan Anton
2017-08-16
The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest.
Electromelting of confined monolayer ice.
Qiu, Hu; Guo, Wanlin
2013-05-10
In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.
Psychoanalytic application and psychoanalytic integrity.
O'Neill, Sylvia
2005-02-01
In this article, the author offers an analysis of psychoanalytic application, defined as the breaking of new conceptual ground in some field of knowledge whereby the new idea is conceived, and later articulated, with the aid of reference to analogous phenomena in psychoanalysis. It requires apt analogy based on competent understanding of the applied field and of psychoanalysis. Only when the relevant differences between the applied and psychoanalytic fields are grasped can the extent of certain parallels emerge. The thinking by analogy that comprises psychoanalytic application may be intuitive and implicit, but should be susceptible of explicit theoretical elaboration that specifies, precisely, the point(s) of correspondence between psychoanalysis and the applied field in relation to a precise specification of their relevant differences. Applied psychotherapy at the interface of the internal and external worlds (historically rooted in casework) is employed as a model. By analogy with Donnet's concept of the analytic site, the author proposes the concept of the psychodynamic (case)work site, and elaborates it for that applied field in order to elucidate the proposed principles of psychoanalytic application.
Magnetostatic effects on switching in small magnetic tunnel junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bapna, Mukund; Piotrowski, Stephan K.; Oberdick, Samuel D.
Perpendicular CoFeB/MgO/CoFeB magnetic tunnel junctions with diameters under 100 nm are investigated by conductive atomic force microscopy. Minor loops of the tunnel magnetoresistance as a function of applied magnetic field reveal the hysteresis of the soft layer and an offset due to the magnetostatic field of the hard layer. Within the hysteretic region, telegraph noise is observed in the tunnel current. Simulations show that in this range, the net magnetic field in the soft layer is spatially inhomogeneous, and that antiparallel to parallel switching tends to start near the edge, while parallel to antiparallel reversal favors nucleation in the interior ofmore » the soft layer. As the diameter of the tunnel junction is decreased, the average magnitude of the magnetostatic field increases, but the spatial inhomogeneity across the soft layer is reduced.« less
Digital intermediate frequency QAM modulator using parallel processing
Pao, Hsueh-Yuan [Livermore, CA; Tran, Binh-Nien [San Ramon, CA
2008-05-27
The digital Intermediate Frequency (IF) modulator applies to various modulation types and offers a simple and low cost method to implement a high-speed digital IF modulator using field programmable gate arrays (FPGAs). The architecture eliminates multipliers and sequential processing by storing the pre-computed modulated cosine and sine carriers in ROM look-up-tables (LUTs). The high-speed input data stream is parallel processed using the corresponding LUTs, which reduces the main processing speed, allowing the use of low cost FPGAs.
Electrohydrodynamic Quincke rotation of a prolate ellipsoid
NASA Astrophysics Data System (ADS)
Brosseau, Quentin; Hickey, Gregory; Vlahovska, Petia M.
2017-01-01
We study experimentally the occurrence of spontaneous spinning (Quincke rotation) of an ellipsoid in a uniform direct current (dc) electric field. For an ellipsoid suspended in an unbounded fluid, we find two stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field: spinless (parallel) and spinning (perpendicular). The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with the theory of Cēbers et al. [Phys. Rev. E 63, 016301 (2000)], 10.1103/PhysRevE.63.016301. We also investigate the dynamics of the ellipsoidal Quincke rotor resting on a planar surface with normal perpendicular to the field direction. We find behaviors, such as swinging (long axis oscillating around the applied field direction) and tumbling, due to the confinement.
Optimal Super Dielectric Material
2015-09-01
INTENTIONALLY LEFT BLANK i REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704–0188 Public reporting burden for this collection of information is estimated...containing liquid with dissolved ionic species will form large dipoles, polarized opposite the applied field. Large dipole SDM placed between the...electrodes of a parallel plate capacitor will reduce the net field to an unprecedented extent. This family of materials can form materials with
Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno
2015-07-28
An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
NASA Astrophysics Data System (ADS)
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular magnetic spectra. This indicates that the spectral anisotropy in parallel and perpendicular direction is governed by intrinsic properties of SWT.
Eliminating crystals in non-oxide optical fiber preforms and optical fibers
NASA Technical Reports Server (NTRS)
LaPointe, Michael R. (Inventor); Tucker, Dennis S. (Inventor)
2010-01-01
A method is provided for eliminating crystals in non-oxide optical fiber preforms as well as optical fibers drawn therefrom. The optical-fiber-drawing axis of the preform is aligned with the force of gravity. A magnetic field is applied to the preform as it is heated to at least a melting temperature thereof. The magnetic field is applied in a direction that is parallel to the preform's optical-fiber-drawing axis. The preform is then cooled to a temperature that is less than a glass transition temperature of the preform while the preform is maintained in the magnetic field. When the processed preform is to have an optical fiber drawn therefrom, the preform's optical-fiber-drawing axis is again aligned with the force of gravity and a magnetic field is again applied along the axis as the optical fiber is drawn from the preform.
Orienting Paramecium with intense static magnetic fields
NASA Astrophysics Data System (ADS)
Valles, James M., Jr.; Guevorkian, Karine; Quindel, Carl
2004-03-01
Recent experiments on cell division suggest the application of intense static magnetic fields as a novel tool for the manipulation of biological systems [1]. The magnetic field appears to couple to the intrinsic anisotropies in the diamagnetic components of the cells. Here, we present measurements of the intrinsic average diamagnetic anisotropy of the whole single celled ciliate, Paramecium Caudatum. Magnetic fields, 2.5 T < B < 8 T were applied to immobilized (non-swimming) Paramecium Caudatum that were suspended in a density matched medium. The organisms align with their long axis parallel to the applied magnetic field. Their intrinsic diamagnetic anisotropy is 3x10-11 in cgs units. We will discuss the implications of these results for employing magnetic fields to probe the behavior of swimming Paramecium. [1] J. M. Valles, Jr. et al., Expt. Cell Res.274, 112-118 (2002).
Trapping and Injecting Single Domain Walls in Magnetic Wire by Local Fields
NASA Astrophysics Data System (ADS)
Vázquez, Manuel; Basheed, G. A.; Infante, Germán; Del Real, Rafael P.
2012-01-01
A single domain wall (DW) moves at linearly increasing velocity under an increasing homogeneous drive magnetic field. Present experiments show that the DW is braked and finally trapped at a given position when an additional antiparallel local magnetic field is applied. That position and its velocity are further controlled by suitable tuning of the local field. In turn, the parallel local field of small amplitude does not significantly affect the effective wall speed at long distance, although it generates tail-to-tail and head-to-head pairs of walls moving along opposite directions when that field is strong enough.
A parallel graded-mesh FDTD algorithm for human-antenna interaction problems.
Catarinucci, Luca; Tarricone, Luciano
2009-01-01
The finite difference time domain method (FDTD) is frequently used for the numerical solution of a wide variety of electromagnetic (EM) problems and, among them, those concerning human exposure to EM fields. In many practical cases related to the assessment of occupational EM exposure, large simulation domains are modeled and high space resolution adopted, so that strong memory and central processing unit power requirements have to be satisfied. To better afford the computational effort, the use of parallel computing is a winning approach; alternatively, subgridding techniques are often implemented. However, the simultaneous use of subgridding schemes and parallel algorithms is very new. In this paper, an easy-to-implement and highly-efficient parallel graded-mesh (GM) FDTD scheme is proposed and applied to human-antenna interaction problems, demonstrating its appropriateness in dealing with complex occupational tasks and showing its capability to guarantee the advantages of a traditional subgridding technique without affecting the parallel FDTD performance.
Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures
NASA Astrophysics Data System (ADS)
Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.
1993-05-01
We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal magneto-optic Kerr effect measurements. This arrangement differs from the usual procedures in that the same optical geometry is used but the magnet geometry altered. This leads to two magneto-optic signals which are directly comparable in magnitude thereby giving the in-plane magnetization vector directly. We show that it is of great value to study both in-plane magnetization vector components when studying coupled structures where significant anisotropies are also present. We discuss simulations which show that it is possible to accurately determine the coupling strength in such structures by examining the behavior of the component of magnetization perpendicular to the applied field in the vicinity of the hard in-plane anisotropy axis. We illustrate this technique by examining the magnetization and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 Å and 27 Å) trilayer structures prepared by molecular beam epitaxy, in which coherent rotation of the magnetization vector is observed when the magnetic field B is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers, while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths.
Fluctuations of local electric field and dipole moments in water between metal walls.
Takae, Kyohei; Onuki, Akira
2015-10-21
We examine the thermal fluctuations of the local electric field Ek (loc) and the dipole moment μk in liquid water at T = 298 K between metal walls in electric field applied in the perpendicular direction. We use analytic theory and molecular dynamics simulation. In this situation, there is a global electrostatic coupling between the surface charges on the walls and the polarization in the bulk. Then, the correlation function of the polarization density pz(r) along the applied field contains a homogeneous part inversely proportional to the cell volume V. Accounting for the long-range dipolar interaction, we derive the Kirkwood-Fröhlich formula for the polarization fluctuations when the specimen volume v is much smaller than V. However, for not small v/V, the homogeneous part comes into play in dielectric relations. We also calculate the distribution of Ek (loc) in applied field. As a unique feature of water, its magnitude |Ek (loc)| obeys a Gaussian distribution with a large mean value E0 ≅ 17 V/nm, which arises mainly from the surrounding hydrogen-bonded molecules. Since |μk|E0 ∼ 30kBT, μk becomes mostly parallel to Ek (loc). As a result, the orientation distributions of these two vectors nearly coincide, assuming the classical exponential form. In dynamics, the component of μk(t) parallel to Ek (loc)(t) changes on the time scale of the hydrogen bonds ∼5 ps, while its smaller perpendicular component undergoes librational motions on time scales of 0.01 ps.
Price, Anthony N.; Padormo, Francesco; Hajnal, Joseph V.; Malik, Shaihan J.
2017-01-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 +) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a ‘sequence‐level’ optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady‐state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight‐channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single‐channel operation, a mean‐squared‐error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. PMID:28195684
Beqiri, Arian; Price, Anthony N; Padormo, Francesco; Hajnal, Joseph V; Malik, Shaihan J
2017-06-01
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B 1 + ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran Nair Syamala Amma, Aneesh; Garimella, Venkata BS
2018-03-21
Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.
Ion mobility (IM) is rapidly gaining attention for the analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM has limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. These can be readily obtainable in structures for lossless ion manipulations (SLIM), which are fabricated from electric fields that are generated by appropriate potentials applied to arrays of electrodes patterned on twomore » parallel surfaces. In this work we have investigated the relationship between the various SLIM variables, such as electrode dimensions, inter-surface gap, and the TW applied voltages, that directly impact the fields experienced by ions. Ion simulation and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric field. The variables explored impact both ion confinement and the observed IM resolution in Structures for Lossless Ion Manipulations (SLIM) modules.« less
High-Temperature Ferromagnetism in Transition Metal Implanted Wide-Bandgap Semiconductors
2005-07-01
to the field produces a field parallel to the applied magnetic field. Pauli param- agnetism (also called free-electron paramagnetism) occurs because of...ordering at temperatures below liquid helium (LHe) [103]. Jung et al. report the growth of Zn1−xMnxO (x = 0.1, 0.3) by laser molecular beam epitaxy...May 2003). 49. Josephson, B. D. “Possible New Effects in Superconductive Tunnelling,” Physics Letters , 1 (7):251–253 (July 1962). 50. Jung , S. W
Controlling Two-dimensional Tethered Vesicle Motion Using an Electric Field
Yoshina-Ishii, Chiaki; Boxer, Steven G.
2008-01-01
We recently introduced methods to tether phospholipid vesicles or proteoliposomes onto a fluid supported lipid bilayer using DNA hybridization. These intact tethered vesicles diffuse in two dimensions parallel to the supporting membrane surface. In this paper, we report the dynamic response of individual tethered vesicles to an electric field applied parallel to the bilayer surface. Vesicles respond to the field by moving in the direction of electro-osmotic flow, and this can be used to reversibly concentrate tethered vesicles against a barrier. By adding increasing amounts of negatively charged phosphatidylserine to the supporting bilayer to increase electro-osmosis, the electrophoretic mobility of the tethered vesicles can be increased. The electro-osmotic contribution can be modeled well by a sphere connected to a cylindrical anchor in a viscous membrane with charged head groups. The electrophoretic force on the negatively charged tethered vesicles opposes the electro-osmotic force. By increasing the amount of negative charge on the tethered vesicle, drift in the direction of electro-osmotic flow can be slowed; at high negative charge on the tethered vesicle, motion can be forced in the direction of electrophoresis. The balance between these forces can be visualized on a patterned supporting bilayer containing negatively charged lipids which themselves reorganize in an externally applied electric field to create a gradient of charge within a corralled region. The charge gradient at the surface creates a gradient of electro-osmotic flow, and vesicles carrying similar amounts of negative charge can be focused to a region perpendicular to the applied field where electrophoresis is balanced by electro-osmosis, away from the corral boundary. Electric fields are effective tools to direct tethered vesicles, concentrate them and to measure the tethered vesicle’s electrostatic properties. PMID:16489833
Rohani, Ali; Varhue, Walter; Su, Yi-Hsuan; Swami, Nathan S
2014-07-01
Electrorotation (ROT) is a powerful tool for characterizing the dielectric properties of cells and bioparticles. However, its application has been somewhat limited by the need to mitigate disruptions to particle rotation by translation under positive DEP and by frictional interactions with the substrate. While these disruptions may be overcome by implementing particle positioning schemes or field cages, these methods restrict the frequency bandwidth to the negative DEP range and permit only single particle measurements within a limited spatial extent of the device geometry away from field nonuniformities. Herein, we present an electrical tweezer methodology based on a sequence of electrical signals, composed of negative DEP using 180-degree phase-shifted fields for trapping and levitation of the particles, followed by 90-degree phase-shifted fields over a wide frequency bandwidth for highly parallelized electrorotation measurements. Through field simulations of the rotating electrical field under this wave-sequence, we illustrate the enhanced spatial extent for electrorotation measurements, with no limitations to frequency bandwidth. We apply this methodology to characterize subtle modifications in morphology and electrophysiology of Cryptosporidium parvum with varying degrees of heat treatment, in terms of shifts in the electrorotation spectra over the 0.05-40 MHz region. Given the single particle sensitivity and the ability for highly parallelized electrorotation measurements, we envision its application toward characterizing heterogeneous subpopulations of microbial and stem cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Symmetry breaking in SNS junctions: edge transport and field asymmetries
NASA Astrophysics Data System (ADS)
Suominen, Henri; Nichele, Fabrizio; Kjaergaard, Morten; Rasmussen, Asbjorn; Danon, Jeroen; Flensberg, Karsten; Levitov, Leonid; Shabani, Javad; Palmstrom, Chris; Marcus, Charles
We study magnetic diffraction patterns in a tunable superconductor-semiconductor-superconductor junction. By utilizing epitaxial growth of aluminum on InAs/InGaAs we obtain transparent junctions which display a conventional Fraunhofer pattern of the critical current as a function of applied perpendicular magnetic field, B⊥. By studying the angular dependence of the critical current with applied magnetic fields in the plane of the junction we find a striking anisotropy. We attribute this effect to dephasing of Andreev states in the bulk of the junction, leading to SQUID like behavior when the magnetic field is applied parallel to current flow. Furthermore, in the presence of both in-plane and perpendicular fields, asymmetries in +/-B⊥ are observed. We suggest possible origins and discuss the role of spin-orbit and Zeeman physics together with a background disorder potential breaking spatial symmetries of the junction. Research supported by Microsoft Project Q, the Danish National Research Foundation and the NSF through the National Nanotechnology Infrastructure Network.
Pentacene Excitons in Strong Electric Fields.
Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus
2018-02-05
Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Pant, Bharat B. (Inventor); Wan, Hong (Inventor)
1999-01-01
A method and apparatus for sensing a desired component of a magnetic field using an isotropic magnetoresistive material. This is preferably accomplished by providing a bias field that is parallel to the desired component of the applied magnetic field. The bias field is applied in a first direction relative to a first set of magnetoresistive sensor elements, and in an opposite direction relative to a second set of magnetoresistive sensor elements. In this configuration, the desired component of the incident magnetic field adds to the bias field incident on the first set of magnetoresistive sensor elements, and subtracts from the bias field incident on the second set of magnetoresistive sensor elements. The magnetic field sensor may then sense the desired component of the incident magnetic field by simply sensing the difference in resistance of the first set of magnetoresistive sensor elements and the second set of magnetoresistive sensor elements.
Cardoso, José; Oliveira, Filipe F; Proenca, Mariana P; Ventura, João
2018-05-22
With the consistent shrinking of devices, micro-systems are, nowadays, widely used in areas such as biomedics, electronics, automobiles, and measurement devices. As devices shrunk, so too did their energy consumptions, opening the way for the use of nanogenerators (NGs) as power sources. In particular, to harvest energy from an object's motion (mechanical vibrations, torsional forces, or pressure), present NGs are mainly composed of piezoelectric materials in which, upon an applied compressive or strain force, an electrical field is produced that can be used to power a device. The focus of this work is to simulate the piezoelectric effect in different ZnO nanostructures to optimize the output potential generated by a nanodevice. In these simulations, cylindrical nanowires, nanomushrooms, and nanotrees were created, and the influence of the nanostructures' shape on the output potential was studied as a function of applied parallel and perpendicular forces. The obtained results demonstrated that the output potential is linearly proportional to the applied force and that perpendicular forces are more efficient in all structures. However, nanotrees were found to have an increased sensitivity to parallel applied forces, which resulted in a large enhancement of the output efficiency. These results could then open a new path to increase the efficiency of piezoelectric nanogenerators.
Parallel Excitation for B-Field Insensitive Fat-Saturation Preparation
Heilman, Jeremiah A.; Derakhshan, Jamal D.; Riffe, Matthew J.; Gudino, Natalia; Tkach, Jean; Flask, Chris A.; Duerk, Jeffrey L.; Griswold, Mark A.
2016-01-01
Multichannel transmission has the potential to improve many aspects of MRI through a new paradigm in excitation. In this study, multichannel transmission is used to address the effects that variations in B0 homogeneity have on fat-saturation preparation through the use of the frequency, phase, and amplitude degrees of freedom afforded by independent transmission channels. B1 homogeneity is intrinsically included via use of coil sensitivities in calculations. A new method, parallel excitation for B-field insensitive fat-saturation preparation, can achieve fat saturation in 89% of voxels with Mz ≤ 0.1 in the presence of ±4 ppm B0 variation, where traditional CHESS methods achieve only 40% in the same conditions. While there has been much progress to apply multichannel transmission at high field strengths, particular focus is given here to application of these methods at 1.5 T. PMID:22247080
Full-switching FSF-type superconducting spin-triplet magnetic random access memory element
NASA Astrophysics Data System (ADS)
Lenk, D.; Morari, R.; Zdravkov, V. I.; Ullrich, A.; Khaydukov, Yu.; Obermeier, G.; Müller, C.; Sidorenko, A. S.; von Nidda, H.-A. Krug; Horn, S.; Tagirov, L. R.; Tidecks, R.
2017-11-01
In the present work a superconducting Co/CoOx/Cu41Ni59 /Nb/Cu41Ni59 nanoscale thin film heterostructure is investigated, which exhibits a superconducting transition temperature, Tc, depending on the history of magnetic field applied parallel to the film plane. In more detail, around zero applied field, Tc is lower when the field is changed from negative to positive polarity (with respect to the cooling field), compared to the opposite case. We interpret this finding as the result of the generation of the odd-in-frequency triplet component of superconductivity arising at noncollinear orientation of the magnetizations in the Cu41Ni59 layer adjacent to the CoOx layer. This interpretation is supported by superconducting quantum interference device magnetometry, which revealed a correlation between details of the magnetic structure and the observed superconducting spin-valve effects. Readout of information is possible at zero applied field and, thus, no permanent field is required to stabilize both states. Consequently, this system represents a superconducting magnetic random access memory element for superconducting electronics. By applying increased transport currents, the system can be driven to the full switching mode between the completely superconducting and the normal state.
Spectral Anisotropy of Magnetic Field Fluctuations around Ion Scales in the Fast Solar Wind
NASA Astrophysics Data System (ADS)
Wang, X.; Tu, C.; He, J.; Marsch, E.; Wang, L.
2016-12-01
The power spectra of magnetic field at ion scales are significantly influenced by waves and structures. In this work, we study the ΘRB angle dependence of the contribution of waves on the spectral index of the magnetic field. Wavelet technique is applied to the high time-resolution magnetic field data from WIND spacecraft measurements in the fast solar wind. It is found that around ion scales, the parallel spectrum has a slope of -4.6±0.1 originally. When we remove the waves, which correspond to the data points with relatively larger value of magnetic helicity, the parallel spectrum gets shallower gradually to -3.2±0.2. However, the perpendicular spectrum does not change significantly during the wave-removal process, and its slope remains -3.1±0.1. It means that when the waves are removed from the original data, the spectral anisotropy gets weaker. This result may help us understand the physical nature of the spectral anisotropy around the ion scales.
NASA Astrophysics Data System (ADS)
Haghshenasfard, Zahra; Cottam, M. G.
2018-01-01
Theoretical studies are reported for the quantum-statistical properties of microwave-driven multi-mode magnon systems as represented by ferromagnetic nanowires with a stripe geometry. Effects of both the exchange and the dipole-dipole interactions, as well as a Zeeman term for an external applied field, are included in the magnetic Hamiltonian. The model also contains the time-dependent nonlinear effects due to parallel pumping with an electromagnetic field. Using a coherent magnon state representation in terms of creation and annihilation operators, we investigate the effects of parallel pumping on the temporal evolution of various nonclassical properties of the system. A focus is on the interbranch mixing produced by the pumping field when there are three or more modes. In particular, the occupation magnon number and the multi-mode cross correlations between magnon modes are studied. Manipulation of the collapse and revival phenomena of the average magnon occupation number and the control of the cross correlation between the magnon modes are demonstrated through tuning of the parallel pumping field amplitude and appropriate choices for the coherent magnon states. The cross correlations are a direct consequence of the interbranch pumping effects and do not appear in the corresponding one- or two-mode magnon systems.
Target recognition of ladar range images using even-order Zernike moments.
Liu, Zheng-Jun; Li, Qi; Xia, Zhi-Wei; Wang, Qi
2012-11-01
Ladar range images have attracted considerable attention in automatic target recognition fields. In this paper, Zernike moments (ZMs) are applied to classify the target of the range image from an arbitrary azimuth angle. However, ZMs suffer from high computational costs. To improve the performance of target recognition based on small samples, even-order ZMs with serial-parallel backpropagation neural networks (BPNNs) are applied to recognize the target of the range image. It is found that the rotation invariance and classified performance of the even-order ZMs are both better than for odd-order moments and for moments compressed by principal component analysis. The experimental results demonstrate that combining the even-order ZMs with serial-parallel BPNNs can significantly improve the recognition rate for small samples.
NASA Astrophysics Data System (ADS)
Atkinson, James H.; Fournet, Adeline D.; Bhaskaran, Lakshmi; Myasoedov, Yuri; Zeldov, Eli; del Barco, Enrique; Hill, Stephen; Christou, George; Friedman, Jonathan R.
2017-05-01
The symmetry of single-molecule magnets dictates their spin quantum dynamics, influencing how such systems relax via quantum tunneling of magnetization (QTM). By reducing a system's symmetry, through the application of a magnetic field or uniaxial pressure, these dynamics can be modified. We report measurements of the magnetization dynamics of a crystalline sample of the high-symmetry [M n12O12(O2CMe) 16(Me OH ) 4].M e OH single-molecule magnet as a function of uniaxial pressure applied either parallel or perpendicular to the sample's "easy" magnetization axis. At temperatures between 1.8 and 3.3 K, magnetic hysteresis loops exhibit the characteristic steplike features that signal the occurrence of QTM. After applying uniaxial pressure to the sample in situ, both the magnitude and field position of the QTM steps changed. The step magnitudes were observed to grow as a function of pressure in both arrangements of pressure, while pressure applied along (perpendicular to) the sample's easy axis caused the resonant-tunneling fields to increase (decrease). These observations were compared with simulations in which the system's Hamiltonian parameters were changed. From these comparisons, we determined that parallel pressure induces changes to the second-order axial anisotropy parameter as well as either the fourth-order axial or fourth-order transverse parameter, or to both. In addition, we find that pressure applied perpendicular to the easy axis induces a rhombic anisotropy E ≈D /2000 per kbar that can be understood as deriving from a symmetry-breaking distortion of the molecule.
Finite Element Analysis of Magnetic Damping Effects on G-Jitter Induced Fluid Flow
NASA Technical Reports Server (NTRS)
Pan, Bo; Li, Ben Q.; deGroh, Henry C., III
1997-01-01
This paper reports some interim results on numerical modeling and analyses of magnetic damping of g-jitter driven fluid flow in microgravity. A finite element model is developed to represent the fluid flow, thermal and solute transport phenomena in a 2-D cavity under g-jitter conditions with and without an applied magnetic field. The numerical model is checked by comparing with analytical solutions obtained for a simple parallel plate channel flow driven by g-jitter in a transverse magnetic field. The model is then applied to study the effect of steady state g-jitter induced oscillation and on the solute redistribution in the liquid that bears direct relevance to the Bridgman-Stockbarger single crystal growth processes. A selection of computed results is presented and the results indicate that an applied magnetic field can effectively damp the velocity caused by g-jitter and help to reduce the time variation of solute redistribution.
Drop Migration and Demixing of Biphasic Aqueous Systems in an Applied Electric Field
NASA Astrophysics Data System (ADS)
Todd, Paul; Raghavarao, Karumanchi S. M. S.
1999-11-01
Applying an electric field to a demixing emulsion of poly(ethylene glycol)(PEG) and dextran (or maltodextrin) in phosphate-buffered aqueous solution shortens the demixing time up to 6 fold. Phosphate ions partition into the dextran-rich phase imparting a small electrical potential between the phases. PEG-rich drops migrate cathodally, and their electrophoretic mobility is directly proportional to their radius and increases with increased ionization of phosphate. An electric field, either parallel or antiparallel to the gravity vector, can enhance demixing. A theory consistent with these observations states that drops move due to external and internal electroosmotic flow (tractor treading). Enhanced demixing in an electric field whose polarity opposes buoyancy is thought to be caused by initial increased drop growth during retardation by the electric field so that the drop becomes more buoyant. However, at infinite internal drop viscosity the theory does not extrapolate to the result for solid colloid particles.
NASA Astrophysics Data System (ADS)
Blasevski, D.; Del-Castillo-Negrete, D.
2012-10-01
Heat transport in magnetized plasmas is a problem of fundamental interest in controlled fusion. In Ref.footnotetext D. del-Castillo-Negrete, and L. Chac'on, Phys. Rev. Lett., 106, 195004 (2011); Phys. Plasmas 19, 056112 (2012). we proposed a Lagrangian-Green's function (LG) method to study this problem in the strongly anisotropic (χ=0) regime. The LG method bypasses the need to discretize the transport operators on a grid and it is applicable to general parallel flux closures and 3-D magnetic fields. Here we apply the LG method to parallel transport (with local and nonlocal parallel flux closures) in reversed shear magnetic field configurations known to exhibit robust transport barriers in the vicinity of the extrema of the q-profile. By shearless Cantori (SC) we mean the invariant Cantor sets remaining after the destruction of toroidal flux surfaces with zero magnetic shear, q^'=0. We provide numerical evidence of the role of SC in the anomalously slow relaxation of radial temperature gradients in chaotic magnetic fields with no transport barriers. The spatio-temporal evolution of temperature pulses localized in the reversed shear region exhibits non-diffusive self-similar evolution and nonlocal effective radial transport.
Anisotropic Josephson-vortex dynamics in layered organic superconductors
NASA Astrophysics Data System (ADS)
Yasuzuka, S.; Uji, S.; Satsukawa, H.; Kimata, M.; Terashima, T.; Koga, H.; Yamamura, Y.; Saito, K.; Akutsu, H.; Yamada, J.
2010-06-01
To study the anisotropic Josephson-vortex dynamics in the d-wave superconductors, the interplane resistance has been measured on layered organic superconductors κ-(ET)2Cu(NCS)2 and β-(BDA-TTP)2SbF6 under magnetic fields precisely parallel to the conducting planes. For κ-(ET)2Cu(NCS)2, in-plane angular dependence of the Josephson-vortex flow resistance is mainly described by the fourfold symmetry and dip structures appear when the magnetic field is applied parallel to the b- and c-axes. The obtained results have a relation to the d-wave superconducting gap symmetry. However, the absence of in-plane fourfold anisotropy was found for β-(BDA-TTP)2SbF6. The different anisotropic behavior is discussed in terms of the interlayer coupling strength.
Lower critical field measurements in YBa2Cu3O(6+x) single crystals
NASA Technical Reports Server (NTRS)
Kaiser, D. L.; Swartzendruber, L. J.; Gayle, F. W.; Bennett, L. H.
1991-01-01
The temperature dependence of the lower critical field in YBa2Cu3O(6+x) single crystals was determined by magnetization measurements with the applied field parallel and perpendicular to the c-axis. Results are compared with data from the literature and fitted to Ginzberg-Landau equations by assuming a linear dependence of the parameter kappa on temperature. A value of 7 plus or minus 2 kOe was estimated for the thermodynamic critical field at T = O by comparison of calculated H (sub c2) values with experimental data from the literature.
Papaconstadopoulos, Pavlos; Archambault, Louis; Seuntjens, Jan
2017-02-01
To investigate the accuracy of output factor measurements using a commercial (Exradin W1, SI) and a prototype, "in-house" developed, plastic scintillation dosimeter (PSD) in small photon fields. Repetitive detector-specific output factor OF det measurements were performed in water (parallel to the CAX) using two W1 PSDs (SI), a PTW microLion, a PTW microDiamond and an unshielded diode D1V (SI) to which Monte Carlo calculated corrections factors were applied. Four sets of repetitive measurements were performed with the W1 PSD positioned parallel and perpendicular to the CAX, each set on a different day, and with analytically calculated volume averaging corrections applied. The W1 OF det measurements were compared to measurements using an "in-house" developed PSD in water (CHUQ) and both were validated against a previously commissioned Monte Carlo beam model in small photon fields. The performance of the spectrum discrimination calibration procedure was evaluated under different fiber orientations and wavelength threshold choices and the impact on the respective OF det was reported. For all detectors in the study an excellent agreement was observed down to a field size of 1 × 1 cm 2 . For the smallest field size of 0.5 × 0.5 cm 2 , the W1 PSDs presented OF det readings higher by 3.8 to 5.0% relative to the mean corrected OF det of the rest of the detectors and by 5.8 to 6.1% relative to the CHUQ PSD. The repetitive W1 OF det measurements in water (parallel CAX) were higher by 3.9% relative to the OF det measurements in Solid Water TM (perpendicular CAX) even after volume averaging corrections were applied, indicating a potential fiber orientation dependency in small fields. Uncertainties in jaw and detector repositioning as well as source variations with time were estimated to be less than 0.9% (1 σ) for the W1 under both orientations. The CHUQ PSD agreed with the MC dose calculations in water, for the smallest field size, within 1.1-1.7% before any corrections and within 0.3-0.8% after volume averaging corrections. The spectrum discrimination method provided reproducible Cherenkov spectra under the different calibration set-ups with noisier spectra extracted if the calibration is performed in water and parallel to the CAX. The impact of fiber orientation and wavelength threshold during calibration on OF det was in general minimal. Clinically relevant differences were observed between similar scintillator dosimeters in photon fields smaller than 1 × 1 cm 2 . Further research on PSDs is needed that can explain the origin of these differences especially related to the Cherenkov spectrum dependencies on the optical fiber technical characteristics. © 2016 American Association of Physicists in Medicine.
A Sinusoidal Applied Electric Potential can Induce a Long-Range, Steady Electrophoretic Force
NASA Astrophysics Data System (ADS)
Amrei, Seyyed Hashemi; Ristenpart, William D.; Miller, Greg R.
2017-11-01
We use the standard electrokinetic model to numerically investigate the electric field in aqueous solutions between parallel electrodes under AC polarization. In contrast to prior work, we invoke no simplifying assumptions regarding the applied voltage, frequency, or mismatch in ionic mobilities. We find that the nonlinear electromigration terms significantly contribute to the overall shape of the electric potential vs. time, which at sufficiently high applied potentials develops multi-modal peaks. More surprisingly, we find that electrolytes with non-equal mobilities yield an electric field with non-zero time average at large distances from the electrodes. Our calculations indicate this long-range electric field suffices to levitate colloidal particles many microns away from the electrode against the gravitational field, in accord with experimental observations of such behavior (Woehl et al., PRX, 2015). Moreover, the results indicate that particles will aggregate laterally near electrodes in some electrolytes but separate in others, helping explain a longstanding but not well understood phenomenon.
NASA Astrophysics Data System (ADS)
Lei, H.; Lu, Z.; Vesselinov, V. V.; Ye, M.
2017-12-01
Simultaneous identification of both the zonation structure of aquifer heterogeneity and the hydrogeological parameters associated with these zones is challenging, especially for complex subsurface heterogeneity fields. In this study, a new approach, based on the combination of the level set method and a parallel genetic algorithm is proposed. Starting with an initial guess for the zonation field (including both zonation structure and the hydraulic properties of each zone), the level set method ensures that material interfaces are evolved through the inverse process such that the total residual between the simulated and observed state variables (hydraulic head) always decreases, which means that the inversion result depends on the initial guess field and the minimization process might fail if it encounters a local minimum. To find the global minimum, the genetic algorithm (GA) is utilized to explore the parameters that define initial guess fields, and the minimal total residual corresponding to each initial guess field is considered as the fitness function value in the GA. Due to the expensive evaluation of the fitness function, a parallel GA is adapted in combination with a simulated annealing algorithm. The new approach has been applied to several synthetic cases in both steady-state and transient flow fields, including a case with real flow conditions at the chromium contaminant site at the Los Alamos National Laboratory. The results show that this approach is capable of identifying the arbitrary zonation structures of aquifer heterogeneity and the hydrogeological parameters associated with these zones effectively.
NASA Astrophysics Data System (ADS)
Chahtour, C.; Ben Hamed, H.; Beji, H.; Guizani, A.; Alimi, W.
2018-01-01
We investigate how an external imposed magnetic field affects thermal instability in a horizontal shallow porous cavity saturated by a non-Newtonian power-law liquid. The magnetic field is assumed to be constant and parallel to the gravity. A uniform heat flux is applied to the horizontal walls of the layer while the vertical walls are adiabatic. We use linear stability analysis to find expressions for the critical Rayleigh number as a function of the power-law index and the intensity of the magnetic field. We use nonlinear parallel flow theory to find some explicit solutions of the problem, and we use finite difference numerical simulations to solve the full nonlinear equations. We show how the presence of magnetic field alters the known hydrodynamical result of Newtonian flows and power-law flows and how it causes the presence of subcritical finite amplitude convection for both pseudoplastic and dilatant fluids. We also show that in the limit of very strong magnetic field, the dissipation of energy by Joule effect dominates the dissipation of energy by shear stress and gives to the liquid an inviscid character.
Transmittance tuning by particle chain polarization in electrowetting-driven droplets
Fan, Shih-Kang; Chiu, Cheng-Pu; Huang, Po-Wen
2010-01-01
A tiny droplet containing nano∕microparticles commonly handled in digital microfluidic lab-on-a-chip is regarded as a micro-optical component with tunable transmittance at programmable positions for the application of micro-opto-fluidic-systems. Cross-scale electric manipulations of droplets on a millimeter scale as well as suspended particles on a micrometer scale are demonstrated by electrowetting-on-dielectric (EWOD) and particle chain polarization, respectively. By applying electric fields at proper frequency ranges, EWOD and polarization can be selectively achieved in designed and fabricated parallel plate devices. At low frequencies, the applied signal generates EWOD to pump suspension droplets. The evenly dispersed particles reflect and∕or absorb the incident light to exhibit a reflective or dark droplet. When sufficiently high frequencies are used on to the nonsegmented parallel electrodes, a uniform electric field is established across the liquid to polarize the dispersed neutral particles. The induced dipole moments attract the particles each other to form particle chains and increase the transmittance of the suspension, demonstrating a transmissive or bright droplet. In addition, the reflectance of the droplet is measured at various frequencies with different amplitudes. PMID:21267088
Vortex lattice structures in YNi{sub 2}B{sub 2}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yethiraj, M.; Paul, D.M.; Tomy, C.V.
The authors observe a flux lattice with square symmetry in the superconductor YNi{sub 2}B{sub 2}C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi{sub 2}B{sub 2}C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, they show that the flux lines have a square cross-section when the applied field is parallel to the c-axis ofmore » the crystal, since the measured penetration depth along the 100 crystal direction is larger than the penetration depth along the 110 by approximately 60%. This is the likely reason for the square symmetry of the lattice. Although they find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.« less
Vortex lattice structures in YNi{sub 2}B{sub 2}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yethiraj, M.; Paul, D.M.; Tomy, C.V.
We observe a flux lattice with square symmetry in the superconductor YNi{sub 2}B{sub 2}C when the applied field is parallel to the c-axis of the crystal. A square lattice observed previously in the isostructural magnetic analog ErNi{sub 2}B{sub 2}C was attributed to the interaction between magnetic order in that system and the flux lattice. Since the Y-based compound does not order magnetically, it is clear that the structure of the flux lattice is unrelated to magnetic order. In fact, we show that the flux lines have a square cross-section when the applied field is parallel to the c-axis of themore » crystal, since the measured penetration depth along the 110 crystal direction is smaller than the penetration depth along the 100 by approximately 30%. This causes the square symmetry of the lattice. Although we find considerable disorder in the arrangement of the flux lines at 2.5T, no melting of the vortex lattice was observed.« less
Tough2{_}MP: A parallel version of TOUGH2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Keni; Wu, Yu-Shu; Ding, Chris
2003-04-09
TOUGH2{_}MP is a massively parallel version of TOUGH2. It was developed for running on distributed-memory parallel computers to simulate large simulation problems that may not be solved by the standard, single-CPU TOUGH2 code. The new code implements an efficient massively parallel scheme, while preserving the full capacity and flexibility of the original TOUGH2 code. The new software uses the METIS software package for grid partitioning and AZTEC software package for linear-equation solving. The standard message-passing interface is adopted for communication among processors. Numerical performance of the current version code has been tested on CRAY-T3E and IBM RS/6000 SP platforms. Inmore » addition, the parallel code has been successfully applied to real field problems of multi-million-cell simulations for three-dimensional multiphase and multicomponent fluid and heat flow, as well as solute transport. In this paper, we will review the development of the TOUGH2{_}MP, and discuss the basic features, modules, and their applications.« less
Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.; ...
2018-03-26
Ion mobility (IM) is rapidly gaining attention for the separation and analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM separations have limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. Both of these can be readily obtained in Structures for Lossless Ion Manipulations (SLIM), which are fabricated from arrays of electrodes patterned on two parallel surfaces where potentials aremore » applied to generate appropriate electric fields between the surfaces. Here we have investigated the relationship between the primary SLIM variables, such as electrode dimensions, inter-surface gap, and the applied TW voltages, that directly impact the fields experienced by ions. Ion trajectory simulations and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric fields on IM resolution. The variables explored impact both ion confinement and the observed IM resolution using SLIM modules.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; Prabhakaran, Aneesh; Garimella, Sandilya V. B.
Ion mobility (IM) is rapidly gaining attention for the separation and analysis of biomolecules due to the ability to distinguish the shapes of ions. However, conventional constant electric field drift tube IM separations have limited resolving power, constrained by practical limitations on the path length and maximum applied voltage. The implementation of traveling waves (TW) in IM removes the latter limitation, allowing higher resolution to be achieved using extended path lengths. Both of these can be readily obtained in Structures for Lossless Ion Manipulations (SLIM), which are fabricated from arrays of electrodes patterned on two parallel surfaces where potentials aremore » applied to generate appropriate electric fields between the surfaces. Here we have investigated the relationship between the primary SLIM variables, such as electrode dimensions, inter-surface gap, and the applied TW voltages, that directly impact the fields experienced by ions. Ion trajectory simulations and theoretical calculations have been utilized to understand the dependence of SLIM geometry and effective electric fields on IM resolution. The variables explored impact both ion confinement and the observed IM resolution using SLIM modules.« less
Geoelectric monitoring at the Boulder magnetic observatory
Blum, Cletus; White, Tim; Sauter, Edward A.; Stewart, Duff; Bedrosian, Paul A.; Love, Jeffrey J.
2017-01-01
Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.; ...
2017-06-22
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, J. -W.; Briesemester, A. R.; Kobayashi, M.
Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence ofmore » high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. In conclusion, work for optimal parameter window for best divertor operation scenario is needed particularly for the 3D divertor tokamak configuration.« less
Massively parallel multicanonical simulations
NASA Astrophysics Data System (ADS)
Gross, Jonathan; Zierenberg, Johannes; Weigel, Martin; Janke, Wolfhard
2018-03-01
Generalized-ensemble Monte Carlo simulations such as the multicanonical method and similar techniques are among the most efficient approaches for simulations of systems undergoing discontinuous phase transitions or with rugged free-energy landscapes. As Markov chain methods, they are inherently serial computationally. It was demonstrated recently, however, that a combination of independent simulations that communicate weight updates at variable intervals allows for the efficient utilization of parallel computational resources for multicanonical simulations. Implementing this approach for the many-thread architecture provided by current generations of graphics processing units (GPUs), we show how it can be efficiently employed with of the order of 104 parallel walkers and beyond, thus constituting a versatile tool for Monte Carlo simulations in the era of massively parallel computing. We provide the fully documented source code for the approach applied to the paradigmatic example of the two-dimensional Ising model as starting point and reference for practitioners in the field.
Applications of Fourier transform Raman and infrared spectroscopy in forensic sciences
NASA Astrophysics Data System (ADS)
Kuptsov, Albert N.
2000-02-01
First in the world literature comprehensive digital complementary vibrational spectra collection of polymer materials and search system was developed. Non-destructive combined analysis using complementary FT-Raman and FTIR spectra followed by cross-parallel searching on digital spectral libraries, was applied in different fields of forensic sciences. Some unique possibilities of Raman spectroscopy has been shown in the fields of examination of questioned documents, paper, paints, polymer materials, gemstones and other physical evidences.
Research on parallel algorithm for sequential pattern mining
NASA Astrophysics Data System (ADS)
Zhou, Lijuan; Qin, Bai; Wang, Yu; Hao, Zhongxiao
2008-03-01
Sequential pattern mining is the mining of frequent sequences related to time or other orders from the sequence database. Its initial motivation is to discover the laws of customer purchasing in a time section by finding the frequent sequences. In recent years, sequential pattern mining has become an important direction of data mining, and its application field has not been confined to the business database and has extended to new data sources such as Web and advanced science fields such as DNA analysis. The data of sequential pattern mining has characteristics as follows: mass data amount and distributed storage. Most existing sequential pattern mining algorithms haven't considered the above-mentioned characteristics synthetically. According to the traits mentioned above and combining the parallel theory, this paper puts forward a new distributed parallel algorithm SPP(Sequential Pattern Parallel). The algorithm abides by the principal of pattern reduction and utilizes the divide-and-conquer strategy for parallelization. The first parallel task is to construct frequent item sets applying frequent concept and search space partition theory and the second task is to structure frequent sequences using the depth-first search method at each processor. The algorithm only needs to access the database twice and doesn't generate the candidated sequences, which abates the access time and improves the mining efficiency. Based on the random data generation procedure and different information structure designed, this paper simulated the SPP algorithm in a concrete parallel environment and implemented the AprioriAll algorithm. The experiments demonstrate that compared with AprioriAll, the SPP algorithm had excellent speedup factor and efficiency.
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Parseh, Kaveh
2017-09-01
The preconditioned characteristic boundary conditions based on the artificial compressibility (AC) method are implemented at artificial boundaries for the solution of two- and three-dimensional incompressible viscous flows in the generalized curvilinear coordinates. The compatibility equations and the corresponding characteristic variables (or the Riemann invariants) are mathematically derived and then applied as suitable boundary conditions in a high-order accurate incompressible flow solver. The spatial discretization of the resulting system of equations is carried out by the fourth-order compact finite-difference (FD) scheme. In the preconditioning applied here, the value of AC parameter in the flow field and also at the far-field boundary is automatically calculated based on the local flow conditions to enhance the robustness and performance of the solution algorithm. The code is fully parallelized using the Concurrency Runtime standard and Parallel Patterns Library (PPL) and its performance on a multi-core CPU is analyzed. The incompressible viscous flows around a 2-D circular cylinder, a 2-D NACA0012 airfoil and also a 3-D wavy cylinder are simulated and the accuracy and performance of the preconditioned characteristic boundary conditions applied at the far-field boundaries are evaluated in comparison to the simplified boundary conditions and the non-preconditioned characteristic boundary conditions. It is indicated that the preconditioned characteristic boundary conditions considerably improve the convergence rate of the solution of incompressible flows compared to the other boundary conditions and the computational costs are significantly decreased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaykhutdinov, K. A.; Petrov, M. I.; Terent'ev, K. I.
2015-04-28
We investigate magnetoresistance, ρ{sub c}, of single-crystal bilayer lanthanum manganites (La{sub 1−z}Nd{sub z}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} (z = 0 and 0.1) at a transport current flowing along the crystal c axis and in external magnetic fields applied parallel to the crystal c axis or ab plane. It is demonstrated that the La{sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} manganite exhibits the positive magnetoresistance effect in the magnetic field applied in the ab sample plane at the temperatures T < 60 K, along with the negative magnetoresistance typical of all the substituted lanthanum manganites. In the (La{sub 0.9}Nd{sub 0.1}){sub 1.4}Sr{sub 1.6}Mn{sub 2}O{sub 7} sample, the positive magnetoresistancemore » effect is observed at temperatures of 60–80 K in an applied field parallel to the c axis. The mechanism of this effect is shown to be fundamentally different from the colossal magnetoresistance effect typical of lanthanum manganites. The positive magnetoresistance originates from spin-dependent tunneling of carriers between the manganese-oxygen bilayers and can be explained by features of the magnetic structure of the investigated compounds.« less
Coherent field propagation between tilted planes.
Stock, Johannes; Worku, Norman Girma; Gross, Herbert
2017-10-01
Propagating electromagnetic light fields between nonparallel planes is of special importance, e.g., within the design of novel computer-generated holograms or the simulation of optical systems. In contrast to the extensively discussed evaluation between parallel planes, the diffraction-based propagation of light onto a tilted plane is more burdensome, since discrete fast Fourier transforms cannot be applied directly. In this work, we propose a quasi-fast algorithm (O(N 3 log N)) that deals with this problem. Based on a proper decomposition into three rotations, the vectorial field distribution is calculated on a tilted plane using the spectrum of plane waves. The algorithm works on equidistant grids, so neither nonuniform Fourier transforms nor an explicit complex interpolation is necessary. The proposed algorithm is discussed in detail and applied to several examples of practical interest.
FDTD simulation of radar cross section reduction by a collisional inhomogeneous magnetized plasma
NASA Astrophysics Data System (ADS)
Foroutan, V.; Azarmanesh, M. N.; Foroutan, G.
2018-02-01
The recursive convolution finite difference time domain method is addressed in the scattered field formulation and employed to investigate the bistatic radar cross-section (RCS) of a square conductive plate covered by a collisional inhomogeneous magnetized plasma. The RCS is calculated for two different configurations of the magnetic field, i.e., parallel and perpendicular to the plate. The results of numerical simulations show that, for a perpendicularly applied magnetic field, the backscattered RCS is significantly reduced when the magnetic field intensity coincides with the value corresponding to the electron cyclotron resonance. By increasing the collision frequency, the resonant absorption is suppressed, but due to enhanced wave penetration and bending, the reduction in the bistatic RCS is improved. At very high collision frequencies, the external magnetic field has no significant impact on the bistatic RCS reduction. Application of a parallel magnetic field has an adverse effect near the electron cyclotron resonance and results in a large and asymmetric RCS profile. But, the problem is resolved by increasing the magnetic field and/or the collision frequency. By choosing proper values of the collision frequency and the magnetic field intensity, a perpendicular magnetic field can be effectively used to reduce the bistatic RCS of a conductive plate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quandt, Norman; Roth, Robert; Syrowatka, Frank
2016-01-15
Bilayer films of MFe{sub 2}O{sub 4} (M=Co, Ni) and BaTiO{sub 3} were prepared by spin coating of N,N-dimethylformamide/acetic acid solutions on platinum coated silicon wafers. Five coating steps were applied to get the desired thickness of 150 nm for both the ferrite and perovskite layer. XRD, IR and Raman spectroscopy revealed the formation of phase-pure ferrite spinels and BaTiO{sub 3}. Smooth surfaces with roughnesses in the order of 3 to 5 nm were found in AFM investigations. Saturation magnetization of 347 emu cm{sup −3} for the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} and 188 emu cm{sup −3} for the NiFe{sub 2}O{sub 4}/BaTiO{submore » 3} bilayer, respectively were found. For the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer a strong magnetic anisotropy was observed with coercivity fields of 5.1 kOe and 3.3 kOe (applied magnetic field perpendicular and parallel to film surface), while for the NiFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer this effect is less pronounced. Saturated polarization hysteresis loops prove the presence of ferroelectricity in both systems. - Graphical abstract: The SEM image of the CoFe{sub 2}O{sub 4}/BaTiO{sub 3} bilayer on Pt–Si-substrate (left), magnetization as a function of the magnetic field perpendicular and parallel to the film plane (right top) and P–E and I–V hysteresis loops of the bilayer at room temperature. - Highlights: • Ferrite and perovskite oxides grown on platinum using spin coating technique. • Columnar growth of cobalt ferrite particle on the substrate. • Surface investigation showed a homogenous and smooth surface. • Perpendicular and parallel applied magnetic field revealed a magnetic anisotropy. • Switching peaks and saturated P–E hysteresis loops show ferroelectricity.« less
Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer
NASA Astrophysics Data System (ADS)
Liu, Y.; Chen, Z. H.; Zhang, H. H.; Lin, Z. Y.
2018-04-01
The Kelvin-Helmholtz instability of a parallel shear flow with a hyperbolic-tangent velocity profile has been simulated numerically at a high Reynolds number. The fluid is perfectly conducting with low viscosity, and the strength of the applied magnetic field varies from weak to strong. We found that the magnetic field parallel to the mainstream direction has a stabilizing effect on the shear flow. The magnetic field mainly stabilizes short-wave perturbations. Small viscosity and/or slight compressibility could introduce some instability even in the presence of a strong magnetic field in a certain circumstance. The suppressing effect of the magnetic field on the instability is accomplished by two parts: the separating effect of the transverse magnetic pressure and the anti-bending effect of magnetic tension pointing to the center of curvature. The former shows prevailingly stronger effect on the fluid interface than the latter does, which is different from the conventional opinion that magnetic tension dominates. Essentially it is mainly the Maxwell stress that weakens and balances the momentum transport conducted by the Reynolds stress, reducing the mixing degree of the upper fluid and the lower fluid.
Basic research needed for stimulating the development of behavioral technologies
Mace, F. Charles
1994-01-01
The costs of disconnection between the basic and applied sectors of behavior analysis are reviewed, and some solutions to these problems are proposed. Central to these solutions are collaborations between basic and applied behavioral scientists in programmatic research that addresses the behavioral basis and solution of human behavior problems. This kind of collaboration parallels the deliberate interactions between basic and applied researchers that have proven to be so profitable in other scientific fields, such as medicine. Basic research questions of particular relevance to the development of behavioral technologies are posed in the following areas: response allocation, resistance to change, countercontrol, formation and differentiation/discrimination of stimulus and response classes, analysis of low-rate behavior, and rule-governed behavior. Three interrelated strategies to build connections between the basic and applied analysis of behavior are identified: (a) the development of nonhuman animal models of human behavior problems using operations that parallel plausible human circumstances, (b) replication of the modeled relations with human subjects in the operant laboratory, and (c) tests of the generality of the model with actual human problems in natural settings. PMID:16812734
NASA Astrophysics Data System (ADS)
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T.; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-01
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
Płachta, Jakub; Grodzicka, Emma; Kaleta, Anna; Kret, Sławomir; Baczewski, Lech T; Pietruczik, Aleksiej; Wiater, Maciej; Goryca, Mateusz; Kazimierczuk, Tomasz; Kossacki, Piotr; Karczewski, Grzegorz; Wojtowicz, Tomasz; Wojnar, Piotr
2018-05-18
A detailed magneto-photoluminescence study of individual (Cd, Mn)Te/(Cd, Mg)Te core/shell nanowires grown by molecular beam epitaxy is performed. First of all, an enhancement of the Zeeman splitting due to sp-d exchange interaction between band carriers and Mn-spins is evidenced in these nanostructures. Then, it is found that the value of this splitting depends strongly on the magnetic field direction with respect to the nanowire axis. The largest splitting is observed when the magnetic field is applied perpendicular and the smallest when it is applied parallel to the nanowire axis. This effect is explained in terms of magnetic field induced valence band mixing and evidences the light hole character of the excitonic emission. The values of the light and heavy hole splitting are determined for several individual nanowires based on the comparison of experimental results to theoretical calculations.
A Bridge between Two Important Problems in Optics and Electrostatics
ERIC Educational Resources Information Center
Capelli, R.; Pozzi, G.
2008-01-01
It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…
Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires
NASA Astrophysics Data System (ADS)
Núñez, A.; Pérez, L.; Abuín, M.; Araujo, J. P.; Proenca, M. P.
2017-04-01
Understanding the magnetic behaviour of multisegmented nanowires (NWs) is a major key for the application of such structures in future devices. In this work, magnetic/non-magnetic arrays of FeCoCu/Cu multilayered NWs electrodeposited in nanoporous alumina templates are studied. Contrarily to most reports on multilayered NWs, the magnetic layer thickness was kept constant (30 nm) and only the non-magnetic layer thickness was changed (0 to 80 nm). This allowed us to tune the interwire and intrawire interactions between the magnetic layers in the NW array creating a three-dimensional (3D) magnetic system without the need to change the template characteristics. Magnetic hysteresis loops, measured with the applied field parallel and perpendicular to the NWs’ long axis, showed the effect of the non-magnetic Cu layer on the overall magnetic properties of the NW arrays. In particular, introducing Cu layers along the magnetic NW axis creates domain wall nucleation sites that facilitate the magnetization reversal of the wires, as seen by the decrease in the parallel coercivity and the reduction of the perpendicular saturation field. By further increasing the Cu layer thickness, the interactions between the magnetic segments, both along the NW axis and of neighbouring NWs, decrease, thus rising again the parallel coercivity and the perpendicular saturation field. This work shows how one can easily tune the parallel and perpendicular magnetic properties of a 3D magnetic layer system by adjusting the non-magnetic layer thickness.
NASA Astrophysics Data System (ADS)
Daubner, Tomas; Kizhofer, Jens; Dinulescu, Mircea
2018-06-01
This article describes an experimental investigation in the near field of five parallel plane jets. The study applies 2D Particle Image Velocimetry (PIV) for ventilated and unventilated jets, where ventilated means exiting into a duct with expansion ratio 3.5 and unventilated means exiting to the free atmosphere. Results are presented for Reynolds numbers 1408, 5857 and 10510. The Reynolds number is calculated for the middle channel and is based on the height of the nozzle (channel) equivalent diameter 2h. All characteristic regions of the methodology to describe multiple interacting jets are observed by the PIV measurements - converging, merging and combined. Each of the five parallel channels has an aspect ratio of 25 defined as nozzle width (w) to height (h). The channels have a length of 185 times the channel height guaranteeing a fully developed velocity profile at the exit from the channel. Spacing between the single plane jets is 3 times the channel height. The near field of multiple mixing jets is depended on outlet nozzle geometry. Blunt geometry of the nozzle was chosen (sudden contraction).
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Bao, Xiaoqian; Liu, Yangyang; Yu, Linhua; Li, Jiheng; Gao, Xuexu
2017-10-01
The magnetostriction of the Fe82Ga15Al3 alloy, along the length and width, can be tailored by applying a magnetic field heat treatment. In this work, the Fe82Ga15Al3 sheet was cut from the directional solidified Fe82Ga15Al3 alloy with the ⟨100⟩ preferred orientation and was annealed at 720 °C for 30 min under a magnetic field of 800 Oe along the length direction with a heating and cooling rate of 100 °C/min. The magnetostrictive properties along the length and width directions were modified to λ// = 7 ppm and λ⊥ = -210 ppm from λ// = 210 ppm and λ⊥ = -10 ppm for the initial sample prior to the magnetic field heat treatment. The cellular-like magnetic domain structure was composed of parallel 180° stripe domains and vertical 90° domains observed using a magnetic-force microscope. The change in magnetostriction along parallel and perpendicular directions was mainly resulted from the rotation of the magnetic domain units.
Full-f version of GENE for turbulence in open-field-line systems
NASA Astrophysics Data System (ADS)
Pan, Q.; Told, D.; Shi, E. L.; Hammett, G. W.; Jenko, F.
2018-06-01
Unique properties of plasmas in the tokamak edge, such as large amplitude fluctuations and plasma-wall interactions in the open-field-line regions, require major modifications of existing gyrokinetic codes originally designed for simulating core turbulence. To this end, the global version of the 3D2V gyrokinetic code GENE, so far employing a δf-splitting technique, is extended to simulate electrostatic turbulence in straight open-field-line systems. The major extensions are the inclusion of the velocity-space nonlinearity, the development of a conducting-sheath boundary, and the implementation of the Lenard-Bernstein collision operator. With these developments, the code can be run as a full-f code and can handle particle loss to and reflection from the wall. The extended code is applied to modeling turbulence in the Large Plasma Device (LAPD), with a reduced mass ratio and a much lower collisionality. Similar to turbulence in a tokamak scrape-off layer, LAPD turbulence involves collisions, parallel streaming, cross-field turbulent transport with steep profiles, and particle loss at the parallel boundary.
NASA Astrophysics Data System (ADS)
Raviolo, Sofía; Tejo, Felipe; Bajales, Noelia; Escrig, Juan
2018-01-01
In this paper we have compared the angular dependence of the magnetic properties of permalloy (Ni80Fe20) and nickel nanowires by means of micromagnetic simulations. For each material we have chosen two diameters, 40 and 100 nm. Permalloy nanowires with smaller diameters (d = 40 nm) exhibit greater coercivity than nickel nanowires, regardless of the angle at which the external magnetic field is applied. In addition, both Py and Ni nanowires exhibit the same remanence values. However, the nanowires of larger diameters (d = 100 nm) exhibit a more complex behavior, noting that for small angles, nickel nanowires are those that now exhibit a greater coercivity in comparison to those of permalloy. The magnetization reversal modes vary as a function of the angle at which the external field is applied. When the field is applied parallel to the wire axis, it reverts through nucleation and propagation of domain walls, whereas when the field is applied perpendicular to the axis, it reverts by a pseudo-coherent rotation. These results may provide a guide to control the magnetic properties of nanowires for use in potential applications.
Applying LED in full-field optical coherence tomography for gastrointestinal endoscopy
NASA Astrophysics Data System (ADS)
Yang, Bor-Wen; Wang, Yu-Yen; Juan, Yu-Shan; Hsu, Sheng-Jie
2015-08-01
Optical coherence tomography (OCT) has become an important medical imaging technology due to its non-invasiveness and high resolution. Full-field optical coherence tomography (FF-OCT) is a scanning scheme especially suitable for en face imaging as it employs a CMOS/CCD device for parallel pixels processing. FF-OCT can also be applied to high-speed endoscopic imaging. Applying cylindrical scanning and a right-angle prism, we successfully obtained a 360° tomography of the inner wall of an intestinal cavity through an FF-OCT system with an LED source. The 10-μm scale resolution enables the early detection of gastrointestinal lesions, which can increase detection rates for esophageal, stomach, or vaginal cancer. All devices used in this system can be integrated by MOEMS technology to contribute to the studies of gastrointestinal medicine and advanced endoscopy technology.
Spin related transport in two pyrene and Triphenylene graphene nanodisks using NEGF method
NASA Astrophysics Data System (ADS)
Taghilou, Hamed; Fathi, Davood
2018-07-01
The present study is conducted to evaluate the spin polarization in two pyrene and Triphenylene graphene nanoflakes. All calculations are performed using non-equilibrium Green's function (NEGF) method. The obtained results show that, graphene has no magnetic property and using Pyrene nanoflake results in a better spin switching at extreme magnetic fields. On the contrary, when applying magnetized electrodes, depending on the direction of magnetization of the two electrodes (either parallel or anti-parallel), different spin polarization diagrams are obtained. In this situation, it is observed that, in the case of electrodes magnetization in Triphenylene nanoflake a better spin switching is reached.
Self-assembly of metal nanowires induced by alternating current electric fields
NASA Astrophysics Data System (ADS)
García-Sánchez, Pablo; Arcenegui, Juan J.; Morgan, Hywel; Ramos, Antonio
2015-01-01
We describe the reversible assembly of an aqueous suspension of metal nanowires into two different 2-dimensional stable configurations. The assembly is induced by an AC electric field of magnitude around 10 kV/m. It is known that single metal nanowires orientate parallel to the electric field for all values of applied frequency, according to two different mechanisms depending on the frequency. These different mechanisms also govern the mutual interaction between nanowires, which leads to directed-assembly into distinctive structures, the shape of which depends on the frequency of the applied field. We show that for frequencies higher than the typical frequency for charging the electrical double layer at the metal-electrolyte interface, dipole-dipole interaction leads to the formation of chains of nanowires. For lower frequencies, the nanowires form wavy bands perpendicular to the electric field direction. This behavior appears to be driven by the electroosmotic flow induced on the metal surface of the nanowires. Remarkably, no similar structures have been reported in previous studies of nanowires.
Eight-channel transmit/receive body MRI coil at 3T.
Vernickel, P; Röschmann, P; Findeklee, C; Lüdeke, K-M; Leussler, Ch; Overweg, J; Katscher, U; Grässlin, I; Schünemann, K
2007-08-01
Multichannel transmit magnetic resonance imaging (MR) systems have the potential to compensate for signal-intensity variations occurring at higher field strengths due to wave propagation effects in tissue. Methods such as RF shimming and local excitation in combination with parallel transmission can be applied to compensate for these effects. Moreover, parallel transmission can be applied to ease the excitation of arbitrarily shaped magnetization patterns. The implementation of these methods adds new requirements in terms of MRI hardware. This article describes the design of a decoupled eight-element transmit/receive body coil for 3T. The setup of the coil is explained, starting with standard single-channel resonators. Special focus is placed on the decoupling of the elements to obtain independent RF resonators. After a brief discussion of the underlying theory, the properties and limitations of the coil are outlined. Finally, the functionality and capabilities of the coil are demonstrated using RF measurements as well as MRI sequences.
NASA Astrophysics Data System (ADS)
Wendel, D. E.; Olson, D. K.; Hesse, M.; Karimabadi, H.; Daughton, W. S.
2013-12-01
We investigate the distribution of parallel electric fields and their relationship to the location and rate of magnetic reconnection of a large particle-in-cell simulation of 3D turbulent magnetic reconnection with open boundary conditions. The simulation's guide field geometry inhibits the formation of topological features such as separators and null points. Therefore, we derive the location of potential changes in magnetic connectivity by finding the field lines that experience a large relative change between their endpoints, i.e., the quasi-separatrix layer. We find a correspondence between the locus of changes in magnetic connectivity, or the quasi-separatrix layer, and the map of large gradients in the integrated parallel electric field (or quasi-potential). Furthermore, we compare the distribution of parallel electric fields along field lines with the reconnection rate. We find the reconnection rate is controlled by only the low-amplitude, zeroth and first-order trends in the parallel electric field, while the contribution from high amplitude parallel fluctuations, such as electron holes, is negligible. The results impact the determination of reconnection sites within models of 3D turbulent reconnection as well as the inference of reconnection rates from in situ spacecraft measurements. It is difficult through direct observation to isolate the locus of the reconnection parallel electric field amidst the large amplitude fluctuations. However, we demonstrate that a positive slope of the partial sum of the parallel electric field along the field line as a function of field line length indicates where reconnection is occurring along the field line.
Magnetic Material Arrangement In Apis Mellifera Abdomens
2002-04-01
UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014406 TITLE: Magnetic Material Arrangement In Apis Mellifera Abdomens...Magnetic Material Arrangement In Apis Mellifera Abdomens Darci M. S. Esquivel, Eliane Wajnberg, Geraldo R. Cernicchiaro, Daniel Acosta-Avalos’ and B.E...transition (52 K- 91 K). Hysteresis curves of Apis mellifera abdomens organized parallel and perpendicular to the applied magnetic field were obtained
ERIC Educational Resources Information Center
Reynolds, Barry Lee
2016-01-01
Lack of knowledge in the conventional usage of collocations in one's respective field of expertise cause Taiwanese students to produce academic writing that is markedly different than more competent writing. This is because Taiwanese students are first and foremost English as a Foreign language (EFL) readers and may have difficulties picking up on…
Artificially modified magnetic anisotropy in interconnected nanowire networks.
Araujo, Elsie; Encinas, Armando; Velázquez-Galván, Yenni; Martínez-Huerta, Juan Manuel; Hamoir, Gaël; Ferain, Etienne; Piraux, Luc
2015-01-28
Interconnected or crossed magnetic nanowire networks have been fabricated by electrodeposition into a polycarbonate template with crossed cylindrical nanopores oriented ±30° with respect to the surface normal. Tailor-made nanoporous polymer membranes have been designed by performing a double energetic heavy ion irradiation with fixed incidence angles. The Ni and Ni/NiFe nanowire networks have been characterized by magnetometry as well as ferromagnetic resonance and compared with parallel nanowire arrays of the same diameter and density. The most interesting feature of these nanostructured materials is a significant reduction of the magnetic anisotropy when the external field is applied perpendicular and parallel to the plane of the sample. This effect is attributed to the relative orientation of the nanowire axes with the applied field. Moreover, the microwave transmission spectra of these nanowire networks display an asymmetric linewidth broadening, which may be interesting for the development of low-pass filters. Nanoporous templates made of well-defined nanochannel network constitute an interesting approach to fabricate materials with controlled anisotropy and microwave absorption properties that can be easily modified by adjusting the relative orientation of the nanochannels, pore sizes and material composition along the length of the nanowire.
Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN
Hammond, G E; Lichtner, P C; Mills, R T
2014-01-01
[1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted. PMID:25506097
Evaluating the performance of parallel subsurface simulators: An illustrative example with PFLOTRAN.
Hammond, G E; Lichtner, P C; Mills, R T
2014-01-01
[1] To better inform the subsurface scientist on the expected performance of parallel simulators, this work investigates performance of the reactive multiphase flow and multicomponent biogeochemical transport code PFLOTRAN as it is applied to several realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to the code's parallel layout and code design, PFLOTRAN's parallel performance (measured through strong and weak scalability analyses) is evaluated in the context of conceptual model layout, software and algorithmic design, and known hardware limitations. PFLOTRAN scales well (with regard to strong scaling) for three realistic problem scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-world problem involving uranium surface complexation within a heterogeneous and extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for the regional doublet problem, and several difficulties with its interpretation are noted.
Photoacoustic imaging velocimetry for flow-field measurement.
Ma, Songbo; Yang, Sihua; Xing, Da
2010-05-10
We present the photoacoustic imaging velocimetry (PAIV) method for flow-field measurement based on a linear transducer array. The PAIV method is realized by using a Q-switched pulsed laser, a linear transducer array, a parallel data-acquisition equipment and dynamic focusing reconstruction. Tracers used to track liquid flow field were real-timely detected, two-dimensional (2-D) flow visualization was successfully reached, and flow parameters were acquired by measuring the movement of the tracer. Experimental results revealed that the PAIV method would be developed into 3-D imaging velocimetry for flow-field measurement, and potentially applied to research the security and targeting efficiency of optical nano-material probes. (c) 2010 Optical Society of America.
Macroscopic Lagrangian description of warm plasmas. II Nonlinear wave interactions
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1983-01-01
A macroscopic Lagrangian is simplified to the adiabatic limit and expanded about equilibrium, to third order in perturbation, for three illustrative cases: one-dimensional compression parallel to the static magnetic field, two-dimensional compression perpendicular to the static magnetic field, and three-dimensional compression. As examples of the averaged-Lagrangian method applied to nonlinear wave interactions, coupling coefficients are derived for interactions between two electron plasma waves and an ion acoustic wave, and between an ordinary wave, an electron plasma wave, and an ion acoustic wave.
Electric field dependent local structure of (KxNa1-x) 0.5B i0.5Ti O3
NASA Astrophysics Data System (ADS)
Goetzee-Barral, A. J.; Usher, T.-M.; Stevenson, T. J.; Jones, J. L.; Levin, I.; Brown, A. P.; Bell, A. J.
2017-07-01
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (KxNa1-x) 0.5B i0.5Ti O3 , as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x =0.15 , 0.18 and at the morphotropic phase boundary composition x =0.20 . X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks in the 3-4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from <110 > to <112 > -type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x . Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. The combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
Electric field dependent local structure of ( K x N a 1 - x ) 0.5 B i 0.5 Ti O 3
Goetzee-Barral, A. J.; Usher, T. -M.; Stevenson, T. J.; ...
2017-07-31
The in situ x-ray pair-distribution function (PDF) characterization technique has been used to study the behavior of (K xNa 1–x) 0.5Bi 0.5TiO 3, as a function of electric field. As opposed to conventional x-ray Bragg diffraction techniques, PDF is sensitive to local atomic displacements, detecting local structural changes at the angstrom to nanometer scale. Several field-dependent ordering mechanisms can be observed in x = 0.15, 0.18 and at the morphotropic phase boundary composition x = 0.20. X-ray total scattering shows suppression of diffuse scattering with increasing electric-field amplitude, indicative of an increase in structural ordering. Analysis of PDF peaks inmore » the 3–4-Å range shows ordering of Bi-Ti distances parallel to the applied electric field, illustrated by peak amplitude redistribution parallel and perpendicular to the electric-field vector. A transition from < 110 > to < 112 >-type off-center displacements of Bi relative to the neighboring Ti atoms is observable with increasing x. Analysis of PDF peak shift with electric field shows the effects of Bi-Ti redistribution and onset of piezoelectric lattice strain. Furthermore, the combination of these field-induced ordering mechanisms is consistent with local redistribution of Bi-Ti distances associated with domain reorientation and an overall increase in order of atomic displacements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishioka, K.; Nakamura, Y.; Nishimura, S.
A moment approach to calculate neoclassical transport in non-axisymmetric torus plasmas composed of multiple ion species is extended to include the external parallel momentum sources due to unbalanced tangential neutral beam injections (NBIs). The momentum sources that are included in the parallel momentum balance are calculated from the collision operators of background particles with fast ions. This method is applied for the clarification of the physical mechanism of the neoclassical parallel ion flows and the multi-ion species effect on them in Heliotron J NBI plasmas. It is found that parallel ion flow can be determined by the balance between themore » parallel viscosity and the external momentum source in the region where the external source is much larger than the thermodynamic force driven source in the collisional plasmas. This is because the friction between C{sup 6+} and D{sup +} prevents a large difference between C{sup 6+} and D{sup +} flow velocities in such plasmas. The C{sup 6+} flow velocities, which are measured by the charge exchange recombination spectroscopy system, are numerically evaluated with this method. It is shown that the experimentally measured C{sup 6+} impurity flow velocities do not contradict clearly with the neoclassical estimations, and the dependence of parallel flow velocities on the magnetic field ripples is consistent in both results.« less
Miniaturized ultrafine particle sizer and monitor
NASA Technical Reports Server (NTRS)
Qi, Chaolong (Inventor); Chen, Da-Ren (Inventor)
2011-01-01
An apparatus for measuring particle size distribution includes a charging device and a precipitator. The charging device includes a corona that generates charged ions in response to a first applied voltage, and a charger body that generates a low energy electrical field in response to a second applied voltage in order to channel the charged ions out of the charging device. The corona tip and the charger body are arranged relative to each other to direct a flow of particles through the low energy electrical field in a direction parallel to a direction in which the charged ions are channeled out of the charging device. The precipitator receives the plurality of particles from the charging device, and includes a disk having a top surface and an opposite bottom surface, wherein a predetermined voltage is applied to the top surface and the bottom surface to precipitate the plurality of particles.
NASA Astrophysics Data System (ADS)
Averkin, Sergey N.; Gatsonis, Nikolaos A.
2018-06-01
An unstructured electrostatic Particle-In-Cell (EUPIC) method is developed on arbitrary tetrahedral grids for simulation of plasmas bounded by arbitrary geometries. The electric potential in EUPIC is obtained on cell vertices from a finite volume Multi-Point Flux Approximation of Gauss' law using the indirect dual cell with Dirichlet, Neumann and external circuit boundary conditions. The resulting matrix equation for the nodal potential is solved with a restarted generalized minimal residual method (GMRES) and an ILU(0) preconditioner algorithm, parallelized using a combination of node coloring and level scheduling approaches. The electric field on vertices is obtained using the gradient theorem applied to the indirect dual cell. The algorithms for injection, particle loading, particle motion, and particle tracking are parallelized for unstructured tetrahedral grids. The algorithms for the potential solver, electric field evaluation, loading, scatter-gather algorithms are verified using analytic solutions for test cases subject to Laplace and Poisson equations. Grid sensitivity analysis examines the L2 and L∞ norms of the relative error in potential, field, and charge density as a function of edge-averaged and volume-averaged cell size. Analysis shows second order of convergence for the potential and first order of convergence for the electric field and charge density. Temporal sensitivity analysis is performed and the momentum and energy conservation properties of the particle integrators in EUPIC are examined. The effects of cell size and timestep on heating, slowing-down and the deflection times are quantified. The heating, slowing-down and the deflection times are found to be almost linearly dependent on number of particles per cell. EUPIC simulations of current collection by cylindrical Langmuir probes in collisionless plasmas show good comparison with previous experimentally validated numerical results. These simulations were also used in a parallelization efficiency investigation. Results show that the EUPIC has efficiency of more than 80% when the simulation is performed on a single CPU from a non-uniform memory access node and the efficiency is decreasing as the number of threads further increases. The EUPIC is applied to the simulation of the multi-species plasma flow over a geometrically complex CubeSat in Low Earth Orbit. The EUPIC potential and flowfield distribution around the CubeSat exhibit features that are consistent with previous simulations over simpler geometrical bodies.
Demi, Libertario; Verweij, Martin D; Van Dongen, Koen W A
2012-11-01
Real-time 2-D or 3-D ultrasound imaging systems are currently used for medical diagnosis. To achieve the required data acquisition rate, these systems rely on parallel beamforming, i.e., a single wide-angled beam is used for transmission and several narrow parallel beams are used for reception. When applied to harmonic imaging, the demand for high-amplitude pressure wave fields, necessary to generate the harmonic components, conflicts with the use of a wide-angled beam in transmission because this results in a large spatial decay of the acoustic pressure. To enhance the amplitude of the harmonics, it is preferable to do the reverse: transmit several narrow parallel beams and use a wide-angled beam in reception. Here, this concept is investigated to determine whether it can be used for harmonic imaging. The method proposed in this paper relies on orthogonal frequency division multiplexing (OFDM), which is used to create distinctive parallel beams in transmission. To test the proposed method, a numerical study has been performed, in which the transmit, receive, and combined beam profiles generated by a linear array have been simulated for the second-harmonic component. Compared with standard parallel beamforming, application of the proposed technique results in a gain of 12 dB for the main beam and in a reduction of the side lobes. Experimental verification in water has also been performed. Measurements obtained with a single-element emitting transducer and a hydrophone receiver confirm the possibility of exciting a practical ultrasound transducer with multiple Gaussian modulated pulses, each having a different center frequency, and the capability to generate distinguishable second-harmonic components.
NASA Astrophysics Data System (ADS)
Gapon, I. V.; Petrenko, V. I.; Soltwedel, O.; Khaydukov, Yu N.; Kubovcikova, M.; Kopcansky, P.; Bulavin, L. A.; Avdeev, M. V.
2018-03-01
Structural organization of nanoparticles from aqueous ferrofluids on free liquid surface was studied by X-ray reflectometry. The observed layered structure at interface is associated with the evaporation of the solvent. By orienting an external magnetic during evaporation of the aqueos ferrofluids their structural organization can be manipulated. For a magnetic field applied perpendicular to the surface a more pronounced ordering along the surface normal is observed as in the case of a parallel field. Independent on the orientation of the magantic field a ∼ 20 μm thick surface layer of depleted nanoparticle concentration is found at the interface.
HIGH CURRENT RADIO FREQUENCY ION SOURCE
Abdelaziz, M.E.
1963-04-01
This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)
Quincke rotation of an ellipsoid
NASA Astrophysics Data System (ADS)
Vlahovska, Petia; Brosseau, Quentin
2016-11-01
The Quincke effect - spontaneous spinning of a sphere in a uniform DC electric field - has attracted considerable interest in recent year because of the intriguing dynamics exhibited by a Quincke-rotating drop and the emergent collective behavior of confined suspensions of Quincke-rotating spheres. Shape anisotropy, e.g., due to drop deformation or particle asphericity, is predicted to give rise to complex particle dynamics. Analysis of the dynamics of rigid prolate ellipsoid in a uniform DC electric field shows two possible stable states characterized by the orientation of the ellipsoid long axis relative to the applied electric field : spinless (parallel) and spinning (perpendicular). Here we report an experimental study testing the theoretical predictions. The phase diagram of ellipsoid behavior as a function of field strength and aspect ratio is in close agreement with theory. We also investigated the dynamics of the ellipsoidal Quincke "roller": an ellipsoid near a planar surface with normal perpendicular to the field direction. We find novel behaviors such as swinging (long axis oscillating around the applied field direction) and tumbling due to the confinement. Supported by NSF CBET awards 1437545 and 1544196.
NASA Astrophysics Data System (ADS)
Pradillo, Gerardo; Heintz, Aneesh; Vlahovska, Petia
2017-11-01
The spontaneous rotation of a sphere in an applied uniform DC electric field (Quincke effect) has been utilized to engineer self-propelled particles: if the sphere is initially resting on a surface, it rolls. The Quincke rollers have been widely used as a model system to study collective behavior in ``active'' suspensions. If the applied field is DC, an isolated Quincke roller follows a straight line trajectory. In this talk, we discuss the design of a Quincke roller that executes a random-walk-like behavior. We utilize AC field - upon reversal of the field direction a fluctuation in the axis of rotation (which is degenerate in the plane perpendicular to the field and parallel to the surface) introduces randomness in the direction of motion. The MSD of an isolated Quincke walker depends on frequency, amplitude, and waveform of the electric field. Experiment and theory are compared. We also investigate the collective behavior of Quincke walkers,the transport of inert particles in a bath of Quincke walkers, and the spontaneous motion of a drop containing Quincke active particle. supported by NSF Grant CBET 1437545.
Antiferromagnetic spin Seebeck effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Stephen M.; Zhang, Wei; KC, Amit
2016-03-03
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2. A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30nm)/Pt (4 nm) grown by molecular beam epitaxy on a MgF2(110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2–80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in themore » spin Seebeck signal when large magnetic fields (>9T) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.« less
Okamoto, Naoya; Yoshimatsu, Katsunori; Schneider, Kai; Farge, Marie
2014-03-01
Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found to be independent of scale for all considered values of the interaction parameter. The strength of the imposed magnetic field does amplify the anisotropy of the flow.
Antiferromagnetic Spin Seebeck Effect
NASA Astrophysics Data System (ADS)
Wu, Stephen M.; Zhang, Wei; KC, Amit; Borisov, Pavel; Pearson, John E.; Jiang, J. Samuel; Lederman, David; Hoffmann, Axel; Bhattacharya, Anand
2016-03-01
We report on the observation of the spin Seebeck effect in antiferromagnetic MnF2 . A device scale on-chip heater is deposited on a bilayer of MnF2 (110) (30 nm )/Pt (4 nm) grown by molecular beam epitaxy on a MgF2 (110) substrate. Using Pt as a spin detector layer, it is possible to measure the thermally generated spin current from MnF2 through the inverse spin Hall effect. The low temperature (2-80 K) and high magnetic field (up to 140 kOe) regime is explored. A clear spin-flop transition corresponding to the sudden rotation of antiferromagnetic spins out of the easy axis is observed in the spin Seebeck signal when large magnetic fields (>9 T ) are applied parallel to the easy axis of the MnF2 thin film. When the magnetic field is applied perpendicular to the easy axis, the spin-flop transition is absent, as expected.
Interplanetary magnetic field effects on high latitude ionospheric convection
NASA Technical Reports Server (NTRS)
Heelis, R. A.
1985-01-01
Relations between the electric field and the electric current in the ionosphere can be established on the basis of a system of mathematical and physical equations provided by the equations of current continuity and Ohm's law. For this reason, much of the synthesis of electric field and plasma velocity data in the F-region is made with the aid of similar data sets derived from field-aligned current and horizontal current measurements. During the past decade, the development of a self-consistent picture of the distribution and behavior of these measurements has proceeded almost in parallel. The present paper is concerned with the picture as it applies to the electric field and plasma drift velocity and its dependence on the interplanetary magnetic field. Attention is given to the southward interplanetary magnetic field and the northward interplanetary magnetic field.
Electric-field-induced structural changes in water confined between two graphene layers
NASA Astrophysics Data System (ADS)
Sobrino Fernández, Mario; Peeters, F. M.; Neek-Amal, M.
2016-07-01
An external electric field changes the physical properties of polar liquids due to the reorientation of their permanent dipoles. Using molecular dynamics simulations, we predict that an in-plane electric field applied parallel to the channel polarizes water molecules which are confined between two graphene layers, resulting in distinct ferroelectricity and electrical hysteresis. We found that electric fields alter the in-plane order of the hydrogen bonds: Reversing the electric field does not restore the system to the nonpolar initial state, instead a residual dipole moment remains in the system. The square-rhombic structure of 2D ice is transformed into two rhombic-rhombic structures. Our study provides insights into the ferroelectric state of water when confined in nanochannels and shows how this can be tuned by an electric field.
Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields
NASA Astrophysics Data System (ADS)
Forsythe, Victoriya V.; Makarevich, Roman A.
2016-11-01
An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.
A Systolic Array-Based FPGA Parallel Architecture for the BLAST Algorithm
Guo, Xinyu; Wang, Hong; Devabhaktuni, Vijay
2012-01-01
A design of systolic array-based Field Programmable Gate Array (FPGA) parallel architecture for Basic Local Alignment Search Tool (BLAST) Algorithm is proposed. BLAST is a heuristic biological sequence alignment algorithm which has been used by bioinformatics experts. In contrast to other designs that detect at most one hit in one-clock-cycle, our design applies a Multiple Hits Detection Module which is a pipelining systolic array to search multiple hits in a single-clock-cycle. Further, we designed a Hits Combination Block which combines overlapping hits from systolic array into one hit. These implementations completed the first and second step of BLAST architecture and achieved significant speedup comparing with previously published architectures. PMID:25969747
Compatibility of photomultiplier tube operation with SQUIDs for a neutron EDM experiment
NASA Astrophysics Data System (ADS)
Libersky, Matthew; nEDM Collaboration
2013-10-01
An experiment at the Spallation Neutron Source at Oak Ridge National Laboratory with the goal of reducing the experimental limit on the electric dipole moment (EDM) of the neutron will measure the precession frequencies of neutrons when a strong electric field is applied parallel and anti-parallel to a weak magnetic field. A difference in these frequencies would indicate a nonzero neutron EDM. To correct for drifts of the magnetic field in the measurement volume, polarized 3He will be used as a co-magnetometer. In one of the two methods built into the apparatus, superconducting quantum interference devices (SQUIDs) will be used to read out the 3He magnetization. Photomultiplier tubes will be used concurrently to measure scintillation light from neutron capture by 3He. However, the simultaneous noise-sensitive magnetic field measurement by the SQUIDs makes conventional PMT operation problematic due to the alternating current involved in generating the high voltages needed. Tests were carried out at Los Alamos National Laboratory to study the compatibility of simultaneous SQUID and PMT operation, using a custom battery-powered high-voltage power supply developed by Meyer and Smith (NIM A 647.1) to operate the PMT. The results of these tests will be presented.
Thermodynamics of the Electric Field Induced Orientation of Nematic Droplet/Polymer Films
NASA Astrophysics Data System (ADS)
Drzaic, Paul S.
1989-07-01
Films consisting of micron-sized nematic liquid crystal droplets dispersed in a polymer matrix (NCAP) represent an important new class of electro-optical devices. These films strongly scatter light in the tm powered state, but achieve a high degree of clarity when an electric field is applied. In this report we describe the aspects of liquid crystal and polymer composition that control the magnitude of the electric field required to orient the nematic droplets. The droplet shape is found to be an important factor in the electro-optical response of these films. In films deposited from aqueous solutions the nematic cavities in the film are usually oblate in nature, with the short axis perpendicular to the film plane. The nematic, which adopts a bipolar configuration within the cavity, is preferentially aligned so that each droplet's symmetry axis is aligned parallel to the film plane in the rest state, but rotates to lie parallel with the field in the powered state. Capacitance data is presented which supports this picture. It is shown that the nematic droplet shape can be a major factor in determining the thermodynamics of droplet orientation.
NASA Astrophysics Data System (ADS)
Chen, M.; Wei, S.
2016-12-01
The serious damage of Mexico City caused by the 1985 Michoacan earthquake 400 km away indicates that urban areas may be affected by remote earthquakes. To asses earthquake risk of urban areas imposed by distant earthquakes, we developed a hybrid Frequency Wavenumber (FK) and Finite Difference (FD) code implemented with MPI, since the computation of seismic wave propagation from a distant earthquake using a single numerical method (e.g. Finite Difference, Finite Element or Spectral Element) is very expensive. In our approach, we compute the incident wave field (ud) at the boundaries of the excitation box, which surrounding the local structure, using a paralleled FK method (Zhu and Rivera, 2002), and compute the total wave field (u) within the excitation box using a parallelled 2D FD method. We apply perfectly matched layer (PML) absorbing condition to the diffracted wave field (u-ud). Compared to previous Generalized Ray Theory and Finite Difference (Wen and Helmberger, 1998), Frequency Wavenumber and Spectral Element (Tong et al., 2014), and Direct Solution Method and Spectral Element hybrid method (Monteiller et al., 2013), our absorbing boundary condition dramatically suppress the numerical noise. The MPI implementation of our method can greatly speed up the calculation. Besides, our hybrid method also has a potential use in high resolution array imaging similar to Tong et al. (2014).
Evaluation of massively parallel sequencing for forensic DNA methylation profiling.
Richards, Rebecca; Patel, Jayshree; Stevenson, Kate; Harbison, SallyAnn
2018-05-11
Epigenetics is an emerging area of interest in forensic science. DNA methylation, a type of epigenetic modification, can be applied to chronological age estimation, identical twin differentiation and body fluid identification. However, there is not yet an agreed, established methodology for targeted detection and analysis of DNA methylation markers in forensic research. Recently a massively parallel sequencing-based approach has been suggested. The use of massively parallel sequencing is well established in clinical epigenetics and is emerging as a new technology in the forensic field. This review investigates the potential benefits, limitations and considerations of this technique for the analysis of DNA methylation in a forensic context. The importance of a robust protocol, regardless of the methodology used, that minimises potential sources of bias is highlighted. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Transport properties of kA class QMG current limiting elements
NASA Astrophysics Data System (ADS)
Morita, M.; Miura, O.; Ito, D.
2001-09-01
In order to estimate the feasibility of a resistive type fault current limiter made of QMG, transport properties of QMG current limiting elements which can transport about 1 kA continuously in a superconducting state were studied. QMG is a rare earth based bulk superconductor that has high Jc properties and relatively high electrical resistivity in a normal state. Because of these properties, QMG is a promising bulk material for superconducting fault current limiter applications. A bar-shaped sample in which the cross-section and the effective length were 2.2×0.8 mm2 and 30 mm, respectively, was prepared. Bypass resistance of 7 mΩ was connected in parallel with the sample. A field assist mechanism that can apply a magnetic field of about 0.9 T to the sample was installed. A half cycle of AC current up to about 3 kA was applied to the samples at 77 K. In the case when applied current ( I) was less than 1000 A in a self-field, flux flow voltage was less than 0.5 mV. The n-value was about 6. In the applied field of 0.9 T, a rapid increase of voltage (quench) was observed around I=1820 A. The quench phenomena reproduced without degradation in the case of I>1820 A. From these results, it was found that QMG fault current elements can endure the thermal shock of the quench by the optimization of bypass resistance and the applied field.
NASA Technical Reports Server (NTRS)
Ergun, R. E.; Goodrich, K. A.; Wilder, F. D.; Holmes, J. C.; Stawarz, J. E.; Eriksson, S.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.;
2016-01-01
We report observations from the Magnetospheric Multiscale satellites of parallel electric fields (E (sub parallel)) associated with magnetic reconnection in the subsolar region of the Earth's magnetopause. E (sub parallel) events near the electron diffusion region have amplitudes on the order of 100 millivolts per meter, which are significantly larger than those predicted for an antiparallel reconnection electric field. This Letter addresses specific types of E (sub parallel) events, which appear as large-amplitude, near unipolar spikes that are associated with tangled, reconnected magnetic fields. These E (sub parallel) events are primarily in or near a current layer near the separatrix and are interpreted to be double layers that may be responsible for secondary reconnection in tangled magnetic fields or flux ropes. These results are telling of the three-dimensional nature of magnetopause reconnection and indicate that magnetopause reconnection may be often patchy and/or drive turbulence along the separatrix that results in flux ropes and/or tangled magnetic fields.
NASA Astrophysics Data System (ADS)
Fukuoka, Shuhei; Yamashita, Satoshi; Nakazawa, Yasuhiro; Yamamoto, Takashi; Fujiwara, Hideki; Shirahata, Takashi; Takahashi, Kazuko
2016-06-01
The results are presented for systematic heat capacity measurements of π-d interacting systems of κ -(BETS) 2Fe Br4 and κ -(BETS) 2FeC l4 [BETS = bis(ethylenedithio)tetraselenafulvalene] performed under in-plane magnetic fields. We observed sharp thermal anomalies at 2.47 K for κ -(BETS) 2FeB r4 and at 0.47 K for κ -(BETS) 2FeC l4 at 0 T that are associated with antiferromagnetic transitions of the 3 d electrons in the anion layers. From analyses of the magnetic heat capacity data, we indicate that the two compounds show unconventional thermodynamic behaviors inherent in the π-d interacting layered system. In the case of κ -(BETS) 2FeB r4 , a small hump structure was observed in the magnetic heat capacity below the transition temperature when a magnetic field was applied parallel to the a axis. In the case of κ -(BETS) 2FeC l4 , a similar hump structure was observed at 0 T that remained in the data with magnetic fields applied parallel to the a axis. We demonstrate that the temperature dependencies of the magnetic heat capacities scale well by normalizing the temperatures with dominant one-dimensional direct interactions (Jdd/kB) of each compound. The field dependencies of the transition temperatures and the hump structures are elucidated in one simple magnetic field vs temperature (H -T ) phase diagram. These results indicate that the thermodynamic features of both κ-type BETS salts are essentially equivalent, and the observed hump structures are derived from the one-dimensional Jdd interaction characters, which are still influential for magnetic features even in the long-range magnetic ordered states.
NASA Astrophysics Data System (ADS)
Fedorin, Illia V.
2018-01-01
Electrodynamic properties of a photonic hypercrystal formed by periodically alternating two types of anisotropic metamaterials are studied. The first metamaterial consists of ferrite and dielectric layers, while the second metamaterial consists of semiconductor and dielectric layers. The system is assumed to be placed in an external magnetic field, which applied parallel to the boundaries of the layers. An effective medium theory which is suitable for calculation of properties of long-wavelength electromagnetic modes is applied in order to derive averaged expressions for effective constitutive parameters. It has been shown that providing a conscious choice of the constitutive parameters and material fractions of magnetic, semiconductor, and dielectric layers, the system under study shows hypercrystal properties for both TE and TM waves in the different frequency ranges.
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Observations of large parallel electric fields in the auroral ionosphere
NASA Technical Reports Server (NTRS)
Mozer, F. S.
1976-01-01
Rocket borne measurements employing a double probe technique were used to gather evidence for the existence of electric fields in the auroral ionosphere having components parallel to the magnetic field direction. An analysis of possible experimental errors leads to the conclusion that no known uncertainties can account for the roughly 10 mV/m parallel electric fields that are observed.
NASA Astrophysics Data System (ADS)
Wei, Xiaohui; Li, Weishan; Tian, Hailong; Li, Hongliang; Xu, Haixiao; Xu, Tianfu
2015-07-01
The numerical simulation of multiphase flow and reactive transport in the porous media on complex subsurface problem is a computationally intensive application. To meet the increasingly computational requirements, this paper presents a parallel computing method and architecture. Derived from TOUGHREACT that is a well-established code for simulating subsurface multi-phase flow and reactive transport problems, we developed a high performance computing THC-MP based on massive parallel computer, which extends greatly on the computational capability for the original code. The domain decomposition method was applied to the coupled numerical computing procedure in the THC-MP. We designed the distributed data structure, implemented the data initialization and exchange between the computing nodes and the core solving module using the hybrid parallel iterative and direct solver. Numerical accuracy of the THC-MP was verified through a CO2 injection-induced reactive transport problem by comparing the results obtained from the parallel computing and sequential computing (original code). Execution efficiency and code scalability were examined through field scale carbon sequestration applications on the multicore cluster. The results demonstrate successfully the enhanced performance using the THC-MP on parallel computing facilities.
NASA Astrophysics Data System (ADS)
Sheykina, Nadiia; Bogatina, Nina
The following variants of roots location relatively to static and alternative components of magnetic field were studied. At first variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed perpendicular to both two fields’ components and gravitation vector. At the variant the negative gravitropysm for cress roots was observed. At second variant the static magnetic field was directed parallel to the gravitation vector, the alternative magnetic field was directed perpendicular to static one; roots were directed parallel to alternative magnetic field. At third variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed perpendicular to both two fields components and gravitation vector; At forth variant the alternative magnetic field was directed parallel to the gravitation vector, the static magnetic field was directed perpendicular to the gravitation vector, roots were directed parallel to static magnetic field. In all cases studied the alternative magnetic field frequency was equal to Ca ions cyclotron frequency. In 2, 3 and 4 variants gravitropism was positive. But the gravitropic reaction speeds were different. In second and forth variants the gravitropic reaction speed in error limits coincided with the gravitropic reaction speed under Earth’s conditions. At third variant the gravitropic reaction speed was slowed essentially.
NASA Astrophysics Data System (ADS)
Yépez, L. D.; Carrillo, J. L.; Donado, F.; Sausedo-Solorio, J. M.; Miranda-Romagnoli, P.
2016-06-01
The dynamical pattern formation of clusters of magnetic particles in a low-concentration magnetorheological fluid, under the influence of a superposition of two perpendicular sinusoidal fields, is studied experimentally. By varying the frequency and phase shift of the perpendicular fields, this configuration enables us to experimentally analyze a wide range of field configurations, including the case of a pure rotating field and the case of an oscillating unidirectional field. The fields are applied parallel to the horizontal plane where the fluid lies or in the vertical plane. For fields applied in the horizontal plane, we observed that, when the ratio of the frequencies increases, the average cluster size exhibits a kind of periodic resonances. When the phase shift between the fields is varied, the average chain length reaches maximal values for the cases of the rotating field and the unidirectional case. We analyze and discuss these results in terms of a weighted average of the time-dependent Mason number. In the case of a rotating field on the vertical plane, we also observe that the competition between the magnetic and the viscous forces determines the average cluster size. We show that this configuration generates a series of physically meaningful self-organization of clusters and transport phenomena.
NASA Astrophysics Data System (ADS)
Panda, J.; Maji, Nilay; Nath, T. K.
2017-05-01
The room temperature spin injection and detection in non magnetic p-Si semiconductor have been studied in details in our CoFe2O4 (CFO)/MgO/p-Si heterojunction. The 3-terminal tunnel contacts have been made on the device for transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The spin accumulation in non magnetic p-Si semiconductor has been observed at different bias current under the applied magnetic field parallel to the film plane in the temperature range of 40-300 K. We have observed a giant spin accumulation in p-Si semiconductor using MgO/CFO tunnel contact. The Hanley effect is used to control the reduction of spin accumulation by applying magnetic field perpendicular to the carrier spin in the p-Si. The accumulated spin signal decays as a function of applied magnetic field for fixed bias current. These results will enable utilization of the spin degree of freedom in complementary Si devices and its further development.
Calculation of the radial electric field with RF sheath boundary conditions in divertor geometry
NASA Astrophysics Data System (ADS)
Gui, B.; Xia, T. Y.; Xu, X. Q.; Myra, J. R.; Xiao, X. T.
2018-02-01
The equilibrium electric field that results from an imposed DC bias potential, such as that driven by a radio frequency (RF) sheath, is calculated using a new minimal two-field model in the BOUT++ framework. Biasing, using an RF-modified sheath boundary condition, is applied to an axisymmetric limiter, and a thermal sheath boundary is applied to the divertor plates. The penetration of the bias potential into the plasma is studied with a minimal self-consistent model that includes the physics of vorticity (charge balance), ion polarization currents, force balance with E× B , ion diamagnetic flow (ion pressure gradient) and parallel electron charge loss to the thermal and biased sheaths. It is found that a positive radial electric field forms in the scrape-off layer and it smoothly connects across the separatrix to the force-balanced radial electric field in the closed flux surface region. The results are in qualitative agreement with the experiments. Plasma convection related to the E× B net flow in front of the limiter is also obtained from the calculation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Miao, E-mail: yumiao@cqu.edu.cn; Qi, Song; Fu, Jie
A high-damping magnetorheological elastomer (MRE) with bi-directional magnetic-control modulus is developed. This MRE was synthesized by filling NdFeB particles into polyurethane (PU)/ epoxy (EP) interpenetrating network (IPN) structure. The anisotropic samples were prepared in a permanent magnetic field and magnetized in an electromagnetic field of 1 T. Dynamic mechanical responses of the MRE to applied magnetic fields are investigated through magneto-rheometer, and morphology of MREs is observed via scanning electron microscope (SEM). Test result indicates that when the test field orientation is parallel to that of the sample's magnetization, the shear modulus of sample increases. On the other hand, when themore » orientation is opposite to that of the sample's magnetization, shear modulus decreases. In addition, this PU/EP IPN matrix based MRE has a high-damping property, with high loss factor and can be controlled by applying magnetic field. It is expected that the high damping property and the ability of bi-directional magnetic-control modulus of this MRE offer promising advantages in seismologic application.« less
GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart
2011-06-01
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.
Small planar domains in amorphous thin films: Nucleation and equilibrium conditions (abstract)
NASA Astrophysics Data System (ADS)
Labrune, M.; Hamzaoui, S.; Puchalska, I. B.; Battarel, C.; Hubert, A.
1984-03-01
The purpose of this work is to investigate a new type of small flat domain in the shape of lozenges. Such domains may be used for high-density nonvolatile shift register memories [C. Battarel, R. Morille, and A. Caplain, IEEE Trans. Magn. July (1983)]. Experimental and theoretical results for nucleation and stability of small lozenge domains less than 10 μm in length in Co-Ni-P and CoTi [G. Suran, K. Ounadjela, and J. Sztern (this Proceedings)] amorphous thin films 1500 Å thick are presented. The films have a low coercivity (Hc ˜1 Oe) and a significant in-plane uniaxial anisotropy (HK ˜35 Oe). The domains were observed in an optical microscope by longitudinal Kerr effect using an experimental method described by Prutton. Domain nucleation is obtained by applying a local field higher than HK. It must be emphasized that to stabilize the domain two constant fields having opposite direction are required: H1 applied inside the domain and parallel to its magnetization; H2 parallel to the main magnetization of the film (H1>H2). Experimental results obtained for such configuration of magnetic fields will be presented and compared with numerical computations. The theoretical model will be discussed and the role played by the magnetostatic energy emphasized. The model takes into account the spreading of the magnetic charges which appear at the boundary of the domain. Finally, application to experimental devices as mentioned in the first reference above will be shown.
NASA Astrophysics Data System (ADS)
Mackowski, Daniel; Ramezanpour, Bahareh
2018-07-01
A formulation is developed for numerically solving the frequency domain Maxwell's equations in plane parallel layers of inhomogeneous media. As was done in a recent work [1], the plane parallel layer is modeled as an infinite square lattice of W × W × H unit cells, with W being a sample width of the layer and H the layer thickness. As opposed to the 3D volume integral/discrete dipole formulation, the derivation begins with a Fourier expansion of the electric field amplitude in the lateral plane, and leads to a coupled system of 1D ordinary differential equations in the depth direction of the layer. A 1D dyadic Green's function is derived for this system and used to construct a set of coupled 1D integral equations for the field expansion coefficients. The resulting mathematical formulation is considerably simpler and more compact than that derived, for the same system, using the discrete dipole approximation applied to the periodic plane lattice. Furthermore, the fundamental property variable appearing in the formulation is the Fourier transformed complex permittivity distribution in the unit cell, and the method obviates any need to define or calculate a dipole polarizability. Although designed primarily for random media calculations, the method is also capable of predicting the single scattering properties of individual particles; comparisons are presented to demonstrate that the method can accurately reproduce, at scattering angles not too close to 90°, the polarimetric scattering properties of single and multiple spheres. The derivation of the dyadic Green's function allows for an analytical preconditioning of the equations, and it is shown that this can result in significantly accelerated solution times when applied to densely-packed systems of particles. Calculation results demonstrate that the method, when applied to inhomogeneous media, can predict coherent backscattering and polarization opposition effects.
Setsompop, Kawin; Alagappan, Vijayanand; Gagoski, Borjan; Witzel, Thomas; Polimeni, Jonathan; Potthast, Andreas; Hebrank, Franz; Fontius, Ulrich; Schmitt, Franz; Wald, Lawrence L; Adalsteinsson, Elfar
2008-12-01
Slice-selective RF waveforms that mitigate severe B1+ inhomogeneity at 7 Tesla using parallel excitation were designed and validated in a water phantom and human studies on six subjects using a 16-element degenerate stripline array coil driven with a butler matrix to utilize the eight most favorable birdcage modes. The parallel RF waveform design applied magnitude least-squares (MLS) criteria with an optimized k-space excitation trajectory to significantly improve profile uniformity compared to conventional least-squares (LS) designs. Parallel excitation RF pulses designed to excite a uniform in-plane flip angle (FA) with slice selection in the z-direction were demonstrated and compared with conventional sinc-pulse excitation and RF shimming. In all cases, the parallel RF excitation significantly mitigated the effects of inhomogeneous B1+ on the excitation FA. The optimized parallel RF pulses for human B1+ mitigation were only 67% longer than a conventional sinc-based excitation, but significantly outperformed RF shimming. For example the standard deviations (SDs) of the in-plane FA (averaged over six human studies) were 16.7% for conventional sinc excitation, 13.3% for RF shimming, and 7.6% for parallel excitation. This work demonstrates that excitations with parallel RF systems can provide slice selection with spatially uniform FAs at high field strengths with only a small pulse-duration penalty. (c) 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
van der Laan, D. C.; Ekin, J. W.; Douglas, J. F.; Clickner, C. C.; Stauffer, T. C.; Goodrich, L. F.
2010-07-01
A large, magnetic-field-dependent, reversible reduction in critical current density with axial strain in Y Ba2Cu3O7-δ coated conductors at 75.9 K has been measured. This effect may have important implications for the performance of Y Ba2Cu3O7-δ coated conductors in applications where the conductor experiences large stresses in the presence of a magnetic field. Previous studies have been performed only under tensile strain and could provide only a limited understanding of the in-field strain effect. We now have constructed a device for measuring the critical current density as a function of axial compressive and tensile strain and applied magnetic field as well as magnetic field angle, in order to determine the magnitude of this effect and to create a better understanding of its origin. The reversible reduction in critical current density with strain becomes larger with increasing magnetic field at all field angles. At 76 K the critical current density is reduced by about 30% at - 0.5% strain when a magnetic field of 5 T is applied parallel to the c-axis of the conductor or 8 T is applied in the ab-plane, compared to a reduction of only 13% in self-field. Differences in the strain response of the critical current density at various magnetic field angles indicate that the pinning mechanisms in Y Ba2Cu3O7-δ coated conductors are uniquely affected by strain. Contribution of NIST, not subject to US copyright.
Sensitive spin detection using an on-chip SQUID-waveguide resonator
NASA Astrophysics Data System (ADS)
Yue, G.; Chen, L.; Barreda, J.; Bevara, V.; Hu, L.; Wu, L.; Wang, Z.; Andrei, P.; Bertaina, S.; Chiorescu, I.
2017-11-01
Precise detection of spin resonance is of paramount importance to achieve coherent spin control in quantum computing. We present a setup for spin resonance measurements, which uses a dc-SQUID flux detector coupled to an antenna from a coplanar waveguide. The SQUID and the waveguide are fabricated from a 20 nm Nb thin film, allowing high magnetic field operation with the field applied parallel to the chip. We observe a resonance signal between the first and third excited states of Gd spins S = 7/2 in a CaWO4 crystal, relevant for state control in multi-level systems.
Electrohydrodynamic deformation and interaction of a pair of emulsion drops
NASA Technical Reports Server (NTRS)
Baygents, James C.
1994-01-01
The response of a pair of emulsion drops to the imposition of a uniform electric field is examined. The case studied is that of equal-sized drops whose line of centers is parallel to the axis of the applied field. A new boundary integral solution to the governing equations of the leaky dielectric model is developed; the formulation accounts for the electrostatic and hydrodynamic interactions between the drops, as well as their deformations. Numerical calculations show that, after an initial transient during which the drops primarily deform, the pair drift slowly together due to their electrostatic interactions.
NASA Astrophysics Data System (ADS)
Kossler, W. J.; Petzinger, K. G.; Wan, X.; Dai, Y.; Greer, A. J.; Williams, D. Ll.; Koster, E.; Harshman, D. R.; Mitzi, D. B.
1998-03-01
We have recently discovered using μSR that low magnetic fields in the ab planes of a sample composed of many Bi_2Sr_2CaCu_2O_8+δ single crystals penetrate freely, unperturbed by the superconductivity. This provides microscopic evidence for extreme 2D behavior for the vortices even at at 2 K. Measurements are described which show that one may apply, remove and then reapply these fields obtaining the same field distributions with no observable hysteresis. The measured field distributions have been modelled using pancake vortices and are interpreted in terms of a disordered distribution of the pancake centers. The dynamics of the vortex fields have been studied by following the component of the muon's polarization parallel to the average internal magnetic field.
NASA Astrophysics Data System (ADS)
Ong, C. K.; Rao, X. S.; Jin, B. B.
1999-11-01
An unusual microwave response of the surface impedance Zs of high-Tc thin films at an applied small dc magnetic field (Bdc) at 77 K, namely a decrease of Zs, is observed with the microstrip resonator technique. The resonant frequency is 1.107 GHz. The direction of Bdc is parallel or perpendicular to the a-b plane. Bdc ranges from 0 to 200 G. It is found that the surface resistance (Rs) at Bdc parallel to the a-b plane first decreases with Bdc and then increases above a crossover field. The Rs behaviour for Bdc perpendicular to the a-b plane is the same but with a different crossover field. The two behaviours can be collapsed to one curve by scaling the crossover fields. The changes of surface reactance Xs correlated linearly with the changes of Rs in the ranges of Bdc. The ratios rH of changes of Rs and Xs (rH = icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Rs/icons/Journals/Common/Delta" ALT="Delta" ALIGN="TOP"/> Xs) are 0.5 at Bdc less than the crossover field and 0.1 at Bdc greater than the crossover field. The measurements also show that the crossover field is independent of rf input power. A phenomenological model is also proposed to explain this unusual behaviour. By adjusting fitting parameters the computed results agree with the experimental results qualitatively.
Arnush, Donald; MacKenzie, Kenneth R.; Wuerker, Ralph F.
1980-01-01
Isotope separation apparatus consisting of a plurality of cells disposed adjacent to each other in an evacuated container. A common magnetic field is established extending through all of the cells. A source of energetic electrons at one end of the container generates electrons which pass through the cells along the magnetic field lines. Each cell includes an array of collector plates arranged in parallel or in tandem within a common magnetic field. Sets of collector plates are disposed adjacent to each other in each cell. Means are provided for differentially energizing ions of a desired isotope by applying energy at the cyclotron resonant frequency of the desired isotope. As a result, the energized desired ions are preferentially collected by the collector plates.
Stability of a viscous fluid in a rectangular cavity in the presence of a magnetic field
NASA Technical Reports Server (NTRS)
Liang, C. Y.; Hung, Y. Y.
1976-01-01
The stability of an electrically conducting fluid subjected to two dimensional disturbance was investigated. A physical system consisting of two parallel infinite vertical plates which are thermally insulated was studied. An external magnetic field of constant strength was applied to normal plates. The fluid was heated from below so that a steady temperature gradient was maintained in the fluid. The governing equations were derived by perturbation technique, and solutions were obtained by a modified Galerkin method. It was found that the presence of the magnetic field increases the stability of the physical system and instability can occur in the form of neutral or oscillatory instability.
Bale, S D; Mozer, F S
2007-05-18
Large parallel (
NASA Technical Reports Server (NTRS)
Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, Li-Jen; Torbert, R. B.; Phan, T. D.; Lavraud, B.;
2016-01-01
We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E(sub parallel lines) that is larger than predicted by simulations. The high-speed (approximately 300 km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E(sub parallel lines) is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.
2015-06-01
cient parallel code for applying the operator. Our method constructs a polynomial preconditioner using a nonlinear least squares (NLLS) algorithm. We show...apply the underlying operator. Such a preconditioner can be very attractive in scenarios where one has a highly efficient parallel code for applying...repeatedly solve a large system of linear equations where one has an extremely fast parallel code for applying an underlying fixed linear operator
Single crystal polarized neutron diffraction study of the magnetic structure of HoFeO3.
Chatterji, T; Stunault, A; Brown, P J
2017-09-27
Polarised neutron diffraction measurements have been made on HoFeO 3 single crystals magnetised in both the [0 0 1] and [1 0 0] directions (Pbnm setting). The polarisation dependencies of Bragg reflection intensities were measured both with a high field of [Formula: see text] T parallel to [0 0 1] at [Formula: see text] K and with the lower field [Formula: see text] T parallel to [1 0 0] at [Formula: see text] K. A Fourier projection of magnetization induced parallel to [0 0 1], made using the hk0 reflections measured in 9 T, indicates that almost all of it is due to alignment of Ho moments. Further analysis of the asymmetries of general reflections in these data showed that although, at 70 K, 9 T applied parallel to [0 0 1] hardly perturbs the antiferromagnetic order of the Fe sublattices, it induces significant antiferromagnetic order of the Ho sublattices in the [Formula: see text] plane, with the antiferromagnetic components of moment having the same order of magnitude as the induced ferromagnetic ones. Strong intensity asymmetries measured in the low temperature [Formula: see text] structure with a lower field, 0.5 T [Formula: see text] [1 0 0] allowed the variation of the ordered components of the Ho and Fe moments to be followed. Their absolute orientations, in the [Formula: see text] domain stabilised by the field were determined relative to the distorted perovskite structure. This relationship fixes the sign of the Dzyalshinski-Moriya (D-M) interaction which leads to the weak ferromagnetism. Our results indicate that the combination of strong y-axis anisotropy of the Ho moments and Ho-Fe exchange interactions breaks the centrosymmetry of the structure and could lead to ferroelectric polarization.
SU-E-J-239: Influence of RF Coil Materials On Surface and Buildup Dose From a 6MV Photon Beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghila, A; Fallone, B; Rathee, S
2015-06-15
Purpose: In order to perform real time tumour tracking using an integrated Linac-MR, images have to be acquired during irradiation. MRI uses RF coils in close proximity to the imaged volume. Given current RF coil designs this means that the high energy photons will be passing through the coil before reaching the patient. This study experimentally investigates the dose modifications that occur due to the presence of various RF coil materials in the treatment beam. Methods: Polycarbonate, copper or aluminum tape, and Teflon were used to emulate the base, conductor and cover respectively of a surface RF coil. These materialsmore » were placed at various distances from the surface of polystyrene or solid water phantoms which were irradiated in the presence of no magnetic field, a transverse 0.2T magnetic field, and a parallel 0.2T magnetic field. Percent depth doses were measured using ion chambers. Results: A significant increase in surface and buildup dose is observed. The surface dose is seen to decrease with an increasing separation between the emulated coil and the phantom surface, when no magnetic field is present. When a transverse magnetic field is applied the surface dose decreases faster with increasing separation, as some of the electrons created in the coil are curved away from the phantom’s surface. When a parallel field is present the surface dose stays approximately constant for small separations, only slightly decreasing for separations greater than 5cm, since the magnetic field focuses the electrons produced in the coil materials not allowing them to scatter. Conclusion: Irradiating a patient through an RF coil leads to an increase in the surface and buildup doses. Mitigating this increase is important for the successful clinical use of either a transverse or a parallel configuration Linac-MR unit. This project is partially supported by an operating grant from the Canadian Institute of Health Research (CIHR MOP 93752)« less
Current-induced vortex motion and the vortex-glass transition in YBa{sub 2}Cu{sub 3}O{sub y} films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nojima, T.; Kakinuma, A.; Kuwasawa, Y.
1997-12-01
Measurements of current-voltage characteristics have been performed on YBa{sub 2}Cu{sub 3}O{sub y} films for two components of electric fields in the ab plane, E{sub x} and E{sub y}, in magnetic fields of the form (H{sub 0},H{sub 0},{delta}H{sub 0}), where x {parallel} the current density J, z {parallel} the c axis, and {delta}{lt}1. The simultaneous measurements of E{sub x} and E{sub y} under these conditions make it possible to analyze the situation of the vortex motion due to the Lorentz force. Our results indicate that vortices move as long-range correlated lines only below the glass transition temperature in a low-current limit.more » We also show that applying high-current density destroys line motion and induces a structural change of vortex lines in the glass state. {copyright} {ital 1997} {ital The American Physical Society}« less
Microwave Dissipation due to Vortices in High - Superconductors
NASA Astrophysics Data System (ADS)
Anand, Niraj
1995-01-01
Using meander line resonant structures, we perform highly sensitive measurements of the changes in surface resistance Delta R_{s} of Y{rm Ba}_{2} {rm Cu}_{3}{rm O }_{rm 7-x} thin films in order to probe vortex dynamics as a function of temperature, applied dc magnetic field (H), and angle (theta) of the applied field relative to the ab planes. In our experiments, we observe that the component of the magnetic field normal to the ab planes produces substantially more dissipation than the component parallel to the ab planes. By using an extension of the London theory to anisotropic superconductors, we can calculate the internal flux densities parallel (B_{ab}) and perpendicular (B_{c}) to the ab planes inside a superconductor for an arbitrary field orientation relative to the ab planes. For low fields, we can define a weight (delta) of the relative contribution to dissipation from B _{ab} relative to that from B _{c}. This allows us to calculate an "effective internal flux density and hence obtain the total dissipation. Using the results from this theory, we obtain excellent quantitative agreement with our measurements of Delta R_{s} vs. theta. This is only possible if we take into account both the anisotropic screening and the anisotropic response of the material. We have also measured the magnetic field dependence of dissipation for fields applied at shallow angles from the ab planes. Here we observe two regions of markedly different dissipation separated by a temperature dependent crossover field H_{cr}(T). For H>H_{cr}(T) we observe a strong linear dependence of Delta R_ {s} vs. H. For H
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo Zehua; Tang Xianzhu
Parallel transport of long mean-free-path plasma along an open magnetic field line is characterized by strong temperature anisotropy, which is driven by two effects. The first is magnetic moment conservation in a non-uniform magnetic field, which can transfer energy between parallel and perpendicular degrees of freedom. The second is decompressional cooling of the parallel temperature due to parallel flow acceleration by conventional presheath electric field which is associated with the sheath condition near the wall surface where the open magnetic field line intercepts the discharge chamber. To the leading order in gyroradius to system gradient length scale expansion, the parallelmore » transport can be understood via the Chew-Goldbeger-Low (CGL) model which retains two components of the parallel heat flux, i.e., q{sub n} associated with the parallel thermal energy and q{sub s} related to perpendicular thermal energy. It is shown that in addition to the effect of magnetic field strength (B) modulation, the two components (q{sub n} and q{sub s}) of the parallel heat flux play decisive roles in the parallel variation of the plasma profile, which includes the plasma density (n), parallel flow (u), parallel and perpendicular temperatures (T{sub Parallel-To} and T{sub Up-Tack }), and the ambipolar potential ({phi}). Both their profile (q{sub n}/B and q{sub s}/B{sup 2}) and the upstream values of the ratio of the conductive and convective thermal flux (q{sub n}/nuT{sub Parallel-To} and q{sub s}/nuT{sub Up-Tack }) provide the controlling physics, in addition to B modulation. The physics described by the CGL model are contrasted with those of the double-adiabatic laws and further elucidated by comparison with the first-principles kinetic simulation for a specific but representative flux expander case.« less
An intelligent processing environment for real-time simulation
NASA Technical Reports Server (NTRS)
Carroll, Chester C.; Wells, Buren Earl, Jr.
1988-01-01
The development of a highly efficient and thus truly intelligent processing environment for real-time general purpose simulation of continuous systems is described. Such an environment can be created by mapping the simulation process directly onto the University of Alamba's OPERA architecture. To facilitate this effort, the field of continuous simulation is explored, highlighting areas in which efficiency can be improved. Areas in which parallel processing can be applied are also identified, and several general OPERA type hardware configurations that support improved simulation are investigated. Three direct execution parallel processing environments are introduced, each of which greatly improves efficiency by exploiting distinct areas of the simulation process. These suggested environments are candidate architectures around which a highly intelligent real-time simulation configuration can be developed.
NASA Astrophysics Data System (ADS)
Glas, Frank
2003-06-01
We give a fully analytical solution for the displacement and strain fields generated by the coherent elastic relaxation of a type of misfitting inclusions with uniform dilatational eigenstrain lying in a half space, assuming linear isotropic elasticity. The inclusion considered is an infinitely long circular cylinder having an axis parallel to the free surface and truncated by two arbitrarily positioned planes parallel to this surface. These calculations apply in particular to strained semiconductor quantum wires. The calculations are illustrated by examples showing quantitatively that, depending on the depth of the wire under the free surface, the latter may significantly affect the magnitude and the distribution of the various strain components inside the inclusion as well as in the surrounding matrix.
Pore geometry as a control on rock strength
NASA Astrophysics Data System (ADS)
Bubeck, A.; Walker, R. J.; Healy, D.; Dobbs, M.; Holwell, D. A.
2017-01-01
The strength of rocks in the subsurface is critically important across the geosciences, with implications for fluid flow, mineralisation, seismicity, and the deep biosphere. Most studies of porous rock strength consider the scalar quantity of porosity, in which strength shows a broadly inverse relationship with total porosity, but pore shape is not explicitly defined. Here we use a combination of uniaxial compressive strength measurements of isotropic and anisotropic porous lava samples, and numerical modelling to consider the influence of pore shape on rock strength. Micro computed tomography (CT) shows that pores range from sub-spherical to elongate and flat ellipsoids. Samples that contain flat pores are weaker if compression is applied parallel to the short axis (i.e. across the minimum curvature), compared to compression applied parallel to the long axis (i.e. across the maximum curvature). Numerical models for elliptical pores show that compression applied across the minimum curvature results in relatively broad amplification of stress, compared to compression applied across the maximum curvature. Certain pore shapes may be relatively stable and remain open in the upper crust under a given remote stress field, while others are inherently weak. Quantifying the shape, orientations, and statistical distributions of pores is therefore a critical step in strength testing of rocks.
NASA Astrophysics Data System (ADS)
Morita, Yukinori; Mori, Takahiro; Migita, Shinji; Mizubayashi, Wataru; Tanabe, Akihito; Fukuda, Koichi; Matsukawa, Takashi; Endo, Kazuhiko; O'uchi, Shin-ichi; Liu, Yongxun; Masahara, Meishoku; Ota, Hiroyuki
2014-12-01
The performance of parallel electric field tunnel field-effect transistors (TFETs), in which band-to-band tunneling (BTBT) was initiated in-line to the gate electric field was evaluated. The TFET was fabricated by inserting an epitaxially-grown parallel-plate tunnel capacitor between heavily doped source wells and gate insulators. Analysis using a distributed-element circuit model indicated there should be a limit of the drain current caused by the self-voltage-drop effect in the ultrathin channel layer.
Parallel transmission RF pulse design with strict temperature constraints.
Deniz, Cem M; Carluccio, Giuseppe; Collins, Christopher
2017-05-01
RF safety in parallel transmission (pTx) is generally ensured by imposing specific absorption rate (SAR) limits during pTx RF pulse design. There is increasing interest in using temperature to ensure safety in MRI. In this work, we present a local temperature correlation matrix formalism and apply it to impose strict constraints on maximum absolute temperature in pTx RF pulse design for head and hip regions. Electromagnetic field simulations were performed on the head and hip of virtual body models. Temperature correlation matrices were calculated for four different exposure durations ranging between 6 and 24 min using simulated fields and body-specific constants. Parallel transmission RF pulses were designed using either SAR or temperature constraints, and compared with each other and unconstrained RF pulse design in terms of excitation fidelity and safety. The use of temperature correlation matrices resulted in better excitation fidelity compared with the use of SAR in parallel transmission RF pulse design (for the 6 min exposure period, 8.8% versus 21.0% for the head and 28.0% versus 32.2% for the hip region). As RF exposure duration increases (from 6 min to 24 min), the benefit of using temperature correlation matrices on RF pulse design diminishes. However, the safety of the subject is always guaranteed (the maximum temperature was equal to 39°C). This trend was observed in both head and hip regions, where the perfusion rates are very different. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wells, Brian; Kumar, Raj; Reynolds, C. Lewis; Peters, Kara; Bradford, Philip D.
2017-12-01
Carbon nanotubes (CNTs) have been widely investigated as additive materials for composites with potential applications in electronic devices due to their extremely large electrical conductivity and current density. Here, highly aligned CNT composite films were created using a sequential layering fabrication technique. The degree of CNT alignment leads to anisotropic resistance values which varies >400× in orthogonal directions. Similarly, the magnetoresistance (MR) of the CNT composite differs depending upon the relative direction of current and the applied magnetic field. A suppression of negative to positive MR crossover was also observed. More importantly, an overall positive magnetoresistance behavior with localized +/- oscillations was discovered at low fields which persists up to room temperature when the current (I) and in-plane magnetic field (B) were parallel to the axis of CNT (B∥I∥CNT), which is consistent with Aharonov-Bohm oscillations in our CNT/epoxy composites. When the current, applied magnetic field, and nanotube axis are aligned, the in-plane MR is positive instead of negative as observed for all other field, current, and tube orientations. Here, we provide in-depth analysis of the conduction mechanism and anisotropy in the magneto-transport properties of these aligned CNT-epoxy composites.
NASA Astrophysics Data System (ADS)
Gao, S. W.; Feng, W. J.; Fang, X. Q.; Zhang, G. L.
2014-11-01
In this work, the penny-shaped crack problem is investigated for an infinite long superconducting cylinder under electromagnetic forces. The distributions of magnetic flux density in the superconducting cylinder are obtained analytically for both the zero-field cooling (ZFC) and the field cooling (FC) activation processes, where the magnetically impermeable crack surface condition and the Bean model outside the crack region are adopted. Based on the finite element method (FEM), the stress intensity factor (SIF) and energy release rate (ERR) at the crack tips in the process of field descent are further numerically calculated. Numerical results obtained show that according to the maximal energy release rate criterion, the FC process is generally easier to enhance crack initiation and propagation than the ZFC activation process. On the other hand, for the FC activation process, the larger the maximal applied magnetic field, more likely the crack propagates. Additionally, crack size has important and slightly different effects on the crack extension forces for the ZFC and FC cases. Thus, all of the activation processes, the applied field and the diameter of the penny-shaped crack have significant effects on the intensity analysis and design of superconducting materials.
NASA Astrophysics Data System (ADS)
Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.
2016-05-01
In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.
Mechanism of travelling-wave transport of particles
NASA Astrophysics Data System (ADS)
Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki
2006-03-01
Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency.
Magnetic small-angle neutron scattering of bulk ferromagnets.
Michels, Andreas
2014-09-24
We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, Rahul; Department of Mechanical Engineering, National University of Singapore, Singapore 119260; Lim, Leong-Chew
2011-04-01
This paper investigates the effects of electrically induced and direct tensile stress on the deformation and dielectric properties of Pb(Zn{sub 1/3}Nb{sub 2/3})O{sub 3}-(6-7)%PbTiO{sub 3} single crystals of [110]{sup L}x[001]{sup T} cut by using a unimorph sample and a four-point-bend (FPB) sample, respectively. The results show a dip in tip displacement for the unimorph sample at sufficiently high electric field parallel to the poling field direction and a sudden rise in capacitance for the FPB sample at sufficiently high tensile stress in the [110] crystal direction, respectively. These phenomena are attributed to the tensile stress induced rhombohedral-to-orthorhombic phase transition and associatedmore » depolarization events in the crystal. For the said crystal cut, the obtained tensile depoling stress is in the range of 15-20 MPa. The present work furthermore shows that the occurrence of tensile stress-induced depolarization is possible even when the direction of the applied electric field is parallel to the poling field direction, as in the unimorph sample examined.« less
Efficient Analysis of Simulations of the Sun's Magnetic Field
NASA Astrophysics Data System (ADS)
Scarborough, C. W.; Martínez-Sykora, J.
2014-12-01
Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.
Effect of radio frequency waves of electromagnetic field on the tubulin.
Taghi, Mousavi; Gholamhosein, Riazi; Saeed, Rezayi-Zarchi
2013-09-01
Microtubules (MTs) are macromolecular structures consisting of tubulin heterodimers and present in almost every eukaryotic cell. MTs fulfill all conditions for generation of electromagnetic field and are electrically polar due to the electrical polarity of a tubulin heterodimer. The calculated static electric dipole moment of about 1000 Debye makes them capable of being aligned parallel to the applied electromagnetic field direction. In the present study, the tubulin heterodimers were extracted and purified from the rat brains. MTs were obtained by polymerization in vitro. Samples of microtubules were adsorbed in the absence and in the presence of electromagnetic fields with radio frequency of 900 Hz. Our results demonstrate the effect of electromagnetic field with 900 Hz frequency to change the structure of MTs. In this paper, a related patent was used that will help to better understand the studied subject.
Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields.
Maranville, Brian B; Kirby, Brian J; Grutter, Alexander J; Kienzle, Paul A; Majkrzak, Charles F; Liu, Yaohua; Dennis, Cindi L
2016-08-01
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.
Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields
Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; Kienzle, Paul A.; Majkrzak, Charles F.; Liu, Yaohua; Dennis, Cindi L.
2016-01-01
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample, however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. The theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement. PMID:27504074
Measurement and modeling of polarized specular neutron reflectivity in large magnetic fields
Maranville, Brian B.; Kirby, Brian J.; Grutter, Alexander J.; ...
2016-06-09
The presence of a large applied magnetic field removes the degeneracy of the vacuum energy states for spin-up and spin-down neutrons. For polarized neutron reflectometry, this must be included in the reference potential energy of the Schrödinger equation that is used to calculate the expected scattering from a magnetic layered structure. For samples with magnetization that is purely parallel or antiparallel to the applied field which defines the quantization axis, there is no mixing of the spin states (no spin-flip scattering) and so this additional potential is constant throughout the scattering region. When there is non-collinear magnetization in the sample,more » however, there will be significant scattering from one spin state into the other, and the reference potentials will differ between the incoming and outgoing wavefunctions, changing the angle and intensities of the scattering. In conclusion, the theory of the scattering and recommended experimental practices for this type of measurement are presented, as well as an example measurement.« less
NASA Astrophysics Data System (ADS)
Bera, Anindita; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-06-01
We investigate equilibrium statistical properties of the isotropic quantum XY spin-1/2 model in an external magnetic field when the interaction and field parts are subjected to quenched or annealed disorder or both. The randomness present in the system are termed annealed or quenched depending on the relation between two different time scales—the time scale associated with the equilibration of the randomness and the time of observation. Within a mean-field framework, we study the effects of disorders on spontaneous magnetization, both by perturbative and numerical techniques. Our primary interest is to understand the differences between quenched and annealed cases, and also to investigate the interplay when both of them are present in a system. We find that the magnetization survives in the presence of a unidirectional random field, irrespective of its nature, i.e., whether it is quenched or annealed. However, the field breaks the circular symmetry of the magnetization, and the system magnetizes in specific directions, parallel or transverse to the applied magnetic field. Interestingly, while the transverse magnetization is affected by the annealed disordered field, the parallel one remains unfazed by the same. Moreover, the annealed disorder present in the interaction term does not affect the system's spontaneous magnetization and the corresponding critical temperature, irrespective of the presence or absence of quenched or annealed disorder in the field term. We carry out a comparative study of these and all other different combinations of the disorders in the interaction and field terms, and point out their generic features.
NASA Astrophysics Data System (ADS)
Mehta, Neil A.; Levin, Deborah A.
2017-12-01
The effects of an external electric field on two ionic liquids (ILs) are investigated using molecular dynamics electrospray simulations of ethylammonium nitrate (EAN) and ethanolammonium nitrate (EOAN). In the absence of an external electric field, long alkyl chains were observed in EAN but not in EOAN. When the electric field was applied, the anions of both ILs formed a barrier along the applied field, but only in EAN did this barrier result in a static bilayer composed of two parallel layers of cations and anions. The primary hydrogen bonds (HBs) connecting the EAN cations and anions were formed between the ammonium and the nitrate groups. In contrast, they were formed between the ammonium as well as the hydroxyl groups and the nitrate groups in EOAN. The applied electric field was found effective in reducing the number of O1-HO⋯O type HBs but was less effective against the N-HN⋯O type HBs. It was observed that the N-C1-CM backbone angles of EAN allowed for greater storage of the energy supplied by the electric field in the form of torsional degree of freedom compared to the N-C1-CM angles of EOAN. The combination of stronger HBs and higher energy storage in the N-C1-CM covalent angle in EAN results in a stronger resistance of ion emission from the bulk compared to EOAN.
Liu, Xueqing; Peng, Sha; Gao, Shuyu; Cao, Yuancheng; You, Qingliang; Zhou, Liyong; Jin, Yongcheng; Liu, Zhihong; Liu, Jiyan
2018-05-09
It is of great significance to seek high-performance solid electrolytes via a facile chemistry and simple process for meeting the requirements of solid batteries. Previous reports revealed that ion conducting pathways within ceramic-polymer composite electrolytes mainly occur at ceramic particles and the ceramic-polymer interface. Herein, one facile strategy toward ceramic particles' alignment and assembly induced by an external alternating-current (AC) electric field is presented. It was manifested by an in situ optical microscope that Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 particles and poly(ethylene glycol) diacrylate in poly(dimethylsiloxane) (LATP@PEGDA@PDMS) assembled into three-dimensional connected networks on applying an external AC electric field. Scanning electron microscopy revealed that the ceramic LATP particles aligned into a necklacelike assembly. Electrochemical impedance spectroscopy confirmed that the ionic conductivity of this necklacelike alignment was significantly enhanced compared to that of the random one. It was demonstrated that this facile strategy of applying an AC electric field can be a very effective approach for architecting three-dimensional lithium-ion conductive networks within solid composite electrolyte.
NASA Astrophysics Data System (ADS)
Herrera, I.; Herrera, G. S.
2015-12-01
Most geophysical systems are macroscopic physical systems. The behavior prediction of such systems is carried out by means of computational models whose basic models are partial differential equations (PDEs) [1]. Due to the enormous size of the discretized version of such PDEs it is necessary to apply highly parallelized super-computers. For them, at present, the most efficient software is based on non-overlapping domain decomposition methods (DDM). However, a limiting feature of the present state-of-the-art techniques is due to the kind of discretizations used in them. Recently, I. Herrera and co-workers using 'non-overlapping discretizations' have produced the DVS-Software which overcomes this limitation [2]. The DVS-software can be applied to a great variety of geophysical problems and achieves very high parallel efficiencies (90%, or so [3]). It is therefore very suitable for effectively applying the most advanced parallel supercomputers available at present. In a parallel talk, in this AGU Fall Meeting, Graciela Herrera Z. will present how this software is being applied to advance MOD-FLOW. Key Words: Parallel Software for Geophysics, High Performance Computing, HPC, Parallel Computing, Domain Decomposition Methods (DDM)REFERENCES [1]. Herrera Ismael and George F. Pinder, Mathematical Modelling in Science and Engineering: An axiomatic approach", John Wiley, 243p., 2012. [2]. Herrera, I., de la Cruz L.M. and Rosas-Medina A. "Non Overlapping Discretization Methods for Partial, Differential Equations". NUMER METH PART D E, 30: 1427-1454, 2014, DOI 10.1002/num 21852. (Open source) [3]. Herrera, I., & Contreras Iván "An Innovative Tool for Effectively Applying Highly Parallelized Software To Problems of Elasticity". Geofísica Internacional, 2015 (In press)
Gravitational convergence, shear deformation and rotation of magnetic forcelines
NASA Astrophysics Data System (ADS)
Giantsos, Vangelis; Tsagas, Christos G.
2017-11-01
We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.
Intrinsic electrical properties of LuFe2O4
NASA Astrophysics Data System (ADS)
Lafuerza, Sara; García, Joaquín; Subías, Gloria; Blasco, Javier; Conder, Kazimierz; Pomjakushina, Ekaterina
2013-08-01
We here revisit the electrical properties of LuFe2O4, compound candidate for exhibiting multiferroicity. Measurements of dc electrical resistivity as a function of temperature, electric-field polarization measurements at low temperatures with and without magnetic field, and complex impedance as a function of both frequency and temperature were carried out in a LuFe2O4 single crystal, perpendicular and parallel to the hexagonal c axis, and in several ceramic polycrystalline samples. Resistivity measurements reveal that this material is a highly anisotropic semiconductor, being about two orders of magnitude more resistive along the c axis. The temperature dependence of the resistivity indicates a change in the conduction mechanism at TCO ≈ 320 K from thermal activation above TCO to variable range hopping below TCO. The resistivity values at room temperature are relatively small and are below 5000 Ω cm for all samples but we carried out polarization measurements at sufficiently low temperatures, showing that electric-field polarization curves are a straight line as expected for a paraelectric or antiferroelectric material. Furthermore, no differences are found in the polarization curves when a magnetic field is applied either parallel or perpendicular to the electric field. The analysis of the complex impedance data corroborates that the claimed colossal dielectric constant is a spurious effect mainly derived from the capacitance of the electrical contacts. Therefore, our data unequivocally evidence that LuFe2O4 is not ferroelectric.
Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.
Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora
2017-11-28
Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.
Inversion of potential field data using the finite element method on parallel computers
NASA Astrophysics Data System (ADS)
Gross, L.; Altinay, C.; Shaw, S.
2015-11-01
In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.
Effective mass and spin susceptibility of dilute two-dimensional holes ion GaAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Y-T.; Padmanabhan, M.; Gokmen, T.
2011-10-31
We report effective hole mass (m*) measurements through analyzing the temperature dependence of Shubnikov-de Haas oscillations in dilute (density p {approx} 7 x 10{sup 10} cm{sup -2}, r{sub s} {approx} 6) two-dimensional (2D) hole systems confined to a 20-nm-wide, (311)A GaAs quantum well. The holes in this system occupy two nearly degenerate spin subbands whose m* we measure to be {approx}0.2 (in units of the free electron mass). Despite the relatively large r{sub s} in our 2D system, the measured m* is in reasonably good agreement with the results of our energy band calculations, which do not take interactions intomore » account. We then apply a sufficiently strong parallel magnetic field to fully depopulate one of the spin subbands, and measure m* for the populated subband. We find that this latter m* is close to the m* we measure in the absence of the parallel field. We also deduce the spin susceptibility of the 2D hole system from the depopulation field, and we conclude that the susceptibility is enhanced by about 50% relative to the value expected from the band calculations.« less
NASA Astrophysics Data System (ADS)
Li, He-Ping; Chen, Jian; Guo, Heng; Jiang, Dong-Jun; Zhou, Ming-Sheng; Department of Engineering Physics Team
2017-10-01
Ion extraction from a plasma under an externally applied electric field involve multi-particle and multi-field interactions, and has wide applications in the fields of materials processing, etching, chemical analysis, etc. In order to develop the high-efficiency ion extraction methods, it is indispensable to establish a feasible model to understand the non-equilibrium transportation processes of the charged particles and the evolutions of the space charge sheath during the extraction process. Most of the previous studies on the ion extraction process are mainly based on the electron-equilibrium fluid model, which assumed that the electrons are in the thermodynamic equilibrium state. However, it may lead to some confusions with neglecting the electron movement during the sheath formation process. In this study, a non-electron-equilibrium model is established to describe the transportation of the charged particles in a parallel-plate ion extraction process. The numerical results show that the formation of the Child-Langmuir sheath is mainly caused by the charge separation. And thus, the sheath shielding effect will be significantly weakened if the charge separation is suppressed during the extraction process of the charged particles.
Raise and collapse of pseudo Landau levels in graphene
NASA Astrophysics Data System (ADS)
Castro, Eduardo V.; Cazalilla, Miguel A.; Vozmediano, María A. H.
2017-12-01
Lattice deformations couple to the low-energy electronic excitations of graphene as vector fields similar to the electromagnetic potential. The observation of strain-induced pseudo Landau levels with scanning tunnel microscopy experiments has been one of the most exciting events in the history of graphene. Nevertheless, the experimental observation presents some ambiguities. Similar strain patterns show different images that are sometimes difficult to interpret. In this Rapid Communication, we show that, for some strain configurations, the deformation potential acts as a parallel electric field able to destabilize the Landau level structure via a mechanism identical to that occurring for real electromagnetic fields. This effect also alters the estimations of the value of the pseudomagnetic field, which can be significantly bigger. The mechanism applies equally if the electric field has an external origin, which opens the door to an electric control of giant pseudomagnetic fields in graphene.
The Hanle effect applied to magnetic field measurements
NASA Technical Reports Server (NTRS)
Leroy, J. L.
1985-01-01
The Hanle effect is the modification by a local magnetic field of the polarization due to coherent scattering in spectral lines. It results from the precession of a classical oscillator about the magnetic field direction. The sophisticated quantum-mechanical treatment, which is required to compute the polarization parameters of scattered light, was developed. The main features of the Hanle effect concerning magnetic field measurements are: (1) a good sensitivity within the approximate range 0.1 B gamma rho to 10 B gamma rho where B gamma rho is the field strength yielding a Larmor period equal to the radiative lifetime, (2) there is no Hanle effect for field vectors parallel to the excitating beam, (3) the Hanle effect refers essentially to the linear polarization in a spectral line, (4) various points in the line profile are affected in the same way by change of linear polarization so that polarization parameters can be measured on the integrated line profile.
Helical core reconstruction of a DIII-D hybrid scenario tokamak discharge
Cianciosa, Mark; Wingen, Andreas; Hirshman, Steven P.; ...
2017-05-18
Our paper presents the first fully 3-dimensional (3D) equilibrium reconstruction of a helical core in a tokamak device. Using a new parallel implementation of the Variational Moments Equilibrium Code (PARVMEC) coupled to V3FIT, 3D reconstructions can be performed at resolutions necessary to produce helical states in nominally axisymmetric tokamak equilibria. In a flux pumping experiment performed on DIII-D, an external n=1 field was applied while a 3/2 neoclassical tearing mode was suppressed using ECCD. The externally applied field was rotated past a set of fixed diagnostics at a 20 Hz frequency. Furthermore, the modulation, were found to be strongest in the core SXR and MSE channels, indicates a localized rotating 3D structure locked in phase with the applied field. Signals from multiple time slices are converted to a virtual rotation of modeled diagnostics adding 3D signal information. In starting from an axisymmetric equilibrium reconstruction solution, the reconstructed broader current profile flattens the q-profile, resulting in an m=1, n=1 perturbation of the magnetic axis that ismore » $$\\sim 50\\times $$ larger than the applied n=1 deformation of the edge. Error propagation confirms that the displacement of the axis is much larger than the uncertainty in the axis position validating the helical equilibrium.« less
Helical core reconstruction of a DIII-D hybrid scenario tokamak discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cianciosa, Mark; Wingen, Andreas; Hirshman, Steven P.
Our paper presents the first fully 3-dimensional (3D) equilibrium reconstruction of a helical core in a tokamak device. Using a new parallel implementation of the Variational Moments Equilibrium Code (PARVMEC) coupled to V3FIT, 3D reconstructions can be performed at resolutions necessary to produce helical states in nominally axisymmetric tokamak equilibria. In a flux pumping experiment performed on DIII-D, an external n=1 field was applied while a 3/2 neoclassical tearing mode was suppressed using ECCD. The externally applied field was rotated past a set of fixed diagnostics at a 20 Hz frequency. Furthermore, the modulation, were found to be strongest in the core SXR and MSE channels, indicates a localized rotating 3D structure locked in phase with the applied field. Signals from multiple time slices are converted to a virtual rotation of modeled diagnostics adding 3D signal information. In starting from an axisymmetric equilibrium reconstruction solution, the reconstructed broader current profile flattens the q-profile, resulting in an m=1, n=1 perturbation of the magnetic axis that ismore » $$\\sim 50\\times $$ larger than the applied n=1 deformation of the edge. Error propagation confirms that the displacement of the axis is much larger than the uncertainty in the axis position validating the helical equilibrium.« less
Accelerating EPI distortion correction by utilizing a modern GPU-based parallel computation.
Yang, Yao-Hao; Huang, Teng-Yi; Wang, Fu-Nien; Chuang, Tzu-Chao; Chen, Nan-Kuei
2013-04-01
The combination of phase demodulation and field mapping is a practical method to correct echo planar imaging (EPI) geometric distortion. However, since phase dispersion accumulates in each phase-encoding step, the calculation complexity of phase modulation is Ny-fold higher than conventional image reconstructions. Thus, correcting EPI images via phase demodulation is generally a time-consuming task. Parallel computing by employing general-purpose calculations on graphics processing units (GPU) can accelerate scientific computing if the algorithm is parallelized. This study proposes a method that incorporates the GPU-based technique into phase demodulation calculations to reduce computation time. The proposed parallel algorithm was applied to a PROPELLER-EPI diffusion tensor data set. The GPU-based phase demodulation method reduced the EPI distortion correctly, and accelerated the computation. The total reconstruction time of the 16-slice PROPELLER-EPI diffusion tensor images with matrix size of 128 × 128 was reduced from 1,754 seconds to 101 seconds by utilizing the parallelized 4-GPU program. GPU computing is a promising method to accelerate EPI geometric correction. The resulting reduction in computation time of phase demodulation should accelerate postprocessing for studies performed with EPI, and should effectuate the PROPELLER-EPI technique for clinical practice. Copyright © 2011 by the American Society of Neuroimaging.
NASA Astrophysics Data System (ADS)
Tay, Z. J.; Soh, W. T.; Ong, C. K.
2018-02-01
This paper presents an experimental study of the inverse spin Hall effect (ISHE) in a bilayer consisting of a yttrium iron garnet (YIG) and platinum (Pt) loaded on a metamaterial split ring resonator (SRR). The system is excited by a microstrip feed line which generates both surface and bulk spin waves in the YIG. The spin waves subsequently undergo spin pumping from the YIG film to an adjacent Pt layer, and is converted into a charge current via the ISHE. It is found that the presence of the SRR causes a significant enhancement of the mangetic field near the resonance frequency of the SRR, resulting in a significant increase in the ISHE signal. Furthermore, the type of spin wave generated in the system can be controlled by changing the external applied magnetic field angle (θH ). When the external applied magnetic field is near parallel to the microstrip line (θH = 0 ), magnetostatic surface spin waves are predominantly excited. On the other hand, when the external applied magnetic field is perpendicular to the microstrip line (θH = π/2 ), backward volume magnetostatic spin waves are predominantly excited. Hence, it can be seen that the SRR structure is a promising method of achieving spin-charge conversion, which has many advantages over a coaxial probe.
Particle simulation of plasmas on the massively parallel processor
NASA Technical Reports Server (NTRS)
Gledhill, I. M. A.; Storey, L. R. O.
1987-01-01
Particle simulations, in which collective phenomena in plasmas are studied by following the self consistent motions of many discrete particles, involve several highly repetitive sets of calculations that are readily adaptable to SIMD parallel processing. A fully electromagnetic, relativistic plasma simulation for the massively parallel processor is described. The particle motions are followed in 2 1/2 dimensions on a 128 x 128 grid, with periodic boundary conditions. The two dimensional simulation space is mapped directly onto the processor network; a Fast Fourier Transform is used to solve the field equations. Particle data are stored according to an Eulerian scheme, i.e., the information associated with each particle is moved from one local memory to another as the particle moves across the spatial grid. The method is applied to the study of the nonlinear development of the whistler instability in a magnetospheric plasma model, with an anisotropic electron temperature. The wave distribution function is included as a new diagnostic to allow simulation results to be compared with satellite observations.
Self bleaching photoelectrochemical-electrochromic device
Bechinger, Clemens S.; Gregg, Brian A.
2002-04-09
A photoelectrochemical-electrochromic device comprising a first transparent electrode and a second transparent electrode in parallel, spaced relation to each other. The first transparent electrode is electrically connected to the second transparent electrode. An electrochromic material is applied to the first transparent electrode and a nanoporous semiconductor film having a dye adsorbed therein is applied to the second transparent electrode. An electrolyte layer contacts the electrochromic material and the nanoporous semiconductor film. The electrolyte layer has a redox couple whereby upon application of light, the nanoporous semiconductor layer dye absorbs the light and the redox couple oxidizes producing an electric field across the device modulating the effective light transmittance through the device.
NASA Astrophysics Data System (ADS)
Day-Lewis, F. D.; Gray, M. B.
2004-12-01
Development of our Hydrogeophysics Well Field has enabled new opportunities for field-based undergraduate research and active-learning at Bucknell University. Installed in 2001-2002, the on-campus well field has become a cornerstone of field labs for hydrogeology and applied geophysics courses, and for introductory labs in engineering and environmental geology. In addition to enabling new field experiences, the well field serves as a meeting place for students and practicing geoscientists. In the last three years, we have hosted field demonstrations by alumni working in the environmental, geophysical, and water-well drilling industries; researchers from government agencies; graduate students from other universities; and geophysical equipment vendors seeking to test and demonstrate new instruments. Coordinating undergraduate research and practical course labs with field experiments led by alumni and practicing geoscientists provides students hands-on experience with new technology while educating them about career and graduate-school opportunities. In addition to being effective pedagogical strategy, these experiences are well received by students -- enrollment in our geophysics course has tripled from three years ago. The Bucknell Hydrogeophysics Well Field consists of five bedrock wells, installed in a fractured-rock aquifer in the Wills Creek Shale. The wells are open in the bedrock, facilitating geophysical and hydraulic measurements. To date, student have helped acquire from one or more wells: (1) open-hole slug- and aquifer-test data; (2) packer test data from isolated borehole intervals; (3) flow-meter logs; (4) acoustic and optical televiewer logs; (5) standard borehole logs including single-point resistance, caliper, and natural-gamma; (6) borehole video camera; (7) electrical resistivity tomograms; (8) water levels while drilling; and (9) water chemistry and temperature logs. Preliminary student-led data analysis indicates that sparse discrete fractures dominate the response of water levels to pumping. The three sets of fractures observed in the wells are consistent with those observed in outcrops around Bucknell: (1) bedding sub-parallel fractures; (2) joints; and (3) fractures parallel to rock cleavage. Efforts are ongoing to develop a CD-ROM of field data, photographs and video footage documenting the site and experiments; the CD is intended for publication as a "Virtual Field Laboratory" teaching tool for undergraduate hydrogeology and applied geophysics. We have seen the benefits of merging theory and practice in our undergraduate curriculum, and we seek to make these benefits available to other schools.
NASA Astrophysics Data System (ADS)
Daboo, C.; Bland, J. A. C.; Hicken, R. J.; Ives, A. J. R.; Baird, M. J.; Walker, M. J.
1993-05-01
We report the magnetization reversal and magnetic anisotropy behavior of ultrathin Co/Cu(111)/Co (dCu=20 and 27 Å) trilayer structures prepared by MBE on a 500-Å Ge/GaAs(110) epilayer. We describe an arrangement in which the magnetization components parallel and perpendicular to the applied field are both determined from longitudinal MOKE measurements. For the samples examined, coherent rotation of the magnetization vector is observed when the magnetic field is applied along the hard in-plane anisotropy axis, with the magnitude of the magnetization vector constant and close to its bulk value. Results of micromagnetic calculations closely reproduce the observed parallel and perpendicular magnetization loops, and yield strong uniaxial magnetic anisotropies in both layers while the interlayer coupling appears to be absent or negligible in comparison with the anisotropy strengths. An absence of antiferromagnetic (AF) coupling has been observed previously [W. F. Egelhoff, Jr. and M. T. Kief, Phys. Rev. B 45, 7795 (1992)] in contrast to recent results, indicating that AF coupling [M. T. Johnson et al., Phys. Rev. Lett. 69, 969 (1992)] and GMR [D. Grieg et al., J. Magn. Magn. Mater. 110, L239 (1992)] can occur in Co/Cu(111)/Co structures grown by MBE, but these properties are sensitively dependent on growth conditions. The absence of coupling in our samples is attributed to the presence of a significant interface roughness induced by the Ge epilayer. The uniaxial anisotropies are assumed to arise from strain or defects induced in the film.
Beyond 2D: Parallel Electric Fields and Dissipation in Guide Field Reconnectio
NASA Astrophysics Data System (ADS)
Wilder, F. D.; Ergun, R.; Ahmadi, N.; Goodrich, K.; Eriksson, S.; Shimoda, E.; Burch, J. L.; Phan, T.; Torbert, R. B.; Strangeway, R. J.; Giles, B. L.; Lindqvist, P. A.; Khotyaintsev, Y. V.
2017-12-01
In 2015, NASA launched the Magnetospheric Multiscale (MMS) mission to study phenomenon of magnetic reconnection down to the electron scale. Advantages of MMS include a 20s spin period and long axial booms, which together allow for measurement of 3-D electric fields with accuracy down to 1 mV/m. During the two dayside phases of the prime mission, MMS has observed multiple electron and ion diffusion region events at the Earth's subsolar and flank magnetopause, as well as in the magnetosheath, providing an option to study both symmetric and asymmetric reconnection at a variety of guide field strengths. We present a review of parallel electric fields observed by MMS during diffusion region events, and discuss their implications for simulations and laboratory observations of reconnection. We find that as the guide field increases, the dissipation in the diffusion region transitions from being due to currents and fields perpendicular to the background magnetic field, to being associated with parallel electric fields and currents. Additionally, the observed parallel electric fields are significantly larger than those predicted by simulations of reconnection under strong guide field conditions.
Photoelectron emission from LiF surfaces by ultrashort electromagnetic pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acuna, M. A.; Gravielle, M. S.; Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires
2011-03-15
Energy- and angle-resolved electron emission spectra produced by incidence of ultrashort electromagnetic pulses on a LiF(001) surface are studied by employing a distorted-wave method named the crystal surface-Volkov (CSV) approximation. The theory makes use of the Volkov phase to describe the action of the external electric field on the emitted electron, while the electron-surface interaction is represented within the tight-binding model. The CSV approach is applied to investigate the effects introduced by the crystal lattice when the electric field is oriented parallel to the surface plane. These effects are essentially governed by the vector potential of the external field, whilemore » the influence of the crystal orientation was found to be negligible.« less
Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J
2015-09-01
The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Shipley, Heath V.; Lange-Vagle, Daniel; Marchesini, Danilo; Brammer, Gabriel B.; Ferrarese, Laura; Stefanon, Mauro; Kado-Fong, Erin; Whitaker, Katherine E.; Oesch, Pascal A.; Feinstein, Adina D.; Labbé, Ivo; Lundgren, Britt; Martis, Nicholas; Muzzin, Adam; Nedkova, Kalina; Skelton, Rosalind; van der Wel, Arjen
2018-03-01
We present Hubble multi-wavelength photometric catalogs, including (up to) 17 filters with the Advanced Camera for Surveys and Wide Field Camera 3 from the ultra-violet to near-infrared for the Hubble Frontier Fields and associated parallels. We have constructed homogeneous photometric catalogs for all six clusters and their parallels. To further expand these data catalogs, we have added ultra-deep K S -band imaging at 2.2 μm from the Very Large Telescope HAWK-I and Keck-I MOSFIRE instruments. We also add post-cryogenic Spitzer imaging at 3.6 and 4.5 μm with the Infrared Array Camera (IRAC), as well as archival IRAC 5.8 and 8.0 μm imaging when available. We introduce the public release of the multi-wavelength (0.2–8 μm) photometric catalogs, and we describe the unique steps applied for the construction of these catalogs. Particular emphasis is given to the source detection band, the contamination of light from the bright cluster galaxies (bCGs), and intra-cluster light (ICL). In addition to the photometric catalogs, we provide catalogs of photometric redshifts and stellar population properties. Furthermore, this includes all the images used in the construction of the catalogs, including the combined models of bCGs and ICL, the residual images, segmentation maps, and more. These catalogs are a robust data set of the Hubble Frontier Fields and will be an important aid in designing future surveys, as well as planning follow-up programs with current and future observatories to answer key questions remaining about first light, reionization, the assembly of galaxies, and many more topics, most notably by identifying high-redshift sources to target.
Parallel plate radiofrequency ion thruster
NASA Technical Reports Server (NTRS)
Nakanishi, S.
1982-01-01
An 8-cm-diam. argon ion thruster is described. It is operated by applying 100 to 160 Mhz rf power across a thin plasma volume in a strongly divergent static magnetic field. No cathode or electron emitter is required to sustain a continuous wave plasma discharge over a broad range of propellant gas flow. Preliminary results indicate that a large fraction of the incident power is being reflected by impedance mismatching in the coupling structure. Resonance effects due to plasma thickness, magnetic field strength, and distribution are presented. Typical discharge losses obtained to date are 500 to 600 W per beam ampere at extracted beam currents up to 60 mA.
NASA Astrophysics Data System (ADS)
Ouyang, Qing; Zheng, Jiajia; Li, Zhaochun; Hu, Ming; Wang, Jiong
2016-11-01
This paper aims to analyze the effects of combined working coils of magnetorheological (MR) absorber on the shock mitigation performance and verify the controllability of MR absorber as applied in the recoil system of a field gun. A physical scale model of the field gun is established and a long-stroke MR recoil absorber with four-stage parallel electromagnetic coils is designed to apply separate current to each stage and generate variable magnetic field distribution in the annular flow channel. Based on dynamic analysis and firing stability conditions of the field gun, ideal recoil force-stroke profiles of MR absorber at different limiting firing angles are obtained. The experimental studies are carried out on an impact test rig under different combinations of current loading: conventional unified control mode, separate control mode and timing control mode. The fullness degree index (FDI) is defined as the quantitative evaluation criterion of the controllability of MR absorber during the whole recoil motion. The results show that the force-stroke profile of the novel MR absorber can approach the ideal curve within 25 degrees of the limiting firing angle through judicious exploitation of the adjustable rheological properties of MR fluid.
NASA Astrophysics Data System (ADS)
Sakanoi, T.; Fukunishi, H.; Mukai, T.
1995-10-01
The inverted-V field-aligned acceleration region existing in the altitude range of several thousand kilometers plays an essential role for the magnetosphere-ionosphere coupling system. The adiabatic plasma theory predicts a linear relationship between field-aligned current density (J∥) and parallel potential drop (Φ∥), that is, J∥=KΦ∥, where K is the field-aligned conductance. We examined this relationship using the charged particle and magnetic field data obtained from the Akebono (Exos D) satellite. The potential drop above the satellite was derived from the peak energy of downward electrons, while the potential drop below the satellite was derived from two different methods: the peak energy of upward ions and the energy-dependent widening of electron loss cone. On the other hand, field-aligned current densities in the inverted-V region were estimated from the Akebono magnetometer data. Using these potential drops and field-aligned current densities, we estimated the linear field-aligned conductance KJΦ. Further, we obtained the corrected field-aligned conductance KCJΦ by applying the full Knight's formula to the current-voltage relationship. We also independently estimated the field-aligned conductance KTN from the number density and the thermal temperature of magnetospheric source electrons which were obtained by fitting accelerated Maxwellian functions for precipitating electrons. The results are summarized as follows: (1) The latitudinal dependence of parallel potential drops is characterized by a narrow V-shaped structure with a width of 0.4°-1.0°. (2) Although the inverted-V potential region exactly corresponds to the upward field aligned current region, the latitudinal dependence of upward current intensity is an inverted-U shape rather than an inverted-V shape. Thus it is suggested that the field-aligned conductance KCJΦ changes with a V-shaped latitudinal dependence. In many cases, KCJΦ values at the edge of the inverted-V region are about 5-10 times larger than those at the center. (3) By comparing KCJΦ with KTN, KCJΦ is found to be about 2-20 times larger than KTN. These results suggest that low-energy electrons such as trapped electrons, secondary and back-scattered electrons, and ionospheric electrons significantly contribute to upward field-aligned currents in the inverted-V region. It is therefore inferred that non adiabatic pitch angle scattering processes play an important role in the inverted-V region. .
NASA Astrophysics Data System (ADS)
Krämer, Florian; Gratz, Micha; Tschöpe, Andreas
2016-07-01
The magnetic field-dependent optical transmission of dilute Ni nanorod aqueous suspensions was investigated. A series of four samples of nanorods were synthesized using the AAO template method and processed to stable colloids. The distributions of their length and diameter were characterized by analysis of TEM images and revealed average diameters of ˜25 nm and different lengths in the range of 60 nm-1100 nm. The collinear magnetic and optical anisotropy was studied by static field-dependent transmission measurements of linearly polarized light parallel and perpendicular to the magnetic field direction. The experimental results were modelled assuming the field-dependent orientation distribution function of a superparamagnetic ensemble for the uniaxial ferromagnetic nanorods in liquid dispersion and extinction cross sections for longitudinal and transversal optical polarization derived from different approaches, including the electrostatic approximation and the separation of variables method, both applied to spheroidal particles, as well as finite element method simulations of spheroids and capped cylindrical particles. The extinction cross sections were compared to reveal the differences associated with the approximations of homogeneous polarization and/or particle shape. The consequences of these approximations for the quantitative analysis of magnetic field-dependent optical transmission measurements were investigated and a reliable protocol derived. Furthermore, the changes in optical cross sections induced by electromagnetic interaction between two nanorods in parallel end-to-end and side-by-side configuration as a function of their separation were studied.
Scan line graphics generation on the massively parallel processor
NASA Technical Reports Server (NTRS)
Dorband, John E.
1988-01-01
Described here is how researchers implemented a scan line graphics generation algorithm on the Massively Parallel Processor (MPP). Pixels are computed in parallel and their results are applied to the Z buffer in large groups. To perform pixel value calculations, facilitate load balancing across the processors and apply the results to the Z buffer efficiently in parallel requires special virtual routing (sort computation) techniques developed by the author especially for use on single-instruction multiple-data (SIMD) architectures.
MMS Observations of Parallel Electric Fields During a Quasi-Perpendicular Bow Shock Crossing
NASA Astrophysics Data System (ADS)
Goodrich, K.; Schwartz, S. J.; Ergun, R.; Wilder, F. D.; Holmes, J.; Burch, J. L.; Gershman, D. J.; Giles, B. L.; Khotyaintsev, Y. V.; Le Contel, O.; Lindqvist, P. A.; Strangeway, R. J.; Russell, C.; Torbert, R. B.
2016-12-01
Previous observations of the terrestrial bow shock have frequently shown large-amplitude fluctuations in the parallel electric field. These parallel electric fields are seen as both nonlinear solitary structures, such as double layers and electron phase-space holes, and short-wavelength waves, which can reach amplitudes greater than 100 mV/m. The Magnetospheric Multi-Scale (MMS) Mission has crossed the Earth's bow shock more than 200 times. The parallel electric field signatures observed in these crossings are seen in very discrete packets and evolve over time scales of less than a second, indicating the presence of a wealth of kinetic-scale activity. The high time resolution of the Fast Particle Instrument (FPI) available on MMS offers greater detail of the kinetic-scale physics that occur at bow shocks than ever before, allowing greater insight into the overall effect of these observed electric fields. We present a characterization of these parallel electric fields found in a single bow shock event and how it reflects the kinetic-scale activity that can occur at the terrestrial bow shock.
Real-time object tracking based on scale-invariant features employing bio-inspired hardware.
Yasukawa, Shinsuke; Okuno, Hirotsugu; Ishii, Kazuo; Yagi, Tetsuya
2016-09-01
We developed a vision sensor system that performs a scale-invariant feature transform (SIFT) in real time. To apply the SIFT algorithm efficiently, we focus on a two-fold process performed by the visual system: whole-image parallel filtering and frequency-band parallel processing. The vision sensor system comprises an active pixel sensor, a metal-oxide semiconductor (MOS)-based resistive network, a field-programmable gate array (FPGA), and a digital computer. We employed the MOS-based resistive network for instantaneous spatial filtering and a configurable filter size. The FPGA is used to pipeline process the frequency-band signals. The proposed system was evaluated by tracking the feature points detected on an object in a video. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, San; Artemyev, A. V.; Angelopoulos, V.
2017-11-01
Magnetotail current sheet thinning is a distinctive feature of substorm growth phase, during which magnetic energy is stored in the magnetospheric lobes. Investigation of charged particle dynamics in such thinning current sheets is believed to be important for understanding the substorm energy storage and the current sheet destabilization responsible for substorm expansion phase onset. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) B and C observations in 2008 and 2009 at 18 - 25 RE to show that during magnetotail current sheet thinning, the electron temperature decreases (cooling), and the parallel temperature decreases faster than the perpendicular temperature, leading to a decrease of the initially strong electron temperature anisotropy (isotropization). This isotropization cannot be explained by pure adiabatic cooling or by pitch angle scattering. We use test particle simulations to explore the mechanism responsible for the cooling and isotropization. We find that during the thinning, a fast decrease of a parallel electric field (directed toward the Earth) can speed up the electron parallel cooling, causing it to exceed the rate of perpendicular cooling, and thus lead to isotropization, consistent with observation. If the parallel electric field is too small or does not change fast enough, the electron parallel cooling is slower than the perpendicular cooling, so the parallel electron anisotropy grows, contrary to observation. The same isotropization can also be accomplished by an increasing parallel electric field directed toward the equatorial plane. Our study reveals the existence of a large-scale parallel electric field, which plays an important role in magnetotail particle dynamics during the current sheet thinning process.
Electrically Guided Assembly of Colloidal Particles
NASA Astrophysics Data System (ADS)
Ristenpart, W. D.; Aksay, I. A.; Saville, D. A.
2002-11-01
In earlier work it was shown that the strength and frequency of an applied electric field alters the dynamic arrangement of particles on an electrode. Two-dimensional 'gas,' 'liquid' and 'solid' arrangements were formed, depending on the field strength and frequency. Since the particles are similarly charged, yet migrate over large distances under the influence of steady or oscillatory fields, it is clear that both hydrodynamic and electrical processes are involved. Here we report on an extensive study of electrically induced ordering in a parallel electrode cell. First, we discuss the kinetics of aggregation in a DC field as measured using video microscopy and digital image analysis. Rate constants were determined as a function of applied electric field strength and particle zeta potential. The kinetic parameters are compared to models based on electrohydrodynamic and electroosmotic fluid flow mechanisms Second, using monodisperse micron-sized particles, we examined the average interparticle spacing over a wide range of applied frequencies and field strengths. Variation of these parameters allows formation of closely-spaced arrangements and ordered arrays of widely separated particles. We find that there is a strong dependence on frequency, but there is surprisingly little influence of the electric field strength past a small threshold. Last, we present experiments with binary suspensions of similarly sized particles with negative but unequal surface potentials. A long-range lateral attraction is observed in an AC field. Depending on the frequency, this attractive interaction results in a diverse set of aggregate morphologies, including superstructured hexagonal lattices. These results are discussed in terms of induced dipole-dipole interactions and electrohydrodynamic flow. Finally, we explore the implications for practical applications.
Body MR Imaging: Artifacts, k-Space, and Solutions
Seethamraju, Ravi T.; Patel, Pritesh; Hahn, Peter F.; Kirsch, John E.; Guimaraes, Alexander R.
2015-01-01
Body magnetic resonance (MR) imaging is challenging because of the complex interaction of multiple factors, including motion arising from respiration and bowel peristalsis, susceptibility effects secondary to bowel gas, and the need to cover a large field of view. The combination of these factors makes body MR imaging more prone to artifacts, compared with imaging of other anatomic regions. Understanding the basic MR physics underlying artifacts is crucial to recognizing the trade-offs involved in mitigating artifacts and improving image quality. Artifacts can be classified into three main groups: (a) artifacts related to magnetic field imperfections, including the static magnetic field, the radiofrequency (RF) field, and gradient fields; (b) artifacts related to motion; and (c) artifacts arising from methods used to sample the MR signal. Static magnetic field homogeneity is essential for many MR techniques, such as fat saturation and balanced steady-state free precession. Susceptibility effects become more pronounced at higher field strengths and can be ameliorated by using spin-echo sequences when possible, increasing the receiver bandwidth, and aligning the phase-encoding gradient with the strongest susceptibility gradients, among other strategies. Nonuniformities in the RF transmit field, including dielectric effects, can be minimized by applying dielectric pads or imaging at lower field strength. Motion artifacts can be overcome through respiratory synchronization, alternative k-space sampling schemes, and parallel imaging. Aliasing and truncation artifacts derive from limitations in digital sampling of the MR signal and can be rectified by adjusting the sampling parameters. Understanding the causes of artifacts and their possible solutions will enable practitioners of body MR imaging to meet the challenges of novel pulse sequence design, parallel imaging, and increasing field strength. ©RSNA, 2015 PMID:26207581
Bikson, Marom; Inoue, Masashi; Akiyama, Hiroki; Deans, Jackie K; Fox, John E; Miyakawa, Hiroyoshi; Jefferys, John G R
2004-05-15
The effects of uniform steady state (DC) extracellular electric fields on neuronal excitability were characterized in rat hippocampal slices using field, intracellular and voltage-sensitive dye recordings. Small electric fields (40/ mV mm(-1)), applied parallel to the somato-dendritic axis, induced polarization of CA1 pyramidal cells; the relationship between applied field and induced polarization was linear (0.12 +/- 0.05 mV per mV mm(-1) average sensitivity at the soma). The peak amplitude and time constant (15-70 ms) of membrane polarization varied along the axis of neurons with the maximal polarization observed at the tips of basal and apical dendrites. The polarization was biphasic in the mid-apical dendrites; there was a time-dependent shift in the polarity reversal site. DC fields altered the thresholds of action potentials evoked by orthodromic stimulation, and shifted their initiation site along the apical dendrites. Large electric fields could trigger neuronal firing and epileptiform activity, and induce long-term (>1 s) changes in neuronal excitability. Electric fields perpendicular to the apical-dendritic axis did not induce somatic polarization, but did modulate orthodromic responses, indicating an effect on afferents. These results demonstrate that DC fields can modulate neuronal excitability in a time-dependent manner, with no clear threshold, as a result of interactions between neuronal compartments, the non-linear properties of the cell membrane, and effects on afferents.
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor)
2006-01-01
An electro-active transducer includes a ferroelectric material sandwiched by first and second electrode patterns. When the device is used as an actuator, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when voltage is applied to the electrode patterns. When the device is used as a sensor. the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when the ferroelectric material experiences deflection in a direction substantially perpendicular thereto. In each case, the electrode patterns are designed to cause the electric field to: i) originate at a region of the ferroelectric material between the first and second electrode patterns. and ii) extend radially outward from the region of the ferroelectric material (at which the electric field originates) and substantially parallel to the ferroelectric material s plane.
Nagel, James R.
2017-12-22
In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less
Electro-Active Device Using Radial Electric Field Piezo-Diaphragm for Control of Fluid Movement
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Working, Dennis C. (Inventor)
2005-01-01
A fluid-control electro-active device includes a piezo-diaphragm made from a ferroelectric material sandwiched by first and second electrode patterns configured to introduce an electric field into the ferroelectric material when voltage is applied thereto. The electric field originates at a region of the ferroelectric material between the first and second electrode patterns, and extends radially outward from this region of the ferroelectric material and substantially parallel to the plane of the ferroelectric material. The piezo-diaphragm deflects symmetrically about this region in a direction substantially perpendicular to the electric field. An annular region coupled to and extending radially outward from the piezo-diaphragm perimetrically borders the piezo-diaphragm, A housing is connected to the region and at least one fluid flow path with piezo-diaphragm disposed therein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagel, James R.
In this paper, a complete mathematical formalism is introduced to describe the excitation of electrical eddy currents due to a time-varying magnetic field. The process works by applying a quasistatic approximation to Ampere's law and then segregating the magnetic field into impressed and induced terms. The result is a nonhomogeneous vector Helmholtz equation that can be analytically solved for many practical geometries. Four demonstration cases are then solved under a constant excitation field over all space—an infinite slab in one dimension, a longitudinal cylinder in two dimensions, a transverse cylinder in two dimensions, and a sphere in three dimensions. Numericalmore » simulations are also performed in parallel with analytic computations, all of which verify the accuracy of the derived expressions.« less
Electric currents and voltage drops along auroral field lines
NASA Technical Reports Server (NTRS)
Stern, D. P.
1983-01-01
An assessment is presented of the current state of knowledge concerning Birkeland currents and the parallel electric field, with discussions focusing on the Birkeland primary region 1 sheets, the region 2 sheets which parallel them and appear to close in the partial ring current, the cusp currents (which may be correlated with the interplanetary B(y) component), and the Harang filament. The energy required by the parallel electric field and the associated particle acceleration processes appears to be derived from the Birkeland currents, for which evidence is adduced from particles, inverted V spectra, rising ion beams and expanded loss cones. Conics may on the other hand signify acceleration by electrostatic ion cyclotron waves associated with beams accelerated by the parallel electric field.
NASA Astrophysics Data System (ADS)
Wang, Tengxing; Rahman, B. M. Farid; Peng, Yujia; Xia, Tian; Wang, Guoan
2015-05-01
A well designed coplanar waveguide (CPW) based center frequency tunable bandpass filter (BPF) at 4 GHz enabled with patterned Permalloy (Py) thin film has been implemented. The operating frequency of BPF is tunable with only DC current without the use of any external magnetic field. Electromagnetic bandgap resonators structure is adopted in the BPF and thus external DC current can be applied between the input and output of the filter for tuning of Py permeability. Special configurations of resonators with multiple narrow parallel sections have been considered for larger inductance tenability; the tunability of CPW transmission lines of different widths with patterned Py thin film on the top of the signal lines is compared and measured. Py thin film patterned as bars is deposited on the top of the multiple narrow parallel sections of the designed filter. No extra area is required for the designed filter configuration. Filter is measured and results show that its center frequency could be tuned from 4 GHz to 4.02 GHz when the DC current is applied from 0 mA to 400 mA.
First and second order derivatives for optimizing parallel RF excitation waveforms.
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations. Copyright © 2015 Elsevier Inc. All rights reserved.
First and second order derivatives for optimizing parallel RF excitation waveforms
NASA Astrophysics Data System (ADS)
Majewski, Kurt; Ritter, Dieter
2015-09-01
For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.
NASA Astrophysics Data System (ADS)
Núñez, M.; Robie, T.; Vlachos, D. G.
2017-10-01
Kinetic Monte Carlo (KMC) simulation provides insights into catalytic reactions unobtainable with either experiments or mean-field microkinetic models. Sensitivity analysis of KMC models assesses the robustness of the predictions to parametric perturbations and identifies rate determining steps in a chemical reaction network. Stiffness in the chemical reaction network, a ubiquitous feature, demands lengthy run times for KMC models and renders efficient sensitivity analysis based on the likelihood ratio method unusable. We address the challenge of efficiently conducting KMC simulations and performing accurate sensitivity analysis in systems with unknown time scales by employing two acceleration techniques: rate constant rescaling and parallel processing. We develop statistical criteria that ensure sufficient sampling of non-equilibrium steady state conditions. Our approach provides the twofold benefit of accelerating the simulation itself and enabling likelihood ratio sensitivity analysis, which provides further speedup relative to finite difference sensitivity analysis. As a result, the likelihood ratio method can be applied to real chemistry. We apply our methodology to the water-gas shift reaction on Pt(111).
NASA Astrophysics Data System (ADS)
Vera, N. C.; GMMC
2013-05-01
In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.
Crater Flux Transfer Events: Highroad to the X Line?
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Chen, Li-Jen; Torbert, R. B.; Southwood, D. J.; Cowley, S. W. H.; Vrublevskis, A.; Mouikis, C.; Vaivads, A.; Andre, M.; Decreau, P.;
2011-01-01
We examine Cluster observations of a so-called magnetosphere crater FTE, employing data from five instruments (FGM, CIS, EDI, EFW, and WHISPER), some at the highest resolution. The aim of doing this is to deepen our understanding of the reconnection nature of these events by applying recent advances in the theory of collisionless reconnection and in detailed observational work. Our data support the hypothesis of a stratified structure with regions which we show to be spatial structures. We support the bulge-like topology of the core region (R3) made up of plasma jetting transverse to reconnected field lines. We document encounters with a magnetic separatrix as a thin layer embedded in the region (R2) just outside the bulge, where the speed of the protons flowing approximately parallel to the field maximizes: (1) short (fraction of a sec) bursts of enhanced electric field strengths (up to approximately 30 mV/m) and (2) electrons flowing against the field toward the X line at approximately the same time as the bursts of intense electric fields. R2 also contains a density decrease concomitant with an enhanced magnetic field strength. At its interface with the core region, R3, electric field activity ceases abruptly. The accelerated plasma flow profile has a catenary shape consisting of beams parallel to the field in R2 close to the R2/R3 boundary and slower jets moving across the magnetic field within the bulge region. We detail commonalities our observations of crater FTEs have with reconnection structures in other scenarios. We suggest that in view of these properties and their frequency of occurrence, crater FTEs are ideal places to study processes at the separatrices, key regions in magnetic reconnection. This is a good preparation for the MMS mission.
Bravo, Ignacio; Mazo, Manuel; Lázaro, José L.; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel
2010-01-01
This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices. PMID:22163406
Bravo, Ignacio; Mazo, Manuel; Lázaro, José L; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel
2010-01-01
This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.
Haghshenasfard, Zahra; Cottam, M G
2017-05-17
A microscopic (Hamiltonian-based) method for the quantum statistics of bosonic excitations in a two-mode magnon system is developed. Both the exchange and the dipole-dipole interactions, as well as the Zeeman term for an external applied field, are included in the spin Hamiltonian, and the model also contains the nonlinear effects due to parallel pumping and four-magnon interactions. The quantization of spin operators is achieved through the Holstein-Primakoff formalism, and then a coherent magnon state representation is used to study the occupation magnon number and the quantum statistical behaviour of the system. Particular attention is given to the cross correlation between the two coupled magnon modes in a ferromagnetic nanowire geometry formed by two lines of spins. Manipulation of the collapse-and-revival phenomena for the temporal evolution of the magnon number as well as the control of the cross correlation between the two magnon modes is demonstrated by tuning the parallel pumping field amplitude. The role of the four-magnon interactions is particularly interesting and leads to anti-correlation in some cases with coherent states.
Electrodeposition of quaternary alloys in the presence of magnetic field
2010-01-01
Electrodeposition of Ni-Co-Fe-Zn alloys was done in a chloride ion solution with the presence and absence of a Permanent Parallel Magnetic Field (PPMF). The PPMF was applied parallel to the cathode surface. The deposition profile was monitored chronoamperometrically. It was found that the electrodeposition current was enhanced in the presence of PPMF (9 T) compared to without PPMF. The percentage of current enhancement (Γ%) was increased in the presence of PPMF, with results of Γ% = 11.9%, 16.7% and 18.5% at -1.1, -1.2 and -1.3 V respectively for a 2400 sec duration. In chronoamperometry, the Composition Reference Line (CRL) for Ni was around 57%, although the nobler metals (i.e. Ni, Co) showed anomalous behaviour in the presence of Zn and Fe. The anomalous behaviour of the Ni-Co-Fe-Zn electrodeposition was shown by the Energy Dispersive X-Ray (EDX) results. From Atomic Force Microscopy (AFM) measurements, it was found that the surface roughness of the Ni-Co-Fe-Zn alloy films decreased in the presence of a PPMF. PMID:20604934
Stan, Claudiu A; Tang, Sindy K Y; Bishop, Kyle J M; Whitesides, George M
2011-02-10
The freezing of water can initiate at electrically conducting electrodes kept at a high electric potential or at charged electrically insulating surfaces. The microscopic mechanisms of these phenomena are unknown, but they must involve interactions between water molecules and electric fields. This paper investigates the effect of uniform electric fields on the homogeneous nucleation of ice in supercooled water. Electric fields were applied across drops of water immersed in a perfluorinated liquid using a parallel-plate capacitor; the drops traveled in a microchannel and were supercooled until they froze due to the homogeneous nucleation of ice. The distribution of freezing temperatures of drops depended on the rate of nucleation of ice, and the sensitivity of measurements allowed detection of changes by a factor of 1.5 in the rate of nucleation. Sinusoidal alternation of the electric field at frequencies from 3 to 100 kHz prevented free ions present in water from screening the electric field in the bulk of drops. Uniform electric fields in water with amplitudes up to (1.6 ± 0.4) × 10(5) V/m neither enhanced nor suppressed the homogeneous nucleation of ice. Estimations based on thermodynamic models suggest that fields in the range of 10(7)-10(8) V/m might cause an observable increase in the rate of nucleation.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Hui; Nie, Yi-Hang; Liang, Jiu-Qing; Niu, Peng-Bin
2018-04-01
In this work, we study the generation of spin-current in a single-molecule magnet (SMM) tunnel junction with Coulomb interaction of transport electrons and external magnetic field. In the absence of field the spin-up and -down currents are symmetric with respect to the initial polarizations of molecule. The existence of magnetic field breaks the time-reversal symmetry, which leads to unsymmetrical spin currents of parallel and antiparallel polarizations. Both the amplitude and polarization direction of spin current can be controlled by the applied magnetic field. Particularly when the magnetic field increases to a certain value the spin-current with antiparallel polarization is reversed along with the magnetization reversal of the SMM. The two-electron occupation indeed enhances the transport current compared with the single-electron process. However the increase of Coulomb interaction results in the suppression of spin-current amplitude at the electron-hole symmetry point. We propose a scheme to compensate the suppression with the magnetic field.
NASA Astrophysics Data System (ADS)
Colas, Laurent; Lu, Ling-Feng; Křivská, Alena; Jacquot, Jonathan; Hillairet, Julien; Helou, Walid; Goniche, Marc; Heuraux, Stéphane; Faudot, Eric
2017-02-01
We investigate theoretically how sheath radio-frequency (RF) oscillations relate to the spatial structure of the near RF parallel electric field E ∥ emitted by ion cyclotron (IC) wave launchers. We use a simple model of slow wave (SW) evanescence coupled with direct current (DC) plasma biasing via sheath boundary conditions in a 3D parallelepiped filled with homogeneous cold magnetized plasma. Within a ‘wide-sheath’ asymptotic regime, valid for large-amplitude near RF fields, the RF part of this simple RF + DC model becomes linear: the sheath oscillating voltage V RF at open field line boundaries can be re-expressed as a linear combination of individual contributions by every emitting point in the input field map. SW evanescence makes individual contributions all the larger as the wave emission point is located closer to the sheath walls. The decay of |V RF| with the emission point/sheath poloidal distance involves the transverse SW evanescence length and the radial protrusion depth of lateral boundaries. The decay of |V RF| with the emitter/sheath parallel distance is quantified as a function of the parallel SW evanescence length and the parallel connection length of open magnetic field lines. For realistic geometries and target SOL plasmas, poloidal decay occurs over a few centimeters. Typical parallel decay lengths for |V RF| are found to be smaller than IC antenna parallel extension. Oscillating sheath voltages at IC antenna side limiters are therefore mainly sensitive to E ∥ emission by active or passive conducting elements near these limiters, as suggested by recent experimental observations. Parallel proximity effects could also explain why sheath oscillations persist with antisymmetric strap toroidal phasing, despite the parallel antisymmetry of the radiated field map. They could finally justify current attempts at reducing the RF fields induced near antenna boxes to attenuate sheath oscillations in their vicinity.
Aging and feature search: the effect of search area.
Burton-Danner, K; Owsley, C; Jackson, G R
2001-01-01
The preattentive system involves the rapid parallel processing of visual information in the visual scene so that attention can be directed to meaningful objects and locations in the environment. This study used the feature search methodology to examine whether there are aging-related deficits in parallel-processing capabilities when older adults are required to visually search a large area of the visual field. Like young subjects, older subjects displayed flat, near-zero slopes for the Reaction Time x Set Size function when searching over a broad area (30 degrees radius) of the visual field, implying parallel processing of the visual display. These same older subjects exhibited impairment in another task, also dependent on parallel processing, performed over the same broad field area; this task, called the useful field of view test, has more complex task demands. Results imply that aging-related breakdowns of parallel processing over a large visual field area are not likely to emerge when required responses are simple, there is only one task to perform, and there is no limitation on visual inspection time.
Polymer dispersed nematic liquid crystal for large area displays and light valves
NASA Astrophysics Data System (ADS)
Drzaic, Paul S.
1986-09-01
A new electro-optical material based on nematic liquid crystal dispersed in a polymer matrix has recently been introduced by Fergason. This technology (termed NCAP, for nematic curvilinear aligned phase) is suitable for making very large area (thousands of square centimeter) light valves and displays. The device consists of micron size droplets of liquid crystal dispersed in and surrounded by a polymer film. Light passing through the film in the absence of an applied field is strongly forward scattered, giving a milky, translucent film. Application of an electric field across the liquid crystal/polymer film places the film in a highly transparent state. Pleochroic dyes may be employed in the system in order to achieve controllable light absorption as well as scattering. Microscopically, it is shown that the liquid-crystal director lies preferentially parallel to the polymer wall, leading to a bipolar-like configuration of the liquid-crystal directors within the droplet. The symmetry axes of the droplets are randomly oriented in the unpowered, scattering state, but align parallel to the field in the powered, transparent state. The electric field required to reorient a given droplet varies inversely with the diameter of that droplet, and it is shown that the macroscopic electro-optical properties of the film can be modeled if the distribution of liquid-crystal droplet sizes is known.
NASA Astrophysics Data System (ADS)
Kumagai, Takayuki; Yoshida, Hiroyuki; Ozaki, Masanori
2017-04-01
The electric-field-induced switching behavior of a polymer microplate is investigated. A microplate fabricated with a photopolymerizable dual-frequency liquid crystal was surrounded by an unpolymerized photopolymerizable dual-frequency liquid crystal in the isotropic phase. As an electric field was applied along the plane of the microplate, the microplate switched to set its interior molecular orientation to be either parallel or perpendicular to the field, depending on the frequency. Analysis of the rotational behavior, as well as numerical calculations, showed that the surrounding unpolymerized photopolymerizable dual-frequency liquid crystal infiltrated into the microplate, which enhanced the dielectric properties of the microplate. To the best of our knowledge, this is the first report of an enhanced dual-frequency dielectric response of a polymer microplate induced by liquid crystal infiltration.
Positive and negative effective mass of classical particles in oscillatory and static fields.
Dodin, I Y; Fisch, N J
2008-03-01
A classical particle oscillating in an arbitrary high-frequency or static field effectively exhibits a modified rest mass m(eff) derived from the particle averaged Lagrangian. Relativistic ponderomotive and diamagnetic forces, as well as magnetic drifts, are obtained from the m(eff) dependence on the guiding center location and velocity. The effective mass is not necessarily positive and can result in backward acceleration when an additional perturbation force is applied. As an example, adiabatic dynamics with m||>0 and m||<0 is demonstrated for a wave-driven particle along a dc magnetic field, m|| being the effective longitudinal mass derived from m(eff). Multiple energy states are realized in this case, yielding up to three branches of m|| for a given magnetic moment and parallel velocity.
Switching of the Spin-Density-Wave in CeCoIn5 probed by Thermal Conductivity
NASA Astrophysics Data System (ADS)
Kim, Duk Y.; Lin, Shi-Zeng; Weickert, Franziska; Bauer, Eric D.; Ronning, Filip; Thompson, Joe D.; Movshovich, Roman
Unconventional superconductor CeCoIn5 orders magnetically in a spin-density-wave (SDW) in the low-temperature and high-field corner of the superconducting phase. Recent neutron scattering experiment revealed that the single-domain SDW's ordering vector Q depends strongly on the direction of the magnetic field, switching sharply as the field is rotated through the anti-nodal direction. This switching may be manifestation of a pair-density-wave (PDW) p-wave order parameter, which develops in addition to the well-established d-wave order parameter due to the SDW formation. We have investigated the hypersensitivity of the magnetic domain with a thermal conductivity measurement. The heat current (J) was applied along the [110] direction such that the Q vector is either perpendicular or parallel to J, depending on the magnetic field direction. A discontinuous change of the thermal conductivity was observed when the magnetic field is rotated around the [100] direction within 0 . 2° . The thermal conductivity with the Q parallel to the heat current (J ∥Q) is approximately 15% lager than that with the Q perpendicular to the heat current (J ⊥Q). This result is consistent with additional gapping of the nodal quasiparticle by the p-wave PDW coupled to SDW. Work at Los Alamos was performed under the auspices of the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.
First experiments probing the collision of parallel magnetic fields using laser-produced plasmas
Rosenberg, M. J.; Li, C. K.; Fox, W.; ...
2015-04-08
Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less
Evidence for Field-parallel Electron Acceleration in Solar Flares
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haerendel, G.
It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of the order of 10{sup 4} A m{sup −2}. A consequence of this is the concentration of the currents in sheets with widths of the order of 1 m. The high current density suggests that the field-parallel potential drops are maintained by current-driven anomalous resistivity. The origin of these currents remains a strong challenge for theorists.
Thomson scattering in magnetic fields. [of white dwarf stars
NASA Technical Reports Server (NTRS)
Whitney, Barbara
1989-01-01
The equation of transfer in Thomson scattering atmospheres with magnetic fields is solved using Monte Carlo methods. Two cases, a plane parallel atmosphere with a magnetic field perpendicular to the atmosphere, and a dipole star, are investigated. The wavelength dependence of polarization from plane-parallel atmosphere is qualitatively similar to that observed in the magnetic white dwarf Grw+70 deg 8247, and the field strength determined by the calculation, 320 MG, is quantitatively similar to that determined from the line spectrum. The dipole model does not resemble the data as well as the single plane-parallel atmosphere.
NASA Astrophysics Data System (ADS)
Brandt, Ernst Helmut
1998-09-01
The ac susceptibility χ=χ'-iχ'' of superconductor cylinders of finite length in a magnetic field applied along the cylinder axis is calculated using the method developed in the preceding paper, part I. This method does not require any approximation of the infinitely extended magnetic field outside the cylinder or disk but directly computes the current density J inside the superconductor. The material is characterized by a general current-voltage law E(J), e.g., E(J)=Ec[J/Jc(B)]n(B), where E is the electric field, B=μ0H the magnetic induction, Ec a prefactor, Jc the critical current density, and n>=1 the creep exponent. For n>1, the nonlinear ac susceptibility is calculated from the hysteresis loops of the magnetic moment of the cylinder, which is obtained by time integration of the equation for J(r,t). For n>>1 these results go over into the Bean critical state model. For n=1, and for any linear complex resistivity ρac(ω)=E/J, the linear ac susceptibility is calculated from an eigenvalue problem which depends on the aspect ratio b/a of the cylinder or disk. In the limits b/a<<1 and b/a>>1, the known results for thin disks in a perpendicular field and long cylinders in a parallel field are reproduced. For thin disks in a perpendicular field, at large frequencies χ(ω) crosses over to the behavior of slabs in parallel geometry since the magnetic field lines are expelled and have to flow around the disk. The results presented may be used to obtain the nonlinear or linear resistivity from contact-free magnetic measurements on superconductors of realistic shape.
NASA Astrophysics Data System (ADS)
Vasko, I.; Agapitov, O. V.; Mozer, F.; Bonnell, J. W.; Krasnoselskikh, V.; Artemyev, A.; Drake, J. F.
2017-12-01
Chorus waves observed in the Earth inner magnetosphere sometimes exhibit significantly distorted (nonharmonic) parallel electric field waveform. In spectrograms these waveform features show up as overtones of chorus wave. In this work we show that the chorus wave parallel electric field is distorted due to finite temperature of electrons. The distortion of the parallel electric field is described analytically and reproduced in the numerical fluid simulations. Due to this effect the chorus energy is transferred to higher frequencies making possible efficient scattering of low ( a few keV) energy electrons.
Electro-osmotic flow of semidilute polyelectrolyte solutions.
Uematsu, Yuki; Araki, Takeaki
2013-09-07
We investigate electro-osmosis in aqueous solutions of polyelectrolytes using mean-field equations. A solution of positively charged polyelectrolytes is confined between two negatively charged planar surfaces, and an electric field is applied parallel to the surfaces. When electrostatic attraction between the polymer and the surface is strong, the polymers adhere to the surface, forming a highly viscous adsorption layer that greatly suppresses the electro-osmosis. Conversely, electro-osmosis is enhanced by depleting the polymers from the surfaces. We also found that the electro-osmotic flow is invertible when the electrostatic potential decays to its bulk value with the opposite sign. These behaviors are well explained by a simple mathematical form of the electro-osmotic coefficient.
Zhou, Ruhong
2004-05-01
A highly parallel replica exchange method (REM) that couples with a newly developed molecular dynamics algorithm particle-particle particle-mesh Ewald (P3ME)/RESPA has been proposed for efficient sampling of protein folding free energy landscape. The algorithm is then applied to two separate protein systems, beta-hairpin and a designed protein Trp-cage. The all-atom OPLSAA force field with an explicit solvent model is used for both protein folding simulations. Up to 64 replicas of solvated protein systems are simulated in parallel over a wide range of temperatures. The combined trajectories in temperature and configurational space allow a replica to overcome free energy barriers present at low temperatures. These large scale simulations reveal detailed results on folding mechanisms, intermediate state structures, thermodynamic properties and the temperature dependences for both protein systems.
Perpendicular momentum input of lower hybrid waves and its influence on driving plasma rotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guan, Xiaoyin
The mechanism of perpendicular momentum input of lower hybrid waves and its influence on plasma rotation are studied. Discussion for parallel momentum input of lower hybrid waves is presented for comparison. It is found out that both toroidal and poloidal projections of perpendicular momentum input of lower hybrid waves are stronger than those of parallel momentum input. The perpendicular momentum input of lower hybrid waves therefore plays a dominant role in forcing the changes of rotation velocity observed during lower hybrid current drive. Lower hybrid waves convert perpendicular momentum carried by the waves into the momentum of dc electromagnetic fieldmore » by inducing a resonant-electron flow across flux surfaces therefore charge separation and a radial dc electric field. The dc field releases its momentum into plasma through the Lorentz force acting on the radial return current driven by the radial electric field. Plasma is spun up by the Lorentz force. An improved quasilinear theory with gyro-phase dependent distribution function is developed to calculate the radial flux of resonant electrons. Rotations are determined by a set of fluid equations for bulk electrons and ions, which are solved numerically by applying a finite-difference method. Analytical expressions for toroidal and poloidal rotations are derived using the same hydrodynamic model.« less
Fox, W.; Sciortino, F.; v. Stechow, A.; ...
2017-03-21
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghila, A; Steciw, S; Fallone, B
Purpose: Integrated linac-MR systems are uniquely suited for real time tumor tracking during radiation treatment. Understanding the magnetic field dose effects and incorporating them in treatment planning is paramount for linac-MR clinical implementation. We experimentally validated the EGSnrc dose calculations in the presence of a magnetic field parallel to the radiation beam travel. Methods: Two cylindrical bore electromagnets produced a 0.21 T magnetic field parallel to the central axis of a 6 MV photon beam. A parallel plate ion chamber was used to measure the PDD in a polystyrene phantom, placed inside the bore in two setups: phantom top surfacemore » coinciding with the magnet bore center (183 cm SSD), and with the magnet bore’s top surface (170 cm SSD). We measured the field of the magnet at several points and included the exact dimensions of the coils to generate a 3D magnetic field map in a finite element model. BEAMnrc and DOSXYZnrc simulated the PDD experiments in parallel magnetic field (i.e. 3D magnetic field included) and with no magnetic field. Results: With the phantom surface at the top of the electromagnet, the surface dose increased by 10% (compared to no-magnetic field), due to electrons being focused by the smaller fringe fields of the electromagnet. With the phantom surface at the bore center, the surface dose increased by 30% since extra 13 cm of air column was in relatively higher magnetic field (>0.13T) in the magnet bore. EGSnrc Monte Carlo code correctly calculated the radiation dose with and without the magnetic field, and all points passed the 2%, 2 mm Gamma criterion when the ion chamber’s entrance window and air cavity were included in the simulated phantom. Conclusion: A parallel magnetic field increases the surface and buildup dose during irradiation. The EGSnrc package can model these magnetic field dose effects accurately. Dr. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
Jochmann, Ralf; Lipkow, Erhard; Blanckenhorn, Wolf U
2016-08-01
Veterinary medical product residues can cause severe damage in the dung ecosystem. Depending on the manner of application and the time after treatment, the excreted concentration of a given pharmaceutical varies. The popular anthelmintic drug ivermectin can be applied to livestock in several different ways and is fecally excreted over a period of days to months after application. In a field experiment replicated in summer and autumn, the authors mixed 6 ivermectin concentrations plus a null control into fresh cow dung to assess the reaction of the dung insect community. Taxon richness of the insect dung fauna emerging from the dung, but not Hill diversity ((1) D) or the total number of individuals (abundance), decreased as ivermectin concentration increased. Corresponding declines in the number of emerging insects were found for most larger brachyceran flies and hymenopteran parasitoids, but not for most smaller nematoceran flies or beetles (except Hydrophilidae). Parallel pitfall traps recovered all major dung organism groups that emerged from the experimental dung, although at times in vastly different numbers. Ivermectin generally did not change the attractiveness of dung: differences in emergence therefore reflect differences in survival of coprophagous offspring of colonizing insects. Because sample size was limited to 6 replicates, the authors generally recommend more than 10 (seasonal) replicates and also testing higher concentrations than used in the present study as positive controls in future studies. Results accord with parallel experiments in which the substance was applied and passed through the cow's digestive system. In principle, therefore, the authors' experimental design is suitable for such higher-tier field tests of the response of the entire dung community to pharmaceutical residues, at least for ivermectin. Environ Toxicol Chem 2016;35:1947-1952. © 2015 SETAC. © 2015 SETAC.
NASA Astrophysics Data System (ADS)
Mohebi, M.; Jamasbi, N.; Liu, Jing
1996-11-01
We developed a computer model to understand the nonequilibrium structures induced in a magnetorheological (MR) fluid by rapidly applying an external magnetic field. MR fluids consist of particles suspended in a liquid where particles interact through dipole moments induced by the external magnetic field. We have simulated these induced structures in both directions, parallel and perpendicular to the field, in the limit of fastest response, by neglecting thermal motion and applying the field instantaneously. Our results show that the process of structure formation starts with particles forming chains aligned with the external field. The chains then coalesce to form columns and wall-like structures (``worms'' as viewed from the top). The complexity of this pattern is found to depend on the concentration of particles and the confinement of the cell in the direction of the external field. These results are consistent with experimental observations [G.A. Flores et al., in Proceedings of the Fifth International Conference on ER Fluids, MR Suspensions, and Associate Technology, University of Sheffield, Sheffield, 1995, edited by W. Bullough (World Scientific, Singapore, 1996), p. 140]. We have also used this model to study the interaction of two chains. The results of this study help in the understanding of the connection between the thickness of the sample and the increased complexity of the observed lateral pattern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hao; Yang, Weitao, E-mail: weitao.yang@duke.edu; Department of Physics, Duke University, Durham, North Carolina 27708
We developed a new method to calculate the atomic polarizabilities by fitting to the electrostatic potentials (ESPs) obtained from quantum mechanical (QM) calculations within the linear response theory. This parallels the conventional approach of fitting atomic charges based on electrostatic potentials from the electron density. Our ESP fitting is combined with the induced dipole model under the perturbation of uniform external electric fields of all orientations. QM calculations for the linear response to the external electric fields are used as input, fully consistent with the induced dipole model, which itself is a linear response model. The orientation of the uniformmore » external electric fields is integrated in all directions. The integration of orientation and QM linear response calculations together makes the fitting results independent of the orientations and magnitudes of the uniform external electric fields applied. Another advantage of our method is that QM calculation is only needed once, in contrast to the conventional approach, where many QM calculations are needed for many different applied electric fields. The molecular polarizabilities obtained from our method show comparable accuracy with those from fitting directly to the experimental or theoretical molecular polarizabilities. Since ESP is directly fitted, atomic polarizabilities obtained from our method are expected to reproduce the electrostatic interactions better. Our method was used to calculate both transferable atomic polarizabilities for polarizable molecular mechanics’ force fields and nontransferable molecule-specific atomic polarizabilities.« less
Effect of magnetic pulses on Caribbean spiny lobsters: implications for magnetoreception.
Ernst, David A; Lohmann, Kenneth J
2016-06-15
The Caribbean spiny lobster, Panulirus argus, is a migratory crustacean that uses Earth's magnetic field as a navigational cue, but how these lobsters detect magnetic fields is not known. Magnetic material thought to be magnetite has previously been detected in spiny lobsters, but its role in magnetoreception, if any, remains unclear. As a first step toward investigating whether lobsters might have magnetite-based magnetoreceptors, we subjected lobsters to strong, pulsed magnetic fields capable of reversing the magnetic dipole moment of biogenic magnetite crystals. Lobsters were subjected to a single pulse directed from posterior to anterior and either: (1) parallel to the horizontal component of the geomagnetic field (i.e. toward magnetic north); or (2) antiparallel to the horizontal field (i.e. toward magnetic south). An additional control group was handled but not subjected to a magnetic pulse. After treatment, each lobster was tethered in a water-filled arena located within 200 m of the capture location and allowed to walk in any direction. Control lobsters walked in seemingly random directions and were not significantly oriented as a group. In contrast, the two groups exposed to pulsed fields were significantly oriented in approximately opposite directions. Lobsters subjected to a magnetic pulse applied parallel to the geomagnetic horizontal component walked westward; those subjected to a pulse directed antiparallel to the geomagnetic horizontal component oriented approximately northeast. The finding that a magnetic pulse alters subsequent orientation behavior is consistent with the hypothesis that magnetoreception in spiny lobsters is based at least partly on magnetite-based magnetoreceptors. © 2016. Published by The Company of Biologists Ltd.
Neoclassical Current Drive by Waves with a Symmetric Spectrum
NASA Astrophysics Data System (ADS)
Helander, Per
2000-10-01
It is well known that plasma waves can produce electric currents if the waves have an asymmetric spectrum, so that they either interact preferentially with electrons travelling in one direction along the magnetic field or impart net parallel momentum to the electrons [1]. This directionality creates an asymmetry in the electron distribution function and thereby produces a current parallel to the field. We demonstrate, somewhat surprisingly, that in a plasma confined by a curved magnetic field no such spectral asymmetry is necessary for current drive if the effect of collisions is properly taken into account. For instance, in a toroidal plasma a current can be produced by a spectrally symmetric wave field if this field is instead up-down asymmetric, which is frequently the case for electron cyclotron current drive (ECCD) in tokamaks. We have calculated the resulting current drive efficiency and found it to be smaller than that of the conventional current drive mechanism in the banana regime, but not insignificant in the plateau regime. The results will be compared with experiments in DIII-D, where the measured efficiency exceeds the classical prediction [2]. Our calculations are focused on this case of ECCD in tokamaks, but the basic physical mechanism is much more general. It is of a universal neoclassical nature and applies to all wave-particle interaction in curved magnetic fields. [1] N.J. Fisch, Rev. Mod. Phys. 59, 175 (1987). [2] Y. R. Lin-Liu et al., 26th EPS Conf. on Contr. Fusion and Plasma Phys.(European Phys. Soc. Paris, 1999) Vol. 23J, p 1245.
NASA Technical Reports Server (NTRS)
Lennartsson, W.
1977-01-01
A simple model of a static electric field with a component parallel to the magnetic field is proposed for calculating the electric field and current distributions at various altitudes when the horizontal distribution of the convection electric field is given at a certain altitude above the auroral ionosphere. The model is shown to be compatible with satellite observations of inverted-V electron precipitation structures and associated irregularities in the convection electric field.
Effect of parallel electric fields on the ponderomotive stabilization of MHD instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, C.; Hershkowitz, N.
The contribution of the wave electric field component E/sub parallel/, parallel to the magnetic field, to the ponderomotive stabilization of curvature driven instabilities is evaluated and compared to the transverse component contribution. For the experimental density range, in which the stability is primarily determined by the m = 1 magnetosonic wave, this contribution is found to be the dominant and stabilizing when the electron temperature is neglected. For sufficiently high electron temperatures the dominant fast wave is found to be axially evanescent. In the same limit, E/sub parallel/ becomes radially oscillating. It is concluded that the increased electron temperature nearmore » the plasma surface reduces the magnitude of ponderomotive effects.« less
NASA Astrophysics Data System (ADS)
Gan, Chee Kwan; Challacombe, Matt
2003-05-01
Recently, early onset linear scaling computation of the exchange-correlation matrix has been achieved using hierarchical cubature [J. Chem. Phys. 113, 10037 (2000)]. Hierarchical cubature differs from other methods in that the integration grid is adaptive and purely Cartesian, which allows for a straightforward domain decomposition in parallel computations; the volume enclosing the entire grid may be simply divided into a number of nonoverlapping boxes. In our data parallel approach, each box requires only a fraction of the total density to perform the necessary numerical integrations due to the finite extent of Gaussian-orbital basis sets. This inherent data locality may be exploited to reduce communications between processors as well as to avoid memory and copy overheads associated with data replication. Although the hierarchical cubature grid is Cartesian, naive boxing leads to irregular work loads due to strong spatial variations of the grid and the electron density. In this paper we describe equal time partitioning, which employs time measurement of the smallest sub-volumes (corresponding to the primitive cubature rule) to load balance grid-work for the next self-consistent-field iteration. After start-up from a heuristic center of mass partitioning, equal time partitioning exploits smooth variation of the density and grid between iterations to achieve load balance. With the 3-21G basis set and a medium quality grid, equal time partitioning applied to taxol (62 heavy atoms) attained a speedup of 61 out of 64 processors, while for a 110 molecule water cluster at standard density it achieved a speedup of 113 out of 128. The efficiency of equal time partitioning applied to hierarchical cubature improves as the grid work per processor increases. With a fine grid and the 6-311G(df,p) basis set, calculations on the 26 atom molecule α-pinene achieved a parallel efficiency better than 99% with 64 processors. For more coarse grained calculations, superlinear speedups are found to result from reduced computational complexity associated with data parallelism.
Self-Aligned Growth of Organic Semiconductor Single Crystals by Electric Field.
Kotsuki, Kenji; Obata, Seiji; Saiki, Koichiro
2016-01-19
We proposed a novel but facile method for growing organic semiconductor single-crystals via solvent vapor annealing (SVA) under electric field. In the conventional SVA growth process, nuclei of crystals appeared anywhere on the substrate and their crystallographic axes were randomly distributed. We applied electric field during the SVA growth of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) on the SiO2/Si substrate on which a pair of electrodes had been deposited beforehand. Real-time observation of the SVA process revealed that rodlike single crystals grew with their long axes parallel to the electric field and bridged the prepatterned electrodes. As a result, C8-BTBT crystals automatically formed a field effect transistor (FET) structure and the mobility reached 1.9 cm(2)/(V s). Electric-field-assisted SVA proved a promising method for constructing high-mobility single-crystal FETs at the desired position by a low-cost solution process.
An efficient implementation of a high-order filter for a cubed-sphere spectral element model
NASA Astrophysics Data System (ADS)
Kang, Hyun-Gyu; Cheong, Hyeong-Bin
2017-03-01
A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.
Unusual two-dimensional behavior of iron-based superconductors with low anisotropy
NASA Astrophysics Data System (ADS)
Kalenyuk, A. A.; Pagliero, A.; Borodianskyi, E. A.; Aswartham, S.; Wurmehl, S.; Büchner, B.; Chareev, D. A.; Kordyuk, A. A.; Krasnov, V. M.
2017-10-01
We study angular-dependent magnetoresistance in iron-based superconductors Ba1 -xNaxFe2As2 and FeTe1 -xSex . Both superconductors have relatively small anisotropies γ ˜2 and exhibit a three-dimensional (3D) behavior at low temperatures. However, we observe that they start to exhibit a profound two-dimensional behavior at elevated temperatures and in applied magnetic field parallel to the surface. We conclude that the unexpected two-dimensional (2D) behavior of the studied low-anisotropic superconductors is not related to layeredness of the materials, but is caused by appearance of surface superconductivity when magnetic field exceeds the upper critical field Hc 2(T ) for destruction of bulk superconductivity. We argue that the corresponding 3D-2D bulk-to-surface dimensional transition can be used for accurate determination of the upper critical field.
NASA Astrophysics Data System (ADS)
Pandey, Harsh; Underhill, Patrick T.
2015-11-01
The electrophoretic mobility of molecules such as λ -DNA depends on the conformation of the molecule. It has been shown that electrohydrodynamic interactions between parts of the molecule lead to a mobility that depends on conformation and can explain some experimental observations. We have developed a new coarse-grained model that incorporates these changes of mobility into a bead-spring chain model. Brownian dynamics simulations have been performed using this model. The model reproduces the cross-stream migration that occurs in capillary electrophoresis when pressure-driven flow is applied parallel or antiparallel to the electric field. The model also reproduces the change of mobility when the molecule is stretched significantly in an extensional field. We find that the conformation-dependent mobility can lead to a new type of unraveling of the molecule in strong fields. This occurs when different parts of the molecule have different mobilities and the electric field is large.
Magneto-optical properties of biogenic photonic crystals in algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasaka, M., E-mail: iwasaka-m@umin.ac.jp; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi 332-0012 Saitama; Mizukawa, Y.
In the present study, the effects of strong static magnetic fields on the structural colors of the cell covering crystals on a microalgae, coccolithophore, were investigated. The coccolithophore, Emiliania huxleyi, generates a precise assembly of calcite crystals called coccoliths by biomineralization. The coccoliths attached to the cells exhibited structural colors under side light illumination, and the colors underwent dynamic transitions when the magnetic fields were changed between 0 T and 5 T, probably due to diamagnetically induced changes of their inclination under the magnetic fields. The specific light-scattering property of individual coccoliths separated from the cells was also observed. Light scattering frommore » a condensed suspension of coccoliths drastically decreased when magnetic fields of more than 4 T were applied parallel to the direction of observation. The magnetically aligned cell-covering crystals of the coccolithophores exhibited the properties of both a photonic crystal and a minimum micromirror.« less
Hexapole-compensated magneto-optical trap on a mesoscopic atom chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joellenbeck, S.; Mahnke, J.; Randoll, R.
2011-04-15
Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4x10{sup 10} atoms/s and maximum number of 8.7x10{sup 9} captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all magnetic fields are applied locally without the need formore » external bias fields, the presented setup will facilitate parallel generation of Bose-Einstein condensates on a conveyor belt with a cycle rate above 1 Hz.« less
Efficient Helicopter Aerodynamic and Aeroacoustic Predictions on Parallel Computers
NASA Technical Reports Server (NTRS)
Wissink, Andrew M.; Lyrintzis, Anastasios S.; Strawn, Roger C.; Oliker, Leonid; Biswas, Rupak
1996-01-01
This paper presents parallel implementations of two codes used in a combined CFD/Kirchhoff methodology to predict the aerodynamics and aeroacoustics properties of helicopters. The rotorcraft Navier-Stokes code, TURNS, computes the aerodynamic flowfield near the helicopter blades and the Kirchhoff acoustics code computes the noise in the far field, using the TURNS solution as input. The overall parallel strategy adds MPI message passing calls to the existing serial codes to allow for communication between processors. As a result, the total code modifications required for parallel execution are relatively small. The biggest bottleneck in running the TURNS code in parallel comes from the LU-SGS algorithm that solves the implicit system of equations. We use a new hybrid domain decomposition implementation of LU-SGS to obtain good parallel performance on the SP-2. TURNS demonstrates excellent parallel speedups for quasi-steady and unsteady three-dimensional calculations of a helicopter blade in forward flight. The execution rate attained by the code on 114 processors is six times faster than the same cases run on one processor of the Cray C-90. The parallel Kirchhoff code also shows excellent parallel speedups and fast execution rates. As a performance demonstration, unsteady acoustic pressures are computed at 1886 far-field observer locations for a sample acoustics problem. The calculation requires over two hundred hours of CPU time on one C-90 processor but takes only a few hours on 80 processors of the SP2. The resultant far-field acoustic field is analyzed with state of-the-art audio and video rendering of the propagating acoustic signals.
Banana regime pressure anisotropy in a bumpy cylinder magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.
The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations ({epsilon}{identical_to}{delta}B/2B<<1). Solutions are obtained by integrating the drift-kinetic equation along field lines in steady state. A closure for the local value of the parallel viscous force B{center_dot}{nabla}{center_dot}{pi}{sub parallel} is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force by a factor of O(1/{epsilon}). A high-frequency limit ({omega}>>{nu}) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion inmore » Cordey eigenfunctions.« less
Parallel iterative solution for h and p approximations of the shallow water equations
Barragy, E.J.; Walters, R.A.
1998-01-01
A p finite element scheme and parallel iterative solver are introduced for a modified form of the shallow water equations. The governing equations are the three-dimensional shallow water equations. After a harmonic decomposition in time and rearrangement, the resulting equations are a complex Helmholz problem for surface elevation, and a complex momentum equation for the horizontal velocity. Both equations are nonlinear and the resulting system is solved using the Picard iteration combined with a preconditioned biconjugate gradient (PBCG) method for the linearized subproblems. A subdomain-based parallel preconditioner is developed which uses incomplete LU factorization with thresholding (ILUT) methods within subdomains, overlapping ILUT factorizations for subdomain boundaries and under-relaxed iteration for the resulting block system. The method builds on techniques successfully applied to linear elements by introducing ordering and condensation techniques to handle uniform p refinement. The combined methods show good performance for a range of p (element order), h (element size), and N (number of processors). Performance and scalability results are presented for a field scale problem where up to 512 processors are used. ?? 1998 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, G.H.
1988-01-01
The effect of three types of quartic anisotropy energy on the polarization of the spiral-magnetic state of Blount and Varma is studied near the onset temperature. A quartic anisotropy with uniaxial symmetry and a quartic anisotropy with cubic symmetry are studied, and the anisotropy in primitive tetragonal ErRh{sub 4}B{sub 4} is modeled with a quadratic anisotropy giving a hard c-axis, plus a quartic anisotropy in the basal plane with a square symmetry. Details of the magnetizations, wave vectors, and polarizations are presented. Further, using a variational approach, the author investigates the effects, in a slab geometry, of an infinitesimal andmore » finite magnetic field applied parallel to the slab on the spiral magnetic state. By additionally calculating the effects on the normal ferroparamagnetic state and the uniform superconducting state, he studies applied field vs. temperature phase diagrams. Due to the large experimental uncertainty in the material parameters, an extended range of values is studied, producing a number of interesting and physically unique phase diagrams. A categorization of the types of phase diagrams over the selected range of the material parameters is presented. Finally, the effective superconducting penetration depth in the presence of the spiral magnetic state is calculated.« less
Dielectric properties of biological tissues in which cells are connected by communicating junctions
NASA Astrophysics Data System (ADS)
Asami, Koji
2007-06-01
The frequency dependence of the complex permittivity of biological tissues has been simulated using a simple model that is a cubic array of spherical cells in a parallel plate capacitor. The cells are connected by two types of communicating junctions: one is a membrane-lined channel for plasmodesmata in plant tissues, and the other is a conducting patch of adjoining plasma membranes for gap junctions in animal tissues. Both junctions provided similar effects on the dielectric properties of the tissue model. The model without junction showed a dielectric relaxation (called β-dispersion) that was expected from an interfacial polarization theory for a concentrated suspension of spherical cells. The dielectric relaxation was the same as that of the model in which neighbouring cells were connected by junctions perpendicular to the applied electric field. When neighbouring cells were connected by junctions parallel to the applied electric field or in all directions, a dielectric relaxation appeared at a lower frequency side in addition to the β-dispersion, corresponding to the so called α-dispersion. When junctions were randomly introduced at varied probabilities Pj, the low-frequency (LF) relaxation curve became broader, especially at Pj of 0.2-0.5, and its intensity was proportional to Pj up to 0.7. The intensity and the characteristic frequency of the LF relaxation both decreased with decreasing junction conductance. The simulations indicate that communicating junctions are important for understanding the LF dielectric relaxation in tissues.
Parallel heat transport in integrable and chaotic magnetic fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Del-Castillo-Negrete, Diego B; Chacon, Luis
2012-01-01
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly chal- lenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), , and the perpendicular, , conductivities ( / may exceed 1010 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green s function method to solve themore » local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geom- etry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island chain), weakly chaotic (devil s staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local closures, is non-diffusive, thus casting doubts on the appropriateness of the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.« less
One-dimensional models of quasi-neutral parallel electric fields
NASA Technical Reports Server (NTRS)
Stern, D. P.
1981-01-01
Parallel electric fields can exist in the magnetic mirror geometry of auroral field lines if they conform to the quasineutral equilibrium solutions. Results on quasi-neutral equilibria and on double layer discontinuities were reviewed and the effects on such equilibria due to non-unique solutions, potential barriers and field aligned current flows using as inputs monoenergetic isotropic distribution functions were examined.
Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations
Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W.
2016-01-01
Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures. PMID:26904094
Comparison of Acceleration Techniques for Selected Low-Level Bioinformatics Operations.
Langenkämper, Daniel; Jakobi, Tobias; Feld, Dustin; Jelonek, Lukas; Goesmann, Alexander; Nattkemper, Tim W
2016-01-01
Within the recent years clock rates of modern processors stagnated while the demand for computing power continued to grow. This applied particularly for the fields of life sciences and bioinformatics, where new technologies keep on creating rapidly growing piles of raw data with increasing speed. The number of cores per processor increased in an attempt to compensate for slight increments of clock rates. This technological shift demands changes in software development, especially in the field of high performance computing where parallelization techniques are gaining in importance due to the pressing issue of large sized datasets generated by e.g., modern genomics. This paper presents an overview of state-of-the-art manual and automatic acceleration techniques and lists some applications employing these in different areas of sequence informatics. Furthermore, we provide examples for automatic acceleration of two use cases to show typical problems and gains of transforming a serial application to a parallel one. The paper should aid the reader in deciding for a certain techniques for the problem at hand. We compare four different state-of-the-art automatic acceleration approaches (OpenMP, PluTo-SICA, PPCG, and OpenACC). Their performance as well as their applicability for selected use cases is discussed. While optimizations targeting the CPU worked better in the complex k-mer use case, optimizers for Graphics Processing Units (GPUs) performed better in the matrix multiplication example. But performance is only superior at a certain problem size due to data migration overhead. We show that automatic code parallelization is feasible with current compiler software and yields significant increases in execution speed. Automatic optimizers for CPU are mature and usually no additional manual adjustment is required. In contrast, some automatic parallelizers targeting GPUs still lack maturity and are limited to simple statements and structures.
A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images.
Du, Xiaogang; Dang, Jianwu; Wang, Yangping; Wang, Song; Lei, Tao
2016-01-01
The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU).
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2017-12-01
Parallel electrostatic electric fields provide a powerful mechanism to accelerate auroral particles to high energy in the auroral acceleration region (AAR), creating both quasi-static and Alfvenic discrete aurorae. The total field-aligned current can be written as J||total=J||+J||D, where the displacement current is denoted as J||D=(1/4π)(∂E||/∂t), which describes the E||-generation (Song and Lysak, 2006). The generation of the total field-aligned current is related to spatial gradients of the parallel vorticity caused by the axial torque acting on field-aligned flux tubes in M-I coupling system. It should be noticed that parallel electric fields are not produced by the field-aligned current. In fact, the E||-generation is caused by Alfvenic interaction in the M-I coupling system, and is favored by a low plasma density and the enhanced localized azimuthal magnetic flux. We suggest that the nonlinear interaction of incident and reflected Alfven wave packets in the AAR can create reactive stress concentration, and therefore can generate the parallel electrostatic electric fields together with a seed low density cavity. The generated electric fields will quickly deepen the seed low density cavity, which can effectively create even stronger electrostatic electric fields. The electrostatic electric fields nested in a low density cavity and surrounded by enhanced azimuthal magnetic flux constitute Alfvenic electromagnetic plasma structures, such as Alfvenic Double Layers (DLs). The Poynting flux carried by Alfven waves can continuously supply energy from the generator region to the auroral acceleration region, supporting and sustaining Alfvenic DLs with long-lasting electrostatic electric fields which accelerate auroral particles to high energy. The generation of parallel electric fields and the formation of auroral arcs can redistribute perpendicular mechanical and magnetic stresses in auroral flux tubes, decoupling the magnetosphere from ionosphere drag locally. This may enhance the magnetotail earthward shear flows and rapidly buildup stronger parallel electric fields in the auroral acceleration region, leading to a sudden and violent tail energy release, if there is accumulated free magnetic energy in the tail.
NASA Astrophysics Data System (ADS)
Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander
2017-04-01
Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the possibility to perform cross-validation at the level of some grouping structure. As an example, in remote sensing of agricultural land uses, pixels from the same field contain nearly identical information and will thus be jointly placed in either the test set or the training set. Other spatial sampling resampling strategies are already available and can be extended by the user.
MAGNETIC BRAIDING AND PARALLEL ELECTRIC FIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilmot-Smith, A. L.; Hornig, G.; Pontin, D. I.
2009-05-10
The braiding of the solar coronal magnetic field via photospheric motions-with subsequent relaxation and magnetic reconnection-is one of the most widely debated ideas of solar physics. We readdress the theory in light of developments in three-dimensional magnetic reconnection theory. It is known that the integrated parallel electric field along field lines is the key quantity determining the rate of reconnection, in contrast with the two-dimensional case where the electric field itself is the important quantity. We demonstrate that this difference becomes crucial for sufficiently complex magnetic field structures. A numerical method is used to relax a braided magnetic field towardmore » an ideal force-free equilibrium; the field is found to remain smooth throughout the relaxation, with only large-scale current structures. However, a highly filamentary integrated parallel current structure with extremely short length-scales is found in the field, with the associated gradients intensifying during the relaxation process. An analytical model is developed to show that, in a coronal situation, the length scales associated with the integrated parallel current structures will rapidly decrease with increasing complexity, or degree of braiding, of the magnetic field. Analysis shows the decrease in these length scales will, for any finite resistivity, eventually become inconsistent with the stability of the coronal field. Thus the inevitable consequence of the magnetic braiding process is a loss of equilibrium of the magnetic field, probably via magnetic reconnection events.« less
NASA Astrophysics Data System (ADS)
Tanatar, M. A.; Ishiguro, T.; Toita, T.; Yamada, J.
2005-01-01
Thermal conductivity κ of the organic superconductor β-(BDA-TTP)2SbF6 was studied down to 0.3 K in magnetic fields H of varying orientation with respect to the superconducting plane. Anomalous plateau shape of the field dependence, κ vs H , is found for orientation of magnetic fields precisely parallel to the plane, in contrast to usual behavior observed in the perpendicular fields. We show that the lack of magnetic-field effect on the heat conduction results from coreless structure of vortices, causing both negligible scattering of phonons and constant in field electronic conduction up to the fields close to the upper critical field Hc2 . Usual behavior is recovered on approaching Hc2 and on slight field inclination from parallel direction, when normal cores are restored. This behavior points to the lack of bulk quasiparticle excitations induced by magnetic field, consistent with the conventional superconducting state.
Modulated heat pulse propagation and partial transport barriers in chaotic magnetic fields
del-Castillo-Negrete, Diego; Blazevski, Daniel
2016-04-01
Direct numerical simulations of the time dependent parallel heat transport equation modeling heat pulses driven by power modulation in 3-dimensional chaotic magnetic fields are presented. The numerical method is based on the Fourier formulation of a Lagrangian-Green's function method that provides an accurate and efficient technique for the solution of the parallel heat transport equation in the presence of harmonic power modulation. The numerical results presented provide conclusive evidence that even in the absence of magnetic flux surfaces, chaotic magnetic field configurations with intermediate levels of stochasticity exhibit transport barriers to modulated heat pulse propagation. In particular, high-order islands and remnants of destroyed flux surfaces (Cantori) act as partial barriers that slow down or even stop the propagation of heat waves at places where the magnetic field connection length exhibits a strong gradient. The key parameter ismore » $$\\gamma=\\sqrt{\\omega/2 \\chi_\\parallel}$$ that determines the length scale, $$1/\\gamma$$, of the heat wave penetration along the magnetic field line. For large perturbation frequencies, $$\\omega \\gg 1$$, or small parallel thermal conductivities, $$\\chi_\\parallel \\ll 1$$, parallel heat transport is strongly damped and the magnetic field partial barriers act as robust barriers where the heat wave amplitude vanishes and its phase speed slows down to a halt. On the other hand, in the limit of small $$\\gamma$$, parallel heat transport is largely unimpeded, global transport is observed and the radial amplitude and phase speed of the heat wave remain finite. Results on modulated heat pulse propagation in fully stochastic fields and across magnetic islands are also presented. In qualitative agreement with recent experiments in LHD and DIII-D, it is shown that the elliptic (O) and hyperbolic (X) points of magnetic islands have a direct impact on the spatio-temporal dependence of the amplitude and the time delay of modulated heat pulses.« less
Parallelization and implementation of approximate root isolation for nonlinear system by Monte Carlo
NASA Astrophysics Data System (ADS)
Khosravi, Ebrahim
1998-12-01
This dissertation solves a fundamental problem of isolating the real roots of nonlinear systems of equations by Monte-Carlo that were published by Bush Jones. This algorithm requires only function values and can be applied readily to complicated systems of transcendental functions. The implementation of this sequential algorithm provides scientists with the means to utilize function analysis in mathematics or other fields of science. The algorithm, however, is so computationally intensive that the system is limited to a very small set of variables, and this will make it unfeasible for large systems of equations. Also a computational technique was needed for investigating a metrology of preventing the algorithm structure from converging to the same root along different paths of computation. The research provides techniques for improving the efficiency and correctness of the algorithm. The sequential algorithm for this technique was corrected and a parallel algorithm is presented. This parallel method has been formally analyzed and is compared with other known methods of root isolation. The effectiveness, efficiency, enhanced overall performance of the parallel processing of the program in comparison to sequential processing is discussed. The message passing model was used for this parallel processing, and it is presented and implemented on Intel/860 MIMD architecture. The parallel processing proposed in this research has been implemented in an ongoing high energy physics experiment: this algorithm has been used to track neutrinoes in a super K detector. This experiment is located in Japan, and data can be processed on-line or off-line locally or remotely.
Parallel workflow tools to facilitate human brain MRI post-processing
Cui, Zaixu; Zhao, Chenxi; Gong, Gaolang
2015-01-01
Multi-modal magnetic resonance imaging (MRI) techniques are widely applied in human brain studies. To obtain specific brain measures of interest from MRI datasets, a number of complex image post-processing steps are typically required. Parallel workflow tools have recently been developed, concatenating individual processing steps and enabling fully automated processing of raw MRI data to obtain the final results. These workflow tools are also designed to make optimal use of available computational resources and to support the parallel processing of different subjects or of independent processing steps for a single subject. Automated, parallel MRI post-processing tools can greatly facilitate relevant brain investigations and are being increasingly applied. In this review, we briefly summarize these parallel workflow tools and discuss relevant issues. PMID:26029043
A compositional reservoir simulator on distributed memory parallel computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rame, M.; Delshad, M.
1995-12-31
This paper presents the application of distributed memory parallel computes to field scale reservoir simulations using a parallel version of UTCHEM, The University of Texas Chemical Flooding Simulator. The model is a general purpose highly vectorized chemical compositional simulator that can simulate a wide range of displacement processes at both field and laboratory scales. The original simulator was modified to run on both distributed memory parallel machines (Intel iPSC/960 and Delta, Connection Machine 5, Kendall Square 1 and 2, and CRAY T3D) and a cluster of workstations. A domain decomposition approach has been taken towards parallelization of the code. Amore » portion of the discrete reservoir model is assigned to each processor by a set-up routine that attempts a data layout as even as possible from the load-balance standpoint. Each of these subdomains is extended so that data can be shared between adjacent processors for stencil computation. The added routines that make parallel execution possible are written in a modular fashion that makes the porting to new parallel platforms straight forward. Results of the distributed memory computing performance of Parallel simulator are presented for field scale applications such as tracer flood and polymer flood. A comparison of the wall-clock times for same problems on a vector supercomputer is also presented.« less
NASA Astrophysics Data System (ADS)
Batrudinov, Timur M.; Ambarov, Alexander V.; Elfimova, Ekaterina A.; Zverev, Vladimir S.; Ivanov, Alexey O.
2017-06-01
The dynamic magnetic response of ferrofluid in a static uniform external magnetic field to a weak, linear polarized, alternating magnetic field is investigated theoretically. The ferrofluid is modeled as a system of dipolar hard spheres, suspended in a long cylindrical tube whose long axis is parallel to the direction of the static and alternating magnetic fields. The theory is based on the Fokker-Planck-Brown equation formulated for the case when the both static and alternating magnetic fields are applied. The solution of the Fokker-Planck-Brown equation describing the orientational probability density of a randomly chosen dipolar particle is expressed as a series in terms of the spherical Legendre polynomials. The obtained analytical expression connecting three neighboring coefficients of the series makes possible to determine the probability density with any order of accuracy in terms of Legendre polynomials. The analytical formula for the probability density truncated at the first Legendre polynomial is evaluated and used for the calculation of the magnetization and dynamic susceptibility spectra. In the absence of the static magnetic field the presented theory gives the correct single-particle Debye-theory result, which is the exact solution of the Fokker-Planck-Brown equation for the case of applied weak alternating magnetic field. The influence of the static magnetic field on the dynamic susceptibility is analyzed in terms of the low-frequency behavior of the real part and the position of the peak in the imaginary part.
MAGNETIC FIELD OF THE VELA C MOLECULAR CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusune, Takayoshi; Sugitani, Koji; Nakamura, Fumitaka
We have performed extensive near-infrared ( JHK {sub s}) imaging polarimetry toward the Vela C molecular cloud, which covers the five high-density sub-regions (North, Centre-Ridge, Centre-Nest, South-Ridge, and South-Nest) with distinct morphological characteristics. The obtained polarization vector map shows that three of these sub-regions have distinct plane-of-the-sky (POS) magnetic-field characteristics according to the morphological characteristics. (1) In the Centre-Ridge sub-region, a dominating ridge, the POS magnetic field is mostly perpendicular to the ridge. (2) In the Centre-Nest sub-region, a structure having a slightly extended nest of filaments, the POS magnetic field is nearly parallel to its global elongation. (3) Inmore » the South-Nest sub-region, which has a network of small filaments, the POS magnetic field appears to be chaotic. By applying the Chandrasekhar–Fermi method, we derived the POS magnetic field strength as ∼70–310 μ G in the Centre-Ridge, Centre-Nest, and South-Ridge sub-regions. In the South-Nest sub-region, the dispersion of polarization angles is too large to apply the C-F method. Because the velocity dispersion in this sub-region is not greater than those in the other sub-regions, we suggest that the magnetic field in this sub-region is weaker than those in other sub-regions. We also discuss the relationship between the POS magnetic field (configuration and strength) and the cloud structure of each sub-region.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Gao, Jia-Hong
Purpose: To investigate whether the direction of spin-lock field, either parallel or antiparallel to the rotating magnetization, has any effect on the spin-lock MRI signal and further on the quantitative measurement of T1ρ, in a clinical 3 T MRI system. Methods: The effects of inverted spin-lock field direction were investigated by acquiring a series of spin-lock MRI signals for an American College of Radiology MRI phantom, while the spin-lock field direction was switched between the parallel and antiparallel directions. The acquisition was performed for different spin-locking methods (i.e., for the single- and dual-field spin-locking methods) and for different levels ofmore » clinically feasible spin-lock field strength, ranging from 100 to 500 Hz, while the spin-lock duration was varied in the range from 0 to 100 ms. Results: When the spin-lock field was inverted into the antiparallel direction, the rate of MRI signal decay was altered and the T1ρ value, when compared to the value for the parallel field, was clearly different. Different degrees of such direction-dependency were observed for different spin-lock field strengths. In addition, the dependency was much smaller when the parallel and the antiparallel fields are mixed together in the dual-field method. Conclusions: The spin-lock field direction could impact the MRI signal and further the T1ρ measurement in a clinical MRI system.« less
Applying Parallel Processing Techniques to Tether Dynamics Simulation
NASA Technical Reports Server (NTRS)
Wells, B. Earl
1996-01-01
The focus of this research has been to determine the effectiveness of applying parallel processing techniques to a sizable real-world problem, the simulation of the dynamics associated with a tether which connects two objects in low earth orbit, and to explore the degree to which the parallelization process can be automated through the creation of new software tools. The goal has been to utilize this specific application problem as a base to develop more generally applicable techniques.
A Green's function method for local and non-local parallel transport in general magnetic fields
NASA Astrophysics Data System (ADS)
Del-Castillo-Negrete, Diego; Chacón, Luis
2009-11-01
The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), χ, and the perpendicular, χ, conductivities (χ/χ may exceed 10^10 in fusion plasmas); (ii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates; and (iii) Nonlocal parallel transport in the limit of small collisionality. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields. The numerical implementation employs a volume-preserving field-line integrator [Finn and Chac'on, Phys. Plasmas, 12 (2005)] for an accurate representation of the magnetic field lines regardless of the level of stochasticity. The general formalism and its algorithmic properties are discussed along with illustrative analytical and numerical examples. Problems of particular interest include: the departures from the Rochester--Rosenbluth diffusive scaling in the weak magnetic chaos regime, the interplay between non-locality and chaos, and the robustness of transport barriers in reverse shear configurations.
Deionization and desalination using electrostatic ion pumping
Bourcier, William L.; Aines, Roger D.; Haslam, Jeffery J.; Schaldach, Charlene M.; O& #x27; Brien, Kevin C.; Cussler, Edward
2013-06-11
The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.
High rate fabrication of compression molded components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsen, Marc R.; Negley, Mark A.; Dykstra, William C.
2016-04-19
A method for fabricating a thermoplastic composite component comprises inductively heating a thermoplastic pre-form with a first induction coil by inducing current to flow in susceptor wires disposed throughout the pre-form, inductively heating smart susceptors in a molding tool to a leveling temperature with a second induction coil by applying a high-strength magnetic field having a magnetic flux that passes through surfaces of the smart susceptors, shaping the magnetic flux that passes through surfaces of the smart susceptors to flow substantially parallel to a molding surface of the smart susceptors, placing the heated pre-form between the heated smart susceptors; andmore » applying molding pressure to the pre-form to form the composite component.« less
Deionization and desalination using electrostatic ion pumping
Bourcier, William L [Livermore, CA; Aines, Roger D [Livermore, CA; Haslam, Jeffery J [Livermore, CA; Schaldach, Charlene M [Pleasanton, CA; O'Brien, Kevin C [San Ramon, CA; Cussler, Edward [Edina, MN
2011-07-19
The present invention provides a new method and apparatus/system for purifying ionic solutions, such as, for example, desalinating water, using engineered charged surfaces to sorb ions from such solutions. Surface charge is applied externally, and is synchronized with oscillatory fluid movements between substantially parallel charged plates. Ions are held in place during fluid movement in one direction (because they are held in the electrical double layer), and released for transport during fluid movement in the opposite direction by removing the applied electric field. In this way the ions, such as salt, are "ratcheted" across the charged surface from the feed side to the concentrate side. The process itself is very simple and involves only pumps, charged surfaces, and manifolds for fluid collection.
Modeling Magnetic Properties in EZTB
NASA Technical Reports Server (NTRS)
Lee, Seungwon; vonAllmen, Paul
2007-01-01
A software module that calculates magnetic properties of a semiconducting material has been written for incorporation into, and execution within, the Easy (Modular) Tight-Binding (EZTB) software infrastructure. [EZTB is designed to model the electronic structures of semiconductor devices ranging from bulk semiconductors, to quantum wells, quantum wires, and quantum dots. EZTB implements an empirical tight-binding mathematical model of the underlying physics.] This module can model the effect of a magnetic field applied along any direction and does not require any adjustment of model parameters. The module has thus far been applied to study the performances of silicon-based quantum computers in the presence of magnetic fields and of miscut angles in quantum wells. The module is expected to assist experimentalists in fabricating a spin qubit in a Si/SiGe quantum dot. This software can be executed in almost any Unix operating system, utilizes parallel computing, can be run as a Web-portal application program. The module has been validated by comparison of its predictions with experimental data available in the literature.
What Physicists Should Know About High Performance Computing - Circa 2002
NASA Astrophysics Data System (ADS)
Frederick, Donald
2002-08-01
High Performance Computing (HPC) is a dynamic, cross-disciplinary field that traditionally has involved applied mathematicians, computer scientists, and others primarily from the various disciplines that have been major users of HPC resources - physics, chemistry, engineering, with increasing use by those in the life sciences. There is a technological dynamic that is powered by economic as well as by technical innovations and developments. This talk will discuss practical ideas to be considered when developing numerical applications for research purposes. Even with the rapid pace of development in the field, the author believes that these concepts will not become obsolete for a while, and will be of use to scientists who either are considering, or who have already started down the HPC path. These principles will be applied in particular to current parallel HPC systems, but there will also be references of value to desktop users. The talk will cover such topics as: computing hardware basics, single-cpu optimization, compilers, timing, numerical libraries, debugging and profiling tools and the emergence of Computational Grids.
Sigmoidal equilibria and eruptive instabilities in laboratory magnetic flux ropes
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.
2013-12-01
The Magnetic Reconnection Experiment (MRX) has recently been modified to study quasi-statically driven line-tied magnetic flux ropes in the context of storage-and-release eruptions in the corona. Detailed in situ magnetic measurements and supporting MHD simulations permit quantitative analysis of the plasma behavior. We find that the behavior of these flux ropes depends strongly on the properties of the applied potential magnetic field arcade. For example, when the arcade is aligned parallel to the flux rope footpoints, force free currents induced in the expanding rope modify the pressure and tension in the arcade, resulting in a confined, quiescent discharge with a saturated kink instability. When the arcade is obliquely aligned to the footpoints, on the other hand, a highly sigmoidal equilibrium forms that can dynamically erupt (see Fig. 1 and Fig. 2). To our knowledge, these storage-and-release eruptions are the first of their kind to be produced in the laboratory. A new 2D magnetic probe array is used to map out the internal structure of the flux ropes during both the storage and the release phases of the discharge. The kink instability and the torus instability are studied as candidate eruptive mechanisms--the latter by varying the vertical gradient of the potential field arcade. We also investigate magnetic reconnection events that accompany the eruptions. The long-term objective of this work is to use internal magnetic measurements of the flux rope structure to better understand the evolution and eruption of comparable structures in the corona. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the Center for Magnetic Self-Organization (CMSO). Qualitative sketches of flux ropes formed in (1) a parallel potential field arcade; and (2) an oblique potential field arcade. One-dimensional magnetic measurements from (1) a parallel arcade discharge that is confined; and (2) an oblique arcade discharge that erupts.
Synchronization Design and Error Analysis of Near-Infrared Cameras in Surgical Navigation.
Cai, Ken; Yang, Rongqian; Chen, Huazhou; Huang, Yizhou; Wen, Xiaoyan; Huang, Wenhua; Ou, Shanxing
2016-01-01
The accuracy of optical tracking systems is important to scientists. With the improvements reported in this regard, such systems have been applied to an increasing number of operations. To enhance the accuracy of these systems further and to reduce the effect of synchronization and visual field errors, this study introduces a field-programmable gate array (FPGA)-based synchronization control method, a method for measuring synchronous errors, and an error distribution map in field of view. Synchronization control maximizes the parallel processing capability of FPGA, and synchronous error measurement can effectively detect the errors caused by synchronization in an optical tracking system. The distribution of positioning errors can be detected in field of view through the aforementioned error distribution map. Therefore, doctors can perform surgeries in areas with few positioning errors, and the accuracy of optical tracking systems is considerably improved. The system is analyzed and validated in this study through experiments that involve the proposed methods, which can eliminate positioning errors attributed to asynchronous cameras and different fields of view.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid.
Dennis, C L; Jackson, A J; Borchers, J A; Gruettner, C; Ivkov, R
2018-05-25
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid
NASA Astrophysics Data System (ADS)
Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.
2018-05-01
We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.
Mirror force induced wave dispersion in Alfvén waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damiano, P. A.; Johnson, J. R.
2013-06-15
Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less
Thin film memory matrix using amorphous and high resistive layers
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P. (Inventor); Lambe, John (Inventor); Moopen, Alexander (Inventor)
1989-01-01
Memory cells in a matrix are provided by a thin film of amorphous semiconductor material overlayed by a thin film of resistive material. An array of parallel conductors on one side perpendicular to an array of parallel conductors on the other side enable the amorphous semiconductor material to be switched in addressed areas to be switched from a high resistance state to a low resistance state with a predetermined level of electrical energy applied through selected conductors, and thereafter to be read out with a lower level of electrical energy. Each cell may be fabricated in the channel of an MIS field-effect transistor with a separate common gate over each section to enable the memory matrix to be selectively blanked in sections during storing or reading out of data. This allows for time sharing of addressing circuitry for storing and reading out data in a synaptic network, which may be under control of a microprocessor.
Quantum realization of the bilinear interpolation method for NEQR.
Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Ian, Hou
2017-05-31
In recent years, quantum image processing is one of the most active fields in quantum computation and quantum information. Image scaling as a kind of image geometric transformation has been widely studied and applied in the classical image processing, however, the quantum version of which does not exist. This paper is concerned with the feasibility of the classical bilinear interpolation based on novel enhanced quantum image representation (NEQR). Firstly, the feasibility of the bilinear interpolation for NEQR is proven. Then the concrete quantum circuits of the bilinear interpolation including scaling up and scaling down for NEQR are given by using the multiply Control-Not operation, special adding one operation, the reverse parallel adder, parallel subtractor, multiplier and division operations. Finally, the complexity analysis of the quantum network circuit based on the basic quantum gates is deduced. Simulation result shows that the scaled-up image using bilinear interpolation is clearer and less distorted than nearest interpolation.
Vectoring of parallel synthetic jets
NASA Astrophysics Data System (ADS)
Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume
2015-11-01
A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).
Clement, Marta; Olivares, Jimena; Capilla, Jose; Sangrador, Jesús; Iborra, Enrique
2012-01-01
We investigate the excitation and propagation of acoustic waves in polycrystalline aluminum nitride films along the directions parallel and normal to the c-axis. Longitudinal and transverse propagations are assessed through the frequency response of surface acoustic wave and bulk acoustic wave devices fabricated on films of different crystal qualities. The crystalline properties significantly affect the electromechanical coupling factors and acoustic properties of the piezoelectric layers. The presence of misoriented grains produces an overall decrease of the piezoelectric activity, degrading more severely the excitation and propagation of waves traveling transversally to the c-axis. It is suggested that the presence of such crystalline defects in c-axis-oriented films reduces the mechanical coherence between grains and hinders the transverse deformation of the film when the electric field is applied parallel to the surface. © 2012 IEEE
Note: optical receiver system for 152-channel magnetoencephalography.
Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong
2014-11-01
An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.
Ion streaming instabilities with application to collisionless shock wave structure
NASA Technical Reports Server (NTRS)
Golden, K. I.; Linson, L. M.; Mani, S. A.
1973-01-01
The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griebel, M., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de; Rüttgers, A., E-mail: griebel@ins.uni-bonn.de, E-mail: ruettgers@ins.uni-bonn.de
The multiscale FENE model is applied to a 3D square-square contraction flow problem. For this purpose, the stochastic Brownian configuration field method (BCF) has been coupled with our fully parallelized three-dimensional Navier-Stokes solver NaSt3DGPF. The robustness of the BCF method enables the numerical simulation of high Deborah number flows for which most macroscopic methods suffer from stability issues. The results of our simulations are compared with that of experimental measurements from literature and show a very good agreement. In particular, flow phenomena such as a strong vortex enhancement, streamline divergence and a flow inversion for highly elastic flows are reproduced.more » Due to their computational complexity, our simulations require massively parallel computations. Using a domain decomposition approach with MPI, the implementation achieves excellent scale-up results for up to 128 processors.« less
Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides
NASA Astrophysics Data System (ADS)
Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.
2017-12-01
An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.
An electrostatic elliptical mirror for neutral polar molecules.
González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard
2011-11-14
Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.
Application specific serial arithmetic arrays
NASA Technical Reports Server (NTRS)
Winters, K.; Mathews, D.; Thompson, T.
1990-01-01
High performance systolic arrays of serial-parallel multiplier elements may be rapidly constructed for specific applications by applying hardware description language techniques to a library of full-custom CMOS building blocks. Single clock pre-charged circuits have been implemented for these arrays at clock rates in excess of 100 Mhz using economical 2-micron (minimum feature size) CMOS processes, which may be quickly configured for a variety of applications. A number of application-specific arrays are presented, including a 2-D convolver for image processing, an integer polynomial solver, and a finite-field polynomial solver.
Acoustic 3D modeling by the method of integral equations
NASA Astrophysics Data System (ADS)
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.; Milovich, J.
1994-07-01
The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyrokinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel three-dimensional (3-D) nonlinear ballooning mode representation. The representation is a Fourier transform of a field line following basis (ky',kx',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky' = 0, kx' ≠ 0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes. Detailing the parametric dependence of toroidal ITG turbulence is a key result.
NASA Astrophysics Data System (ADS)
Waltz, R. E.; Kerbel, G. D.
1994-05-01
The method of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] to model Landau damping has been recently applied to the moments of the gyro-kinetic equation with curvature drift by Waltz, Dominguez, and Hammett [Phys. Fluids B 4, 3138 (1992)]. The higher moments are truncated in terms of the lower moments (density, parallel velocity, and parallel and perpendicular pressure) by modeling the deviation from a perturbed Maxwellian to fit the kinetic response function at all values of the kinetic parameters: k∥vth/ω, b=(k⊥ρ)2/2, and ωD/ω. Here the resulting gyro-Landau fluid equations are applied to the simulation of ion temperature gradient (ITG) mode turbulence in toroidal geometry using a novel 3D nonlinear ballooning mode representation. The representation is a Fourier transform of the Cowley et al. [Phys. Fluids B 3, 2767 (1991)] field line following twisted eddy basis (kx',ky',z') with periodicity in toroidal and poloidal angles. Particular emphasis is given to the role of nonlinearly generated n=0 (ky'=0, kx'≠0) ``radial modes'' in stabilizing the transport from the finite-n ITG ballooning modes.
Parallel closure theory for toroidally confined plasmas
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.
2017-10-01
We solve a system of general moment equations to obtain parallel closures for electrons and ions in an axisymmetric toroidal magnetic field. Magnetic field gradient terms are kept and treated using the Fourier series method. Assuming lowest order density (pressure) and temperature to be flux labels, the parallel heat flow, friction, and viscosity are expressed in terms of radial gradients of the lowest-order temperature and pressure, parallel gradients of temperature and parallel flow, and the relative electron-ion parallel flow velocity. Convergence of closure quantities is demonstrated as the number of moments and Fourier modes are increased. Properties of the moment equations in the collisionless limit are also discussed. Combining closures with fluid equations parallel mass flow and electric current are also obtained. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.
Osborn, Sarah; Zulian, Patrick; Benson, Thomas; ...
2018-01-30
This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, Sarah; Zulian, Patrick; Benson, Thomas
This work describes a domain embedding technique between two nonmatching meshes used for generating realizations of spatially correlated random fields with applications to large-scale sampling-based uncertainty quantification. The goal is to apply the multilevel Monte Carlo (MLMC) method for the quantification of output uncertainties of PDEs with random input coefficients on general and unstructured computational domains. We propose a highly scalable, hierarchical sampling method to generate realizations of a Gaussian random field on a given unstructured mesh by solving a reaction–diffusion PDE with a stochastic right-hand side. The stochastic PDE is discretized using the mixed finite element method on anmore » embedded domain with a structured mesh, and then, the solution is projected onto the unstructured mesh. This work describes implementation details on how to efficiently transfer data from the structured and unstructured meshes at coarse levels, assuming that this can be done efficiently on the finest level. We investigate the efficiency and parallel scalability of the technique for the scalable generation of Gaussian random fields in three dimensions. An application of the MLMC method is presented for quantifying uncertainties of subsurface flow problems. Here, we demonstrate the scalability of the sampling method with nonmatching mesh embedding, coupled with a parallel forward model problem solver, for large-scale 3D MLMC simulations with up to 1.9·109 unknowns.« less
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; Shafer, M. W.; Seal, S. K.; Canik, J. M.
2016-04-01
> The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces) of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.
Magnetization of La2-xSrxNiO4+δ (0⩽x⩽0.5) : Spin-glass and memory effects
NASA Astrophysics Data System (ADS)
Freeman, P. G.; Boothroyd, A. T.; Prabhakaran, D.; Lorenzana, J.
2006-01-01
We have studied the magnetization of a series of spin-charge-ordered La2-xSrxNiO4+δ single crystals with 0⩽x⩽0.5 . For fields applied parallel to the ab plane there is a large irreversibility below a temperature TF1˜50K and a smaller irreversibility that persists up to near the charge-ordering temperature. We observed memory effects in the thermoremnant magnetization across the entire doping range. We found that these materials retain a memory of the temperature at which an external field was removed and that there is a pronounced increase in the thermoremnant magnetization when the system is warmed through a spin reorientation transition.
Parallel pivoting combined with parallel reduction
NASA Technical Reports Server (NTRS)
Alaghband, Gita
1987-01-01
Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds.
NASA Astrophysics Data System (ADS)
Shaik, F. Azam; Cathcart, G.; Ihida, S.; Lereau-Bernier, M.; Leclerc, E.; Sakai, Y.; Toshiyoshi, H.; Tixier-Mita, A.
2017-05-01
In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis.
NASA Astrophysics Data System (ADS)
Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia
2010-09-01
A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R.
2011-02-17
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail on two nonlinear effective resistivities for flux cutting ({rho}{parallel}) and flux flow ({rho}{perpendicular}), and their ratio r = {rho}{parallel}/{rho}{perpendicular}. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magneticmore » moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle {phi}. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J{sub c}({phi}) that makes the vortex arc unstable.« less
Distributed memory parallel Markov random fields using graph partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, C.; Perciano, T.; Ushizima, D.
Markov random fields (MRF) based algorithms have attracted a large amount of interest in image analysis due to their ability to exploit contextual information about data. Image data generated by experimental facilities, though, continues to grow larger and more complex, making it more difficult to analyze in a reasonable amount of time. Applying image processing algorithms to large datasets requires alternative approaches to circumvent performance problems. Aiming to provide scientists with a new tool to recover valuable information from such datasets, we developed a general purpose distributed memory parallel MRF-based image analysis framework (MPI-PMRF). MPI-PMRF overcomes performance and memory limitationsmore » by distributing data and computations across processors. The proposed approach was successfully tested with synthetic and experimental datasets. Additionally, the performance of the MPI-PMRF framework is analyzed through a detailed scalability study. We show that a performance increase is obtained while maintaining an accuracy of the segmentation results higher than 98%. The contributions of this paper are: (a) development of a distributed memory MRF framework; (b) measurement of the performance increase of the proposed approach; (c) verification of segmentation accuracy in both synthetic and experimental, real-world datasets« less
Magnetohydrodynamics with GAMER
NASA Astrophysics Data System (ADS)
Zhang, Ui-Han; Schive, Hsi-Yu; Chiueh, Tzihong
2018-06-01
GAMER, a parallel Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement (AMR) hydrodynamic code, has been extended to support magnetohydrodynamics (MHD) with both the corner-transport-upwind and MUSCL-Hancock schemes and the constraint transport technique. The divergent preserving operator for AMR has been applied to reinforce the divergence-free constraint on the magnetic field. GAMER-MHD has fully exploited the concurrent executions between the graphic process unit (GPU) MHD solver and other central processing unit computation pertinent to AMR. We perform various standard tests to demonstrate that GAMER-MHD is both second-order accurate and robust, producing results as accurate as those given by high-resolution uniform-grid runs. We also explore a new 3D MHD test, where the magnetic field assumes the Arnold–Beltrami–Childress configuration, temporarily becomes turbulent with current sheets, and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance reaches 1.2 × 108 and 5.5 × 107 cell updates per second for the single- and double-precision calculations, respectively, on Tesla P100. We also demonstrate a parallel efficiency of ∼70% for both weak and strong scaling using 1024 XK nodes on the Blue Waters supercomputers.
Rodriguez-Valadez, Francisco; Ortiz-Exiga, Carlos; Ibanez, Jorge G; Alatorre-Ordaz, Alejandro; Gutierrez-Granados, Silvia
2005-03-15
The reduction of Cr(VI) to Cr(III) is achieved in a flow-by, parallel-plate reactor equipped with reticulated vitreous carbon (RVC) electrodes;this reduction can be accomplished by the application of relatively small potentials. Treatment of synthetic samples and field samples (from an electrodeposition plant) results in final Cr(VI) concentrations of 0.1 mg/L (i.e., the detection limit of the UV-vis characterization technique used here) in 25 and 43 min, respectively. Such concentrations comply with typical environmental legislation for wastewaters that regulate industrial effluents (at presenttime = 0.5 mg/L for discharges). The results show the influence of the applied potential, pH, electrode porosity, volumetric flow, and solution concentration on the Cr(VI) reduction percentage and on the required electrolysis time. Values for the mass transfer coefficient and current efficiencies are also obtained. Although current efficiencies are not high, the fast kinetics observed make this proposed treatment an appealing alternative. The lower current efficiency obtained in the case of a field sample is attributed to electrochemical activation of impurities. The required times for the reduction of Cr(VI) are significantly lower than those reported elsewhere.
NASA Astrophysics Data System (ADS)
Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.
2014-12-01
We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic inversions we examine the importance of including the topography in the inversion and we test different regularization schemes using weighted second norm of model gradient as well as inverting for a static distortion matrix following Miensopust/Avdeeva approach. We also apply our algorithm to invert MT data collected at Mt St Helens.
Lam, Christopher O; Finlay, W H
2009-10-01
Fiber aerosols tend to align parallel to surrounding fluid streamlines in shear flows, making their filtration more difficult. However, previous research indicates that composite particles made from cromoglycic acid fibers coated with small nanoscaled magnetite particles can align with an applied magnetic field. The present research explored the effect of magnetically aligning these fibers to increase their filtration. Nylon net filters were challenged with the aerosol fibers, and efficiency tests were performed with and without a magnetic field applied perpendicular to the flow direction. We investigated the effects of varying face velocities, the amount of magnetite material on the aerosol particles, and magnetic field strengths. Findings from the experiments, matched by supporting single-fiber theories, showed significant efficiency increases at the low face velocity of 1.5 cm s(-1) at all magnetite compositions, with efficiencies more than doubling due to magnetic field alignment in certain cases. At a higher face velocity of 5.12 cm s(-1), filtration efficiencies were less affected by the magnetic field alignment being, at most, 43% higher for magnetite weight compositions up to 30%, while at a face velocity of 10.23 cm s(-1) alignment effects were insignificant. In most cases, efficiencies became independent of magnetic field strength above 50 mT, suggesting full alignment of the fibers. The present data suggest that fiber alignment in a magnetic field may warrant applications in the filtration and detection of fibers, such as asbestos.
NASA Astrophysics Data System (ADS)
Jiang, Zhenan; Zhou, Wei; Li, Quan; Yao, Min; Fang, Jin; Amemiya, Naoyuki; Bumby, Chris W.
2018-07-01
Dynamic resistance, which occurs when a HTS coated conductor carries a DC current under an AC magnetic field, can have critical implications for the design of HTS machines. Here, we report measurements of dynamic resistance in a commercially available SuperPower 4 mm-wide YBCO coated conductor, carrying a DC current under an applied AC magnetic field of arbitrary orientation. The reduced DC current, I t/I c0, ranged from 0.01 to 0.9, where I t is the DC current level and I c0 is the self-field critical current of the conductor. The field angle (the angle between the magnetic field and the normal vector of the conductor wide-face) was varied between 0° and 90° at intervals of 10°. We show that the effective width of the conductor under study is ˜12% less than the physical wire width, and we attribute this difference to edge damage of the wire during or after manufacture. We then examine the measured dynamic resistance of this wire under perpendicular applied fields at very low DC current levels. In this regime we find that the threshold field, B th, of the conductor is well described by the nonlinear equation of Mikitik and Brandt. However, this model consistently underestimates the threshold field at higher current levels. As such, the dynamic resistance in a coated conductor under perpendicular magnetic fields is best described using two different equations for each of the low and high DC current regimes, respectively. At low DC currents where I t/I c0 ≤ 0.1, the nonlinear relationship of Mikitik and Brandt provides the closest agreement with experimental data. However, in the higher current regime where I t/I c0 ≥ 0.2, closer agreement is obtained using a simple linear expression which assumes a current-independent penetration field. We further show that for the conductor studied here, the measured dynamic resistance at different field angles is dominated by the perpendicular magnetic field component, with negligible contribution from the parallel component. Our findings now enable the dynamic resistance of a single conductor to be analytically determined for a very wide range of DC currents and at all applied field angles.
Parallel Implicit Runge-Kutta Methods Applied to Coupled Orbit/Attitude Propagation
NASA Astrophysics Data System (ADS)
Hatten, Noble; Russell, Ryan P.
2017-12-01
A variable-step Gauss-Legendre implicit Runge-Kutta (GLIRK) propagator is applied to coupled orbit/attitude propagation. Concepts previously shown to improve efficiency in 3DOF propagation are modified and extended to the 6DOF problem, including the use of variable-fidelity dynamics models. The impact of computing the stage dynamics of a single step in parallel is examined using up to 23 threads and 22 associated GLIRK stages; one thread is reserved for an extra dynamics function evaluation used in the estimation of the local truncation error. Efficiency is found to peak for typical examples when using approximately 8 to 12 stages for both serial and parallel implementations. Accuracy and efficiency compare favorably to explicit Runge-Kutta and linear-multistep solvers for representative scenarios. However, linear-multistep methods are found to be more efficient for some applications, particularly in a serial computing environment, or when parallelism can be applied across multiple trajectories.
On the consequences of bi-Maxwellian plasma distributions for parallel electric fields
NASA Technical Reports Server (NTRS)
Olsen, Richard C.
1992-01-01
The objective is to use the measurements of the equatorial particle distributions to obtain the parallel electric field structure and the evolution of the plasma distribution function along the field line. Appropriate uses of kinetic theory allows us to use the measured ( and inferred) particle distributions to obtain the electric field, and hence the variation on plasma density along the magnetic field line. The approach, here, is to utilize the adiabatic invariants, and assume the plasma distributions are in equilibrium.
NASA Astrophysics Data System (ADS)
Zhang, J.-Z.; Galbraith, I.
2008-05-01
Using perturbation theory, intraband magneto-optical absorption is calculated for InAs/GaAs truncated pyramidal quantum dots in a magnetic field applied parallel to the growth direction z . The effects of the magnetic field on the electronic states as well as the intraband transitions are systematically studied. Selection rules governing the intraband transitions are discussed based on the symmetry properties of the electronic states. While the broadband z -polarized absorption is almost insensitive to the magnetic field, the orbital Zeeman splitting is the dominant feature in the in-plane polarized spectrum. Strong in-plane polarized magneto-absorption features are located in the far-infrared region, while z -polarized absorption occurs at higher frequencies. This is due to the dot geometry (the base length is much larger than the height) yielding different quantum confinement in the vertical and lateral directions. The Thomas-Reiche-Kuhn sum rule, including the magnetic field effect, is applied together with the selection rules to the absorption spectra. The orbital Zeeman splitting depends on both the dot size and the confining potential—the splitting decreases as the dot size or the confining potential decreases. Our calculated Zeeman splittings are in agreement with experimental data.
Electric field stabilization of viscous liquid layers coating the underside of a surface
NASA Astrophysics Data System (ADS)
Anderson, Thomas G.; Cimpeanu, Radu; Papageorgiou, Demetrios T.; Petropoulos, Peter G.
2017-05-01
We investigate the electrostatic stabilization of a viscous thin film wetting the underside of a horizontal surface in the presence of an electric field applied parallel to the surface. The model includes the effect of bounding solid dielectric regions above and below the liquid-air system that are typically found in experiments. The competition between gravitational forces, surface tension, and the nonlocal effect of the applied electric field is captured analytically in the form of a nonlinear evolution equation. A semispectral solution strategy is employed to resolve the dynamics of the resulting partial differential equation. Furthermore, we conduct direct numerical simulations (DNS) of the Navier-Stokes equations using the volume-of-fluid methodology and assess the accuracy of the obtained solutions in the long-wave (thin-film) regime when varying the electric field strength from zero up to the point when complete stabilization occurs. We employ DNS to examine the limitations of the asymptotically derived behavior as the liquid layer thickness increases and find excellent agreement even beyond the regime of strict applicability of the asymptotic solution. Finally, the asymptotic and computational approaches are utilized to identify robust and efficient active control mechanisms allowing the manipulation of the fluid interface in light of engineering applications at small scales, such as mixing.
Simulations of relativistic quantum plasmas using real-time lattice scalar QED
NASA Astrophysics Data System (ADS)
Shi, Yuan; Xiao, Jianyuan; Qin, Hong; Fisch, Nathaniel J.
2018-05-01
Real-time lattice quantum electrodynamics (QED) provides a unique tool for simulating plasmas in the strong-field regime, where collective plasma scales are not well separated from relativistic-quantum scales. As a toy model, we study scalar QED, which describes self-consistent interactions between charged bosons and electromagnetic fields. To solve this model on a computer, we first discretize the scalar-QED action on a lattice, in a way that respects geometric structures of exterior calculus and U(1)-gauge symmetry. The lattice scalar QED can then be solved, in the classical-statistics regime, by advancing an ensemble of statistically equivalent initial conditions in time, using classical field equations obtained by extremizing the discrete action. To demonstrate the capability of our numerical scheme, we apply it to two example problems. The first example is the propagation of linear waves, where we recover analytic wave dispersion relations using numerical spectrum. The second example is an intense laser interacting with a one-dimensional plasma slab, where we demonstrate natural transition from wakefield acceleration to pair production when the wave amplitude exceeds the Schwinger threshold. Our real-time lattice scheme is fully explicit and respects local conservation laws, making it reliable for long-time dynamics. The algorithm is readily parallelized using domain decomposition, and the ensemble may be computed using quantum parallelism in the future.
Implementation Science for the Environment.
Hering, Janet G
2018-05-15
The establishment of the field of implementation science was motivated by the understanding that medical and health research alone is insufficient to generate better health outcomes. With strong support from funding agencies for medical research, implementation science promotes the application of a structured framework or model in the implementation of research-based results, specifically evidence-based practices (EBPs). Furthermore, explicit consideration is given to the context of EBP implementation (i.e., socio-economic, political, cultural, and institutional factors that could affect the implementation process). Finally, implementation is monitored in a robust and rigorous way. Today, the field of implementation science supports conferences and professional societies as well as one dedicated journal and numerous others with related content. The goal of these various activities is to reduce the estimated, average "bench to bedside" time lag of 17 years for uptake of EBPs from health research into routine practice. Despite similar time lags and impediments to uptake in the environmental domain, a parallel field of implementation science for the environment has not (yet) emerged. Although some parallels in needs and opportunities can easily be drawn between the health and environmental domains, a detailed mapping exercise is needed to understand which aspects of implementation science could be applied in the environmental domain either directly or in a modified form. This would allow an accelerated development of implementation science for the environment.
Competition of Perpendicular and Parallel Flows in a Straight Magnetic Field
NASA Astrophysics Data System (ADS)
Li, Jiacong; Diamond, Patrick; Hong, Rongjie; Tynan, George
2017-10-01
In tokamaks, intrinsic rotations in both toroidal and poloidal directions are important for the stability and confinement. Since they compete for energy from background turbulence, the coupling of them is the key to understanding the physics of turbulent state and transport bifurcations, e.g. L-H transition. V⊥ can affect the parallel Reynolds stress via cross phase and energetics, and thus regulates the parallel flow generation. In return, the turbulence driven V∥ plays a role in the mean vorticity flux, influencing the generation of V⊥. Also, competition of intrinsic azimuthal and axial flows is observed in CSDX-a linear plasma device with straight magnetic fields. CSDX is a well diagnosed venue to study the basic physics of turbulence-flow interactions in straight magnetic fields. Here, we study the turbulent energy branching between the turbulence driven parallel flow and perpendicular flow. Specifically, the ratio between parallel and perpendicular Reynolds power decreases when the mean perpendicular flow increases. As the mean parallel flow increases, this ratio first increases and then decreases before the parallel flow shear hits the parallel shear flow instability threshold. We seek to understand the flow states and compare with CSDX experiments. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.
The effects of pressure anisotropy on Birkeland currents in dipole and stretched magnetospheres
NASA Technical Reports Server (NTRS)
Birmingham, Thomas J.
1992-01-01
Attention is given to two effects which modify the rate of generation of Birkeland currents from the values given by the Vasyliunas (1970) formula in a dipole, namely, nonisotropic plasma pressure and the radial distention of magnetic field lines. The parallel current at any given point is the integrated effect of the diversion of perpendicular currents along the length of the flux tube from the equator. The result for j-parallel in I is fully nonlinear. In a dipole field the effect of anisotropy is modest: j-parallel at the ionosphere is, irrespective of the r0 value, about factor of 2.4 larger for a large P-parallel anisotropy (r = 0.1) than for the isotropic case and factor of 0.2 smaller for r = 10. In the stretched field the comparable values are factor of 10 and factor of 0.06 for a field line intersecting the ionosphere at a dipole colatitude of 16.4 deg and crossing the equator at r0 of 20. The results exhibit differences in plasma density and plasma pressure along field lines between the stretched and dipole models.
Magnitude of parallel pseudo potential in a magnetosonic shock wave
NASA Astrophysics Data System (ADS)
Ohsawa, Yukiharu
2018-05-01
The parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, in a large-amplitude magnetosonic pulse (shock wave) is theoretically studied. Particle simulations revealed in the late 1990's that the product of the elementary charge and F can be much larger than the electron temperature in shock waves, i.e., the parallel electric field can be quite strong. However, no theory was presented for this unexpected result. This paper first revisits the small-amplitude theory for F and then investigates the parallel pseudo potential F in large-amplitude pulses based on the two-fluid model with finite thermal pressures. It is found that the magnitude of F in a shock wave is determined by the wave amplitude, the electron temperature, and the kinetic energy of an ion moving with the Alfvén speed. This theoretically obtained expression for F is nearly identical to the empirical relation for F discovered in the previous simulation work.
Scalable parallel distance field construction for large-scale applications
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan -Liu; ...
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. Anew distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking overtime, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate itsmore » efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. In conclusion, our work greatly extends the usability of distance fields for demanding applications.« less
Scalable Parallel Distance Field Construction for Large-Scale Applications.
Yu, Hongfeng; Xie, Jinrong; Ma, Kwan-Liu; Kolla, Hemanth; Chen, Jacqueline H
2015-10-01
Computing distance fields is fundamental to many scientific and engineering applications. Distance fields can be used to direct analysis and reduce data. In this paper, we present a highly scalable method for computing 3D distance fields on massively parallel distributed-memory machines. A new distributed spatial data structure, named parallel distance tree, is introduced to manage the level sets of data and facilitate surface tracking over time, resulting in significantly reduced computation and communication costs for calculating the distance to the surface of interest from any spatial locations. Our method supports several data types and distance metrics from real-world applications. We demonstrate its efficiency and scalability on state-of-the-art supercomputers using both large-scale volume datasets and surface models. We also demonstrate in-situ distance field computation on dynamic turbulent flame surfaces for a petascale combustion simulation. Our work greatly extends the usability of distance fields for demanding applications.
NASA Technical Reports Server (NTRS)
Kahler, S.; Lin, R. P.
1994-01-01
The determination of the polarities of interplanetary magnetic fields (whether the field direction is outward from or inward toward the sun) has been based on a comparison of observed field directions with the nominal Parker spiral angle. These polarities can be mapped back to the solar source field polarities. This technique fails when field directions deviate substantially from the Parker angle or when fields are substantially kinked. We introduce a simple new technique to determine the polarities of interplanetary fields using E greater than 2 keV interplanetary electrons which stream along field lines away from the sun. Those electrons usually show distinct unidirectional pitch-angle anisotropies either parallel or anti-parallel to the field. Since the electron flow direction is known to be outward from the sun, the anisotropies parallel to the field indicate outward-pointing, positive-polarity fields, and those anti-parallel indicate inward-pointing, negative-polarity fields. We use data from the UC Berkeley electron experiment on the International Sun Earth Explorer 3 (ISSE-3) spacecraft to compare the field polarities deduced from the electron data, Pe (outward or inward), with the polarities inferred from field directions, Pd, around two sector boundaries in 1979. We show examples of large (greater than 100 deg) changes in azimuthal field direction Phi over short (less than 1 hr) time scales, some with and some without reversals in Pe. The latter cases indicate that such large directional changes can occur in unipolar structures. On the other hand, we found an example of a change in Pe during which the rotation in Phi was less than 30 deg, indicating polarity changes in nearly unidirectional structures. The field directions are poor guides to the polarities in these cases.
Circuital characterisation of space-charge motion with a time-varying applied bias
Kim, Chul; Moon, Eun-Yi; Hwang, Jungho; Hong, Hiki
2015-01-01
Understanding the behaviour of space-charge between two electrodes is important for a number of applications. The Shockley-Ramo theorem and equivalent circuit models are useful for this; however, fundamental questions of the microscopic nature of the space-charge remain, including the meaning of capacitance and its evolution into a bulk property. Here we show that the microscopic details of the space-charge in terms of resistance and capacitance evolve in a parallel topology to give the macroscopic behaviour via a charge-based circuit or electric-field-based circuit. We describe two approaches to this problem, both of which are based on energy conservation: the energy-to-current transformation rule, and an energy-equivalence-based definition of capacitance. We identify a significant capacitive current due to the rate of change of the capacitance. Further analysis shows that Shockley-Ramo theorem does not apply with a time-varying applied bias, and an additional electric-field-based current is identified to describe the resulting motion of the space-charge. Our results and approach provide a facile platform for a comprehensive understanding of the behaviour of space-charge between electrodes. PMID:26133999
Magnetically induced ferroelectricity in Bi2CuO4
NASA Astrophysics Data System (ADS)
Zhao, L.; Guo, H.; Schmidt, W.; Nemkovski, K.; Mostovoy, M.; Komarek, A. C.
2017-08-01
The tetragonal copper oxide Bi2CuO4 has an unusual crystal structure with a three-dimensional network of well separated CuO4 plaquettes. The spin structure of Bi2CuO4 in the magnetically ordered state below TN˜43 K remains controversial. Here we present the results of detailed studies of specific heat, magnetic, and dielectric properties of Bi2CuO4 single crystals grown by the floating zone technique, combined with the polarized neutron scattering and high-resolution x-ray measurements. Down to 3.5 K our polarized neutron scattering measurements reveal ordered magnetic Cu moments which are aligned within the a b plane. Below the onset of the long range antiferromagnetic ordering we observe an electric polarization induced by an applied magnetic field, which indicates inversion symmetry breaking by the ordered state of Cu spins. For the magnetic field applied perpendicular to the tetragonal axis, the spin-induced ferroelectricity is explained in terms of the linear magnetoelectric effect that occurs in a metastable magnetic state. A relatively small electric polarization induced by the field parallel to the tetragonal axis may indicate a more complex magnetic ordering in Bi2CuO4 .
Hydrodynamic electron flow in a Weyl semimetal slab: Role of Chern-Simons terms
NASA Astrophysics Data System (ADS)
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2018-05-01
The hydrodynamic flow of the chiral electron fluid in a Weyl semimetal slab of finite thickness is studied by using the consistent hydrodynamic theory. The latter includes viscous, anomalous, and vortical effects, as well as accounts for dynamical electromagnetism. The energy and momentum separations between the Weyl nodes are taken into account via the topological Chern-Simons contributions in the electric current and charge densities in Maxwell's equations. When an external electric field is applied parallel to the slab, it is found that the electron fluid velocity has a nonuniform profile determined by the viscosity and the no-slip boundary conditions. Most remarkably, the fluid velocity field develops a nonzero component across the slab that gradually dissipates when approaching the surfaces. This abnormal component of the flow arises due to the anomalous Hall voltage induced by the topological Chern-Simons current. Another signature feature of the hydrodynamics in Weyl semimetals is a strong modification of the anomalous Hall current along the slab in the direction perpendicular to the applied electric field. Additionally, it is found that the topological current induces an electric potential difference between the surfaces of the slab that is strongly affected by the hydrodynamic flow.
Transport and selective chaining of bidisperse particles in a travelling wave potential.
Tierno, Pietro; Straube, Arthur V
2016-05-01
We combine experiments, theory and numerical simulation to investigate the dynamics of a binary suspension of paramagnetic colloidal particles dispersed in water and transported above a stripe-patterned magnetic garnet film. The substrate generates a one-dimensional periodic energy landscape above its surface. The application of an elliptically polarized rotating magnetic field causes the landscape to translate, inducing direct transport of paramagnetic particles placed above the film. The ellipticity of the applied field can be used to control and tune the interparticle interactions, from net repulsive to net attractive. When considering particles of two distinct sizes, we find that, depending on their elevation above the surface of the magnetic substrate, the particles feel effectively different potentials, resulting in different mobilities. We exploit this feature to induce selective chaining for certain values of the applied field parameters. In particular, when driving two types of particles, we force only one type to condense into travelling parallel chains. These chains confine the movement of the other non-chaining particles within narrow colloidal channels. This phenomenon is explained by considering the balance of pairwise magnetic forces between the particles and their individual coupling with the travelling landscape.
NASA Astrophysics Data System (ADS)
Iinuma, Takeshi
2018-04-01
A monitoring method to grasp the spatio-temporal change in the interplate coupling in a subduction zone based on the spatial gradients of surface displacement rate fields is proposed. I estimated the spatio-temporal change in the interplate coupling along the plate boundary in northeastern (NE) Japan by applying the proposed method to the surface displacement rates based on global positioning system observations. The gradient of the surface velocities is calculated in each swath configured along the direction normal to the Japan Trench for time windows such as 0.5, 1, 2, 3 and 5 yr being shifted by one week during the period of 1997-2016. The gradient of the horizontal velocities is negative and has a large magnitude when the interplate coupling at the shallow part (less than approximately 50 km in depth) beneath the profile is strong, and the sign of the gradient of the vertical velocity is sensitive to the existence of the coupling at the deep part (greater than approximately 50 km in depth). The trench-parallel variation of the spatial gradients of a displacement rate field clearly corresponds to the trench-parallel variation of the amplitude of the interplate coupling on the plate interface, as well as the rupture areas of previous interplate earthquakes. Temporal changes in the trench-parallel variation of the spatial gradient of the displacement rate correspond to the strengthening or weakening of the interplate coupling. We can monitor the temporal change in the interplate coupling state by calculating the spatial gradients of the surface displacement rate field to some extent without performing inversion analyses with applying certain constraint conditions that sometimes cause over- and/or underestimation at areas of limited spatial resolution far from the observation network. The results of the calculation confirm known interplate events in the NE Japan subduction zone, such as the post-seismic slip of the 2003 M8.0 Tokachi-oki and 2005 M7.2 Miyagi-oki earthquakes and the recovery of the interplate coupling around the rupture area of the 1994 M7.6 Sanriku-Haruka-oki earthquake. The results also indicate the semi-periodic occurrence of slow slip events and the expansion of the area of slow slip events before the 2011 Tohoku-oki earthquake (M9.0) approaching the hypocentre of the Tohoku-oki earthquake.
Song, Hongjun; Cai, Ziliang; Noh, Hongseok Moses; Bennett, Dawn J
2010-03-21
In this paper we present a numerical and experimental investigation of a chaotic mixer in a microchannel via low frequency switching transverse electroosmotic flow. By applying a low frequency, square-wave electric field to a pair of parallel electrodes placed at the bottom of the channel, a complex 3D spatial and time-dependence flow was generated to stretch and fold the fluid. This significantly enhanced the mixing effect. The mixing mechanism was first investigated by numerical and experimental analysis. The effects of operational parameters such as flow rate, frequency, and amplitude of the applied voltage have also been investigated. It is found that the best mixing performance is achieved when the frequency is around 1 Hz, and the required mixing length is about 1.5 mm for the case of applied electric potential 5 V peak-to-peak and flow rate 75 microL h(-1). The mixing performance was significantly enhanced when the applied electric potential increased or the flow rate of fluids decreased.
Spatial structure of ion beams in an expanding plasma
NASA Astrophysics Data System (ADS)
Aguirre, E. M.; Scime, E. E.; Thompson, D. S.; Good, T. N.
2017-12-01
We report spatially resolved perpendicular and parallel, to the magnetic field, ion velocity distribution function (IVDF) measurements in an expanding argon helicon plasma. The parallel IVDFs, obtained through laser induced fluorescence (LIF), show an ion beam with v ≈ 8000 m/s flowing downstream and confined to the center of the discharge. The ion beam is measurable for tens of centimeters along the expansion axis before the LIF signal fades, likely a result of metastable quenching of the beam ions. The parallel ion beam velocity slows in agreement with expectations for the measured parallel electric field. The perpendicular IVDFs show an ion population with a radially outward flow that increases with distance from the plasma axis. Structures aligned to the expanding magnetic field appear in the DC electric field, the electron temperature, and the plasma density in the plasma plume. These measurements demonstrate that at least two-dimensional and perhaps fully three-dimensional models are needed to accurately describe the spontaneous acceleration of ion beams in expanding plasmas.
Modeling electron emission and surface effects from diamond cathodes
NASA Astrophysics Data System (ADS)
Dimitrov, D. A.; Smithe, D.; Cary, J. R.; Ben-Zvi, I.; Rao, T.; Smedley, J.; Wang, E.
2015-02-01
We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass, and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. Using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.
2014-09-01
We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less
Parallel Electric Field on Auroral Magnetic Field Lines.
NASA Astrophysics Data System (ADS)
Yeh, Huey-Ching Betty
1982-03-01
The interaction of Birkeland (magnetic-field-aligned) current carriers and the Earth's magnetic field results in electrostatic potential drops along magnetic field lines. The statistical distributions of the field-aligned potential difference (phi)(,(PARLL)) were determined from the energy spectra of electron inverted "V" events observed at ionospheric altitude for different conditions of geomagnetic activity as indicated by the AE index. Data of 1270 electron inverted "V"'s were obtained from Low-Energy Electron measurements of the Atmosphere Explorer-C and -D Satellite (despun mode) in the interval January 1974-April 1976. In general, (phi)(,(PARLL)) is largest in the dusk to pre-midnight sector, smaller in the post-midnight to dawn sector, and smallest in the near noon sector during quiet and disturbed geomagnetic conditions; there is a steady dusk-dawn-noon asymmetry of the global (phi)(,(PARLL)) distribution. As the geomagnetic activity level increases, the (phi)(,(PARLL)) pattern expands to lower invariant latitudes, and the magnitude of (phi)(,(PARLL)) in the 13-24 magnetic local time sector increases significantly. The spatial structure and intensity variation of the global (phi)(,(PARLL)) distribution are statistically more variable, and the magnitudes of (phi)(,(PARLL)) have smaller correlation with the AE-index, in the post-midnight to dawn sector. A strong correlation is found to exist between upward Birkeland current systems and global parallel potential drops, and between auroral electron precipitation patterns and parallel potential drops, regarding their mophology, their intensity and their dependence of geomagnetic activity. An analysis of the fine-scale simultaneous current-voltage relationship for upward Birkeland currents in Region 1 shows that typical field-aligned potential drops are consistent with model predictions based on linear acceleration of the charge carriers through an electrostatic potential drop along convergent magnetic field lines to maintain current continuity. In a steady state, this model of simple electrostatic acceleration without anomalous resistivity also predicts observable relations between global parallel currents and parallel potential drops and between global energy deposition and parallel potential drops. The temperature, density, and species of the unaccelerated charge carriers are the relevant parameters of the model. The dusk-dawn -noon asymmetry of the global (phi)(,(PARLL)) distribution can be explained by the above steady-state (phi)(,(PARLL)) process if we associate the source regions of upward Birkeland current carriers in Region 1, Region 2, and the cusp region with the plasma sheet boundary layer, the near-Earth plasma sheet, and the magnetosheath, respectively. The results of this study provide observational information on the global distribution of parallel potential drops and the prevailing process of generating and maintaining potential gradients (parallel electric fields) along auroral magnetic field lines.
Bistability of Cavity Magnon Polaritons
NASA Astrophysics Data System (ADS)
Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C.-M.; You, J. Q.
2018-01-01
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
Modeling Jupiter's current disc - Pioneer 10 outbound
NASA Astrophysics Data System (ADS)
Jones, D. E.; Melville, J. G.; Blake, M. L.
1980-07-01
A model of the magnetic field of the Jovian current disk is presented. The model uses Euler functions and the Biot-Savart law applied to a series of concentric, but not necessarily coplanar current rings. It was found that the best fit to the Pioneer 10 outbound perturbation magnetic field data is obtained if the current disk is twisted, and also bent to tend toward parallelism with the Jovigraphic equator. The inner and outer radii of the disk appear to be about 7 and 150 Jovian radii, respectively; because of the observed current disk penetrations, the bent disk also requires a deformation in the form of a bump or wrinkle whose axis tends to exhibit spiraling. Modeling of the azimuthal field shows that it is due to a thin radial current sheet, but it may actually be due in large part to penetration of a tail current sheet as suggested by Voyager observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoneking, M.R.; Lanier, N.E.; Prager, S.C.
1996-12-01
Current profile control is employed in the Madison Symmetric Torus reversed field pinch to reduce the magnetic fluctuations responsible for anomalous transport. An inductive poloidal electric field pulse is applied in the sense to flatten the parallel current profile, reducing the dynamo fluctuation amplitude required to sustain the equilibrium. This technique demonstrates a substantial reduction in fluctuation amplitude (as much as 50%), and improvement in energy confinement (from 1 ms to 5 ms); a record low fluctuation (0.8%) and record high temperature (615 eV) for this device were observed simultaneously during current drive experiments. Plasma beta increases by 50% andmore » the Ohmic input power is three times lower. Particle confinement improves and plasma impurity contamination is reduced. The results of the transient current drive experiments provide motivation for continuing development of steady-state current profile control strategies for the reversed field pinch.« less
Field-dependent magnetization of BiFeO 3 in ultrathin La 0.7Sr 0.3MnO 3/BiFeO 3 superlattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzsimmons, Michael R.; Jia, Quanxi X.; Singh, Surendra
2015-12-02
We report the observation of field-induced magnetization of BiFeO 3 (BFO) in an ultrathin La 0.7Sr 0.3MnO 3 (LSMO)/BFO superlattice using polarized neutron reflectivity (PNR). The depth dependent structure and magnetic characterization of subnano layer thick (thickness ~ 0.7 nm each) LSMO/BFO hetrostructure is carried out using X-ray reflectivity and PNR techniques. Our PNR results indicate parallel alignment of magnetization as well as enhancement in magnetic moment across LSMO/BFO interfaces. The study showed an increase in average magnetization on increasing applied magnetic field at 10K. As a result, we observed a saturation magnetization of 110 ± 15 kA/m (~0.8 μmore » B/Fe) for ultrathin BFO layer (~2 unit cell) sandwiched between ultrathin LSMO layers (~ 2 unit cell).« less
Bistability of Cavity Magnon Polaritons.
Wang, Yi-Pu; Zhang, Guo-Qiang; Zhang, Dengke; Li, Tie-Fu; Hu, C-M; You, J Q
2018-02-02
We report the first observation of the magnon-polariton bistability in a cavity magnonics system consisting of cavity photons strongly interacting with the magnons in a small yttrium iron garnet (YIG) sphere. The bistable behaviors emerged as sharp frequency switchings of the cavity magnon polaritons (CMPs) and related to the transition between states with large and small numbers of polaritons. In our experiment, we align, respectively, the [100] and [110] crystallographic axes of the YIG sphere parallel to the static magnetic field and find very different bistable behaviors (e.g., clockwise and counter-clockwise hysteresis loops) in these two cases. The experimental results are well fitted and explained as being due to the Kerr nonlinearity with either a positive or negative coefficient. Moreover, when the magnetic field is tuned away from the anticrossing point of CMPs, we observe simultaneous bistability of both magnons and cavity photons by applying a drive field on the lower branch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, B.E.; Biewer, T.M.; Chattopadhyay, P.K.
2000-09-01
Auxiliary edge current drive is routinely applied in the Madison Symmetric Torus [R.N. Dexter, D. W. Kerst, T.W. Lovell et.al., Fusion Technol. 19, 131 (1991)] with the goal of modifying the parallel current profile to reduce current- driven magnetic fluctuations and the associated particle and energy transport. Provided by an inductive electric field, the current drive successfully reduces energy transport. First-time measurements of the modified edge current profile reveal that, relative to discharges without auxiliary current drive, the edge current density decreases. This decrease is explicable in terms of newly measured reductions in the dynamo (fluctuation-based) electric field and themore » electrical conductivity. Induced by the current drive, these two changes to the edge plasma play as much of a role in determining the resultant edge current profile as does the current drive itself.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihelic, Andrej; Zitnik, Matjaz
2007-06-15
We study the Stark effect on doubly excited states of the helium atom below N=2. We present the ab initio photoionization and total inelastic photon scattering cross sections calculated with the method of complex scaling for field strengths F{<=}100 kV/cm. The calculations are compared to the measurements of the ion [Phys. Rev. Lett. 90, 133002 (2003)] and vacuum ultraviolet fluorescence yields [Phys. Rev. Lett. 96, 093001 (2006)]. For the case of photoionization and for incident photons with polarization vector P parallel to the electric field F, we confirm the propensity rule proposed by Tong and Lin [Phys. Rev. Lett. 92,more » 223003 (2004)]. Furthermore, the rule is also shown to apply for F perpendicular P and for the case of the inelastic scattering in both experimental geometries.« less
Toroidal Ampere-Faraday Equations Solved Consistently with the CQL3D Fokker-Planck Time-Evolution
NASA Astrophysics Data System (ADS)
Harvey, R. W.; Petrov, Yu. V.
2013-10-01
A self-consistent, time-dependent toroidal electric field calculation is a key feature of a complete 3D Fokker-Planck kinetic distribution radial transport code for f(v,theta,rho,t). In the present CQL3D finite-difference model, the electric field E(rho,t) is either prescribed, or iteratively adjusted to obtain prescribed toroidal or parallel currents. We discuss first results of an implementation of the Ampere-Faraday equation for the self-consistent toroidal electric field, as applied to the runaway electron production in tokamaks due to rapid reduction of the plasma temperature as occurs in a plasma disruption. Our previous results assuming a constant current density (Lenz' Law) model showed that prompt ``hot-tail runaways'' dominated ``knock-on'' and Dreicer ``drizzle'' runaways; we will examine modifications due to the more complete Ampere-Faraday solution. Work supported by US DOE under DE-FG02-ER54744.
Automation, parallelism, and robotics for proteomics.
Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F
2006-07-01
The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Cheng-Long; Xu, Su-Yang; Belopolski, Ilya
Weyl semimetals provide the realization of Weyl fermions in solid-state physics. Among all the physical phenomena that are enabled by Weyl semimetals, the chiral anomaly is the most unusual one. Here, we report signatures of the chiral anomaly in the magneto-transport measurements on the first Weyl semimetal TaAs. We show negative magnetoresistance under parallel electric and magnetic fields, that is, unlike most metals whose resistivity increases under an external magnetic field, we observe that our high mobility TaAs samples become more conductive as a magnetic field is applied along the direction of the current for certain ranges of the fieldmore » strength. We present systematically detailed data and careful analyses, which allow us to exclude other possible origins of the observed negative magnetoresistance. Finally, our transport data, corroborated by photoemission measurements, first-principles calculations and theoretical analyses, collectively demonstrate signatures of the Weyl fermion chiral anomaly in the magneto-transport of TaAs.« less
Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center.
Peng, Tao; Sun, Quqin; Zhao, Jianlong; Jiang, Fan; Li, Liang; Xu, Qiang; Herlach, Fritz
2013-12-01
Pulsed magnets with fast cooling channels have been developed at the Wuhan National High Magnetic Field Center. Between the inner and outer sections of a coil wound with a continuous length of CuNb wire, G10 rods with cross section 4 mm × 5 mm were inserted as spacers around the entire circumference, parallel to the coil axis. The free space between adjacent rods is 6 mm. The liquid nitrogen flows freely in the channels between these rods, and in the direction perpendicular to the rods through grooves provided in the rods. For a typical 60 T pulsed magnetic field with pulse duration of 40 ms, the cooling time between subsequent pulses is reduced from 160 min to 35 min. Subsequently, the same technology was applied to a 50 T magnet with 300 ms pulse duration. The cooling time of this magnet was reduced from 480 min to 65 min.
Persistent spin helix manipulation by optical doping of a CdTe quantum well
NASA Astrophysics Data System (ADS)
Passmann, F.; Anghel, S.; Tischler, T.; Poshakinskiy, A. V.; Tarasenko, S. A.; Karczewski, G.; Wojtowicz, T.; Bristow, A. D.; Betz, M.
2018-05-01
Time-resolved Kerr-rotation microscopy explores the influence of optical doping on the persistent spin helix in a [001]-grown CdTe quantum well at cryogenic temperatures. Electron spin-diffusion dynamics reveal a momentum-dependent effective magnetic field providing SU(2) spin-rotation symmetry, consistent with kinetic theory. The Dresselhaus and Rashba spin-orbit coupling parameters are extracted independently from rotating the spin helix with external magnetic fields applied parallel and perpendicular to the effective magnetic field. Most importantly, a nonuniform spatiotemporal precession pattern is observed. The kinetic-theory framework of spin diffusion allows for modeling of this finding by incorporating the photocarrier density into the Rashba (α) and the Dresselhaus (β3) parameters. Corresponding calculations are further validated by an excitation-density-dependent measurement. This work shows universality of the persistent spin helix by its observation in a II-VI compound and the ability to fine-tune it by optical doping.
Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.
2015-06-15
Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less
An FPGA-based High Speed Parallel Signal Processing System for Adaptive Optics Testbed
NASA Astrophysics Data System (ADS)
Kim, H.; Choi, Y.; Yang, Y.
In this paper a state-of-the-art FPGA (Field Programmable Gate Array) based high speed parallel signal processing system (SPS) for adaptive optics (AO) testbed with 1 kHz wavefront error (WFE) correction frequency is reported. The AO system consists of Shack-Hartmann sensor (SHS) and deformable mirror (DM), tip-tilt sensor (TTS), tip-tilt mirror (TTM) and an FPGA-based high performance SPS to correct wavefront aberrations. The SHS is composed of 400 subapertures and the DM 277 actuators with Fried geometry, requiring high speed parallel computing capability SPS. In this study, the target WFE correction speed is 1 kHz; therefore, it requires massive parallel computing capabilities as well as strict hard real time constraints on measurements from sensors, matrix computation latency for correction algorithms, and output of control signals for actuators. In order to meet them, an FPGA based real-time SPS with parallel computing capabilities is proposed. In particular, the SPS is made up of a National Instrument's (NI's) real time computer and five FPGA boards based on state-of-the-art Xilinx Kintex 7 FPGA. Programming is done with NI's LabView environment, providing flexibility when applying different algorithms for WFE correction. It also facilitates faster programming and debugging environment as compared to conventional ones. One of the five FPGA's is assigned to measure TTS and calculate control signals for TTM, while the rest four are used to receive SHS signal, calculate slops for each subaperture and correction signal for DM. With this parallel processing capabilities of the SPS the overall closed-loop WFE correction speed of 1 kHz has been achieved. System requirements, architecture and implementation issues are described; furthermore, experimental results are also given.
HOPPING CONDUCTIVITY AND MAGNETIC TRANSITIONS OF THE Cu2+ SPINS IN SINGLE-CRYSTAL La2CuO4+y
NASA Astrophysics Data System (ADS)
Thio, Tineke; Birgeneau, R. J.; Chen, C. Y.; Freer, B. S.; Gabbe, D. R.; Jenssen, H. P.; Kastner, M. A.; Picone, P. J.; Preyer, N. W.
Measurements are reported of the magnetoresistance (MR) for fields up to 23T in La2CuO4+y single crystals in which the Cu2+ spins order antiferromagnetically at TN˜240K, and in which the conductivity at low temperature is characterised by hopping between localised states. Using the MR, we map out the phase diagram of the spin flop transition, observed when the magnetic field is applied parallel to the zero-field staggered magnetisation, and that of the weak-ferromagnetic transition, observed with the field perpendicular to the CuO planes. In both transitions the antiferromagnetic propagation vector changes from the ěca direction at zero field to the ěcc direction at the highest fields. This rather subtle change of the Cu spin ordering is accompanied by a large increase in the interlayer hopping conductivity: up to a factor 2. We show that the magnetoconductance is proportional to the three-dimensional staggered moment with propagation vector in the orthorhombic ěcc direction. The origin of this unusual behaviour is an important unsolved problem.
Glassy vortex behavior in superconducting SrPd2Ge2 single crystals
NASA Astrophysics Data System (ADS)
Sung, N. H.; Jo, Y. J.; Cho, B. K.
2012-07-01
In this study we report the vortex-glass behavior of superconducting ternary germanide SrPd2Ge2 single crystals with a ThCr2Si2-type structure. We observed flux trapping and its nonexponential decay with time after the magnetic field was turned off at T = 2 K. In addition, we found that the diamagnetism in the zero field cooling (ZFC) mode below Tc was irreversible, depending on the temperature and field history, whereas the diamagnetism in the field-cooled warming (FCW) mode was reversible if the applied magnetic field was parallel to the c-axis. An irreversibility line Tr(H) was determined by the ZFC and FCW measurements at various magnetic fields, and the temperature dependence of Tr(H) was found to agree with the de Almeida-Thouless relation, H = H0[1-Tr(H)/Tc(0)]γ, where γ = 3/2. Including these vortex-glass behaviors, we discuss the critical current density, Jc(T), determined from isothermal magnetization measurements at various temperatures, and the pinning potential, determined from the slope of an Arrhenius plot, lnR(T,B) versus 1/T.
Quantum oscillations and upper critical magnetic field of the iron-based superconductor FeSe
NASA Astrophysics Data System (ADS)
Audouard, Alain; Duc, Fabienne; Drigo, Loïc; Toulemonde, Pierre; Karlsson, Sandra; Strobel, Pierre; Sulpice, André
2015-01-01
Shubnikov-de Haas (SdH) oscillations and upper critical magnetic field (Hc2) of the iron-based superconductor FeSe (Tc = 8.6 \\text{K}) have been studied by tunnel diode oscillator-based measurements in magnetic fields of up to 55 T and temperatures down to 1.6 K. Several Fourier components enter the SdH oscillations spectrum with frequencies definitely smaller than predicted by band structure calculations indicating band renormalization and reconstruction of the Fermi surface at low temperature, in line with previous ARPES data. The Werthamer-Helfand-Hohenberg model accounts for the temperature dependence of (Hc2) for magnetic field applied both parallel (\\textbf{H} \\| ab) and perpendicular (\\textbf{H} \\| c) to the iron conducting plane, suggesting that one band mainly controls the superconducting properties in magnetic fields despite the multiband nature of the Fermi surface. Whereas Pauli pair breaking is negligible for \\textbf{H} \\| c , a Pauli paramagnetic contribution is evidenced for \\textbf{H} \\| ab with Maki parameter α = 2.1 , corresponding to Pauli field HP = 36.5 \\text{T} .
Runtime support for parallelizing data mining algorithms
NASA Astrophysics Data System (ADS)
Jin, Ruoming; Agrawal, Gagan
2002-03-01
With recent technological advances, shared memory parallel machines have become more scalable, and offer large main memories and high bus bandwidths. They are emerging as good platforms for data warehousing and data mining. In this paper, we focus on shared memory parallelization of data mining algorithms. We have developed a series of techniques for parallelization of data mining algorithms, including full replication, full locking, fixed locking, optimized full locking, and cache-sensitive locking. Unlike previous work on shared memory parallelization of specific data mining algorithms, all of our techniques apply to a large number of common data mining algorithms. In addition, we propose a reduction-object based interface for specifying a data mining algorithm. We show how our runtime system can apply any of the technique we have developed starting from a common specification of the algorithm.
A Stochastic Spiking Neural Network for Virtual Screening.
Morro, A; Canals, V; Oliver, A; Alomar, M L; Galan-Prado, F; Ballester, P J; Rossello, J L
2018-04-01
Virtual screening (VS) has become a key computational tool in early drug design and screening performance is of high relevance due to the large volume of data that must be processed to identify molecules with the sought activity-related pattern. At the same time, the hardware implementations of spiking neural networks (SNNs) arise as an emerging computing technique that can be applied to parallelize processes that normally present a high cost in terms of computing time and power. Consequently, SNN represents an attractive alternative to perform time-consuming processing tasks, such as VS. In this brief, we present a smart stochastic spiking neural architecture that implements the ultrafast shape recognition (USR) algorithm achieving two order of magnitude of speed improvement with respect to USR software implementations. The neural system is implemented in hardware using field-programmable gate arrays allowing a highly parallelized USR implementation. The results show that, due to the high parallelization of the system, millions of compounds can be checked in reasonable times. From these results, we can state that the proposed architecture arises as a feasible methodology to efficiently enhance time-consuming data-mining processes such as 3-D molecular similarity search.
Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.
1987-02-15
For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. Themore » usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation.« less
Multisensory architectures for action-oriented perception
NASA Astrophysics Data System (ADS)
Alba, L.; Arena, P.; De Fiore, S.; Listán, J.; Patané, L.; Salem, A.; Scordino, G.; Webb, B.
2007-05-01
In order to solve the navigation problem of a mobile robot in an unstructured environment a versatile sensory system and efficient locomotion control algorithms are necessary. In this paper an innovative sensory system for action-oriented perception applied to a legged robot is presented. An important problem we address is how to utilize a large variety and number of sensors, while having systems that can operate in real time. Our solution is to use sensory systems that incorporate analog and parallel processing, inspired by biological systems, to reduce the required data exchange with the motor control layer. In particular, as concerns the visual system, we use the Eye-RIS v1.1 board made by Anafocus, which is based on a fully parallel mixed-signal array sensor-processor chip. The hearing sensor is inspired by the cricket hearing system and allows efficient localization of a specific sound source with a very simple analog circuit. Our robot utilizes additional sensors for touch, posture, load, distance, and heading, and thus requires customized and parallel processing for concurrent acquisition. Therefore a Field Programmable Gate Array (FPGA) based hardware was used to manage the multi-sensory acquisition and processing. This choice was made because FPGAs permit the implementation of customized digital logic blocks that can operate in parallel allowing the sensors to be driven simultaneously. With this approach the multi-sensory architecture proposed can achieve real time capabilities.
The parallel-sequential field subtraction technique for coherent nonlinear ultrasonic imaging
NASA Astrophysics Data System (ADS)
Cheng, Jingwei; Potter, Jack N.; Drinkwater, Bruce W.
2018-06-01
Nonlinear imaging techniques have recently emerged which have the potential to detect cracks at a much earlier stage than was previously possible and have sensitivity to partially closed defects. This study explores a coherent imaging technique based on the subtraction of two modes of focusing: parallel, in which the elements are fired together with a delay law and sequential, in which elements are fired independently. In the parallel focusing a high intensity ultrasonic beam is formed in the specimen at the focal point. However, in sequential focusing only low intensity signals from individual elements enter the sample and the full matrix of transmit-receive signals is recorded and post-processed to form an image. Under linear elastic assumptions, both parallel and sequential images are expected to be identical. Here we measure the difference between these images and use this to characterise the nonlinearity of small closed fatigue cracks. In particular we monitor the change in relative phase and amplitude at the fundamental frequencies for each focal point and use this nonlinear coherent imaging metric to form images of the spatial distribution of nonlinearity. The results suggest the subtracted image can suppress linear features (e.g. back wall or large scatters) effectively when instrumentation noise compensation in applied, thereby allowing damage to be detected at an early stage (c. 15% of fatigue life) and reliably quantified in later fatigue life.
A Parallel Nonrigid Registration Algorithm Based on B-Spline for Medical Images
Wang, Yangping; Wang, Song
2016-01-01
The nonrigid registration algorithm based on B-spline Free-Form Deformation (FFD) plays a key role and is widely applied in medical image processing due to the good flexibility and robustness. However, it requires a tremendous amount of computing time to obtain more accurate registration results especially for a large amount of medical image data. To address the issue, a parallel nonrigid registration algorithm based on B-spline is proposed in this paper. First, the Logarithm Squared Difference (LSD) is considered as the similarity metric in the B-spline registration algorithm to improve registration precision. After that, we create a parallel computing strategy and lookup tables (LUTs) to reduce the complexity of the B-spline registration algorithm. As a result, the computing time of three time-consuming steps including B-splines interpolation, LSD computation, and the analytic gradient computation of LSD, is efficiently reduced, for the B-spline registration algorithm employs the Nonlinear Conjugate Gradient (NCG) optimization method. Experimental results of registration quality and execution efficiency on the large amount of medical images show that our algorithm achieves a better registration accuracy in terms of the differences between the best deformation fields and ground truth and a speedup of 17 times over the single-threaded CPU implementation due to the powerful parallel computing ability of Graphics Processing Unit (GPU). PMID:28053653
2016-03-07
Peering deep into the early Universe, this picturesque parallel field observation from the NASA/ESA Hubble Space Telescope reveals thousands of colourful galaxies swimming in the inky blackness of space. A few foreground stars from our own galaxy, the Milky Way, are also visible. In October 2013 Hubble’s Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) began observing this portion of sky as part of the Frontier Fields programme. This spectacular skyscape was captured during the study of the giant galaxy cluster Abell 2744, otherwise known as Pandora’s Box. While one of Hubble’s cameras concentrated on Abell 2744, the other camera viewed this adjacent patch of sky near to the cluster. Containing countless galaxies of various ages, shapes and sizes, this parallel field observation is nearly as deep as the Hubble Ultra-Deep Field. In addition to showcasing the stunning beauty of the deep Universe in incredible detail, this parallel field — when compared to other deep fields — will help astronomers understand how similar the Universe looks in different directions
On the role of the quasi-parallel bow shock in ion pickup - A lesson from Venus?
NASA Technical Reports Server (NTRS)
Luhmann, J. G.; Russell, C. T.; Phillips, J. L.; Barnes, A.
1987-01-01
Previous observations at Venus show convincing evidence of planetary O(+) ion pickup by the largescale motional -V x B electric field in the magnetosheath when the interplanetary magnetic field is perpendicular to the solar wind flow. However, the presence of magnetic field fluctuations in the magnetosheath downstream from the quasi-parallel bow shock should allow pickup to occur even when the upstream magnetic field B and plasma velocity V are practically coaligned. Single-particle calculations are used to demonstrate the convecting magnetic field fluctuations similar to those observed in the Venus magnetosheath when the subsolar bow shock is quasi-parallel can efficiently accelerate cold planetary ions by means of the electric field associated with their transverse components. This ion pickup process, which is characterized by a spatial dependence determined by the bow shock shape and the orientation of the upstream magnetic field, is likely also to occur at Mars and may be effective at comets.
Guo, Yuanhao; Batra, Saurabh; Chen, Yuwei; Wang, Enmin; Cakmak, Miko
2016-07-20
A roll to roll continuous processing method is developed for vertical alignment ("Z" alignment) of barium titanate (BaTiO3) nanoparticle columns in polystyrene (PS)/toluene solutions. This is accomplished by applying an electric field to a two-layer solution film cast on a carrier: one is the top sacrificial layer contacting the electrode and the second is the polymer solution dispersed with BaTiO3 particles. Flexible Teflon coated mesh is utilized as the top electrode that allows the evaporation of solvent through the openings. The kinetics of particle alignment and chain buckling is studied by the custom-built instrument measuring the real time optical light transmission during electric field application and drying steps. The nanoparticles dispersed in the composite bottom layer form chains due to dipole-dipole interaction under an applied electric field. In relatively weak electric fields, the particle chain axis tilts away from electric field direction due to bending caused by the shrinkage of the film during drying. The use of strong electric fields leads to maintenance of alignment of particle chains parallel to the electric field direction overcoming the compression effect. At the end of the process, the surface features of the top porous electrodes are imprinted at the top of the top sacrificial layer. By removing this layer a smooth surface film is obtained. The nanocomposite films with "Z" direction alignment of BaTiO3 particles show substantially increased dielectric permittivity in the thickness direction for enhancing the performance of capacitors.
Local Structure Fixation in the Composite Manufacturing Chain
NASA Astrophysics Data System (ADS)
Girdauskaite, Lina; Krzywinski, Sybille; Rödel, Hartmut; Wildasin-Werner, Andrea; Böhme, Ralf; Jansen, Irene
2010-12-01
Compared to metal materials, textile reinforced composites show interesting features, but also higher production costs because of low automation rate in the manufacturing chain at this time. Their applicability is also limited due to quality problems, which restrict the production of complex shaped dry textile preforms. New technologies, design concepts, and cost-effective manufacturing methods are needed in order to establish further fields of application. This paper deals with possible ways to improve the textile deformation process by locally applying a fixative to the structure parallel to the cut. This hinders unwanted deformation in the textile stock during the subsequent stacking and formation steps. It is found that suitable thermoplastic binders, applied in the appropriate manner do not restrict formation of the textile and have no negative influence on the mechanical properties of the composite.
Applied mediation analyses: a review and tutorial.
Lange, Theis; Hansen, Kim Wadt; Sørensen, Rikke; Galatius, Søren
2017-01-01
In recent years, mediation analysis has emerged as a powerful tool to disentangle causal pathways from an exposure/treatment to clinically relevant outcomes. Mediation analysis has been applied in scientific fields as diverse as labour market relations and randomized clinical trials of heart disease treatments. In parallel to these applications, the underlying mathematical theory and computer tools have been refined. This combined review and tutorial will introduce the reader to modern mediation analysis including: the mathematical framework; required assumptions; and software implementation in the R package medflex. All results are illustrated using a recent study on the causal pathways stemming from the early invasive treatment of acute coronary syndrome, for which the rich Danish population registers allow us to follow patients' medication use and more after being discharged from hospital.
Brenick, Alaina; Halgunseth, Linda C
2017-08-01
Over the past decades, the field of bullying research has seen dramatic growth, notably with the integration of the social-ecological approach to understanding bullying. Recently, researchers (Hymel et al., 2015; Hawley & Williford, 2015) have called for further extension of the field by incorporating constructs of group processes into our investigation of the social ecologies of bullying. This brief note details the critical connections between power, social identity, group norms, social and moral reasoning about discrimination and victimization, and experiences of, evaluations of, and responses to bullying. The authors highlight a parallel development in the bridging of developmental social-ecological and social psychological perspectives utilized in the field of social exclusion that provides a roadmap for extending the larger field of bullying research. This article is part of a Special Issue entitled [VSI: Bullying] IG000050. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
STS studies of the pi-band superconductivity in MgB2 in a transverse field
NASA Astrophysics Data System (ADS)
Griggs, C.; Eskildsen, M. R.; Zhigadlo, N. D.; Karpinski, J.
2012-02-01
Since being discovered MgB2 has become the paradigm for two-band/two-gap superconductivity. Early scanning tunneling spectroscopy (STS) measurements, showed a rapid suppression of the superconductivty in the isotropic π-band for modest applied fields H c. These measurements were performed with the tunnel current (It) parallel to the crystalline c-axis which couple, almost exclusively, to the π-band, and with the suppression attributed to vortex core overlap. Here we report STS measurements performed in a transverse field, such that Itc H. In this configuration no vortices are cutting through the image plane, and instead the superconducting phase is affected by the Meissner currents running within one penetration depth of the sample surface. Within this field orientation we observe far less suppression of the superconducting state in the π-band compared to the earlier measurements with H c. A clear gap is seen up to H= 0.9 T.
Zharov, Alexander A; Zharov, Alexander A; Zharova, Nina A
2014-08-01
We show that transverse electromagnetic waves propagating along an external static electric field in liquid metacrystal (LMC) can provoke spontaneous rearrangement of elongated meta-atoms that changes the direction of the anisotropy axis of the LMC. This kind of instability may reorient the meta-atoms from the equilibrium state parallel to a static field to the state along a high-frequency field and back at the different threshold intensities of electromagnetic waves in such a way that bistability in the system takes place. Reorientation of meta-atoms causes a change in the effective refraction index of LMC that creates, in turn, the conditions for the formation of bright spatial solitons. Such spatial solitons are the self-consistent domains of redirected meta-atoms with trapped photons. We find that the instability thresholds as well as energy flux captured by the spatial soliton can be easily managed by variation of the static electric field applied to the LMC. We study the effects of soliton excitation and collisions via numerical simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balk, Andrew L., E-mail: andrew.balk@nist.gov; Maryland NanoCenter, University of Maryland, College Park, Maryland 20742; Hangarter, Carlos
2015-03-16
We present a magneto-optical technique to spatially amplify and image fringe fields from single ferromagnetic nanorods. The fringe fields nucleate magnetic domains in a low-coercivity, perpendicularly magnetized indicator film, which are expanded by an applied out-of-plane field from the nanoscale to the microscale for measurement with polar Kerr microscopy. The nucleation location and therefore magnetic orientation of the sample nanorod are detected as spatially dependent field biases in locally measured hysteresis loops of the indicator film. We first discuss our method to fabricate the high-sensitivity indicator film with low energy argon ion irradiation. We then present a map of themore » amplified signal produced from a single nanorod as measured by the indicator film and compare it with a simultaneously obtained, unamplified fringe field map. The comparison demonstrates the advantage of the amplification mechanism and the capability of the technique to be performed with single-spot magneto-optical Kerr effect magnetometers. Our signal-to-noise ratio determines a minimum measureable particle diameter of tens of nanometers for typical transition metals. We finally use our method to obtain hysteresis loops from multiple nanorods in parallel. Our technique is unperturbed by applied in-plane fields for magnetic manipulation of nanoparticles, is robust against many common noise sources, and is applicable in a variety of test environments. We conclude with a discussion of the future optimization and application of our indicator film technique.« less
Transparent magnetic state in single crystal Nd(1.85)Ce(0.15)CuO(4-y) superconductors
NASA Technical Reports Server (NTRS)
Zuo, F.
1995-01-01
Several experimental studies have been reported as evidence of Josephson coupling between the superconducting layers in the highly anisotropic oxide such as the Bi2Sr2CaCu2O8 and Tl2Ba2CuO6 systems. These include the large penetration depth of 100 mu m measured, ac and dc Josephson effects. Recently two critical temperatures corresponding to Josephson coupling in between the layers and the Berezinskii-Kosterlitz-Thouless transition in the ab-plane have been directly observed in the transport measurements. If the field is applied parallel to the superconducting layers, the magnetic excitation is not the conventional Abrikosov vortices, but the Josephson vortices which extend lambda(sub ab) in the c-axis direction and lambda(sub J) = gamma s in the plane (s is the interlayer distance, gamma is the anisotropy constant). Because of the weak screening effect associated with the Josephson vortices, there have been predictions of magnetic transparent states at magnetic field above a characteristic field H(sub J), a behavior distinctively different from that of the type-II superconductors. In this paper, we report an experimental result which illustrates a transition from the Meissner state to the magnetic transparent state in single crystal of Nd(1.85)Ce(0.15)CuO(4-y). Magnetization has been measured as a function of temperature and field in the magnetic field parallel or close to ab-plane geometry. For a fixed magnetic field, the magnetization shows a two-step transition in M(T); for a fixed temperature, the magnetization shows an abrupt change to almost zero value above a characteristic field H(sub J), an indication of magnetic transparent state. The data of magnetization as a function of field clearly deviates from the behavior predicted by the Abrikosov theory for type-II superconductors. Instead, the data fit well into the picture of Josephson decoupling between the CuO2 layers.
A formalism for reference dosimetry in photon beams in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
van Asselen, B.; Woodings, S. J.; Hackett, S. L.; van Soest, T. L.; Kok, J. G. M.; Raaymakers, B. W.; Wolthaus, J. W. H.
2018-06-01
A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51% ± 0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967 ± 0.002 and 0.957 ± 0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997 ± 0.001 and 1.002 ± 0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.
A formalism for reference dosimetry in photon beams in the presence of a magnetic field.
van Asselen, B; Woodings, S J; Hackett, S L; van Soest, T L; Kok, J G M; Raaymakers, B W; Wolthaus, J W H
2018-06-11
A generic formalism is proposed for reference dosimetry in the presence of a magnetic field. Besides the regular correction factors from the conventional reference dosimetry formalisms, two factors are used to take into account magnetic field effects: (1) a dose conversion factor to correct for the change in local dose distribution and (2) a correction of the reading of the dosimeter used for the reference dosimetry measurements. The formalism was applied to the Elekta MRI-Linac, for which the 1.5 T magnetic field is orthogonal to the 7 MV photon beam. For this setup at reference conditions it was shown that the dose decreases with increasing magnetic field strength. The reduction in local dose for a 1.5 T transverse field, compared to no field is 0.51% ± 0.03% at the reference point of 10 cm depth. The effect of the magnetic field on the reading of the dosimeter was measured for two waterproof ionization chambers types (PTW 30013 and IBA FC65-G) before and after multiple ramp-up and ramp-downs of the magnetic field. The chambers were aligned perpendicular and parallel to the magnetic field. The corrections of the readings of the perpendicularly aligned chambers were 0.967 ± 0.002 and 0.957 ± 0.002 for respectively the PTW and IBA ionization chambers. In the parallel alignment the corrections were small; 0.997 ± 0.001 and 1.002 ± 0.003 for the PTW and IBA chamber respectively. The change in reading due to the magnetic field can be measured by individual departments. The proposed formalism can be used to determine the correction factors needed to establish the absorbed dose in a magnetic field. It requires Monte Carlo simulations of the local dose and measurements of the response of the dosimeter. The formalism was successfully implemented for the MRI-Linac and is applicable for other field strengths and geometries.
ERIC Educational Resources Information Center
Sutton, Brett R.
2017-01-01
This dissertation explores parallels between Complementizer Phrase (CP) and Determiner Phrase (DP) semantics, syntax, and morphology--including similarities in case-assignment, subject-verb and possessor-possessum agreement, subject and possessor semantics, and overall syntactic structure--in first language acquisition. Applying theoretical…
Method and means for measuring the anisotropy of a plasma in a magnetic field
Shohet, J.L.; Greene, D.G.S.
1973-10-23
Anisotropy is measured of a free-free-bremsstrahlungradiation-generating plasma in a magnetic field by collimating the free-free bremsstrahlung radiation in a direction normal to the magnetic field and scattering the collimated free- free bremsstrahlung radiation to resolve the radiation into its vector components in a plane parallel to the electric field of the bremsstrahlung radiation. The scattered vector components are counted at particular energy levels in a direction parallel to the magnetic field and also normal to the magnetic field of the plasma to provide a measure of anisotropy of the plasma. (Official Gazette)
Two- to three-dimensional crossover in a dense electron liquid in silicon
NASA Astrophysics Data System (ADS)
Matmon, Guy; Ginossar, Eran; Villis, Byron J.; Kölker, Alex; Lim, Tingbin; Solanki, Hari; Schofield, Steven R.; Curson, Neil J.; Li, Juerong; Murdin, Ben N.; Fisher, Andrew J.; Aeppli, Gabriel
2018-04-01
Doping of silicon via phosphine exposures alternating with molecular beam epitaxy overgrowth is a path to Si:P substrates for conventional microelectronics and quantum information technologies. The technique also provides a well-controlled material for systematic studies of two-dimensional lattices with a half-filled band. We show here that for a dense (ns=2.8 ×1014 cm-2) disordered two-dimensional array of P atoms, the full field magnitude and angle-dependent magnetotransport is remarkably well described by classic weak localization theory with no corrections due to interaction. The two- to three-dimensional crossover seen upon warming can also be interpreted using scaling concepts developed for anistropic three-dimensional materials, which work remarkably except when the applied fields are nearly parallel to the conducting planes.
Plasma dynamics on current-carrying magnetic flux tubes
NASA Technical Reports Server (NTRS)
Swift, Daniel W.
1992-01-01
A 1D numerical simulation is used to investigate the evolution of a plasma in a current-carrying magnetic flux tube of variable cross section. A large potential difference, parallel to the magnetic field, is applied across the domain. The result is that density minimum tends to deepen, primarily in the cathode end, and the entire potential drop becomes concentrated across the region of density minimum. The evolution of the simulation shows some sensitivity to particle boundary conditions, but the simulations inevitably evolve into a final state with a nearly stationary double layer near the cathode end. The simulation results are at sufficient variance with observations that it appears unlikely that auroral electrons can be explained by a simple process of acceleration through a field-aligned potential drop.
NASA Astrophysics Data System (ADS)
Li, Chun-Hong; Long, Yu-Jia; Zhao, Ling-Xiao; Shan, Lei; Ren, Zhi-An; Zhao, Jian-Zhou; Weng, Hong-Ming; Dai, Xi; Fang, Zhong; Ren, Cong; Chen, Gen-Fu
2017-03-01
We report the anisotropic magnetotransport measurement on a noncompound band semiconductor black phosphorus (BP) with magnetic field B up to 16 Tesla applied in both perpendicular and parallel to electric current I under hydrostatic pressures. The BP undergoes a topological Lifshitz transition from band semiconductor to a zero-gap Dirac semimetal state at a critical pressure Pc, characterized by a weak localization-weak antilocalization transition at low magnetic fields and the emergence of a nontrivial Berry phase of π detected by SdH magneto-oscillations in magnetoresistance curves. In the transition region, we observe a pressure-dependent negative MR only in the B ∥I configuration. This negative longitudinal MR is attributed to the Adler-Bell-Jackiw anomaly (topological E .B term) in the presence of weak antilocalization corrections.
Further development of imaging near-field scatterometer
NASA Astrophysics Data System (ADS)
Uebeler, Denise; Pescoller, Lukas; Hahlweg, Cornelius
2015-09-01
In continuation of last year's paper on the use of near field imaging, which basically is a reflective shadowgraph method, for characterization of glossy surfaces like printed matter or laminated material, further developments are discussed. Beside the identification of several types of surfaces and related features, for which the method is applicable, several refinements are introduced. The theory of the method is extended, based on a mixed Fourier optical and geometrical approach, leading to rules of thumb for the resolution to be expected, giving a framework for design. Further, a refined experimental set-up is introduced. Variation of plane of focus and incident angle are used for separation of various the images of he layers of the surface under test, cross and parallel polarization techniques are applied. Finally, exemplary measurement results and examples are included.
Study of Magnetic Damping Effect on Convection and Solidification Under G-Jitter Conditions
NASA Technical Reports Server (NTRS)
Li, Ben Q.; deGroh, H. C., III
1999-01-01
As shown by NASA resources dedicated to measuring residual gravity (SAMS and OARE systems), g-jitter is a critical issue affecting space experiments on solidification processing of materials. This study aims to provide, through extensive numerical simulations and ground based experiments, an assessment of the use of magnetic fields in combination with microgravity to reduce the g-jitter induced convective flows in space processing systems. We have so far completed asymptotic analyses based on the analytical solutions for g-jitter driven flow and magnetic field damping effects for a simple one-dimensional parallel plate configuration, and developed both 2-D and 3-D numerical models for g-jitter driven flows in simple solidification systems with and without presence of an applied magnetic field. Numerical models have been checked with the analytical solutions and have been applied to simulate the convective flows and mass transfer using both synthetic g-jitter functions and the g-jitter data taken from space flight. Some useful findings have been obtained from the analyses and the modeling results. Some key points may be summarized as follows: (1) the amplitude of the oscillating velocity decreases at a rate inversely proportional to the g-jitter frequency and with an increase in the applied magnetic field; (2) the induced flow approximately oscillates at the same frequency as the affecting g-jitter, but out of a phase angle; (3) the phase angle is a complicated function of geometry, applied magnetic field, temperature gradient and frequency; (4) g-jitter driven flows exhibit a complex fluid flow pattern evolving in time; (5) the damping effect is more effective for low frequency flows; and (6) the applied magnetic field helps to reduce the variation of solutal distribution along the solid-liquid interface. Work in progress includes numerical simulations and ground-based measurements. Both 2-D and 3-D numerical simulations are being continued to obtain further information on g-jitter driven flows and magnetic field effects. A physical model for ground-based measurements is completed and some measurements of the oscillating convection are being taken on the physical model. The comparison of the measurements with numerical simulations is in progress. Additional work planned in the project will also involve extending the 2-D numerical model to include the solidification phenomena with the presence of both g-jitter and magnetic fields.
Simulating Flaring Events via an Intelligent Cellular Automata Mechanism
NASA Astrophysics Data System (ADS)
Dimitropoulou, M.; Vlahos, L.; Isliker, H.; Georgoulis, M.
2010-07-01
We simulate flaring events through a Cellular Automaton (CA) model, in which, for the first time, we use observed vector magnetograms as initial conditions. After non-linear force free extrapolation of the magnetic field from the vector magnetograms, we identify magnetic discontinuities, using two alternative criteria: (1) the average magnetic field gradient, or (2) the normalized magnetic field curl (i.e. the current). Magnetic discontinuities are identified at the grid-sites where the magnetic field gradient or curl exceeds a specified threshold. We then relax the magnetic discontinuities according to the rules of Lu and Hamilton (1991) or Lu et al. (1993), i.e. we redistribute the magnetic field locally so that the discontinuities disappear. In order to simulate the flaring events, we consider several alternative scenarios with regard to: (1) The threshold above which magnetic discontinuities are identified (applying low, high, and height-dependent threshold values); (2) The driving process that occasionally causes new discontinuities (at randomly chosen grid sites, magnetic field increments are added that are perpendicular (or may-be also parallel) to the existing magnetic field). We address the question whether the coronal active region magnetic fields can indeed be considered to be in the state of self-organized criticality (SOC).
Dispersive elastic properties of Dzyaloshinskii domain walls
NASA Astrophysics Data System (ADS)
Pellegren, James; Lau, Derek; Sokalski, Vincent
Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.
Magnetism and high magnetic-field-induced stability of alloy carbides in Fe-based materials.
Hou, T P; Wu, K M; Liu, W M; Peet, M J; Hulme-Smith, C N; Guo, L; Zhuang, L
2018-02-14
Understanding the nature of the magnetic-field-induced precipitation behaviors represents a major step forward towards unravelling the real nature of interesting phenomena in Fe-based alloys and especially towards solving the key materials problem for the development of fusion energy. Experimental results indicate that the applied high magnetic field effectively promotes the precipitation of M 23 C 6 carbides. We build an integrated method, which breaks through the limitations of zero temperature and zero external field, to concentrate on the dependence of the stability induced by the magnetic effect, excluding the thermal effect. We investigate the intimate relationship between the external field and the origins of various magnetics structural characteristics, which are derived from the interactions among the various Wyckoff sites of iron atoms, antiparallel spin of chromium and Fe-C bond distances. The high-magnetic-field-induced exchange coupling increases with the strength of the external field, which then causes an increase in the parallel magnetic moment. The stability of the alloy carbide M 23 C 6 is more dependent on external field effects than thermal effects, whereas that of M 2 C, M 3 C and M 7 C 3 is mainly determined by thermal effects.
NASA Astrophysics Data System (ADS)
Torbert, R. B.; Burch, J. L.; Argall, M. R.; Alm, L.; Farrugia, C. J.; Forbes, T. G.; Giles, B. L.; Rager, A.; Dorelli, J.; Strangeway, R. J.; Ergun, R. E.; Wilder, F. D.; Ahmadi, N.; Lindqvist, P.-A.; Khotyaintsev, Y.
2017-12-01
On 22 October 2016, the Magnetospheric Multiscale (MMS) spacecraft encountered the electron diffusion region (EDR) when the magnetosheath field was southward, and there were signatures of fast reconnection, including flow jets, Hall fields, and large power dissipation. One rapid, normal-incidence crossing, during which the EDR structure was almost stationary in the boundary frame, provided an opportunity to observe the spatial structure for the zero guide field case of magnetic reconnection. The reconnection electric field was determined unambiguously to be 2-3 mV/m. There were clear signals of fluctuating parallel electric fields, up to 6 mV/m on the magnetosphere side of the diffusion region, associated with a Hall-like parallel current feature on the electron scale. The width of the main EDR structure was determined to be 2 km (1.8 de). Although the MMS spacecraft were in their closest tetrahedral separation of 8 km, the divergences and curls for these thin current structures could therefore not be computed in the usual manner. A method is developed to determine these quantities on a much smaller scale and applied to compute the normal component of terms in the generalized Ohm's law for the positions of each individual spacecraft (not a barocentric average). Although the gradient pressure term has a qualitative dependence that follows the observed variation of E + Ve × B, the quantitative magnitude of these terms differs by more than a factor of 2, which is shown to be greater than the respective errors. Thus, future research is required to find the manner in which Ohm's law is balanced.
NASA Astrophysics Data System (ADS)
Sun, P.; Jokipii, J. R.; Giacalone, J.
2016-12-01
Anisotropies in astrophysical turbulence has been proposed and observed for a long time. And recent observations adopting the multi-scale analysis techniques provided a detailed description of the scale-dependent power spectrum of the magnetic field parallel and perpendicular to the scale-dependent magnetic field line at different scales in the solar wind. In the previous work, we proposed a multi-scale method to synthesize non-isotropic turbulent magnetic field with pre-determined power spectra of the fluctuating magnetic field as a function of scales. We present the effect of test particle transport in the resulting field with a two-scale algorithm. We find that the scale-dependent turbulence anisotropy has a significant difference in the effect on charged par- ticle transport from what the isotropy or the global anisotropy has. It is important to apply this field synthesis method to the solar wind magnetic field based on spacecraft data. However, this relies on how we extract the power spectra of the turbulent magnetic field across different scales. In this study, we propose here a power spectrum synthesis method based on Fourier analysis to extract the large and small scale power spectrum from a single spacecraft observation with a long enough period and a high sampling frequency. We apply the method to the solar wind measurement by the magnetometer onboard the ACE spacecraft and regenerate the large scale isotropic 2D spectrum and the small scale anisotropic 2D spectrum. We run test particle simulations in the magnetid field generated in this way to estimate the transport coefficients and to compare with the isotropic turbulence model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamburov, D.; Mueed, M. A.; Jo, I.
2014-12-01
We report ballistic transport commensurability minima in the magnetoresistance of nu = 3/2 composite fermions (CFs). The CFs are formed in high-quality two-dimensional electron systems confined to wide GaAs quantum wells and subjected to an in-plane, unidirectional periodic potential modulation. We observe a slight asymmetry of the CF commensurability positions with respect to nu = 3/2, which we explain quantitatively by comparing three CF density models and concluding that the nu = 3/2 CFs are likely formed by the minority carriers in the upper energy spin state of the lowest Landau level. Our data also allow us to probe themore » shape and size of the CF Fermi contour. At a fixed electron density of similar or equal to 1.8x10(11) cm(-2), as the quantum well width increases from 30 to 60 nm, the CFs show increasing spin polarization. We attribute this to the enhancement of the Zeeman energy relative to the Coulomb energy in wider wells where the latter is softened because of the larger electron layer thickness. The application of an additional parallel magnetic field (B-parallel to) leads to a significant distortion of the CF Fermi contour as B-parallel to couples to the CFs' out-of-plane orbital motion. The distortion is much more severe compared to the nu = 1/2 CF case at comparable B-parallel to. Moreover, the applied B-parallel to further spin-polarizes the nu = 3/2 CFs as deduced from the positions of the commensurability minima.« less
He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan
2017-12-27
Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haerendel, G.
It is proposed that the coincidence of higher brightness and upward electric current observed by Janvier et al. during a flare indicates electron acceleration by field-parallel potential drops sustained by extremely strong field-aligned currents of order 10{sup 4} A m{sup −2}. A few consequences are discussed here.
A Parallel Genetic Algorithm for Automated Electronic Circuit Design
NASA Technical Reports Server (NTRS)
Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris
2000-01-01
Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency issues in the GA, it is possible to have idle processors. However, as long as the load at each processing node is similar, the processors are kept busy nearly all of the time. In applying GAs to circuit design, a suitable genetic representation 'is that of a circuit-construction program. We discuss one such circuit-construction programming language and show how evolution can generate useful analog circuit designs. This language has the desirable property that virtually all sets of combinations of primitives result in valid circuit graphs. Our system allows circuit size (number of devices), circuit topology, and device values to be evolved. Using a parallel genetic algorithm and circuit simulation software, we present experimental results as applied to three analog filter and two amplifier design tasks. For example, a figure shows an 85 dB amplifier design evolved by our system, and another figure shows the performance of that circuit (gain and frequency response). In all tasks, our system is able to generate circuits that achieve the target specifications.
NASA Astrophysics Data System (ADS)
Esquivel-Sirvent, Raul; Schatz, George
2014-03-01
The theory of generalized van der Waals forces by Lifshtz when applied to optically anisotropic media predicts the existence of a torque. In this work we present a theoretical calculation of the van der Waals torque for two systems. First we consider two isotropic parallel plates where the anisotropy is induced using an external magnetic field. The anisotropy will in turn induce a torque. As a case study we consider III-IV semiconductors such as InSb that can support magneto plasmons. The calculations of the torque are done in the Voigt configuration, that occurs when the magnetic field is parallel to the surface of the slabs. The change in the dielectric function as the magnetic field increases has the effect of decreasing the van der Waals force and increasing the torque. Thus, the external magnetic field is used to tune both the force and torque. The second example we present is the use of the torque in the non retarded regime to align arrays of nano particle slabs. The torque is calculated within Barash and Ginzburg formalism in the nonretarded limit, and is quantified by the introduction of a Hamaker torque constant. Calculations are conducted between anisotropic slabs of materials including BaTiO3 and arrays of Ag nano particles. Depending on the shape and arrangement of the Ag nano particles the effective dielectric function of the array can be tuned as to make it more or less anisotropic. We show how this torque can be used in self assembly of arrays of nano particles. ref. R. Esquivel-Sirvent, G. C. Schatz, Phys. Chem C, 117, 5492 (2013). partial support from DGAPA-UNAM.
NASA Astrophysics Data System (ADS)
Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui
2017-05-01
Secondary magnetic islands may be generated in the vicinity of an X line during magnetic reconnection. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate the role of a secondary magnetic island in electron acceleration during magnetic reconnection with a guide field. The electron motions are found to be adiabatic, and we analyze the contributions of the parallel electric field and Fermi and betatron mechanisms to electron acceleration in the secondary island during the evolution of magnetic reconnection. When the secondary island is formed, electrons are accelerated by the parallel electric field due to the existence of the reconnection electric field in the electron current sheet. Electrons can be accelerated by both the parallel electric field and Fermi mechanism when the secondary island begins to merge with the primary magnetic island, which is formed simultaneously with the appearance of X lines. With the increase in the guide field, the contributions of the Fermi mechanism to electron acceleration become less and less important. When the guide field is sufficiently large, the contribution of the Fermi mechanism is almost negligible.
Perpendicular magnetic recording—Its development and realization—
IWASAKI, Shun-ichi
2009-01-01
The principle of conventional magnetic recording is that magnetic fields are applied parallel to the plane of the magnetic medium. As described in this paper, the invention and development of a new method of placing the magnetized information perpendicular to the plane of the magnetic recording medium is presented. The yield in the mass production of high-density hard disk drives (HDDs) for perpendicular recording is much higher than that of HDDs for conventional recording. Consequently, it is estimated that as many as 75% of the 500 million HDDs to be shipped this year will use this technology. PMID:19212097
Spin-polarized transport properties of a pyridinium-based molecular spintronics device
NASA Astrophysics Data System (ADS)
Zhang, J.; Xu, B.; Qin, Z.
2018-05-01
By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.
New theoretical results for the Lehmann effect in cholesteric liquid crystals
NASA Technical Reports Server (NTRS)
Brand, Helmut R.; Pleiner, Harald
1988-01-01
The Lehmann effect arising in a cholesteric liquid crystal drop when a temperature gradient is applied parallel to its helical axis is investigated theoretically using a local approach. A pseudoscalar quantity is introduced to allow for cross couplings which are absent in nematic liquid crystals, and the statics and dissipative dynamics are analyzed in detail. It is shown that the Lehmann effect is purely dynamic for the case of an external electric field and purely static for an external density gradient, but includes both dynamic and static coupling contributions for the cases of external temperature or concentration gradients.
ParaBTM: A Parallel Processing Framework for Biomedical Text Mining on Supercomputers.
Xing, Yuting; Wu, Chengkun; Yang, Xi; Wang, Wei; Zhu, En; Yin, Jianping
2018-04-27
A prevailing way of extracting valuable information from biomedical literature is to apply text mining methods on unstructured texts. However, the massive amount of literature that needs to be analyzed poses a big data challenge to the processing efficiency of text mining. In this paper, we address this challenge by introducing parallel processing on a supercomputer. We developed paraBTM, a runnable framework that enables parallel text mining on the Tianhe-2 supercomputer. It employs a low-cost yet effective load balancing strategy to maximize the efficiency of parallel processing. We evaluated the performance of paraBTM on several datasets, utilizing three types of named entity recognition tasks as demonstration. Results show that, in most cases, the processing efficiency can be greatly improved with parallel processing, and the proposed load balancing strategy is simple and effective. In addition, our framework can be readily applied to other tasks of biomedical text mining besides NER.
Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossan, Mohammad Robiul; Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034-5209; Dillon, Robert
2014-08-01
Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of themore » hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.« less
Formation of Electrostatic Potential Drops in the Auroral Zone
NASA Technical Reports Server (NTRS)
Schriver, D.; Ashour-Abdalla, M.; Richard, R. L.
2001-01-01
In order to examine the self-consistent formation of large-scale quasi-static parallel electric fields in the auroral zone on a micro/meso scale, a particle in cell simulation has been developed. The code resolves electron Debye length scales so that electron micro-processes are included and a variable grid scheme is used such that the overall length scale of the simulation is of the order of an Earth radii along the magnetic field. The simulation is electrostatic and includes the magnetic mirror force, as well as two types of plasmas, a cold dense ionospheric plasma and a warm tenuous magnetospheric plasma. In order to study the formation of parallel electric fields in the auroral zone, different magnetospheric ion and electron inflow boundary conditions are used to drive the system. It has been found that for conditions in the primary (upward) current region an upward directed quasi-static electric field can form across the system due to magnetic mirroring of the magnetospheric ions and electrons at different altitudes. For conditions in the return (downward) current region it is shown that a quasi-static parallel electric field in the opposite sense of that in the primary current region is formed, i.e., the parallel electric field is directed earthward. The conditions for how these different electric fields can be formed are discussed using satellite observations and numerical simulations.
Megavolt parallel potentials arising from double-layer streams in the Earth's outer radiation belt.
Mozer, F S; Bale, S D; Bonnell, J W; Chaston, C C; Roth, I; Wygant, J
2013-12-06
Huge numbers of double layers carrying electric fields parallel to the local magnetic field line have been observed on the Van Allen probes in connection with in situ relativistic electron acceleration in the Earth's outer radiation belt. For one case with adequate high time resolution data, 7000 double layers were observed in an interval of 1 min to produce a 230,000 V net parallel potential drop crossing the spacecraft. Lower resolution data show that this event lasted for 6 min and that more than 1,000,000 volts of net parallel potential crossed the spacecraft during this time. A double layer traverses the length of a magnetic field line in about 15 s and the orbital motion of the spacecraft perpendicular to the magnetic field was about 700 km during this 6 min interval. Thus, the instantaneous parallel potential along a single magnetic field line was the order of tens of kilovolts. Electrons on the field line might experience many such potential steps in their lifetimes to accelerate them to energies where they serve as the seed population for relativistic acceleration by coherent, large amplitude whistler mode waves. Because the double-layer speed of 3100 km/s is the order of the electron acoustic speed (and not the ion acoustic speed) of a 25 eV plasma, the double layers may result from a new electron acoustic mode. Acceleration mechanisms involving double layers may also be important in planetary radiation belts such as Jupiter, Saturn, Uranus, and Neptune, in the solar corona during flares, and in astrophysical objects.
Anisotropic upper critical magnetic fields in Rb 2 Cr 3 As 3 superconductor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Zhang-Tu; Liu, Yi; Bao, Jin-Ke
Rb2Cr3As3 is a structurally one-dimensional superconductor containing Cr3As3 chains with a superconducting transition temperature of T-c = 4.8 K. Here we report the electrical resistance measurements for Rb2Cr3As3 single crystals, under magnetic fields up to 29.5 T and at temperatures down to 0.36 K, from which the upper critical fields, H-c2(T), can be obtained in a broad temperature range. For field parallel to the Cr3As3 chains, H-c2(parallel to)(T) is paramagnetically limited with an initial slope of mu(0)dH(c2)(parallel to)/dT|T-c = - 16 T K-1 and a zero-temperature upper critical field of mu H-0(c2)parallel to(0) = 17.5 T. For field perpendicular tomore » the Cr3As3 chains, however, H-c2(perpendicular to)(T) is only limited by orbital pair-breaking effect with mu(0)dH(c2)(perpendicular to)/dT|(Tc) = - 3 T K-1. As a consequence, the anisotropy gamma H = H-c2(parallel to)/H-c2(perpendicular to) decreases sharply near T-c and reverses below 2 K. Remarkably, the low- temperature H-c2(perpendicular to)(T) down to 0.075 T-c remains to increase linearly up to over three times the Pauli paramagnetic limit, which strongly suggests dominant spin-triplet superconductivity in Rb2Cr3As3.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, H.
We have measured the scintillation and ionization yield of recoiling nuclei in liquid argon as a function of applied electric field by exposing a dual-phase liquid argon time projection chamber (LAr-TPC) to a low energy pulsed narrow band neutron beam produced at the Notre Dame Institute for Structure and Nuclear Astrophysics. Liquid scintillation counters were arranged to detect and identify neutrons scattered in the TPC and to select the energy of the recoiling nuclei. We also report measurements of the scintillation yields for nuclear recoils with energies from 10.3 to 57.3 keV and for median applied electric fields from 0more » to 970 V/cm. For the ionization yields, we report measurements from 16.9 to 57.3 keV and for electric fields from 96.4 to 486 V/cm. Furthermore, we report the observation of an anticorrelation between scintillation and ionization from nuclear recoils, which is similar to the anticorrelation between scintillation and ionization from electron recoils. Assuming that the energy loss partitions into excitons and ion pairs from 83mKr internal conversion electrons is comparable to that from 207Bi conversion electrons, we obtained the numbers of excitons (N ex) and ion pairs (N i) and their ratio (N ex/N i) produced by nuclear recoils from 16.9 to 57.3 keV. Motivated by arguments suggesting direction sensitivity in LAr-TPC signals due to columnar recombination, a comparison of the light and charge yield of recoils parallel and perpendicular to the applied electric field is presented for the first time.« less
Generalized kinetic-neoclassical closure for parallel viscosity in a tokamak.
NASA Astrophysics Data System (ADS)
Smolyakov, A.; Callen, J. D.; Hegna, C.
2000-10-01
We develop a drift-kinetic equation for a Chapman Enskog-type calculations of the parallel viscosity in a tokamak. This approach allows us to uniformly obtain closure relations for the parallel viscosity that include the kinetic effects of wave-particle interactions, such as those of Hammet-Perkins closures, as well as standard neoclassical moment closures induced by collisions and the magnetic field strength variation along field lines. Closures for both these cases can be obtained from our expressions; also, their mutual influences can be investigated. The developed equations allow calculation of parallel vicosity in general kinetic-neoclassical regimes while the main conservation properties remain correct even with an approximate treatment of the collisional operator.
NASA Astrophysics Data System (ADS)
Maneva, Yana; Poedts, Stefaan
2017-04-01
The electromagnetic fluctuations in the solar wind represent a zoo of plasma waves with different properties, whose wavelengths range from largest fluid scales to the smallest dissipation scales. By nature the power spectrum of the magnetic fluctuations is anisotropic with different spectral slopes in parallel and perpendicular directions with respect to the background magnetic field. Furthermore, the magnetic field power spectra steepen as one moves from the inertial to the dissipation range and we observe multiple spectral breaks with different slopes in parallel and perpendicular direction at the ion scales and beyond. The turbulent dissipation of magnetic field fluctuations at the sub-ion scales is believed to go into local ion heating and acceleration, so that the spectral breaks are typically associated with particle energization. The gained energy can be in the form of anisotropic heating, formation of non-thermal features in the particle velocity distributions functions, and redistribution of the differential acceleration between the different ion populations. To study the relation between the evolution of the anisotropic turbulent spectra and the particle heating at the ion and sub-ion scales we perform a series of 2.5D hybrid simulations in a collisionless drifting proton-alpha plasma. We neglect the fast electron dynamics and treat the electrons as an isothermal fluid electrons, whereas the protons and a minor population of alpha particles are evolved in a fully kinetic manner. We start with a given wave spectrum and study the evolution of the magnetic field spectral slopes as a function of the parallel and perpendicular wave¬numbers. Simultaneously, we track the particle response and the energy exchange between the parallel and perpendicular scales. We observe anisotropic behavior of the turbulent power spectra with steeper slopes along the dominant energy-containing direction. This means that for parallel and quasi-parallel waves we have steeper spectral slope in parallel direction, whereas for highly oblique waves the dissipation occurs predominantly in perpendicular direction and the spectral slopes are steeper across the background magnetic field. The value of the spectral slopes depends on the angle of propagation, the spectral range, as well as the plasma properties. In general the dissipation is stronger at small scales and the corresponding spectral slopes there are steeper. For parallel and quasi-parallel propagation the prevailing energy cascade remains along the magnetic field, whereas for initially isotropic oblique turbulence the cascade develops mainly in perpendicular direction.
Evaluation, development, and characterization of superconducting materials for space applications
NASA Technical Reports Server (NTRS)
Thorpe, Arthur N.
1990-01-01
The anisotropic electromagnetic features of a grain-aligned YBa2Cu3O(x) bulk sample derived from a process of long-time partial melt growth were investigated by the measurements of direct current magnetization (at 77 K) and alternating current susceptibility as a function of temperature, with the fields applied parallel and perpendicular to the c axis, respectively. The extended Bean model was further studied and applied to explain the experimental results. Upon comparison of the grain-aligned sample with pure single crystal materials, it is concluded that because of the existence of more effective pinning sites in the grain-aligned sample, not only its critical current density perpendicular to the c axis is improved, but the one parallel to the c axis is improved even more significantly. The anisotropy in the critical current densities in the grain-aligned sample at 77 K is at least one to two orders of magnitude smaller than in the pure single crystal. The measurement of anisotropy of alternating current susceptibility as a function of temperature, especially its imaginary part, shows that there are still some residues of interlayer weak links in the grain-aligned samples, but they are quite different from and far less serious than the weak links in the sintered sample.
Intrinsic suppression of turbulence in linear plasma devices
NASA Astrophysics Data System (ADS)
Leddy, J.; Dudson, B.
2017-12-01
Plasma turbulence is the dominant transport mechanism for heat and particles in magnetised plasmas in linear devices and tokamaks, so the study of turbulence is important in limiting and controlling this transport. Linear devices provide an axial magnetic field that serves to confine a plasma in cylindrical geometry as it travels along the magnetic field from the source to the strike point. Due to perpendicular transport, the plasma density and temperature have a roughly Gaussian radial profile with gradients that drive instabilities, such as resistive drift-waves and Kelvin-Helmholtz. If unstable, these instabilities cause perturbations to grow resulting in saturated turbulence, increasing the cross-field transport of heat and particles. When the plasma emerges from the source, there is a time, {τ }\\parallel , that describes the lifetime of the plasma based on parallel velocity and length of the device. As the plasma moves down the device, it also moves azimuthally according to E × B and diamagnetic velocities. There is a balance point in these parallel and perpendicular times that sets the stabilisation threshold. We simulate plasmas with a variety of parallel lengths and magnetic fields to vary the parallel and perpendicular lifetimes, respectively, and find that there is a clear correlation between the saturated RMS density perturbation level and the balance between these lifetimes. The threshold of marginal stability is seen to exist where {τ }\\parallel ≈ 11{τ }\\perp . This is also associated with the product {τ }\\parallel {γ }* , where {γ }* is the drift-wave linear growth rate, indicating that the instability must exist for roughly 100 times the growth time for the instability to enter the nonlinear growth phase. We explore the root of this correlation and the implications for linear device design.
NASA Astrophysics Data System (ADS)
Zou, Min
A systematic study of single crystalline Tb5Si2.2Ge1.8, including magnetic field induced crystallographic and magnetic phase transformations, magnetocaloric effect, ferromagnetic short-range correlations, electrical resistivity, magnetoresistance, and spontaneous generation of voltage (SGV) has been presented. A study of SGV in single crystalline Gd5Si2Ge2 and Gd has also been included. The metamagnetic-like transitions and giant magnetocaloric effect were observed with the magnetic field applied parallel to the a- and c-axes, but not the b-axis in a Tb5Si 2.2Ge1.8 single crystal. The in-situ x-ray powder diffraction study indicates that these metamagnetic-like transitions are coupled to a crystallographic phase transformation occurring via strong magnetoelastic interactions. The magnetocrystalline anisotropy plays an important role in this system. Magnetic fields less than 40 kOe can not drive either the magnetic or the crystallographic phase transition to completion for Tb5Si2.2Ge1.8 powder due to the strong single ion anisotropy of Tb. Magnetic field dependencies of the critical temperatures of magnetic phase transitions of Tb5Si2.2Ge1.8 are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ~70 K. Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a-and b-axes (but not along the c-axis) between 1.8 and 70 K in fields below 70 kOe. Strongly anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data: (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed. The positive colossal magnetoresistance (CMR) with a magnitude of ~150% was observed with the magnetic field applied parallel to the a-axis, but not the b- and c-axes in Tb5Si 2.2Ge1.8 single crystals. The electrical resistivity shows a low-temperature high-resistivity behavior (i.e. the resistivity at low temperature is higher after the transformation to the low temperature phase than the resistivity of the phase before the transition) along the a-axis, contrary to those along the b- and c-axes. The positive CMR effect originates from an intrinsic crystallographic phase coexistence state frozen below the Curie Temperature (TC). The differences in the temperature dependencies of electrical resistivities and longitudinal magnetoresistance along the a-axis and those along the b- and c-axes can be explained by the geometry of the phase boundaries at low temperatures, and the inability of the external magnetic field to induce the crystallographic phase transformation along the b- and c-axes. Temperature-induced SGVs were observed along all three principal crystallographic axes of Tb5Si2.2Ge1.8, but not in Gd. Field-induced SGVs were observed with magnetic fields less than 40 kOe applied along the a-axis of Tb5Si2.2Ge1.8, and the c-axis of Gd. The absence of the temperature induced SGV in Gd indicates the key role first-order phase transformations play in the appearance of the effect when temperature varies. The anisotropy of magnetic field induced SGV in Tb5Si2.2Ge1.8 and the existence of field induced SGV in Gd, highlight the importance of the magnetocaloric effect in bringing about the SGV. In single crystal and polycrystalline Gd5Si 2Ge2 during the coupled magneto-structural transformations, reversible and repeatable SGV responses of the materials to the temperature and magnetic field have been observed. The parameters of the response and the magnitude of the signal are anisotropic and rate dependent. The magnitude of the SGV signal, and the critical temperatures and critical magnetic fields at which the SGV occurs vary with the rate of temperature and magnetic field changes.
Parallel transmission RF pulse design for eddy current correction at ultra high field.
Zheng, Hai; Zhao, Tiejun; Qian, Yongxian; Ibrahim, Tamer; Boada, Fernando
2012-08-01
Multidimensional spatially selective RF pulses have been used in MRI applications such as B₁ and B₀ inhomogeneities mitigation. However, the long pulse duration has limited their practical applications. Recently, theoretical and experimental studies have shown that parallel transmission can effectively shorten pulse duration without sacrificing the quality of the excitation pattern. Nonetheless, parallel transmission with accelerated pulses can be severely impeded by hardware and/or system imperfections. One of such imperfections is the effect of the eddy current field. In this paper, we first show the effects of the eddy current field on the excitation pattern and then report an RF pulse the design method to correct eddy current fields caused by the RF coil and the gradient system. Experimental results on a 7 T human eight-channel parallel transmit system show substantial improvements on excitation patterns with the use of eddy current correction. Moreover, the proposed model-based correction method not only demonstrates comparable excitation patterns as the trajectory measurement method, but also significantly improves time efficiency. Copyright © 2012. Published by Elsevier Inc.
Giotto magnetic field observations at the outbound quasi-parallel bow shock of Comet Halley
NASA Technical Reports Server (NTRS)
Neubauer, F. M.; Glassmeier, K. H.; Acuna, M. H.; Mariani, F.; Musmann, G.
1990-01-01
The investigation of the outbound bow shock of Comet Halley using Giotto magnetometer data leads to the following results: the shock is characterized by strong magnetic turbulence associated with an increasing background magnetic field and a change in direction by 60 deg as one goes inward. In HSE-coordinates, the observed normal turned out to be (0.544, - 0.801, 0.249). The thickness of the quasi-parallel shock was 120,000 km. The shock is shown to be a new type of shock transition called a 'draping shock'. In a draping shock with high beta in the transonic transition region, the transonic region is characterized by strong directional variations of the magnetic field. The magnetic turbulence ahead of the shock is characterized by k-vectors parallel or antiparallel to the average field (and, therefore, also to the normal of the quasi-parallel shock) and almost isotropic magnetic turbulence in the shock transition region. A model of the draping shock is proposed which also includes a hypothetical subshock in which the supersonic-subsonic transition is accomplished.
NASA Astrophysics Data System (ADS)
Dammertz, K.; Saier, A. M.; Marti, O.; Amirkhani, M.
2014-04-01
External stimuli such as vapours and electric fields can be used to manipulate the formation of AB-diblock copolymers on surfaces. We study the conformational variation of PS-b-PMMA (polystyrene-block-poly(methyl methacrylate)), PS and PMMA adsorbed on mica and their response to saturated water or chloroform atmospheres. Using specimens with only partial polymer coverage, new unanticipated effects were observed. Water vapour, a non-solvent for all three polymers, was found to cause high surface mobility. In contrast, chloroform vapour (a solvent for all three polymers) proved to be less efficient. Furthermore, the influence of an additional applied electric field was investigated. A dc field oriented parallel to the sample surface induces the formation of polymer islands which assemble into wormlike chains. Moreover, PS-b-PMMA forms octopus-like micelles (OLMs) on mica. Under the external stimuli mentioned above, the wormlike formations of OLMs are able to align in the direction of the external electric field. In the absence of an electric field, the OLMs disaggregate and exhibit phase separated structures under chloroform vapour.
Hentschel, Carsten; Fontein, Florian; Stegemann, Linda; Hoeppener, Christiane; Fuchs, Harald; Hoeppener, Stefanie
2014-01-01
Summary A general concept for parallel near-field photochemical and radiation-induced chemical processes for the fabrication of nanopatterns of a self-assembled monolayer (SAM) of (3-aminopropyl)triethoxysilane (APTES) is explored with three different processes: 1) a near-field photochemical process by photochemical bleaching of a monomolecular layer of dye molecules chemically bound to an APTES SAM, 2) a chemical process induced by oxygen plasma etching as well as 3) a combined near-field UV-photochemical and ozone-induced chemical process, which is applied directly to an APTES SAM. All approaches employ a sandwich configuration of the surface-supported SAM, and a lithographic mask in form of gold nanostructures fabricated through colloidal sphere lithography (CL), which is either exposed to visible light, oxygen plasma or an UV–ozone atmosphere. The gold mask has the function to inhibit the photochemical reactions by highly localized near-field interactions between metal mask and SAM and to inhibit the radiation-induced chemical reactions by casting a highly localized shadow. The removal of the gold mask reveals the SAM nanopattern. PMID:25247126
A modified Bitter-type electromagnet and control system for cold atom experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn
2014-02-15
We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000more » G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Xue; Liu, Yueqiang; Gao, Zhe
Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less
Electro-active device using radial electric field piezo-diaphragm for sonic applications
NASA Technical Reports Server (NTRS)
Bryant, Robert G. (Inventor); Fox, Robert L. (Inventor)
2005-01-01
An electro-active transducer for sonic applications includes a ferroelectric material sandwiched by first and second electrode patterns to form a piezo-diaphragm coupled to a mounting frame. When the device is used as a sonic actuator, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when voltage is applied to the electrode patterns. When the device is used as a sonic sensor, the first and second electrode patterns are configured to introduce an electric field into the ferroelectric material when the ferroelectric material experiences deflection in a direction substantially perpendicular thereto. In each case, the electrode patterns are designed to cause the electric field to: i) originate at a region of the ferroelectric material between the first and second electrode patterns, and ii) extend radially outward from the region of the ferroelectric material (at which the electric field originates) and substantially parallel to the plane of the ferroelectric material. The mounting frame perimetrically surrounds the peizo-diaphragm and enables attachment of the piezo-diaphragm to a housing.
NASA Astrophysics Data System (ADS)
Kashina, M. A.; Alabuzhev, A. A.
2018-02-01
The dynamics of the incompressible fluid drop under the non-uniform electric field are considered. The drop is bounded axially by two parallel solid planes and the case of heterogeneous plates is investigated. The external electric field acts as an external force that causes motion of the contact line. We assume that the electric current is alternative current and the AC filed amplitude is a spatially non-uniform function. In equilibrium, the drop has the form of a circular cylinder. The equilibrium contact angle is 0.5 π. In order to describe this contact line motion the modified Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle and the speed of the fast relaxation processes, which frequency is proportional to twice the frequency of the electric field. The Hocking parameter depends on the polar angle, i.e. the coefficient of the interaction between the plate and the fluid (the contact line) is a function of the plane coordinates. This function is expanded in a series of the Laplace operator eigenfunctions.
Bai, Xue; Liu, Yueqiang; Gao, Zhe
2017-09-21
Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) at slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. Furthermore, this physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, resultedmore » from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. These modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.« less
Measurement of eddy-current distribution in the vacuum vessel of the Sino-UNIted Spherical Tokamak.
Li, G; Tan, Y; Liu, Y Q
2015-08-01
Eddy currents have an important effect on tokamak plasma equilibrium and control of magneto hydrodynamic activity. The vacuum vessel of the Sino-UNIted Spherical Tokamak is separated into two hemispherical sections by a toroidal insulating barrier. Consequently, the characteristics of eddy currents are more complex than those found in a standard tokamak. Thus, it is necessary to measure and analyze the eddy-current distribution. In this study, we propose an experimental method for measuring the eddy-current distribution in a vacuum vessel. By placing a flexible printed circuit board with magnetic probes onto the external surface of the vacuum vessel to measure the magnetic field parallel to the surface and then subtracting the magnetic field generated by the vertical-field coils, the magnetic field due to the eddy current can be obtained, and its distribution can be determined. We successfully applied this method to the Sino-UNIted Spherical Tokamak, and thus, we obtained the eddy-current distribution despite the presence of the magnetic field generated by the external coils.
NASA Astrophysics Data System (ADS)
Bai, Xue; Liu, Yueqiang; Gao, Zhe
2017-10-01
Plasma response to the resonant magnetic perturbation (RMP) field is numerically investigated by an extended toroidal fluid model, which includes anisotropic thermal transport physics parallel and perpendicular to the total magnetic field. The thermal transport is found to be effective in eliminating the toroidal average curvature induced plasma screening (the so called Glasser-Green-Johnson, GGJ screening) in a slow toroidal flow regime, whilst having minor effect on modifying the conventional plasma screening regimes at faster flow. This physics effect of interaction between thermal transport and GGJ screening is attributed to the modification of the radial structure of the shielding current, which resulted from the plasma response to the applied field. The modification of the plasma response (shielding current, response field, plasma displacement, and the perturbed velocity) also has direct consequence on the toroidal torques produced by RMP. Modelling results show that thermal transport reduces the resonant electromagnetic torque as well as the torque associated with the Reynolds stress, but enhances the neoclassical toroidal viscous torque at slow plasma flow.
Transferable ordered ni hollow sphere arrays induced by electrodeposition on colloidal monolayer.
Duan, Guotao; Cai, Weiping; Li, Yue; Li, Zhigang; Cao, Bingqiang; Luo, Yuanyuan
2006-04-13
We report an electrochemical synthesis of two-dimensionally ordered porous Ni arrays based on polystyrene sphere (PS) colloidal monolayer. The morphology can be controlled from bowl-like to hollow sphere-like structure by changing deposition time under a constant current. Importantly, such ordered Ni arrays on a conducting substrate can be transferred integrally to any other desired substrates, especially onto an insulting substrate or curved surface. The magnetic measurements of the two-dimensional hollow sphere array show the coercivity values of 104 Oe for the applied field parallel to the film, and 87 Oe for the applied field perpendicular to the film, which is larger than those of bulk Ni and hollow Ni submicrometer-sized spheres. The formation of hollow sphere arrays is attributed to preferential nucleation on the interstitial sites between PS in the colloidal monolayer and substrate, and growth along PSs' surface. The transferability of the arrays originates from partial contact between the Ni hollow spheres and substrate. Such novel Ni ordered nanostructured arrays with transferability and high magnetic properties should be useful in applications such as data storage, catalysis, and magnetics.
NASA Astrophysics Data System (ADS)
Jamil, Ako; Filipenko, Mykhaylo; Gleixner, Thomas; Anton, Gisela; Michel, Thilo
2016-02-01
The spatial and energy resolution of hybrid photon counting pixel detectors like the Timepix detector can suffer from charge sharing. Due to diffusion an initially point-like charge carrier distribution generated by ionizing radiation becomes a typically Gaussian-like distribution when arriving at the pixel electrodes. This leads to loss of charge information in edge pixels if the amount of charge in the pixel fall below the discriminator threshold. In this work we investigated the reduction of charge sharing by applying a magnetic field parallel to the electric drift field inside the sensor layer. The reduction of diffusion by a magnetic field is well known for gases. With realistic assumptions for the mean free path of charge carriers in semiconductors, a similar effect should be observable in solid state materials. We placed a Medipix-2 detector in the magnetic field of a medical MR device with a maximum magnetic field of 3 T and illuminated it with photons and α-particles from 241Am. We observe that with a magnetic field of 3000 mT the mean cluster size is reduced by 0.75 %.
Diffusive shock acceleration at non-relativistic highly oblique shocks
NASA Astrophysics Data System (ADS)
Meli, Athina; Biermann, P. L.
2004-10-01
Our aim here is to evaluate the rate of the maximum energy and the acceleration rate that Cosmic Rays (CRs) acquire in the non-relativistic diffusive shock acceleration as it could apply during their lifetime in various astrophysical sites. We examine numerically (using Monte Carlo simulations) the effect of the diffusion coefficients on the energy gain and the acceleration rate, by testing the role between the obliquity of the magnetic field at the shock normal, and the significance of both perpendicular cross-field diffusion and parallel diffusion coefficients to the aceleration rate. We find (and justify previous analytical work -Jokipii 1987) that in highly oblique shocks the smaller the perpendicular diffusion gets compared to the parallel diffusion coefficient values, the greater the energy gain of the CRs to be obtained. An explanation of the Cosmic Ray Spectrum in High Energies, between 1015 and 1018eV is claimed, as we estimate the upper limit of energy that CRs could gain in plausible astrophysical regimes; interpreted by the scenario of CRs which are injected by three different kind of sources, (i) supernovae (SN) which explode into the interstellar medium (ISM), (ii) Red Supergiants (RSG), and (iii) Wolf-Rayet stars (WR), where the two latter explode into their pre-SN winds Biermann (2001); Sina (2001).
NASA Astrophysics Data System (ADS)
Volkov, D.
2017-12-01
We introduce an algorithm for the simultaneous reconstruction of faults and slip fields on those faults. We define a regularized functional to be minimized for the reconstruction. We prove that the minimum of that functional converges to the unique solution of the related fault inverse problem. Due to inherent uncertainties in measurements, rather than seeking a deterministic solution to the fault inverse problem, we consider a Bayesian approach. The advantage of such an approach is that we obtain a way of quantifying uncertainties as part of our final answer. On the downside, this Bayesian approach leads to a very large computation. To contend with the size of this computation we developed an algorithm for the numerical solution to the stochastic minimization problem which can be easily implemented on a parallel multi-core platform and we discuss techniques to save on computational time. After showing how this algorithm performs on simulated data and assessing the effect of noise, we apply it to measured data. The data was recorded during a slow slip event in Guerrero, Mexico.
Using a constraint on the parallel velocity when determining electric fields with EISCAT
NASA Technical Reports Server (NTRS)
Caudal, G.; Blanc, M.
1988-01-01
A method is proposed to determine the perpendicular components of the ion velocity vector (and hence the perpendicular electric field) from EISCAT tristatic measurements, in which one introduces an additional constraint on the parallel velocity, in order to take account of our knowledge that the parallel velocity of ions is small. This procedure removes some artificial features introduced when the tristatic geometry becomes too unfavorable. It is particularly well suited for the southernmost or northernmost positions of the tristatic measurements performed by meridian scan experiments (CP3 mode).
NASA Technical Reports Server (NTRS)
Collinson, Glyn; Mitchell, David; Xu, Shaosui; Glocer, Alex; Grebowsky, Joseph; Hara, Takuya; Lillis, Robert; Espley, Jared; Mazelle, Christian; Sauvaud, Jean-Andre
2017-01-01
Abstract Parallel electric fields and their associated electric potential structures play a crucial role inionospheric-magnetospheric interactions at any planet. Although there is abundant evidence that parallel electric fields play key roles in Martian ionospheric outflow and auroral electron acceleration, the fields themselves are challenging to directly measure due to their relatively weak nature. Using measurements by the Solar Wind Electron Analyzer instrument aboard the NASA Mars Atmosphere and Volatile EvolutioN(MAVEN) Mars Scout, we present the discovery and measurement of a substantial (Phi) Mars 7.7 +/-0.6 V) parallel electric potential drop on closed magnetic field lines spanning the terminator from day to night above the great impact basin of Utopia Planitia, a region largely free of crustal magnetic fields. A survey of the previous 26 orbits passing over a range of longitudes revealed similar signatures on seven orbits, with a mean potential drop (Phi) Mars of 10.9 +/- 0.8 V, suggestive that although trans-terminator electric fields of comparable strength are not ubiquitous, they may be common, at least at these northerly latitudes.
CCMC Modeling of Magnetic Reconnection in Electron Diffusion Region Events
NASA Astrophysics Data System (ADS)
Marshall, A.; Reiff, P. H.; Daou, A.; Webster, J.; Sazykin, S. Y.; Kuznetsova, M.; Grocer, A.; Rastaetter, L.; Welling, D. T.; DeZeeuw, D.; Russell, C. T.
2017-12-01
We use the unprecedented spatial and temporal cadence of the Magnetospheric Multiscale Mission to study four electron diffusion events, and infer important physical properties of their respective magnetic reconnection processes. We couple these observations with numerical simulations using tools such as SWMF with RCM, and RECON-X, from the Coordinated Community Modeling Center, to provide, for a first time, a coherent temporal description of the magnetic reconnection process through tracing the coupling of IMF and closed Earth magnetic field lines, leading to the corresponding polar cap open field lines. We note that the reconnection geometry is far from slab-like: the IMF field lines drape over the magnetopause, lending to a stretching of the field lines. The stretched field lines become parallel to, and merge with the dayside separator. Surprisingly, the inner closed field lines also distort to become parallel to the separator. This parallel geometry allows a very sharp boundary between open and closed field lines. In three of the events, the MMS location was near the predicted separator location; in the fourth it was near the outflow region.
Effect of grain alignment on magnetic properties of Hg(Re)-1223 superconductors
NASA Astrophysics Data System (ADS)
Sakamoto, N.; Noguchi, S.; Akune, T.; Matsumoto, Y.
2002-08-01
Alignment of HgBa 2Ca 2Cu 3Re 0.2O y (Hg(Re)-1223) powders was made in epoxy resin under a high magnetic field of 10 T to be confirmed by X-ray analysis. DC magnetizations and AC susceptibilities of the grain aligned specimen were measured by SQUID and PPMS magnetometers at temperatures of 5-110 K and under the field of 0-14 T for both field directions of B parallel and perpendicular to ab-plane. The magnetization width for B parallel to the c-axis ΔMc showed high values at low field, decreased rather rapidly with the magnetic field compared to that for B parallel to the ab-plane ΔMab and became lower than ΔMab above a crossing field Bcr. Peak-heights of the imaginary parts of the AC susceptibilities χ″ were largest at B∥ c-axis. Non-aligned samples always showed intermediate characteristics between B∥ c-axis and B∥ ab-plane. Irreversibility fields of all samples were also evaluated. Correlations of the pinning mechanism with the crystal axis orientations are discussed.
Particle Acceleration, Magnetic Field Generation in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2005-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.
NASA Astrophysics Data System (ADS)
Aganze, Christian; Burgasser, Adam J.; Martin, Eduardo; Konopacky, Quinn; Masters, Daniel C.
2016-06-01
The majority of ultracool dwarf stars and brown dwarfs currently known were identified in wide-field red optical and infrared surveys, enabling measures of the local, typically isolated, population in a relatively shallow (<100 pc radius) volume. Constraining the properties of the wider Galactic population (scale height, radial distribution, Population II sources), and close brown dwarf and exoplanet companions to nearby stars, requires specialized instrumentation, such as high-contrast, coronagraphic spectrometers (e.g., Gemini/GPI, VLT/Sphere, Project 1640); and deep spectral surveys (e.g., HST/WFC3 parallel fields, Euclid). We present a set of quantitative methodologies to identify and robustly characterize sources for these specific populations, based on templates and tools developed as part of the SpeX Prism Library Analysis Toolkit. In particular, we define and characterize specifically-tuned sets spectral indices that optimize selection of cool dwarfs and distinguish rare populations (subdwarfs, young planetary-mass objects) based on low-resolution, limited-wavelength-coverage spectral data; and present a template-matching classification method for these instruments. We apply these techniques to HST/WFC3 parallel fields data in the WISPS and HST-3D programs, where our spectral index set allows high completeness and low contamination for searches of late M, L and T dwarfs to distances out to ~3 kpc.The material presented here is based on work supported by the National Aeronautics and Space Administration under Grant No. NNX15AI75G.
Kim, Seungchan; Im, Woo-Seok; Kang, Lami; Lee, Soon-Tae; Chu, Kon; Kim, Byoung In
2008-09-15
Electric and magnetic fields have been known to influence cellular behavior. In the present study, we hypothesized that the application of static magnetic fields to neurons will cause neurites to grow in a specific direction. In cultured human neuronal SH-SY5Y cells or PC12 cells, neurite outgrowth was induced by forskolin, retinoic acid, or nerve growth factor (NGF). We applied static magnetic fields to the neurons and analyzed the direction and morphology of newly formed neuronal processes. In the presence of the magnetic field, neurites grew in a direction perpendicular to the direction of the magnetic field, as revealed by the higher orientation index of neurites grown under the magnetic field compared to that of the neurites grown in the absence of the magnetic field. The neurites parallel to the magnetic field appeared to be dystrophic, beaded or thickened, suggesting that they would hinder further elongation processes. The co-localized areas of microtubules and actin filaments were arranged into the vertical axis to the magnetic field, while the levels of neurofilament and synaptotagmin were not altered. Our results suggest that the application of magnetic field can be used to modulate the orientation and direction of neurite formation in cultured human neuronal cells.
Gagnon, Zachary; Chang, Hsueh-Chia
2005-10-01
Tailor-designed alternating current electroosmotic (AC-EO) stagnation flows are used to convect bioparticles globally from a bulk solution to localized dielectrophoretic (DEP) traps that are aligned at the flow stagnation points. The multiscale trap, with a typical trapping time of seconds for a dilute 70 microL volume of 10(3) particles per cc sample, is several orders of magnitude faster than conventional DEP traps and earlier AC-EO traps with parallel, castellated, or finger electrodes. A novel serpentine wire capable of sustaining a high voltage, up to 2500 V(RMS), without causing excessive heat dissipation or Faradaic reaction in strong electrolytes is fabricated to produce the strong AC-EO flow with two separated stagnation lines, one aligned with the field minimum and one with the field maximum. The continuous wire design allows a large applied voltage without inducing Faradaic electrode reactions. Particles are trapped within seconds at one of the traps depending on whether they suffer negative or positive DEP. The particles can also be rapidly released from their respective traps by varying the frequency of the applied AC field below particle-distinct cross-over frequencies. Zwitterion addition to the buffer allows further geometric and frequency alignments of the AC-EO and DEP motions. The same device hence allows fast trapping, detection, sorting, and characterization on a sample with realistic conductivity, volume, and bacteria count.
A Parallel 2D Numerical Simulation of Tumor Cells Necrosis by Local Hyperthermia
NASA Astrophysics Data System (ADS)
Reis, R. F.; Loureiro, F. S.; Lobosco, M.
2014-03-01
Hyperthermia has been widely used in cancer treatment to destroy tumors. The main idea of the hyperthermia is to heat a specific region like a tumor so that above a threshold temperature the tumor cells are destroyed. This can be accomplished by many heat supply techniques and the use of magnetic nanoparticles that generate heat when an alternating magnetic field is applied has emerged as a promise technique. In the present paper, the Pennes bioheat transfer equation is adopted to model the thermal tumor ablation in the context of magnetic nanoparticles. Numerical simulations are carried out considering different injection sites for the nanoparticles in an attempt to achieve better hyperthermia conditions. Explicit finite difference method is employed to solve the equations. However, a large amount of computation is required for this purpose. Therefore, this work also presents an initial attempt to improve performance using OpenMP, a parallel programming API. Experimental results were quite encouraging: speedups around 35 were obtained on a 64-core machine.
Analysis of Camera Arrays Applicable to the Internet of Things.
Yang, Jiachen; Xu, Ru; Lv, Zhihan; Song, Houbing
2016-03-22
The Internet of Things is built based on various sensors and networks. Sensors for stereo capture are essential for acquiring information and have been applied in different fields. In this paper, we focus on the camera modeling and analysis, which is very important for stereo display and helps with viewing. We model two kinds of cameras, a parallel and a converged one, and analyze the difference between them in vertical and horizontal parallax. Even though different kinds of camera arrays are used in various applications and analyzed in the research work, there are few discussions on the comparison of them. Therefore, we make a detailed analysis about their performance over different shooting distances. From our analysis, we find that the threshold of shooting distance for converged cameras is 7 m. In addition, we design a camera array in our work that can be used as a parallel camera array, as well as a converged camera array and take some images and videos with it to identify the threshold.
Lagardère, Louis; Jolly, Luc-Henri; Lipparini, Filippo; Aviat, Félix; Stamm, Benjamin; Jing, Zhifeng F; Harger, Matthew; Torabifard, Hedieh; Cisneros, G Andrés; Schnieders, Michael J; Gresh, Nohad; Maday, Yvon; Ren, Pengyu Y; Ponder, Jay W; Piquemal, Jean-Philip
2018-01-28
We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.
Mechanical signals in plant development: a new method for single cell studies
NASA Technical Reports Server (NTRS)
Lynch, T. M.; Lintilhac, P. M.
1997-01-01
Cell division, which is critical to plant development and morphology, requires the orchestration of hundreds of intracellular processes. In the end, however, cells must make critical decisions, based on a discrete set of mechanical signals such as stress, strain, and shear, to divide in such a way that they will survive the mechanical loads generated by turgor pressure and cell enlargement within the growing tissues. Here we report on a method whereby tobacco protoplasts swirled into a 1.5% agarose entrapment medium will survive and divide. The application of a controlled mechanical load to agarose blocks containing protoplasts orients the primary division plane of the embedded cells. Photoelastic analysis of the agarose entrapment medium can identify the lines of principal stress within the agarose, confirming the hypothesis that cells divide either parallel or perpendicular to the principal stress tensors. The coincidence between the orientation of the new division wall and the orientation of the principal stress tensors suggests that the perception of mechanical stress is a characteristic of individual plant cells. The ability of a cell to determine a shear-free orientation for a new partition wall may be related to the applied load through the deformation of the matrix material. In an isotropic matrix a uniaxial load will produce a rotationally symmetric strain field, which will define a shear-free plane. Where high stress intensities combine with the loading geometry to produce multiaxial loads there will be no axis of rotational symmetry and hence no shear free plane. This suggests that two mechanisms may be orienting the division plane, one a mechanism that works in rotationally symmetrical fields, yielding divisions perpendicular to the compressive tensor, parallel to the long axis of the cell, and one in asymmetric fields, yielding divisions parallel to the short axis of the cell and the compressive tensor.
Parallel Computational Fluid Dynamics: Current Status and Future Requirements
NASA Technical Reports Server (NTRS)
Simon, Horst D.; VanDalsem, William R.; Dagum, Leonardo; Kutler, Paul (Technical Monitor)
1994-01-01
One or the key objectives of the Applied Research Branch in the Numerical Aerodynamic Simulation (NAS) Systems Division at NASA Allies Research Center is the accelerated introduction of highly parallel machines into a full operational environment. In this report we discuss the performance results obtained from the implementation of some computational fluid dynamics (CFD) applications on the Connection Machine CM-2 and the Intel iPSC/860. We summarize some of the experiences made so far with the parallel testbed machines at the NAS Applied Research Branch. Then we discuss the long term computational requirements for accomplishing some of the grand challenge problems in computational aerosciences. We argue that only massively parallel machines will be able to meet these grand challenge requirements, and we outline the computer science and algorithm research challenges ahead.
Communicating remote sensing concepts in an interdisciplinary environment
NASA Technical Reports Server (NTRS)
Chung, R.
1981-01-01
Although remote sensing is currently multidisciplinary in its applications, many of its terms come from the engineering sciences, particularly from the field of pattern recognition. Scholars from fields such as the social sciences, botany, and biology, may experience initial difficulty with remote sensing terminology, even though parallel concepts exist in their own fields. Some parallel concepts and terminologies from nonengineering fields, which might enhance the understanding of remote sensing concepts in an interdisciplinary situation are identified. Feedbacks which this analogue strategy might have on remote sensing itself are explored.
Testud, Frederik; Gallichan, Daniel; Layton, Kelvin J; Barmet, Christoph; Welz, Anna M; Dewdney, Andrew; Cocosco, Chris A; Pruessmann, Klaas P; Hennig, Jürgen; Zaitsev, Maxim
2015-03-01
PatLoc (Parallel Imaging Technique using Localized Gradients) accelerates imaging and introduces a resolution variation across the field-of-view. Higher-dimensional encoding employs more spatial encoding magnetic fields (SEMs) than the corresponding image dimensionality requires, e.g. by applying two quadratic and two linear spatial encoding magnetic fields to reconstruct a 2D image. Images acquired with higher-dimensional single-shot trajectories can exhibit strong artifacts and geometric distortions. In this work, the source of these artifacts is analyzed and a reliable correction strategy is derived. A dynamic field camera was built for encoding field calibration. Concomitant fields of linear and nonlinear spatial encoding magnetic fields were analyzed. A combined basis consisting of spherical harmonics and concomitant terms was proposed and used for encoding field calibration and image reconstruction. A good agreement between the analytical solution for the concomitant fields and the magnetic field simulations of the custom-built PatLoc SEM coil was observed. Substantial image quality improvements were obtained using a dynamic field camera for encoding field calibration combined with the proposed combined basis. The importance of trajectory calibration for single-shot higher-dimensional encoding is demonstrated using the combined basis including spherical harmonics and concomitant terms, which treats the concomitant fields as an integral part of the encoding. © 2014 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Luke, Edward Allen
1993-01-01
Two algorithms capable of computing a transonic 3-D inviscid flow field about rotating machines are considered for parallel implementation. During the study of these algorithms, a significant new method of measuring the performance of parallel algorithms is developed. The theory that supports this new method creates an empirical definition of scalable parallel algorithms that is used to produce quantifiable evidence that a scalable parallel application was developed. The implementation of the parallel application and an automated domain decomposition tool are also discussed.
Modeling electron emission and surface effects from diamond cathodes
Dimitrov, D. A.; Smithe, D.; Cary, J. R.; ...
2015-02-05
We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simulations of surface effects and electron emission from semiconductor photocathodes. They include calculation of emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective mass and band bending field effects. We applied these models, in combination with previously implemented capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The simulation results were compared to experimental data. For the considered parameter regime, conservation of transversemore » electron momentum (in the plane of the emission surface) allows direct emission from only two (parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with the probability of emission deduced from experiments. Including band bending in the simulations improves the agreement with the experimental data, particularly at low applied fields, but not significantly. In this study, using surface potentials with different profiles further allows us to investigate the emission as a function of potential barrier height, width, and vacuum level position. However, adding surface patches with different levels of hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the experimental data.« less
NASA Astrophysics Data System (ADS)
Jia, Yue; Chopdekar, Rajesh V.; Shafer, Padraic; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Takamura, Yayoi
2017-12-01
The magnetic structure of exchange-coupled antiferromagnetic (AF) layers in epitaxial L a0.7S r0.3Mn O3 (LSMO)/L a0.7S r0.3Fe O3 (LSFO) superlattices grown on (111)-oriented SrTi O3 substrates was studied using angle-dependent x-ray absorption spectroscopy utilizing linearly polarized x rays. We demonstrate the development of the measurement protocols needed to determine the orientation of the LSFO antiferromagnetic spin axis and how it responds to an applied magnetic field due to exchange interactions with an adjacent ferromagnetic layer. A small energy difference exists between two types of AF order: the majority of the AF moments cant out-of-the-plane of the film along the 110 or 100 directions depending on the LSFO layer thickness. In response to an applied magnetic field, these canted moments are aligned with a single 110 or 100 direction that maintains a nearly perpendicular orientation relative to the LSMO sublayer magnetization. The remaining AF moments lie within the (111 ) plane and these in-plane moments can be reoriented to an arbitrary in-plane direction to lie parallel to the LSMO sublayer magnetization. These results demonstrate that the magnetic order of AF thin films and heterostructures is far more complex than in bulk LSFO and can be tuned with orientation, thickness, and applied magnetic field.
Superelastic stress-strain behavior in ferrogels with different types of magneto-elastic coupling
NASA Astrophysics Data System (ADS)
Cremer, Peet; Löwen, Hartmut; Menzel, Andreas M.
Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications like dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress-strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In a previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress-strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages like a typically higher deformability and enhanced biocompatibility combined with high tunability.
Virtual fringe projection system with nonparallel illumination based on iteration
NASA Astrophysics Data System (ADS)
Zhou, Duo; Wang, Zhangying; Gao, Nan; Zhang, Zonghua; Jiang, Xiangqian
2017-06-01
Fringe projection profilometry has been widely applied in many fields. To set up an ideal measuring system, a virtual fringe projection technique has been studied to assist in the design of hardware configurations. However, existing virtual fringe projection systems use parallel illumination and have a fixed optical framework. This paper presents a virtual fringe projection system with nonparallel illumination. Using an iterative method to calculate intersection points between rays and reference planes or object surfaces, the proposed system can simulate projected fringe patterns and captured images. A new explicit calibration method has been presented to validate the precision of the system. Simulated results indicate that the proposed iterative method outperforms previous systems. Our virtual system can be applied to error analysis, algorithm optimization, and help operators to find ideal system parameter settings for actual measurements.
Positron annihilation in transparent ceramics
NASA Astrophysics Data System (ADS)
Husband, P.; Bartošová, I.; Slugeň, V.; Selim, F. A.
2016-01-01
Transparent ceramics are emerging as excellent candidates for many photonic applications including laser, scintillation and illumination. However achieving perfect transparency is essential in these applications and requires high technology processing and complete understanding for the ceramic microstructure and its effect on the optical properties. Positron annihilation spectroscopy (PAS) is the perfect tool to study porosity and defects. It has been applied to investigate many ceramic structures; and transparent ceramics field may be greatly advanced by applying PAS. In this work positron lifetime (PLT) measurements were carried out in parallel with optical studies on yttrium aluminum garnet transparent ceramics in order to gain an understanding for their structure at the atomic level and its effect on the transparency and light scattering. The study confirmed that PAS can provide useful information on their microstructure and guide the technology of manufacturing and advancing transparent ceramics.
SU-F-J-147: Magnetic Field Dose Response Considerations for a Linac Monitor Chamber
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, M; Fallone, B
Purpose: The impact of magnetic fields on the readings of a linac monitor chamber have not yet been investigated. Herein we examine the total dose response as well as any deviations in the beam parameters of flatness and symmetry when a Varian monitor chamber is irradiated within an applied magnetic field. This work has direct application to the development of Linac-MR systems worldwide. Methods: A Varian monitor chamber was modeled in the Monte Carlo code PENELOPE and irradiated in the presence of a magnetic field with a phase space generated from a model of a Linac-MR prototype system. The magneticmore » field strength was stepped from 0 to 3.0T in both parallel and perpendicular directions with respect to the normal surface of the phase space. Dose to each of the four regions in the monitor chamber were scored separately for every magnetic field adaptation to evaluate the effect of the magnetic field on flatness and symmetry. Results: When the magnetic field is perpendicular to the phase space normal we see a change in dose response with a maximal deviation (10–25% depending on the chamber region) near 0.75T. In the direction of electron deflection we expectedly see opposite responses in chamber regions leading to a measured asymmetry. With a magnetic field parallel to the phase space normal we see no measured asymmetries, however there is a monotonic rise in dose response leveling off at about +12% near 2.5T. Conclusion: Attention must be given to correct for the strength and direction of the magnetic field at the location of the linac monitor chamber in hybrid Linac-MR devices. Elsewise the dose sampled by these chambers may not represent the actual dose expected at isocentre; additionally there may be a need to correct for the symmetry of the beam recorded by the monitor chamber. Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization).« less
2010-08-09
44 9 A photograph of a goniophotometer used by Bell and a schematic of a goniophotometer used by Mian et al...plane is called the parallel field component because it lies parallel to the specular plane. The incident electric field vector component which...resides in the plane or- thogonal to the specular plane is called the perpendicular field component because it lies perpendicular to the specular plane. If
3-D Electromagnetic field analysis of wireless power transfer system using K computer
NASA Astrophysics Data System (ADS)
Kawase, Yoshihiro; Yamaguchi, Tadashi; Murashita, Masaya; Tsukada, Shota; Ota, Tomohiro; Yamamoto, Takeshi
2018-05-01
We analyze the electromagnetic field of a wireless power transfer system using the 3-D parallel finite element method on K computer, which is a super computer in Japan. It is clarified that the electromagnetic field of the wireless power transfer system can be analyzed in a practical time using the parallel computation on K computer, moreover, the accuracy of the loss calculation becomes better as the mesh division of the shield becomes fine.
Teodorescu, C; Young, W C; Swan, G W S; Ellis, R F; Hassam, A B; Romero-Talamas, C A
2010-08-20
Interferometric density measurements in plasmas rotating in shaped, open magnetic fields demonstrate strong confinement of plasma parallel to the magnetic field, with density drops of more than a factor of 10. Taken together with spectroscopic measurements of supersonic E × B rotation of sonic Mach 2, these measurements are in agreement with ideal MHD theory which predicts large parallel pressure drops balanced by centrifugal forces in supersonically rotating plasmas.
Parallel Spectral Acquisition with an Ion Cyclotron Resonance Cell Array.
Park, Sung-Gun; Anderson, Gordon A; Navare, Arti T; Bruce, James E
2016-01-19
Mass measurement accuracy is a critical analytical figure-of-merit in most areas of mass spectrometry application. However, the time required for acquisition of high-resolution, high mass accuracy data limits many applications and is an aspect under continual pressure for development. Current efforts target implementation of higher electrostatic and magnetic fields because ion oscillatory frequencies increase linearly with field strength. As such, the time required for spectral acquisition of a given resolving power and mass accuracy decreases linearly with increasing fields. Mass spectrometer developments to include multiple high-resolution detectors that can be operated in parallel could further decrease the acquisition time by a factor of n, the number of detectors. Efforts described here resulted in development of an instrument with a set of Fourier transform ion cyclotron resonance (ICR) cells as detectors that constitute the first MS array capable of parallel high-resolution spectral acquisition. ICR cell array systems consisting of three or five cells were constructed with printed circuit boards and installed within a single superconducting magnet and vacuum system. Independent ion populations were injected and trapped within each cell in the array. Upon filling the array, all ions in all cells were simultaneously excited and ICR signals from each cell were independently amplified and recorded in parallel. Presented here are the initial results of successful parallel spectral acquisition, parallel mass spectrometry (MS) and MS/MS measurements, and parallel high-resolution acquisition with the MS array system.
Atmospheric pressure ion focusing in a high-field asymmetric waveform ion mobility spectrometer
NASA Astrophysics Data System (ADS)
Guevremont, Roger; Purves, Randy W.
1999-02-01
The focusing of ions at atmospheric pressure and room temperature in a high-field asymmetric waveform ion mobility spectrometer (FAIMS) has been investigated. FAIMS operates with the application of a high-voltage, high-frequency asymmetric waveform across parallel plates. This establishes conditions wherein an ion migrates towards one of the plates because of a difference in the ion mobility at the low and high electric field conditions during application of the waveform. The migration can be stopped by applying a dc compensation voltage (CV) which serves to create a "balanced" condition wherein the ion experiences no net transverse motion. This method has also been called "transverse field compensation ion mobility spectrometry" and "field ion spectrometry®." If this experiment is conducted using a device with cylindrical geometry, rather than with flat plates, an ion focusing region can exist in the annular space between the two concentric cylinders. Ion trajectory modeling showed that the behavior of the ions in the cylindrical geometry FAIMS analyzer was unlike any previously described atmospheric pressure ion optics system. The ions appeared to be trapped, or focused by being caught between two opposing forces. Requirements for establishing this focus for a given ion were identified: the applied waveform must be asymmetric, the electric field must be sufficiently high that the mobility of the ion deviates from its low-field value during the high-voltage portion of the asymmetric waveform, and finally, the electric field must be nonuniform in space (e.g., cylindrical or spherical geometry). Experimental observations with a prototype FAIMS device, which was designed to measure the radial distribution of ions in the FAIMS analyzer region, have confirmed the results of ion trajectory modeling.
On the dimensionally correct kinetic theory of turbulence for parallel propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaelzer, R., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Ziebell, L. F., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br; Yoon, P. H., E-mail: rudi.gaelzer@ufrgs.br, E-mail: yoonp@umd.edu, E-mail: 007gasun@khu.ac.kr, E-mail: luiz.ziebell@ufrgs.br
2015-03-15
Yoon and Fang [Phys. Plasmas 15, 122312 (2008)] formulated a second-order nonlinear kinetic theory that describes the turbulence propagating in directions parallel/anti-parallel to the ambient magnetic field. Their theory also includes discrete-particle effects, or the effects due to spontaneously emitted thermal fluctuations. However, terms associated with the spontaneous fluctuations in particle and wave kinetic equations in their theory contain proper dimensionality only for an artificial one-dimensional situation. The present paper extends the analysis and re-derives the dimensionally correct kinetic equations for three-dimensional case. The new formalism properly describes the effects of spontaneous fluctuations emitted in three-dimensional space, while the collectivelymore » emitted turbulence propagates predominantly in directions parallel/anti-parallel to the ambient magnetic field. As a first step, the present investigation focuses on linear wave-particle interaction terms only. A subsequent paper will include the dimensionally correct nonlinear wave-particle interaction terms.« less
Hybrid simulations of radial transport driven by the Rayleigh-Taylor instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Stauffer, B. H.; Ma, X.
2017-12-01
Plasma transport in the rapidly rotating giant magnetospheres is thought to involve a centrifugally-driven flux tube interchange instability, similar to the Rayleigh-Taylor (RT) instability. In three dimensions, the convective flow patterns associated with the RT instability can produce strong guide field reconnection, allowing plasma mass to move radially outward while conserving magnetic flux (Ma et al., 2016). We present a set of hybrid (kinetic ion / fluid electron) plasma simulations of the RT instability using high plasma beta conditions appropriate for Jupiter's inner and middle magnetosphere. A density gradient, combined with a centrifugal force, provide appropriate RT onset conditions. Pressure balance is achieved by initializing two ion populations: one with fixed temperature, but varying density, and the other with fixed density, but a temperature gradient that offsets the density gradient from the first population and the centrifugal force (effective gravity). We first analyze two-dimensional results for the plane perpendicular to the magnetic field by comparing growth rates as a function of wave vector following Huba et al. (1998). Prescribed perpendicular wave modes are seeded with an initial velocity perturbation. We then extend the model to three dimensions, introducing a stabilizing parallel wave vector. Boundary conditions in the parallel direction prohibit motion of the magnetic field line footprints to model the eigenmodes of the magnetodisc's resonant cavity. We again compare growth rates based on perpendicular wave number, but also on the parallel extent of the resonant cavity, which fixes the size of the largest parallel wavelength. Finally, we search for evidence of strong guide field magnetic reconnection within the domain by identifying areas with large parallel electric fields or changes in magnetic field topology.
NASA Astrophysics Data System (ADS)
Moreto, Jose; Liu, Xiaofeng
2017-11-01
The accuracy of the Rotating Parallel Ray omnidirectional integration for pressure reconstruction from the measured pressure gradient (Liu et al., AIAA paper 2016-1049) is evaluated against both the Circular Virtual Boundary omnidirectional integration (Liu and Katz, 2006 and 2013) and the conventional Poisson equation approach. Dirichlet condition at one boundary point and Neumann condition at all other boundary points are applied to the Poisson solver. A direct numerical simulation database of isotropic turbulence flow (JHTDB), with a homogeneously distributed random noise added to the entire field of DNS pressure gradient, is used to assess the performance of the methods. The random noise, generated by the Matlab function Rand, has a magnitude varying randomly within the range of +/-40% of the maximum DNS pressure gradient. To account for the effect of the noise distribution pattern on the reconstructed pressure accuracy, a total of 1000 different noise distributions achieved by using different random number seeds are involved in the evaluation. Final results after averaging the 1000 realizations show that the error of the reconstructed pressure normalized by the DNS pressure variation range is 0.15 +/-0.07 for the Poisson equation approach, 0.028 +/-0.003 for the Circular Virtual Boundary method and 0.027 +/-0.003 for the Rotating Parallel Ray method, indicating the robustness of the Rotating Parallel Ray method in pressure reconstruction. Sponsor: The San Diego State University UGP program.
High-performance parallel analysis of coupled problems for aircraft propulsion
NASA Technical Reports Server (NTRS)
Felippa, C. A.; Farhat, C.; Chen, P.-S.; Gumaste, U.; Leoinne, M.; Stern, P.
1995-01-01
This research program deals with the application of high-performance computing methods to the numerical simulation of complete jet engines. The program was initiated in 1993 by applying two-dimensional parallel aeroelastic codes to the interior gas flow problem of a by-pass jet engine. The fluid mesh generation, domain decomposition and solution capabilities were successfully tested. Attention was then focused on methodology for the partitioned analysis of the interaction of the gas flow with a flexible structure and with the fluid mesh motion driven by these structural displacements. The latter is treated by an ALE technique that models the fluid mesh motion as that of a fictitious mechanical network laid along the edges of near-field fluid elements. New partitioned analysis procedures to treat this coupled 3-component problem were developed in 1994. These procedures involved delayed corrections and subcycling, and have been successfully tested on several massively parallel computers. For the global steady-state axisymmetric analysis of a complete engine we have decided to use the NASA-sponsored ENG10 program, which uses a regular FV-multiblock-grid discretization in conjunction with circumferential averaging to include effects of blade forces, loss, combustor heat addition, blockage, bleeds and convective mixing. A load-balancing preprocessor for parallel versions of ENG10 has been developed. It is planned to use the steady-state global solution provided by ENG10 as input to a localized three-dimensional FSI analysis for engine regions where aeroelastic effects may be important.
Spectral tuning of near-field radiative heat transfer by graphene-covered metasurfaces
NASA Astrophysics Data System (ADS)
Zheng, Zhiheng; Wang, Ao; Xuan, Yimin
2018-03-01
When two gratings are respectively covered by a layer of graphene sheet, the near-field radiative heat transfer between two parallel gratings made of silica (SiO2) could be greatly improved. As the material properties of doped silicon (n-type doping concentration is 1020 cm-3, marked as Si-20) and SiO2 differ greatly, we theoretically investigate the near-field radiative heat transfer between two parallel graphene-covered gratings made of Si-20 to explore some different phenomena, especially for modulating the spectral properties. The radiative heat flux between two parallel bulks made of Si-20 can be enhanced by using gratings instead of bulks. When the two gratings are respectively covered by a layer of graphene sheet, the radiative heat flux between two gratings made of Si-20 can be further enhanced. By tuning graphene chemical potential μ and grating filling factor f, due to the interaction between surface plasmon polaritons (SPPs) of graphene sheets and grating structures, the spectral properties of the radiative heat flux between two parallel graphene-covered gratings can be effectively regulated. This work will develop and supplement the effects of materials on the near-field radiative heat transfer for this kind of system configuration, paving a way to modulate the spectral properties of near-field radiative heat transfer.
Griessbach, Irmgard; Lapp, Markus; Bohsung, Jörg; Gademann, Günther; Harder, Dietrich
2005-12-01
Shielded p-silicon diodes, frequently applied in general photon-beam dosimetry, show certain imperfections when applied in the small photon fields occurring in stereotactic or intensity modulated radiotherapy (IMRT), in electron beams and in the buildup region of photon beam dose distributions. Using as a study object the shielded p-silicon diode PTW 60008, well known for its reliable performance in general photon dosimetry, we have identified these imperfections as effects of electron scattering at the metallic parts of the shielding. In order to overcome these difficulties a new, unshielded diode PTW 60012 has been designed and manufactured by PTW Freiburg. By comparison with reference detectors, such as thimble and plane-parallel ionization chambers and a diamond detector, we could show the absence of these imperfections. An excellent performance of the new unshielded diode for the special dosimetric tasks in small photon fields, electron beams and build-up regions of photon beams has been observed. The new diode also has an improved angular response. However, due to its over-response to low-energy scattered photons, its recommended range of use does not include output factor measurements in large photon fields, although this effect can be compensated by a thin auxiliary lead shield.
NASA Astrophysics Data System (ADS)
Scudder, J. D.
2017-12-01
Enroute to a new formulation of the heat law for the solar wind plasma the role of the invariably neglected, but omnipresent, thermal force for the multi-fluid physics of the corona and solar wind expansion will be discussed. This force (a) controls the size of the collisional ion electron energy exchange, favoring the thermal vs supra thermal electrons; (b) occurs whenever heat flux occurs; (c) remains after the electron and ion fluids come to a no slip, zero parallel current, equilibrium; (d) enhances the equilibrium parallel electric field; but (e) has a size that is theoretically independent of the electron collision frequency - allowing its importance to persist far up into the corona where collisions are invariably ignored in first approximation. The constituent parts of the thermal force allow the derivation of a new generalized electron heat flow relation that will be presented. It depends on the separate field aligned divergences of electron and ion pressures and the gradients of the ion gravitational potential and parallel flow energies and is based upon a multi-component electron distribution function. The new terms in this heat law explicitly incorporate the astrophysical context of gradients, acceleration and external forces that make demands on the parallel electric field and quasi-neutrality; essentially all of these effects are missing in traditional formulations.
NASA Astrophysics Data System (ADS)
Mahdieh, Mohammad Hossein; Mozaffari, Hossein
2017-10-01
In this paper, we investigate experimentally the effect of electric field on the size, optical properties and crystal structure of colloidal nanoparticles (NPs) of aluminum prepared by nanosecond Pulsed Laser Ablation (PLA) in deionized water. The experiments were conducted for two different conditions, with and without the electric field parallel to the laser beam path and the results were compared. To study the influence of electric field, two polished parallel aluminum metals plates perpendicular to laser beam path were used as the electrodes. The NPs were synthesized for target in negative, positive and neutral polarities. The colloidal nanoparticles were characterized using the scanning electron microscopy (SEM), UV-vis absorption spectroscopy and X-ray Diffraction (XRD). The results indicate that initial charge on the target has strong effect on the size properties and concentration of the synthesized nanoparticles. The XRD patterns show that the structure of produced NPs with and without presence of electric field is Boehmite (AlOOH).
Monte Carlo simulations in X-ray imaging
NASA Astrophysics Data System (ADS)
Giersch, Jürgen; Durst, Jürgen
2008-06-01
Monte Carlo simulations have become crucial tools in many fields of X-ray imaging. They help to understand the influence of physical effects such as absorption, scattering and fluorescence of photons in different detector materials on image quality parameters. They allow studying new imaging concepts like photon counting, energy weighting or material reconstruction. Additionally, they can be applied to the fields of nuclear medicine to define virtual setups studying new geometries or image reconstruction algorithms. Furthermore, an implementation of the propagation physics of electrons and photons allows studying the behavior of (novel) X-ray generation concepts. This versatility of Monte Carlo simulations is illustrated with some examples done by the Monte Carlo simulation ROSI. An overview of the structure of ROSI is given as an example of a modern, well-proven, object-oriented, parallel computing Monte Carlo simulation for X-ray imaging.
Hou, Jianhua; Yang, Zhixiong; Li, Zhiru; Chai, Haoyu; Zhao, Ruiqi
2017-08-01
We designed nine endohedral dodecahedrane heterodimers H@C 20 H n -C 20 H n @M (M = Cu, Ag, and Au, n = 15, 18, and 19) that may act as single-molecule spin switches, and we predicted theoretically that the ground states of the dimmers shift from low-spin states (S = 0) to the high-spin states (S = 1) under an external electric field applied parallel or perpendicular to the molecular symmetry axes, consisting well with the analyses of Stark effect. Molecular orbitals analyses provide an intuitive insight into the spin crossover behavior. This study expands the application of endohedral chemistry and provides new molecules for designing single-molecule spin switch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirshman, S. P.; Shafer, M. W.; Seal, S. K.
The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m=2, n=-1 , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m=2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces)more » of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.« less
Numerical Simulations of Free Surface Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema
2003-11-01
We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.
Analysis of Island Formation Due to RMPs in D3D Plasmas Using SIESTA
NASA Astrophysics Data System (ADS)
Hirshman, Steven; Shafer, Morgan; Seal, Sudip; Canik, John
2015-11-01
By varying the initial helical perturbation amplitude of Resonant Magnetic Perturbations (RMPs) applied to a Doublet III-D (DIII-D) plasma, a variety of meta-stable equilibrium are scanned using the SIESTA MHD equilibrium code. It is found that increasing the perturbation strength at the dominant m =2 resonant surface leads to lower MHD energies and significant increases in the equilibrium island widths at the m =2 (and sidebands) surfaces. Island overlap eventually leads to stochastic magnetic fields which correlate well with the experimentally inferred field line structure. The magnitude and spatial phase (around associated rational surfaces) of resonant (shielding) components of the parallel current is shown to be correlated with the magnetic island topology. Work supported by U.S. DOE under Contract DE-AC05-00OR22725 with UT-Battelle, LLC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W.
The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can bemore » applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.« less
Hirshman, S. P.; Shafer, M. W.; Seal, S. K.; ...
2016-03-03
The SIESTA magnetohydrodynamic (MHD) equilibrium code has been used to compute a sequence of ideally stable equilibria resulting from numerical variation of the helical resonant magnetic perturbation (RMP) applied to an axisymmetric DIII-D plasma equilibrium. Increasing the perturbation strength at the dominant m=2, n=-1 , resonant surface leads to lower MHD energies and increases in the equilibrium island widths at the m=2 (and sidebands) surfaces, in agreement with theoretical expectations. Island overlap at large perturbation strengths leads to stochastic magnetic fields which correlate well with the experimentally inferred field structure. The magnitude and spatial phase (around the dominant rational surfaces)more » of the resonant (shielding) component of the parallel current are shown to change qualitatively with the magnetic island topology.« less
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1986-01-01
A laboratory study related to energetic upstreaming ions in the ionosphere-magnetosphere system is described. The experiment was carried out in a cesium Q machine plasma with a region of nonuniform magnetic field. Electrostatic ion cyclotron waves were excited by drawing an electron current to a small biased exciter electrode. In the presence of the instability, ions are heated in the direction perpendicular to B. Using a gridded retarding potential ion energy analyzer, the evolution of the ion velocity distribution was followed as the ions passed through the heating region and subsequently flowed out along the diverging B field lines. As expected, the heated ions transfer their energy from perpendicular to parallel motion as they move through the region of diverging B field. Both their parallel thermal energy and the parallel drift energy increase at the expense of the perpendicular energy.
A gyrofluid description of Alfvenic turbulence and its parallel electric field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bian, N. H.; Kontar, E. P.
2010-06-15
Anisotropic Alfvenic fluctuations with k{sub ||}/k{sub perpendicular}<<1 remain at frequencies much smaller than the ion cyclotron frequency in the presence of a strong background magnetic field. Based on the simplest truncation of the electromagnetic gyrofluid equations in a homogeneous plasma, a model for the energy cascade produced by Alfvenic turbulence is constructed, which smoothly connects the large magnetohydrodynamics scales and the small 'kinetic' scales. Scaling relations are obtained for the electromagnetic fluctuations, as a function of k{sub perpendicular} and k{sub ||}. Moreover, a particular attention is paid to the spectral structure of the parallel electric field which is produced bymore » Alfvenic turbulence. The reason is the potential implication of this parallel electric field in turbulent acceleration and transport of particles. For electromagnetic turbulence, this issue was raised some time ago in Hasegawa and Mima [J. Geophys. Res. 83, 1117 (1978)].« less
NASA Astrophysics Data System (ADS)
Lee, Dukhyung; Kim, Dai-Sik
2016-01-01
We study light scattering off rectangular slot nano antennas on a metal film varying incident polarization and incident angle, to examine which field vector of light is more important: electric vector perpendicular to, versus magnetic vector parallel to the long axis of the rectangle. While vector Babinet’s principle would prefer magnetic field along the long axis for optimizing slot antenna function, convention and intuition most often refer to the electric field perpendicular to it. Here, we demonstrate experimentally that in accordance with vector Babinet’s principle, the incident magnetic vector parallel to the long axis is the dominant component, with the perpendicular incident electric field making a small contribution of the factor of 1/|ε|, the reciprocal of the absolute value of the dielectric constant of the metal, owing to the non-perfectness of metals at optical frequencies.
Increasing the reach of forensic genetics with massively parallel sequencing.
Budowle, Bruce; Schmedes, Sarah E; Wendt, Frank R
2017-09-01
The field of forensic genetics has made great strides in the analysis of biological evidence related to criminal and civil matters. More so, the discipline has set a standard of performance and quality in the forensic sciences. The advent of massively parallel sequencing will allow the field to expand its capabilities substantially. This review describes the salient features of massively parallel sequencing and how it can impact forensic genetics. The features of this technology offer increased number and types of genetic markers that can be analyzed, higher throughput of samples, and the capability of targeting different organisms, all by one unifying methodology. While there are many applications, three are described where massively parallel sequencing will have immediate impact: molecular autopsy, microbial forensics and differentiation of monozygotic twins. The intent of this review is to expose the forensic science community to the potential enhancements that have or are soon to arrive and demonstrate the continued expansion the field of forensic genetics and its service in the investigation of legal matters.
Self field triggered superconducting fault current limiter
Tekletsadik, Kasegn D [Rexford, NY
2008-02-19
A superconducting fault current limiter array with a plurality of superconductor elements arranged in a meanding array having an even number of supconductors parallel to each other and arranged in a plane that is parallel to an odd number of the plurality of superconductors, where the odd number of supconductors are parallel to each other and arranged in a plane that is parallel to the even number of the plurality of superconductors, when viewed from a top view. The even number of superconductors are coupled at the upper end to the upper end of the odd number of superconductors. A plurality of lower shunt coils each coupled to the lower end of each of the even number of superconductors and a plurality of upper shunt coils each coupled to the upper end of each of the odd number of superconductors so as to generate a generally orthoganal uniform magnetic field during quenching using only the magenetic field generated by the superconductors.
NASA Astrophysics Data System (ADS)
Shah, Jyoti; Ahmad, Saood; Chaujar, Rishu; Puri, Nitin K.; Negi, P. S.; Kotnala, R. K.
2017-12-01
In our recent studies inverse spin Hall voltage (ISHE) was investigated by ferromagnetic resonance (FMR) using bilayer FeSi3%/Pt thin film prepared by pulsed laser deposition (PLD) technique. In ISHE measurement microwave signal was applied on FeSi3% film along with DC magnetic field. Higher magnetization value along the film-plane was measured by magnetic hysteresis (M-H) loop. Presence of magnetic anisotropy has been obtained by M-H loop which showed easy direction of magnetization when applied magnetic field is parallel to the film plane. The main result of this study is that FMR induced inverse spin Hall voltage 12.6 μV at 1.0 GHz was obtained across Pt layer. Magnetic exchange field at bilayer interface responsible for field torque was measured 6 × 1014 Ω-1 m-2 by spin Hall magnetoresistance. The damping torque and spin Hall angle have been evaluated as 0.084 and 0.071 respectively. Presence of Si atom in FeSi3% inhomogenize the magnetic exchange field among accumulated spins at bilayer interface and feebly influenced by spin torque of FeSi3% layer. Weak field torque suppresses the spin pumping to Pt layer thus low value of inverse spin Hall voltage is obtained. This study provides an excellent opportunity to investigate spin transfer torque effect, thus motivating a more intensive experimental effort for its utilization at maximum potential. The improvement in spin transfer torque may be useful in spin valve, spin battery and spin transistor application.
Report on the B-Fields at NIF Workshop Held at LLNL October 12-13, 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, K. B.; Moody, J. D.
2015-12-13
A national ICF laboratory workshop on requirements for a magnetized target capability on NIF was held by NIF at LLNL on October 12 and 13, attended by experts from LLNL, SNL, LLE, LANL, GA, and NRL. Advocates for indirect drive (LLNL), magnetic (Z) drive (SNL), polar direct drive (LLE), and basic science needing applied B (many institutions) presented and discussed requirements for the magnetized target capabilities they would like to see. 30T capability was most frequently requested. A phased operation increasing the field in steps experimentally can be envisioned. The NIF management will take the inputs from the scientific communitymore » represented at the workshop and recommend pulse-powered magnet parameters for NIF that best meet the collective user requests. In parallel, LLNL will continue investigating magnets for future generations that might be powered by compact laser-B-field generators (Moody, Fujioka, Santos, Woolsey, Pollock). The NIF facility engineers will start to analyze compatibility of the recommended pulsed magnet parameters (size, field, rise time, materials) with NIF chamber constraints, diagnostic access, and final optics protection against debris in FY16. The objective of this assessment will be to develop a schedule for achieving an initial Bfield capability. Based on an initial assessment, room temperature magnetized gas capsules will be fielded on NIF first. Magnetized cryo-ice-layered targets will take longer (more compatibility issues). Magnetized wetted foam DT targets (Olson) may have somewhat fewer compatibility issues making them a more likely choice for the first cryo-ice-layered target fielded with applied Bz.« less