Science.gov

Sample records for filament structure molecular

  1. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle.

    PubMed

    Hooper, Scott L; Hobbs, Kevin H; Thuma, Jeffrey B

    2008-10-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vertebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca(++) binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved.

  2. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle

    PubMed Central

    Hooper, Scott L.; Hobbs, Kevin H.; Thuma, Jeffrey B.

    2008-01-01

    This is the second in a series of canonical reviews on invertebrate muscle. We cover here thin and thick filament structure, the molecular basis of force generation and its regulation, and two special properties of some invertebrate muscle, catch and asynchronous muscle. Invertebrate thin filaments resemble vertebrate thin filaments, although helix structure and tropomyosin arrangement show small differences. Invertebrate thick filaments, alternatively, are very different from vertebrate striated thick filaments and show great variation within invertebrates. Part of this diversity stems from variation in paramyosin content, which is greatly increased in very large diameter invertebrate thick filaments. Other of it arises from relatively small changes in filament backbone structure, which results in filaments with grossly similar myosin head placements (rotating crowns of heads every 14.5 nm) but large changes in detail (distances between heads in azimuthal registration varying from three to thousands of crowns). The lever arm basis of force generation is common to both vetebrates and invertebrates, and in some invertebrates this process is understood on the near atomic level. Invertebrate actomyosin is both thin (tropomyosin:troponin) and thick (primarily via direct Ca++ binding to myosin) filament regulated, and most invertebrate muscles are dually regulated. These mechanisms are well understood on the molecular level, but the behavioral utility of dual regulation is less so. The phosphorylation state of the thick filament associated giant protein, twitchin, has been recently shown to be the molecular basis of catch. The molecular basis of the stretch activation underlying asynchronous muscle activity, however, remains unresolved. PMID:18616971

  3. Radial Infall onto a Massive Molecular Filament

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Myers, Philip C.; Shirley, Yancy L.; Keto, Eric; Kirk, Helen

    The newly discovered Massive Molecular Filament (MMF) G32.02+0.05 (~ 70 pc long, 105 M⊙) has been shaped and compressed by older generations of massive stars. The similarity of this filament in physical structure (density profile, temperature) to much smaller star-forming filaments, suggests that the mechanism to form such filaments may be a universal process. The densest portion of the filament, apparent as an Infrared Dark Cloud (IRDC) shows a range of massive star formation signatures throughout. We investigate the kinematics in this filament and find widespread inverse P cygni asymmetric line profiles. These line asymmetries are interpreted as a signature of large-scale radial collapse. Using line asymmetries observed with optically thick HCO+ (1-0) and optically thin H13CO+ (1-0) across a range of massive star forming regions in the filament, we estimate the global radial infall rate of the filament to range from a few 100 to a few 1000 M⊙ Myr-1 pc-1. At its current infall rate the densest portions of the cloud will more than double their current mass within a Myr.

  4. Probing the Physical Structures of Dense Filaments

    NASA Astrophysics Data System (ADS)

    Li, Di

    2015-08-01

    Filament is a common feature in cosmological structures of various scales, ranging from dark matter cosmic web, galaxy clusters, inter-galactic gas flows, to Galactic ISM clouds. Even within cold dense molecular cores, filaments have been detected. Theories and simulations with (or without) different combination of physical principles, including gravity, thermal balance, turbulence, and magnetic field, can reproduce intriguing images of filaments. The ubiquity of filaments and the similarity in simulated ones make physical parameters, beyond dust column density, a necessity for understanding filament evolution. I report three projects attempting to measure physical parameters of filaments. We derive the volume density of a dense Taurus filament based on several cyanoacetylene transitions observed by GBT and ART. We measure the gas temperature of the OMC 2-3 filament based on combined GBT+VLA ammonia images. We also measured the sub-millimeter polarization vectors along OMC3. These filaments were found to be likely a cylinder-type structure, without dynamic heating, and likely accreting mass along the magnetic field lines.

  5. Filament wound structure and method

    DOEpatents

    Dritt, William S.; Gerth, Howard L.; Knight, Jr., Charles E.; Pardue, Robert M.

    1977-01-01

    The present invention relates to a filament wound spherical structure comprising a plurality of filament band sets disposed about the surface of a mandrel with each band of each set formed of a continuous filament circumferentially wound about the mandrel a selected number of circuits and with each circuit of filament being wound parallel to and contiguous with an immediate previously wound circuit. Each filament band in each band set is wound at the same helix angle from the axis of revolution of the mandrel and all of the bands of each set are uniformly distributed about the mandrel circumference. The pole-to-equator wall thickness taper associated with each band set, as several contiguous band sets are wound about the mandrel starting at the poles, is accumulative as the band sets are nested to provide a complete filament wound sphere of essentially uniform thickness.

  6. Intermediate Filaments: Structure and Assembly.

    PubMed

    Herrmann, Harald; Aebi, Ueli

    2016-11-01

    Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.

  7. Kiloparsec-Scale Simulations of Star Formation in Disk Galaxies III. Structure and Dynamics of Filaments and Clumps in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.; Van Loo, Sven

    2015-05-01

    We present hydrodynamic simulations of self-gravitating dense gas in a galactic disk, exploring scales ranging from 1 kpc down to ˜0.1 pc. Our primary goal is to understand how dense filaments form in giant molecular clouds (GMCs). These structures, often observed as infrared dark clouds (IRDCs) in the Galactic plane, are thought to be the precursors to massive stars and star clusters, so their formation may be the rate-limiting step controlling global star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. Our study follows on from Van Loo et al., which carried out simulations to 0.5 pc resolution and examined global aspects of the formation of dense gas clumps and the resulting star formation rate. Here, using our higher resolution, we examine the detailed structural, kinematic, and dynamical properties of dense filaments and clumps, including mass surface density (Σ) probability distribution functions, filament mass per unit length and its dispersion, lateral Σ profiles, filament fragmentation, filament velocity gradients and infall, and degree of filament and clump virialization. Where possible, these properties are compared to observations of IRDCs. By many metrics, especially too large mass fractions of high {Σ }\\gt 1 g c{{m}-2} material, too high mass per unit length dispersion due to dense clump formation, too high velocity gradients, and too high velocity dispersion for a given mass per unit length, the simulated filaments differ from observed IRDCs. We thus conclude that IRDCs do not form from global fast collapse of GMCs. Rather, we expect that IRDC formation and collapse are slowed significantly by the influence of dynamically important magnetic fields, which may thus play a crucial role in regulating galactic star formation rates.

  8. Filaments in the Lupus molecular clouds

    NASA Astrophysics Data System (ADS)

    Benedettini, M.; Schisano, E.; Pezzuto, S.; Elia, D.; André, P.; Könyves, V.; Schneider, N.; Tremblin, P.; Arzoumanian, D.; di Giorgio, A. M.; Di Francesco, J.; Hill, T.; Molinari, S.; Motte, F.; Nguyen-Luong, Q.; Palmeirim, P.; Rivera-Ingraham, A.; Roy, A.; Rygl, K. L. J.; Spinoglio, L.; Ward-Thompson, D.; White, G. J.

    2015-10-01

    We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities, with a median value of ˜1.5 × 1021 cm-2 and most have masses per unit length lower than the maximum critical value for radial gravitational collapse. Indeed, no evidence of filament contraction has been seen in the gas kinematics. We find that some filaments, that on average are thermally subcritical, contain dense cores that may eventually form stars. This is an indication that in the low column density regime, the critical condition for the formation of stars may be reached only locally and this condition is not a global property of the filament. Finally, in Lupus we find multiple observational evidences of the key role that the magnetic field plays in forming filaments, and determining their confinement and dynamical evolution.

  9. HIERARCHICAL FRAGMENTATION OF THE ORION MOLECULAR FILAMENTS

    SciTech Connect

    Takahashi, Satoko; Ho, Paul T. P.; Su, Yu-Nung; Teixeira, Paula S.; Zapata, Luis A.

    2013-01-20

    We present a high angular resolution map of the 850 {mu}m continuum emission of the Orion Molecular Cloud-3 (OMC 3) obtained with the Submillimeter Array (SMA); the map is a mosaic of 85 pointings covering an approximate area of 6.'5 Multiplication-Sign 2.'0 (0.88 Multiplication-Sign 0.27 pc). We detect 12 spatially resolved continuum sources, each with an H{sub 2} mass between 0.3-5.7 M {sub Sun} and a projected source size between 1400-8200 AU. All the detected sources are on the filamentary main ridge (n{sub H{sub 2}}{>=}10{sup 6} cm{sup -3}), and analysis based on the Jeans theorem suggests that they are most likely gravitationally unstable. Comparison of multi-wavelength data sets indicates that of the continuum sources, 6/12 (50%) are associated with molecular outflows, 8/12 (67%) are associated with infrared sources, and 3/12 (25%) are associated with ionized jets. The evolutionary status of these sources ranges from prestellar cores to protostar phase, confirming that OMC-3 is an active region with ongoing embedded star formation. We detect quasi-periodical separations between the OMC-3 sources of Almost-Equal-To 17''/0.035 pc. This spatial distribution is part of a large hierarchical structure that also includes fragmentation scales of giant molecular cloud ( Almost-Equal-To 35 pc), large-scale clumps ( Almost-Equal-To 1.3 pc), and small-scale clumps ( Almost-Equal-To 0.3 pc), suggesting that hierarchical fragmentation operates within the Orion A molecular cloud. The fragmentation spacings are roughly consistent with the thermal fragmentation length in large-scale clumps, while for small-scale cores it is smaller than the local fragmentation length. These smaller spacings observed with the SMA can be explained by either a helical magnetic field, cloud rotation, or/and global filament collapse. Finally, possible evidence for sequential fragmentation is suggested in the northern part of the OMC-3 filament.

  10. Filament Winding Of Carbon/Carbon Structures

    NASA Technical Reports Server (NTRS)

    Jacoy, Paul J.; Schmitigal, Wesley P.; Phillips, Wayne M.

    1991-01-01

    Improved method of winding carbon filaments for carbon/carbon composite structures less costly and labor-intensive, also produces more consistent results. Involves use of roller squeegee to ensure filaments continuously wet with resin during winding. Also involves control of spacing and resin contents of plies to obtain strong bonds between carbon filaments and carbon matrices. Lends itself to full automation and involves use of filaments and matrix-precursor resins in their simplest forms, thereby reducing costs.

  11. Myosin filament structure in vertebrate smooth muscle

    PubMed Central

    1996-01-01

    The in vivo structure of the myosin filaments in vertebrate smooth muscle is unknown. Evidence from purified smooth muscle myosin and from some studies of intact smooth muscle suggests that they may have a nonhelical, side-polar arrangement of crossbridges. However, the bipolar, helical structure characteristic of myosin filaments in striated muscle has not been disproved for smooth muscle. We have used EM to investigate this question in a functionally diverse group of smooth muscles (from the vascular, gastrointestinal, reproductive, and visual systems) from mammalian, amphibian, and avian species. Intact muscle under physiological conditions, rapidly frozen and then freeze substituted, shows many myosin filaments with a square backbone in transverse profile. Transverse sections of fixed, chemically skinned muscles also show square backbones and, in addition, reveal projections (crossbridges) on only two opposite sides of the square. Filaments gently isolated from skinned smooth muscles and observed by negative staining show crossbridges with a 14.5-nm repeat projecting in opposite directions on opposite sides of the filament. Such filaments subjected to low ionic strength conditions show bare filament ends and an antiparallel arrangement of myosin tails along the length of the filament. All of these observations are consistent with a side-polar structure and argue against a bipolar, helical crossbridge arrangement. We conclude that myosin filaments in all smooth muscles, regardless of function, are likely to be side-polar. Such a structure could be an important factor in the ability of smooth muscles to contract by large amounts. PMID:8698822

  12. CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Fernández-López, M.; Arce, H. G.; Looney, L.; Mundy, L. G.; Storm, S.; Teuben, P. J.; Lee, K.; Segura-Cox, D.; Isella, A.; Tobin, J. J.; Rosolowsky, E.; Plunkett, A.; Kwon, W.; Kauffmann, J.; Ostriker, E.; Tassis, K.; Shirley, Y. L.; Pound, M.

    2014-08-01

    We present the N2H+ (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin2 and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s-1, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  13. Patterns of molecular motors that guide and sort filaments.

    PubMed

    Rupp, Beat; Nédélec, François

    2012-11-21

    Molecular motors can be immobilized to transport filaments and loads that are attached to these filaments inside a nano-device. However, if motors are distributed uniformly over a flat surface, the motility is undirected, and the filaments move equally in all directions. For many applications it is important to control the direction in which the filaments move, and two strategies have been explored to achieve this: applying external forces and confining the filaments inside channels. In this article, we discuss a third strategy in which the topography of the sample remains flat, but the motors are distributed non-uniformly over the surface. Systems of filaments and patterned molecular motors were simulated using a stochastic engine that included Brownian motion and filament bending elasticity. Using an evolutionary algorithm, patterns were optimized for their capacity to precisely control the paths of the filaments. We identified patterns of motors that could either direct the filaments in a particular direction, or separate short and long filaments. These functionalities already exceed what has been achieved with confinement. The patterns are composed of one or two types of motors positioned in lines or along arcs and should be easy to manufacture. Finally, these patterns can be easily combined into larger designs, allowing one to precisely control the motion of microscopic objects inside a device.

  14. Structure of Flexible Filamentous Plant Viruses

    SciTech Connect

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C.; Shi, Jian; Stewart, Phoebe L.; Bullitt, Esther; Gore, David; Irving, Thomas C.; Havens, Wendy M.; Ghabrial, Said A.; Wall, Joseph S.; Stubbs, Gerald

    2008-10-23

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  15. Structure of flexible filamentous plant viruses.

    PubMed

    Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah C; Shi, Jian; Stewart, Phoebe L; Bullitt, Esther; Gore, David; Irving, Thomas C; Havens, Wendy M; Ghabrial, Said A; Wall, Joseph S; Stubbs, Gerald

    2008-10-01

    Flexible filamentous viruses make up a large fraction of the known plant viruses, but in comparison with those of other viruses, very little is known about their structures. We have used fiber diffraction, cryo-electron microscopy, and scanning transmission electron microscopy to determine the symmetry of a potyvirus, soybean mosaic virus; to confirm the symmetry of a potexvirus, potato virus X; and to determine the low-resolution structures of both viruses. We conclude that these viruses and, by implication, most or all flexible filamentous plant viruses share a common coat protein fold and helical symmetry, with slightly less than 9 subunits per helical turn.

  16. The intermediate-sized filaments in rat kangaroo PtK2 cells. II. Structure and composition of isolated filaments.

    PubMed

    Franke, W W; Schmid, E; Osborn, M; Weber, K

    1978-08-01

    When cultured cells of the rat kangaroo cell line PtK2 grown on plastic or glass surfaces are lysed and extracted with combinations of low and high salt buffers and the non-ionic detergent Triton X-100 cytoskeletal preparations are obtained that show an enrichment of 6 to 11 nm thick filaments. The arrays of these filaments have been examined by various light and electron microscopic techniques, including ultrathin sectioning, whole mount transmission electron microscopy, negative staining, and indirect immunofluorescence microscopy. In addition, 6 to 11 nm filaments isolated from these cells with similar extraction procedures and with centrifugation techniques have been examined by electron microscopy. The arrays of these isolated intermediate-sized filaments, their ultrastructure and their specific decoration by certain antibodies present in normal rabbit sera as well as by guinea pig antibodies against purified bovine prekeratin is demonstrated. When preparations enriched in these intermediate-sized filaments are examined by SDS-polyacrylamide gel electrophoresis a corresponding enrichment of three polypeptide bands with apparent molecular weights of about 45 000, 52 000 and 58 000 (the latter component sometimes appears split into two bands) is observed, besides some residual actin and a few high molecular weight bands. The morphology of the isolated filaments, their immunological reaction with antibodies decorating prekeratin-containing structures, and the sizes of their constitutive polypeptides suggest that these filaments are closely related to prekeratin-containing filaments observed in a variety of epithelial cells.

  17. A closer look at the `characteristic' width of molecular cloud filaments

    NASA Astrophysics Data System (ADS)

    Panopoulou, G. V.; Psaradaki, I.; Skalidis, R.; Tassis, K.; Andrews, J. J.

    2017-04-01

    Filaments in Herschel molecular cloud images are found to exhibit a 'characteristic width'. This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy is a result of the methodology adopted for measuring filament widths. First, we perform the previously used analysis technique on artificial scale-free data, and obtain a peaked width distribution of filament-like structures. Next, we repeat the analysis on three Herschel maps and reproduce the narrow distribution of widths found in previous studies - when considering the average width of each filament. However, the distribution of widths measured at all points along a filament spine is broader than the distribution of mean filament widths, indicating that the narrow spread (interpreted as a 'characteristic' width) results from averaging. Furthermore, the width is found to vary significantly from one end of a filament to the other. Therefore, the previously identified peak at 0.1 pc cannot be understood as representing the typical width of filaments. We find an alternative explanation by modelling the observed width distribution as a truncated power-law distribution, sampled with uncertainties. The position of the peak is connected to the lower truncation scale and is likely set by the choice of parameters used in measuring filament widths. We conclude that a 'characteristic' width of filaments is not supported by the available data.

  18. Structure and mechanical properties of liquid crystalline filaments

    SciTech Connect

    Eremin, Alexey; Nemes, Alexandru; Stannarius, Ralf; Schulz, Mario; Nadasi, Hajnalka; Weissflog, Wolfgang

    2005-03-01

    The formation of stable freely suspended filaments is an interesting peculiarity of some liquid crystal phases. So far, little is known about their structure and stability. Similarly to free-standing smectic films, an internal molecular structure of the mesophase stabilizes these macroscopically well-ordered objects with length to diameter ratios of 10{sup 3} and above. In this paper, we report observations of smectic liquid crystal fibers formed by bent-shaped molecules in different mesophases. Our study, employing several experimental techniques, focuses on mechanical and structural aspects of fiber formation such as internal structure, stability, and mechanical and optical properties.

  19. Paramyosin structures in the thick filaments of the anterior byssus retractor muscle of Mytilus edulis.

    PubMed

    Heumann, H G

    1980-10-01

    Freeze-substituted cells of the anterior byssus retractor muscle of Mytilus edulis contain paramyosin filaments which exhibit a characteristic fine structure. Longitudinally sectioned filaments show a variety of band patterns, those occurring most frequently being cross, oblique or double oblique striations. The periodic spacings within one pattern are precise as can be demonstrated by Markham analysis and optical diffractometry. The patterns arise from structures in the interior of the filament since they persist in serially sectioned filaments and a layered structure is visible in cross-sectioned filaments. The different patterns are found to be convertible by rotating the grid around the filament axis. The observations led to the conclusion that the paramyosin core has some kind of helical arrangement. A model is proposed which consists of concentric layers of parallel paramyosin molecules which are displaced along the molecular axis in such a way that the characteristic Bear-Selby net structure results.

  20. Collective alignment of polar filaments by molecular motors.

    PubMed

    Ziebert, F; Vershinin, M; Gross, S P; Aranson, I S

    2009-04-01

    We study the alignment of polar biofilaments, such as microtubules and actin, subject to the action of multiple molecular motors attached simultaneously to more than one filament. Focusing on a paradigm model of only two filaments interacting with multiple motors, we were able to investigate in detail the alignment dynamics. While almost no alignment occurs in the case of a single motor, the filaments become rapidly aligned due to the collective action of the motors. Our analysis shows that the alignment time is governed by the number of bound motors and the magnitude of the motors' stepping fluctuations. We predict that the time scale of alignment is in the order of seconds, much faster than that reported for passive crosslink-induced bundling. In vitro experiments on the alignment of microtubules by multiple-motor covered beads are in qualitative agreement. We also discuss another mode of fast alignment of filaments, namely the cooperation between motors and passive crosslinks.

  1. Filamentous structures in skeletal muscle: anchors for the subsarcolemmal space.

    PubMed

    Khairani, Astrid Feinisa; Tajika, Yuki; Takahashi, Maiko; Ueno, Hitoshi; Murakami, Tohru; Soenggono, Arifin; Yorifuji, Hiroshi

    2015-03-01

    In skeletal muscle fibers, intermediate filaments and actin filaments provide structural support to the myofibrils and the sarcolemma. For many years, it was poorly understood from ultrastructural observations that how these filamentous structures were kept anchored. The present study was conducted to determine the architecture of filamentous anchoring structures in the subsarcolemmal space and the intermyofibrils. The diaphragms (Dp) of adult wild type and mdx mice (mdx is a model for Duchenne muscular dystrophy) were subjected to tension applied perpendicular to the long axis of the muscle fibers, with or without treatment with 1% Triton X-100 or 0.03% saponin. These experiments were conducted to confirm the presence and integrity of the filamentous anchoring structures. Transmission electron microscopy revealed that these structures provide firm transverse connections between the sarcolemma and peripheral myofibrils. Most of the filamentous structures appeared to be inserted into subsarcolemmal densities, forming anchoring connections between the sarcolemma and peripheral myofibrils. In some cases, actin filaments were found to run longitudinally in the subsarcolemmal space to connect to the sarcolemma or in some cases to connect to the intermyofibrils as elongated thin filaments. These filamentous anchoring structures were less common in the mdx Dp. Our data suggest that the transverse and longitudinal filamentous structures form an anchoring system in the subsarcolemmal space and the intermyofibrils.

  2. Molecular phylogeny of metazoan intermediate filament proteins.

    PubMed

    Erber, A; Riemer, D; Bovenschulte, M; Weber, K

    1998-12-01

    We have cloned cytoplasmic intermediate filament (IF) proteins from a large number of invertebrate phyla using cDNA probes, the monoclonal antibody IFA, peptide sequence information, and various RT-PCR procedures. Novel IF protein sequences reported here include the urochordata and nine protostomic phyla, i.e., Annelida, Brachiopoda, Chaetognatha, Echiura, Nematomorpha, Nemertea, Platyhelminthes, Phoronida, and Sipuncula. Taken together with the wealth of data on IF proteins of vertebrates and the results on IF proteins of Cephalochordata, Mollusca, Annelida, and Nematoda, two IF prototypes emerge. The L-type, which includes 35 sequences from 11 protostomic phyla, shares with the nuclear lamins the long version of the coil 1b subdomain and, in most cases, a homology segment of some 120 residues in the carboxyterminal tail domain. The S-type, which includes all four subfamilies (types I to IV) of vertebrate IF proteins, lacks 42 residues in the coil 1b subdomain and the carboxyterminal lamin homology segment. Since IF proteins from all three phyla of the chordates have the 42-residue deletion, this deletion arose in a progenitor prior to the divergence of the chordates into the urochordate, cephalochordate, and vertebrate lineages, possibly already at the origin of the deuterostomic branch. Four phyla recently placed into the protostomia on grounds of their 18S rDNA sequences (Brachiopoda, Nemertea, Phoronida, and Platyhelminthes) show IF proteins of the L-type and fit by sequence identity criteria into the lophotrochozoic branch of the protostomia.

  3. Colliding filaments and a massive dense core in the Cygnus OB 7 molecular cloud

    SciTech Connect

    Dobashi, Kazuhito; Shimoikura, Tomomi; Akisato, Ko; Ohashi, Kenjiro; Nakagomi, Keisuke; Matsumoto, Tomoaki; Saito, Hiro

    2014-12-10

    We report the results of molecular line observations carried out toward a massive dense core in the Cyg OB 7 molecular cloud. The core has an extraordinarily large mass (∼1.1 × 10{sup 4} M {sub ☉}) and size (∼2 × 5 pc{sup 2}), but there is no massive young star forming therein. We observed this core in various molecular lines such as C{sup 18}O(J = 1-0) using the 45 m telescope at Nobeyama Radio Observatory. We find that the core has an elongated morphology consisting of several filaments and core-like structures. The filaments are massive (10{sup 2}-10{sup 3} M {sub ☉}), and they are apparently colliding with one another. Some candidates for young stellar objects are distributed around their intersection, suggesting that the collisions of the filaments may have influenced their formation. To understand the formation and evolution of such colliding filaments, we performed numerical simulations using the adaptive mesh refinement technique, adopting the observed core parameters (the mass and size) as the initial conditions. The results indicate that the filaments are formed as seen in other earlier simulations for small cores in the literature, but we could not reproduce the collisions of the filaments simply by assuming a large initial mass and size. We find that collisions of the filaments occur only when there is a large velocity gradient in the initial core, in a sense compressing it. We suggest that the observed core was actually compressed by an external effect, e.g., shocks from nearby supernova remnants, including HB 21 which has been suggested to be interacting with the Cyg OB 7 molecular cloud.

  4. The structures, mass motions and footpoints of solar filaments

    NASA Astrophysics Data System (ADS)

    Venkataramanasastry, Aparna

    This thesis focuses on identifying the mechanism by which solar filaments acquire mass. Some of the speculations for how a filament gets its mass are 1) injection of mass from the chromosphere into the filament structure, and 2) condensation of mass from the corona into the region of the filament channel. Mass motion at the footpoints of the filaments is studied to detect mass entering and leaving the filament body. The magnetic properties of the footpoints of the filaments are also studied. Recommendations are drawn by comparing observational properties obtained in this study with the features used in some of the previously developed models. The datasets used for this study are high-resolution image sets of centerline and Doppler wings of Halpha, obtained using the Dutch Open Telescope (DOT). The data were obtained on Oct 30, 2010. The data set contains three filaments in an active region in the northern hemisphere of the Sun. The images in each wavelength are aligned and made into movies to find the footpoints of the filaments through which the mass goes into and comes out of the filaments from and to the chromosphere, respectively. The magnetic properties of the footpoints are studied by overlaying the magnetogram images with the DOT images by using full-disk Halpha images for matching the features in the two. Of the three filaments, one of the filaments is observed to be stable throughout the duration of the observations; another filament erupts after about two hours of the beginning of observations; and the third filament is in its early stages of formation. The ends of the stable filament are clearly observed whereas the ends of the erupting filament and the forming filament are observed clearly intermittently during the duration of the observations. The animations of the region near the ends of filament 1 reveal definite injection and draining of mass via the footpoints into and out of the filament. The mass motion into and out of the filaments are observed

  5. Novel actin-like filament structure from Clostridium tetani.

    PubMed

    Popp, David; Narita, Akihiro; Lee, Lin Jie; Ghoshdastider, Umesh; Xue, Bo; Srinivasan, Ramanujam; Balasubramanian, Mohan K; Tanaka, Toshitsugu; Robinson, Robert C

    2012-06-15

    Eukaryotic F-actin is constructed from two protofilaments that gently wind around each other to form a helical polymer. Several bacterial actin-like proteins (Alps) are also known to form F-actin-like helical arrangements from two protofilaments, yet with varied helical geometries. Here, we report a unique filament architecture of Alp12 from Clostridium tetani that is constructed from four protofilaments. Through fitting of an Alp12 monomer homology model into the electron microscopy data, the filament was determined to be constructed from two antiparallel strands, each composed of two parallel protofilaments. These four protofilaments form an open helical cylinder separated by a wide cleft. The molecular interactions within single protofilaments are similar to F-actin, yet interactions between protofilaments differ from those in F-actin. The filament structure and assembly and disassembly kinetics suggest Alp12 to be a dynamically unstable force-generating motor involved in segregating the pE88 plasmid, which encodes the lethal tetanus toxin, and thus a potential target for drug design. Alp12 can be repeatedly cycled between states of polymerization and dissociation, making it a novel candidate for incorporation into fuel-propelled nanobiopolymer machines.

  6. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography

    SciTech Connect

    Norlen, Lars . E-mail: lars.norlen@ki.se; Masich, Sergej; Goldie, Kenneth N.; Hoenger, Andreas

    2007-06-10

    Intermediate filaments are a large and structurally diverse group of cellular filaments that are classified into five different groups. They are referred to as intermediate filaments (IFs) because they are intermediate in diameter between the two other cytoskeletal filament systems that is filamentous actin and microtubules. The basic building block of IFs is a predominantly {alpha}-helical rod with variable length globular N- and C-terminal domains. On the ultra-structural level there are two major differences between IFs and microtubules or actin filaments: IFs are non-polar, and they do not exhibit large globular domains. IF molecules associate via a coiled-coil interaction into dimers and higher oligomers. Structural investigations into the molecular building plan of IFs have been performed with a variety of biophysical and imaging methods such as negative staining and metal-shadowing electron microscopy (EM), mass determination by scanning transmission EM, X-ray crystallography on fragments of the IF stalk and low-angle X-ray scattering. The actual packing of IF dimers into a long filament varies between the different families. Typically the dimers form so called protofibrils that further assemble into a filament. Here we introduce new cryo-imaging methods for structural investigations of IFs in vitro and in vivo, i.e., cryo-electron microscopy and cryo-electron tomography, as well as associated techniques such as the preparation and handling of vitrified sections of cellular specimens.

  7. Ubiquitination and filamentous structure of cytidine triphosphate synthase

    PubMed Central

    Pai, Li-Mei; Wang, Pei-Yu; Lin, Wei-Cheng; Chakraborty, Archan; Yeh, Chau-Ting; Lin, Yu-Hung

    2016-01-01

    ABSTRACT Living organisms respond to nutrient availability by regulating the activity of metabolic enzymes. Therefore, the reversible post-translational modification of an enzyme is a common regulatory mechanism for energy conservation. Recently, cytidine-5′-triphosphate (CTP) synthase was discovered to form a filamentous structure that is evolutionarily conserved from flies to humans. Interestingly, induction of the formation of CTP synthase filament is responsive to starvation or glutamine depletion. However, the biological roles of this structure remain elusive. We have recently shown that ubiquitination regulates CTP synthase activity by promoting filament formation in Drosophila ovaries during endocycles. Intriguingly, although the ubiquitination process was required for filament formation induced by glutamine depletion, CTP synthase ubiquitination was found to be inversely correlated with filament formation in Drosophila and human cell lines. In this article, we discuss the putative dual roles of ubiquitination, as well as its physiological implications, in the regulation of CTP synthase structure. PMID:27116391

  8. Filament shape versus coronal potential magnetic field structure

    NASA Astrophysics Data System (ADS)

    Filippov, B.

    2016-01-01

    Solar filament shape in projection on disc depends on the structure of the coronal magnetic field. We calculate the position of polarity inversion lines (PILs) of coronal potential magnetic field at different heights above the photosphere, which compose the magnetic neutral surface, and compare with them the distribution of the filament material in Hα chromospheric images. We found that the most of the filament material is enclosed between two PILs, one at a lower height close to the chromosphere and one at a higher level, which can be considered as a height of the filament spine. Observations of the same filament on the limb by the Solar Terrestrial Relations Observatory spacecraft confirm that the height of the spine is really very close to the value obtained from the PIL and filament border matching. Such matching can be used for filament height estimations in on-disc observations. Filament barbs are housed within protruding sections of the low-level PIL. On the base of simple model, we show that the similarity of the neutral surfaces in potential and non-potential fields with the same sub-photospheric sources is the reason for the found tendency for the filament material to gather near the potential-field neutral surface.

  9. Myosin filament 3D structure in mammalian cardiac muscle☆

    PubMed Central

    AL-Khayat, Hind A.; Morris, Edward P.; Kensler, Robert W.; Squire, John M.

    2008-01-01

    A number of cardiac myopathies (e.g. familial hypertrophic cardiomyopathy and dilated cardiomyopathy) are linked to mutations in cardiac muscle myosin filament proteins, including myosin and myosin binding protein C (MyBP-C). To understand the myopathies it is necessary to know the normal 3D structure of these filaments. We have carried out 3D single particle analysis of electron micrograph images of negatively stained isolated myosin filaments from rabbit cardiac muscle. Single filament images were aligned and divided into segments about 2 × 430 Å long, each of which was treated as an independent ‘particle’. The resulting 40 Å resolution 3D reconstruction showed both axial and azimuthal (no radial) myosin head perturbations within the 430 Å repeat, with successive crown rotations of approximately 60°, 60° and 0°, rather than the regular 40° for an unperturbed helix. However, it is shown that the projecting density peaks appear to start at low radius from origins closer to those expected for an unperturbed helical filament, and that the azimuthal perturbation especially increases with radius. The head arrangements in rabbit cardiac myosin filaments are very similar to those in fish skeletal muscle myosin filaments, suggesting a possible general structural theme for myosin filaments in all vertebrate striated muscles (skeletal and cardiac). PMID:18472277

  10. A BRIGHT MOLECULAR CORE IN A CRAB NEBULA FILAMENT

    SciTech Connect

    Loh, E. D.; Baldwin, J. A.; Ferland, G. J. E-mail: baldwin@pa.msu.ed

    2010-06-10

    In a sub-arcsec near-infrared survey of the Crab Nebula using the new Spartan Infrared Camera, we have found several knots with high surface brightness in the H{sub 2} 2.12 {mu}m line and a very large H{sub 2} 2.12 {mu}m to Br{gamma} ratio. The brightest of these knots has an intensity ratio I(H{sub 2} 2.12 {mu}m)/I(Br{gamma}) = 18 {+-} 9, which we show sets a lower limit on the ratio of masses in the molecular and recombination (i.e., ionized) zones M{sub mol}/M{sub rec} {>=} 0.9, and a total molecular mass within this single knot M{sub mol} {>=} 5 x 10{sup -5} M{sub sun}. We argue that the knot discussed here probably is able to emit so strongly in the 2.12 {mu}m line because its physical conditions are better tuned for such emission than is the case in other filaments. It is unclear whether this knot has an unusually large M{sub mol}/M{sub rec} ratio, or if many other Crab filaments also have similar amounts of molecular gas which is not emitting because the physical conditions are not so well tuned.

  11. Structural design criteria for filament-wound composite shells

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Jensen, D. W.; Claus, S. J.; Pai, S. P.; Hipp, P. A.

    1994-01-01

    Advanced composite cylinders, manufactured by filament winding, provide a cost effective solution to many present structural applications; however, the compressive performance of filament-wound cylinders is lower than comparable shells fabricated from unidirectional tape. The objective of this study was to determine the cause of this reduction in thin filament-wound cylinders by relating the manufacturing procedures to the quality of the cylinder and to its compressive performance. The experiments on cylinder buckling were complemented by eigenvalue buckling analysis using a detailed geometric model in a finite element analysis. The applicability of classical buckling analyses was also investigated as a design tool.

  12. Development of epoxy matrices for filament-wound graphite structures

    SciTech Connect

    Morgan, R.J.; Walkup, C.M.; Kong, F.M.; Mones, E.T.

    1984-11-27

    This paper reviews our program to develop epoxy matrix systems for filament-wound graphite structures. The criteria for this matrix development program requires that the epoxide and amine components are processible and non-toxic; and the corresponding matrix itself is tough, possesses a Tg > 120/sup 0/C and does not lose its mechanical-thermal properties upon exposure to service environment conditions. We report our data on processible, hindered amine cured-epoxide matrices such as menthane or 2,5 dimethyl 2,5 hexane diamine cured bis-phenol-A-diglycidyl ether (DGEBA) epoxide systems in the presence of viscosity-lowering diluents. To produce tough, processible matrices that do not deteriorate upon exposure to service environment conditions requires a knowledge of the network structure formed and how such structure may deteriorate under molecular flow associated with the shear-band toughening mechanisms. For amine-cured DGEBA matrices we report deterioration in the mechanical response and Tg after plastic flow has occurred in such glasses. Permanent chemical changes that occur during this flow induced degradation process were monitored by stress-Fourier transform infrared spectroscopy. The ability to eliminate the aging of tough, cross-linked composite matrices upon molecular flow is discussed in terms of networks with segments of equal extensibility. 15 references, 4 figures, 2 tables.

  13. Structural changes accompanying phosphorylation of tarantula muscle myosin filaments

    PubMed Central

    1987-01-01

    Electron microscopy has been used to study the structural changes that occur in the myosin filaments of tarantula striated muscle when they are phosphorylated. Myosin filaments in muscle homogenates maintained in relaxing conditions (ATP, EGTA) are found to have nonphosphorylated regulatory light chains as shown by urea/glycerol gel electrophoresis and [32P]phosphate autoradiography. Negative staining reveals an ordered, helical arrangement of crossbridges in these filaments, in which the heads from axially neighboring myosin molecules appear to interact with each other. When the free Ca2+ concentration in a homogenate is raised to 10(-4) M, or when a Ca2+-insensitive myosin light chain kinase is added at low Ca2+ (10(-8) M), the regulatory light chains of myosin become rapidly phosphorylated. Phosphorylation is accompanied by potentiation of the actin activation of the myosin Mg- ATPase activity and by loss of order of the helical crossbridge arrangement characteristic of the relaxed filament. We suggest that in the relaxed state, when the regulatory light chains are not phosphorylated, the myosin heads are held down on the filament backbone by head-head interactions or by interactions of the heads with the filament backbone. Phosphorylation of the light chains may alter these interactions so that the crossbridges become more loosely associated with the filament backbone giving rise to the observed changes and facilitating crossbridge interaction with actin. PMID:2958483

  14. Method for preparing metallated filament-wound structures

    DOEpatents

    Peterson, George R.

    1979-01-01

    Metallated graphite filament-wound structures are prepared by coating a continuous multi-filament carbon yarn with a metal carbide, impregnating the carbide coated yarn with a polymerizable carbon precursor, winding the resulting filament about a mandrel, partially curing the impregnation in air, subjecting the wound composite to heat and pressure to cure the carbon precursor, and thereafter heating the composite in a sizing die at a pressure loading of at least 1000 psi for graphitizing the carbonaceous material in the composite. The carbide in the composite coalesces into rod-like shapes which are disposed in an end-to-end relationship parallel with the filaments to provide resistance to erosion in abrasive laden atmospheres.

  15. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure

    NASA Technical Reports Server (NTRS)

    Maniotis, A. J.; Chen, C. S.; Ingber, D. E.

    1997-01-01

    We report here that living cells and nuclei are hard-wired such that a mechanical tug on cell surface receptors can immediately change the organization of molecular assemblies in the cytoplasm and nucleus. When integrins were pulled by micromanipulating bound microbeads or micropipettes, cytoskeletal filaments reoriented, nuclei distorted, and nucleoli redistributed along the axis of the applied tension field. These effects were specific for integrins, independent of cortical membrane distortion, and were mediated by direct linkages between the cytoskeleton and nucleus. Actin microfilaments mediated force transfer to the nucleus at low strain; however, tearing of the actin gel resulted with greater distortion. In contrast, intermediate filaments effectively mediated force transfer to the nucleus under both conditions. These filament systems also acted as molecular guy wires to mechanically stiffen the nucleus and anchor it in place, whereas microtubules acted to hold open the intermediate filament lattice and to stabilize the nucleus against lateral compression. Molecular connections between integrins, cytoskeletal filaments, and nuclear scaffolds may therefore provide a discrete path for mechanical signal transfer through cells as well as a mechanism for producing integrated changes in cell and nuclear structure in response to changes in extracellular matrix adhesivity or mechanics.

  16. Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Hennemann, M.; Motte, F.; Didelon, P.; Federrath, C.; Bontemps, S.; Di Francesco, J.; Arzoumanian, D.; Minier, V.; André, Ph.; Hill, T.; Zavagno, A.; Nguyen-Luong, Q.; Attard, M.; Bernard, J.-Ph.; Elia, D.; Fallscheer, C.; Griffin, M.; Kirk, J.; Klessen, R.; Könyves, V.; Martin, P.; Men'shchikov, A.; Palmeirim, P.; Peretto, N.; Pestalozzi, M.; Russeil, D.; Sadavoy, S.; Sousbie, T.; Testi, L.; Tremblin, P.; Ward-Thompson, D.; White, G.

    2012-04-01

    Aims: For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. Instead, gravitational collapse of filaments and/or merging of filamentary structures can lead to building up dense high-mass star-forming clumps. However, the overall density structure of the cloud has a large influence on this process, and requires a better understanding. Methods: The Rosette molecular cloud, irradiated by the NGC 2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. Results: The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression, while the PDFs of the center and other cloud parts are more complex, partly with a power-law tail. A deviation of the log-normal PDF form occurs at AV ≈ 9m for the center, and around 4m for the other regions. Only the part of the cloud farthest from the Rosette nebula shows a log-normal PDF. Conclusions: The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at AV ≈ 3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star

  17. Structural Dynamics of Filament-Wound Booster Rockets

    NASA Technical Reports Server (NTRS)

    Bugg, F. M.

    1987-01-01

    Report summarizes program of measurements and calculations of vibrations in filament-wound composite models of Space Shuttle solid-rocket boosters. Vibrational behavior predicted by finite-element computer model of structural dynamics correlates well with data from tests on full- and quarter-scale models. Computer model developed with NASTRAN general-purpose structural-analysis computer code.

  18. Particle accelerations and current structures of Weibel and Filamentation instabilities

    NASA Astrophysics Data System (ADS)

    Ryu, C. M.; Huynh, C. T.

    2015-12-01

    Particle accelerations of the Wibel instability (WI) and the Filamentation instability(FI) are studied by using PIC simuations, comparing them side-by-side. Although two instabilities are almost identical in the linear growth phase, significant differences are found in the nonlinear phase in their particle accelerations and current structures. The FI shows enhanced electron acceleration, whereas particle acceleration is almost absent in the WI. The different particle accelerations between the FI and the WI seem to be associated with their different current structures; a hollow electron current structure for the FI and a center filled current structure for that of the WI. Different electron distributions seem to bring in different current filament structures, eventually leading to different magnetic characteristics.

  19. On filament structure and propagation within a commercial plasma globe

    SciTech Connect

    Burin, M. J.; Simmons, G. G.; Ceja, H. G.; Zweben, S. J.; Nagy, A.; Brunkhorst, C.

    2015-05-15

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed yet not well understood. Here, we investigate the discharge properties of a plasma globe using a variable high voltage amplifier. We find that increasing voltage magnitude increases the number of filaments while leaving their individual structure basically unchanged, a result typical of dielectric barrier discharges. The frequency of the voltage also affects filament population but more significantly changes filament structure, with more diffuse filaments seen at lower frequencies. Voltage polarity is observed to be important, especially at lower frequencies, where for negative-gradient voltages the discharge is more diffuse, not filamentary. At late stages of the discharge circular structures appear and expand on the glass boundaries. We find no trend of discharge speed with respect to voltage variables, though this may be due to manufacturer sample-to-sample variation. Each voltage cycle the discharge expands outward at ∼10–15 km/s, a speed significantly higher than the estimated electron drift yet considerably lower than that observed for most streamers. We discuss the physics of these observations and their relation to similar discharges that can be found within nature and industry.

  20. Assembly and exchange of intermediate filament proteins of neurons: neurofilaments are dynamic structures

    PubMed Central

    1989-01-01

    We have explored the dynamics of intermediate filament assembly and subunit exchange using fluorescently labeled neurofilament proteins and a fluorescence resonance energy transfer assay. Neurofilaments (NFs) are assembled from three highly phosphorylated proteins with molecular masses of 180 (NF-H), 130 (NF-M), and 66 kD (NF-L) of which NF-L forms the structural core. The core component, NF-L, was stoichiometrically labeled at cysteine 321 with fluorescein, coumarin, or biotin-maleimide to produce assembly-competent fluorescent or biotinylated derivatives, respectively. Using coumarin-labeled NF-L as fluorescence donor and fluorescein-labeled NF-L as the fluorescence acceptor, assembly of NF filaments was induced by rapidly raising the NaCl concentration to 170 mM, and the kinetics was followed by the decrease in the donor fluorescence. Assembly of NF-L subunits into filaments does not require nucleotide binding or hydrolysis but is strongly dependent on ionic strength, pH, and temperature. The critical concentration of NF-L, that concentration that remains unassembled at equilibrium with fully formed filaments, is 38 micrograms/ml or 0.6 microM. Under physiological salt conditions NF-L filaments also undergo extensive subunit exchange. Kinetic analysis and evaluation of several possible mechanisms indicate that subunit exchange is preceded by dissociation of subunits from the filament and generation of a kinetically active pool of soluble subunits. Given the concentration of NF-L found in nerve cells and the possibility of regulating this pool, these results provide the first information that intermediate filaments are dynamic structures and that NF-L within the NF complex is in dynamic equilibrium with a small but kinetically active pool of unassembled NF-L units. PMID:2925792

  1. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    NASA Astrophysics Data System (ADS)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  2. In vivo formation steps of the hard alpha-keratin intermediate filament along a hair follicle: evidence for structural polymorphism.

    PubMed

    Rafik, Mériem Er; Briki, Fatma; Burghammer, Manfred; Doucet, Jean

    2006-04-01

    Several aspects of the intermediate filaments' molecular architecture remain mysterious despite decades of study. The growth process and the final architecture may depend on the physical, chemical, and biochemical environment. Aiming at clarifying this issue, we have revisited the structure of the human hair follicle by means of X-ray microdiffraction. We conclude that the histology-based growth zones along the follicle are correlated to the fine architecture of the filaments deduced from X-ray microdiffraction. Our analysis reveals the existence of two major polymorph intermediate filament architectures. Just above the bulb, the filaments are characterized by a diameter of 100 Angstroms and a low-density core. The following zone upwards is characterized by the lateral aggregation of the filaments into a compact network of filaments, by a contraction of their diameter (to 75 Angstroms) and by the setting up of a long-range longitudinal ordering. In the upper zone, the small structural change associated with the tissue hardening likely concerns the terminal domains. The architecture of the intermediate filament in the upper zones could be specific to hard alpha-keratin whilst the other architecture found in the lower zone could be representative for intermediate filaments in a different environment.

  3. Flexible filamentous virus structure from fiber diffraction

    SciTech Connect

    Stubbs, Gerald; Kendall, Amy; McDonald, Michele; Bian, Wen; Bowles, Timothy; Baumgarten, Sarah; McCullough, Ian; Shi, Jian; Stewart, Phoebe; Bullitt, Esther; Gore, David; Ghabrial, Said

    2008-10-24

    Fiber diffraction data have been obtained from Narcissus mosaic virus, a potexvirus from the family Flexiviridae, and soybean mosaic virus (SMV), a potyvirus from the family Potyviridae. Analysis of the data in conjunction with cryo-electron microscopy data allowed us to determine the symmetry of the viruses and to make reconstructions of SMV at 19 {angstrom} resolution and of another potexvirus, papaya mosaic virus, at 18 {angstrom} resolution. These data include the first well-ordered data ever obtained for the potyviruses and the best-ordered data from the potexviruses, and offer the promise of eventual high resolution structure determinations.

  4. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures.

    PubMed

    Zheng, Xiao-Ting; You, Hai-Lu; Xu, Xing; Dong, Zhi-Ming

    2009-03-19

    Ornithischia is one of the two major groups of dinosaurs, with heterodontosauridae as one of its major clades. Heterodontosauridae is characterized by small, gracile bodies and a problematic phylogenetic position. Recent phylogenetic work indicates that it represents the most basal group of all well-known ornithischians. Previous heterodontosaurid records are mainly from the Early Jurassic period (205-190 million years ago) of Africa. Here we report a new heterodontosaurid, Tianyulong confuciusi gen. et sp. nov., from the Early Cretaceous period (144-99 million years ago) of western Liaoning Province, China. Tianyulong extends the geographical distribution of heterodontosaurids to Asia and confirms the clade's previously questionable temporal range extension into the Early Cretaceous period. More surprisingly, Tianyulong bears long, singular and unbranched filamentous integumentary (outer skin) structures. This represents the first confirmed report, to our knowledge, of filamentous integumentary structures in an ornithischian dinosaur.

  5. A Molecular Perspective of Inter-filament Bonding in Fused Deposition Modeling 3-D Printing

    NASA Astrophysics Data System (ADS)

    Duranty, Edward; Spradlin, Brandon; Dadmun, Mark

    2015-03-01

    Fused deposition 3D printing is an important tool for low-cost and rapid prototyping of objects with complex geometries. 3D printed materials are composed of many filaments deposited on a heated substrate, requiring the bonding of neighboring filaments during the deposition process. Filament deposition often creates voids between filaments, which requires necking between them to create a robust sample. Therefore the amount of interfacial contact and interdiffusion between filaments become important parameters that control the macroscopic physical properties of the printed prototype. Our research focuses on quantifying the interfacial adhesion between ABS filaments and its impact on structural properties. The time evolution of the temperature profile near the heated substrate demonstrates that the deposited filaments are repeatedly heated above the Tg of ABS allowing interpenetration of the polymer chains between adjacent filaments. Results of DMA experiments on samples of different geometries have been correlated to microphotography that monitors the degree of necking between filaments and the thermal history. Results indicate that interfacial contact area between filaments and increased thermal energy are crucial to their mechanical properties.

  6. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly

    PubMed Central

    Taylor, Keenan C.; Buvoli, Massimo; Korkmaz, Elif Nihal; Buvoli, Ada; Zheng, Yuqing; Heinze, Nathan T.; Cui, Qiang; Leinwand, Leslie A.; Rayment, Ivan

    2015-01-01

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report here that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility. Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. In addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies. PMID:26150528

  7. Skip residues modulate the structural properties of the myosin rod and guide thick filament assembly

    DOE PAGES

    Taylor, Keenan C.; Buvoli, Massimo; Korkmaz, Elif Nihal; ...

    2015-07-06

    The rod of sarcomeric myosins directs thick filament assembly and is characterized by the insertion of four skip residues that introduce discontinuities in the coiled-coil heptad repeats. We report in this paper that the regions surrounding the first three skip residues share high structural similarity despite their low sequence homology. Near each of these skip residues, the coiled-coil transitions to a nonclose-packed structure inducing local relaxation of the superhelical pitch. Moreover, molecular dynamics suggest that these distorted regions can assume different conformationally stable states. In contrast, the last skip residue region constitutes a true molecular hinge, providing C-terminal rod flexibility.more » Assembly of myosin with mutated skip residues in cardiomyocytes shows that the functional importance of each skip residue is associated with rod position and reveals the unique role of the molecular hinge in promoting myosin antiparallel packing. By defining the biophysical properties of the rod, the structures and molecular dynamic calculations presented here provide insight into thick filament formation, and highlight the structural differences occurring between the coiled-coils of myosin and the stereotypical tropomyosin. Finally, in addition to extending our knowledge into the conformational and biological properties of coiled-coil discontinuities, the molecular characterization of the four myosin skip residues also provides a guide to modeling the effects of rod mutations causing cardiac and skeletal myopathies.« less

  8. Elasticity of a semiflexible filament with a discontinuous tension due to a cross-link or a molecular motor

    NASA Astrophysics Data System (ADS)

    Razbin, Mohammadhosein; Benetatos, Panayotis; Zippelius, Annette

    2016-05-01

    We analyze the stretching elasticity of a wormlike chain with a tension discontinuity resulting from a Hookean spring connecting its backbone to a fixed point. The elasticity of isolated semiflexible filaments has been the subject in a significant body of literature, primarily because of its relevance to the mechanics of biological matter. In real systems, however, these filaments are usually part of supramolecular structures involving cross-linkers or molecular motors, which cause tension discontinuities. Our model is intended as a minimal structural element incorporating such a discontinuity. We obtain analytical results in the weakly bending limit of the filament, concerning its force-extension relation and the response of the two parts in which the filament is divided by the spring. For a small tension discontinuity, the linear response of the filament extension to this discontinuity strongly depends on the external tension. For large external tension f , the spring force contributes a subdominant correction ˜1 /f3 /2 to the well-known ˜1 /√{f } -dependence of the end-to-end extension.

  9. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    PubMed Central

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-01-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity. PMID:28272450

  10. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry

    NASA Astrophysics Data System (ADS)

    Hartig, Kyle C.; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-01

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  11. Standoff Detection of Uranium and its Isotopes by Femtosecond Filament Laser Ablation Molecular Isotopic Spectrometry.

    PubMed

    Hartig, Kyle C; Ghebregziabher, Isaac; Jovanovic, Igor

    2017-03-08

    The ability to perform not only elementally but also isotopically sensitive detection and analysis at standoff distances is impor-tant for remote sensing applications in diverse ares, such as nuclear nonproliferation, environmental monitoring, geophysics, and planetary science. We demonstrate isotopically sensitive real-time standoff detection of uranium by the use of femtosecond filament-induced laser ablation molecular isotopic spectrometry. A uranium oxide molecular emission isotope shift of 0.05 ± 0.007 nm is reported at 593.6 nm. We implement both spectroscopic and acoustic diagnostics to characterize the properties of uranium plasma generated at different filament-uranium interaction points. The resulting uranium oxide emis-sion exhibits a nearly constant signal-to-background ratio over the length of the filament, unlike the uranium atomic and ionic emission, for which the signal-to-background ratio varies significantly along the filament propagation. This is explained by the different rates of increase of plasma density and uranium oxide density along the filament length resulting from spectral and temporal evolution of the filament along its propagation. The results provide a basis for the optimal use of filaments for standoff detection and analysis of uranium isotopes and indicate the potential of the technique for a wider range of remote sensing applications that require isotopic sensitivity.

  12. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Suter, Jonathan D.; Phillips, Mark C.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlO is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.

  13. Testing for Helical Magnetic Fields in the Orion Molecular Cloud Integral-Shaped Filament

    NASA Astrophysics Data System (ADS)

    Cashman, Lauren; Clemens, Dan P.

    2014-06-01

    The Orion Molecular Cloud (OMC) is one of the closest and most well-studied regions of ongoing star formation. Within the OMC, the Integral-Shaped Filament (ISF) is a long, filamentary structure of gas and dust that stretches over 7 pc and is itself comprised of many smaller filaments. Radial density profiles of the ISF indicate that these filamentary structures may be supported by helical magnetic fields (Johnstone & Bally 1999). To test for the presence of helical fields, we have collected deep near-infrared (NIR) H-band (1.6 μm) and K-band (2.2 μm) linear polarimetry of background starlight for a grid of six 10x10 arcmin fields of view fully spanning the ISF. NIR polarizations from scattered light and young stellar objects, which do not trace the magnetic field, are identified by examining the ratio of percent polarization in H-band to K-band. The data were collected using the Mimir NIR instrument on the 1.8m Perkins Telescope located outside of Flagstaff, AZ. This work is partially supported by NSF grant AST 09-07790.

  14. Structural basis of thymosin-β4/profilin exchange leading to actin filament polymerization.

    PubMed

    Xue, Bo; Leyrat, Cedric; Grimes, Jonathan M; Robinson, Robert C

    2014-10-28

    Thymosin-β4 (Tβ4) and profilin are the two major sequestering proteins that maintain the pool of monomeric actin (G-actin) within cells of higher eukaryotes. Tβ4 prevents G-actin from joining a filament, whereas profilin:actin only supports barbed-end elongation. Here, we report two Tβ4:actin structures. The first structure shows that Tβ4 has two helices that bind at the barbed and pointed faces of G-actin, preventing the incorporation of the bound G-actin into a filament. The second structure displays a more open nucleotide binding cleft on G-actin, which is typical of profilin:actin structures, with a concomitant disruption of the Tβ4 C-terminal helix interaction. These structures, combined with biochemical assays and molecular dynamics simulations, show that the exchange of bound actin between Tβ4 and profilin involves both steric and allosteric components. The sensitivity of profilin to the conformational state of actin indicates a similar allosteric mechanism for the dissociation of profilin during filament elongation.

  15. Giant molecular filaments in the Milky Way. II. The fourth Galactic quadrant

    NASA Astrophysics Data System (ADS)

    Abreu-Vicente, J.; Ragan, S.; Kainulainen, J.; Henning, Th.; Beuther, H.; Johnston, K.

    2016-05-01

    Context. Filamentary structures are common morphological features of the cold, molecular interstellar medium (ISM). Recent studies have discovered massive, hundred-parsec-scale filaments that may be connected to the large-scale, Galactic spiral arm structure. Addressing the nature of these giant molecular filaments (GMFs) requires a census of their occurrence and properties. Aims: We perform a systematic search of GMFs in the fourth Galactic quadrant and determine their basic physical properties. Methods: We identify GMFs based on their dust extinction signatures in the near- and mid-infrared and the velocity structure probed by 13CO line emission. We use the 13CO line emission and ATLASGAL dust emission data to estimate the total and dense gas masses of the GMFs. We combine our sample with an earlier sample from literature and study the Galactic environment of the GMFs. Results: We identify nine GMFs in the fourth Galactic quadrant: six in the Centaurus spiral arm and three in inter-arm regions. Combining this sample with an earlier study using the same identification criteria in the first Galactic quadrant results in 16 GMFs, nine of which are located within spiral arms. The GMFs have sizes of 80-160 pc and 13CO-derived masses between 5-90 × 104M⊙. Their dense gas mass fractions are between 1.5-37%, which is higher in the GMFs connected to spiral arms. We also compare the different GMF-identification methods and find that emission and extinction-based techniques overlap only partially, thereby highlighting the need to use both to achieve a complete census. Table A.2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A131

  16. Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies.

    PubMed

    Jiang, Dewei; Zhu, Wei; Wang, Yunchuan; Sun, Chang; Zhang, Ke-Qin; Yang, Jinkui

    2013-12-01

    Advances in genetic transformation techniques have made important contributions to molecular genetics. Various molecular tools and strategies have been developed for functional genomic analysis of filamentous fungi since the first DNA transformation was successfully achieved in Neurospora crassa in 1973. Increasing amounts of genomic data regarding filamentous fungi are continuously reported and large-scale functional studies have become common in a wide range of fungal species. In this review, various molecular tools used in filamentous fungi are compared and discussed, including methods for genetic transformation (e.g., protoplast transformation, electroporation, and microinjection), the construction of random mutant libraries (e.g., restriction enzyme mediated integration, transposon arrayed gene knockout, and Agrobacterium tumefaciens mediated transformation), and the analysis of gene function (e.g., RNA interference and transcription activator-like effector nucleases). We also focused on practical strategies that could enhance the efficiency of genetic manipulation in filamentous fungi, such as choosing a proper screening system and marker genes, assembling target-cassettes or vectors effectively, and transforming into strains that are deficient in the nonhomologous end joining pathway. In summary, we present an up-to-date review on the different molecular tools and latest strategies that have been successfully used in functional genomics in filamentous fungi.

  17. Filamentary structures in dense plasma focus: Current filaments or vortex filaments?

    SciTech Connect

    Soto, Leopoldo Pavez, Cristian; Moreno, José; Castillo, Fermin; Veloso, Felipe; Auluck, S. K. H.

    2014-07-15

    Recent observations of an azimuthally distributed array of sub-millimeter size sources of fusion protons and correlation between extreme ultraviolet (XUV) images of filaments with neutron yield in PF-1000 plasma focus have re-kindled interest in their significance. These filaments have been described variously in literature as current filaments and vortex filaments, with very little experimental evidence in support of either nomenclature. This paper provides, for the first time, experimental observations of filaments on a table-top plasma focus device using three techniques: framing photography of visible self-luminosity from the plasma, schlieren photography, and interferometry. Quantitative evaluation of density profile of filaments from interferometry reveals that their radius closely agrees with the collision-less ion skin depth. This is a signature of relaxed state of a Hall fluid, which has significant mass flow with equipartition between kinetic and magnetic energy, supporting the “vortex filament” description. This interpretation is consistent with empirical evidence of an efficient energy concentration mechanism inferred from nuclear reaction yields.

  18. Addition of electrophilic lipids to actin alters filament structure

    SciTech Connect

    Gayarre, Javier; Sanchez, David; Sanchez-Gomez, Francisco J.; Terron, Maria C.; Llorca, Oscar; Perez-Sala, Dolores . E-mail: dperezsala@cib.csic.es

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-{delta}{sup 12,14}-PGJ{sub 2} (15d-PGJ{sub 2}) and PGA{sub 1} in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA{sub 1} and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ{sub 2} or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ{sub 2} at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  19. Negative Stains Containing Trehalose: Application to Tubular and Filamentous Structures

    NASA Astrophysics Data System (ADS)

    Harris, J. Robin; Gerber, Max; Gebauer, Wolfgang; Wernicke, Wolfgang; Markl, Jürgen

    1996-02-01

    Several examples are presented that show the successful application of uranyl acetate and ammonium molybdate negative staining in the presence of trehalose for TEM studies of filamentous and tubular structures. The principal benefit to be gained from the inclusion of trehalose stems from the considerably reduced flattening of the large tubular structures and the greater orientational freedom of single molecules due to an increased depth of the negative stain in the presence of trehalose. Trehalose is likely to provide considerable protection to protein molecules and their assemblies during the drying of negatively stained specimens. Some reduction in the excessive density imparted by uranyl acetate around large assemblies is also achieved. Nevertheless, in the presence of 1% (w/v) trehalose, it is desirable to increase the concentration of negative stain to 5% (w/v) for ammonium molybdate and to 4% for uranyl acetate to produce satisfactory image contrast. In general, the ammonium molybdate-trehalose negative stain is more satisfactory than the uranyl acetate-trehalose combination, because of the greater electron beam sensitivity of the uranyl negative stain. Reassembled taxol-stabilized pig brain microtubules, together with collagen fibrils, sperm tails, helical filaments, and reassociated hemocyanin (KLH2), all from the giant keyhole limpet Megathura crenulata, have been studied by negative staining in the presence of trehalose. In all cases satisfactory TEM imaging conditions were readily obtained on the specimens, as long as regions of excessively deep stain were avoided.

  20. Addition of electrophilic lipids to actin alters filament structure.

    PubMed

    Gayarre, Javier; Sánchez, David; Sánchez-Gómez, Francisco J; Terrón, María C; Llorca, Oscar; Pérez-Sala, Dolores

    2006-11-03

    Pathophysiological processes associated with oxidative stress lead to the generation of reactive lipid species. Among them, lipids bearing unsaturated aldehyde or ketone moieties can form covalent adducts with cysteine residues and modulate protein function. Through proteomic techniques we have identified actin as a target for the addition of biotinylated analogs of the cyclopentenone prostaglandins 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and PGA(1) in NIH-3T3 fibroblasts. This modification could take place in vitro and mapped to the protein C-terminal end. Other electrophilic lipids, like the isoprostane 8-iso-PGA(1) and 4-hydroxy-2-nonenal, also bound to actin. The C-terminal region of actin is important for monomer-monomer interactions and polymerization. Electron microscopy showed that actin treated with 15d-PGJ(2) or 4-hydroxy-2-nonenal formed filaments which were less abundant and displayed shorter length and altered structure. Streptavidin-gold staining allowed mapping of biotinylated 15d-PGJ(2) at sites of filament disruption. These results shed light on the structural implications of actin modification by lipid electrophiles.

  1. An Analytical Model for Molecular Propagation in Nanocommunication via Filaments Using Relay-Enabled Nodes.

    PubMed

    Darchinimaragheh, Kamaloddin; Alfa, Attahiru S

    2015-12-01

    Molecular communication is a nanoscale communication method in which information is encoded in molecules. Molecular communication using microtubules in free space is one of the realistic scenarios proposed for this type of nanocommunication. Based on this technique, molecular communication via filaments using nano-relays is proposed in this paper to improve the performance of the system in terms of delay and bit error probability. An analytical model using jump diffusion processes is proposed for molecular propagation in this scenario. It is shown that the proposed mathematical model is capable of tracking molecular propagation in molecular communication via filaments using nano-relays. Also, the model is used to investigate effects of different parameters on delay and bit error probability.

  2. Molecular Studies of Filamentous and Biofilm-Forming Hyperthermophilic Communities in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Dibbell, A. K.; Fredricks, H. F.; Hinrichs, K.; Jahnke, L. L.; Shock, E.; Amend, J. P.

    2005-12-01

    The Aquificales, the most deeply-branching order of Bacteria in the phylogenetic tree of life, comprises eight recognized thermophilic genera, including Aquifex, Hydrogenobacter, and Thermocrinis. The common metabolism for these Bacteria, when grown in culture, is the oxidation of hydrogen with molecular oxygen (Knallgas reaction). Aquificales have been identified by molecular techniques (16S rRNA gene surveys, fluorescent in situ hybridization) in Yellowstone National Park (YNP), sea vent chimneys and fluids, and many other terrestrial and marine locations. In situ, Aquificales can reside as biofilms on vent sinters but they also commonly form filamentous communities, otherwise known as pink streamers, which attach to solid substrates. Initial 16S rRNA gene surveys conducted on streamer communities from Octopus Spring YNP indicated that these were low diversity ecosystems dominated by a few phylotypes including Thermocrinis sp., Thermotoga sp. and one other bacterial clade (Reysenbach et al 1994). Archaea were notable for their absence. In one of the first geobiological studies of pink streamers and vent biofilms in Yellowstone National Park, Jahnke and coworkers (2001) used classical lipidological techniques to compare Aquificales cultures with environmental samples to show that YNP pink filaments were more phylogenetically diverse and physiologically more complex than the early genomic studies indicated. The presence of archaeol, the range and structures of other lipids and a wide dispersion in the carbon isotopic signatures of biomass and individual lipids (-15 to -27%) showed that Archaea were present in pink filament communities and that there was, at least, one additional bacterial group besides the dominant Aquificales component. New molecular studies that comprise analyses of 16S rRNA genes and total lipid extracts by liquid chromatography and mass spectrometry and chemical degradation with gas chromatography and mass spectrometry now show that Crenarchaea

  3. Morphological And Molecular Analyses of an Anatomical Novelty: The Pelvic Fin Filaments of the South American Lungfish.

    PubMed

    Lima, Sergio Q; Costa, Carinne M; Amemiya, Chris T; Schneider, Igor

    2017-01-01

    The pelvic fins of male South American lungfish, Lepidosiren paradoxa, are adorned with a distinctive array of filaments, which grow and become highly vascularized during the breeding season. The resemblance between these pelvic fin filaments (PFFs) and external gills of other vertebrates suggested that this gill-like structure was used for physiological gas exchange. It has been proposed that the unique pelvic fin of male L. paradoxa is used for release of oxygen from its blood into the environment in order to aerate its nesting brood, or, conversely, as an auxiliary respiratory organ by absorbing oxygen from the environment into its bloodstream. Here, we employed histology, scanning electron microscopy (SEM) and quantitative PCR (qPCR) to assess whether the morphology and molecular profile of PFFs are compatible with a role in gas exchange. First, we closely examined its external morphology and showed that PFFs develop from short papillae during the rainy season, but remain covered by a thick nonvascularized epithelium. Histological examination confirmed that capillaries within the filaments are separated from the exterior by a basement membrane and a stratified epithelium composed of four to five cell layers. In addition, SEM analysis revealed significant differences between the fin filament epithelium and typical gill epithelium. Finally, our qPCR results showed that five genes commonly expressed in gills were downregulated in PFFs relative to their expression in regular pectoral fin epidermis. Collectively, our results do not directly support a role for PFFs, commonly referred to as "limb gills", in oxygen release or uptake.

  4. DYNAMICS OF ATOMIC AND MOLECULAR EMISSION FEATURES FROM NANOSECOND, FEMTOSECOND LASER AND FILAMENT PRODUCED PLASMAS

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.; Phillips, Mark C.

    2016-08-08

    In this presentation, the persistence of atomic, and molecular emission features and its relation to fundamental properties (temperature and density) of ablation plumes generated using various irradiation methods (ns, fs, filaments) will be discussed in detail along with its implications for remote sensing applications.

  5. From Aβ Filament to Fibril: Molecular Mechanism of Surface-Activated Secondary Nucleation from All-Atom MD Simulations.

    PubMed

    Schwierz, Nadine; Frost, Christina V; Geissler, Phillip L; Zacharias, Martin

    2017-02-02

    Secondary nucleation pathways in which existing amyloid fibrils catalyze the formation of new aggregates and neurotoxic oligomers are of immediate importance for the onset and progression of Alzheimer's disease. Here, we apply extensive all-atom molecular dynamics simulations in explicit water to study surface-activated secondary nucleation pathways at the extended lateral β-sheet surface of a preformed Aβ9-40 filament. Calculation of free-energy profiles allows us to determine binding free energies and conformational intermediates for nucleation complexes consisting of 1-4 Aβ peptides. In addition, we combine the free-energy profiles with position-dependent diffusion profiles to extract complementary kinetic information and macroscopic growth rates. Single monomers bind to the β-sheet surface in a disordered, hydrophobically collapsed conformation, whereas dimers and larger oligomers can retain a cross-β conformation resembling a more ordered fibril structure. The association processes during secondary nucleation follow a dock/lock mechanism consisting of a fast initial encounter phase (docking) and a slow structural rearrangement phase (locking). The major driving forces for surface-activated secondary nucleation are the release of a large number of hydration water molecules and the formation of hydrophobic interface contacts, the latter being in contrast to the elongation process at filament tips, which is dominated by the formation of stable and highly specific interface hydrogen bonds. The calculated binding free energies and the association rates for the attachment of Aβ monomers and oligomers to the extended lateral β-sheet surface of the filament seed are higher compared to those for elongation at the filament tips, indicating that secondary nucleation pathways can become important once a critical concentration of filaments has formed.

  6. Molecular dynamics simulation of a myosin subfragment-1 docking with an actin filament.

    PubMed

    Masuda, Tadashi

    2013-09-01

    Myosins are typical molecular motor proteins, which convert the chemical energy of ATP into mechanical work. The fundamental mechanism of this energy conversion is still unknown. To explain the experimental results observed in molecular motors, Masuda has proposed a theory called the "Driven by Detachment (DbD)" mechanism for the working principle of myosins. Based on this theory, the energy used during the power stroke of the myosins originates from the attractive force between a detached myosin head and an actin filament, and does not directly arise from the energy of ATP. According to this theory, every step in the myosin working process may be reproduced by molecular dynamics (MD) simulations, except for the ATP hydrolysis step. Therefore, MD simulations were conducted to reproduce the docking process of a myosin subfragment-1 (S1) against an actin filament. A myosin S1 directed toward the barbed end of an actin filament was placed at three different positions by shifting it away from the filament axis. After 30 ns of MD simulations, in three cases out of ten trials on average, the myosin made a close contact with two actin monomers by changing the positions and the orientation of both the myosin and the actin as predicted in previous studies. Once the docking was achieved, the distance between the myosin and the actin showed smaller fluctuations, indicating that the docking is stable over time. If the docking was not achieved, the myosin moved randomly around the initial position or moved away from the actin filament. MD simulations thus successfully reproduced the docking of a myosin S1 with an actin filament. By extending the similar MD simulations to the other steps of the myosin working process, the validity of the DbD theory may be computationally demonstrated.

  7. Molecular Gas Along a Bright Hα Filament in 2A 0335+096 Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Vantyghem, A. N.; McNamara, B. R.; Russell, H. R.; Hogan, M. T.; Edge, A. C.; Nulsen, P. E. J.; Fabian, A. C.; Combes, F.; Salomé, P.; Baum, S. A.; Donahue, M.; Main, R. A.; Murray, N. W.; O'Connell, R. W.; O'Dea, C. P.; Oonk, J. B. R.; Parrish, I. J.; Sanders, J. S.; Tremblay, G.; Voit, G. M.

    2016-12-01

    We present ALMA CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in the 2A 0335+096 galaxy cluster (z = 0.0346). The total molecular gas mass of 1.13 ± 0.15 × 109 M ⊙ is divided into two components: a nuclear region and a 7 kpc long dusty filament. The central molecular gas component accounts for 3.2 ± 0.4 × 108 M ⊙ of the total supply of cold gas. Instead of forming a rotationally supported ring or disk, it is composed of two distinct, blueshifted clumps south of the nucleus and a series of low-significance redshifted clumps extending toward a nearby companion galaxy. The velocity of the redshifted clouds increases with radius to a value consistent with the companion galaxy, suggesting that an interaction between these galaxies <20 Myr ago disrupted a pre-existing molecular gas reservoir within the BCG. Most of the molecular gas, 7.8 ± 0.9 × 108 M ⊙, is located in the filament. The CO emission is co-spatial with a 104 K emission-line nebula and soft X-rays from 0.5 keV gas, indicating that the molecular gas has cooled out of the intracluster medium over a period of 25-100 Myr. The filament trails an X-ray cavity, suggesting that the gas has cooled from low-entropy gas that has been lifted out of the cluster core and become thermally unstable. We are unable to distinguish between inflow and outflow along the filament with the present data. Cloud velocities along the filament are consistent with gravitational free-fall near the plane of the sky, although their increasing blueshifts with radius are consistent with outflow.

  8. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2.

    PubMed

    Lu, Alvin; Li, Yang; Yin, Qian; Ruan, Jianbin; Yu, Xiong; Egelman, Edward; Wu, Hao

    Absent in melanoma 2 (AIM2) is an essential cytosolic double-stranded DNA receptor that assembles with the adaptor, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 to form the AIM2 inflammasome, which leads to proteolytic maturation of cytokines and pyroptotic cell death. AIM2 contains an N-terminal Pyrin domain (PYD) that interacts with ASC through PYD/PYD interactions and nucleates ASC(PYD) filament formation. To elucidate the molecular basis of AIM2-induced ASC(PYD) polymerization, we generated AIM2(PYD) filaments fused to green fluorescent protein (GFP) and determined its cryo-electron microscopic (cryo-EM) structure. The map showed distinct definition of helices, allowing fitting of the crystal structure. Surprisingly, the GFP-AIM2(PYD) filament is a 1-start helix with helical parameters distinct from those of the 3-start ASC(PYD) filament. However, despite the apparent symmetry difference, helical net and detailed interface analyses reveal minimal changes in subunit packing. GFP-AIM2(PYD) nucleated ASC(PYD) filament formation in comparable efficiency as untagged AIM2(PYD), suggesting assembly plasticity in both AIM2(PYD) and ASC(PYD). The DNA-binding domain of AIM2 is able to form AIM2/DNA filaments, within which the AIM2(PYD) is brought into proximity to template ASC(PYD) filament assembly. Because ASC is able to interact with many PYD-containing receptors for the formation of inflammasomes, the observed structural plasticity may be critically important for this versatility in the PYD/PYD interactions.

  9. Plasticity in PYD assembly revealed by cryo-EM structure of the PYD filament of AIM2

    PubMed Central

    Lu, Alvin; Li, Yang; Yin, Qian; Ruan, Jianbin; Yu, Xiong; Egelman, Edward; Wu, Hao

    2015-01-01

    Absent in melanoma 2 (AIM2) is an essential cytosolic double-stranded DNA receptor that assembles with the adaptor, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 to form the AIM2 inflammasome, which leads to proteolytic maturation of cytokines and pyroptotic cell death. AIM2 contains an N-terminal Pyrin domain (PYD) that interacts with ASC through PYD/PYD interactions and nucleates ASCPYD filament formation. To elucidate the molecular basis of AIM2-induced ASCPYD polymerization, we generated AIM2PYD filaments fused to green fluorescent protein (GFP) and determined its cryo-electron microscopic (cryo-EM) structure. The map showed distinct definition of helices, allowing fitting of the crystal structure. Surprisingly, the GFP-AIM2PYD filament is a 1-start helix with helical parameters distinct from those of the 3-start ASCPYD filament. However, despite the apparent symmetry difference, helical net and detailed interface analyses reveal minimal changes in subunit packing. GFP-AIM2PYD nucleated ASCPYD filament formation in comparable efficiency as untagged AIM2PYD, suggesting assembly plasticity in both AIM2PYD and ASCPYD. The DNA-binding domain of AIM2 is able to form AIM2/DNA filaments, within which the AIM2PYD is brought into proximity to template ASCPYD filament assembly. Because ASC is able to interact with many PYD-containing receptors for the formation of inflammasomes, the observed structural plasticity may be critically important for this versatility in the PYD/PYD interactions. PMID:26583071

  10. A molecular model of phosphorylation-based activation and potentiation of tarantula muscle thick filaments

    PubMed Central

    Brito, Reicy; Alamo, Lorenzo; Lundberg, Ulf; Guerrero, José R.; Pinto, Antonio; Sulbarán, Guidenn; Gawinowicz, Mary Ann; Craig, Roger; Padrón, Raúl

    2011-01-01

    Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). To elucidate the structural mechanism of activation, we have studied RLC phosphorylation in tarantula thick filaments, whose high resolution structure is known. In the relaxed state, tarantula RLCs are ~50% non- and 50% mono-phosphorylated, while on activation mono-phosphorylation increases and some RLCs become bi-phosphorylated. Mass spectrometry shows that relaxed-state mono-phosphorylation occurs on Ser35 while Ca2+-activated phosphorylation is on Ser45, both located near the RLC N-terminus. The sequences around these serines suggest they are the targets for protein kinase C (PKC) and myosin light chain kinase (MLCK) respectively. The atomic model of the tarantula filament shows that the two myosin heads (“free” and “blocked”) are in different environments, with only the free head serines readily accessible to kinases. Thus PKC Ser35 mono-phosphorylation in relaxed filaments would occur only on the free heads. Structural considerations suggest these heads are less strongly bound to the filament backbone, and may oscillate occasionally between attached and detached states (“swaying” heads). These heads would be available for immediate actin interaction upon Ca2+-activation of the thin filaments. Once MLCK becomes activated, it phosphorylates free heads on Ser45. These heads become fully mobile, exposing blocked-head Ser45 to MLCK. This would release the blocked-heads, allowing their interaction with actin. On this model, twitch force would be produced by rapid interaction of swaying free heads with activated thin filaments, while prolonged exposure to Ca2+ on tetanus would recruit new, MLCK-activated heads, resulting in force potentiation. PMID:21959262

  11. The connection between prestellar cores and filaments in the Aquila molecular cloud complex

    NASA Astrophysics Data System (ADS)

    Könyves, Vera; André, Philippe

    One of the main scientific goals of the Herschel Gould Belt survey is to elucidate the physical mechanisms responsible for the formation and evolution of prestellar cores in molecular clouds. In the ~11 deg2 field of Aquila imaged with Herschel/PACS-SPIRE at 70-500 μm, we have identified a complete sample of 651 starless cores, 446 of them are gravitationally-bound candidate prestellar cores. Our Herschel observations also provide an unprecedented census of filaments in the Aquila cloud and suggest an intimate connection between these filaments and the formation process of prestellar cores. Indeed, a strong correlation is found between their spatial distributions. These Herschel findings support a filamentary paradigm for the early stages of star formation, where the cores result from the gravitational fragmentation of the densest filaments.

  12. The connection between prestellar cores and filaments in the Aquila molecular cloud complex

    NASA Astrophysics Data System (ADS)

    Könyves, Vera; André, Philippe

    2015-08-01

    One of the main scientific goals of the Herschel Gould Belt survey (http://gouldbelt-herschel.cea.fr)is to elucidate the physical mechanisms responsible for the formation and evolution of prestellar cores inmolecular clouds. In the ~ 11 deg2 field of Aquila imaged with Herschel/SPIRE-PACS between 70 and 500microns, we have recently identified a complete sample of 651 starless cores, 446 of them aregravitationally-bound candidate prestellar cores that will likely form stars in the future (Könyves et al. 2010and 2015, submitted - see http://gouldbelt-herschel.cea.fr/archives).Our Herschel observations also provide an unprecedented census of filaments in the Aquila cloud andsuggest an intimate connection between these filaments and the formation process of prestellar cores.About 10%-20% of the gas mass is in the form of filaments below Av ~ 7, while as much as ~ 50%-75%of the dense gas mass above Av ~ 7-10 is in the form of filamentary structures.Furthermore, about 90% of the Herschel-identified prestellar cores are located above a background columndensity corresponding to Av ~ 7, and ~ 75% of them lie within the densest filamentary structures withsupercritical masses per unit length > 16 M⊙/pc. In accordance with this, a strong correlation is foundbetween the spatial distribution of prestellar cores and the densest filaments.Comparing the statistics of cores and filaments with the number of young stellar objects identified bySpitzer in the same complex, we also infer a typical timescale ~ 1 Myr for the formation and evolutionof both prestellar cores and filaments.In summary, our Herschel findings in the Aquila cloud support a filamentary paradigm for the early stagesof star formation, where the cores result primarily from the gravitational fragmentation of marginallysupercritical filaments (cf. André et al. 2014, PPVI).

  13. An Ammonia Spectral Map of the L1495-B218 Filaments in the Taurus Molecular Cloud. I. Physical Properties of Filaments and Dense Cores

    NASA Astrophysics Data System (ADS)

    Seo, Young Min; Shirley, Yancy L.; Goldsmith, Paul; Ward-Thompson, Derek; Kirk, Jason M.; Schmalzl, Markus; Lee, Jeong-Eun; Friesen, Rachel; Langston, Glen; Masters, Joe; Garwood, Robert W.

    2015-06-01

    We present deep NH3 observations of the L1495-B218 filaments in the Taurus molecular cloud covering over a 3° angular range using the K-band focal plane array on the 100 m Green Bank Telescope. The L1495-B218 filaments form an interconnected, nearby, large complex extending over 8 pc. We observed NH3 (1, 1) and (2, 2) with a spectral resolution of 0.038 km s-1 and a spatial resolution of 31″. Most of the ammonia peaks coincide with intensity peaks in dust continuum maps at 350 and 500 μm. We deduced physical properties by fitting a model to the observed spectra. We find gas kinetic temperatures of 8-15 K, velocity dispersions of 0.05-0.25 km s-1, and NH3 column densities of 5 × 1012 to 1 × 1014 cm-2. The CSAR algorithm, which is a hybrid of seeded-watershed and binary dendrogram algorithms, identifies a total of 55 NH3 structures, including 39 leaves and 16 branches. The masses of the NH3 sources range from 0.05 to 9.5 {{M}⊙ }. The masses of NH3 leaves are mostly smaller than their corresponding virial mass estimated from their internal and gravitational energies, which suggests that these leaves are gravitationally unbound structures. Nine out of 39 NH3 leaves are gravitationally bound, and seven out of nine gravitationally bound NH3 leaves are associated with star formation. We also found that 12 out of 30 gravitationally unbound leaves are pressure confined. Our data suggest that a dense core may form as a pressure-confined structure, evolve to a gravitationally bound core, and undergo collapse to form a protostar.

  14. Structural complexity of filaments formed from the actin and tubulin folds

    PubMed Central

    Jiang, Shimin; Ghoshdastider, Umesh; Narita, Akihiro; Popp, David

    2016-01-01

    ABSTRACT From yeast to man, an evolutionary distance of 1.3 billion years, the F-actin filament structure has been conserved largely in line with the 94% sequence identity. The situation is entirely different in bacteria. In comparison to eukaryotic actins, the bacterial actin-like proteins (ALPs) show medium to low levels of sequence identity. This is extreme in the case of the ParM family of proteins, which often display less than 20% identity. ParMs are plasmid segregation proteins that form the polymerizing motors that propel pairs of plasmids to the extremities of a cell prior to cell division, ensuring faithful inheritance of the plasmid. Recently, exotic ParM filament structures have been elucidated that show ParM filament geometries are not limited to the standard polar pair of strands typified by actin. Four-stranded non-polar ParM filaments existing as open or closed nanotubules are found in Clostridium tetani and Bacillus thuringiensis, respectively. These diverse architectures indicate that the actin fold is capable of forming a large variety of filament morphologies, and that the conception of the “actin” filament has been heavily influenced by its conservation in eukaryotes. Here, we review the history of the structure determination of the eukaryotic actin filament to give a sense of context for the discovery of the new ParM filament structures. We describe the novel ParM geometries and predict that even more complex actin-like filaments may exist in bacteria. Finally, we compare the architectures of filaments arising from the actin and tubulin folds and conclude that the basic units possess similar properties that can each form a range of structures. Thus, the use of the actin fold in microfilaments and the tubulin fold for microtubules likely arose from a wider range of filament possibilities, but became entrenched as those architectures in early eukaryotes. PMID:28042378

  15. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    NASA Astrophysics Data System (ADS)

    Brosey, W. D.

    1985-07-01

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  16. Ultrasonic analysis of Kevlar-epoxy filament wound structures

    SciTech Connect

    Brosey, W.D.

    1985-07-16

    Composite structures are often desirable for their strength and weight characteristics. Since composites are not as well characterized mechanically as metallic or ceramic structures, much work has been performed at the Oak Ridge Y-12 Plant to obtain that characterization and to develop methods of determining the mechanical properties of a composite nondestructively. Most of the work to date has been performed on nonenclosed structures. One notable exception has been the holographic evaluation of spherical Kevlar-epoxy composite pressure vessels. Several promising nondestructive evaluation techniques have been used to locate flaws and predict the integrity of the composite. Several of these include thermography, Moire interferometry, ultrasonic stress wave factor, ultrasonic C-scan image enhancement, radiography, and nuclear magnetic resonance. As a first step in this transfer and development of NDE techniques, known defects were placed within spherical Kevlar-epoxy, filament-wound test specimens to determine the extent to which they could be detected. These defects included Teflon shim-simulated delaminations, macrosphere-simulated voids, dry-band sets, variable tension, Kevlar 29 fiber instead of the higher strength Kevlar 40 fiber, and an alternate high-void-content winding pattern. Ultrasonic waveform analysis was performed in both the time and frequency domains to determine the detectability and locatability of structural flaws within the composite. Preparation has been made at Virginia Polytechnic Institute and State University and at the University of Delaware, to examine the specimens using various NDE techniques. This work is a compilation of interim project reports in partial fulfillment of the contracts between Virginia Polytechnic Institute and State University, the University of Delaware, and Y-12 Plant.

  17. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  18. Molecular mechanics of cardiac myosin-binding protein C in native thick filaments.

    PubMed

    Previs, M J; Beck Previs, S; Gulick, J; Robbins, J; Warshaw, D M

    2012-09-07

    The heart's pumping capacity results from highly regulated interactions of actomyosin molecular motors. Mutations in the gene for a potential regulator of these motors, cardiac myosin-binding protein C (cMyBP-C), cause hypertrophic cardiomyopathy. However, cMyBP-C's ability to modulate cardiac contractility is not well understood. Using single-particle fluorescence imaging techniques, transgenic protein expression, proteomics, and modeling, we found that cMyBP-C slowed actomyosin motion generation in native cardiac thick filaments. This mechanical effect was localized to where cMyBP-C resides within the thick filament (i.e., the C-zones) and was modulated by phosphorylation and site-specific proteolytic degradation. These results provide molecular insight into why cMyBP-C should be considered a member of a tripartite complex with actin and myosin that allows fine tuning of cardiac muscle contraction.

  19. Regulation of structure and function of sarcomeric actin filaments in striated muscle of the nematode Caenorhabditis elegans

    PubMed Central

    Ono, Shoichiro

    2014-01-01

    The nematode Caenorhabditis elegans has been used as a valuable system to study structure and function of striated muscle. The body wall muscle of C. elegans is obliquely striated muscle with highly organized sarcomeric assembly of actin, myosin, and other accessary proteins. Genetic and molecular biological studies in C. elegans have identified a number of genes encoding structural and regulatory components for the muscle contractile apparatuses, and many of them have counterparts in mammalian cardiac and skeletal muscles or striated muscles in other invertebrates. Applicability of genetics, cell biology, and biochemistry has made C. elegans an excellent system to study mechanisms of muscle contractility and assembly and maintenance of myofibrils. This review focuses on the regulatory mechanisms of structure and function of actin filaments in the C. elegans body wall muscle. Sarcomeric actin filaments in C. elegans muscle are associated with the troponin-tropomyosin system that regulates the actin-myosin interaction. Proteins that bind to the side and ends of actin filaments support ordered assembly of thin filaments. Furthermore, regulators of actin dynamics play important roles in initial assembly, growth, and maintenance of sarcomeres. The knowledge acquired in C. elegans can serve as bases to understand the basic mechanisms of muscle structure and function. PMID:25125169

  20. Structural transition of actin filament in a cell-sized water droplet with a phospholipid membrane

    NASA Astrophysics Data System (ADS)

    Hase, M.; Yoshikawa, K.

    2006-03-01

    Actin filament, F-actin, is a semiflexible polymer with a negative charge, and is one of the main constituents of cell membranes. To clarify the effect of cross talk between a phospholipid membrane and actin filaments in cells, we conducted microscopic observations on the structural changes in actin filaments in a cell-sized (several tens of micrometers in diameter) water droplet coated with a phospholipid membrane such as phosphatidylserine (PS; negatively charged head group) or phosphatidylethanolamine (PE; neutral head group) as a simple model of a living cell membrane. With PS, actin filaments are distributed uniformly in the water phase without adsorption onto the membrane surface between 2 and 6mM Mg2+, while between 6 and 12mM Mg2+, actin filaments are adsorbed onto the inner membrane surface. With PE, the actin filaments are uniformly adsorbed onto the inner membrane surface between 2 and 12mM Mg2+. With both PS and PE membranes, at Mg2+ concentrations higher than 12mM, thick bundles are formed in the bulk water droplet accompanied by the dissolution of actin filaments from the membrane surface. The attraction between actin filaments and membrane is attributable to an increase in the translational entropy of counterions accompanied by the adsorption of actin filaments onto the membrane surface. These results suggest that a microscopic water droplet coated with phospholipid can serve as an easy-to-handle model of cell membranes.

  1. Shocks, Superbubbles, and Filaments: Investigations into Large Scale Gas Motions in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Pon, Andrew Richard

    2013-12-01

    Giant molecular clouds (GMCs), out of which stars form, are complex, dynamic systems, which both influence and are shaped by the process of star formation. In this dissertation, I examine three different facets of the dynamical motions within GMCs. Collapse modes in different dimensional objects. Molecular clouds contain lower dimensional substructures, such as filaments and sheets. The collapse properties of finite filaments and sheets differ from those of spherical objects as well as infinite sheets and filaments. I examine the importance of local collapse modes of small central perturbations, relative to global collapse modes, in different dimensional objects to elucidate whether strong perturbations are required for molecular clouds to fragment to form stars. I also calculate the dependence of the global collapse timescale upon the aspect ratio of sheets and filaments. I find that lower dimensional objects are more readily fragmented, and that for a constant density, lower dimensional objects and clouds with larger aspect ratios collapse more slowly. An edge-driven collapse mode also exists in sheets and filaments and is most important in elongated filaments. The failure to consider the geometry of a gas cloud is shown to lead to an overestimation of the star formation rate by up to an order of magnitude. Molecular tracers of turbulent energy dissipation. Molecular clouds contain supersonic turbulence that simulations predict will decay rapidly via shocks. I use shock models to predict which species emit the majority of the turbulent energy dissipated in shocks and find that carbon monoxide, CO, is primarily responsible for radiating away this energy. By combining these shock models with estimates for the turbulent energy dissipation rate of molecular clouds, I predict the expected shock spectra of CO from molecular clouds. I compare the results of these shock models to predictions for the emission from the unshocked gas in GMCs and show that mid

  2. Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McDonald, M.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Bayliss, M. B.; Benson, B. A.; Brodwin, M.; Carlstrom, J. E.; Edge, A. C.; Hlavacek-Larrondo, J.; Marrone, D. P.; Reichardt, C. L.; Vieira, J. D.

    2017-02-01

    We report new ALMA observations of the CO(3-2) line emission from the 2.1+/- 0.3× {10}10 {M}ȯ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate of 500{--}800 {M}ȯ {{yr}}-1 and powerful black hole activity in the forms of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each 10{--}20 {kpc} long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.

  3. Respiratory Syncytial Virus Assembles into Structured Filamentous Virion Particles Independently of Host Cytoskeleton and Related Proteins

    PubMed Central

    Shaikh, Fyza Y.; Utley, Thomas J.; Craven, Ryan E.; Rogers, Meredith C.; Lapierre, Lynne A.; Goldenring, James R.; Crowe, James E.

    2012-01-01

    Respiratory syncytial virus (RSV) is a single-stranded RNA virus that assembles into viral filaments at the cell surface. Virus assembly often depends on the ability of a virus to use host proteins to accomplish viral tasks. Since the fusion protein cytoplasmic tail (FCT) is critical for viral filamentous assembly, we hypothesized that host proteins important for viral assembly may be recruited by the FCT. Using a yeast two-hybrid screen, we found that filamin A interacted with FCT, and mammalian cell experiments showed it localized to viral filaments but did not affect viral replication. Furthermore, we found that a number of actin-associated proteins also were excluded from viral filaments. Actin or tubulin cytoskeletal rearrangement was not necessary for F trafficking to the cell surface or for viral assembly into filaments, but was necessary for optimal viral replication and may be important for anchoring viral filaments. These findings suggest that RSV assembly into filaments occurs independently of actin polymerization and that viral proteins are the principal drivers for the mechanical tasks involved with formation of complex, structured RSV filaments at the host cell plasma membrane. PMID:22808269

  4. Discovery of a pre-existing molecular filament associated with supernova remnant G127.1+0.5

    SciTech Connect

    Zhou, Xin; Yang, Ji; Fang, Min; Su, Yang

    2014-08-20

    We performed millimeter observations in CO lines toward the supernova remnant (SNR) G127.1+0.5. We found a molecular filament at 4-13 km s{sup –1} consisting of two distinct parts: a straight part coming out of the remnant region and a curved part in the remnant region. The curved part is coincides well with the bright SNR shell detected in 1420 MHz radio continuum and mid-infrared observations in the northeastern region. In addition, redshifted line wing broadening is found only in the curved part of the molecular filament, which indicates a physical interaction. These provide strong evidences, for the first time, to confirm the association between an SNR and a pre-existing long molecular filament. Multi-band observations in the northeastern remnant shell could be explained by the interaction between the remnant shock and the dense molecular filament. RADEX radiative transfer modeling of the quiet and shocked components yield physical conditions consistent with the passage of a non-dissociative J-type shock. We argue that the curved part of the filament is fully engulfed by the remnant's forward shock. A spatial correlation between aggregated young stellar objects (YSOs) and the adjacent molecular filament close to the SNR is also found, which could be related to the progenitor's activity.

  5. The missing link: Tracing molecular gas in the outer filament of Centaurus A

    NASA Astrophysics Data System (ADS)

    Morganti, Raffaella; Oosterloo, Tom; Oonk, J. B. Raymond; Santoro, Francesco; Tadhunter, Clive

    2016-08-01

    We report the detection, using observations of the CO(2-1) line performed with the Atacama Pathfinder EXperiment (APEX), of molecular gas in the region of the outer filament of Centaurus A, a complex region known to show various signatures of an interaction between the radio jet, an H i cloud, and ionised gas filaments. We detect CO(2-1) at all observed locations, which were selected to represent regions with very different physical conditions. The H2 masses of the detections range between 0.2 × 106 and 1.1 × 106M⊙, for conservative choices of the CO to H2 conversion factor. Surprisingly, the stronger detections are not coincident with the H i cloud, but instead are in the region of the ionised filaments. We also find variations in the widths of the CO(2-1) lines throughout the region, with broader lines in the region of the ionised gas, i.e. where the jet-cloud interaction is strongest, and with narrow profiles in the H i cloud. This may indicate that the molecular gas in the region of the ionised gas has the momentum of the jet-cloud interaction encoded in it, in the same way as the ionised gas does. These molecular clouds may therefore be the result of very efficient cooling of the down-stream gas photo- or shock-ionised by the interaction. On the other hand, the molecular clouds with narrower profiles, which are closer to or inside the H i cloud, could be pre-existing cold H2 cores which manage to survive the effects of the passing jet.

  6. THE FORMATION AND MAGNETIC STRUCTURES OF ACTIVE-REGION FILAMENTS OBSERVED BY NVST, SDO, AND HINODE

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Wang, J. C.; Xiang, Y. Y.; Kong, D. F.; Yang, L. H.; Pan, G. M.

    2015-08-15

    To better understand the properties of solar active-region filaments, we present a detailed study on the formation and magnetic structures of two active-region filaments in active region NOAA 11884 during a period of four days. It is found that the shearing motion of the opposite magnetic polarities and the rotation of the small sunspots with negative polarity play an important role in the formation of two active-region filaments. During the formation of these two active-region filaments, one foot of the filaments was rooted in a small sunspot with negative polarity. The small sunspot rotated not only around another small sunspot with negative polarity, but also around the center of its umbra. By analyzing the nonlinear force-free field extrapolation using the vector magnetic fields in the photosphere, twisted structures were found in the two active-region filaments prior to their eruptions. These results imply that the magnetic fields were dragged by the shearing motion between opposite magnetic polarities and became more horizontal. The sunspot rotation twisted the horizontal magnetic fields and finally formed the twisted active-region filaments.

  7. The ALP-Enigma protein ALP-1 functions in actin filament organization to promote muscle structural integrity in Caenorhabditis elegans.

    PubMed

    Han, Hsiao-Fen; Beckerle, Mary C

    2009-05-01

    Mutations that affect the Z-disk-associated ALP-Enigma proteins have been linked to human muscular and cardiac diseases. Despite their clear physiological significance for human health, the mechanism of action of ALP-Enigma proteins is largely unknown. In Caenorhabditis elegans, the ALP-Enigma protein family is encoded by a single gene, alp-1; thus C. elegans provides an excellent model to study ALP-Enigma function. Here we present a molecular and genetic analysis of ALP-Enigma function in C. elegans. We show that ALP-1 and alpha-actinin colocalize at dense bodies where actin filaments are anchored and that the proper localization of ALP-1 at dense bodies is dependent on alpha-actinin. Our analysis of alp-1 mutants demonstrates that ALP-1 functions to maintain actin filament organization and participates in muscle stabilization during contraction. Reducing alpha-actinin activity enhances the actin filament phenotype of the alp-1 mutants, suggesting that ALP-1 and alpha-actinin function in the same cellular process. Like alpha-actinin, alp-1 also interacts genetically with a connectin/titin family member, ketn-1, to provide mechanical stability for supporting body wall muscle contraction. Taken together, our data demonstrate that ALP-1 and alpha-actinin function together to stabilize actin filaments and promote muscle structural integrity.

  8. Molecular transformation, gene cloning, and gene expression systems for filamentous fungi

    USGS Publications Warehouse

    Gold, Scott E.; Duick, John W.; Redman, Regina S.; Rodriguez, Rusty J.

    2001-01-01

    This chapter discusses the molecular transformation, gene cloning, and gene expression systems for filamentous fungi. Molecular transformation involves the movement of discrete amounts of DNA into cells, the expression of genes on the transported DNA, and the sustainable replication of the transforming DNA. The ability to transform fungi is dependent on the stable replication and expression of genes located on the transforming DNA. Three phenomena observed in bacteria, that is, competence, plasmids, and restriction enzymes to facilitate cloning, were responsible for the development of molecular transformation in fungi. Initial transformation success with filamentous fungi, involving the complementation of auxotrophic mutants by exposure to sheared genomic DNA or RNA from wt isolates, occurred with low transformation efficiencies. In addition, it was difficult to retrieve complementing DNA fragments and isolate genes of interest. This prompted the development of transformation vectors and methods to increase efficiencies. The physiological studies performed with fungi indicated that the cell wall could be removed to generate protoplasts. It was evident that protoplasts could be transformed with significantly greater efficiencies than walled cells.

  9. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly.

    PubMed

    Qiao, Qi; Yang, Chenghua; Zheng, Chao; Fontán, Lorena; David, Liron; Yu, Xiong; Bracken, Clay; Rosen, Monica; Melnick, Ari; Egelman, Edward H; Wu, Hao

    2013-09-26

    The CARMA1/Bcl10/MALT1 (CBM) signalosome mediates antigen receptor-induced NF-κB signaling to regulate multiple lymphocyte functions. While CARMA1 and Bcl10 contain caspase recruitment domains (CARDs), MALT1 is a paracaspase with structural similarity to caspases. Here we show that the reconstituted CBM signalosome is a helical filamentous assembly in which substoichiometric CARMA1 nucleates Bcl10 filaments. Bcl10 filament formation is a highly cooperative process whose threshold is sensitized by oligomerized CARMA1 upon receptor activation. In cells, both cotransfected CARMA1/Bcl10 complex and the endogenous CBM signalosome are filamentous morphologically. Combining crystallography, nuclear magnetic resonance, and electron microscopy, we reveal the structure of the Bcl10 CARD filament and the mode of interaction between CARMA1 and Bcl10. Structure-guided mutagenesis confirmed the observed interfaces in Bcl10 filament assembly and MALT1 activation in vitro and NF-κB activation in cells. These data support a paradigm of nucleation-induced signal transduction with threshold response due to cooperativity and signal amplification by polymerization.

  10. Multiple crystal structures of actin dimers and their implications for interactions in the actin filament

    PubMed Central

    Sawaya, Michael R.; Kudryashov, D. S.; Pashkov, Inna; Adisetiyo, Helty; Reisler, Emil; Yeates, Todd O.

    2008-01-01

    The structure of actin in its monomeric form is known at high resolution, while the structure of filamentous F-actin is only understood at considerably lower resolution. Knowing pre­cisely how the monomers of actin fit together would lead to a deeper understanding of the dynamic behavior of the actin filament. Here, a series of crystal structures of actin dimers are reported which were prepared by cross-linking in either the longitudinal or the lateral direction in the filament state. Laterally cross-linked dimers, comprised of monomers belonging to different protofilaments, are found to adopt configurations in crystals that are not related to the native structure of filamentous actin. In contrast, multiple structures of longitudinal dimers consistently reveal the same interface between monomers within a single protofilament. The re­appearance of the same longitudinal interface in multiple crystal structures adds weight to arguments that the interface visualized is similar to that in actin filaments. Highly conserved atomic interactions involving residues 199–205 and 287–291 are highlighted. PMID:18391412

  11. X-ray structures associated with disappearing H-alpha filaments in active regions

    NASA Technical Reports Server (NTRS)

    Kahler, S. W.

    1980-01-01

    The paper examines the relationship between active region disappearing H-alpha filaments and the associated coronal X-ray structures observed both before the disappearance event and afterwards. The events chosen for the study were selected from a list of active region X-ray transients observed in the images from the X-ray telescope on Skylab and from a list compiled by Webb (1976) of sudden disappearances of filaments during the Skylab period. Results indicate no distinction between the disappearing and the remaining active region filaments in terms of their pre-event associated X-ray emission features. However, X-ray brightenings were associated in a nearly one-to-one correspondence with disappearing portions of the filaments.

  12. Sarcomere-length dependence of myosin filament structure in skeletal muscle fibres of the frog.

    PubMed

    Reconditi, Massimo; Brunello, Elisabetta; Fusi, Luca; Linari, Marco; Martinez, Manuel Fernandez; Lombardi, Vincenzo; Irving, Malcolm; Piazzesi, Gabriella

    2014-03-01

    X-ray diffraction patterns were recorded at beamline ID02 of the European Synchrotron Radiation Facility from small bundles of skeletal muscle fibres from Rana esculenta at sarcomere lengths between 2.1 and 3.5 μm at 4°C. The intensities of the X-ray reflections from resting fibres associated with the quasi-helical order of the myosin heads and myosin binding protein C (MyBP-C) decreased in the sarcomere length range 2.6-3.0 μm but were constant outside it, suggesting that an OFF conformation of the thick filament is maintained by an interaction between MyBP-C and the thin filaments. During active isometric contraction the intensity of the M3 reflection from the regular repeat of the myosin heads along the filaments decreased in proportion to the overlap between thick and thin filaments, with no change in its interference fine structure. Thus, myosin heads in the regions of the thick filaments that do not overlap with thin filaments are highly disordered during isometric contraction, in contrast to their quasi-helical order at rest. Heads in the overlap region that belong to two-headed myosin molecules that are fully detached from actin are also highly disordered, in contrast to the detached partners of actin-attached heads. These results provide strong support for the concept of a regulatory structural transition in the thick filament involving changes in both the organisation of the myosin heads on its surface and the axial periodicity of the myosin tails in its backbone, mediated by an interaction between MyBP-C and the thin filaments.

  13. Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus.

    PubMed

    Shida, Yosuke; Furukawa, Takanori; Ogasawara, Wataru

    2016-09-01

    The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus.

  14. Cryo-electron microscopy structure of human peroxiredoxin-3 filament reveals the assembly of a putative chaperone.

    PubMed

    Radjainia, Mazdak; Venugopal, Hariprasad; Desfosses, Ambroise; Phillips, Amy J; Yewdall, N Amy; Hampton, Mark B; Gerrard, Juliet A; Mitra, Alok K

    2015-05-05

    Peroxiredoxins (Prxs) are a ubiquitous class of thiol-dependent peroxidases that play an important role in the protection and response of cells to oxidative stress. The catalytic unit of typical 2-Cys Prxs are homodimers, which can self-associate to form complex assemblies that are hypothesized to have signaling and chaperone activity. Mitochondrial Prx3 forms dodecameric toroids, which can further stack to form filaments, the so-called high-molecular-weight (HMW) form that has putative holdase activity. We used single-particle analysis and helical processing of electron cryomicroscopy images of human Prx3 filaments induced by low pH to generate a ∼7-Å resolution 3D structure of the HMW form, the first such structure for a 2-Cys Prx. The pseudo-atomic model reveals interactions that promote the stacking of the toroids and shows that unlike previously reported data, the structure can accommodate a partially folded C terminus. The HMW filament lumen displays hydrophobic patches, which we hypothesize bestow holdase activity.

  15. Self-Oligomerizing Structure of the Flagellar Cap Protein FliD and Its Implication in Filament Assembly.

    PubMed

    Song, Wan Seok; Cho, So Yeon; Hong, Ho Jeong; Park, Sun Cheol; Yoon, Sung-Il

    2017-03-24

    FliD is a self-oligomerizing structural protein that caps the growing end of the bacterial flagellar filament. FliD also plays a key role in the flagellar system by continuously adding a new flagellin protein to the tip of the filament. To structurally characterize FliD oligomerization and to provide a FliD-mediated flagellin polymerization mechanism, we have determined the crystal structures of FliD proteins from Escherichia coli and Salmonella enterica serovar Typhimurium (ecFliD and stFliD, respectively). ecFliD consists of three domains (D1, D2, and D3) and forms a hexamer plate of the D2 and D3 domains that resembles a six-pointed star with legs consisting of the D1 domain. In contrast, the D2 and D3 domains of stFliD assemble into a pentamer as a five-pointed star plate. Despite their distinct oligomeric states, ecFliD and stFliD engage a common molecular surface for oligomerization. FliD also features interdomain and intersubunit flexibility, suggesting that FliD reorganizes its domains and adjacent subunits depending on the FliD binding partner. The similarity of the FliD shape to flagellin and the structural dynamics of FliD led us to propose a FliD-catalyzed filament elongation mechanism. In this model, FliD occupies a position in place of a nascent flagellin until the flagellin reaches the growing end of the filament, and then, FliD moves aside to repeat the positional replacement.

  16. DARK RIBBONS PROPAGATING AND SWEEPING ACROSS EXTREME ULTRAVIOLET STRUCTURES AFTER FILAMENT ERUPTIONS

    SciTech Connect

    Xiao, Junmin; Zhang, Jun; Li, Ting; Yang, Shuhong E-mail: zjun@nao.cas.cn E-mail: shuhongyang@nao.cas.cn

    2015-05-20

    With observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we first report that dark ribbons (DRs) moved apart from the filament channel and swept across EUV structures after filament eruptions on 2013 June 23 and 2012 February 10 and 24, respectively. In the first event, the DR with a length of 168 Mm appeared at 100 Mm to the northwest of the filament channel, where the filament erupted 15 hr previously. The DR moved toward the northwest with the different sections having different velocities, ranging from 0.3 to 1.6 km s{sup −1}. When the DR’s middle part swept across a strong EUV structure, the motion of this part was blocked, appearing to deflect the DR. With the DR propagation, the connection of the surrounding EUV structures gradually changed. After one day passed, the DR eventually disappeared. In the other two events, the dynamic evolution of the DRs was similar to that in the first event. Based on the observations, we speculate that the reconnection during the filament eruption changes the configuration of the surrounding magnetic fields systematically. During the reconnection process, magnetic fields are deflecting and the former arbitrarily distributed magnetic fields are rearranged along specific directions. The deflection of magnetic fields results in an instantaneous void region where the magnetic strength is smaller and the plasma density is lower. Consequently, the void region is observed as a DR and propagates outward with the reconnection developing.

  17. Dark Ribbons Propagating and Sweeping Across Extreme Ultraviolet Structures After Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Xiao, Junmin; Zhang, Jun; Li, Ting; Yang, Shuhong

    2015-05-01

    With observations from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we first report that dark ribbons (DRs) moved apart from the filament channel and swept across EUV structures after filament eruptions on 2013 June 23 and 2012 February 10 and 24, respectively. In the first event, the DR with a length of 168 Mm appeared at 100 Mm to the northwest of the filament channel, where the filament erupted 15 hr previously. The DR moved toward the northwest with the different sections having different velocities, ranging from 0.3 to 1.6 km s-1. When the DR’s middle part swept across a strong EUV structure, the motion of this part was blocked, appearing to deflect the DR. With the DR propagation, the connection of the surrounding EUV structures gradually changed. After one day passed, the DR eventually disappeared. In the other two events, the dynamic evolution of the DRs was similar to that in the first event. Based on the observations, we speculate that the reconnection during the filament eruption changes the configuration of the surrounding magnetic fields systematically. During the reconnection process, magnetic fields are deflecting and the former arbitrarily distributed magnetic fields are rearranged along specific directions. The deflection of magnetic fields results in an instantaneous void region where the magnetic strength is smaller and the plasma density is lower. Consequently, the void region is observed as a DR and propagates outward with the reconnection developing.

  18. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    NASA Technical Reports Server (NTRS)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  19. Structure of a Longitudinal Actin Dimer Assembled by Tandem W Domains: Implications for Actin Filament Nucleation

    SciTech Connect

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C.; Navaza, Jorge; Dominguez, Roberto

    2013-11-20

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin {beta}4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin {beta}4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  20. Structure of a longitudinal actin dimer assembled by tandem w domains: implications for actin filament nucleation.

    PubMed

    Rebowski, Grzegorz; Namgoong, Suk; Boczkowska, Malgorzata; Leavis, Paul C; Navaza, Jorge; Dominguez, Roberto

    2010-10-15

    Actin filament nucleators initiate polymerization in cells in a regulated manner. A common architecture among these molecules consists of tandem WASP homology 2 domains (W domains) that recruit three to four actin subunits to form a polymerization nucleus. We describe a low-resolution crystal structure of an actin dimer assembled by tandem W domains, where the first W domain is cross-linked to Cys374 of the actin subunit bound to it, whereas the last W domain is followed by the C-terminal pointed end-capping helix of thymosin β4. While the arrangement of actin subunits in the dimer resembles that of a long-pitch helix of the actin filament, important differences are observed. These differences result from steric hindrance of the W domain with intersubunit contacts in the actin filament. We also determined the structure of the first W domain of Vibrio parahaemolyticus VopL cross-linked to actin Cys374 and show it to be nearly identical with non-cross-linked W-Actin structures. This result validates the use of cross-linking as a tool for the study of actin nucleation complexes, whose natural tendency to polymerize interferes with most structural methods. Combined with a biochemical analysis of nucleation, the structures may explain why nucleators based on tandem W domains with short inter-W linkers have relatively weak activity, cannot stay bound to filaments after nucleation, and are unlikely to influence filament elongation. The findings may also explain why nucleation-promoting factors of the Arp2/3 complex, which are related to tandem-W-domain nucleators, are ejected from branch junctions after nucleation. We finally show that the simple addition of the C-terminal pointed end-capping helix of thymosin β4 to tandem W domains can change their activity from actin filament nucleation to monomer sequestration.

  1. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.

    PubMed Central

    Wang, K; McCarter, R; Wright, J; Beverly, J; Ramirez-Mitchell, R

    1993-01-01

    The mechanical roles of sarcomere-associated cytoskeletal lattices were investigated by studying the resting tension-sarcomere length curves of mechanically skinned rabbit psoas muscle fibers over a wide range of sarcomere strain. Correlative immunoelectron microscopy of the elastic titin filaments of the endosarcomeric lattice revealed biphasic extensibility behaviors and provided a structural interpretation of the multiphasic tension-length curves. We propose that the reversible change of contour length of the extensible segment of titin between the Z line and the end of thick filaments underlies the exponential rise of resting tension. At and beyond an elastic limit near 3.8 microns, a portion of the anchored titin segment that adheres to thick filaments is released from the distal ends of thick filament. This increase in extensible length of titin results in a net length increase in the unstrained extensible segment, thereby lowering the stiffness of the fiber, lengthening the slack sarcomere length, and shifting the yield point in postyield sarcomeres. Thus, the titin-myosin composite filament behaves as a dual-stage molecular spring, consisting of an elastic connector segment for normal response and a longer latent segment that is recruited at and beyond the elastic limit of the sarcomere. Exosarcomeric intermediate filaments contribute to resting tension only above 4.5 microns. We conclude that the interlinked endo- and exosarcomeric lattices are both viscoelastic force-bearing elements. These distinct cytoskeletal lattices appear to operate over two ranges of sarcomere strains and collectively enable myofibrils to respond viscoelastically over a broad range of sarcomere and fiber lengths. Images FIGURE 3 FIGURE 5 FIGURE 7 PMID:8494977

  2. Understanding molecular structure from molecular mechanics.

    PubMed

    Allinger, Norman L

    2011-04-01

    Molecular mechanics gives us a well known model of molecular structure. It is less widely recognized that valence bond theory gives us structures which offer a direct interpretation of molecular mechanics formulations and parameters. The electronic effects well-known in physical organic chemistry can be directly interpreted in terms of valence bond structures, and hence quantitatively calculated and understood. The basic theory is outlined in this paper, and examples of the effects, and their interpretation in illustrative examples is presented.

  3. FilFinder: Filamentary structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Koch, Eric W.; Rosolowsky, Erik W.

    2016-08-01

    FilFinder extracts and analyzes filamentary structure in molecular clouds. In particular, it is capable of uniformly extracting structure over a large dynamical range in intensity. It returns the main filament properties: local amplitude and background, width, length, orientation and curvature. FilFinder offers additional tools to, for example, create a filament-only image based on the properties of the radial fits. The resulting mask and skeletons may be saved in FITS format, and property tables may be saved as a CSV, FITS or LaTeX table.

  4. Molecular mimicry in virus infection: crossreaction of measles virus phosphoprotein or of herpes simplex virus protein with human intermediate filaments.

    PubMed Central

    Fujinami, R S; Oldstone, M B; Wroblewska, Z; Frankel, M E; Koprowski, H

    1983-01-01

    Using monoclonal antibodies, we demonstrate that the phosphoprotein of measles virus and a protein of herpes simplex virus type 1 crossreact with an intermediate filament protein of human cells. This intermediate filament protein, probably vimentin, has a molecular weight of 52,000, whereas the molecular weights of the measles viral phosphoprotein and the herpes virus protein are 70,000 and 146,000, respectively. Crossreactivity was shown by immunofluorescent staining of infected and uninfected cells and by immunoblotting. The monoclonal antibody against measles virus phosphoprotein did not react with herpes simplex virus protein and vice versa, indicating that these monoclonal antibodies recognize different antigenic determinants on the intermediate filament molecule. The significance of these results in explaining the appearance of autoantibodies during virus infections in humans is discussed. Images PMID:6300911

  5. Filamentary structure in the Orion molecular cloud

    NASA Technical Reports Server (NTRS)

    Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.; Bally, J.; Langer, W. D.

    1986-01-01

    A large scale 13CO map (containing 33,000 spectra) of the giant molecular cloud located in the southern part of Orion is presented which contains the Orion Nebula, NGC1977, and the LI641 dark cloud complex. The overall structure of the cloud is filamentary, with individual features having a length up to 40 times their width. This morphology may result from the effects of star formation in the region or embedded magnetic fields in the cloud. We suggest a simple picture for the evolution of the Orion-A cloud and the formation of the major filament. A rotating proto-cloud (counter rotating with respect to the galaxy) contians a b-field aligned with the galaxtic plane. The northern protion of this cloud collapsed first, perhaps triggered by the pressure of the Ori I OB association. The magnetic field combined with the anisotropic pressure produced by the OB-association breaks the symmetry of the pancake instability, a filament rather than a disc is produced. The growth of instabilities in the filament formed sub-condensations which are recent sites of star formation.

  6. CORTICAL CYTOPLASMIC FILAMENTS OF CLEAVING EGGS: A STRUCTURAL ELEMENT CORRESPONDING TO THE CONTRACTILE RING

    PubMed Central

    Szollosi, Daniel

    1970-01-01

    A sheath consisting of filaments 50–70 A in diameter has been demonstrated in association with the expanded, leading margins of the cleavage furrow in unilaterally and symmetrically cleaving eggs of a jellyfish and a polychaete worm, respectively. The observations suggest that the filament system might provide a structural basis for the existence of the contractile gel that, according to a hypothesis by Marsland and Landau, accomplishes cleavage. The filamentous sheath is present only in the furrow region and is arranged in an arcuate manner in unilaterally cleaving eggs and circumferentially in symmetrical cleavage. The filaments appear to be of finite length, and a number of them must overlap to span the length of the furrow. Contraction may be accomplished if the filaments slide relative to each other. However, contraction per se was experimentally not demonstrated in the studied systems. The disappearance of microvilli and the merocrine type secretion of mucoid droplets at the interdigitating or "spinning" membrane region of unilateral cleavage suggest that the unfolding of a pleated membrane and the insertion of intracytoplasmic membranes might contribute, at least in part, to the necessary extra cell membrane. PMID:4390970

  7. Specific Transformation of Assembly with Actin Filaments and Molecular Motors in a Cell-Sized Self-Emerged Liposome

    NASA Astrophysics Data System (ADS)

    Takiguchi, Kingo; Negishi, Makiko; Tanaka-Takiguchi, Yohko; Hayashi, Masahito; Yoshikawa, Kenichi

    2014-12-01

    Eukaryotes, by the same combination of cytoskeleton and molecular motor, for example actin filament and myosin, can generate a variety of movements. For this diversity, the organization of biological machineries caused by the confinement and/or crowding effects of internal living cells, may play very important roles.

  8. Structural basis for the prion-like MAVS filaments in antiviral innate immunity

    PubMed Central

    Xu, Hui; He, Xiaojing; Zheng, Hui; Huang, Lily J; Hou, Fajian; Yu, Zhiheng; de la Cruz, Michael Jason; Borkowski, Brian; Zhang, Xuewu; Chen, Zhijian J; Jiang, Qiu-Xing

    2014-01-01

    Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001 PMID:24569476

  9. Structural basis for the prion-like MAVS filaments in antiviral innate immunity.

    PubMed

    Xu, Hui; He, Xiaojing; Zheng, Hui; Huang, Lily J; Hou, Fajian; Yu, Zhiheng; de la Cruz, Michael Jason; Borkowski, Brian; Zhang, Xuewu; Chen, Zhijian J; Jiang, Qiu-Xing

    2014-01-01

    Mitochondrial antiviral signaling (MAVS) protein is required for innate immune responses against RNA viruses. In virus-infected cells MAVS forms prion-like aggregates to activate antiviral signaling cascades, but the underlying structural mechanism is unknown. Here we report cryo-electron microscopic structures of the helical filaments formed by both the N-terminal caspase activation and recruitment domain (CARD) of MAVS and a truncated MAVS lacking part of the proline-rich region and the C-terminal transmembrane domain. Both structures are left-handed three-stranded helical filaments, revealing specific interfaces between individual CARD subunits that are dictated by electrostatic interactions between neighboring strands and hydrophobic interactions within each strand. Point mutations at multiple locations of these two interfaces impaired filament formation and antiviral signaling. Super-resolution imaging of virus-infected cells revealed rod-shaped MAVS clusters on mitochondria. These results elucidate the structural mechanism of MAVS polymerization, and explain how an α-helical domain uses distinct chemical interactions to form self-perpetuating filaments. DOI: http://dx.doi.org/10.7554/eLife.01489.001.

  10. Structure, sarcomeric organization, and thin filament binding of cardiac myosin-binding protein-C.

    PubMed

    Craig, Roger; Lee, Kyoung Hwan; Mun, Ji Young; Torre, Iratxe; Luther, Pradeep K

    2014-03-01

    Myosin-binding protein-C (MyBP-C) is an accessory protein of the myosin filaments of vertebrate striated muscle. In the heart, it plays a key role in modulating contractility in response to β-adrenergic stimulation. Mutations in the cardiac isoform (cMyBP-C) are a leading cause of inherited hypertrophic cardiomyopathy. Understanding cMyBP-C function and its role in disease requires knowledge of the structure of the molecule, its organization in the sarcomere, and its interactions with other sarcomeric proteins. Here we review the main structural features of this modular, elongated molecule and the properties of some of its key domains. We describe observations suggesting that the bulk of the molecule extends perpendicular to the thick filament, enabling it to reach neighboring thin filaments in the sarcomere. We review structural and functional evidence for interaction of its N-terminal domains with actin and how this may modulate thin filament activation. We also discuss the effects that phosphorylation of cMyBP-C has on some of these structural features and how this might relate to cMyBP-C function in the beating heart.

  11. Specific Glucoside Transporters Influence Septal Structure and Function in the Filamentous, Heterocyst-Forming Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Nieves-Morión, Mercedes; Lechno-Yossef, Sigal; López-Igual, Rocío; Frías, José E; Mariscal, Vicente; Nürnberg, Dennis J; Mullineaux, Conrad W; Wolk, C Peter; Flores, Enrique

    2017-04-01

    When deprived of combined nitrogen, some filamentous cyanobacteria contain two cell types: vegetative cells that fix CO2 through oxygenic photosynthesis and heterocysts that are specialized in N2 fixation. In the diazotrophic filament, the vegetative cells provide the heterocysts with reduced carbon (mainly in the form of sucrose) and heterocysts provide the vegetative cells with combined nitrogen. Septal junctions traverse peptidoglycan through structures known as nanopores and appear to mediate intercellular molecular transfer that can be traced with fluorescent markers, including the sucrose analog esculin (a coumarin glucoside) that is incorporated into the cells. Uptake of esculin by the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 was inhibited by the α-glucosides sucrose and maltose. Analysis of Anabaena mutants identified components of three glucoside transporters that move esculin into the cells: GlsC (Alr4781) and GlsP (All0261) are an ATP-binding subunit and a permease subunit of two different ABC transporters, respectively, and HepP (All1711) is a major facilitator superfamily (MFS) protein that was shown previously to be involved in formation of the heterocyst envelope. Transfer of fluorescent markers (especially calcein) between vegetative cells of Anabaena was impaired by mutation of glucoside transporter genes. GlsP and HepP interact in bacterial two-hybrid assays with the septal junction-related protein SepJ, and GlsC was found to be necessary for the formation of a normal number of septal peptidoglycan nanopores and for normal subcellular localization of SepJ. Therefore, beyond their possible role in nutrient uptake in Anabaena, glucoside transporters influence the structure and function of septal junctions.IMPORTANCE Heterocyst-forming cyanobacteria have the ability to perform oxygenic photosynthesis and to assimilate atmospheric CO2 and N2 These organisms grow as filaments that fix these gases specifically in vegetative

  12. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories

    NASA Astrophysics Data System (ADS)

    Celano, U.; Giammaria, G.; Goux, L.; Belmonte, A.; Jurczak, M.; Vandervorst, W.

    2016-07-01

    The electrochemical reactions triggering resistive switching in conductive-bridge resistive random access memory (CBRAM) are spatially confined in few tens of nm3. The formation and dissolution of nanoscopic Cu-filaments rely on the displacement of ions in such confined volume, and it is driven by the electric field induced ion migration and nanoscaled redox reactions. The stochastic nature of these fundamental processes leads to a large variability of the device performance. In this work, a combination of two- and three-dimensional scanning probe microscopy (SPM) techniques are used to study the conductive filament (CF) formation, rupture and its nanoscopic structural rearrangements. The high spatial confinement of our approach enables to locally induce RS in a confined area and image it in 3D. A conical shape of the CF is consistently observed, indicating that the ion migration is the rate limiting step in the filament formation when using high quality dielectrics as switching layers. The sub-10 nm electrical contact size of the AFM tip is used to study the filament's dissolution and detect the hopping conduction of Cu during the CF rupture. We consistently observe a tunnel gap formation associated with the tip-induced filament reset. Finally, aiming to match the fundamental understanding with the integrated device operations, we apply scalpel SPM to failed memory cells and directly observe the appearance of filament multiplicity as a major source of failures and variability in CBRAM.The electrochemical reactions triggering resistive switching in conductive-bridge resistive random access memory (CBRAM) are spatially confined in few tens of nm3. The formation and dissolution of nanoscopic Cu-filaments rely on the displacement of ions in such confined volume, and it is driven by the electric field induced ion migration and nanoscaled redox reactions. The stochastic nature of these fundamental processes leads to a large variability of the device performance. In this

  13. Probing the flexibility of tropomyosin and its binding to filamentous actin using molecular dynamics simulations.

    PubMed

    Zheng, Wenjun; Barua, Bipasha; Hitchcock-DeGregori, Sarah E

    2013-10-15

    Tropomyosin (Tm) is a coiled-coil protein that binds to filamentous actin (F-actin) and regulates its interactions with actin-binding proteins like myosin by moving between three positions on F-actin (the blocked, closed, and open positions). To elucidate the molecular details of Tm flexibility in relation to its binding to F-actin, we conducted extensive molecular dynamics simulations for both Tm alone and Tm-F-actin complex in the presence of explicit solvent (total simulation time >400 ns). Based on the simulations, we systematically analyzed the local flexibility of the Tm coiled coil using multiple parameters. We found a good correlation between the regions with high local flexibility and a number of destabilizing regions in Tm, including six clusters of core alanines. Despite the stabilization by F-actin binding, the distribution of local flexibility in Tm is largely unchanged in the absence and presence of F-actin. Our simulations showed variable fluctuations of individual Tm periods from the closed position toward the open position. In addition, we performed Tm-F-actin binding calculations based on the simulation trajectories, which support the importance of Tm flexibility to Tm-F-actin binding. We identified key residues of Tm involved in its dynamic interactions with F-actin, many of which have been found in recent mutational studies to be functionally important, and the rest of which will make promising targets for future mutational experiments.

  14. Multilamellar Structures and Filament Bundles Are Found on the Cell Surface during Bunyavirus Egress

    PubMed Central

    Sanz-Sánchez, Laura; Risco, Cristina

    2013-01-01

    Inside cells, viruses build specialized compartments for replication and morphogenesis. We observed that virus release associates with specific structures found on the surface of mammalian cells. Cultured adherent cells were infected with a bunyavirus and processed for oriented sectioning and transmission electron microscopy. Imaging of cell basal regions showed sophisticated multilamellar structures (MLS) and extracellular filament bundles with attached viruses. Correlative light and electron microscopy confirmed that both MLS and filaments proliferated during the maximum egress of new viruses. MLS dimensions and structure were reminiscent of those reported for the nanostructures on gecko fingertips, which are responsible for the extraordinary attachment capacity of these lizards. As infected cells with MLS were more resistant to detachment than control cells, we propose an adhesive function for these structures, which would compensate for the loss of adherence during release of new virus progeny. PMID:23799021

  15. Formation of dense structures induced by filament collisions. Correlation of density, kinematics, and magnetic field in the Pipe nebula

    NASA Astrophysics Data System (ADS)

    Frau, P.; Girart, J. M.; Alves, F. O.; Franco, G. A. P.; Onishi, T.; Román-Zúñiga, C. G.

    2015-02-01

    Context. The Pipe nebula is a molecular cloud that lacks star formation feedback and has a relatively simple morphology and velocity structure. This makes it an ideal target for testing cloud evolution through collisions. Aims: We aim at drawing a comprehensive picture of this relatively simple cloud to better understand the formation and evolution of molecular clouds on large scales. Methods: We use archival data to compare the optical polarization properties, the visual extinction, and the 13CO velocities and linewidths of the entire cloud in order to identify trends among the observables. Results: The Pipe nebula can be roughly divided into two filaments with different orientations and gas velocity ranges: E-W at 2-4 km s-1 and N-S at 6-7 km s-1. The two filaments overlap at the bowl, where the gas shows a velocity gradient spanning from 2 to 7 km s-1. Compared to the rest of the Pipe nebula, the bowl gas appears to be denser and exhibits larger linewidths. In addition, the polarization data at the bowl shows lower angular dispersion and higher polarization degree. Cores in the bowl tend to cluster in space and to follow the 13CO velocity gradient. In the stem, cores tend to cluster in regions with properties similar to those of the bowl. Conclusions: The velocity pattern points to a collision between the filaments in the bowl region. The magnetic field seems to be compressed and strengthened in the shocked region. The proportional increase in density and magnetic field strength by a factor similar to the Alfvénic Mach number suggests a continuous shock at low Alfvénic Mach number under the flux-freezing condition. Shocked regions seem to enhance the formation and clustering of dense cores. A movie associated to Fig. 2 is available at http://www.aanda.org

  16. STRUCTURE AND DYNAMICS OF QUIESCENT FILAMENT CHANNELS OBSERVED BY HINODE/XRT AND STEREO/EUVI

    SciTech Connect

    Su Yingna; Van Ballegooijen, Adriaan; Golub, Leon

    2010-09-20

    We present a study of the structure and dynamics of quiescent filament channels observed by Hinode/XRT and STEREO/EUVI at the solar minimum 23/24 from 2006 November to 2008 December. For 12 channels identified on the solar disk (Group I channels), we find that the morphology of the structure on the two sides of the channel is asymmetric in both X-rays and EUV: the eastern side has curved features while the western side has straight features. We interpret the results in terms of a magnetic flux rope model. The asymmetry in the morphology is due to the variation in axial flux of the flux rope along the channel, which causes the field lines from one polarity to turn into the flux rope (curved feature), while the field lines from the other polarity are connected to very distant sources (straight). For most of the 68 channels identified by cavities at the east and west limbs (Group II channels), the asymmetry cannot be clearly identified, which is likely due to the fact that the axial flux may be relatively constant along such channels. Corresponding cavities are identified only for 5 of the 12 Group I channels, while Group II channels are identified for all of the 68 cavity pairs. The studied filament channels are often observed as dark channels in X-rays and EUV. Sheared loops within Group I channels are often seen in X-rays, but are rarely seen in Group II channels as shown in the X-ray Telescope daily synoptic observations. A survey of the dynamics of studied filament channels shows that filament eruptions occur at an average rate of 1.4 filament eruptions per channel per solar rotation.

  17. High-resolution structure of the presynaptic RAD51 filament on single-stranded DNA by electron cryo-microscopy

    PubMed Central

    Short, Judith M.; Liu, Yang; Chen, Shaoxia; Soni, Neelesh; Madhusudhan, Mallur S.; Shivji, Mahmud K.K.; Venkitaraman, Ashok R.

    2016-01-01

    Homologous DNA recombination (HR) by the RAD51 recombinase enables error-free DNA break repair. To execute HR, RAD51 first forms a presynaptic filament on single-stranded (ss) DNA, which catalyses pairing with homologous double-stranded (ds) DNA. Here, we report a structure for the presynaptic human RAD51 filament at 3.5–5.0Å resolution using electron cryo-microscopy. RAD51 encases ssDNA in a helical filament of 103Å pitch, comprising 6.4 protomers per turn, with a rise of 16.1Å and a twist of 56.2°. Inter-protomer distance correlates with rotation of an α-helical region in the core catalytic domain that is juxtaposed to ssDNA, suggesting how the RAD51–DNA interaction modulates protomer spacing and filament pitch. We map Fanconi anaemia-like disease-associated RAD51 mutations, clarifying potential phenotypes. We predict binding sites on the presynaptic filament for two modules present in each BRC repeat of the BRCA2 tumour suppressor, a critical HR mediator. Structural modelling suggests that changes in filament pitch mask or expose one binding site with filament-inhibitory potential, rationalizing the paradoxical ability of the BRC repeats to either stabilize or inhibit filament formation at different steps during HR. Collectively, our findings provide fresh insight into the structural mechanism of HR and its dysregulation in human disease. PMID:27596592

  18. Structure of the Acidianus Filamentous Virus 3 and Comparative Genomics of Related Archaeal Lipothrixviruses▿

    PubMed Central

    Vestergaard, Gisle; Aramayo, Ricardo; Basta, Tamara; Häring, Monika; Peng, Xu; Brügger, Kim; Chen, Lanming; Rachel, Reinhard; Boisset, Nicolas; Garrett, Roger A.; Prangishvili, David

    2008-01-01

    Four novel filamentous viruses with double-stranded DNA genomes, namely, Acidianus filamentous virus 3 (AFV3), AFV6, AFV7, and AFV8, have been characterized from the hyperthermophilic archaeal genus Acidianus, and they are assigned to the Betalipothrixvirus genus of the family Lipothrixviridae. The structures of the approximately 2-μm-long virions are similar, and one of them, AFV3, was studied in detail. It consists of a cylindrical envelope containing globular subunits arranged in a helical formation that is unique for any known double-stranded DNA virus. The envelope is 3.1 nm thick and encases an inner core with two parallel rows of protein subunits arranged like a zipper. Each end of the virion is tapered and carries three short filaments. Two major structural proteins were identified as being common to all betalipothrixviruses. The viral genomes were sequenced and analyzed, and they reveal a high level of conservation in both gene content and gene order over large regions, with this similarity extending partly to the earlier described betalipothrixvirus Sulfolobus islandicus filamentous virus. A few predicted gene products of each virus, in addition to the structural proteins, could be assigned specific functions, including a putative helicase involved in Holliday junction branch migration, a nuclease, a protein phosphatase, transcriptional regulators, and glycosyltransferases. The AFV7 genome appears to have undergone intergenomic recombination with a large section of an AFV2-like viral genome, apparently resulting in phenotypic changes, as revealed by the presence of AFV2-like termini in the AFV7 virions. Shared features of the genomes include (i) large inverted terminal repeats exhibiting conserved, regularly spaced direct repeats; (ii) a highly conserved operon encoding the two major structural proteins; (iii) multiple overlapping open reading frames, which may be indicative of gene recoding; (iv) putative 12-bp genetic elements; and (v) partial gene

  19. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  20. Extracellular matrix of adipogenically differentiated mesenchymal stem cells reveals a network of collagen filaments, mostly interwoven by hexagonal structural units.

    PubMed

    Ullah, Mujib; Sittinger, Michael; Ringe, Jochen

    2013-01-01

    Extracellular matrix (ECM) is the non-cellular component of tissues, which not only provides biological shelter but also takes part in the cellular decisions for diverse functions. Every tissue has an ECM with unique composition and topology that governs the process of determination, differentiation, proliferation, migration and regeneration of cells. Little is known about the structural organization of matrix especially of MSC-derived adipogenic ECM. Here, we particularly focus on the composition and architecture of the fat ECM to understand the cellular behavior on functional bases. Thus, mesenchymal stem cells (MSC) were adipogenically differentiated, then, were transferred to adipogenic propagation medium, whereas they started the release of lipid droplets leaving bare network of ECM. Microarray analysis was performed, to indentify the molecular machinery of matrix. Adipogenesis was verified by Oil Red O staining of lipid droplets and by qPCR of adipogenic marker genes PPARG and FABP4. Antibody staining demonstrated the presence of collagen type I, II and IV filaments, while alkaline phosphatase activity verified the ossified nature of these filaments. In the adipogenic matrix, the hexagonal structures were abundant followed by octagonal structures, whereas they interwoven in a crisscross manner. Regarding molecular machinery of adipogenic ECM, the bioinformatics analysis revealed the upregulated expression of COL4A1, ITGA7, ITGA7, SDC2, ICAM3, ADAMTS9, TIMP4, GPC1, GPC4 and downregulated expression of COL14A1, ADAMTS5, TIMP2, TIMP3, BGN, LAMA3, ITGA2, ITGA4, ITGB1, ITGB8, CLDN11. Moreover, genes associated with integrins, glycoproteins, laminins, fibronectins, cadherins, selectins and linked signaling pathways were found. Knowledge of the interactive-language between cells and matrix could be beneficial for the artificial designing of biomaterials and bioscaffolds.

  1. Three-dimensional structure of actin filaments and of an actin gel made with actin-binding protein.

    PubMed

    Niederman, R; Amrein, P C; Hartwig, J

    1983-05-01

    Purified muscle actin and mixtures of actin and actin-binding protein were examined in the transmission electron microscope after fixation, critical point drying, and rotary shadowing. The three-dimensional structure of the protein assemblies was analyzed by a computer-assisted graphic analysis applicable to generalized filament networks. This analysis yielded information concerning the frequency of filament intersections, the filament length between these intersections, the angle at which filaments branch at these intersections, and the concentration of filaments within a defined volume. Purified actin at a concentration of 1 mg/ml assembled into a uniform mass of long filaments which overlap at random angles between 0 degrees and 90 degrees. Actin in the presence of macrophage actin-binding protein assembled into short, straight filaments, organized in a perpendicular branching network. The distance between branch points was inversely related to the molar ratio of actin-binding protein to actin. This distance was what would be predicted if actin filaments grew at right angles off of nucleation sites on the two ends of actin-binding protein dimers, and then annealed. The results suggest that actin in combination with actin-binding protein self-assembles to form a three-dimensional network resembling the peripheral cytoskeleton of motile cells.

  2. Freely Suspended Smectic Filaments and the Structure of the B7 Phase of MHOBOW

    NASA Technical Reports Server (NTRS)

    Clark, N.; Link, D. R.; Maclennan, J. E.

    2000-01-01

    Our recent discovery of the spontaneous formation of chiral domains in fluid smectic phases of achiral bow-shaped molecules opens up a wide variety of possibilities for new liquid crystal phases and phenomena. The basic, spontaneously chiral layer structure of the highest temperature fluid smectic phases, the B2 and B7, are shown. One of the most intriguing aspects of this structure is the plethora of possible phases coming from different stacking sequences of the polar ordering and tilt directions. The four possibilities of next-nearest neighbor alternation are shown. In the original material studied, NOBOW, the ground states found are antiferroelectric, either the racemic SmC(sub S)P(sub A) or the chiral SmC(sub A)P(sub A). We are currently studying MHOBOW, synthesized by D. Walba which, by virtue of its methyl hexyloxy tail has a tendency to form anticlinic layer interfaces, in the hope of finding a phase with a ferroelectric ground state, either SmC(sub A)P(sub S) or SmC(sub S)P(sub A), which can be obtained in NOBOW only by applying a field. Preliminary observations of MHO-BOW have made its study, from the point of view of understanding novel LC structures, extremely high priority. The following truly remarkable characteristics have been revealed: (i) The smectic phase grows out of the isotropic in the form of helical ribbons. The resulting planar aligned textures of focal conics with layers normal to glass plates exhibit bizarre modulations, including stripes and checker-boards. These have also been seen in other materials suggesting that this is a new phase (tentatively called B7), which is a fluid smectic with some kind of in-layer structure. (ii) It is virtually impossible to make freely suspended films of MHOBOW. Rather it makes the freely suspended filaments which preliminary x-ray scattering experiments reveal to have the nested cylinder layer structure indicated; (iii) The powder x-ray diffraction exhibits four resolution-limited smectic layering peaks

  3. Special issue on filamentation

    NASA Astrophysics Data System (ADS)

    Li, Ruxin; Milchberg, Howard; Mysyrowicz, André

    2014-05-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on filamentation, to appear in the spring of 2015, and invites you to submit a paper. This special issue will attempt to give an overview of the present status of this field in order to create synergies and foster future developments. The issue is open to papers on the following issues: Theoretical advances on filamentation. Self-focusing and collapse. Filamentation in various media. Pulse self-compression and ultrafast processes in filaments. Molecular alignment and rotation. Filamentation tailoring. Interaction between filaments. Filament weather and pollution control. Filament induced condensation and precipitation. Terahertz science with filaments. Lasing in filaments. Filament induced molecular excitation and reaction. Electric discharge and plasma. Cross-disciplinary applications. Novel concepts related to these topics are particularly welcome. Please submit your article by 1 October 2014 (expected web publication: spring 2015) using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be included in the special issue. The issue will be edited by Ruxin Li, Howard Milchberg and André Mysyrowicz.

  4. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus.

    PubMed

    Yang, Shaoqing; Wang, Tao; Bohon, Jen; Gagné, Marie-Ève Laliberté; Bolduc, Marilène; Leclerc, Denis; Li, Huilin

    2012-09-14

    Papaya mosaic virus (PapMV) is a filamentous plant virus that belongs to the Alphaflexiviridae family. Flexible filamentous viruses have defied more than two decades of effort in fiber diffraction, and no high-resolution structure is available for any member of the Alphaflexiviridae family. Here, we report our structural characterization of PapMV by X-ray crystallography and cryo-electron microscopy three-dimensional reconstruction. We found that PapMV is 135Å in diameter with a helical symmetry of ~10 subunits per turn. Crystal structure of the C-terminal truncated PapMV coat protein (CP) reveals a novel all-helix fold with seven α-helices. Thus, the PapMVCP structure is different from the four-helix-bundle fold of tobacco mosaic virus in which helix bundling dominates the subunit interface in tobacco mosaic virus and conveys rigidity to the rod virus. PapMV CP was crystallized as an asymmetrical dimer in which one protein lassoes the other by the N-terminal peptide. Mutation of residues critical to the inter-subunit lasso interaction abolishes CP polymerization. The crystal structure suggests that PapMV may polymerize via the consecutive N-terminal loop lassoing mechanism. The structure of PapMV will be useful for rational design and engineering of the PapMV nanoparticles into innovative vaccines.

  5. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    PubMed Central

    Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.

    2016-01-01

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. Our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament. PMID:27447485

  6. Structural and Functional Studies of H. seropedicae RecA Protein – Insights into the Polymerization of RecA Protein as Nucleoprotein Filament

    SciTech Connect

    Leite, Wellington C.; Galvão, Carolina W.; Saab, Sérgio C.; Iulek, Jorge; Etto, Rafael M.; Steffens, Maria B. R.; Chitteni-Pattu, Sindhu; Stanage, Tyler; Keck, James L.; Cox, Michael M.; Spies, Maria

    2016-07-22

    The bacterial RecA protein plays a role in the complex system of DNA damage repair. Here, we report the functional and structural characterization of the Herbaspirillum seropedicae RecA protein (HsRecA). HsRecA protein is more efficient at displacing SSB protein from ssDNA than Escherichia coli RecA protein. HsRecA also promotes DNA strand exchange more efficiently. The three dimensional structure of HsRecA-ADP/ATP complex has been solved to 1.7 Å resolution. HsRecA protein contains a small N-terminal domain, a central core ATPase domain and a large C-terminal domain, that are similar to homologous bacterial RecA proteins. Comparative structural analysis showed that the N-terminal polymerization motif of archaeal and eukaryotic RecA family proteins are also present in bacterial RecAs. Reconstruction of electrostatic potential from the hexameric structure of HsRecA-ADP/ATP revealed a high positive charge along the inner side, where ssDNA is bound inside the filament. The properties of this surface may explain the greater capacity of HsRecA protein to bind ssDNA, forming a contiguous nucleoprotein filament, displace SSB and promote DNA exchange relative to EcRecA. In conclusion, our functional and structural analyses provide insight into the molecular mechanisms of polymerization of bacterial RecA as a helical nucleoprotein filament.

  7. Collaborative protein filaments.

    PubMed

    Ghosal, Debnath; Löwe, Jan

    2015-09-14

    It is now well established that prokaryotic cells assemble diverse proteins into dynamic cytoskeletal filaments that perform essential cellular functions. Although most of the filaments assemble on their own to form higher order structures, growing evidence suggests that there are a number of prokaryotic proteins that polymerise only in the presence of a matrix such as DNA, lipid membrane or even another filament. Matrix-assisted filament systems are frequently nucleotide dependent and cytomotive but rarely considered as part of the bacterial cytoskeleton. Here, we categorise this family of filament-forming systems as collaborative filaments and introduce a simple nomenclature. Collaborative filaments are frequent in both eukaryotes and prokaryotes and are involved in vital cellular processes including chromosome segregation, DNA repair and maintenance, gene silencing and cytokinesis to mention a few. In this review, we highlight common principles underlying collaborative filaments and correlate these with known functions.

  8. Filament wound composite thermal isolator structures for cryogenic dewars and instruments

    SciTech Connect

    Morris, E.E.

    1982-01-01

    Studies showing high tensile strength, low thermal conductivity, and adequate fatigue strength capabiliies in conjunction with low resin outgassing properties of S-90 fiber glass with SCI REZ 080 and 081 epoxy resins has resulted in use of filament wound tension straps, struts, and conical shells as thermal isolators in several high-performance cryogenic applications. These thermal isolator structures and their use in the following cryogenic systems are discussed in this paper: hydrogen and oxygen dewars for space shuttle, helium tank for the infra-red astronomy satellite, spacecraft refrigerators, and infrared telescope. Mechanical and thermo-physical properties of the composite laminates are presented.

  9. Searching for filaments and large-scale structure around DAFT/FADA clusters

    NASA Astrophysics Data System (ADS)

    Durret, F.; Márquez, I.; Acebrón, A.; Adami, C.; Cabrera-Lavers, A.; Capelato, H.; Martinet, N.; Sarron, F.; Ulmer, M. P.

    2016-04-01

    Context. Clusters of galaxies are located at the intersection of cosmic filaments and are still accreting galaxies and groups along these preferential directions. However, because of their relatively low contrast on the sky, filaments are difficult to detect (unless a large amount of spectroscopic data are available), and unambiguous detections have been limited until now to relatively low redshifts (z< ~ 0.3). Aims: This project is aimed at searching for extensions and filaments around clusters, traced by galaxies selected to be at the cluster redshift based on the red sequence. In the 0.4 filaments. Methods: We have searched for extensions and filaments around the thirty clusters of the DAFT/FADA survey for which we had deep wide field photometric data. For each cluster, based on a colour-magnitude diagram, we selected galaxies that were likely to belong to the red sequence, and hence to be at the cluster redshift, and built density maps. By computing the background for each of these maps and drawing 3σ contours, we estimated the elongations of the structures detected in this way. Whenever possible, we identified the other structures detected on the density maps with clusters listed in NED. Results: We find clear elongations in twelve clusters out of thirty, with sizes that can reach up to 7.6 Mpc. Eleven other clusters have neighbouring structures, but the zones linking them are not detected in the density maps at a 3σ level. Three clusters show no extended structure and no neighbours, and four clusters are of too low contrast to be clearly visible on our density maps. Conclusions: The simple method we have applied appears to work well to show the existence of filaments and/or extensions around a number of clusters in the redshift range 0.4

  10. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    PubMed

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  11. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron

    PubMed Central

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons. PMID:27570482

  12. Structural data suggest that the active and inactive forms of the RecA filament are not simply interconvertible.

    PubMed

    Yu, X; Egelman, E H

    1992-09-05

    We have used electron microscopy to examine the two major conformational states of the helical filament formed by the RecA protein of Escherichia coli. The compressed filament, formed in the absence of a nucleotide cofactor either as a self-polymer or on a single-stranded DNA molecule, is characterized in solution by about 6.1 subunits per turn of a 76 A pitch helix, and appears to be inactive with respect to all RecA activity. The active state of the filament, formed with ATP or an ATP analog on either a single or double-stranded DNA substrate, has about 6.2 subunits per turn of a 94 A pitch helix. Measurements of the contour length of RecA-covered single-stranded DNA circles in ice, formed in the absence of nucleotide cofactor, indicate that each RecA subunit binds five bases, in contrast to the three bases or base-pairs per subunit in the active state. The different stoichiometries of DNA binding suggests that the two polymeric forms are not interconvertible, as has been suggested on biochemical grounds. A three-dimensional reconstruction of the inactive state shows the same general features as the 83 A pitch filament present in the RecA crystal. This structural similarity and the fact that the crystal does not contain ATP or DNA suggests that the crystal structure is more similar to the compressed filament than the active, extended filament.

  13. The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments.

    PubMed Central

    Dowling, L M; Crewther, W G; Inglis, A S

    1986-01-01

    Component 8c-1, one of four highly homologous component-8 subunit proteins present in the microfibrils of wool, was isolated as its S-carboxymethyl derivative and its amino acid sequence was determined. Large peptides were isolated after cleaving the protein chemically or enzymically and the sequence of each was determined with an automatic Sequenator. The peptides were ordered by sequence overlaps and, in some instances, by homology with known sequences from other component-8 subunits. The C-terminal residues were identified by three procedures. Full details of the various procedures used have been deposited as Supplementary Publication SUP 50133 (4 pp.) at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1986) 233, 5. The result showed that the protein comprises 412 residues and has an Mr, including the N-terminal acetyl group, of 48,300. The sequence of residues 98-200 of component 8c-1 was found to correspond to the partial or complete sequences of four homologous type I helical segments previously isolated from helical fragments recovered from chymotryptic digests of microfibrillar proteins of wool [Crewther & Dowling (1971) Appl. Polym. Symp. 18, 1-20; Crewther, Gough, Inglis & McKern (1978) Text. Res. J. 48, 160-162; Gough, Inglis & Crewther (1978) Biochem. J. 173, 385]. Considered in relation to amino acid sequences of other intermediate-filament proteins, the sequence is in accord with the view that keratin filament proteins are of two types [Hanukoglu & Fuchs (1983) Cell (Cambridge, Mass.) 33, 915-924]. Filament proteins from non-keratinous tissues, such as desmin, vimentin, neurofilament proteins and the glial fibrillary acidic protein, which form monocomponent filaments, constitute a third type. It is suggested that as a whole the proteins from intermediate filaments be classed as filamentins, the three types at present identified forming

  14. Fine control of terahertz radiation from filamentation by molecular lensing in air.

    PubMed

    Durand, M; Liu, Y; Houard, A; Mysyrowicz, A

    2010-05-15

    We demonstrate a method to control remotely the terahertz (THz) source in air based on the bifilamentation of femtosecond laser pulses. By fine tuning the time delay between the two pulses, a significant modulation of the THz intensity from bifilamentation is observed. The phenomenon is attributed to the molecule quantum lensing effect around the air molecule revival time, which changes the separation between the two neighboring plasma producing filaments.

  15. Purification and structural characterization of a filamentous, mucin-like proteophosphoglycan secreted by Leishmania parasites.

    PubMed

    Ilg, T; Stierhof, Y D; Craik, D; Simpson, R; Handman, E; Bacic, A

    1996-08-30

    Parasitic protozoa of the genus Leishmania secrete a filamentous macromolecule that forms networks and appears to be associated with cell aggregation. We report here the purification of this parasite antigen from Leishmania major culture supernatant and its compositional (75.6% carbohydrate, 20% phosphate, 4.4% amino acids, w/w), structural, and ultrastructural characterization as a highly unusual proteophosphoglycan (PPG). Mild acid hydrolysis, which cleaves preferentially hexose 1-phosphate bonds, releases the PPG glycans. Their structures are Galbeta1-4Man, Manalpha1-2Man, Galbeta1-3Galbeta1-4Man, PO4-6(Galbeta1-3)0-2Galbeta1-4Man, and PO4-6(Arabeta1-2Galbeta1-3)Galbeta1-4Man. These glycans are also components of the parasite glycolipid lipophosphoglycan, but their relative abundance and structural organization in PPG are different. Some of them represent novel forms of protein glycosylation. 31P NMR on native PPG demonstrates that phosphate is exclusively in phosphodiester bonds and that the basic structure R-Manalpha1-PO4-6-Gal-R connects the glycans. A phosphodiester linkage to phosphoserine (most likely R-Manalpha1-PO4-Ser) anchors the PPG oligosaccharides to the polypeptide. PPG has a unique amino acid composition; glycosylated phosphoserine (>43 mol %), serine, alanine, and proline account for more than 87 mol % and appear to be clustered in large proteinase-resistant domains. Electron microscopy of purified PPG reveals cable-like, flexible, long (to 6 microm), and unbranched filaments. The overall structure of PPG shows many similarities to mammalian mucins. Potential functions of this novel mucin-like molecule for the parasites are discussed.

  16. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments.

    PubMed

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-12-15

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling.

  17. Structural basis for activation, assembly and membrane binding of ESCRT-III Snf7 filaments

    PubMed Central

    Tang, Shaogeng; Henne, W Mike; Borbat, Peter P; Buchkovich, Nicholas J; Freed, Jack H; Mao, Yuxin; Fromme, J Christopher; Emr, Scott D

    2015-01-01

    The endosomal sorting complexes required for transport (ESCRTs) constitute hetero-oligomeric machines that catalyze multiple topologically similar membrane-remodeling processes. Although ESCRT-III subunits polymerize into spirals, how individual ESCRT-III subunits are activated and assembled together into a membrane-deforming filament remains unknown. Here, we determine X-ray crystal structures of the most abundant ESCRT-III subunit Snf7 in its active conformation. Using pulsed dipolar electron spin resonance spectroscopy (PDS), we show that Snf7 activation requires a prominent conformational rearrangement to expose protein-membrane and protein-protein interfaces. This promotes the assembly of Snf7 arrays with ~30 Å periodicity into a membrane-sculpting filament. Using a combination of biochemical and genetic approaches, both in vitro and in vivo, we demonstrate that mutations on these protein interfaces halt Snf7 assembly and block ESCRT function. The architecture of the activated and membrane-bound Snf7 polymer provides crucial insights into the spatially unique ESCRT-III-mediated membrane remodeling. DOI: http://dx.doi.org/10.7554/eLife.12548.001 PMID:26670543

  18. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange.

    PubMed

    Premchandar, Aiswarya; Mücke, Norbert; Poznański, Jarosław; Wedig, Tatjana; Kaus-Drobek, Magdalena; Herrmann, Harald; Dadlez, Michał

    2016-11-25

    Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process.

  19. Dynamic molecular graphs: "hopping" structures.

    PubMed

    Cortés-Guzmán, Fernando; Rocha-Rinza, Tomas; Guevara-Vela, José Manuel; Cuevas, Gabriel; Gómez, Rosa María

    2014-05-05

    This work aims to contribute to the discussion about the suitability of bond paths and bond-critical points as indicators of chemical bonding defined within the theoretical framework of the quantum theory of atoms in molecules. For this purpose, we consider the temporal evolution of the molecular structure of [Fe{C(CH2 )3 }(CO)3 ] throughout Born-Oppenheimer molecular dynamics (BOMD), which illustrates the changing behaviour of the molecular graph (MG) of an electronic system. Several MGs with significant lifespans are observed across the BOMD simulations. The bond paths between the trimethylenemethane and the metallic core are uninterruptedly formed and broken. This situation is reminiscent of a "hopping" ligand over the iron atom. The molecular graph wherein the bonding between trimethylenemethane and the iron atom takes place only by means of the tertiary carbon atom has the longest lifespan of all the considered structures, which is consistent with the MG found by X-ray diffraction experiments and quantum chemical calculations. In contrast, the η(4) complex predicted by molecular-orbital theory has an extremely brief lifetime. The lifespan of different molecular structures is related to bond descriptors on the basis of the topology of the electron density such as the ellipticities at the FeCH2 bond-critical points and electron delocalisation indices. This work also proposes the concept of a dynamic molecular graph composed of the different structures found throughout the BOMD trajectories in analogy to a resonance hybrid of Lewis structures. It is our hope that the notion of dynamic molecular graphs will prove useful in the discussion of electronic systems, in particular for those in which analysis on the basis of static structures leads to controversial conclusions.

  20. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair

    PubMed Central

    Zhang, Yuchen; Alsop, Richard J.; Soomro, Asfia; Yang, Fei-Chi

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3–90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers. PMID:26557428

  1. Effect of shampoo, conditioner and permanent waving on the molecular structure of human hair.

    PubMed

    Zhang, Yuchen; Alsop, Richard J; Soomro, Asfia; Yang, Fei-Chi; Rheinstädter, Maikel C

    2015-01-01

    The hair is a filamentous biomaterial consisting of the cuticle, the cortex and the medulla, all held together by the cell membrane complex. The cortex mostly consists of helical keratin proteins that spiral together to form coiled-coil dimers, intermediate filaments, micro-fibrils and macro-fibrils. We used X-ray diffraction to study hair structure on the molecular level, at length scales between ∼3-90 Å, in hopes of developing a diagnostic method for diseases affecting hair structure allowing for fast and noninvasive screening. However, such an approach can only be successful if common hair treatments do not affect molecular hair structure. We found that a single use of shampoo and conditioner has no effect on packing of keratin molecules, structure of the intermediate filaments or internal lipid composition of the membrane complex. Permanent waving treatments are known to break and reform disulfide linkages in the hair. Single application of a perming product was found to deeply penetrate the hair and reduce the number of keratin coiled-coils and change the structure of the intermediate filaments. Signals related to the coiled-coil structure of the α-keratin molecules at 5 and 9.5 Å were found to be decreased while a signal associated with the organization of the intermediate filaments at 47 Å was significantly elevated in permed hair. Both these observations are related to breaking of the bonds between two coiled-coil keratin dimers.

  2. The structure and poloidal dynamics of blob filaments in TJ-K

    NASA Astrophysics Data System (ADS)

    Garland, S.; Fuchert, G.; Ramisch, M.; Hirth, T.

    2016-04-01

    Relatively dense, field-aligned, filament-like structures (blobs) have been observed to propagate radially and poloidally through the scrape-off layer (SOL) in magnetically confined fusion plasmas, and contribute significantly to SOL transport. A detailed understanding of blob structure and dynamics, and their dependence on magnetic field geometry, is important in magnetic confinement physics for the prediction of heat loads on reactor wall facing components, as well as for understanding plasma confinement and neutral particle recycling. Experimentally deduced centre of mass poloidal blob velocity components, obtained using the conditional averaging technique, have been compared to an analytical blob model which has been simplified to express blob velocity in terms of the magnetic field curvature vector. Background flows are not incorporated into the analytical model, and must be added in to obtain good agreement with the experimental data. In addition, the 3D structure of blobs in TJ-K has been investigated using the conditional average of density fluctuations in two toroidally separated poloidal planes. Blobs are observed to be aligned to a flux tube near to the last closed flux surface, in the blob birth region. However at positions further along the blob trajectory, the structures do not deform according to the magnetic shear, rather they remain rigid, and retain their original form.

  3. On the Structure and Evolution of a Polar Crown Prominence/Filament System

    NASA Astrophysics Data System (ADS)

    Panesar, N. K.; Innes, D. E.; Schmit, D. J.; Tiwari, S. K.

    2014-08-01

    Polar crown prominences, that partially circle the Sun's poles between 60° and 70° latitude, are made of chromospheric plasma. We aim to diagnose the 3D dynamics of a polar crown prominence using high-cadence EUV images from the Solar Dynamics Observatory (SDO)/AIA at 304, 171, and 193 Å and the Ahead spacecraft of the Solar Terrestrial Relations Observatory (STEREO-A)/EUVI at 195 Å. Using time series across specific structures, we compare flows across the disk in 195 Å with the prominence dynamics seen on the limb. The densest prominence material forms vertical columns that are separated by many tens of Mm and connected by dynamic bridges of plasma that are clearly visible in 304/171 Å two-colour images. We also observe intermittent but repetitious flows with velocity 15 km s-1 in the prominence that appear to be associated with EUV bright points on the solar disk. The boundary between the prominence and the overlying cavity appears as a sharp edge. We discuss the structure of the coronal cavity seen both above and around the prominence. SDO/HMI and GONG magnetograms are used to infer the underlying magnetic topology. The evolution and structure of the prominence with respect to the magnetic field seems to agree with the filament-linkage model.

  4. Using Data Mining and Computational Approaches to Study Intermediate Filament Structure and Function.

    PubMed

    Parry, David A D

    2016-01-01

    Experimental and theoretical research aimed at determining the structure and function of the family of intermediate filament proteins has made significant advances over the past 20 years. Much of this has either contributed to or relied on the amino acid sequence databases that are now available online, and the data mining approaches that have been developed to analyze these sequences. As the quality of sequence data is generally high, it follows that it is the design of the computational and graphical methodologies that are of especial importance to researchers who aspire to gain a greater understanding of those sequence features that specify both function and structural hierarchy. However, these techniques are necessarily subject to limitations and it is important that these be recognized. In addition, no single method is likely to be successful in solving a particular problem, and a coordinated approach using a suite of methods is generally required. A final step in the process involves the interpretation of the results obtained and the construction of a working model or hypothesis that suggests further experimentation. While such methods allow meaningful progress to be made it is still important that the data are interpreted correctly and conservatively. New data mining methods are continually being developed, and it can be expected that even greater understanding of the relationship between structure and function will be gleaned from sequence data in the coming years.

  5. Structural properties of highly conductive ultra-nanocrystalline diamond films grown by hot-filament CVD

    NASA Astrophysics Data System (ADS)

    Mertens, M.; Lin, I.-N.; Manoharan, D.; Moeinian, A.; Brühne, K.; Fecht, H. J.

    2017-01-01

    In this work we show the correlation of the electrical conductivity of ultra-nanocrystalline (UNCD) diamond films grown by hot filament chemical vapor deposition (HFCVD) with their structural properties. The substrate temperature, the methane to hydrogen ratio and the pressure are the main factor influencing the growth of conductive UNCD films, which extends from electrical resistive diamond films (<10-4 S/cm) to highly conductive diamond films with a specific conductivity of 300 S/cm. High-resolution-transmission-electron-microscopy (HRTEM) and electron-energy-loss-spectroscopy (EELS) have been done on the highly conductive diamond films, to show the origin of the high electrical conductivity. The HRTEM results show random oriented diamond grains and a large amount of nano-graphite between the diamond crystals. EELS investigations are confirming these results. Raman measurements are correlated with the specific conductivity, which shows structural changes of sp2 carbons bonds as function of conductivity. Hall experiments complete the results, which lead to a model of an electron mobility based conductivity, which is influenced by the structural properties of the grain boundary regions in the ultra-nanocrystalline diamond films.

  6. The structure of the coronal soft X-ray source associated with the dark filament disappearance of 1991 September 28 using the Yohkoh Soft X-ray Telescope

    NASA Technical Reports Server (NTRS)

    Mcallister, Alan; Uchida, Yutaka; Tsuneta, Saku; Strong, Keith T.; Acton, Loren W.; Hiei, Eijiro; Bruner, Marilyn E.; Watanabe, Takashi; Shibata, Kazunari

    1992-01-01

    The structure of the coronal soft X-ray source associated with the dark filament disappearance on September 28, 1991, observed with the Soft X-ray Telescope, is examined as a possible example of the 'eruption-reconnection' model of filament disappearance. The results suggest, however, that this model may not fit. There is a strong possibility that much of the dark filament mass remains in the heated unwinding axial field.

  7. Shared antigenicity between the polar filaments of myxosporeans and other Cnidaria.

    PubMed

    Ringuette, Maurice J; Koehler, Anne; Desser, Sherwin S

    2011-02-01

    Nematocysts containing coiled polar filaments are a distinguishing feature of members of the phylum Cnidaria. As a first step to characterizing the molecular structure of polar filaments, a polyclonal antiserum was raised in rabbits against a cyanogen bromide-resistant protein extract of mature cysts containing spores of Myxobolus pendula. The antiserum reacted only with proteins associated with extruded polar filaments. Western blot and whole-mount immunohistochemical analyses indicated a conservation of polar filament epitopes between M. pendula and 2 related cnidarians, i.e., the anthozoan, Nematostella vectensis, and the hydrozoan, Hydra vulgaris. This conservation of polar filament epitopes lends further support to a shared affinity between Myxozoa and cnidarians.

  8. Effect of filament twist on the structure and properties of Ag-sheathed Bi2223 tape

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Kurihara, C.; Machida, T.; Inada, R.; Oota, A.

    2009-10-01

    Ag-sheathed Bi2223 tapes show good performances and are ready for many prototype applications. However, drastic reduction of AC loss is strongly required for practical AC power applications. To reduce the AC loss under AC external magnetic field, the introduction of filament twisting with high resistive barrier is effective, but the filament twisting tends to decrease the Jc value. This decrease in Jc is a problem to balance low AC loss with high Ic value. In this study, the effect of filament twisting on the microstructure and Jc property was investigated to overcome the Jc reduction. The Bi2223 tapes sheathed with Ag-Cu alloy were fabricated with a standard PIT method. Although the formation of Bi2223 phase was not affected by filament twisting from the XRD analysis and SEM observation, the Jc values of the twisted tapes decreased about 30% compared to that of non-twisted tape. In the case of the same twist pitch, the sample rolled under large pass reduction ratio showed relatively high Jc value. This high Jc would be caused by the high aspect ratio of the filament of those tapes, in which the grain alignment along the filament interface would be well. On the other hand, a reason for the Jc reduction of twist tapes is proposed to be the misorientation at grain boundaries of Bi2223 grains in the transference region near the edges of the tape, where the filaments move up and down in the thickness direction.

  9. Structure and assembly of P-pili: A protruding hinge region used for assembly of a bacterial adhesion filament

    PubMed Central

    Mu, Xiang-Qi; Bullitt, Esther

    2006-01-01

    High-resolution structures of macromolecular complexes offer unparalleled insight into the workings of biological systems and hence the interplay of these systems in health and disease. We have adopted a multifaceted approach to understanding the pathogenically important structure of P-pili, the class I adhesion pili from pyelonephritic Escherichia coli. Our approach combines electron cryomicroscopy, site-directed mutagenesis, homology modeling, and energy calculations, resulting in a high-resolution model of PapA, the major structural element of these pili. Fitting of the modeled PapA subunit into the electron cryomicroscopy data provides a detailed view of these pilins within the supramolecular architecture of the pilus filament. A structural hinge in the N-terminal region of the subunit is located at the site of a newly resolved electron density that protrudes from the P-pilus surface. The structural flexibility provided by this hinge is necessary for assembly of P-pili, illustrating one solution to construction of large macromolecular complexes from small repeating units. These data support our hypothesis that domain-swapped pilin subunits transit the outer cell membrane vertically and rotate about the hinge for final positioning into the pilus filament. Our data confirm and supply a structural basis for much previous genetic, biochemical, and structural data. This model of the P-pilus filament provides an insight into the mechanism of assembly of a macromolecular complex essential for initiation of kidney infection by these bacteria. PMID:16782819

  10. Featuring dark coronal structures: physical signatures of filaments and coronal holes for automated recognition

    NASA Astrophysics Data System (ADS)

    Palacios, Judith; Cid, Consuelo; Saiz, Elena; Cerrato, Yolanda; Guerrero, Antonio

    2014-01-01

    Filaments may be mistaken for coronal holes when observed in extreme ultraviolet (EUV) images; however, a closer and more careful look reveals that their photometric properties are different. The combination of EUV images with photospheric magnetograms shows some characteristic differences between filaments and coronal holes. We have performed analyses with 7 different SDO/AIA wavelengths (94, 131, 171, 211, 193, 304, 335 Å) and SDO/HMI magnetograms obtained in September 2011 and March 2012 to study coronal holes and filaments from the photometric, magnetic, and also geometric point of view, since projection effects play an important role on the aforementioned traits.

  11. The structural basis for the intrinsic disorder of the actin filament: the "lateral slipping" model

    PubMed Central

    1991-01-01

    Three-dimensional (3-D) helical reconstructions computed from electron micrographs of negatively stained dispersed F-actin filaments invariably revealed two uninterrupted columns of mass forming the "backbone" of the double-helical filament. The contact between neighboring subunits along the thus defined two long-pitch helical strands was spatially conserved and of high mass density, while the intersubunit contact between them was of lower mass density and varied among reconstructions. In contrast, phalloidinstabilized F-actin filaments displayed higher and spatially more conserved mass density between the two long-pitch helical strands, suggesting that this bicyclic hepta-peptide toxin strengthens the intersubunit contact between the two strands. Consistent with this distinct intersubunit bonding pattern, the two long-pitch helical strands of unstabilized filaments were sometimes observed separated from each other over a distance of two to six subunits, suggesting that the intrastrand intersubunit contact is also physically stronger than the interstrand contact. The resolution of the filament reconstructions, extending to 2.5 nm axially and radially, enabled us to reproducibly "cut out" the F- actin subunit which measured 5.5 nm axially by 6.0 nm tangentially by 3.2 nm radially. The subunit is distinctly polar with a massive "base" pointing towards the "barbed" end of the filament, and a slender "tip" defining its "pointed" end (i.e., relative to the "arrowhead" pattern revealed after stoichiometric decoration of the filaments with myosin subfragment 1). Concavities running approximately parallel to the filament axis both on the inner and outer face of the subunit define a distinct cleft separating the subunit into two domains of similar size: an inner domain confined to radii less than or equal to 2.5-nm forms the uninterrupted backbone of the two long-pitch helical strands, and an outer domain placed at radii of 2-5-nm protrudes radially and thus predominantly

  12. Micromolding in Capillaries for the Generation of Molecularly Imprinted Polymer Filaments and Microstructures

    DTIC Science & Technology

    2002-04-05

    to define the shape and size of the imprinted polymers . This article describes the processes leading to the fabrication of free-standing MIP ...recognition and interactions play central roles in these applications. Molecular imprinting , a technique for the synthesis of polymeric materials with analyte...generate molecularly imprinted polymer ( MIP ) microstructures on devices should open new possibilities towards the development of miniaturized systems for

  13. Primary edge localized mode filament structure in the National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Maqueda, R. J.; Maingi, R.; NSTX Team

    2009-05-01

    Edge localized modes (ELMs) are routinely seen in the National Spherical Torus Experiment (NSTX) [M. Ono, Nucl. Fusion 40, 557 (2000)]. These unstable modes give rise to plasma filaments that burst radially outward during the nonlinear phase of the instability, moving across flux surfaces into the scrape-off layer. Fast-frame visible imaging is used in NSTX to study the evolution and characteristics of the post-ELM filaments. These edge filaments, which are well aligned with the local magnetic field, are seen to evolve from a perturbation of the edge that within 40-50 μs develops into the relatively high density/temperature primary filaments. The distribution of primary filaments in toroidal angle is seen to agree with a random model with moderate average toroidal mode numbers. At the same time, gas puff imaging shows that the perturbation of the edge leading to the burst of the ELM into the scrape-off layer is characterized by a broadband increase in fluctuations at much smaller poloidal wavelengths (λpol˜2-12 cm). These two measurements suggest that early development of turbulence may play a role in the development of primary ELM filamentation.

  14. Structure of the filamentous phage pIV multimer by cryo-electron microscopy.

    PubMed

    Opalka, Natacha; Beckmann, Roland; Boisset, Nicolas; Simon, Martha N; Russel, Marjorie; Darst, Seth A

    2003-01-17

    The homo-multimeric pIV protein constitutes a channel required for the assembly and export of filamentous phage across the outer membrane of Escherichia coli. We present a 22 A-resolution three-dimensional reconstruction of detergent-solubilized pIV by cryo-electron microscopy associated with image analysis. The structure reveals a barrel-like complex, 13.5 nm in diameter and 24 nm in length, with D14 point-group symmetry, consisting of a dimer of unit multimers. Side views of each unit multimer exhibit three cylindrical domains named the N-ring, the M-ring and the C-ring. Gold labeling of pIV engineered to contain a single cysteine residue near the N or C terminus unambiguously identified the N-terminal region as the N-ring, and the C-terminal region was inferred to make up the C-ring. A large pore, ranging in inner diameter from 6.0 nm to 8.8 nm, runs through the middle of the multimer, but a central domain, the pore gate, blocks it. Moreover, the pore diameter at the N-ring is smaller than the phage particle. We therefore propose that the pIV multimer undergoes a large conformational change during phage transport, with reorganization of the central domain to open the pore, and widening at the N-ring in order to accommodate the 6.5 nm diameter phage particle.

  15. THE RAPID FORMATION OF A FILAMENT CAUSED BY MAGNETIC RECONNECTION BETWEEN TWO SETS OF DARK THREADLIKE STRUCTURES

    SciTech Connect

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Yu, Shunping; Xu, Zhe E-mail: yjy@ynao.ac.cn

    2016-01-01

    Taking advantage of the high spatiotemporal resolution observations from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we present rare observations of the rapid formation of a filament caused by magnetic reconnection between two sets of dark threadlike structures. The two sets of dark threadlike structures belong to distinct flux systems with their adjacent ends anchored in an opposite-polarity magnetic field region, where the calculated photospheric velocity field shows that converging flows dominate there. Due to the converging flows, opposite-polarity magnetic flux converged and then canceled, leading to the formation of extreme ultraviolet (EUV) brightening that spread in opposite directions along the spine of the dark threadlike structures. Meanwhile, very weak remote brightening in the other terminals of the dark threadlike structures, as well as EUV loops, which rooted in the opposite-polarity magnetic field region, appeared. In addition, all of the AIA Fe line observations reveal that a flux rope was formed and underwent a rolling motion during the fadeaway of the EUV brightening. Soon after, as the EUV brightening disappeared, a filament that is very likely composed of two sets of intertwined dark threadlike structures was formed. Via differential emission measure (EM) analysis, it is found that both the EM and temperature of the plasma around the flux-canceling site increased during the brightening, implying that there, magnetic reconnection may occur to heat the plasma. These observations provide evidence that the filament is formed by magnetic reconnection associated with flux convergence and cancellation, and the magnetic structure of the filament is most likely a flux rope.

  16. Isolation and characterization of Candida albicans morphological mutants derepressed for the formation of filamentous hypha-type structures

    SciTech Connect

    Gil, C.; Pomes, R.; Nombela, C. )

    1990-05-01

    Several Candida albicans morphological mutants were obtained by a procedure based on a combined treatment with nitrous acid plus UV irradiation and a double-enrichment step to increase the proportion of mutants growing as long filamentous structures. Altered cell morphogenesis in these mutants correlated with an altered colonial phenotype. Two of these mutants, C. albicans NEL102 and NEL103, were selected and characterized. Mutant blastoconidia initiated budding but eventually gave rise to filamentous hypha-type formations. These filaments were long and septate, and they branched very regularly at positions near septa. Calcofluor white (which is known to bind chitin-rich areas) stained septa, branching zones, and filament tips very intensely, as observed under the fluorescence microscope. Wild-type hybrids were obtained by fusing protoplasts of strain NEL102 with B14, another morphological mutant previously described as being permanently pseudomycelial, indicating that genetic determinants responsible for the two altered phenotypes are different. The mutants characterized in this work seemed to sequentially express the morphogenic characteristics of C. albicans, from blastoconidia to hyphae, in the absence of any inducer. Further characterization of these strains could be relevant to gain understanding of the genetic control of dimorphism in this species.

  17. The Molecular Architecture for the Intermediate Filaments of Hard α -Keratin Based on the Superlattice Data Obtained from a Study of Mammals Using Synchrotron Fibre Diffraction

    DOE PAGES

    James, Veronica

    2011-01-01

    High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, includingmore » multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less

  18. The Molecular Architecture for the Intermediate Filaments of Hard [alpha]-Keratin Based on the Superlattice Data Obtained from a Study ofMammals Using Synchrotron Fibre Diffraction

    SciTech Connect

    James, Veronica

    2014-09-24

    High- and low-angle X-ray diffraction studies of hard {alpha}-keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard {alpha}-keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard {alpha}-keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid {alpha}-keratin structure.

  19. Physical principles of filamentous protein self-assembly kinetics

    NASA Astrophysics Data System (ADS)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  20. Physical principles of filamentous protein self-assembly kinetics.

    PubMed

    Michaels, Thomas; Liu, Xiaoxuan; Meisl, Georg; Knowles, Tuomas P J

    2017-02-07

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer's and Parkinson's diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  1. USING CORONAL CELLS TO INFER THE MAGNETIC FIELD STRUCTURE AND CHIRALITY OF FILAMENT CHANNELS

    SciTech Connect

    Sheeley, N. R. Jr.; Warren, H. P.; Martin, S. F.; Panasenco, O.

    2013-08-01

    Coronal cells are visible at temperatures of {approx}1.2 MK in Fe XII coronal images obtained from the Solar Dynamics Observatory and Solar Terrestrial Relations Observatory spacecraft. We show that near a filament channel, the plumelike tails of these cells bend horizontally in opposite directions on the two sides of the channel like fibrils in the chromosphere. Because the cells are rooted in magnetic flux concentrations of majority polarity, these observations can be used with photospheric magnetograms to infer the direction of the horizontal field in filament channels and the chirality of the associated magnetic field. This method is similar to the procedure for inferring the direction of the magnetic field and the chirality of the fibril pattern in filament channels from H{alpha} observations. However, the coronal cell observations are easier to use and provide clear inferences of the horizontal field direction for heights up to {approx}50 Mm into the corona.

  2. Isolation and preliminary characterization of 10-nm filaments from baby hamster kidney (BHK-21) cells.

    PubMed Central

    Starger, J M; Goldman, R D

    1977-01-01

    A procedure for isolating 10-nm filaments as juxtanuclear caps from normal and colchicine-treated BHK-21 cells is described. These aggregates of 10-nm filaments retain their birefringence and their structural integrity. The major proteins comprising the filament preparations can be resolved as two bands on sodium dodecyl sulfate gels, corresponding to approximate molecular weights of 54,000 and 55,000. Images PMID:329284

  3. Morphological, molecular, and mycotoxigenic identification of dominant filamentous fungi from moldy civil cheese.

    PubMed

    Cakmakci, Songul; Cetin, Bulent; Gurses, Mustafa; Dagdemir, Elif; Hayaloglu, Ali Adnan

    2012-11-01

    Moldy Civil is a mold-ripened variety of cheese produced mainly in eastern Turkey. This cheese is produced with Civil cheese and whey curd cheese (Lor). Civil cheese has had a geographical presence since 2009 and is manufactured with skim milk. In the production of Moldy Civil cheese, Civil cheese or a mixture of Civil and Lor cheese is pressed into goat skins or plastic bags and ripened for 3 months or longer. During the ripening period, natural contaminating molds grow on the surface of and inside the cheese. In this study, 186 mold strains were isolated from 41 samples of Moldy Civil cheese, and 165 of these strains were identified as Penicillium roqueforti. Identification and mycotoxicologic analyses were conducted using morphotypic and molecular methods. PCR amplicons of the ITS1-5.8S-ITS4 region were subjected to sequence analysis. This research is the first using molecular methods on Moldy Civil cheese. Mycotoxicologic analyses were conducted using thin-layer chromatography, and random amplified polymorphic DNA genotypes were determined using the ari1 primer. Of 165 isolates, only 28 produced no penicillic acid, P. roqueforti toxin, or roquefortine.

  4. THE THREE-DIMENSIONAL STRUCTURE OF AN ACTIVE REGION FILAMENT AS EXTRAPOLATED FROM PHOTOSPHERIC AND CHROMOSPHERIC OBSERVATIONS

    SciTech Connect

    Yelles Chaouche, L.; Kuckein, C.; Martinez Pillet, V.; Moreno-Insertis, F.

    2012-03-20

    The three-dimensional structure of an active region filament is studied using nonlinear force-free field extrapolations based on simultaneous observations at a photospheric and a chromospheric height. To that end, we used the Si I 10827 A line and the He I 10830 A triplet obtained with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (Tenerife). The two extrapolations have been carried out independently from each other and their respective spatial domains overlap in a considerable height range. This opens up new possibilities for diagnostics in addition to the usual ones obtained through a single extrapolation from, typically, a photospheric layer. Among those possibilities, this method allows the determination of an average formation height of the He I 10830 A signal of Almost-Equal-To 2 Mm above the surface of the Sun. It allows, as well, a cross-check of the obtained three-dimensional magnetic structures to verify a possible deviation from the force-free condition, especially at the photosphere. The extrapolations yield a filament formed by a twisted flux rope whose axis is located at about 1.4 Mm above the solar surface. The twisted field lines make slightly more than one turn along the filament within our field of view, which results in 0.055 turns Mm{sup -1}. The convex part of the field lines (as seen from the solar surface) constitutes dips where the plasma can naturally be supported. The obtained three-dimensional magnetic structure of the filament depends on the choice of the observed horizontal magnetic field as determined from the 180 Degree-Sign solution of the azimuth. We derive a method to check for the correctness of the selected 180 Degree-Sign ambiguity solution.

  5. The Link between Turbulence, Magnetic Fields, Filaments, and Star Formation in the Central Molecular Zone Cloud G0.253+0.016

    NASA Astrophysics Data System (ADS)

    Federrath, C.; Rathborne, J. M.; Longmore, S. N.; Kruijssen, J. M. D.; Bally, J.; Contreras, Y.; Crocker, R. M.; Garay, G.; Jackson, J. M.; Testi, L.; Walsh, A. J.

    2016-12-01

    Star formation is primarily controlled by the interplay between gravity, turbulence, and magnetic fields. However, the turbulence and magnetic fields in molecular clouds near the Galactic center may differ substantially compared to spiral-arm clouds. Here we determine the physical parameters of the central molecular zone (CMZ) cloud G0.253+0.016, its turbulence, magnetic field, and filamentary structure. Using column density maps based on dust-continuum emission observations with ALMA+Herschel, we identify filaments and show that at least one dense core is located along them. We measure the filament width {W}{fil}=0.17+/- 0.08 {pc} and the sonic scale {λ }{sonic}=0.15+/- 0.11 {pc} of the turbulence, and find {W}{fil}≈ {λ }{sonic}. A strong velocity gradient is seen in the HNCO intensity-weighted velocity maps obtained with ALMA+Mopra. The gradient is likely caused by large-scale shearing of G0.253+0.016, producing a wide double-peaked velocity probability distribution function (PDF). After subtracting the gradient to isolate the turbulent motions, we find a nearly Gaussian velocity PDF typical for turbulence. We measure the total and turbulent velocity dispersion, 8.8+/- 0.2 {km} {{{s}}}-1 and 3.9+/- 0.1 {km} {{{s}}}-1, respectively. Using magnetohydrodynamical turbulence simulations, we find that G0.253+0.016's turbulent magnetic field {B}{turb}=130+/- 50 μ {{G}} is only ≲ 1/10 of the ordered field component. Combining these measurements, we reconstruct the dominant turbulence driving mode in G0.253+0.016 and find a driving parameter of b=0.22+/- 0.12, indicating solenoidal (divergence-free) driving. We compare this to spiral-arm clouds, which typically have a significant compressive (curl-free) driving component (b\\gt 0.4). Motivated by previous reports of strong shearing motions in the CMZ, we speculate that shear causes the solenoidal driving in G0.253+0.016 and show that this reduces the star-formation rate by a factor of 6.9 compared to typical nearby

  6. RUI: Structure and Behavior of RF-Driven Plasma Filaments in High-Pressure Gases

    SciTech Connect

    Burin, Michael J.

    2014-11-18

    The filamentary discharge seen within commercial plasma globes is commonly enjoyed, yet not well understood. We investigate filament properties in a plasma globe using a variable high voltage amplifier. Results from the 3-year grant period and their physics are discussed.

  7. Photosynthesis irradiance parameters and community structure associated with coastal filaments and adjacent waters in the northern Arabian Sea

    NASA Astrophysics Data System (ADS)

    Toon, Rory K.; Lohrenz, Steven E.; Rathbun, Catherine E.; Michelle Wood, A.; Arnone, Robert A.; Jones, Burton H.; Kindle, John C.; Weidemann, Alan D.

    Comparisons were made among size-fractionated photosynthesis-irradiance ( P- E) parameters, chlorophyll a size distributions, and accessory pigment composition of natural phytoplankton assemblages in filaments, coastal upwelling waters, and an oligotrophic region of the northern Arabian Sea during the Fall Intermonsoon in 1995. Differences between P- E parameters, PBmax and αB, were observed between filaments and adjacent waters and were associated with differences in phytoplankton community structure. In a southern filament and coastal upwelled waters, the majority of the estimated biomass (chlorophyll a) was present in the larger (2-20 and 20-200 μm) size fractions; dominant accessory pigments were 19'-butanoyloxyfucoxanthin and peridinin. In higher salinity waters, high percentages of chlorophyll a and lutein/zeaxanthin were observed in the smallest size-fraction (<2 μm). Whole water values of PBmax ranged from 1.77 to 2.31 (g C g chl a-1 h -1) when the majority of the biomass was in the largest fractions. Higher values (more than 4.48 g C g chl a-1 h -1) were determined in whole water samples for communities comprised primarily of small cells. A size dependence was also observed in the value of αB, 0.017 or greater (g C g chl a-1 h -1)/(μmol quanta m -2 s -1) for whole water samples at stations dominated by small cells and 0.013 when derived from stations dominated by large cells. The observed pattern of larger phytoplankton associated with upwelling and filament waters was consistent with previous investigations and was, for the most part, comparable to findings in the California Current system. Our results show that differences in taxonomic composition and photosynthetic characteristics were indeed present between filament waters and other distinct regions; these results suggest that taxonomic variations may be associated with size-related variations in P- E parameters. Our findings provide a unique data set describing filament biology in the northern

  8. How is kinematic structure connected to the core scale from filament scale?; Mopra mapping observations with multi-lines of dense cores in Lupus I

    NASA Astrophysics Data System (ADS)

    Kiyokane, Kazuhiro; Saito, Masao; Tachihara, Kengo; Saigo, Kazuya; van Kempen, Tim; Cortes, Paulo; Hill, Tracey; Knee, Lewis; Kurono, Yasutaka; Takahashi, Satoko; Aya, Higuchi; Nyman, Lars-Ake

    2014-06-01

    Recently, high sensitivity mappings of nearby molecular clouds in far-infrared and submillimeter wavelengths with Hershel and AzTEC/ASTE show ubiquitous existence of the filamentary structures with 0.1-pc uniform width. It is important to investigate dense core formation from large scale structure via fragmentation. We have conducted MOPRA multi-line mapping observations covered on 0.02 - 0.2 pc scales of 8 dense cores in a filamentary cloud of nearby Lupus I at 140 pc. A class 0/I protostellar core IRAS 15398-3359 is included as a sample, which has an adjacent prestellar core with the separation of 0.13pc in the west. The maps of N2H+, HNC, HC3N show well associated with each core. The velocity field of C18O shows 1.4 km/s/pc from north to south over the region containing two dense cores, which is consistent with past observation of NANTEN. In contrast to C18O results, the velocity field of HC3N shows different structures, which suggest counter rotation of two dense cores; 1.2 km/s/pc from north-west to south-east around a protostellar core and 0.8 km/s/pc from east to west around a presteller core. The filament will be fragmentized and collapsed to dense cores when the line density is over 2Cs/G (where Cs is sound speed and G is gravitational constant). If that velocity gradient was caused by such situation, it should be red-blue-red-blue across two dense cores but the observed kinematics is not consistent with this scenario, which requires that the filament structure would be extremely curved with a skew angle. Although we cannot reject the collapsing interruption, those results suggest the spin-up rotating picture separated from large-scale structure.

  9. Atomic structure of the vimentin central α-helical domain and its implications for intermediate filament assembly.

    PubMed

    Chernyatina, Anastasia A; Nicolet, Stefan; Aebi, Ueli; Herrmann, Harald; Strelkov, Sergei V

    2012-08-21

    Together with actin filaments and microtubules, intermediate filaments (IFs) are the basic cytoskeletal components of metazoan cells. Over 80 human diseases have been linked to mutations in various IF proteins to date. However, the filament structure is far from being resolved at the atomic level, which hampers rational understanding of IF pathologies. The elementary building block of all IF proteins is a dimer consisting of an α-helical coiled-coil (CC) "rod" domain flanked by the flexible head and tail domains. Here we present three crystal structures of overlapping human vimentin fragments that comprise the first half of its rod domain. Given the previously solved fragments, a nearly complete atomic structure of the vimentin rod has become available. It consists of three α-helical segments (coils 1A, 1B, and 2) interconnected by linkers (L1 and L12). Most of the CC structure has a left-handed twist with heptad repeats, but both coil 1B and coil 2 also exhibit untwisted, parallel stretches with hendecad repeats. In the crystal structure, linker L1 was found to be α-helical without being involved in the CC formation. The available data allow us to construct an atomic model of the antiparallel tetramer representing the second level of vimentin assembly. Although the presence of the nonhelical head domains is essential for proper tetramer stabilization, the precise alignment of the dimers forming the tetramer appears to depend on the complementarity of their surface charge distribution patterns, while the structural plasticity of linker L1 and coil 1A plays a role in the subsequent IF assembly process.

  10. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    PubMed Central

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-01-01

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA. PMID:26858417

  11. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins.

    PubMed

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P; Kumar, Mohit; Greaser, Marion L; Irving, Thomas C; de Tombe, Pieter P

    2016-02-23

    The Frank-Starling mechanism of the heart is due, in part, to modulation of myofilament Ca(2+) sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank-Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  12. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    SciTech Connect

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-02-08

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  13. Titin strain contributes to the Frank–Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    DOE PAGES

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; ...

    2016-02-08

    The Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT musclesmore » displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Overall, our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.« less

  14. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins

    SciTech Connect

    Ait-Mou, Younss; Hsu, Karen; Farman, Gerrie P.; Kumar, Mohit; Greaser, Marion L.; Irving, Thomas C.; de Tombe, Pieter P.

    2016-04-29

    We determined that the Frank–Starling mechanism of the heart is due, in part, to modulation of myofilament Ca2+ sensitivity by sarcomere length (SL) [length-dependent activation (LDA)]. The molecular mechanism(s) that underlie LDA are unknown. Recent evidence has implicated the giant protein titin in this cellular process, possibly by positioning the myosin head closer to actin. To clarify the role of titin strain in LDA, we isolated myocardium from either WT or homozygous mutant (HM) rats that express a giant splice isoform of titin, and subjected the muscles to stretch from 2.0 to 2.4 μm of SL. Upon stretch, HM compared with WT muscles displayed reduced passive force, twitch force, and myofilament LDA. Time-resolved small-angle X-ray diffraction measurements of WT twitching muscles during diastole revealed stretch-induced increases in the intensity of myosin (M2 and M6) and troponin (Tn3) reflections, as well as a reduction in cross-bridge radial spacing. Independent fluorescent probe analyses in relaxed permeabilized myocytes corroborated these findings. X-ray electron density reconstruction revealed increased mass/ordering in both thick and thin filaments. The SL-dependent changes in structure observed in WT myocardium were absent in HM myocardium. Our results reveal a correlation between titin strain and the Frank–Starling mechanism. The molecular basis underlying this phenomenon appears not to involve interfilament spacing or movement of myosin toward actin but, rather, sarcomere stretch-induced simultaneous structural rearrangements within both thin and thick filaments that correlate with titin strain and myofilament LDA.

  15. Structure of myosin filaments from relaxed Lethocerus flight muscle by cryo-EM at 6 Å resolution

    PubMed Central

    Hu, Zhongjun; Taylor, Dianne W.; Reedy, Michael K.; Edwards, Robert J.; Taylor, Kenneth A.

    2016-01-01

    We describe a cryo–electron microscopy three-dimensional image reconstruction of relaxed myosin II–containing thick filaments from the flight muscle of the giant water bug Lethocerus indicus. The relaxed thick filament structure is a key element of muscle physiology because it facilitates the reextension process following contraction. Conversely, the myosin heads must disrupt their relaxed arrangement to drive contraction. Previous models predicted that Lethocerus myosin was unique in having an intermolecular head-head interaction, as opposed to the intramolecular head-head interaction observed in all other species. In contrast to the predicted model, we find an intramolecular head-head interaction, which is similar to that of other thick filaments but oriented in a distinctly different way. The arrangement of myosin’s long α-helical coiled-coil rod domain has been hypothesized as either curved layers or helical subfilaments. Our reconstruction is the first report having sufficient resolution to track the rod α helices in their native environment at resolutions ~5.5 Å, and it shows that the layer arrangement is correct for Lethocerus. Threading separate paths through the forest of myosin coiled coils are four nonmyosin peptides. We suggest that the unusual position of the heads and the rod arrangement separated by nonmyosin peptides are adaptations for mechanical signal transduction whereby applied tension disrupts the myosin heads as a component of stretch activation. PMID:27704041

  16. Use of a fusion protein between GFP and an actin-binding domain to visualize transient filamentous-actin structures.

    PubMed

    Pang, K M; Lee, E; Knecht, D A

    1998-03-26

    Many important processes in eukaryotic cells involve changes in the quantity, location and the organization of actin filaments [1] [2] [3]. We have been able to visualize these changes in live cells using a fusion protein (GFP-ABD) comprising the green fluorescent protein (GFP) of Aequorea victoria and the 25 kDa highly conserved actin-binding domain (ABD) from the amino terminus of the actin cross-linking protein ABP-120 [4]. In live cells of the soil amoeba Dictyostelium that were expressing GFP-ABD, the three-dimensional architecture of the actin cortex was clearly visualized. The pattern of GFP-ABD fluorescence in these cells coincided with that of rhodamine-phalloidin, indicating that GFP-ABD specifically binds filamentous (F) actin. On the ventral surface of non-polarized vegetative cells, a broad ring of F actin periodically assembled and contracted, whereas in polarized cells there were transient punctate F-actin structures; cells cycled between the polarized and non-polarized morphologies. During the formation of pseudopods, an increase in fluorescence intensity coincided with the initial outward deformation of the membrane. This is consistent with the models of pseudopod extension that predict an increase in the local density of actin filaments. In conclusion, GFP-ABD specifically binds F actin and allows the visualization of F-actin dynamics and cellular behavior simultaneously.

  17. Contractile properties of thin (actin) filament-reconstituted muscle fibers.

    PubMed

    Ishiwata, S; Funatsu, T; Fujita, H

    1998-01-01

    Selective removal and reconstitution of the components of muscle fibers (fibrils) is a useful means of examining the molecular mechanism underlying the formation of the contractile apparatus. In addition, this approach is powerful for examining the structure-function relationship of a specific component of the contractile system. In previous studies, we have achieved the partial structural and functional reconstitution of thin filaments in the skeletal contractile apparatus and full reconstitution in the cardiac contractile apparatus. First, all thin filaments other than short fragments at the Z line were removed by treatment with plasma gelsolin, an actin filament-severing protein. Under these conditions, no active tension could be generated. By incorporating exogenous actin into these thin filament-free fibers, actin filaments were reconstituted by polymerization on the short actin fragments remaining at the Z line, and active tension, which was insensitive to Ca2+, was restored. The active tension after the reconstitution of thin filaments reached as high as 30% of the original level in skeletal muscle, while it reached 140% in cardiac muscle. The augmentation of tension in cardiac muscle is mainly attributable to the elongation of reconstituted filaments, longer than the average length of thin filaments in an intact muscle. These results indicate that a muscle contractile apparatus with a high order structure and function can be constructed by the self-assembly of constituent proteins. Recently, we applied this reconstitution system to the study of the mechanism of spontaneous oscillatory contraction (SPOC) in thin (actin) filament-reconstituted cardiac muscle fibers. As a result, we found that SPOC occurs even in regulatory protein-free actin filament-reconstituted fibers (Fujita & Ishiwata, manuscript submitted), although the SPOC conditions were slightly different from the standard SPOC conditions. This result strongly suggests that spontaneous oscillation

  18. Structural CNT Composites. Part I; Developing a Carbon Nanotube Filament Winder

    NASA Technical Reports Server (NTRS)

    Sauti, Godfrey; Kim, Jae-Woo; Wincheski, Russell A.; Antczak, Andrew; Campero, Jamie C.; Luong, Hoa H.; Shanahan, Michelle H.; Stelter, Christopher J.; Siochi, Emilie J.

    2015-01-01

    Carbon nanotube (CNT) based materials promise advances in the production of high strength and multifunctional components for aerospace and other applications. Specifically, in tension dominated applications, the latest CNT based filaments are yielding composite properties comparable to or exceeding composites from more established fibers such as Kevlar and carbon fiber. However, for the properties of these materials to be fully realized at the component level, suitable manufacturing processes have to be developed. These materials handle differently from conventional fibers, with different wetting characteristics and behavior under load. The limited availability of bulk forms also requires that the equipment be scaled down accordingly to tailor the process development approach to material availability. Here, the development of hardware and software for filament winding of carbon nanotube based tapes and yarns is described. This hardware features precision guidance of the CNT material and control of the winding tension over a wide range in an open architecture that allows for effective process control and troubleshooting during winding. Use of the filament winder to develop CNT based Composite Overwrapped Pressure Vessels (COPVs) shall also be discussed.

  19. Solid friction between soft filaments.

    PubMed

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A W C; Vitelli, Vincenzo; Mahadevan, L; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments' overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes's drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament's elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  20. Insights into the mechanism of Rad51 recombinase from the structure and properties of a filament interface mutant

    SciTech Connect

    Chen, Jianhong; Villanueva, Nicolas; Rould, Mark A.; Morrical, Scott W.

    2010-09-03

    Rad51 protein promotes homologous recombination in eukaryotes. Recombination activities are activated by Rad51 filament assembly on ssDNA. Previous studies of yeast Rad51 showed that His352 occupies an important position at the filament interface, where it could relay signals between subunits and active sites. To investigate, we characterized yeast Rad51 H352A and H352Y mutants, and solved the structure of H352Y. H352A forms catalytically competent but salt-labile complexes on ssDNA. In contrast, H352Y forms salt-resistant complexes on ssDNA, but is defective in nucleotide exchange, RPA displacement and strand exchange with full-length DNA substrates. The 2.5 {angstrom} crystal structure of H352Y reveals a right-handed helical filament in a high-pitch (130 {angstrom}) conformation with P61 symmetry. The catalytic core and dimer interface regions of H352Y closely resemble those of DNA-bound Escherichia coli RecA protein. The H352Y mutation stabilizes Phe187 from the adjacent subunit in a position that interferes with the {gamma}-phosphate-binding site of the Walker A motif/P-loop, potentially explaining the limited catalysis observed. Comparison of Rad51 H352Y, RecA-DNA and related structures reveals that the presence of bound DNA correlates with the isomerization of a conserved cis peptide near Walker B to the trans configuration, which appears to prime the catalytic glutamate residue for ATP hydrolysis.

  1. From electron microscopy to molecular cell biology, molecular genetics and structural biology: intracellular transport and kinesin superfamily proteins, KIFs: genes, structure, dynamics and functions.

    PubMed

    Hirokawa, Nobutaka

    2011-01-01

    Cells transport and sort various proteins and lipids following synthesis as distinct types of membranous organelles and protein complexes to the correct destination at appropriate velocities. This intracellular transport is fundamental for cell morphogenesis, survival and functioning not only in highly polarized neurons but also in all types of cells in general. By developing quick-freeze electron microscopy (EM), new filamentous structures associated with cytoskeletons are uncovered. The characterization of chemical structures and functions of these new filamentous structures led us to discover kinesin superfamily molecular motors, KIFs. In this review, I discuss the identification of these new structures and characterization of their functions using molecular cell biology and molecular genetics. KIFs not only play significant roles by transporting various cargoes along microtubule rails, but also play unexpected fundamental roles on various important physiological processes such as learning and memory, brain wiring, development of central nervous system and peripheral nervous system, activity-dependent neuronal survival, development of early embryo, left-right determination of our body and tumourigenesis. Furthermore, by combining single-molecule biophysics with structural biology such as cryo-electrom microscopy and X-ray crystallography, atomic structures of KIF1A motor protein of almost all states during ATP hydrolysis have been determined and a common mechanism of motility has been proposed. Thus, this type of studies could be a good example of really integrative multidisciplinary life science in the twenty-first century.

  2. Structure and Mutational Analyses of Escherichia coli ZapD Reveal Charged Residues Involved in FtsZ Filament Bundling

    PubMed Central

    Roach, Elyse J.; Wroblewski, Charles; Seidel, Laura; Berezuk, Alison M.; Brewer, Dyanne; Kimber, Matthew S.

    2016-01-01

    ABSTRACT Bacterial cell division is an essential and highly coordinated process. It requires the polymerization of the tubulin homologue FtsZ to form a dynamic ring (Z-ring) at midcell. Z-ring formation relies on a group of FtsZ-associated proteins (Zap) for stability throughout the process of division. In Escherichia coli, there are currently five Zap proteins (ZapA through ZapE), of which four (ZapA, ZapB, ZapC, and ZapD) are small soluble proteins that act to bind and bundle FtsZ filaments. In particular, ZapD forms a functional dimer and interacts with the C-terminal tail of FtsZ, but little is known about its structure and mechanism of action. Here, we present the crystal structure of Escherichia coli ZapD and show it forms a symmetrical dimer with centrally located α-helices flanked by β-sheet domains. Based on the structure of ZapD and its chemical cross-linking to FtsZ, we targeted nine charged ZapD residues for modification by site-directed mutagenesis. Using in vitro FtsZ sedimentation assays, we show that residues R56, R221, and R225 are important for bundling FtsZ filaments, while transmission electron microscopy revealed that altering these residues results in different FtsZ bundle morphology compared to those of filaments bundled with wild-type ZapD. ZapD residue R116 also showed altered FtsZ bundle morphology but levels of FtsZ bundling similar to that of wild-type ZapD. Together, these results reveal that ZapD residues R116, R221, and R225 likely participate in forming a positively charged binding pocket that is critical for bundling FtsZ filaments. IMPORTANCE Z-ring assembly underpins the formation of the essential cell division complex known as the divisome and is required for recruitment of downstream cell division proteins. ZapD is one of several proteins in E. coli that associates with the Z-ring to promote FtsZ bundling and aids in the overall fitness of the division process. In the present study, we describe the dimeric structure of E. coli

  3. G359.97-0.038: A HARD X-RAY FILAMENT ASSOCIATED WITH A SUPERNOVA SHELL-MOLECULAR CLOUD INTERACTION

    SciTech Connect

    Nynka, Melania; Hailey, Charles J.; Zhang, Shuo; Gotthelf, Eric V.; Mori, Kaya; Perez, Kerstin M.; Morris, Mark M.; Zhao, Jun-Hui; Goss, Miller; Bauer, Franz E.; Boggs, Stephen E.; Craig, William W.; Christensen, Finn E.; Harrison, Fiona A.; Stern, Daniel; Zhang, William W.

    2015-02-20

    We present the first high-energy X-ray (>10 keV) observations of the non-thermal filament G359.97-0.038 using the Nuclear Spectroscopic Telescope Array (NuSTAR). This filament is one of approximately 20 X-ray filaments of unknown origin located in the central 20 pc region in the Galactic Center near Sgr A*. Its NuSTAR and Chandra broadband spectrum is characterized by a single power law with Γ = 1.3 ± 0.3 that extends from 2 to 50 keV, with an unabsorbed luminosity of 1.3 × 10{sup 33} erg s{sup –1} (d/8 kpc){sup 2} in the 2-8 keV band. Despite possessing a cometary X-ray morphology that is typical of a pulsar wind nebula (PWN) in high-resolution Chandra imaging, our spatially resolved Chandra spectral analysis found no significant spectral softening along the filament as would be expected from particle synchrotron cooling. Coincident radio emission is detected using the Very Large Array at 5.5 and 8.3 GHz. We examine and subsequently discard a PWN or magnetic flux tube as the origin of G359.97-0.038. We use broadband spectral characteristics and a morphological analysis to show that G359.97-0.038 is likely an interaction site between the shell of Sgr A East and an adjacent molecular cloud. This is supported by CS molecular line spectroscopy and the presence of an OH maser.

  4. Lighting the universe with filaments.

    PubMed

    Gao, Liang; Theuns, Tom

    2007-09-14

    The first stars in the universe form when chemically pristine gas heats as it falls into dark-matter potential wells, cools radiatively because of the formation of molecular hydrogen, and becomes self-gravitating. Using supercomputer simulations, we demonstrated that the stars' properties depend critically on the currently unknown nature of the dark matter. If the dark-matter particles have intrinsic velocities that wipe out small-scale structure, then the first stars form in filaments with lengths on the order of the free-streaming scale, which can be approximately 10(20) meters (approximately 3 kiloparsecs, corresponding to a baryonic mass of approximately 10(7) solar masses) for realistic "warm dark matter" candidates. Fragmentation of the filaments forms stars with a range of masses, which may explain the observed peculiar element abundance pattern of extremely metal-poor stars, whereas coalescence of fragments and stars during the filament's ultimate collapse may seed the supermassive black holes that lurk in the centers of most massive galaxies.

  5. Spatial structure of scrape-off-layer filaments near the midplane and X-point regions of Alcator C-Mod

    SciTech Connect

    Terry, J L; Zweben, S J; Umansky, M V; Cziegler, I; Grulke, O; LaBombard, B; Stotler, D P

    2008-05-22

    Movies of edge turbulence at both the outboard midplane and the region outboard of the typical lower X-point location in C-Mod have been obtained using Gas-Puff-Imaging together with fast-framing cameras. Intermittent turbulent structures, typically referred to as blobs or filaments, are observed in both locations. Near the midplane the filaments are roughly circular in cross-section, while in the X-point region they are highly elongated. Filament velocities in this region are {approx}3x faster than the radial velocities at the midplane, in a direction roughly normal to the local flux surfaces. The observations are consistent with the picture that the filaments arise in outboard region and, as a consequence of the rapid parallel diffusion of the potential perturbations, map along field lines. A simulation using the 3D BOUT turbulence code has been made, with the result that reproduces many of the spatial features observed in the experiment.

  6. Structural Analysis of Human Cofilin 2/Filamentous Actin Assemblies: Atomic-Resolution Insights from Magic Angle Spinning NMR Spectroscopy

    PubMed Central

    Yehl, Jenna; Kudryashova, Elena; Reisler, Emil; Kudryashov, Dmitri; Polenova, Tatyana

    2017-01-01

    Cellular actin dynamics is an essential element of numerous cellular processes, such as cell motility, cell division and endocytosis. Actin’s involvement in these processes is mediated by many actin-binding proteins, among which the cofilin family plays unique and essential role in accelerating actin treadmilling in filamentous actin (F-actin) in a nucleotide-state dependent manner. Cofilin preferentially interacts with older filaments by recognizing time-dependent changes in F-actin structure associated with the hydrolysis of ATP and release of inorganic phosphate (Pi) from the nucleotide cleft of actin. The structure of cofilin on F-actin and the details of the intermolecular interface remain poorly understood at atomic resolution. Here we report atomic-level characterization by magic angle spinning (MAS) NMR of the muscle isoform of human cofilin 2 (CFL2) bound to F-actin. We demonstrate that resonance assignments for the majority of atoms are readily accomplished and we derive the intermolecular interface between CFL2 and F-actin. The MAS NMR approach reported here establishes the foundation for atomic-resolution characterization of a broad range of actin-associated proteins bound to F-actin. PMID:28303963

  7. Analysis on the Filament Structure Evolution in Reset Transition of Cu/HfO2/Pt RRAM Device.

    PubMed

    Zhang, Meiyun; Long, Shibing; Li, Yang; Liu, Qi; Lv, Hangbing; Miranda, Enrique; Suñé, Jordi; Liu, Ming

    2016-12-01

    The resistive switching (RS) process of resistive random access memory (RRAM) is dynamically correlated with the evolution process of conductive path or conductive filament (CF) during its breakdown (rupture) and recovery (reformation). In this study, a statistical evaluation method is developed to analyze the filament structure evolution process in the reset operation of Cu/HfO2/Pt RRAM device. This method is based on a specific functional relationship between the Weibull slopes of reset parameters' distributions and the CF resistance (R on). The CF of the Cu/HfO2/Pt device is demonstrated to be ruptured abruptly, and the CF structure of the device has completely degraded in the reset point. Since no intermediate states are generated in the abrupt reset process, it is quite favorable for the reliable and stable one-bit operation in RRAM device. Finally, on the basis of the cell-based analytical thermal dissolution model, a Monte Carlo (MC) simulation is implemented to further verify the experimental results. This work provides inspiration for RRAM reliability and performance design to put RRAM into practical application.

  8. TubZ filament assembly dynamics requires the flexible C-terminal tail

    PubMed Central

    Fuentes-Pérez, Maria E.; Núñez-Ramírez, Rafael; Martín-González, Alejandro; Juan-Rodríguez, David; Llorca, Oscar; Moreno-Herrero, Fernando; Oliva, Maria A.

    2017-01-01

    Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY. PMID:28230082

  9. TubZ filament assembly dynamics requires the flexible C-terminal tail.

    PubMed

    Fuentes-Pérez, Maria E; Núñez-Ramírez, Rafael; Martín-González, Alejandro; Juan-Rodríguez, David; Llorca, Oscar; Moreno-Herrero, Fernando; Oliva, Maria A

    2017-02-23

    Cytomotive filaments are essential for the spatial organization in cells, showing a dynamic behavior based on nucleotide hydrolysis. TubZ is a tubulin-like protein that functions in extrachromosomal DNA movement within bacteria. TubZ filaments grow in a helical fashion following treadmilling or dynamic instability, although the underlying mechanism is unclear. We have unraveled the molecular basis for filament assembly and dynamics combining electron and atomic force microscopy and biochemical analyses. Our findings suggest that GTP caps retain the filament helical structure and hydrolysis triggers filament stiffening upon disassembly. We show that the TubZ C-terminal tail is an unstructured domain that fulfills multiple functions contributing to the filament helical arrangement, the polymer remodeling into tubulin-like rings and the full disassembly process. This C-terminal tail displays the binding site for partner proteins and we report how it modulates the interaction of the regulator protein TubY.

  10. Structure of Importin-α from a Filamentous Fungus in Complex with a Classical Nuclear Localization Signal.

    PubMed

    Bernardes, Natalia E; Takeda, Agnes A S; Dreyer, Thiago R; Freitas, Fernanda Z; Bertolini, Maria Célia; Fontes, Marcos R M

    2015-01-01

    Neurospora crassa is a filamentous fungus that has been extensively studied as a model organism for eukaryotic biology, providing fundamental insights into cellular processes such as cell signaling, growth and differentiation. To advance in the study of this multicellular organism, an understanding of the specific mechanisms for protein transport into the cell nucleus is essential. Importin-α (Imp-α) is the receptor for cargo proteins that contain specific nuclear localization signals (NLSs) that play a key role in the classical nuclear import pathway. Structures of Imp-α from different organisms (yeast, rice, mouse, and human) have been determined, revealing that this receptor possesses a conserved structural scaffold. However, recent studies have demonstrated that the Impα mechanism of action may vary significantly for different organisms or for different isoforms from the same organism. Therefore, structural, functional, and biophysical characterization of different Impα proteins is necessary to understand the selectivity of nuclear transport. Here, we determined the first crystal structure of an Impα from a filamentous fungus which is also the highest resolution Impα structure already solved to date (1.75 Å). In addition, we performed calorimetric analysis to determine the affinity and thermodynamic parameters of the interaction between Imp-α and the classical SV40 NLS peptide. The comparison of these data with previous studies on Impα proteins led us to demonstrate that N. crassa Imp-α possess specific features that are distinct from mammalian Imp-α but exhibit important similarities to rice Imp-α, particularly at the minor NLS binding site.

  11. Characterization of HI Filaments

    NASA Astrophysics Data System (ADS)

    Lubar, Emily; Verschuur, Gerrit L.

    2017-01-01

    We characterized the properties of dramatic interstellar HI filaments to learn more about the dynamics and structure of such features. Using Gauss fitting software, we searched the Effelsburg-Bonn HI Survey data for indications of a simple twisting (toroidal) motion across these filaments. Instead, we found that the structure was more complicated than expected. Apparent angular widths of several filaments were measured using the Galactic Arecibo L-band Feed Array HI (GALFA-HI), Bonn, and Leident/Argentine/Bonn (LAB) surveys. Based on filament widths and other parameters, we conclude that magnetism is the dominant force opposing internal motion and maintaining the structure of these filaments. The apparent width as a function of beam width closely follows a relationship reported in 1993 for HI features in general. They tend to subtend an angle two times the beam width, suggesting that the features remain unresolved.The Arecibo Observatory is operated by SRI International under a cooperative agreement with the National Science Foundation (AST-1100968), and in alliance with Ana G. Méndez-Universidad Metropolitana, and the Universities Space Research Association. The Arecibo Observatory REU is funded under grant AST-1559849 to Universidad Metropolitana.

  12. Structural studies of influenza virus RNPs by electron microscopy indicate molecular contortions within NP supra-structures.

    PubMed

    Gallagher, John R; Torian, Udana; McCraw, Dustin M; Harris, Audray K

    2017-03-01

    Ribonucleoprotein (RNP) complexes of influenza viruses are composed of multiple copies of the viral nucleoprotein (NP) that can form filamentous supra-structures. RNPs package distinct viral genomic RNA segments of different lengths into pleomorphic influenza virions. RNPs also function in viral RNA transcription and replication. Different RNP segments have varying lengths, but all must be incorporated into virions during assembly and then released during viral entry for productive infection cycles. RNP structures serve varied functions in the viral replication cycle, therefore understanding their molecular organization and flexibility is essential to understanding these functions. Here, we show using electron tomography and image analyses that isolated RNP filaments are not rigid helical structures, but instead display variations in lengths, curvatures, and even tolerated kinks and local unwinding. Additionally, we observed NP rings within RNP preparations, which were commonly composed of 5, 6, or 7 NP molecules and were of similar widths to filaments, suggesting plasticity in NP-NP interactions mediate RNP structural polymorphism. To demonstrate that NP alone could generate rings of variable oligomeric state, we performed 2D single particle image analysis on recombinant NP and found that rings of 4 and 5 protomers dominated, but rings of all compositions up to 7 were directly observed with variable frequency. This structural flexibility may be needed as RNPs carry out the interactions and conformational changes required for RNP assembly and genome packaging as well as virus uncoating.

  13. Reorganization of actin filaments by ADF/cofilin is involved in formation of microtubule structures during Xenopus oocyte maturation

    PubMed Central

    Yamagishi, Yuka; Abe, Hiroshi

    2015-01-01

    We examined the reorganization of actin filaments and microtubules during Xenopus oocyte maturation. Surrounding the germinal vesicle (GV) in immature oocytes, the cytoplasmic actin filaments reorganized to accumulate beneath the vegetal side of the GV, where the microtubule-organizing center and transient microtubule array (MTOC-TMA) assembled, just before GV breakdown (GVBD). Immediately after GVBD, both Xenopus ADF/cofilin (XAC) and its phosphatase Slingshot (XSSH) accumulated into the nuclei and intranuclear actin filaments disassembled from the vegetal side with the shrinkage of the GV. As the MTOC-TMA developed well, cytoplasmic actin filaments were retained at the MTOC-TMA base region. Suppression of XAC dephosphorylation by anti-XSSH antibody injection inhibited both actin filament reorganization and proper formation and localization of both the MTOC-TMA and meiotic spindles. Stabilization of actin filaments by phalloidin also inhibited formation of the MTOC-TMA and disassembly of intranuclear actin filaments without affecting nuclear shrinkage. Nocodazole also caused the MTOC-TMA and the cytoplasmic actin filaments at its base region to disappear, which further impeded disassembly of intranuclear actin filaments from the vegetal side. XAC appears to reorganize cytoplasmic actin filaments required for precise assembly of the MTOC and, together with the MTOC-TMA, regulate the intranuclear actin filament disassembly essential for meiotic spindle formation. PMID:26424802

  14. Structural Analysis of Helios Filament-Wound Tanks Subjected to Internal Pressure and Cooling

    NASA Technical Reports Server (NTRS)

    Ko, William L

    2005-01-01

    A finite-element stress analysis is performed on Helios filament-wound hydrogen tanks to examine the stress field and effect of end dome geometry on the stress field. Each tank is composed of a central circular cylindrical section with either geodesic or hemispherical end domes, which have metallic polar bosses. The tanks are subjected to combined and separate internal pressure and temperature loading conditions, and the stress contributions of each loading component are examined. The tank-wall-polar-boss interfacial meridional tensile stress in the hemispherical dome is found to be approximately 27 percent lower than that in the geodesic dome. The effects of both material anisotropy and the aluminum lining on the intensities of tensile meridional stress at the tank-wall-polar-boss bonding interface are examined.

  15. Nonvolatile conductive filaments resistive switching behaviors in Ag/GaO x /Nb:SrTiO3/Ag structure

    NASA Astrophysics Data System (ADS)

    Li, P. G.; Zhi, Y. S.; Wang, P. C.; Sun, Z. B.; Li, L. H.; An, Y. H.; Guo, D. Y.; Tang, W. H.; Xiao, J. H.

    2016-07-01

    Ag/GaO x /NSTO/Ag structures were fabricated, and the electrical properties measurement results show that the device behaviors a unipolar resistance switching characteristic with bi-stable resistance ratio of three orders. In the positive voltage region, the dominant conducting mechanism of high resistance state obeys Poole-Frenkel emission rules, while in the negative region, that obeys space-charge-limited current mechanism. Both the I- V curves of ON and OFF states and temperature-dependent variation resistances indicate that the unipolar resistance switching behavior can be explained by the formation/rupture of conductive filaments, which composed of oxygen vacancies. The stable switching results demonstrated that the structure can be applied in resistance random access memory devices.

  16. Regulation of actin filament length in erythrocytes and striated muscle.

    PubMed

    Fowler, V M

    1996-02-01

    Actin filaments polymerize in vitro to lengths which display an exponential distribution, yet in many highly differentiated cells they can be precisely maintained at uniform lengths in elaborate supramolecular structures. Recent results obtained using two classic model systems, the erythrocyte membrane cytoskeleton and the striated muscle sarcomere, reveal surprising similarities and instructive differences in the molecules and mechanisms responsible for determining and maintaining actin filament lengths in these two systems. Tropomodulin caps the slow-growing, pointed filament ends in muscle and in erythrocytes. CapZ caps the fast-growing, barbed filament ends in striated muscle, whereas a newly discovered barbed end capping protein, adducin, may cap the barbed filament ends in erythrocytes. The mechanisms responsible for specifying the characteristic filament lengths in these systems are more elusive and may include strict control of the relative amounts of actin filament capping proteins and side-binding proteins, molecular templates (e.g. tropomyosin and nebulin) and/or verniers (e.g. tropomyosin).

  17. Structural changes of the regulatory proteins bound to the thin filaments in skeletal muscle contraction by X-ray fiber diffraction

    SciTech Connect

    Sugimoto, Yasunobu Takezawa, Yasunori; Matsuo, Tatsuhito; Ueno, Yutaka; Minakata, Shiho; Tanaka, Hidehiro; Wakabayashi, Katsuzo

    2008-04-25

    In order to clarify the structural changes related to the regulation mechanism in skeletal muscle contraction, the intensity changes of thin filament-based reflections were investigated by X-ray fiber diffraction. The time course and extent of intensity changes of the first to third order troponin (TN)-associated meridional reflections with a basic repeat of 38.4 nm were different for each of these reflections. The intensity of the first and second thin filament layer lines changed in a reciprocal manner both during initial activation and during the force generation process. The axial spacings of the TN-meridional reflections decreased by {approx}0.1% upon activation relative to the relaxing state and increased by {approx}0.24% in the force generation state, in line with that of the 2.7-nm reflection. Ca{sup 2+}-binding to TN triggered the shortening and a change in the helical symmetry of the thin filaments. Modeling of the structural changes using the intensities of the thin filament-based reflections suggested that the conformation of the globular core domain of TN altered upon activation, undergoing additional conformational changes at the tension plateau. The tail domain of TN moved together with tropomyosin during contraction. The results indicate that the structural changes of regulatory proteins bound to the actin filaments occur in two steps, the first in response to the Ca{sup 2+}-binding and the second induced by actomyosin interaction.

  18. Self-assembly of Artificial Actin Filaments

    NASA Astrophysics Data System (ADS)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  19. Complex Flare Dynamics Initiated by a Filament-Filament Interaction

    NASA Astrophysics Data System (ADS)

    Zhu, Chunming; Liu, Rui; Alexander, David; Sun, Xudong; McAteer, James

    2015-04-01

    We report on a filament eruption that led to a relatively rare filament-filament interaction event. The filaments were located at different heights above the same segment of a circular polarity inversion line (PIL) around a condensed leading sunspot. The onset of the eruption of the lower of the two filaments was accompanied by a simultaneous descent of the upper filament resulting in a convergence and direct interaction of the two filaments. The interaction led to the subsequent merger of the filaments into a single magnetically complex structure that erupted to create a large solar flare and an array of complex dynamical activity. A hard X-ray coronal source and an associated enhancement of hot plasma are observed at the interface between the two interacting filaments. These phenomena are related to the production of a small C flare and the subsequent development of a much stronger M flare. Magnetic loop shrinkage and descending dark voids were observed at different locations as part of the large flare energy release giving us a unique insight into these dynamic flare phenomena.

  20. Molecular modeling of nucleic acid structure

    PubMed Central

    Galindo-Murillo, Rodrigo; Bergonzo, Christina

    2013-01-01

    This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. This unit provides an overview of computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, generation of an initial model, and characterization of the overall three-dimensional structure. PMID:18428873

  1. The Molecular Structure of Penicillin

    NASA Astrophysics Data System (ADS)

    Bentley, Ronald

    2004-10-01

    The chemical structure of penicillin was determined between 1942 and 1945 under conditions of secrecy established by the U.S. and U.K. governments. The evidence was not published in the open literature but as a monograph. This complex volume does not present a structure proof that can be readily comprehended by a student. In this article, a basic structural proof for the penicillin molecule is provided, emphasizing the chemical work. The stereochemistry of penicillin is also described, and various rearrangements are considered on the basis of the accepted β-lactam structure.

  2. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, Thushara

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom-made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  3. Magnetic Fields in Massive Filaments

    NASA Astrophysics Data System (ADS)

    Pillai, G. S. Thushara

    2015-10-01

    Magnetic fields pervade galaxies, shaping them from the largest scales to the smallest star forming scales. A firm understanding of their role is crucial to our understanding of the physics of ISM. A dominant phase of the ISM that has received considerable attention is that of filaments which are ubiquitous and dominate the mass reservoir in molecular clouds. Enormous progress has been made recently towards understanding filament properties. The next major step should be to understand the role of magnetic fields in filaments. We propose to take advantage of HAWC+ dust emission polarimeter now available on SOFIA to launch a pilot polarization study towards three major classes of filaments: (i) Pristine (ii) Hub-Filament systems and (iii) Perturbed. HAWC+ will trace the connection between the star forming cores and the filaments enveloping them. By covering a vast range in parameter space from quiescent to active filaments, we will be constraining the initial conditions prior to star formation, during star formation and after star formation (feedback from newly formed stars on their parent clouds.) The interpretation of observations will be supported by extensive custom--made numerical simulations of magnetized clouds and subsequent dust radiative transfer with various grain alignment mechanisms, as provided by collaborators. Combined, these observations will provide the first panoramic view of the magnetized nature of massive filaments in the ISM.

  4. CO-dark gas and molecular filaments in Milky Way-type galaxies - II. The temperature distribution of the gas

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Smith, Rowan J.

    2016-11-01

    We investigate the temperature distribution of CO-dark molecular hydrogen (H2) in a series of disc galaxies simulated using the AREPO moving-mesh code. In conditions similar to those in the Milky Way, we find that H2 has a flat temperature distribution ranging from 10 to 100 K. At T < 30 K, the gas is almost fully molecular and has a high CO content, whereas at T > 30 K, the H2 fraction spans a broader range and the CO content is small, allowing us to classify gas in these two regimes as CO-bright and CO-dark, respectively. The mean sound speed in the CO-dark H2 is cs, dark = 0.64 km s-1, significantly lower than the value in the cold atomic gas (cs, CNM = 1.15 km s-1), implying that the CO-dark molecular phase is more susceptible to turbulent compression and gravitational collapse than its atomic counterpart. We further show that the temperature of the CO-dark H2 is highly sensitive to the strength of the interstellar radiation field, but that conditions in the CO-bright H2 remain largely unchanged. Finally, we examine the usefulness of the [C II] and [O I] fine-structure lines as tracers of the CO-dark gas. We show that in Milky Way-like conditions, diffuse [C II] emission from this gas should be detectable. However, it is a problematic tracer of this gas, as there is only a weak correlation between the brightness of the emission and the H2 surface density. The situation is even worse for the [O I] line, which shows no correlation with the H2 surface density.

  5. The Molecular Structure of Penicillin

    ERIC Educational Resources Information Center

    Bentley, Ronald

    2004-01-01

    Overviews of the observations that constitute a structure proof for penicillin, specifically aimed at the general student population, are presented. Melting points and boiling points were criteria of purity and a crucial tool was microanalysis leading to empirical formulas.

  6. Structured Molecular Gas Reveals Galactic Spiral Arms

    NASA Astrophysics Data System (ADS)

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory 13CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  7. STRUCTURED MOLECULAR GAS REVEALS GALACTIC SPIRAL ARMS

    SciTech Connect

    Sawada, Tsuyoshi; Hasegawa, Tetsuo; Koda, Jin

    2012-11-01

    We explore the development of structures in molecular gas in the Milky Way by applying the analysis of the brightness distribution function and the brightness distribution index (BDI) in the archival data from the Boston University-Five College Radio Astronomy Observatory {sup 13}CO J = 1-0 Galactic Ring Survey. The BDI measures the fractional contribution of spatially confined bright molecular emission over faint emission extended over large areas. This relative quantity is largely independent of the amount of molecular gas and of any conventional, pre-conceived structures, such as cores, clumps, or giant molecular clouds. The structured molecular gas traced by higher BDI is located continuously along the spiral arms in the Milky Way in the longitude-velocity diagram. This clearly indicates that molecular gas changes its structure as it flows through the spiral arms. Although the high-BDI gas generally coincides with H II regions, there is also some high-BDI gas with no/little signature of ongoing star formation. These results support a possible evolutionary sequence in which unstructured, diffuse gas transforms itself into a structured state on encountering the spiral arms, followed by star formation and an eventual return to the unstructured state after the spiral arm passage.

  8. Predicting Solar Filament Eruptions with HEK Filament Metadata

    NASA Astrophysics Data System (ADS)

    Aggarwal, A.; Reeves, K.; Schanche, N.

    2015-12-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013) has shown a positive correlation (80%) between the occurrence of filament eruptions and coronal mass ejections (CME's). If certain filament properties, such as length, chirality, and tilt, indicate a tendency towards filament eruptions, one may be able to further predict an oncoming CME. Towards this end, we present a novel algorithm based on spatiotemporal analysis that systematically correlates filament eruptions documented in the Heliophysics Event Knowledgebase (HEK) with HEK filaments that have been grouped together using a tracking algorithm developed at Georgia State University (e.g. Kempton et al. 2014). We also find filament tracks that are not correlated with eruptions to form a null data set in a similar fashion. Finally, we compare the metadata from erupting and non-erupting filament tracks to discover which filament properties may present signs of an eruption onset. Through statistical methods such as the two-sample Kolmogorov-Smirnov test and Random Forest Classifier, we find that a filament that is increasing in length or changing in tilt with respect to the equator may be a useful gauge to predict a filament eruption. However, the average values of length and tilt for both datasets follow similar distributions, leading us to conclude that these parameters do not indicate an eruption event. This work is supported by the NSF-REU solar physics program at SAO, grant number AGS-1263241, and NSF DIBBS grant number ACI-1443061.

  9. Statistical analysis of the strength of ultra-oriented ultra-high-molecular-weight polyethylene film filaments in the framework of the Weibull model

    NASA Astrophysics Data System (ADS)

    Boiko, Yu. M.; Marikhin, V. A.; Myasnikova, L. P.; Moskalyuk, O. A.; Radovanova, E. I.

    2016-10-01

    A statistical analysis of the distribution of the tensile strength σ of ultra-oriented ultra-high-molecular-weight polyethylene (UHMWPE) film filaments has been performed in the framework of the Weibull model using the results obtained from a large number (50) of measurements. The UHMWPE film filaments have been produced by means of high-temperature multistage zone drawing of xerogels prepared from 1.5% UHMWPE solutions in decalin. The Weibull modulus has been determined for this type of materials. It has been shown that, for the ultimate draw ratio λ = 120, the average tensile strength is equal to 4.7 GPa, which is significantly higher than the tensile strength σ = 3.5 GPa for commercial gel-spun UHMWPE fibers manufactured by the DSM Company (The Netherlands) and the Honeywell International Incorporation (United States). It has been demonstrated that, for 20% of the specimens thus prepared, the tensile strength reaches record-high values σ = 5.2-5.9 GPa.

  10. Site-specific cation release drives actin filament severing by vertebrate cofilin

    PubMed Central

    Kang, Hyeran; Bradley, Michael J.; Cao, Wenxiang; Zhou, Kaifeng; Grintsevich, Elena E.; Michelot, Alphée; Sindelar, Charles V.; Hochstrasser, Mark; De La Cruz, Enrique M.

    2014-01-01

    Actin polymerization powers the directed motility of eukaryotic cells. Sustained motility requires rapid filament turnover and subunit recycling. The essential regulatory protein cofilin accelerates network remodeling by severing actin filaments and increasing the concentration of ends available for elongation and subunit exchange. Although cofilin effects on actin filament assembly dynamics have been extensively studied, the molecular mechanism of cofilin-induced filament severing is not understood. Here we demonstrate that actin filament severing by vertebrate cofilin is driven by the linked dissociation of a single cation that controls filament structure and mechanical properties. Vertebrate cofilin only weakly severs Saccharomyces cerevisiae actin filaments lacking this “stiffness cation” unless a stiffness cation-binding site is engineered into the actin molecule. Moreover, vertebrate cofilin rescues the viability of a S. cerevisiae cofilin deletion mutant only when the stiffness cation site is simultaneously introduced into actin, demonstrating that filament severing is the essential function of cofilin in cells. This work reveals that site-specific interactions with cations serve a key regulatory function in actin filament fragmentation and dynamics. PMID:25468977

  11. Redox-driven conductance switching via filament formation and dissolution in carbon/molecule/TiO2/Ag molecular electronic junctions.

    PubMed

    Ssenyange, Solomon; Yan, Haijun; McCreery, Richard L

    2006-12-05

    Carbon/molecule/TiO2/Au molecular electronic junctions show robust conductance switching, in which a metastable high conductance state may be induced by a voltage pulse which results in redox reactions in the molecular and TiO2 layers. When Ag is substituted for Au as the "top contact", dramatically different current/voltage curves and switching behavior result. When the carbon substrate is biased negative, an apparent breakdown occurs, leading to a high conductance state which is stable for at least several hours. Upon scanning to positive bias, the conductance returns to a low state, and the cycle may be repeated hundreds of times. Similar effects are observed when Cu is substituted for Au and for three different molecular layers as well as "control" junctions of the type carbon/TiO2/Ag/Au. The polarity of the "switching" is reversed when the Ag layer is between the carbon and molecular layers, and the conductance change is suppressed at low temperature. Pulse experiments show very erratic transitions between high and low conductivity states, particularly near the switching threshold. The results are consistent with a switching mechanism based on Ag or Cu oxidation, transport of their ions through the TiO2, and reduction at the carbon to form a metal filament.

  12. Magnetic Field Structure in Molecular Clouds by Polarization Measurements

    NASA Astrophysics Data System (ADS)

    Chen, W. P.; Su, B. H.; Eswaraiah, C.; Pandey, A. K.; Wang, C. W.; Lai, S. P.; Tamura, M.; Sato, S.

    2015-03-01

    We report on a program to delineate magnetic field structure inside molecular clouds by optical and infrared polarization observations. An ordered magnetic field inside a dense cloud may efficiently align the spinning dust grains to cause a detectable level of optical and near-infrared polarization of otherwise unpolarized background starlight due to dichroic extinction. The near-infrared polarization data were taken by SIRPOL mounted on IRSF in SAAO. Here we present the SIRPOL results in RCW 57, for which the magnetic field is oriented along the cloud filaments, and in Carina Nebula, for which no intrinsic polarization is detected in the turbulent environment. We further describe TRIPOL, a compact and efficient polarimer to acquire polarized images simultaneously at g', r', and i' bands, which is recently developed at Nagoya University for adaption to small-aperture telescopes. We show how optical observations probe the translucent outer parts of a cloud, and when combining with infrared observations probing the dense parts, and with millimeter and submillimeter observations to sutdy the central embedded protostar, if there is one, would yield the magnetic field structure on different length scales in the star-formation process.

  13. Solid friction between soft filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-06-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  14. Solid friction between soft filaments

    SciTech Connect

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A. W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.

  15. Surface manipulation of protein filaments

    NASA Astrophysics Data System (ADS)

    Kreplak, Laurent; Staple, Douglas; Loparic, Marko; Kreuzer, Hans-Juergen

    2009-03-01

    Within mammalian tissues, cells move by actively remodeling a dense network of collagen fibrils. In order to study this situation, we analyze the force response of two types of filamentous protein structures, desmin intermediate filaments 12 nm in diameter and collagen fibrils 80 nm in diameter. Both types of filaments were adsorbed at a solid-liquid interface and locally moved with an AFM tip at constant velocity against surface friction in the interfacial plane. In the case of collagen fibrils, that have an extensibility below 30% extension, we observed that microns long fibrils could be moved by the tip and deformed into shapes that could not be explain by the linear elastic theory for a stiff rod. In the case of desmin filaments that can be stretched up to 3.5 times there length, we observed local stretching of the filaments and discreet steps in the torsional force measured with the cantilever. In order to describe both types of filaments' behaviors, we described the protein filaments as a chain of beads of mass m linked together by a mass-less polymer linker. By solving the Newtonian equations of motions for the coupled beads in the presence of a point load and a viscous drag due to the surface-filament interactions we were able to reproduced our experimental data and extract information on friction.

  16. RESOLVED SHOCK STRUCTURE OF THE BALMER-DOMINATED FILAMENTS IN TYCHO'S SUPERNOVA REMNANT: COSMIC-RAY PRECURSOR?

    SciTech Connect

    Lee, Jae-Joon; Park, Sangwook; Raymond, John C.; Korreck, Kelly; Blair, William P.; Ghavamian, Parviz; Winkler, P. F.

    2010-06-01

    We report on the results from H{alpha} imaging observations of the eastern limb of Tycho's supernova remnant (SN1572) using the Wide Field Planetary Camera 2 on the Hubble Space Telescope. We resolve the detailed structure of the fast, collisionless shock wave into a delicate structure of nearly edge-on filaments. We find a gradual increase of H{alpha} intensity just ahead of the shock front, which we interpret as emission from the thin ({approx}1'') shock precursor. We find that a significant amount of the H{alpha} emission comes from the precursor and that this could affect the amount of temperature equilibration derived from the observed flux ratio of the broad and narrow H{alpha} components. The observed H{alpha} emission profiles are fit using simple precursor models, and we discuss the relevant parameters. We suggest that the precursor is likely due to cosmic rays and discuss the efficiency of cosmic-ray acceleration at this position.

  17. THE FORMATION AND ERUPTION OF A SMALL CIRCULAR FILAMENT DRIVEN BY ROTATING MAGNETIC STRUCTURES IN THE QUIET SUN

    SciTech Connect

    Yang, Bo; Jiang, Yunchun; Yang, Jiayan; Hong, Junchao; Xu, Zhe E-mail: yjy@ynao.ac.cn

    2015-04-20

    We present the first observation of the formation and eruption of a small circular filament driven by a rotating network magnetic field (RNF) in the quiet Sun. In the negative footpoint region of an inverse J-shaped dextral filament, the RNF was formed by the convergence to supergranular junctions of several magnetic flux patches of the same polarity, and it then rotated counterclockwise (CCW) for approximately 11 hr and showed up as a CCW rotating EUV cyclone, during which time the filament gradually evolved into a circular filament that surrounded the cyclone. When the calculated convergence and vortex flows appeared around the RNF during its formation and rotation phases, the injected magnetic helicity calculation also showed negative helicity accumulation during the RNF rotation that was consistent with the dextral chirality of the filament. Finally, the RNF rotation stopped and the cyclone disappeared, and, probably due to an emerging bipole and its forced cancellation with the RNF, the closure filament underwent an eruption along its axis in the (clockwise) direction opposite to the rotation directions of the RNF and cyclone. These observations suggest that the RNFs might play an important role in the formation of nearby small-scale circular filaments as they transport and inject magnetic energy and helicity, and the formation of the EUV cyclones may be a further manifestation of the helicity injected into the corona by the rotation of the RNFs in the photosphere. In addition, the new emerging bipole observed before the filament eruption might be responsible for destabilizing the system and triggering the magnetic reconnection which proves useful for the filament eruption.

  18. Role of Intermediate Filaments in Vesicular Traffic

    PubMed Central

    Margiotta, Azzurra; Bucci, Cecilia

    2016-01-01

    Intermediate filaments are an important component of the cellular cytoskeleton. The first established role attributed to intermediate filaments was the mechanical support to cells. However, it is now clear that intermediate filaments have many different roles affecting a variety of other biological functions, such as the organization of microtubules and microfilaments, the regulation of nuclear structure and activity, the control of cell cycle and the regulation of signal transduction pathways. Furthermore, a number of intermediate filament proteins have been involved in the acquisition of tumorigenic properties. Over the last years, a strong involvement of intermediate filament proteins in the regulation of several aspects of intracellular trafficking has strongly emerged. Here, we review the functions of intermediate filaments proteins focusing mainly on the recent knowledge gained from the discovery that intermediate filaments associate with key proteins of the vesicular membrane transport machinery. In particular, we analyze the current understanding of the contribution of intermediate filaments to the endocytic pathway. PMID:27120621

  19. In-depth characterization and computational 3D reconstruction of flagellar filament protein layer structure based on in situ spectroscopic ellipsometry measurements

    NASA Astrophysics Data System (ADS)

    Kozma, Peter; Kozma, Daniel; Nemeth, Andrea; Jankovics, Hajnalka; Kurunczi, Sandor; Horvath, Robert; Vonderviszt, Ferenc; Fried, Miklos; Petrik, Peter

    2011-06-01

    In this study, we have reconstructed the statistical 3D structure of hundreds of nanometers thick surface immobilized flagellar filament protein layers in their native environment, in buffer solution. The protein deposition onto the surface activated Ta 2O 5 film was performed in a flow cell, and the immobilization process was followed by in situ spectroscopic ellipsometry. A multilayer optical model was developed, in that the protein layer was described by five effective medium sublayers. Applying this method, an in-depth analysis of the protein layer formation was performed. Based on the kinetics in the distribution of the surface mass density, the statistical properties of the filamentous film could be determined computationally as a function of the measurement time. It was also demonstrated that the 3D structure of the protein layer can be reconstructed based on the calculated in-depth mass density profile. The computational investigation revealed that the filaments can be classified into two individual groups in approximately equal ratio according to their orientation. In the first group the filaments are close to laying position, whereas in the second group they are in a standing position, resulting in a significantly denser sublayer close to the substrate than at a larger distance.

  20. Conformational basis for asymmetric seeding barrier in filaments of three- and four-repeat tau.

    PubMed

    Siddiqua, Ayisha; Luo, Yin; Meyer, Virginia; Swanson, Michael A; Yu, Xiang; Wei, Guanghong; Zheng, Jie; Eaton, Gareth R; Ma, Buyong; Nussinov, Ruth; Eaton, Sandra S; Margittai, Martin

    2012-06-20

    Tau pathology in Alzheimer's disease is intimately linked to the deposition of proteinacious filaments, which akin to infectious prions, have been proposed to spread via seeded conversion. Here we use double electron-electron resonance (DEER) spectroscopy in combination with extensive computational analysis to show that filaments of three- (3R) and four-repeat (4R) tau are conformationally distinct. Distance measurements between spin labels in the third repeat, reveal tau amyloid filaments as ensembles of known β-strand-turn-β-strand U-turn motifs. Whereas filaments seeded with 3R tau are structurally homogeneous, filaments seeded with 4R tau are heterogeneous, composed of at least three distinct conformers. These findings establish a molecular basis for the seeding barrier between different tau isoforms and offer a new powerful approach for investigating the composition and dynamics of amyloid fibril ensembles.

  1. Comparison of prestellar core elongations and large-scale molecular cloud structures in the Lupus I region

    SciTech Connect

    Poidevin, Frédérick; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angile, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Netterfield, Calvin B.; Chapin, Edward L.; Fissel, Laura M.; Gandilo, Natalie N.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Matthews, Tristan G.; Novak, Giles; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-08-10

    Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on sub-parsec to 100 parsec scales, leading to the formation of starless cores, are not well understood. We investigate the prestellar core structure morphologies obtained from analysis of the Herschel-SPIRE 350 μm maps of the Lupus I cloud. This distribution is first compared on a statistical basis to the large-scale shape of the main filament. We find the distribution of the elongation position angle of the cores to be consistent with a random distribution, which means no specific orientation of the morphology of the cores is observed with respect to the mean orientation of the large-scale filament in Lupus I, nor relative to a large-scale bent filament model. This distribution is also compared to the mean orientation of the large-scale magnetic fields probed at 350 μm with the Balloon-borne Large Aperture Telescope for Polarimetry during its 2010 campaign. Here again we do not find any correlation between the core morphology distribution and the average orientation of the magnetic fields on parsec scales. Our main conclusion is that the local filament dynamics—including secondary filaments that often run orthogonally to the primary filament—and possibly small-scale variations in the local magnetic field direction, could be the dominant factors for explaining the final orientation of each core.

  2. Structure and kinematics of molecular jets

    NASA Astrophysics Data System (ADS)

    Snell, R. L.

    1986-04-01

    Observational studies of the structure and kinematics of the supersonic molecular gas in star-forming regions are reviewed. These studies have suggested that the bulk of the high-velocity gas may be ambient-cloud material swept up by a collimated stellar wind. The actual structures of these outflows, however, are poorly understood. One source that may provide a better understanding of molecular outflows is that in the nearby dark cloud LDN 1551. New observations of this outflow are presented and discussed in context of the models proposed by Snell and Schloerb.

  3. On the emergence of molecular structure

    SciTech Connect

    Matyus, Edit; Reiher, Markus; Hutter, Juerg; Mueller-Herold, Ulrich

    2011-05-15

    The structure of (a{sup {+-}},a{sup {+-}},b{sup {+-}})-type Coulombic systems is characterized by the effective ground-state density of the a-type particles, computed via nonrelativistic quantum mechanics without introduction of the Born-Oppenheimer approximation. A structural transition is observed when varying the relative mass of the a- and b-type particles, e.g., between atomic H{sup -} and molecular H{sub 2}{sup +}. The particle-density profile indicates a molecular-type behavior for the positronium ion, Ps{sup -}.

  4. The velocity characteristics of dusty filaments in the JCMT GBS clouds

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Salji, C.; Richer, J. S.

    2013-07-01

    Large scale, high resolution spectral and continuum imaging maps have revealed, to an unprecedented extent, the characteristics of filamentary structure in star-forming molecular clouds, and their close association with star-forming cores. The filaments are associated with the formation of dense molecular cores where star formation occurs, and recent models highlight the important relationship between filaments and star-forming clusters. Velocity-coherent filaments have been proposed as the parent structures of star forming cores in Taurus. In Serpens, accretion flows along filaments have been proposed as the continuous source of mass for the star forming cluster. An evolutionary scenario for filaments based on velocity dispersion and column density measurements has recently been proposed, which we test with large scale molecular line and dust continuum maps. The JCMT Gould Belt Survey with SCUBA-2 and HARP provides dust continuum observations at 850 and 450 micron, and 12CO/13CO/C18O J=3-2 spectral line mapping of several nearby molecular clouds, covering large angular scales at high resolution. Velocities and linewidths of optically thin species, such as C18O which traces the warm, dense gas associated with star formation, are critical for an estimate of the virial stability of filamentary structures. The data and analyses that we present provide robust statistics over a large range of starless and protostellar evolutionary states. We present the velocity characteristics of dusty filaments in Orion, probing the physics at the boundary of filamentary structure and star formation. Using C18O, we investigate the internal structure of filaments, based on fragmentation and velocity coherence in the molecular line data. Through velocity dispersion measurements, we determine whether the filamentary structures are bound, and compare results between clouds of different star formation characteristics.

  5. Molecular docking to ensembles of protein structures.

    PubMed

    Knegtel, R M; Kuntz, I D; Oshiro, C M

    1997-02-21

    Until recently, applications of molecular docking assumed that the macromolecular receptor exists in a single, rigid conformation. However, structural studies involving different ligands bound to the same target biomolecule frequently reveal modest but significant conformational changes in the target. In this paper, two related methods for molecular docking are described that utilize information on conformational variability from ensembles of experimental receptor structures. One method combines the information into an "energy-weighted average" of the interaction energy between a ligand and each receptor structure. The other method performs the averaging on a structural level, producing a "geometry-weighted average" of the inter-molecular force field score used in DOCK 3.5. Both methods have been applied in docking small molecules to ensembles of crystal and solution structures, and we show that experimentally determined binding orientations and computed energies of known ligands can be reproduced accurately. The use of composite grids, when conformationally different protein structures are available, yields an improvement in computational speed for database searches in proportion to the number of structures.

  6. Students' Understanding of Molecular Structure Representations

    ERIC Educational Resources Information Center

    Ferk, Vesna; Vrtacnik, Margareta; Blejec, Andrej; Gril, Alenka

    2003-01-01

    The purpose of the investigation was to determine the meanings attached by students to the different kinds of molecular structure representations used in chemistry teaching. The students (n = 124) were from primary (aged 13-14 years) and secondary (aged 17-18 years) schools and a university (aged 21-25 years). A computerised "Chemical…

  7. Molecular Association and Structure of Hydrogen Peroxide.

    ERIC Educational Resources Information Center

    Giguere, Paul A.

    1983-01-01

    The statement is sometimes made in textbooks that liquid hydrogen peroxide is more strongly associated than water, evidenced by its higher boiling point and greater heat of vaporization. Discusses these and an additional factor (the nearly double molecular mass of the peroxide), focusing on hydrogen bonds and structure of the molecule. (JN)

  8. Metabolic regulation via enzyme filamentation

    PubMed Central

    Aughey, Gabriel N.; Liu, Ji-Long

    2016-01-01

    Abstract Determining the mechanisms of enzymatic regulation is central to the study of cellular metabolism. Regulation of enzyme activity via polymerization-mediated strategies has been shown to be widespread, and plays a vital role in mediating cellular homeostasis. In this review, we begin with an overview of the filamentation of CTP synthase, which forms filamentous structures termed cytoophidia. We then highlight other important examples of the phenomenon. Moreover, we discuss recent data relating to the regulation of enzyme activity by compartmentalization into cytoophidia. Finally, we hypothesize potential roles for enzyme filament formation in the regulation of metabolism, development and disease. PMID:27098510

  9. Chemical and biological structure and transport of a cool filament associated with a jet-eddy system of northern California in July 1986 (OPTOMA21)

    NASA Technical Reports Server (NTRS)

    Jones, Burton H.; Mooers, Christopher N. K.; Rienecker, Michele M.; Stanton, Tim; Washburn, Libe

    1991-01-01

    The distributions of nutrient, pigment, bio-optical, and physical variables were mapped in a jet-eddy system off Point Reyes and Point Arena, California, from July 7 to 19, 1986, in order to describe the 3D variability of the filament and its relation to the nutrient and phytoplankton distributions offshore, to examine the interaction between the filament and coastal water, and to estimate the transport of nutrients and phytoplankton by the jet system. Several cool filaments were distinguishable at distances of more than 35-50 km from the coast in satellite imagery during this period. The juxtaposition of these features as well as the presence of an offshore anticyclone and a cyclone south of the filament anchored to the coast at Point Arena led to complex patterns in all variables, aided by the apparent alongshore variability in the source of upwelled water. This structure has implications for the fluxes of organic material in the region and is probably significant in organizing the interactions among different trophic levels within the system.

  10. ALMA view of the Galactic Center 50km/s molecular cloud

    NASA Astrophysics Data System (ADS)

    Uehara, Kenta; Tsuboi, Masato; Kitamura, Yoshimi; Miyawaki, Ryosuke; Miyazaki, Atsushi

    2017-01-01

    We have observed the Galactic Center 50km/s molecular cloud (50MC) with ALMA to search for filamentary structures. In the CS J=2-1 emission line channel maps, we succeeded in identifying 27 molecular cloud filaments using the DisPerSE algorithm. This is the first attempt of filament-finding in the Galactic Center Region. These molecular cloud filaments strongly suggest that the molecular cloud filaments are also ubiquitous in the molecular clouds of the Galactic Center Region.

  11. Unwinding motion of a twisted active region filament

    SciTech Connect

    Yan, X. L.; Xue, Z. K.; Kong, D. F.; Liu, J. H.; Xu, C. L.

    2014-12-10

    To better understand the structures of active region filaments and the eruption process, we study an active region filament eruption in active region NOAA 11082 in detail on 2010 June 22. Before the filament eruption, the opposite unidirectional material flows appeared in succession along the spine of the filament. The rising of the filament triggered two B-class flares at the upper part of the filament. As the bright material was injected into the filament from the sites of the flares, the filament exhibited a rapid uplift accompanying the counterclockwise rotation of the filament body. From the expansion of the filament, we can see that the filament consisted of twisted magnetic field lines. The total twist of the filament is at least 5π obtained by using a time slice method. According to the morphology change during the filament eruption, it is found that the active region filament was a twisted flux rope and its unwinding motion was like a solar tornado. We also find that there was a continuous magnetic helicity injection before and during the filament eruption. It is confirmed that magnetic helicity can be transferred from the photosphere to the filament. Using the extrapolated potential fields, the average decay index of the background magnetic fields over the filament is 0.91. Consequently, these findings imply that the mechanism of solar filament eruption could be due to the kink instability and magnetic helicity accumulation.

  12. Immobilization of functional light antenna structures derived from the filamentous green bacterium Chloroflexus aurantiacus.

    PubMed

    Sridharan, Arati; Muthuswamy, Jit; Labelle, Jeffrey T; Pizziconi, Vincent B

    2008-08-05

    The integration of highly efficient, natural photosynthetic light antenna structures into engineered systems while their biophotonic capabilities are maintained has been an elusive goal in the design of biohybrid photonic devices. In this study, we report a novel technique to covalently immobilize nanoscaled bacterial light antenna structures known as chlorosomes from Chloroflexus aurantiacus on both conductive and nonconductive glass while their energy transducing functionality was maintained. Chlorosomes without their reaction centers (RCs) were covalently immobilized on 3-aminoproyltriethoxysilane (APTES) treated surfaces using a glutaraldehyde linker. AFM techniques verified that the chlorosomes maintained their native ellipsoidal ultrastructure upon immobilization. Results from absorbance and fluorescence spectral analysis (where the Stokes shift to 808/810 nm was observed upon 470 nm blue light excitation) in conjunction with confocal microscopy confirm that the functional integrity of immobilized chlorosomes was also preserved. In addition, experiments with electrochemical impedance spectroscopy (EIS) suggested that the presence of chlorosomes in the electrical double layer of the electrode enhanced the electron transfer capacity of the electrochemical cell. Further, chronoamperometric studies suggested that the reduced form of the Bchl- c pigments found within the chlorosome modulate the conduction properties of the electrochemical cell, where the oxidized form of Bchl- c pigments impeded any current transduction at a bias of 0.4 V within the electrochemical cell. The results therefore demonstrate that the intact chlorosomes can be successfully immobilized while their biophotonic transduction capabilities are preserved through the immobilization process. These findings indicate that it is feasible to design biophotonic devices incorporating fully functional light antenna structures, which may offer significant performance enhancements to current silicon

  13. Structural effects in molecular metal halides.

    PubMed

    Hargittai, Magdolna

    2009-03-17

    Metal halides are a relatively large class of inorganic compounds that participate in many industrial processes, from halogen metallurgy to the production of semiconductors. Because most metal halides are ionic crystals at ambient conditions, the term "molecular metal halides" usually refers to vapor-phase species. These gas-phase molecules have a special place in basic research because they exhibit the widest range of chemical bonding from the purely ionic to mostly covalent bonding through to weakly interacting systems. Although our focus is basic research, knowledge of the structural and thermodynamic properties of gas-phase metal halides is also important in industrial processes. In this Account, we review our most recent work on metal halide molecular structures. Our studies are based on electron diffraction and vibrational spectroscopy, and increasingly, we have augmented our experimental work with quantum chemical computations. Using both experimental and computational techniques has enabled us to determine intriguing structural effects with better accuracy than using either technique alone. We loosely group our discussion based on structural effects including "floppiness", relativistic effects, vibronic interactions, and finally, undiscovered molecules with computational thermodynamic stability. Floppiness, or serious "nonrigidity", is a typical characteristic of metal halides and makes their study challenging for both experimentalists and theoreticians. Relativistic effects are mostly responsible for the unique structure of gold and mercury halides. These molecules have shorter-than-expected bonds and often have unusual geometrical configurations. The gold monohalide and mercury dihalide dimers and the molecular-type crystal structure of HgCl(2) are examples. We also examined spin-orbit coupling and the possible effect of the 4f electrons on the structure of lanthanide trihalides. Unexpectedly, we found that the geometry of their dimers depends on the f

  14. Bacillus subtilis Bactofilins Are Essential for Flagellar Hook- and Filament Assembly and Dynamically Localize into Structures of Less than 100 nm Diameter underneath the Cell Membrane

    PubMed Central

    El Andari, Jihad; Altegoer, Florian; Bange, Gert; Graumann, Peter L.

    2015-01-01

    Bactofilins are a widely conserved protein family implicated in cell shape maintenance and in bacterial motility. We show that the bactofilins BacE and BacF from Bacillus subtilis are essential for motility. The proteins are required for the establishment of flagellar hook- and filament structures, but apparently not for the formation of basal bodies. Functional YFP fusions to BacE and to BacF localize as discrete assemblies at the B. subtilis cell membrane, and have a diameter of 60 to 70 nm. BacF assemblies are relatively static, and partially colocalize with flagellar basal bodies, while BacE assemblies are fewer per cell than those of BacF and are highly mobile. Tracking of BacE foci showed that the assemblies arrest at a single point for a few hundred milliseconds, showing that a putative interaction with flagellar structures would be transient and fast. When overexpressed or expressed in a heterologous cell system, bactofilins can form filamentous structures, and also form multimers as purified proteins. Our data reveal a propensity for bactofilins to form filaments, however, in B. subtilis cells, bactofilins assemble into defined size assemblies that show a dynamic localization pattern and play a role in flagellar assembly. PMID:26517549

  15. PARTIAL SLINGSHOT RECONNECTION BETWEEN TWO FILAMENTS

    SciTech Connect

    Jiang, Yunchun; Hong, Junchao; Yang, Jiayan; Bi, Yi; Zheng, Ruisheng; Yang, Bo; Li, Haidong; Yang, Dan

    2013-02-10

    We present a rare observation of an interaction between two filaments around AR 11358 and AR 11361 on 2011 December 3 that is strongly suggestive of the occurrence of slingshot reconnection. A small elbow-shaped active-region filament (F12) underwent a failed eruption that brought it into contact with a nearby larger, thicker filament (F34). Accompanied by the appearance of complicated internal structures below the erupting F12, its two legs separated away from each other and then connected into F34. This process led the filaments to change their connectivity to form two newly linked filaments, and one of them showed a clear inverse {gamma}-shape. However, the alteration in the filament connectivity was imperfect since F34 is discernible after the eruption. These observations can be interpreted as a partial slingshot reconnection between two filaments that had unequal axial magnetic flux.

  16. 2004 Reversible Associations in Structure & Molecular Biology

    SciTech Connect

    Edward Eisenstein Nancy Ryan Gray

    2005-03-23

    The Gordon Research Conference (GRC) on 2004 Gordon Research Conference on Reversible Associations in Structure & Molecular Biology was held at Four Points Sheraton, CA, 1/25-30/2004. The Conference was well attended with 82 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students.

  17. Colocalization properties of elementary Ca(2+) release signals with structures specific to the contractile filaments and the tubular system of intact mouse skeletal muscle fibers.

    PubMed

    Georgiev, Tihomir; Zapiec, Bolek; Förderer, Moritz; Fink, Rainer H A; Vogel, Martin

    2015-12-01

    Ca(2+) regulates several important intracellular processes. We combined second harmonic generation (SHG) and two photon excited fluorescence microscopy (2PFM) to simultaneously record the SHG signal of the myosin filaments and localized elementary Ca(2+) release signals (LCSs). We found LCSs associated with Y-shaped structures of the myosin filament pattern (YMs), so called verniers, in intact mouse skeletal muscle fibers under hypertonic treatment. Ion channels crucial for the Ca(2+) regulation are located in the tubular system, a system that is important for Ca(2+) regulation and excitation-contraction coupling. We investigated the tubular system of intact, living mouse skeletal muscle fibers using 2PFM and the fluorescent Ca(2+) indicator Fluo-4 dissolved in the external solution or the membrane dye di-8-ANEPPS. We simultaneously measured the SHG signal from the myosin filaments of the skeletal muscle fibers. We found that at least a subset of the YMs observed in SHG images are closely juxtaposed with Y-shaped structures of the transverse tubules (YTs). The distances of corresponding YMs and YTs yield values between 1.3 μm and 4.1 μm including pixel uncertainty with a mean distance of 2.52±0.10 μm (S.E.M., n=41). Additionally, we observed that some of the linear-shaped areas in the tubular system are colocalized with linear-shaped areas in the SHG images.

  18. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor.

    PubMed

    Chen, Bi; Wu, Qun; Xu, Yan

    2014-06-02

    Maotai-flavor liquor is produced by simultaneous saccharification and fermentation (SSF) process under solid state conditions, including Daqu (starter) making, stacking fermentation and alcohol fermentation stages. Filamentous fungi produce many enzymes to degrade the starch material into fermentable sugar during liquor fermentation. This study investigated the filamentous fungal community associated with liquor making process. Eight and seven different fungal species were identified by using culture-dependent and -independent method (PCR-denaturing gradient gel electrophoresis, DGGE) analyses, respectively. The traditional enumeration method showed that Daqu provided 7 fungal species for stacking fermentation. The total population of filamentous fungi increased from 3.4 × 10(3)cfu/g to 1.28 × 10(4)cfu/g in the first 3 days of stacking fermentation, and then decreased till the end. In alcohol fermentation in pits, the population continuously decreased and few fungal species survived (lower than 1 × 10(3)cfu/g) after 10 days. Therefore, stacking fermentation is an essential stage for the growth of filamentous fungi. Paecilomyces variotii, Aspergillus oryzae and Aspergillus terreus were detected by both methods, and P. variotii and A. oryzae were the predominant species. Meanwhile, P. variotii possessed the highest glucoamylase (3252 ± 526 U/g) and A. oryzae exhibited the highest α-amylase (1491 ± 324 U/g) activity among the cultivable fungal species. Furthermore, the variation of starch and reducing sugar content was consistent with the growth of P. variotii and A. oryzae in Zaopei (fermented grains) during stacking fermentation, which implied that the two filamentous fungi played an important role in producing amylase for hydrolyzing the starch.

  19. A novel protocol for molecularly imprinted polymer filaments online coupled to GC-MS for the determination of androgenic steroids in urine.

    PubMed

    Zhong, Qisheng; Hu, Yufei; Li, Gongke

    2013-12-01

    An online system that can perform dynamic microextraction, on-coating derivatization and desorption, and subsequent GC-MS analysis with a large-volume injection was developed. A derivatization cell as the conjunction of the online system was developed for the online extraction and derivatization. To evaluate the feasibility of the online system, methyltestosterone molecularly imprinted polymer filaments (MIPFs) were prepared for the selective online extraction of five androgenic steroids, namely, methyltestosterone, testosterone, epitestosterone, nandrolone, and metandienone. Under the optimized conditions, the detection limits of testosterone and epitestosterone were 0.09 and 0.12 μg/L, respectively, which were under the minimum required performance limits between 2 and 10 μg/L from the World Anti-Doping Agency. The detection limits of the other three androgenic steroids were varied from 0.04 to 0.18 μg/L. Finally, the MIPFs-GC-MS method was applied for the determination of androgenic steroids in urine, and satisfactory recovery (78.0-96.9%) and reproducibility (3.2-8.9%) were obtained. The proposed online coupling system offers an attractive alternative for hyphenation to GC instruments and could also be extended to other adsorptive materials.

  20. Molecular Dynamics Modeling of Hydrated Calcium-Silicate-Hydrate (CSH) Cement Molecular Structure

    DTIC Science & Technology

    2014-08-30

    properties of key hydrated cement constituent calcium-silicate-hydrate (CSH) at the molecular, nanometer scale level. Due to complexity, still unknown...public release; distribution is unlimited. Molecular Dynamics Modeling of Hydrated Calcium-Silicate- Hydrate (CSH) Cement Molecular Structure The views... Cement Molecular Structure Report Title Multi-scale modeling of complex material systems requires starting from fundamental building blocks to

  1. Self-Organization of Treadmilling Filaments

    NASA Astrophysics Data System (ADS)

    Doubrovinski, K.; Kruse, K.

    2007-11-01

    The cytoskeleton is an active network of polar filaments. The activity can lead to the polymerization of filaments at one end and depolymerization at the other. This phenomenon is called treadmilling and is essential for many cellular processes, in particular, the crawling of cells on a substrate. We develop a microscopic theoretical framework for describing systems of treadmilling filaments. We show that such systems can self-organize into structures observed in cell fragments, in particular, asters and moving spots.

  2. A Network of Three Types of Filaments Organizes Synaptic Vesicles for Storage, Mobilization, and Docking

    PubMed Central

    Chen, Xiaobing; Reese, Thomas S.

    2016-01-01

    Synaptic transmission between neurons requires precise management of synaptic vesicles. While individual molecular components of the presynaptic terminal are well known, exactly how the molecules are organized into a molecular machine serving the storage and mobilization of synaptic vesicles to the active zone remains unclear. Here we report three filament types associated with synaptic vesicles in glutamatergic synapses revealed by electron microscope tomography in unstimulated, dissociated rat hippocampal neurons. One filament type, likely corresponding to the SNAREpin complex, extends from the active zone membrane and surrounds docked vesicles. A second filament type contacts all vesicles throughout the active zone and pairs vesicles together. On the third filament type, vesicles attach to side branches extending from the long filament core and form vesicle clusters that are distributed throughout the vesicle cloud and along the active zone membrane. Detailed analysis of presynaptic structure reveals how each of the three filament types interacts with synaptic vesicles, providing a means to traffic reserved and recycled vesicles from the cloud of vesicles into the docking position at the active zone. SIGNIFICANCE STATEMENT The formation and release of synaptic vesicles has been extensively investigated. Explanations of the release of synaptic vesicles generally begin with the movement of vesicles from the cloud into the synaptic active zone. However, the presynaptic terminal is filled with filamentous material that would appear to limit vesicular diffusion. Here, we provide a systematic description of three filament types connecting synaptic vesicles. A picture emerges illustrating how the cooperative attachment and release of these three filament types facilitate the movement of vesicles to the active zone to become docked in preparation for release. PMID:26985032

  3. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  4. Solubilization and fractionation of paired helical filaments.

    PubMed

    González, P J; Correas, I; Avila, J

    1992-09-01

    Paired helical filaments isolated from brains of two different patients with Alzheimer's disease were extensively treated with the ionic detergent, sodium dodecyl sulphate. Filaments were solubilized at different extents, depending on the brain examined, thus suggesting the existence of two types of paired helical filaments: sodium dodecyl sulphate-soluble and insoluble filaments. In the first case, the number of structures resembling paired helical filaments greatly decreased after the detergent treatment, as observed by electron microscopy. Simultaneously, a decrease in the amount of sedimentable protein was also observed upon centrifugation of the sodium dodecyl sulfate-treated paired helical filaments. A sodium dodecyl sulphate-soluble fraction was isolated as a supernatant after low-speed centrifugation of the sodium dodecyl sulphate-treated paired helical filaments. The addition of the non-ionic detergent Nonidet-P40 to this fraction resulted in the formation of paired helical filament-like structures. When the sodium dodecyl sulphate-soluble fraction was further fractionated by high-speed centrifugation, three subfractions were observed: a supernatant, a pellet and a thin layer between these two subfractions. No paired helical filaments were observed in any of these subfractions, even after addition of Nonidet P-40. However, when they were mixed back together, the treatment with Nonidet P-40 resulted in the visualization of paired helical filament-like structures. These results suggest that at least two different components are needed for the reconstitution of paired helical filaments as determined by electron microscopy. The method described here may allow the study of the components involved in the formation of paired helical filaments and the identification of possible factors capable of blocking this process.

  5. Tunnel ionization, population trapping, filamentation and applications

    NASA Astrophysics Data System (ADS)

    Leang Chin, See; Xu, Huailiang

    2016-11-01

    The advances in femtosecond Ti-sapphire laser technology have led to the discovery of a profusion of new physics. This review starts with a brief historical account of the experimental realization of tunnel ionization, followed by high harmonic generation and the prediction of attosecond pulses. Then, the unique phenomenon of dynamic population trapping during the ionization of atoms and molecules in intense laser fields is introduced. One of the consequences of population trapping in the highly excited states is the neutral dissociation into simple molecular fragments which fluoresce. Such fluorescence could be amplified in femtosecond laser filamentation in gases. The experimental observations of filament-induced fluorescence and lasing in the atmosphere and combustion flames are given. Excitation of molecular rotational wave packets (molecular alignment) and their relaxation and revival in a gas filament are described. Furthermore, filament-induced condensation and precipitation inside a cloud chamber is explained. Lastly, a summary and future outlook is given.

  6. Femtosecond Laser Filamentation for Atmospheric Sensing

    PubMed Central

    Xu, Huai Liang; Chin, See Leang

    2011-01-01

    Powerful femtosecond laser pulses propagating in transparent materials result in the formation of self-guided structures called filaments. Such filamentation in air can be controlled to occur at a distance as far as a few kilometers, making it ideally suited for remote sensing of pollutants in the atmosphere. On the one hand, the high intensity inside the filaments can induce the fragmentation of all matters in the path of filaments, resulting in the emission of characteristic fluorescence spectra (fingerprints) from the excited fragments, which can be used for the identification of various substances including chemical and biological species. On the other hand, along with the femtosecond laser filamentation, white-light supercontinuum emission in the infrared to UV range is generated, which can be used as an ideal light source for absorption Lidar. In this paper, we present an overview of recent progress concerning remote sensing of the atmosphere using femtosecond laser filamentation. PMID:22346566

  7. Effects of solution crowding on actin polymerization reveal the energetic basis for nucleotide-dependent filament stability

    PubMed Central

    Frederick, Kendra B.; Sept, David; De La Cruz, Enrique M.

    2008-01-01

    Actin polymerization is a fundamental cellular process involved in cell structure maintenance, force generation, and motility. Phosphate release from filament subunits following ATP hydrolysis destabilizes the filament lattice and increases the critical concentration (Cc) for assembly. The structural differences between ATP- and ADP-actin are still debated, as well as the energetic factors that underlie nucleotide-dependent filament stability, particularly under crowded intracellular conditions. Here, we investigate the effect of crowding agents on ATP- and ADP-actin polymerization, and find that ATP-actin polymerization is largely unaffected by solution crowding, while crowding agents lower the Cc of ADP-actin in a concentration-dependent manner. The stabilities of ATP- and ADP-actin filaments are comparable in the presence of physiological amounts (~30% w/v) and types (sorbitol) of low molecular weight crowding agents. Crowding agents act to stabilize ADP-F-actin by slowing subunit dissociation. These observations suggest that nucleotide hydrolysis and phosphate release per se do not introduce intrinsic differences in the in vivo filament stability. Rather, the preferential disassembly of ADP-actin filaments in cells is driven through interactions with regulatory proteins. Interpretation of the experimental data according to osmotic stress theory implicates water as an allosteric regulator of actin activity and hydration as the molecular basis for nucleotide-dependent filament stability. PMID:18374941

  8. Scrape-off Layer Current Model for Filament Structure Observed during Edge Localized Modes (ELMs) in the DIII-D Tokamak

    SciTech Connect

    Takahashi, Hironori; Fredrickson, E. D.; Schaffer, M. J.

    2008-04-15

    The plasma in tokamaks often exhibits a relaxation oscillation called the edge localized mode (ELM), which is generally attributed to MHD instability driven by strong gradients at the plasma boundary. It is shown here that field-aligned currents flowing just outside the boundary may also play a role in the ELM process. The poloidal perturbation magnetic field during ELMs in the DIII–D tokamak calculated from measured currents can reproduce prominent observed features, including a narrow magnetic structure at the outboard midplane similar to filaments observed earlier in DIII–D and NSTX.

  9. Scrape-Off-Layer Current Model for Filament Structure Observed during Edge-Localized Modes in the DIII-D Tokamak

    SciTech Connect

    Takahashi, Hironori; Fredrickson, E. D.; Schaffer, M. J.

    2008-05-23

    The plasma in tokamaks often exhibits a relaxation oscillation called the edge-localized mode (ELM), which is generally attributed to MHD instability driven by strong gradients at the plasma boundary. It is shown here that field-aligned currents flowing just outside the boundary may also play a role in the ELM process. The poloidal perturbation magnetic field during ELMs in the DIII-D tokamak calculated from measured currents can reproduce prominent observed features, including a narrow magnetic structure at the outboard midplane similar to filaments observed earlier in DIII-D and NSTX.

  10. Filamentation in Laser Wakefields

    NASA Astrophysics Data System (ADS)

    Los, Eva; Trines, Raoul; Silva, Luis; Bingham, Robert

    2016-10-01

    Laser filamentation instability is observed in plasma wakefields with sub-critical densities, and in high density inertial fusion plasmas. This leads to non-uniform acceleration or compression respectively. Here, we present simulation results on laser filamentation in plasma wakefields. The 2-D simulations are carried out using the particle-in-cell code Osiris. The filament intensity was found to increase exponentially before saturating. The maximum amplitude to which the highest intensity filament grew for a specific set of parameters was also recorded, and plotted against a corresponding parameter value. Clear, positively correlated linear trends were established between plasma density, transverse wavenumber k, laser pulse amplitude and maximum filament amplitude. Plasma density and maximum filament amplitude also showed a positive correlation, which saturated after a certain plasma density. Pulse duration and interaction length did not affect either filament intensity or transverse k value in a predictable manner. There was no discernible trend between pulse amplitude and filament width.

  11. Filament Eruption Onset

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2011-01-01

    We have been investigating filament eruptions in recent years. Use filament eruptions as markers of the coronal field evolution. Data from SoHO, Yohkoh, TRACE, Hinode, and other sources. We and others have observed: (1)Filaments often show slow rise, followed by fast rise, (2) Brightenings, preflares, microflares during slow rise (3) Magnetic evolution in hours prior to eruption onset. We investigated What do Hinode and SDO show for filament eruptions?

  12. Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy

    PubMed Central

    Valades Cruz, Cesar Augusto; Shaban, Haitham Ahmed; Kress, Alla; Bertaux, Nicolas; Monneret, Serge; Mavrakis, Manos; Savatier, Julien; Brasselet, Sophie

    2016-01-01

    Essential cellular functions as diverse as genome maintenance and tissue morphogenesis rely on the dynamic organization of filamentous assemblies. For example, the precise structural organization of DNA filaments has profound consequences on all DNA-mediated processes including gene expression, whereas control over the precise spatial arrangement of cytoskeletal protein filaments is key for mechanical force generation driving animal tissue morphogenesis. Polarized fluorescence is currently used to extract structural organization of fluorescently labeled biological filaments by determining the orientation of fluorescent labels, however with a strong drawback: polarized fluorescence imaging is indeed spatially limited by optical diffraction, and is thus unable to discriminate between the intrinsic orientational mobility of the fluorophore labels and the real structural disorder of the labeled biomolecules. Here, we demonstrate that quantitative single-molecule polarized detection in biological filament assemblies allows not only to correct for the rotational flexibility of the label but also to image orientational order of filaments at the nanoscale using superresolution capabilities. The method is based on polarized direct stochastic optical reconstruction microscopy, using dedicated optical scheme and image analysis to determine both molecular localization and orientation with high precision. We apply this method to double-stranded DNA in vitro and microtubules and actin stress fibers in whole cells. PMID:26831082

  13. Correlation between supercoiling and conformational motions of the bacterial flagellar filament.

    PubMed

    Stadler, Andreas M; Unruh, Tobias; Namba, Keiichi; Samatey, Fadel; Zaccai, Giuseppe

    2013-11-05

    The bacterial flagellar filament is a very large macromolecular assembly of a single protein, flagellin. Various supercoiled states of the filament exist, which are formed by two structurally different conformations of flagellin in different ratios. We investigated the correlation between supercoiling of the protofilaments and molecular dynamics in the flagellar filament using quasielastic and elastic incoherent neutron scattering on the picosecond and nanosecond timescales. Thermal fluctuations in the straight L- and R-type filaments were measured and compared to the resting state of the wild-type filament. Amplitudes of motion on the picosecond timescale were found to be similar in the different conformational states. Mean-square displacements and protein resilience on the 0.1 ns timescale demonstrate that the L-type state is more flexible and less resilient than the R-type, whereas the wild-type state lies in between. Our results provide strong support that supercoiling of the protofilaments in the flagellar filament is determined by the strength of molecular forces in and between the flagellin subunits.

  14. Filamentation in tokamaks

    SciTech Connect

    Cardozo, N.J.; Barth, C.J.; Chu, C.C.; Lok, J.; Montvai, A.; Oomens, A.A.; Peters, M.; Pijper, F.J.; de Rover, M.; Schueller, F.C.; Steenbakkers, M.F.; RTP team

    1995-09-01

    The relevance of a nest of toroidal flux surfaces as a paradigm of the magnetic topology of a tokamak plasma is challenged. High resolution Thomson scattering measurements of electron temperature and density in RTP show several hot filaments in the plasma center and sharp gradients near the sawtooth inversion radius and structures outside the sawtooth region under central ECH. In ohmic plasmas, too, the pressure and temperature profiles show significant bumps. These measurements give evidence of a complex magnetic topology. Transport in a medium with spatially strongly varying diffusivity is considered. It is shown that macroscopic transport is determined by the microscopic structure: a transport theory must predict this structure and the diffusivity in the insulating regions, while the {open_quote}turbulent{close_quote} diffusivity is irrelevant. A numerical approach to equilibria with broken surfaces is presented. {copyright} {ital 1995 American Institute of Physics.}

  15. Algorithmic dimensionality reduction for molecular structure analysis.

    PubMed

    Brown, W Michael; Martin, Shawn; Pollock, Sara N; Coutsias, Evangelos A; Watson, Jean-Paul

    2008-08-14

    Dimensionality reduction approaches have been used to exploit the redundancy in a Cartesian coordinate representation of molecular motion by producing low-dimensional representations of molecular motion. This has been used to help visualize complex energy landscapes, to extend the time scales of simulation, and to improve the efficiency of optimization. Until recently, linear approaches for dimensionality reduction have been employed. Here, we investigate the efficacy of several automated algorithms for nonlinear dimensionality reduction for representation of trans, trans-1,2,4-trifluorocyclo-octane conformation--a molecule whose structure can be described on a 2-manifold in a Cartesian coordinate phase space. We describe an efficient approach for a deterministic enumeration of ring conformations. We demonstrate a drastic improvement in dimensionality reduction with the use of nonlinear methods. We discuss the use of dimensionality reduction algorithms for estimating intrinsic dimensionality and the relationship to the Whitney embedding theorem. Additionally, we investigate the influence of the choice of high-dimensional encoding on the reduction. We show for the case studied that, in terms of reconstruction error root mean square deviation, Cartesian coordinate representations and encodings based on interatom distances provide better performance than encodings based on a dihedral angle representation.

  16. Molecular structure of the collagen triple helix.

    PubMed

    Brodsky, Barbara; Persikov, Anton V

    2005-01-01

    The molecular conformation of the collagen triple helix confers strict amino acid sequence constraints, requiring a (Gly-X-Y)(n) repeating pattern and a high content of imino acids. The increasing family of collagens and proteins with collagenous domains shows the collagen triple helix to be a basic motif adaptable to a range of proteins and functions. Its rodlike domain has the potential for various modes of self-association and the capacity to bind receptors, other proteins, GAGs, and nucleic acids. High-resolution crystal structures obtained for collagen model peptides confirm the supercoiled triple helix conformation, and provide new information on hydrogen bonding patterns, hydration, sidechain interactions, and ligand binding. For several peptides, the helix twist was found to be sequence dependent, and such variation in helix twist may serve as recognition features or to orient the triple helix for binding. Mutations in the collagen triple-helix domain lead to a variety of human disorders. The most common mutations are single-base substitutions that lead to the replacement of one Gly residue, breaking the Gly-X-Y repeating pattern. A single Gly substitution destabilizes the triple helix through a local disruption in hydrogen bonding and produces a discontinuity in the register of the helix. Molecular information about the collagen triple helix and the effect of mutations will lead to a better understanding of function and pathology.

  17. Structure and Dynamics of Cellulose Molecular Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Howard; Zhang, Xin; Tyagi, Madhusudan; Mao, Yimin; Briber, Robert

    Molecular dissolution of microcrystalline cellulose has been achieved through mixing with ionic liquid 1-Ethyl-3-methylimidazolium acetate (EMIMAc), and organic solvent dimethylformamide (DMF). The mechanism of cellulose dissolution in tertiary mixtures has been investigated by combining quasielastic and small angle neutron scattering (QENS and SANS). As SANS data show that cellulose chains take Gaussian-like conformations in homogenous solutions, which exhibit characteristics of having an upper critical solution temperature, the dynamic signals predominantly from EMIMAc molecules indicate strong association with cellulose in the dissolution state. The mean square displacement quantities support the observation of the stoichiometric 3:1 EMIMAc to cellulose unit molar ratio, which is a necessary criterion for the molecular dissolution of cellulose. Analyses of dynamics structure factors reveal the temperature dependence of a slow and a fast process for EMIMAc's bound to cellulose and in DMF, respectively, as well as a very fast process due possibly to the rotational motion of methyl groups, which persisted to near the absolute zero.

  18. Using cell structures to develop functional nanomaterials and nanostructures--case studies of actin filaments and microtubules.

    PubMed

    Wu, Kevin Chia-Wen; Yang, Chung-Yao; Cheng, Chao-Min

    2014-04-25

    This article is based on the continued development of biologically relevant elements (i.e., actin filaments and microtubules in living cells) as building blocks to create functional nanomaterials and nanostructures that can then be used to manufacture nature-inspired small-scale devices or systems. Here, we summarize current progress in the field and focus specifically on processes characterized by (1) robustness and ease of use, (2) inexpensiveness, and (3) potential expandability to mass production. This article, we believe, will provide scientists and engineers with a more comprehensive understanding of how to mine biological materials and natural design features to construct functional materials and devices.

  19. Solid friction between soft filaments

    DOE PAGES

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; ...

    2015-03-02

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag,more » can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. In conclusion, our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials.« less

  20. Solid friction between soft filaments

    PubMed Central

    Ward, Andrew; Hilitski, Feodor; Schwenger, Walter; Welch, David; Lau, A.W. C.; Vitelli, Vincenzo; Mahadevan, L.; Dogic, Zvonimir

    2015-01-01

    Any macroscopic deformation of a filamentous bundle is necessarily accompanied by local sliding and/or stretching of the constituent filaments1,2. Yet the nature of the sliding friction between two aligned filaments interacting through multiple contacts remains largely unexplored. Here, by directly measuring the sliding forces between two bundled F-actin filaments, we show that these frictional forces are unexpectedly large, scale logarithmically with sliding velocity as in solid-like friction, and exhibit complex dependence on the filaments’ overlap length. We also show that a reduction of the frictional force by orders of magnitude, associated with a transition from solid-like friction to Stokes’s drag, can be induced by coating F-actin with polymeric brushes. Furthermore, we observe similar transitions in filamentous microtubules and bacterial flagella. Our findings demonstrate how altering a filament’s elasticity, structure and interactions can be used to engineer interfilament friction and thus tune the properties of fibrous composite materials. PMID:25730393

  1. Structural changes in the myosin filament and cross-bridges during active force development in single intact frog muscle fibres: stiffness and X-ray diffraction measurements.

    PubMed

    Brunello, E; Bianco, P; Piazzesi, G; Linari, M; Reconditi, M; Panine, P; Narayanan, T; Helsby, W I; Irving, M; Lombardi, V

    2006-12-15

    Structural and mechanical changes occurring in the myosin filament and myosin head domains during the development of the isometric tetanus have been investigated in intact frog muscle fibres at 4 degrees C and 2.15 microm sarcomere length, using sarcomere level mechanics and X-ray diffraction at beamline ID2 of the European Synchrotron Radiation Facility (Grenoble, France). The time courses of changes in both the M3 and M6 myosin-based reflections were recorded with 5 ms frames using the gas-filled RAPID detector (MicroGap Technology). Following the end of the latent period (11 ms after the start of stimulation), force increases to the tetanus plateau value (T(0)) with a half-time of 40 ms, and the spacings of the M3 and M6 reflections (S(M3) and S(M6)) increase by 1.5% from their resting values, with time courses that lead that of force by approximately 10 and approximately 20 ms, respectively. These temporal relations are maintained when the increase of force is delayed by approximately 10 ms by imposing, from 5 ms after the first stimulus, 50 nm (half-sarcomere)(-1) shortening at the velocity (V(0)) that maintains zero force. Shortening at V(0) transiently reduces S(M3) following the latent period and delays the subsequent increase in S(M3), but only delays the S(M6) increase without a transient decrease. Shortening at V(0) imposed at the tetanus plateau causes an abrupt reduction of the intensity of the M3 reflection (I(M3)), whereas the intensity of the M6 reflection (I(M6)) is only slightly reduced. The changes in half-sarcomere stiffness indicate that the isometric force at each time point is proportional to the number of myosin heads bound to actin. The different sensitivities of the intensity and spacing of the M3 and M6 reflections to the mechanical responses support the view that the M3 reflection in active muscle originates mainly from the myosin heads attached to the actin filament and the M6 reflection originates mainly from a fixed structure in the

  2. Community structure of free-floating filamentous cyanobacterial mats from the Wonder Lake geothermal springs in the Philippines.

    PubMed

    Lacap, Donnabella C; Smith, Gavin J D; Warren-Rhodes, Kimberley; Pointing, Stephen B

    2005-07-01

    Cyanobacterial mats were characterized from pools of 45-60 degrees C in near-neutral pH, low-sulphide geothermal springs in the Philippines. Mat structure did not vary with temperature. All mats possessed highly ordered layers of airspaces at both the macroscopic and microscopic level, and these appear to be an adaptation to a free-floating growth habit. Upper mat layers supported biomass with elevated carotenoid:chlorophyll a ratios and an as yet uncharacterized waxy layer on the dorsal surface. Microscopic examination revealed mats comprised a single Fischerella morphotype, with abundant heterocysts throughout mats at all temperatures. Molecular analysis of mat community structure only partly matched morphological identification. All samples supported greater 16S rDNA-defined diversity than morphology suggested, with a progressive loss in the number of genotypes with increasing temperature. Fischerella-like sequences were recovered from mats occurring at all temperatures, but some mats also yielded Oscillatoria-like sequences, although corresponding phenotypes were not observed. Phylogenetic analysis revealed that Fischerella-like sequences were most closely affiliated with Fischerella major and the Oscillatoria-like sequences with Oscillatoria amphigranulata.

  3. STAR FORMATION IN THE TAURUS FILAMENT L 1495: FROM DENSE CORES TO STARS

    SciTech Connect

    Schmalzl, Markus; Kainulainen, Jouni; Henning, Thomas; Launhardt, Ralf; Quanz, Sascha P.; Alves, Joao; Goodman, Alyssa A.; Pineda, Jaime E.; Roman-Zuniga, Carlos G.

    2010-12-10

    We present a study of dense structures in the L 1495 filament in the Taurus Molecular Cloud and examine its star-forming properties. In particular, we construct a dust extinction map of the filament using deep near-infrared observations, exposing its small-scale structure in unprecedented detail. The filament shows highly fragmented substructures and a high mass-per-length value of M{sub line} = 17 M{sub sun} pc{sup -1}, reflecting star-forming potential in all parts of it. However, a part of the filament, namely B 211, is remarkably devoid of young stellar objects. We argue that in this region the initial filament collapse and fragmentation is still taking place and star formation is yet to occur. In the star-forming part of the filament, we identify 39 cores with masses from 0.4 to 10 M{sub sun} and preferred separations in agreement with the local Jeans length. Most of these cores exceed the Bonnor-Ebert critical mass, and are therefore likely to collapse and form stars. The dense core mass function follows a power law with exponent {Gamma} = 1.2 {+-} 0.2, a form commonly observed in star-forming regions.

  4. A “Mechanistic” Explanation of the Multiple Helical Forms Adopted by Bacterial Flagellar Filaments

    PubMed Central

    Calladine, C.R.; Luisi, B.F.; Pratap, J.V.

    2013-01-01

    The corkscrew-like flagellar filaments emerging from the surface of bacteria such as Salmonella typhimurium propel the cells toward nutrient and away from repellents. This kind of motility depends upon the ability of the flagellar filaments to adopt a range of distinct helical forms. A filament is typically constructed from ~ 30,000 identical flagellin molecules, which self-assemble into a tubular structure containing 11 near-longitudinal protofilaments. A “mechanical” model, in which the flagellin building block has the capacity to switch between two principal interfacial states, predicts that the filament can assemble into a “canonical” family of 12 distinct helical forms, each having unique curvature and twist: these include two “extreme” straight forms having left- and right-handed twists, respectively, and 10 intermediate helical forms. Measured shapes of the filaments correspond well with predictions of the model. This report is concerned with two unanswered questions. First, what properties of the flagellin determine which of the 12 discrete forms is preferred? Second, how does the interfacial “switch” work, at a molecular level? Our proposed solution of these problems is based mainly on a detailed examination of differences between the available electron cryo-microscopy structures of the straight L and R filaments, respectively. PMID:23274110

  5. Speculations on the molecular structure of eumelanin.

    PubMed

    Swift, J A

    2009-04-01

    Eumelanin is the polymeric black pigment commonly found in hair and skin. Its chemical intractability, to all but vigorous oxidizing agents, has hindered satisfactory understanding of its molecular structure. It is well-established that the immediate precursor to polymerization, indole-5,6-quinone (IQ), is biosynthesized from the amino acid tyrosine. Current views are that the polymer consists of single bond connections between random indole and degraded indole units. In this paper, an alternative chemical scheme for the polymerization of IQ is proposed based upon the original suggestion by Horner in 1949 that a Diels-Alder (D-A) reaction might be involved. The proposed basic chemical scheme for eumelanin formation is that D-A addition occurs specifically between the 2- and 3-positions of one IQ molecule and the 7- and 4- positions respectively of a second IQ molecule, that the ensuing diketo bridge is oxidized to carboxyl groups and that, by decarboxylation and aromatization, a fused indole dimer is produced. It is envisaged that, by further D-A addition of more IQ molecules, oligomers of greater molecular mass are produced. Calculations based on published bond lengths and angles for the indole nucleus show that oligomeric units containing a total of up to 11 fused indoles could be packed into a flat circular disc of 20 A diameter. The discs of the extensively conjugated polymer are envisaged to be stacked above each other by pi-pi interaction and with a spacing of 3.4 A to produce cylindrical units, the mass density of which is calculated to be 1.54 gm cm(-3); approximating with actual physical measurements. The size and shape of the predicted cylinders are in concordance with those observed in atomic force microscope investigations of eumelanin proto-particles. The model is also in agreement with published experimental data that 2/3rds of the carbon dioxide liberated during eumelanin formation derives from positions 5- and 6- of the IQ molecule.

  6. METHOD OF MAKING TUNGSTEN FILAMENTS

    DOEpatents

    Frazer, J.W.

    1962-12-18

    A method of making tungsten filaments is described in which the tungsten is completely free of isotope impurities in the range of masses 234 to 245 for use in mass spectrometers. The filament comprises a tantalum core generally less than 1 mil in diameter having a coating of potassium-free tantalum-diffused tungsten molecularly bonded thereto. In the preferred process of manufacture a short, thin tantalum filament is first mounted between terminal posts mounted in insulated relation through a backing plate. The tungsten is most conveniently vapor plated onto the tantalum by a tungsten carbonyl vapor decomposition method having a critical step because of the tendency of the tantalum to volatilize at the temperature of operntion of the filament. The preferred recipe comprises volatilizing tantalum by resistance henting until the current drops by about 40%, cutting the voltage back to build up the tungsten, and then gradually building the temperature back up to balance the rate of tungsten deposition with the rate of tantalum volatilization. (AEC)

  7. Thermal and Chemical Evolution of Collapsing Filaments

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2013-01-15

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z ≈ 0.1Z filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10-3Z filaments, the collapse proceeds much more slowly. This is due mostly to the lower initial temperatures, which leads to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbusting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occur. We find that we achieve similar accretion rates as NGC 5253, but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  8. Molecular structures and intramolecular dynamics of pentahalides

    NASA Astrophysics Data System (ADS)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  9. A Statistical Study of Solar Filament Eruptions

    NASA Astrophysics Data System (ADS)

    Schanche, Nicole; Aggarwal, Ashna; Reeves, Kathy; Kempton, Dustin James; Angryk, Rafal

    2016-05-01

    Solar filaments are cool, dark channels of partially-ionized plasma that lie above the chromosphere. Their structure follows the neutral line between local regions of opposite magnetic polarity. Previous research (e.g. Schmieder et al. 2013, McCauley et al. 2015) has shown a positive correlation (70-80%) between the occurrence of filament eruptions and coronal mass ejections (CME’s). In this study, we attempt to use properties of the filament in order to predict whether or not a given filament will erupt. This prediction would help to better predict the occurrence of an oncoming CME. To track the evolution of a filament over time, a spatio-temporal algorithm that groups separate filament instances from the Heliophysics Event Knowledgebase (HEK) into filament tracks was developed. Filament features from the HEK metadata, such as length, chirality, and tilt are then combined with other physical features, such as the overlying decay index for two sets of filaments tracks - those that erupt and those that remain bound. Using statistical methods such as the Kolmogrov-Smirnov test and a Random Forest Classifier, we determine the effectiveness of the combined features in prediction. We conclude that there is significant overlap between the properties of filaments that erupt and those that do not, leading to predictions only ~5-10% above chance. However, the changes in features, such as a change in the filament's length over time, were determined to have the highest predictive power. We discuss the possible physical connections with the change in these features."This project has been supported by funding from the Division of Advanced Cyberinfrastructure within the Directorate for Computer and Information Science and Engineering, the Division of Astronomical Sciences within the Directorate for Mathematical and Physical Sciences, and the Division of Atmospheric and Geospace Sciences within the Directorate for Geosciences, under NSF award #1443061.”

  10. The Determination of Molecular Structure from Rotational Spectra

    DOE R&D Accomplishments Database

    Laurie, V. W.; Herschbach, D. R.

    1962-07-01

    An analysis is presented concerning the average molecular configuration variations and their effects on molecular structure determinations. It is noted that the isotopic dependence of the zero-point is often primarily governed by the isotopic variation of the average molecular configuration. (J.R.D.)

  11. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera

    NASA Astrophysics Data System (ADS)

    Bassen, David M.; Hou, Yubo; Bowser, Samuel S.; Banavali, Nilesh K.

    2016-08-01

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure.

  12. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera

    PubMed Central

    Bassen, David M.; Hou, Yubo; Bowser, Samuel S.; Banavali, Nilesh K.

    2016-01-01

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure. PMID:27539392

  13. Maintenance of electrostatic stabilization in altered tubulin lateral contacts may facilitate formation of helical filaments in foraminifera.

    PubMed

    Bassen, David M; Hou, Yubo; Bowser, Samuel S; Banavali, Nilesh K

    2016-08-19

    Microtubules in foraminiferan protists (forams) can convert into helical filament structures, in which longitudinal intraprotofilament interactions between tubulin heterodimers are thought to be lost, while lateral contacts across protofilaments are still maintained. The coarse geometric features of helical filaments are known through low-resolution negative stain electron microscopy (EM). In this study, geometric restraints derived from these experimental data were used to generate an average atomic-scale helical filament model, which anticipated a modest reorientation in the lateral tubulin heterodimer interface. Restrained molecular dynamics (MD) simulations of the nearest neighbor interactions combined with a Genalized Born implicit solvent model were used to assess the lateral, longitudinal, and seam contacts in 13-3 microtubules and the reoriented lateral contacts in the helical filament model. This electrostatic analysis suggests that the change in the lateral interface in the helical filament does not greatly diminish the lateral electrostatic interaction. After longitudinal dissociation, the 13-3 seam interaction is much weaker than the reoriented lateral interface in the helical filament model, providing a plausible atomic-detail explanation for seam-to-lateral contact transition that enables the transition to a helical filament structure.

  14. Large-Scale Patterns of Filament Channels and Filaments

    NASA Astrophysics Data System (ADS)

    Mackay, Duncan

    2016-07-01

    In this review the properties and large-scale patterns of filament channels and filaments will be considered. Initially, the global formation locations of filament channels and filaments are discussed, along with their hemispheric pattern. Next, observations of the formation of filament channels and filaments are described where two opposing views are considered. Finally, the wide range of models that have been constructed to consider the formation of filament channels and filaments over long time-scales are described, along with the origin of the hemispheric pattern of filaments.

  15. Enigmatic reticulated filaments in subsurface granite.

    PubMed

    Miller, A Z; Hernández-Mariné, M; Jurado, V; Dionísio, A; Barquinha, P; Fortunato, E; Afonso, M J; Chaminé, H I; Saiz-Jimenez, C

    2012-12-01

    In the last few years, geomicrobiologists have focused their researches on the nature and origin of enigmatic reticulated filaments reported in modern and fossil samples from limestone caves and basalt lava tubes. Researchers have posed questions on these filaments concerning their nature, origin, chemistry, morphology, mode of formation and growth. A tentative microbial origin has been elusive since these filaments are found as hollow tubular sheaths and could not be affiliated to any known microorganism. We describe the presence of similar structures in a 16th century granite tunnel in Porto, Northwest Portugal. The reticulated filaments we identify exhibit fine geometry surface ornamentation formed by cross-linked Mn-rich nanofibres, surrounded by a large amount of extracellular polymeric substances. Within these Mn-rich filaments we report for the first time the occurrence of microbial cells.

  16. Molecular cloning of chicken aggrecan. Structural analyses.

    PubMed Central

    Chandrasekaran, L; Tanzer, M L

    1992-01-01

    The large, aggregating chondroitin sulphate proteoglycan of cartilage, aggrecan, has served as a generic model of proteoglycan structure. Molecular cloning of aggrecans has further defined their amino acid sequences and domain structures. In this study, we have obtained the complete coding sequence of chicken sternal cartilage aggrecan by a combination of cDNA and genomic DNA sequencing. The composite sequence is 6117 bp in length, encoding 1951 amino acids. Comparison of chicken aggrecan protein primary structure with rat, human and bovine aggrecans has disclosed both similarities and differences. The domains which are most highly conserved at 70-80% identity are the N-terminal domains G1 and G2 and the C-terminal domain G3. The chondroitin sulphate domain of chicken aggrecan is smaller than that of rat and human aggrecans and has very distinctive repeat sequences. It has two separate sections, one comprising 12 consecutive Ser-Gly-Glu repeats of 20 amino acids each, adjacent to the other which has 23 discontinuous Ser-Gly-Glu repeats of 10 amino acids each; this latter region, N-terminal to the former one, appears to be unique to chicken aggrecan. The two regions contain a total of 94 potential chondroitin sulphate attachment sites. Genomic comparison shows that, although chicken exons 11-14 are identical in size to the rat and human exons, chicken exon 10 is the smallest of the three species. This is also reflected in the size of its chondroitin sulphate coding region and in the total number of Ser-Gly pairs. The putative keratan sulphate domain shows 31-45% identity with the other species and lacks the repetitive sequences seen in the others. In summary, while the linear arrangement of specific domains of chicken aggrecan is identical to that in the aggrecans of other species, and while there is considerable identity of three separate domains, chicken aggrecan demonstrates unique features, notably in its chondroitin sulphate domain and its keratan sulphate

  17. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle

    PubMed Central

    Zhang, Xuemeng; Kampourakis, Thomas; Yan, Ziqian; Sevrieva, Ivanka; Irving, Malcolm; Sun, Yin-Biao

    2017-01-01

    The Frank-Starling relation is a fundamental auto-regulatory property of the heart that ensures the volume of blood ejected in each heartbeat is matched to the extent of venous filling. At the cellular level, heart muscle cells generate higher force when stretched, but despite intense efforts the underlying molecular mechanism remains unknown. We applied a fluorescence-based method, which reports structural changes separately in the thick and thin filaments of rat cardiac muscle, to elucidate that mechanism. The distinct structural changes of troponin C in the thin filaments and myosin regulatory light chain in the thick filaments allowed us to identify two aspects of the Frank-Starling relation. Our results show that the enhanced force observed when heart muscle cells are maximally activated by calcium is due to a change in thick filament structure, but the increase in calcium sensitivity at lower calcium levels is due to a change in thin filament structure. DOI: http://dx.doi.org/10.7554/eLife.24081.001 PMID:28229860

  18. Structure of the mitochondrial creatine kinase octamer: high-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions

    PubMed Central

    1991-01-01

    The combination of high-resolution tantalum/tungsten (Ta/W) shadowing at very low specimen temperature (-250 degrees C) under ultrahigh vacuum (less than 2 x 10(-9) mbar) with circular harmonic image averaging revealed details on the surface structure of mitochondrial creatine kinase (Mi-CK) molecules with a resolution less than 2.5 nm. Mi-CK octamers exhibit a cross-like surface depression dividing the square shaped projection of 10 x 10 nm into four equally sized subdomains, which correspond to the four dimers forming the octameric Mi-CK molecule. By a combination of positive staining (with uranyl acetate) and heavy metal shadowing, internal structures as well as the surface relief of Mi-CK were visualized at the same time at high resolution. Computational image analysis revealed only a single projection class of molecules, but the ability of Mi-CK to form linear filaments, as well as geometrical considerations concerning the formation of octamers by four equal, asymmetric dimers, suggest the existence of at least two distinct faces on the molecule. By image processing of Mi-CK filaments a side view of the octamer differing from the top-bottom projections of single molecules became evident showing a funnel-like access each form the top and bottom of the octamer connected by a central channel. The general structure of the Mi-CK octamer described here is relevant to the localization of the molecule at the inner-outer mitochondrial contact sites and to the function of Mi-CK as an "energy channeling" molecule. PMID:1702444

  19. Dynamics of heteromolecular filament formation

    NASA Astrophysics Data System (ADS)

    Dear, Alexander J.; Michaels, Thomas C. T.; Knowles, Tuomas P. J.

    2016-11-01

    The self-assembly of molecular building blocks into linear filaments is a common form of self-organization in nature and underlies the formation of supra-molecular polymers in a variety of contexts, including in both functional and aberrant biology. To date, attention has focused mainly on homomolecular assembly phenomena; however, it has recently become apparent that heteromolecular assemblies can be common, and, for instance, pathological protein filaments such as amyloid aggregates form in vivo in environments supporting copolymerization. Here, we present a general kinetic scheme for heteromolecular filament formation and derive closed-form analytical expressions that describe the dynamics of such systems. Our results reveal the existence of a demixing transition time controlled by the relative rates of depletion of the different aggregating species, after which predominantly homomolecular polymers are formed even when the initial solution is heteromolecular. Furthermore, these results may be applied to the analysis of experimental kinetic data on the aggregation of mixtures of proteins, to determine which fundamental reaction steps occur between unlike proteins, and to provide accurate estimates of their rate constants.

  20. Spatial distribution of filament elasticity determines the migratory behaviors of a cell

    PubMed Central

    Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer

    2016-01-01

    ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488

  1. Differential assembly of alpha- and gamma-filagenins into thick filaments in Caenorhabditis elegans

    NASA Technical Reports Server (NTRS)

    Liu, F.; Ortiz, I.; Hutagalung, A.; Bauer, C. C.; Cook, R. G.; Epstein, H. F.

    2000-01-01

    Muscle thick filaments are highly organized supramolecular assemblies of myosin and associated proteins with lengths, diameters and flexural rigidities characteristic of their source. The cores of body wall muscle thick filaments of the nematode Caenorhabditis elegans are tubular structures of paramyosin sub-filaments coupled by filagenins and have been proposed to serve as templates for the assembly of native thick filaments. We have characterized alpha- and gamma-filagenins, two novel proteins of the cores with calculated molecular masses of 30,043 and 19,601 and isoelectric points of 10.52 and 11.49, respectively. Western blot and immunoelectron microscopy using affinity-purified antibodies confirmed that the two proteins are core components. Immunoelectron microscopy of the cores revealed that they assemble with different periodicities. Immunofluorescence microscopy showed that alpha-filagenin is localized in the medial regions of the A-bands of body wall muscle cells whereas gamma-filagenin is localized in the flanking regions, and that alpha-filagenin is expressed in 1.5-twofold embryos while gamma-filagenin becomes detectable only in late vermiform embryos. The expression of both proteins continues throughout later stages of development. C. elegans body wall muscle thick filaments of these developmental stages have distinct lengths. Our results suggest that the differential assembly of alpha- and gamma-filagenins into thick filaments of distinct lengths may be developmentally regulated.

  2. The dynamics of filament assembly define cytoskeletal network morphology

    PubMed Central

    Foffano, Giulia; Levernier, Nicolas; Lenz, Martin

    2016-01-01

    The actin cytoskeleton is a key component in the machinery of eukaryotic cells, and it self-assembles out of equilibrium into a wide variety of biologically crucial structures. Although the molecular mechanisms involved are well characterized, the physical principles governing the spatial arrangement of actin filaments are not understood. Here we propose that the dynamics of actin network assembly from growing filaments results from a competition between diffusion, bundling and steric hindrance, and is responsible for the range of observed morphologies. Our model and simulations thus predict an abrupt dynamical transition between homogeneous and strongly bundled networks as a function of the actin polymerization rate. This suggests that cells may effect dramatic changes to their internal architecture through minute modifications of their nonequilibrium dynamics. Our results are consistent with available experimental data. PMID:28000681

  3. The dynamics of filament assembly define cytoskeletal network morphology

    NASA Astrophysics Data System (ADS)

    Foffano, Giulia; Levernier, Nicolas; Lenz, Martin

    2016-12-01

    The actin cytoskeleton is a key component in the machinery of eukaryotic cells, and it self-assembles out of equilibrium into a wide variety of biologically crucial structures. Although the molecular mechanisms involved are well characterized, the physical principles governing the spatial arrangement of actin filaments are not understood. Here we propose that the dynamics of actin network assembly from growing filaments results from a competition between diffusion, bundling and steric hindrance, and is responsible for the range of observed morphologies. Our model and simulations thus predict an abrupt dynamical transition between homogeneous and strongly bundled networks as a function of the actin polymerization rate. This suggests that cells may effect dramatic changes to their internal architecture through minute modifications of their nonequilibrium dynamics. Our results are consistent with available experimental data.

  4. Structure and dynamics of layered molecular assemblies

    NASA Astrophysics Data System (ADS)

    Horne, Jennifer Conrad

    This dissertation focuses on the goal of understanding and controlling layered material properties from a molecular perspective. With this understanding, materials can be synthetically tailored to exhibit predetermined bulk properties. This investigation describes the optical response of a family of metal-phosphonate (MP) monolayers and multilayers, materials that are potentially useful because the films are easy to synthesize and are chemically and thermally stable. MP films have shown potential in a variety of chemical sensing and optical applications, and in this dissertation, the suitability of MP films for optical information storage is explored For this application, the extent of photonic energy transport within and between optically active layers is an important factor in determining the stability and specificity of optical modifications made to a material. Intralayer and interlayer energy transport processes can be studied selectively in MP films because the composition, and thus the properties, of each layer are controlled synthetically. It was determined by fluorescence relaxation dynamics in conjunction with atomic force microscopy (AFM) that the substrate and layer morphologies are key factors in determining the layer optical and physical properties. The initial MP layers in a multilayer are structurally heterogeneous, characterized by randomly distributed islands that are ~50 A in diameter. The population dynamics measured for these layers are non-exponential, chromophore concentration-independent, and identical for two different chromophores. The data is explained in the context of an excitation hopping model in a system where the surface is characterized by islands of aggregated chromophores as well as non-aggregated monomers. Within a MP monolayer, the dynamics are dominated by intra-island excitation hopping. Forster (dipolar) energy transfer between the energetically overlapped chromophores does not play a significant role in determining the

  5. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching

    SciTech Connect

    Lee, Lawrence K.; Ginsburg, Michael A.; Crovace, Claudia; Donohoe, Mhairi; Stock, Daniela

    2010-09-13

    The flagellar motor drives the rotation of flagellar filaments at hundreds of revolutions per second, efficiently propelling bacteria through viscous media. The motor uses the potential energy from an electrochemical gradient of cations across the cytoplasmic membrane to generate torque. A rapid switch from anticlockwise to clockwise rotation determines whether a bacterium runs smoothly forward or tumbles to change its trajectory. A protein called FliG forms a ring in the rotor of the flagellar motor that is involved in the generation of torque through an interaction with the cation-channel-forming stator subunit MotA. FliG has been suggested to adopt distinct conformations that induce switching but these structural changes and the molecular mechanism of switching are unknown. Here we report the molecular structure of the full-length FliG protein, identify conformational changes that are involved in rotational switching and uncover the structural basis for the formation of the FliG torque ring. This allows us to propose a model of the complete ring and switching mechanism in which conformational changes in FliG reverse the electrostatic charges involved in torque generation.

  6. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses.

    PubMed

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-12-16

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies - a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses.

  7. The near-atomic cryoEM structure of a flexible filamentous plant virus shows homology of its coat protein with nucleoproteins of animal viruses

    PubMed Central

    Agirrezabala, Xabier; Méndez-López, Eduardo; Lasso, Gorka; Sánchez-Pina, M Amelia; Aranda, Miguel; Valle, Mikel

    2015-01-01

    Flexible filamentous viruses include economically important plant pathogens. Their viral particles contain several hundred copies of a helically arrayed coat protein (CP) protecting a (+)ssRNA. We describe here a structure at 3.9 Å resolution, from electron cryomicroscopy, of Pepino mosaic virus (PepMV), a representative of the genus Potexvirus (family Alphaflexiviridae). Our results allow modeling of the CP and its interactions with viral RNA. The overall fold of PepMV CP resembles that of nucleoproteins (NPs) from the genus Phlebovirus (family Bunyaviridae), a group of enveloped (-)ssRNA viruses. The main difference between potexvirus CP and phlebovirus NP is in their C-terminal extensions, which appear to determine the characteristics of the distinct multimeric assemblies – a flexuous, helical rod or a loose ribonucleoprotein. The homology suggests gene transfer between eukaryotic (+) and (-)ssRNA viruses. DOI: http://dx.doi.org/10.7554/eLife.11795.001 PMID:26673077

  8. Physical properties of cytoplasmic intermediate filaments.

    PubMed

    Block, Johanna; Schroeder, Viktor; Pawelzyk, Paul; Willenbacher, Norbert; Köster, Sarah

    2015-11-01

    Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.

  9. Molecular clouds and galactic spiral structure

    NASA Technical Reports Server (NTRS)

    Dame, T. M.

    1984-01-01

    Galactic CO line emission at 115 GHz was surveyed in order to study the distribution of molecular clouds in the inner galaxy. Comparison of this survey with similar H1 data reveals a detailed correlation with the most intense 21 cm features. To each of the classical 21 cm H1 spiral arms of the inner galaxy there corresponds a CO molecular arm which is generally more clearly defined and of higher contrast. A simple model is devised for the galactic distribution of molecular clouds. The modeling results suggest that molecular clouds are essentially transient objects, existing for 15 to 40 million years after their formation in a spiral arm, and are largely confined to spiral features about 300 pc wide.

  10. Myosin 18A coassembles with nonmuscle myosin 2 to form mixed bipolar filaments.

    PubMed

    Billington, Neil; Beach, Jordan R; Heissler, Sarah M; Remmert, Kirsten; Guzik-Lendrum, Stephanie; Nagy, Attila; Takagi, Yasuharu; Shao, Lin; Li, Dong; Yang, Yi; Zhang, Yingfan; Barzik, Melanie; Betzig, Eric; Hammer, John A; Sellers, James R

    2015-03-30

    Class-18 myosins are most closely related to conventional class-2 nonmuscle myosins (NM2). Surprisingly, the purified head domains of Drosophila, mouse, and human myosin 18A (M18A) lack actin-activated ATPase activity and the ability to translocate actin filaments, suggesting that the functions of M18A in vivo do not depend on intrinsic motor activity. M18A has the longest coiled coil of any myosin outside of the class-2 myosins, suggesting that it might form bipolar filaments similar to conventional myosins. To address this possibility, we expressed and purified full-length mouse M18A using the baculovirus/Sf9 system. M18A did not form large bipolar filaments under any of the conditions tested. Instead, M18A formed an ∼ 65-nm-long bipolar structure with two heads at each end. Importantly, when NM2 was polymerized in the presence of M18A, the two myosins formed mixed bipolar filaments, as evidenced by cosedimentation, electron microscopy, and single-molecule imaging. Moreover, super-resolution imaging of NM2 and M18A using fluorescently tagged proteins and immunostaining of endogenous proteins showed that NM2 and M18A are present together within individual filaments inside living cells. Together, our in vitro and live-cell imaging data argue strongly that M18A coassembles with NM2 into mixed bipolar filaments. M18A could regulate the biophysical properties of these filaments and, by virtue of its extra N- and C-terminal domains, determine the localization and/or molecular interactions of the filaments. Given the numerous, fundamental cellular and developmental roles attributed to NM2, our results have far-reaching biological implications.

  11. Tungsten Filament Fire

    ERIC Educational Resources Information Center

    Ruiz, Michael J.; Perkins, James

    2016-01-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent…

  12. Tungsten filament fire

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.; Perkins, James

    2016-05-01

    We safely remove the outer glass bulb from an incandescent lamp and burn up the tungsten filament after the glass is removed. This demonstration dramatically illustrates the necessity of a vacuum or inert gas for the environment surrounding the tungsten filament inside the bulb. Our approach has added historical importance since the incandescent light bulb is being replaced by compact fluorescent and LED lamps.

  13. The Hydrodynamic Stability of Gaseous Cosmic Filaments

    NASA Astrophysics Data System (ADS)

    Birnboim, Yuval; Padnos, Dan; Zinger, Elad

    2016-11-01

    Virial shocks at the edges of cosmic-web structures are a clear prediction of standard structure formation theories. We derive a criterion for the stability of the post-shock gas and of the virial shock itself in spherical, filamentary, and planar infall geometries. When gas cooling is important, we find that shocks become unstable, and gas flows uninterrupted toward the center of the respective halo, filament, or sheet. For filaments, we impose this criterion on self-similar infall solutions. We find that instability is expected for filament masses between 1011 and 1013 {M}⊙ Mpc-1. Using a simplified toy model, we then show that these filaments will likely feed halos with 1010 M ⊙ ≲ M halo ≲ 1013 M ⊙ at redshift z = 3, as well as 1012 M ⊙ ≲ M halo ≲ 1015 M ⊙ at z = 0. The instability will affect the survivability of the filaments as they penetrate gaseous halos in a non-trivial way. Additionally, smaller halos accreting onto non-stable filaments will not be subject to ram pressure inside the filaments. The instreaming gas will continue toward the center and stop either once its angular momentum balances the gravitational attraction, or when its density becomes so high that it becomes self-shielded to radiation.

  14. A survey of quantitative descriptions of molecular structure.

    PubMed

    Guha, Rajarshi; Willighagen, Egon

    2012-01-01

    Numerical characterization of molecular structure is a first step in many computational analysis of chemical structure data. These numerical representations, termed descriptors, come in many forms, ranging from simple atom counts and invariants of the molecular graph to distribution of properties, such as charge, across a molecular surface. In this article we first present a broad categorization of descriptors and then describe applications and toolkits that can be employed to evaluate them. We highlight a number of issues surrounding molecular descriptor calculations such as versioning and reproducibility and describe how some toolkits have attempted to address these problems.

  15. COMPLEX FLARE DYNAMICS INITIATED BY A FILAMENT–FILAMENT INTERACTION

    SciTech Connect

    Zhu, Chunming; McAteer, R. T. James; Liu, Rui; Alexander, David; Sun, Xudong

    2015-11-01

    We report on an eruption involving a relatively rare filament–filament interaction on 2013 June 21, observed by SDO and STEREO-B. The two filaments were separated in height with a “double-decker” configuration. The eruption of the lower filament began simultaneously with a descent of the upper filament, resulting in a convergence and direct interaction of the two filaments. The interaction was accompanied by the heating of surrounding plasma and an apparent crossing of a loop-like structure through the upper filament. The subsequent coalescence of the filaments drove a bright front ahead of the erupting structures. The whole process was associated with a C3.0 flare followed immediately by an M2.9 flare. Shrinking loops and descending dark voids were observed during the M2.9 flare at different locations above a C-shaped flare arcade as part of the energy release, giving us unique insight into the flare dynamics.

  16. Mechanics of vimentin intermediate filaments

    NASA Technical Reports Server (NTRS)

    Wang, Ning; Stamenovic, Dimitrijie

    2002-01-01

    It is increasingly evident that the cytoskeleton of living cells plays important roles in mechanical and biological functions of the cells. Here we focus on the contribution of intermediate filaments (IFs) to the mechanical behaviors of living cells. Vimentin, a major structural component of IFs in many cell types, is shown to play an important role in vital mechanical and biological functions such as cell contractility, migration, stiffness, stiffening, and proliferation.

  17. Structural and molecular conformation of myosin in intact muscle fibers by second harmonic generation

    NASA Astrophysics Data System (ADS)

    Nucciotti, V.; Stringari, C.; Sacconi, L.; Vanzi, F.; Linari, M.; Piazzesi, G.; Lombardi, V.; Pavone, F. S.

    2009-02-01

    Recently, the use of Second Harmonic Generation (SHG) for imaging biological samples has been explored with regard to intrinsic SHG in highly ordered biological samples. As shown by fractional extraction of proteins, myosin is the source of SHG signal in skeletal muscle. SHG is highly dependent on symmetries and provides selective information on the structural order and orientation of the emitting proteins and the dynamics of myosin molecules responsible for the mechano-chemical transduction during contraction. We characterise the polarization-dependence of SHG intensity in three different physiological states: resting, rigor and isometric tetanic contraction in a sarcomere length range between 2.0 μm and 4.0 μm. The orientation of motor domains of the myosin molecules is dependent on their physiological states and modulate the SHG signal. We can discriminate the orientation of the emitting dipoles in four different molecular conformations of myosin heads in intact fibers during isometric contraction, in resting and rigor. We estimate the contribution of the myosin motor domain to the total second order bulk susceptibility from its molecular structure and its functional conformation. We demonstrate that SHG is sensitive to the fraction of ordered myosin heads by disrupting the order of myosin heads in rigor with an ATP analog. We estimate the fraction of myosin motors generating the isometric force in the active muscle fiber from the dependence of the SHG modulation on the degree of overlap between actin and myosin filaments during an isometric contraction.

  18. Dynamic Filament Formation by a Divergent Bacterial Actin-Like ParM Protein

    PubMed Central

    Brzoska, Anthony J.; Jensen, Slade O.; Barton, Deborah A.; Davies, Danielle S.; Overall, Robyn L.; Skurray, Ronald A.; Firth, Neville

    2016-01-01

    Actin-like proteins (Alps) are a diverse family of proteins whose genes are abundant in the chromosomes and mobile genetic elements of many bacteria. The low-copy-number staphylococcal multiresistance plasmid pSK41 encodes ParM, an Alp involved in efficient plasmid partitioning. pSK41 ParM has previously been shown to form filaments in vitro that are structurally dissimilar to those formed by other bacterial Alps. The mechanistic implications of these differences are not known. In order to gain insights into the properties and behavior of the pSK41 ParM Alp in vivo, we reconstituted the parMRC system in the ectopic rod-shaped host, E. coli, which is larger and more genetically amenable than the native host, Staphylococcus aureus. Fluorescence microscopy showed a functional fusion protein, ParM-YFP, formed straight filaments in vivo when expressed in isolation. Strikingly, however, in the presence of ParR and parC, ParM-YFP adopted a dramatically different structure, instead forming axial curved filaments. Time-lapse imaging and selective photobleaching experiments revealed that, in the presence of all components of the parMRC system, ParM-YFP filaments were dynamic in nature. Finally, molecular dissection of the parMRC operon revealed that all components of the system are essential for the generation of dynamic filaments. PMID:27310470

  19. Liquid oxygen-compatible filament-winding matrix resin

    NASA Technical Reports Server (NTRS)

    Harrison, E. S.

    1973-01-01

    Polyurethanes derived from hydroxy terminated polyperfluoro propylene oxide prepolymers were evaluated as matrix resins for filament wound composites which would be exposed to liquid (and 100% gaseous) oxygen environments. A number of structural modifications were brought about by variations in prepolymer molecular weight, and alternative curing agents which allowed retention of the oxygen compatibility. Although satisfactory performance was achieved at sub-ambient temperatures, the derived composites suffered considerable property loss at ambient or slightly elevated temperatures. To attain overall effectiveness of the composite system, upgrading of the polymer thermomechanical properties must first be achieved.

  20. Structures of High Density Molecular Fluids

    SciTech Connect

    Baer, B; Cynn, H; Iota, V; Yoo, C-S

    2002-02-01

    The goal of this proposal is to develop an in-situ probe for high density molecular fluids. We will, therefore, use Coherent Anti-Stokes Raman Spectroscopy (CARS) applied to laser heated samples in a diamond-anvil cell (DAC) to investigate molecular fluids at simultaneous conditions of high temperatures (T > 2000K) and high pressures (P > 10 GPa.) Temperatures sufficient to populate vibrational levels above the ground state will allow the vibrational potential to be mapped by CARS. A system capable of heating and probing these samples will be constructed. Furthermore, the techniques that enable a sample to be sufficiently heated and probed while held at static high pressure in a diamond-anvil-cell will be developed. This will be an in-situ investigation of simple molecules under conditions relevant to the study of detonation chemistry and the Jovain planet interiors using state of the art non-linear spectroscopy, diamond-anvil-cells, and laser heating technology.

  1. Sequential Myosin Phosphorylation Activates Tarantula Thick Filament via a Disorder-Order Transition

    PubMed Central

    Espinoza-Fonseca, L. Michel; Alamo, Lorenzo; Pinto, Antonio; Thomas, David D.; Padrón, Raúl

    2015-01-01

    Phosphorylation of myosin regulatory light chain (RLC) N-terminal extension (NTE) activates myosin in thick filaments. RLC phosphorylation plays a primary regulatory role in smooth muscle and a secondary (modulatory) role in striated muscle, which is regulated by Ca2+ via TnC/TM on the thin filament. Tarantula striated muscle exhibits both regulatory systems: one switches on/off contraction through thin filament regulation, and another through PKC constitutively Ser35 phosphorylated swaying free heads in the thick filaments that produces quick force on twitches regulated from 0 to 50% and modulation is accomplished recruiting additional force-potentiating free and blocked heads via Ca2+4-CaM-MLCK Ser45 phosphorylation. We have used microsecond molecular dynamics (MD) simulations of tarantula RLC NTE to understand the structural basis for phosphorylation-based regulation in tarantula thick filament activation. Trajectories analysis revealed that an inter-domain salt bridges network (R39/E58,E61) facilitates formation of a stable helix-coil-helix (HCH) motif made up by helices P and A in the unphosphorylated NTE of both myosin heads. Phosphorylation of blocked head on Ser45 does not induce any substantial structural change. However, phosphorylation of free head on Ser35 disrupts this salt bridge network and induces a partial extension of helix P along RLC helix A. While not directly participating in the HCH inter-domain folding, phosphorylation of Ser35 unlocks compact structure and allows the NTE to spontaneously undergo coil-helix transitions. The modest structural change induced by subsequent Ser45 diphosphorylation monophosphorylated Ser35 free head, facilitates full helix P extension into a single structurally stable α-helix through a network of intra-domain salt bridges (pS35/R38,R39,R42). We conclude that tarantula thick filament activation is controlled by sequential Ser35-Ser45 phosphorylation via a conserved disorder-to-order transition. PMID:26038232

  2. Production, characterization, and modeling of mineral filled polypropylene filaments

    NASA Astrophysics Data System (ADS)

    George, Brian Robert

    1999-11-01

    filaments increased with the increase in concentration of filler. The tensile tenacity, strain, and modulus were modeled with current composite models for particulate filled composites. The tenacity and strain models did not accurately predict the properties of the filaments, while the modulus models were more accurate, perhaps because the agglomerations of filler did not affect the modulus as much as it affected the tenacity and strain of the filaments. Production, characterization, and modeling of these filaments indicates that there are many areas for improvements, such as improved mixing of the filler and polypropylene, increased adhesion between matrix and filler, and decreased agglomerations of filler. Mechanically, these filaments can not match the properties of bone. However, they do have many structural similarities at the micro-mechanical level, so with some improvements in properties these filaments may be suitable models for modeling bone behavior.

  3. Colour Chemistry, Part I, Principles, Colour, and Molecular Structure

    ERIC Educational Resources Information Center

    Hallas, G.

    1975-01-01

    Discusses various topics in color chemistry, including the electromagnetic spectrum, the absorption and reflection of light, additive and subtractive color mixing, and the molecular structure of simple colored substances. (MLH)

  4. A Robust Actin Filaments Image Analysis Framework

    PubMed Central

    Alioscha-Perez, Mitchel; Benadiba, Carine; Goossens, Katty; Kasas, Sandor; Dietler, Giovanni; Willaert, Ronnie; Sahli, Hichem

    2016-01-01

    The cytoskeleton is a highly dynamical protein network that plays a central role in numerous cellular physiological processes, and is traditionally divided into three components according to its chemical composition, i.e. actin, tubulin and intermediate filament cytoskeletons. Understanding the cytoskeleton dynamics is of prime importance to unveil mechanisms involved in cell adaptation to any stress type. Fluorescence imaging of cytoskeleton structures allows analyzing the impact of mechanical stimulation in the cytoskeleton, but it also imposes additional challenges in the image processing stage, such as the presence of imaging-related artifacts and heavy blurring introduced by (high-throughput) automated scans. However, although there exists a considerable number of image-based analytical tools to address the image processing and analysis, most of them are unfit to cope with the aforementioned challenges. Filamentous structures in images can be considered as a piecewise composition of quasi-straight segments (at least in some finer or coarser scale). Based on this observation, we propose a three-steps actin filaments extraction methodology: (i) first the input image is decomposed into a ‘cartoon’ part corresponding to the filament structures in the image, and a noise/texture part, (ii) on the ‘cartoon’ image, we apply a multi-scale line detector coupled with a (iii) quasi-straight filaments merging algorithm for fiber extraction. The proposed robust actin filaments image analysis framework allows extracting individual filaments in the presence of noise, artifacts and heavy blurring. Moreover, it provides numerous parameters such as filaments orientation, position and length, useful for further analysis. Cell image decomposition is relatively under-exploited in biological images processing, and our study shows the benefits it provides when addressing such tasks. Experimental validation was conducted using publicly available datasets, and in osteoblasts

  5. In situ ellipsometric study of surface immobilization of flagellar filaments

    NASA Astrophysics Data System (ADS)

    Kurunczi, S.; Németh, A.; Hülber, T.; Kozma, P.; Petrik, P.; Jankovics, H.; Sebestyén, A.; Vonderviszt, F.; Fried, M.; Bársony, I.

    2010-10-01

    Protein filaments composed of thousands of subunits are promising candidates as sensing elements in biosensors. In this work in situ spectroscopic ellipsometry is applied to monitor the surface immobilization of flagellar filaments. This study is the first step towards the development of layers of filamentous receptors for sensor applications. Surface activation is performed using silanization and a subsequent glutaraldehyde crosslinking. Structure of the flagellar filament layers immobilized on activated and non-activated Si wafer substrates is determined using a two-layer effective medium model that accounted for the vertical density distribution of flagellar filaments with lengths of 300-1500 nm bound to the surface. The formation of the first interface layer can be explained by the multipoint covalent attachment of the filaments, while the second layer is mainly composed of tail pinned filaments floating upwards with the free parts. As confirmed by atomic force microscopy, covalent immobilization resulted in an increased surface density compared to absorption.

  6. The Dark Matter filament between Abell 222/223

    NASA Astrophysics Data System (ADS)

    Dietrich, Jörg P.; Werner, Norbert; Clowe, Douglas; Finoguenov, Alexis; Kitching, Tom; Miller, Lance; Simionescu, Aurora

    2016-10-01

    Weak lensing detections and measurements of filaments have been elusive for a long time. The reason is that the low density contrast of filaments generally pushes the weak lensing signal to unobservably low scales. To nevertheless map the dark matter in filaments exquisite data and unusual systems are necessary. SuprimeCam observations of the supercluster system Abell 222/223 provided the required combination of excellent seeing images and a fortuitous alignment of the filament with the line-of-sight. This boosted the lensing signal to a detectable level and led to the first weak lensing mass measurement of a large-scale structure filament. The filament connecting Abell 222 and Abell 223 is now the only one traced by the galaxy distribution, dark matter, and X-ray emission from the hottest phase of the warm-hot intergalactic medium. The combination of these data allows us to put the first constraints on the hot gas fraction in filaments.

  7. Snake Filament Eruption

    NASA Video Gallery

    A very long solar filament that had been snaking around the Sun erupted on Dec. 6, 2010 with a flourish. NASA's Solar Dynamics Observatory (SDO) caught the action in dramatic detail in extreme ultr...

  8. Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors.

    PubMed

    Johann, D; Goswami, D; Kruse, K

    2016-06-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.

  9. Assembly of bipolar microtubule structures by passive cross-linkers and molecular motors

    NASA Astrophysics Data System (ADS)

    Johann, D.; Goswami, D.; Kruse, K.

    2016-06-01

    During cell division, sister chromatids are segregated by the mitotic spindle, a bipolar assembly of interdigitating antiparallel polar filaments called microtubules. The spindle contains the midzone, a stable region of overlapping antiparallel microtubules, that is essential for maintaining bipolarity. Although a lot is known about the molecular players involved, the mechanism underlying midzone formation and maintenance is still poorly understood. We study the interaction of polar filaments that are cross-linked by molecular motors moving directionally and by passive cross-linkers diffusing along microtubules. Using a particle-based stochastic model, we find that the interplay of motors and passive cross-linkers can generate a stable finite overlap between a pair of antiparallel polar filaments. We develop a mean-field theory to study this mechanism in detail and investigate the influence of steric interactions between motors and passive cross-linkers on the overlap dynamics. In the presence of interspecies steric interactions, passive cross-linkers mimic the behavior of molecular motors and stable finite overlaps are generated even for non-cross-linking motors. Finally, we develop a mean-field theory for a bundle of aligned polar filaments and show that they can self-organize into a spindlelike pattern. Our work suggests possible ways as to how cells can generate spindle midzones and control their extensions.

  10. Molecular and electronic structure of the peptide subunit of Geobacter sulfurreducens conductive pili from first principles.

    PubMed

    Feliciano, Gustavo T; da Silva, Antonio J R; Reguera, Gemma; Artacho, Emilio

    2012-08-02

    The respiration of metal oxides by the bacterium Geobacter sulfurreducens requires the assembly of a small peptide (the GS pilin) into conductive filaments termed pili. We gained insights into the contribution of the GS pilin to the pilus conductivity by developing a homology model and performing molecular dynamics simulations of the pilin peptide in vacuo and in solution. The results were consistent with a predominantly helical peptide containing the conserved α-helix region required for pilin assembly but carrying a short carboxy-terminal random-coiled segment rather than the large globular head of other bacterial pilins. The electronic structure of the pilin was also explored from first principles and revealed a biphasic charge distribution along the pilin and a low electronic HOMO-LUMO gap, even in a wet environment. The low electronic band gap was the result of strong electrostatic fields generated by the alignment of the peptide bond dipoles in the pilin's α-helix and by charges from ions in solution and amino acids in the protein. The electronic structure also revealed some level of orbital delocalization in regions of the pilin containing aromatic amino acids and in spatial regions of high resonance where the HOMO and LUMO states are, which could provide an optimal environment for the hopping of electrons under thermal fluctuations. Hence, the structural and electronic features of the pilin revealed in these studies support the notion of a pilin peptide environment optimized for electron conduction.

  11. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  12. Hygrothermal aging effects on buried molecular structures at epoxy interfaces.

    PubMed

    Myers, John N; Zhang, Chi; Lee, Kang-Wook; Williamson, Jaimal; Chen, Zhan

    2014-01-14

    Interfacial properties such as adhesion are determined by interfacial molecular structures. Adhesive interfaces in microelectronic packages that include organic polymers such as epoxy are susceptible to delamination during accelerated stress testing. Infrared-visible sum frequency generation vibrational spectroscopy (SFG) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were used to study molecular structures at buried epoxy interfaces during hygrothermal aging to relate molecular structural changes at buried interfaces to decreases in macroscopic adhesion strength. SFG peaks associated with strongly hydrogen bonded water were detected at hydrophilic epoxy interfaces. Ordered interfacial water was also correlated to large decreases in interfacial adhesion strength that occurred as a result of hygrothermal aging, which suggests that water diffused to the interface and replaced original hydrogen bond networks. No water peaks were observed at hydrophobic epoxy interfaces, which was correlated with a much smaller decrease in adhesion strength from the same aging process. ATR-FTIR water signals observed in the epoxy bulk were mainly contributed by relatively weakly hydrogen bonded water molecules, which suggests that the bulk and interfacial water structure was different. Changes in interfacial methyl structures were observed regardless of the interfacial hydrophobicity which could be due to water acting as a plasticizer that restructured both the bulk and interfacial molecular structure. This research demonstrates that SFG studies of molecular structural changes at buried epoxy interfaces during hygrothermal aging can contribute to the understanding of moisture-induced failure mechanisms in electronic packages that contain organic adhesives.

  13. A Census of Large-scale (≥10 PC), Velocity-coherent, Dense Filaments in the Northern Galactic Plane: Automated Identification Using Minimum Spanning Tree

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Burkert, Andreas; Walmsley, C. Malcolm; Beuther, Henrik; Henning, Thomas

    2016-09-01

    Large-scale gaseous filaments with lengths up to the order of 100 pc are on the upper end of the filamentary hierarchy of the Galactic interstellar medium (ISM). Their association with respect to the Galactic structure and their role in Galactic star formation are of great interest from both an observational and theoretical point of view. Previous “by-eye” searches, combined together, have started to uncover the Galactic distribution of large filaments, yet inherent bias and small sample size limit conclusive statistical results from being drawn. Here, we present (1) a new, automated method for identifying large-scale velocity-coherent dense filaments, and (2) the first statistics and the Galactic distribution of these filaments. We use a customized minimum spanning tree algorithm to identify filaments by connecting voxels in the position-position-velocity space, using the Bolocam Galactic Plane Survey spectroscopic catalog. In the range of 7\\buildrel{\\circ}\\over{.} 5≤slant l≤slant 194^\\circ , we have identified 54 large-scale filaments and derived mass (˜ {10}3{--}{10}5 {M}⊙ ), length (10-276 pc), linear mass density (54-8625 {M}⊙ pc-1), aspect ratio, linearity, velocity gradient, temperature, fragmentation, Galactic location, and orientation angle. The filaments concentrate along major spiral arms. They are widely distributed across the Galactic disk, with 50% located within ±20 pc from the Galactic mid-plane and 27% run in the center of spiral arms. An order of 1% of the molecular ISM is confined in large filaments. Massive star formation is more favorable in large filaments compared to elsewhere. This is the first comprehensive catalog of large filaments that can be useful for a quantitative comparison with spiral structures and numerical simulations.

  14. Co-option of the polarity gene network shapes filament morphology in angiosperms.

    PubMed

    de Almeida, Ana Maria Rocha; Yockteng, Roxana; Schnable, James; Alvarez-Buylla, Elena R; Freeling, Michael; Specht, Chelsea D

    2014-08-29

    The molecular genetic mechanisms underlying abaxial-adaxial polarity in plants have been studied as a property of lateral and flattened organs, such as leaves. In leaves, laminar expansion occurs as a result of balanced abaxial-adaxial gene expression. Over- or under- expression of either abaxializing or adaxializing genes inhibits laminar growth, resulting in a mutant radialized phenotype. Here, we show that co-option of the abaxial-adaxial polarity gene network plays a role in the evolution of stamen filament morphology in angiosperms. RNA-Seq data from species bearing laminar (flattened) or radial (cylindrical) filaments demonstrates that species with laminar filaments exhibit balanced expression of abaxial-adaxial (ab-ad) genes, while overexpression of a YABBY gene is found in species with radial filaments. This result suggests that unbalanced expression of ab-ad genes results in inhibition of laminar outgrowth, leading to a radially symmetric structure as found in many angiosperm filaments. We anticipate that co-option of the polarity gene network is a fundamental mechanism shaping many aspects of plant morphology during angiosperm evolution.

  15. Plasma Brightenings in a Failed Solar Filament Eruption

    NASA Astrophysics Data System (ADS)

    Li, Y.; Ding, M. D.

    2017-03-01

    Failed filament eruptions are solar eruptions that are not associated with coronal mass ejections. In a failed filament eruption, the filament materials usually show some ascending and falling motions as well as generating bright EUV emissions. Here we report a failed filament eruption (SOL2016-07-22) that occurred in a quiet-Sun region observed by the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory. In this event, the filament spreads out but gets confined by the surrounding magnetic field. When interacting with the ambient magnetic field, the filament material brightens up and flows along the magnetic field lines through the corona to the chromosphere. We find that some materials slide down along the lifting magnetic structure containing the filament and impact the chromosphere, and through kinetic energy dissipation, cause two ribbon-like brightenings in a wide temperature range. There is evidence suggesting that magnetic reconnection occurs between the filament magnetic structure and the surrounding magnetic fields where filament plasma is heated to coronal temperatures. In addition, thread-like brightenings show up on top of the erupting magnetic fields at low temperatures, which might be produced by an energy imbalance from a fast drop of radiative cooling due to plasma rarefaction. Thus, this single event of a failed filament eruption shows the existence of a variety of plasma brightenings that may be caused by completely different heating mechanisms.

  16. GRAVITATIONAL COLLAPSE AND FILAMENT FORMATION: COMPARISON WITH THE PIPE NEBULA

    SciTech Connect

    Heitsch, Fabian; Ballesteros-Paredes, Javier; Hartmann, Lee

    2009-10-20

    Recent models of molecular cloud formation and evolution suggest that such clouds are dynamic and generally exhibit gravitational collapse. We present a simple analytic model of global collapse onto a filament and compare this with our numerical simulations of the flow-driven formation of an isolated molecular cloud to illustrate the supersonic motions and infall ram pressures expected in models of gravity-driven cloud evolution. We compare our results with observations of the Pipe Nebula, an especially suitable object for our purposes as its low star formation activity implies insignificant perturbations from stellar feedback. We show that our collapsing cloud model can explain the magnitude of the velocity dispersions seen in the {sup 13}CO filamentary structure by Onishi et al. and the ram pressures required by Lada et al. to confine the lower-mass cores in the Pipe Nebula. We further conjecture that higher-resolution simulations will show small velocity dispersions in the densest core gas, as observed, but which are infall motions and not supporting turbulence. Our results point out the inevitability of ram pressures as boundary conditions for molecular cloud filaments, and the possibility that especially lower-mass cores still can be accreting mass at significant rates, as suggested by observations.

  17. Marine Biotoxins: Laboratory Culture and Molecular Structure

    DTIC Science & Technology

    1991-01-21

    toxins that are associated with the human fish intoxication known as ciguatera , ciguatoxin and maitotoxin. of unknown structure at the outset of this...87-C-7210 Appendix A. Bibliography 1. Ciguatera - what we know and what we would like to know. P.J. Scheuer in "Mycotoxins and Phycotoxins 󈨜". (S...Mycotoxins, and Phycotoxins, Tokyo. Japan, August 1988. 2. Third International Conference on Ciguatera , Puerto Rico. April 1990. C. Personnel Receiving Pay

  18. Marine Toxins Origin, Structure, and Molecular Pharmacology

    DTIC Science & Technology

    1990-01-01

    thin-layer chromatography (TLC) were instrumental in the initial isolation and purification processes. Mass spectrometry (MS), infrared spectroscopy ...Frederick, MD 21701-5011 Methods of detection, metabolism, and pathophysiology of the brevetoxins, PbTx-2 and PbTx-3, are summarized. Infrared spectros...1R), circular dichroism (CD), nuclear magnetic resonance spectroscopy (NMR), and X-ray crystal- lography all played important roles in structure

  19. Molecular Eigensolution Symmetry Analysis and Fine Structure

    PubMed Central

    Harter, William G.; Mitchell, Justin C.

    2013-01-01

    Spectra of high-symmetry molecules contain fine and superfine level cluster structure related to J-tunneling between hills and valleys on rovibronic energy surfaces (RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules, and state mixing effects including widespread violation of nuclear spin symmetry species. A review of RES analysis compares it to that of potential energy surfaces (PES) used in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its superfine structure requires more efficient labeling and a more powerful group theory. This is introduced using elementary examples involving two groups of order-6 (C6 and D3~C3v), then applied to families of Oh clusters in SF6 spectra and to extreme clusters. PMID:23344041

  20. Correlative nanoscale imaging of actin filaments and their complexes

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E.; Reisler, Emil; Gimzewski, James K.

    2013-06-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  1. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  2. An improved direct-forcing immersed boundary method for fluid-structure interaction of a flexible filament

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Zhu, Xiaojue

    2012-11-01

    We present an improved immersed boundary method for the simulation of fluid structure interaction (FSI) of a slender body. Our numerical method is based on the one proposed by Wang and Zhang (J. Comput. Phys. 30:3479-3499, 2011). Although an accurate prediction of total force can be achieved by using this method, unphysical spatial oscillation is observed in the force distribution. This oscillation is detrimental to the prediction of structure response in FSI. In this work, several modifications are made to improve this method. Firstly, the implicit forcing is replaced by an explicit forcing. Secondly, a more consistent way of computing each component of the forcing on a staggered mesh is proposed. Thirdly, for a slender body of zero thickness, the discrete delta-function with a ``negative-tail'' is adopted for the interpolation at the endpoints. Numerical simulations are performed to test the efficacy of the modifications. It is found that the measures taken successfully reduce the oscillation and the results obtained agree well with those from the literatures. This work was supported by NSFC 10872201.

  3. Ionization probes of molecular structure and chemistry

    SciTech Connect

    Johnson, P.M.

    1993-12-01

    Various photoionization processes provide very sensitive probes for the detection and understanding of the spectra of molecules relevant to combustion processes. The detection of ionization can be selective by using resonant multiphoton ionization or by exploiting the fact that different molecules have different sets of ionization potentials. Therefore, the structure and dynamics of individual molecules can be studied even in a mixed sample. The authors are continuing to develop methods for the selective spectroscopic detection of molecules by ionization, and to use these methods for the study of some molecules of combustion interest.

  4. Syntheses and molecular structures of new cali.

    PubMed

    Attner, J; Radius, U

    2001-01-01

    An unusual disproportionation reaction of the molybdenum(IV) and tungsten(IV) chlorides [MCl4L2] (M=Mo, L=Et2S, Et2O; M=W; L= Et2S) in the presence of p-tBu-calix[4]arene (Cax(OH)4) and triethylamine leads to d0 complexes [(CaxO4)[CaxO2(OH)2]M] (1) and d3 compounds (HNEt3)2[(CaxO4)2M2] (2). Complexes la (M = Mo), 1b (M = W), and the HCl adduct of 2a (M = Mo) have been structurally characterized. Compound 1a represents one of the few examples of a well-characterized molybdenum(VI) hexa-alkoxide complex of the type [Mo(OR)6]. Isolation and structural characterization of the side product [(CaxO4W)[kappa2(O)-kappa1(O)-CaxO3(OH)](CaxO4WCl)] (3) suggests the intermediacy of chloro-containing calix[4]arene complexes in these reaction mixtures. The reaction of 1a with HCI provides [CaxO4MoCl2] (4a), the first well-defined example of a mixed molybdenum(VI) alkoxide halide compound of the general formula [MoClx(OR)6-x].

  5. Structure and stability in TMC-1: Analysis of NH3 molecular line and Herschel continuum data

    NASA Astrophysics Data System (ADS)

    Fehér, O.; Tóth, L. V.; Ward-Thompson, D.; Kirk, J.; Kraus, A.; Pelkonen, V.-M.; Pintér, S.; Zahorecz, S.

    2016-05-01

    Aims: We examined the velocity, density, and temperature structure of Taurus molecular cloud-1 (TMC-1), a filamentary cloud in a nearby quiescent star forming area, to understand its morphology and evolution. Methods: We observed high signal-to-noise (S/N), high velocity resolution NH3(1,1), and (2, 2) emission on an extended map. By fitting multiple hyperfine-split line profiles to the NH3(1, 1) spectra, we derived the velocity distribution of the line components and calculated gas parameters on several positions. Herschel SPIRE far-infrared continuum observations were reduced and used to calculate the physical parameters of the Planck Galactic Cold Clumps (PGCCs) in the region, including the two in TMC-1. The morphology of TMC-1 was investigated with several types of clustering methods in the parameter space consisting of position, velocity, and column density. Results: Our Herschel-based column density map shows a main ridge with two local maxima and a separated peak to the south-west. The H2 column densities and dust colour temperatures are in the range of 0.5-3.3 × 1022 cm-2 and 10.5-12 K, respectively. The NH3 column densities and H2 volume densities are in the range of 2.8-14.2 × 1014 cm-2 and 0.4-2.8 × 104 cm-3. Kinetic temperatures are typically very low with a minimum of 9 K at the maximum NH3 and H2 column density region. The kinetic temperature maximum was found at the protostar IRAS 04381+2540 with a value of 13.7 K. The kinetic temperatures vary similarly to the colour temperatures in spite of the fact that densities are lower than the critical density for coupling between the gas and dust phase. The k-means clustering method separated four sub-filaments in TMC-1 with masses of 32.5, 19.6, 28.9, and 45.9 M⊙ and low turbulent velocity dispersion in the range of 0.13-0.2 km s-1. Conclusions: The main ridge of TMC-1 is composed of four sub-filaments that are close to gravitational equilibrium. We label these TMC-1F1 through F4. The sub-filaments TMC

  6. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle

    PubMed Central

    Mazelet, Lise; Parker, Matthew O.; Li, Mei; Arner, Anders; Ashworth, Rachel

    2016-01-01

    Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1ts25) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric position

  7. Microwave spectrum and molecular structure of PNO

    NASA Astrophysics Data System (ADS)

    Okabayashi, Toshiaki; Yamazaki, Emi; Tanimoto, Mitsutoshi

    1999-08-01

    The microwave spectra of P14N16O and its isotopomers P15N16O and P14N18O were observed in a dc glow discharge plasma of a mixture of nitric oxide and hydrogen gases over solid red phosphorus placed on the stainless steel electrode. Rotational transitions of the parent P14N16O species were measured in the ground state as well as in the vibrationally excited ν1 (PN str.), ν2 (bend), and 2ν2 states. The l=0 substate of the 2ν2 state interacts with the ν1 state through a Fermi resonance. The rotational constants determined for the ground states of the three isotopomers yield the substitution structure, rs(PN)=151.6516(87) pm and rs(NO)=119.5025(80) pm.

  8. Filamentous Influenza Viruses

    PubMed Central

    Badham, Matthew D.; Rossman, Jeremy S.

    2016-01-01

    Influenza A virus is a pathogen of global medical importance causing significant health and socio-economic costs every year. Influenza virus is an unusual pathogen in that it is pleomorphic, capable of forming virions ranging in shape from spherical to filamentous. Despite decades of research on the influenza virus, much remains unknown about the formation of filamentous influenza viruses and their role in the viral replication cycle. Here, we discuss what is known about influenza virus assembly and budding, focusing on the viral and host factors that are involved in the determination of viral morphology. Whilst the biological function of the filamentous morphology remains unknown, recent results suggest a role in facilitating viral spread in vivo. We discuss these results and speculate on the consequences of viral morphology during influenza virus infection of the human respiratory tract. PMID:28042529

  9. Connecting the density structure of molecular clouds with star formation

    NASA Astrophysics Data System (ADS)

    Kainulainen, Jouni

    In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds. This density structure is essentially encapsulated in the probability distribution function of volume densities (ρ-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the ρ-PDF function has remained virtually unconstrained by observations. I describe in this contribution the recent progress in attaining observational constraints for the column density PDFs (N-PDFs) of molecular clouds that function as a proxy of the ρ-PDFs. Specifically, observational works point towards a universal correlation between the shape of the N-PDFs and star formation activity in molecular clouds. The correlation is in place from the scales of a parsec up to the scales of entire galaxies, making it a fundamental, global link between the ISM structure and star formation.

  10. Molecular structure of vapor-deposited amorphous selenium

    NASA Astrophysics Data System (ADS)

    Goldan, A. H.; Li, C.; Pennycook, S. J.; Schneider, J.; Blom, A.; Zhao, W.

    2016-10-01

    The structure of amorphous selenium is clouded with much uncertainty and contradictory results regarding the dominance of polymeric chains versus monomer rings. The analysis of the diffraction radial distribution functions are inconclusive because of the similarities between the crystalline allotropes of selenium in terms of the coordination number, bond length, bond angle, and dihedral angle. Here, we took a much different approach and probed the molecular symmetry of the thermodynamically unstable amorphous state via analysis of structural phase transformations. We verified the structure of the converted metastable and stable crystalline structures using scanning transmission electron microscopy. In addition, given that no experimental technique can tell us the exact three-dimensional atomic arrangements in glassy semiconductors, we performed molecular-dynamic simulations using a well-established empirical three-body interatomic potential. We developed a true vapor-deposited process for the deposition of selenium molecules onto a substrate using empirical molecular vapor compositions and densities. We prepared both vapor-deposited and melt-quenched samples and showed that the simulated radial distribution functions match very well to experiment. The combination of our experimental and molecular-dynamic analyses shows that the structures of vapor- and melt-quenched glassy/amorphous selenium are quite different, based primarily on rings and chains, respectively, reflecting the predominant structure of the parent phase in its thermodynamic equilibrium.

  11. Fragmentation in filamentary molecular clouds

    NASA Astrophysics Data System (ADS)

    Contreras, Yanett; Garay, Guido; Rathborne, Jill M.; Sanhueza, Patricio

    2016-02-01

    Recent surveys of dust continuum emission at sub-mm wavelengths have shown that filamentary molecular clouds are ubiquitous along the Galactic plane. These structures are inhomogeneous, with overdensities that are sometimes associated with infrared emission and active of star formation. To investigate the connection between filaments and star formation, requires an understanding of the processes that lead to the fragmentation of filaments and a determination of the physical properties of the overdensities (clumps). In this paper, we present a multiwavelength study of five filamentary molecular clouds, containing several clumps in different evolutionary stages of star formation. We analyse the fragmentation of the filaments and derive the physical properties of their clumps. We find that the clumps in all filaments have a characteristic spacing consistent with the prediction of the `sausage' instability theory, regardless of the complex morphology of the filaments or their evolutionary stage. We also find that most clumps have sufficient mass and density to form high-mass stars, supporting the idea that high-mass stars and clusters form within filaments.

  12. Develop and demonstrate manufacturing processes for fabricating graphite filament reinforced polymide (Gr/PI) composite structural elements

    NASA Technical Reports Server (NTRS)

    Chase, V. A.; Harrison, E. S.

    1985-01-01

    A study was conducted to assess the merits of using graphite/polyimide, NR-150B2 resin, for structural applications on advanced space launch vehicles. The program was divided into two phases: (1) Fabrication Process Development; and (2) Demonstration Components. The first phase of the program involved the selection of a graphite fiber, quality assurance of the NR-150B2 polyimide resin, and the quality assurance of the graphite/polyimide prepreg. In the second phase of the program, a limited number of components were fabricated before the NR-150B2 resin system was removed from the market by the supplier, Du Pont. The advancement of the NR-150B2 polyimide resin binder was found to vary significantly based on previous time and temperature history during the prepregging operation. Strength retention at 316C (600F) was found to be 50% that of room temperature strength. However, the composite would retain its initial strength after 200 hours exposure at 316C (600F). Basic chemistry studies are required for determining NR-150B2 resin binder quality assurance parameters. Graphite fibers are available that can withstand high temperature cure and postcure cycles.

  13. Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments.

    PubMed

    Saladin, Adrien; Amourda, Christopher; Poulain, Pierre; Férey, Nicolas; Baaden, Marc; Zacharias, Martin; Delalande, Olivier; Prévost, Chantal

    2010-10-01

    Homologous recombination is a fundamental process enabling the repair of double-strand breaks with a high degree of fidelity. In prokaryotes, it is carried out by RecA nucleofilaments formed on single-stranded DNA (ssDNA). These filaments incorporate genomic sequences that are homologous to the ssDNA and exchange the homologous strands. Due to the highly dynamic character of this process and its rapid propagation along the filament, the sequence recognition and strand exchange mechanism remains unknown at the structural level. The recently published structure of the RecA/DNA filament active for recombination (Chen et al., Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structure, Nature 2008, 453, 489) provides a starting point for new exploration of the system. Here, we investigate the possible geometries of association of the early encounter complex between RecA/ssDNA filament and double-stranded DNA (dsDNA). Due to the huge size of the system and its dense packing, we use a reduced representation for protein and DNA together with state-of-the-art molecular modeling methods, including systematic docking and virtual reality simulations. The results indicate that it is possible for the double-stranded DNA to access the RecA-bound ssDNA while initially retaining its Watson-Crick pairing. They emphasize the importance of RecA L2 loop mobility for both recognition and strand exchange.

  14. An invertebrate smooth muscle with striated muscle myosin filaments

    PubMed Central

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-01-01

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components. PMID:26443857

  15. An invertebrate smooth muscle with striated muscle myosin filaments.

    PubMed

    Sulbarán, Guidenn; Alamo, Lorenzo; Pinto, Antonio; Márquez, Gustavo; Méndez, Franklin; Padrón, Raúl; Craig, Roger

    2015-10-20

    Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.

  16. Tropomyosin - master regulator of actin filament function in the cytoskeleton.

    PubMed

    Gunning, Peter W; Hardeman, Edna C; Lappalainen, Pekka; Mulvihill, Daniel P

    2015-08-15

    Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this 'master regulator' role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition.

  17. Disruption of the keratin filament network during epithelial cell division.

    PubMed Central

    Lane, E B; Goodman, S L; Trejdosiewicz, L K

    1982-01-01

    The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6202508

  18. Reverse engineering chemical structures from molecular descriptors : how many solutions?

    SciTech Connect

    Brown, William Michael; Martin, Shawn Bryan; Faulon, Jean-Loup Michel

    2005-06-01

    Physical, chemical and biological properties are the ultimate information of interest for chemical compounds. Molecular descriptors that map structural information to activities and properties are obvious candidates for information sharing. In this paper, we consider the feasibility of using molecular descriptors to safely exchange chemical information in such a way that the original chemical structures cannot be reverse engineered. To investigate the safety of sharing such descriptors, we compute the degeneracy (the number of structure matching a descriptor value) of several 2D descriptors, and use various methods to search for and reverse engineer structures. We examine degeneracy in the entire chemical space taking descriptors values from the alkane isomer series and the PubChem database. We further use a stochastic search to retrieve structures matching specific topological index values. Finally, we investigate the safety of exchanging of fragmental descriptors using deterministic enumeration.

  19. Aerogel-supported filament

    DOEpatents

    Wuest, C.R.; Tillotson, T.M.; Johnson, C.V. III

    1995-05-16

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces. 6 Figs.

  20. Aerogel-supported filament

    DOEpatents

    Wuest, Craig R.; Tillotson, Thomas M.; Johnson, III, Coleman V.

    1995-01-01

    The present invention is a thin filament embedded in a low density aerogel for use in radiation detection instruments and incandescent lamps. The aerogel provides a supportive matrix that is thermally and electrically nonconductive, mechanically strong, highly porous, gas-permeable, and transparent to ionizing radiation over short distances. A low density, open-cell aerogel is cast around a fine filament or wire, which allows the wire to be positioned with little or no tension and keeps the wire in place in the event of breakage. The aerogel support reduces the stresses on the wire caused by vibrational, gravitational, electrical, and mechanical forces.

  1. Molecular Evolution, Structure, and Function of Peroxidasins

    PubMed Central

    Soudi, Monika; Zamocky, Marcel; Jakopitsch, Christa; Furtmüller, Paul G; Obinger, Christian

    2012-01-01

    Peroxidasins represent the subfamily 2 of the peroxidase-cyclooxygenase superfamily and are closely related to chordata peroxidases (subfamily 1) and peroxinectins (subfamily 3). They are multidomain proteins containing a heme peroxidase domain with high homology to human lactoperoxidase that mediates one- and two-electron oxidation reactions. Additional domains of the secreted and glycosylated metalloproteins are type C-like immunoglobulin domains, typical leucine-rich repeats, as well as a von Willebrand factor C module. These are typical motifs of extracellular proteins that mediate protein–protein interactions. We have reconstructed the phylogeny of this new family of oxidoreductases and show the presence of four invertebrate clades as well as one vertebrate clade that includes also two different human representatives. The variability of domain assembly in the various clades was analyzed, as was the occurrence of relevant catalytic residues in the peroxidase domain based on the knowledge of catalysis of the mammalian homologues. Finally, the few reports on expression, localization, enzymatic activity, and physiological roles in the model organisms Drosophila melanogaster, Caenorhabditis elegans, and Homo sapiens are critically reviewed. Roles attributed to peroxidasins include antimicrobial defense, extracellular matrix formation, and consolidation at various developmental stages. Many research questions need to be solved in future, including detailed biochemical/physical studies and elucidation of the three dimensional structure of a model peroxidasin as well as the relation and interplay of the domains and the in vivo functions in various organisms including man. PMID:22976969

  2. Significance of settling model structures and parameter subsets in modelling WWTPs under wet-weather flow and filamentous bulking conditions.

    PubMed

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen; Plósz, Benedek Gy

    2014-10-15

    Current research focuses on predicting and mitigating the impacts of high hydraulic loadings on centralized wastewater treatment plants (WWTPs) under wet-weather conditions. The maximum permissible inflow to WWTPs depends not only on the settleability of activated sludge in secondary settling tanks (SSTs) but also on the hydraulic behaviour of SSTs. The present study investigates the impacts of ideal and non-ideal flow (dry and wet weather) and settling (good settling and bulking) boundary conditions on the sensitivity of WWTP model outputs to uncertainties intrinsic to the one-dimensional (1-D) SST model structures and parameters. We identify the critical sources of uncertainty in WWTP models through global sensitivity analysis (GSA) using the Benchmark simulation model No. 1 in combination with first- and second-order 1-D SST models. The results obtained illustrate that the contribution of settling parameters to the total variance of the key WWTP process outputs significantly depends on the influent flow and settling conditions. The magnitude of the impact is found to vary, depending on which type of 1-D SST model is used. Therefore, we identify and recommend potential parameter subsets for WWTP model calibration, and propose optimal choice of 1-D SST models under different flow and settling boundary conditions. Additionally, the hydraulic parameters in the second-order SST model are found significant under dynamic wet-weather flow conditions. These results highlight the importance of developing a more mechanistic based flow-dependent hydraulic sub-model in second-order 1-D SST models in the future.

  3. Importance of Molecular Structure on the Thermophoresis of Binary Mixtures.

    PubMed

    Kumar, Pardeep; Goswami, Debabrata

    2014-12-26

    Using thermal lens spectroscopy, we study the role of molecular structural isomers of butanol on the thermophoresis (or Soret effect) of binary mixtures of methanol in butanol. In this study, we show that the thermal lens signal due to the Soret effect changes its sign for all the different concentrations of binary mixtures of butanol with methanol except for the one containing tertiary-butanol. The magnitude and sign of the Soret coefficients strongly depend on the molecular structure of the isomers of butanol in the binary mixture with methanol. This isomerization dependence is in stark contrast to the expected mass dependence of the Soret effect.

  4. The role of keratin subfamilies and keratin pairs in the formation of human epidermal intermediate filaments

    PubMed Central

    1986-01-01

    The four major keratins of normal human epidermis (molecular mass 50, 56.5, 58, and 65-67 kD) can be subdivided on the basis of charge into two subfamilies (acidic 50-kD and 56.5-kD keratins vs. relatively basic 58-kD and 65-67-kD keratins) or subdivided on the basis of co- expression into two "pairs" (50-kD/58-kD keratin pair synthesized by basal cells vs. 56.5-kD/65-67-kD keratin pair expressed in suprabasal cells). Acidic and basic subfamilies were separated by ion exchange chromatography in 8.5 M urea and tested for their ability to reassemble into 10-nm filaments in vitro. The two keratins in either subfamily did not reassemble into 10-nm filaments unless combined with members of the other subfamily. While electron microscopy of acidic and basic keratins equilibrated in 4.5 M urea showed that keratins within each subfamily formed distinct oligomeric structures, possibly representing precursors in filament assembly, chemical cross-linking followed by gel analysis revealed dimers and larger oligomers only when subfamilies were combined. In addition, among the four major keratins, the acidic 50-kD and basic 58-kD keratins showed preferential association even in 8.5 M urea, enabling us to isolate a 50-kD/58-kD keratin complex by gel filtration. This isolated 50-kD/58-kD keratin pair readily formed 10-nm filaments in vitro. These results demonstrate that in tissues containing multiple keratins, two keratins are sufficient for filament assembly, but one keratin from each subfamily is required. More importantly, these data provide the first evidence for the structural significance of specific co-expressed acidic/basic keratin pairs in the formation of epithelial 10-nm filaments. PMID:2422179

  5. A potential role for the COOH-terminal domain in the lateral packing of type III intermediate filaments

    PubMed Central

    1991-01-01

    To identify sites of self-association in type III intermediate filament (IF) proteins, we have taken an "anti-idiotypic antibody" approach. A mAb (anti-Ct), recognizing a similar feature near the end of the rod domain of vimentin, desmin, and peripherin (epsilon site or epsilon epitope), was characterized. Anti-idiotypic antibodies, generated by immunizing rabbits with purified anti-Ct, recognize a site (presumably "complementary" to the epsilon epitope) common among vimentin, desmin, and peripherin (beta site or beta epitope). The beta epitope is represented in a synthetic peptide (PII) modeled after the 30 COOH- terminal residues of peripherin, as seen by comparative immunoblotting assays. Consistent with the idea of an association between the epsilon and the beta site, PII binds in vitro to intact IF proteins and fragments containing the epsilon epitope, but not to IF proteins that do not react with anti-Ct. Microinjection experiments conducted in vivo and filament reconstitution assays carried out in vitro further demonstrate that "uncoupling" of this site-specific association (by competition with PII or anti-Ct) interferes with normal IF architecture, resulting in the formation of filaments and filament bundles with diameters much greater than that of the normal IFs. These thick fibers are very similar to the ones observed previously when a derivative of desmin missing 27 COOH-terminal residues was assembled in vitro (Kaufmann, E., K. Weber, and N. Geisler. 1985. J. Mol. Biol. 185:733-742). As a molecular explanation, we propose here that the epsilon and the beta sites of type III IF proteins are "complementary" and associate during filament assembly. As a result of this association, we further postulate the formation of a surface-exposed "loop" or "hairpin" structure that may sterically prevent inappropriate filament-filament aggregation and regulate filament thickness. PMID:1714461

  6. Branching of keratin intermediate filaments.

    PubMed

    Nafeey, Soufi; Martin, Ines; Felder, Tatiana; Walther, Paul; Felder, Edward

    2016-06-01

    Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation.

  7. Dynamics of stellar filaments in f(G) gravity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Fatima, H. Ismat

    2017-03-01

    We discuss the dynamics of stellar filaments with cylindrical symmetry in the context of f( G) gravity. For this purpose, we consider the modified gravity coupled with a dissipative anisotropic fluid and construct scalar functions through orthogonal splitting of the Riemann tensor. We formulate the set of equations governing the evolution and structure of stellar filaments in terms of these scalars. Finally, we discuss all static solutions for cylindrical filaments with anisotropy as well as isotropy and conclude that stellar filaments are necessarily inhomogeneous in this gravity.

  8. Deletions in epidermal keratins leading to alterations in filament organization in vivo and in intermediate filament assembly in vitro

    PubMed Central

    1990-01-01

    To investigate the sequences important for assembly of keratins into 10- nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin filament networks in vivo, but they also formed 10-nm filaments with K5 in vitro. Surprisingly, keratin mutants missing the highly conserved L L E G E sequence, common to all intermediate filament proteins and found at the carboxy end of the alpha-helical rod domain, also assembled into filaments with only a somewhat reduced efficiency. Even a carboxy K14 mutant missing approximately 10% of the rod assembled into filaments, although in this case filaments aggregated significantly. Despite the ability of these mutants to form filaments in vitro, they often perturbed keratin filament organization in vivo. In contrast, small truncations in the amino-terminal end of the rod domain more severely disrupted the filament assembly process in vitro as well as in vivo, and in particular restricted elongation. For both carboxy and amino rod deletions, the more extensive the deletion, the more severe the phenotype. Surprisingly, while elongation could be almost quantitatively blocked with large mutations, tetramer formation and higher ordered lateral interactions still occurred. Collectively, our in vitro data (a) provide a molecular basis for the dominance of our mutants in vivo, (b) offer new insights as to why different mutants may generate different phenotypes in vivo, and (c) delineate the limit sequences necessary for K14 to both incorporate properly into a preexisting keratin filament network in vivo and assemble efficiently into 10-nm keratin filaments in vitro. PMID:1702787

  9. SOLAR MAGNETIZED 'TORNADOES': RELATION TO FILAMENTS

    SciTech Connect

    Su Yang; Veronig, Astrid; Temmer, Manuela; Wang Tongjiang; Gan Weiqun

    2012-09-10

    Solar magnetized 'tornadoes', a phenomenon discovered in the solar atmosphere, appear as tornado-like structures in the corona but are rooted in the photosphere. Like other solar phenomena, solar tornadoes are a feature of magnetized plasma and therefore differ distinctly from terrestrial tornadoes. Here we report the first analysis of solar 'tornadoes' (two papers which focused on different aspects of solar tornadoes were published in the Astrophysical Journal Letters and Nature, respectively, during the revision of this Letter). A detailed case study of two events indicates that they are rotating vertical magnetic structures probably driven by underlying vortex flows in the photosphere. They usually exist as a group and are related to filaments/prominences, another important solar phenomenon whose formation and eruption are still mysteries. Solar tornadoes may play a distinct role in the supply of mass and twists to filaments. These findings could lead to a new explanation of filament formation and eruption.

  10. From non-random molecular structure to life and mind

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1989-01-01

    The evolutionary hierarchy molecular structure-->macromolecular structure-->protobiological structure-->biological structure-->biological functions has been traced by experiments. The sequence always moves through protein. Extension of the experiments traces the formation of nucleic acids instructed by proteins. The proteins themselves were, in this picture, instructed by the self-sequencing of precursor amino acids. While the sequence indicated explains the thread of the emergence of life, protein in cellular membrane also provides the only known material basis for the emergence of mind in the context of emergence of life.

  11. Interaction and merging of two sinistral filaments

    SciTech Connect

    Jiang, Yunchun; Yang, Jiayan; Liu, Yu; Li, Haidong; Wang, Haimin; Ji, Haisheng; Li, Jianping

    2014-09-20

    In this paper, we report the interaction and subsequent merging of two sinistral filaments (F1 and F2) occurring at the boundary of AR 9720 on 2001 December 6. The two filaments were close and nearly perpendicular to each other. The interaction occurred after F1 was erupted and the eruption was impeded by a more extended filament channel (FC) standing in the way, in which F2 was embedded. The erupted material ran into FC along its axis, causing F1 and F2 to merge into a single structure that subsequently underwent a large-amplitude to-and-fro motion. A significant plasma heating process was observed in the merging process, making the mixed material largely disappear from the Hα passband, but appear in Extreme Ultraviolet Telescope 195 Å images for a while. These observations can serve as strong evidence of merging reconnection between the two colliding magnetic structures. A new sinistral filament was formed along FC after the cooling of the merged and heated material. No coronal mass ejection was observed to be associated with the event; though, the eruption was accompanied by a two-ribbon flare with a separation motion, indicating that the eruption had failed. This event shows that, in addition to overlying magnetic fields, such an interaction is an effective restraint to make a filament eruption fail in this way.

  12. ALMA Reveals Internal Structure of Molecular Clouds in the LMC

    NASA Astrophysics Data System (ADS)

    Sawada, T.; Hasegawa, T.; Koda, J.

    2015-12-01

    We carried out high-resolution (0.7 pc) CO J=1-0 mosaic observations of five giant molecular clouds, which cover a wide range of evolutionary stages based on their associations to recent star formation, in the Large Magellanic Cloud with ALMA. The observations revealed a variety of spatial structures of the gas, from faint and diffuse emission to bright and compact structures. The variation of structures, which is similar to that seen in the Milky Way, is quantified by the brightness distribution function (BDF) and brightness distribution index (BDI) established in our prior studies. The structured molecular gas may indicate the readiness for, rather than the outcome of, star formation.

  13. Material Supply and Magnetic Configuration of an Active Region Filament

    NASA Astrophysics Data System (ADS)

    Zou, P.; Fang, C.; Chen, P. F.; Yang, K.; Hao, Q.; Cao, Wenda

    2016-11-01

    It is important to study the fine structures of solar filaments with high-resolution observations, since it can help us understand the magnetic and thermal structures of the filaments and their dynamics. In this paper, we study a newly formed filament located inside the active region NOAA 11762, which was observed by the 1.6 m New Solar Telescope at Big Bear Solar Observatory from 16:40:19 UT to 17:07:58 UT on 2013 June 5. As revealed by the Hα filtergrams, cool material is seen to be injected into the filament spine with a speed of 5-10 km s-1. At the source of the injection, brightenings are identified in the chromosphere, which are accompanied by magnetic cancellation in the photosphere, implying the importance of magnetic reconnection in replenishing the filament with plasmas from the lower atmosphere. Counter-streamings are detected near one endpoint of the filament, with the plane-of-the-sky speed being 7-9 km s-1 in the Hα red-wing filtergrams and 9-25 km s-1 in the blue-wing filtergrams. The observations are indicative that this active region filament is supported by a sheared arcade without magnetic dips, and the counter-streamings are due to unidirectional flows with alternative directions, rather than due to the longitudinal oscillations of filament threads as in many other filaments.

  14. Origin and structure of polar domains in doped molecular crystals

    PubMed Central

    Meirzadeh, E.; Azuri, I.; Qi, Y.; Ehre, D.; Rappe, A. M.; Lahav, M.; Kronik, L.; Lubomirsky, I.

    2016-01-01

    Doping is a primary tool for the modification of the properties of materials. Occlusion of guest molecules in crystals generally reduces their symmetry by the creation of polar domains, which engender polarization and pyroelectricity in the doped crystals. Here we describe a molecular-level determination of the structure of such polar domains, as created by low dopant concentrations (<0.5%). The approach comprises crystal engineering and pyroelectric measurements, together with dispersion-corrected density functional theory and classical molecular dynamics calculations of the doped crystals, using neutron diffraction data of the host at different temperatures. This approach is illustrated using centrosymmetric α-glycine crystals doped with minute amounts of different L-amino acids. The experimentally determined pyroelectric coefficients are explained by the structure and polarization calculations, thus providing strong support for the local and global understanding of how different dopants influence the properties of molecular crystals. PMID:27824050

  15. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    PubMed

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  16. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    NASA Astrophysics Data System (ADS)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  17. Molecular structure of DNA by scanning tunneling microscopy.

    PubMed

    Cricenti, A; Selci, S; Felici, A C; Generosi, R; Gori, E; Djaczenko, W; Chiarotti, G

    1989-09-15

    Uncoated DNA molecules marked with an activated tris(l-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 to 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  18. Molecular Structure of DNA by Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Cricenti, A.; Selci, S.; Felici, A. C.; Generosi, R.; Gori, E.; Djaczenko, W.; Chiarotti, G.

    1989-09-01

    Uncoated DNA molecules marked with an activated tris(1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with the use of a high-resolution scanning tunneling microscope (STM). Constant-current and gap-modulated STM images show clear evidence of the helicity of the DNA structure: pitch periodicity ranges from 25 and 35 angstroms, whereas the average diameter is 20 angstroms. Molecular structure within a single helix turn was also observed.

  19. Dense granule trafficking in Toxoplasma gondii requires a unique class 27 myosin and actin filaments

    PubMed Central

    Heaslip, Aoife T.; Nelson, Shane R.; Warshaw, David M.

    2016-01-01

    The survival of Toxoplasma gondii within its host cell requires protein release from secretory vesicles, called dense granules, to maintain the parasite’s intracellular replicative niche. Despite the importance of DGs, nothing is known about the mechanisms underlying their transport. In higher eukaryotes, secretory vesicles are transported to the plasma membrane by molecular motors moving on their respective cytoskeletal tracks (i.e., microtubules and actin). Because the organization of these cytoskeletal structures differs substantially in T. gondii, the molecular motor dependence of DG trafficking is far from certain. By imaging the motions of green fluorescent protein–tagged DGs in intracellular parasites with high temporal and spatial resolution, we show through a combination of molecular genetics and chemical perturbations that directed DG transport is independent of microtubules and presumably their kinesin/dynein motors. However, directed DG transport is dependent on filamentous actin and a unique class 27 myosin, TgMyoF, which has structural similarity to myosin V, the prototypical cargo transporter. Actomyosin DG transport was unexpected, since filamentous parasite actin has yet to be visualized in vivo due in part to the prevailing model that parasite actin forms short, unstable filaments. Thus our data uncover new critical roles for these essential proteins in the lytic cycle of this devastating pathogen. PMID:27146112

  20. Structural and functional insights into the conductive pili of Geobacter sulfurreducens revealed in molecular dynamics simulations.

    PubMed

    Feliciano, G T; Steidl, R J; Reguera, G

    2015-09-14

    Geobacter sulfurreducens (GS) electronically connects with extracellular electron acceptors using conductive protein filaments or pili. To gain insights into their role as biological nanowires, we investigated the structural dynamics of the GS pilus in solution via molecular dynamics simulations. In the model, all of the pilin's aromatics clustered as a right-handed helical band along the pilus, maintaining inter-aromatic distances and dimer configurations optimal for multistep hopping. The aromatics were interspersed within the regions of highest negative potential, which influenced the type and configuration of the aromatic contacts and the rates of electron transfer. Small foci of positive potential were also present but were neutralized within uncharged regions, thus minimizing charge trapping. Consistent with the model predictions, mutant strains with reduced aromatic contacts or negative potentials had defects in pili functions such as the reduction of Fe(III) oxides and electrodes. The results therefore support the notion of a pilus fiber evolved to function as an electronic conduit between the cell and extracellular electron acceptors.

  1. Connecting molecular structure and exciton diffusion length in rubrene derivatives.

    PubMed

    Mullenbach, Tyler K; McGarry, Kathryn A; Luhman, Wade A; Douglas, Christopher J; Holmes, Russell J

    2013-07-19

    Connecting molecular structure and exciton diffusion length in rubrene derivatives demonstrates how the diffusion length of rubrene can be enhanced through targeted functionalization aiming to enhance self-Förster energy transfer. Functionalization adds steric bulk, forcing the molecules farther apart on average, and leading to increased photoluminescence efficiency. A diffusion length enhancement greater than 50% is realized over unsubstituted rubrene.

  2. Antibodies to intermediate filament proteins as molecular markers in clinical tumor pathology. Differentiation of carcinomas by their reaction with different cytokeratin antibodies.

    PubMed

    Krepler, R; Denk, H; Artlieb, U; Fichtinger, E; Davidovits, A

    1982-01-01

    Antibodies to human and bovine epidermal prekeratin and antibodies to mouse liver cytokeratin component D (Mr 49 000) have been applied in indirect immunofluorescence microscopy on sections of human tumors of mammary gland and liver. In non-neoplastic mammary gland all epithelial cells were stained with these antibodies. In pre-invasive and invasive ductal and lobular carcinomas a cell population was observed which was not significantly stained with antibodies to epidermal prekeratin but did strongly react with antibodies to liver cytokeratin D. In the liver, the antibodies to epidermal prekeratin as well as those directed against liver cytokeratin D strongly decorated bile duct epithelia. In contrast, significant staining of the hepatocytes was only achieved with antibodies to liver cytokeratin D. This different staining reaction was maintained in liver tumors of hepatocellular and cholangiocellular origin. Antibodies to vimentin stained mesenchymal cells and tumors of mesenchymal derivation but reacted not significantly with any of the epithelial and carcinoma cells examined. The difference is of practical importance for the discrimination between anaplastic carcinomas and sarcomas of unknown origin. Cytokeratin could also be detected by antibody staining using the peroxidase-antiperoxidase (PAP) technique in formaldehyde-fixed and paraffin-embedded material of skin, gastrointestinal, respiratory, urinary and genital tract as well as various glands, liver and kidney. Examples of positive reactions were shown in a squamous cell carcinoma, a basalioma and a pleomorphic adenoma of the parotis. It is concluded that the immunohistochemical analysis of intermediate filament proteins has diagnostic potential in clinical pathology and may help to elucidate histogenesis and differentiation of tumors and possibly also prognosis of tumor growth. It is further suggested to use antibodies recognizing different subsets of proteins of the cytokeratin family in order to

  3. Structural elucidation of novel phosphocholine-containing glycosylinositol-phosphoceramides in filamentous fungi and their induction of cell death of cultured rice cells.

    PubMed Central

    Aoki, Kazuhiro; Uchiyama, Ryosuke; Itonori, Saki; Sugita, Mutsumi; Che, Fang-Sik; Isogai, Akira; Hada, Noriyasu; Hada, Junko; Takeda, Tadahiro; Kumagai, Hidehiko; Yamamoto, Kenji

    2004-01-01

    Novel ZGLs (zwitterionic glycosphingolipids) have been found in and extracted from the mycelia of filamentous fungi ( Acremonium sp.) isolated from soil. Five ZGLs (ZGL1-ZGL5) were structurally elucidated by sugar compositional analysis, methylation analysis, periodate oxidation, matrix-assisted laser-desorption ionization-time-of-flight MS, (1)H-NMR spectroscopy and fast-atom bombardment MS. Their chemical structures were as follows: GlcN(alpha1-2)Ins1-P-1Cer (ZGL1), Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL2), Man(alpha1-6)Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL3), PC-->6Man(alpha1-6)GlcN(alpha1-2)Ins1- P -1Cer (ZGL4), and PC-->6Man(alpha1-6)Man(alpha1-6)GlcN(alpha1-2)Ins1-P-1Cer (ZGL5) (where Cer is ceramide and PC is phosphocholine). In addition, one acidic glycosphingolipid, which was the precursor of ZGLs, was also characterized as inositol-phosphoceramide. The core structure of the ZGLs, GlcN(alpha1-2)Ins1- P, is rather different from those found in other fungi, such as Man(alpha1-2)Ins1- P and Man(alpha1-6)Ins1- P. Interestingly, the terminal mannose residue of ZGL4 and ZGL5 was modified further with a PC group. The presence of PC-containing glycosylinositol-phosphoceramides has not been reported previously in any organism. The ceramide constituents of both ZGLs and acidic glycosphingolipid were essentially the same, and consisted of a 4-hydroxyoctadecasphinganine (phytosphingosine) as the sole sphingoid base and 2-hydroxytetracosanoic acid (>90%) as the major fatty acid. ZGLs were found to cause cell death in suspensions of cultured rice cells. The cell death-inducing activity of ZGLs is probably due to the characteristic glycan moiety of Man(alpha1-6)GlcN, and PC-containing ZGLs had high activity. This study is the first to demonstrate that fungal glycosylinositol-phosphoceramides induce cell death in cultured rice cells. PMID:14583095

  4. Reprogramming of plant cells by filamentous plant-colonizing microbes.

    PubMed

    Doehlemann, Gunther; Requena, Natalia; Schaefer, Patrick; Brunner, Frederic; O'Connell, Richard; Parker, Jane E

    2014-12-01

    Although phylogenetically unrelated, filamentous oomycetes and fungi establish similar structures to colonize plants and they represent economically the most important microbial threat to crop production. In mutualistic interactions established by root-colonizing fungi, clear differences to pathogens can be seen, but there is mounting evidence that their infection strategies and molecular interactions have certain common features. To infect the host, fungi and oomycetes employ similar strategies to circumvent plant innate immunity. This process involves the suppression of basal defence responses which are triggered by the perception of conserved molecular patterns. To establish biotrophy, effector proteins are secreted from mutualistic and pathogenic microbes to the host tissue, where they play central roles in the modulation of host immunity and metabolic reprogramming of colonized host tissues. This review article discusses key effector mechanisms of filamentous pathogens and mutualists, how they modulate their host targets and the fundamental differences or parallels between these different interactions. The orchestration of effector actions during plant infection and the importance of their localization within host tissues are also discussed.

  5. Filament-wound spar shell graphite/epoxy fan blades

    NASA Technical Reports Server (NTRS)

    Yao, S.

    1976-01-01

    The methodology for fabrication of wet filament wound spar shell fan blades is presented. All principal structural elements were filament wound, assembled, formed, bonded and co-cured in a female mold. A pair of blades were fabricated as one integral unit and parted into two after curing.

  6. A network of filaments detected by Herschel in the Serpens core. A laboratory to test simulations of low-mass star formation

    NASA Astrophysics Data System (ADS)

    Roccatagliata, V.; Dale, J. E.; Ratzka, T.; Testi, L.; Burkert, A.; Koepferl, C.; Sicilia-Aguilar, A.; Eiroa, C.; Gaczkowski, B.

    2015-12-01

    Context. Filaments represent a key structure during the early stages of the star formation process. Simulations show that filamentary structures commonly formed before and during the formation of cores. Aims: The Serpens core is an ideal laboratory for testing the state of the art of simulations of turbulent giant molecular clouds. Methods: We used Herschel observations of the Serpens core to compute temperature and column density maps of the region. We selected the early stages of a recent simulation of star-formation, before stellar feedback was initiated, with similar total mass and physical size as the Serpens core. We also derived temperature and column density maps from the simulations. The observed distribution of column densities of the filaments was analyzed, first including and then masking the cores. The same analysis was performed on the simulations as well. Results: A radial network of filaments was detected in the Serpens core. The analyzed simulation shows a striking morphological resemblance to the observed structures. The column density distribution of simulated filaments without cores shows only a log-normal distribution, while the observed filaments show a power-law tail. The power-law tail becomes evident in the simulation if the focus is only the column density distribution of the cores. In contrast, the observed cores show a flat distribution. Conclusions: Even though the simulated and observed filaments are subjectively similar-looking, we find that they behave in very different ways. The simulated filaments are turbulence-dominated regions; the observed filaments are instead self-gravitating structures that will probably fragment into cores. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendices are available in electronic form at http://www.aanda.org

  7. Extracting Structure Parameters of Dimers for Molecular Tunneling Ionization Model

    NASA Astrophysics Data System (ADS)

    Song-Feng, Zhao; Fang, Huang; Guo-Li, Wang; Xiao-Xin, Zhou

    2016-03-01

    We determine structure parameters of the highest occupied molecular orbital (HOMO) of 27 dimers for the molecular tunneling ionization (so called MO-ADK) model of Tong et al. [Phys. Rev. A 66 (2002) 033402]. The molecular wave functions with correct asymptotic behavior are obtained by solving the time-independent Schrödinger equation with B-spline functions and molecular potentials which are numerically created using the density functional theory. We examine the alignment-dependent tunneling ionization probabilities from MO-ADK model for several molecules by comparing with the molecular strong-field approximation (MO-SFA) calculations. We show the molecular Perelomov-Popov-Terent'ev (MO-PPT) can successfully give the laser wavelength dependence of ionization rates (or probabilities). Based on the MO-PPT model, two diatomic molecules having valence orbital with antibonding systems (i.e., Cl2, Ne2) show strong ionization suppression when compared with their corresponding closest companion atoms. Supported by National Natural Science Foundation of China under Grant Nos. 11164025, 11264036, 11465016, 11364038, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20116203120001, and the Basic Scientific Research Foundation for Institution of Higher Learning of Gansu Province

  8. Molecular design for growth of supramolecular membranes with hierarchical structure.

    PubMed

    Zha, R Helen; Velichko, Yuri S; Bitton, Ronit; Stupp, Samuel I

    2016-02-07

    Membranes with hierarchical structure exist in biological systems, and bio-inspired building blocks have been used to grow synthetic analogues in the laboratory through self-assembly. The formation of these synthetic membranes is initiated at the interface of two aqueous solutions, one containing cationic peptide amphiphiles (PA) and the other containing the anionic biopolymer hyaluronic acid (HA). The membrane growth process starts within milliseconds of interface formation and continues over much longer timescales to generate robust membranes with supramolecular PA-HA nanofibers oriented orthogonal to the interface. Computer simulation indicates that formation of these hierarchically structured membranes requires strong interactions between molecular components at early time points in order to generate a diffusion barrier between both solutions. Experimental studies using structurally designed PAs confirm simulation results by showing that only PAs with high ζ potential are able to yield hierarchically structured membranes. Furthermore, the chemical structure of such PAs must incorporate residues that form β-sheets, which facilitates self-assembly of long nanofibers. In contrast, PAs that form low aspect ratio nanostructures interact weakly with HA and yield membranes that exhibit non-fibrous fingering protrusions. Furthermore, experimental results show that increasing HA molecular weight decreases the growth rate of orthogonal nanofibers. This result is supported by simulation results suggesting that the thickness of the interfacial contact layer generated immediately after initiation of self-assembly increases with polymer molecular weight.

  9. Molecular, Functional, and Structural Imaging of Major Depressive Disorder.

    PubMed

    Zhang, Kai; Zhu, Yunqi; Zhu, Yuankai; Wu, Shuang; Liu, Hao; Zhang, Wei; Xu, Caiyun; Zhang, Hong; Hayashi, Takuya; Tian, Mei

    2016-06-01

    Major depressive disorder (MDD) is a significant cause of morbidity and mortality worldwide, correlating with genetic susceptibility and environmental risk factors. Molecular, functional, and structural imaging approaches have been increasingly used to detect neurobiological changes, analyze neurochemical correlates, and parse pathophysiological mechanisms underlying MDD. We reviewed recent neuroimaging publications on MDD in terms of molecular, functional, and structural alterations as detected mainly by magnetic resonance imaging (MRI) and positron emission tomography. Altered structure and function of brain regions involved in the cognitive control of affective state have been demonstrated. An abnormal default mode network, as revealed by resting-state functional MRI, is likely associated with aberrant metabolic and serotonergic function revealed by radionuclide imaging. Further multi-modal investigations are essential to clarify the characteristics of the cortical network and serotonergic system associated with behavioral and genetic variations in MDD.

  10. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate.

  11. Photoelectron Angular Distribution and Molecular Structure in Multiply Charged Anions

    SciTech Connect

    Xing, Xiaopeng; Wang, Xue B.; Wang, Lai S.

    2009-02-12

    Photoelectrons emitted from multiply charged anions (MCAs) carry information of the intramolecular Coulomb repulsion (ICR), which is dependent on molecular structures. Using photoelectron imaging, we observed the effects of ICR on photoelectron angular distributions (PAD) of the three isomers of benzene dicarboxylate dianions C6H4(CO2)22– (o-, m- and p-BDC2–). Photoelectrons were observed to peak along the laser polarization due to the ICR, but the anisotropy was the largest for p-BDC2–, followed by the m- and o-isomer. The observed anisotropy is related to the direction of the ICR or the detailed molecular structures, suggesting that photoelectron imaging may allow structural information to be obtained for complex multiply charged anions.

  12. Molecular and electronic structure of electroactive self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Méndez De Leo, Lucila P.; de la Llave, Ezequiel; Scherlis, Damián; Williams, Federico J.

    2013-03-01

    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30° tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.

  13. Molecular and electronic structure of electroactive self-assembled monolayers.

    PubMed

    Méndez De Leo, Lucila P; de la Llave, Ezequiel; Scherlis, Damián; Williams, Federico J

    2013-03-21

    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30° tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.

  14. MOLVIE: an interactive visualization environment for molecular structures.

    PubMed

    Sun, Huandong; Li, Ming; Xu, Ying

    2003-05-01

    A Molecular visualization interactive environment (MOLVIE), is designed to display three-dimensional (3D) structures of molecules and support the structural analysis and research on proteins. The paper presents the features, design considerations and applications of MOLVIE, especially the new functions used to compare the structures of two molecules and view the partial fragment of a molecule. Being developed in JAVA, MOLVIE is platform-independent. Moreover, it may run on a webpage as an applet for remote users. MOLVIE is available at http://www.cs.ucsb.edu/~mli/Bioinf/software/index.html.

  15. Three-dimensional depth profiling of molecular structures.

    PubMed

    Wucher, A; Cheng, J; Zheng, L; Winograd, N

    2009-04-01

    Molecular time of flight secondary ion mass spectrometry (ToF-SIMS) imaging and cluster ion beam erosion are combined to perform a three-dimensional chemical analysis of molecular films. The resulting dataset allows a number of artifacts inherent in sputter depth profiling to be assessed. These artifacts arise from lateral inhomogeneities of either the erosion rate or the sample itself. Using a test structure based on a trehalose film deposited on Si, we demonstrate that the "local" depth resolution may approach values which are close to the physical limit introduced by the information depth of the (static) ToF-SIMS method itself.

  16. Filament winding - Waking the sleeping giant

    NASA Technical Reports Server (NTRS)

    Freeman, W. T., Jr.; Stein, B. A.

    1985-01-01

    The use of filament winding (FW) in the production of aerospace composite structures is examined. The FW process applies spools of fiber and prepreg tow or prepreg tape to a male mandrel; the process is more efficient and cost effective than metallic construction. The fibers used in FW and the curing process are explained. The reduced storage and fabrication costs that result from FW are discussed. The use of FW to produce a filament-wound case for a solid rocket motor and the substructure and skin of an aircraft fuselage are described. Areas which require further development in order to expand the use of FW are listed and discussed.

  17. Electrical contact resistance in filaments

    NASA Astrophysics Data System (ADS)

    Wu, Xiang-Fa; Zhou, Zhengping; Zhou, Wang-Min

    2012-05-01

    Electrical contact resistance (ECR) influences the electrochemical performance of porous electrodes made of stacked discrete materials (e.g., carbon nanotubes, nanofibers, etc.) for use in supercapacitors and rechargeable batteries. This study establishes a simple elasticity-conductivity model for the ECR of filaments in adhesive contact. The elastic deformation and size of electrical contact zone of the filaments are determined by using an adhesive contact model of filaments, and the ECR of adhesive filaments is obtained in explicit form. Dependencies of the ECR upon the filament geometries, surface energy, and elasticity are examined.

  18. Hollow cylindrical plasma filament waveguide with discontinuous finite thickness cladding

    SciTech Connect

    Alshershby, Mostafa; Hao Zuoqiang; Lin Jingquan

    2013-01-15

    We have explored here a hollow cylindrical laser plasma multifilament waveguide with discontinuous finite thickness cladding, in which the separation between individual filaments is in the range of several millimeters and the waveguide cladding thickness is in the order of the microwave penetration depth. Such parameters give a closer representation of a realistic laser filament waveguide sustained by a long stable propagation of femtosecond (fs) laser pulses. We report how the waveguide losses depend on structural parameters like normalized plasma filament spacing, filament to filament distance or pitch, normal spatial frequency, and radius of the plasma filament. We found that for typical plasma parameters, the proposed waveguide can support guided modes of microwaves in extremely high frequency even with a cladding consisting of only one ring of plasma filaments. The loss of the microwave radiation is mainly caused by tunneling through the discontinuous finite cladding, i.e., confinement loss, and is weakly dependent on the plasma absorption. In addition, the analysis indicates that the propagation loss is fairly large compared with the loss of a plasma waveguide with a continuous infinite thickness cladding, while they are comparable when using a cladding contains more than one ring. Compared to free space propagation, this waveguide still presents a superior microwave transmission to some distance in the order of the filamentation length; thus, the laser plasma filaments waveguide may be a potential channel for transporting pulsed-modulated microwaves if ensuring a long and stable propagation of fs laser pulses.

  19. Regional orientation of actin filaments in the pericanalicular cytoplasm of rat hepatocytes.

    PubMed

    Ishii, M; Washioka, H; Tonosaki, A; Toyota, T

    1991-12-01

    To elucidate how actin filaments participate in bile formation, polarity of actin filaments in the pericanalicular cytoplasm was determined with myosin subfragment 1 by transmission electron microscopy of ultrathin sections and deep-etching replicas. Densely concentrated actin filaments were identified around the bile canaliculi in the forms of microvillous core filaments, pericanalicular web filaments, and filaments on the junctional complex. They bound subfragment 1 to form double-helical strands on the deep-etching replica or typical arrowheads on the ultrathin section. All microvillous core filaments showed their arrowheads pointing basally, suggesting the molecular growth occurring at their apical ends. In contrast, filaments of the pericanalicular web, running in parallel to the cell surface, showed unfixed polarities as indicated by their arrowheads. Furthermore, neighboring filament pairs often showed opposite polarities, an alignment necessary for filament sliding. The junctional complex had filaments with arrowheads pointed mostly at the cell center with a small number in opposite direction. In addition, a group of sporadic filaments appeared to be installed to link to both the canalicular membrane and coated vesicles. Such regionally specialized actin filaments are considered inclusively to form a cytoskeletal system that is in charge of (a) maintenance of length of the microvilli, (b) contraction of the canalicular walls, and (c) translocation of coated vesicles in the pericanalicular cytoplasm.

  20. A catalytic oligomeric motor that walks along a filament track

    SciTech Connect

    Huang, Mu-Jie Kapral, Raymond

    2015-06-28

    Most biological motors in the cell execute chemically powered conformational changes as they walk on biopolymer filaments in order to carry out directed transport functions. Synthetic motors that operate in a similar manner are being studied since they have the potential to perform similar tasks in a variety of applications. In this paper, a synthetic nanomotor that moves along a filament track, without invoking motor conformational changes, is constructed and its properties are studied in detail. The motor is an oligomer comprising three linked beads with specific binding properties. The filament track is a stiff polymer chain, also described by a linear chain of linked coarse-grained molecular groups modeled as beads. Reactions on the filament that are catalyzed by a motor bead and use fuel in the environment, in conjunction within the binding affinities of the motor beads to the filament beads, lead to directed motion. The system operates out of equilibrium due to the state of the filament and supply of fuel. The motor, filament, and surrounding medium are all described at microscopic level that permits a full analysis of the motor motion. A stochastic model that captures the main trends seen in the simulations is also presented. The results of this study point to some of the key features that could be used to construct nanomotors that undergo biased walks powered by chemical reactions on filaments.

  1. Probing the sliding interactions between bundled actin filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andy; Dogic, Zvonimir

    2011-03-01

    Assemblies of filamentous biopolymers are hierarchical materials in which the properties of the overall assemblage are determined by structure and interactions between constituent particles at all hierarchical levels. For example, the overall bending rigidity of a two bundled filaments greatly depends on the bending rigidity of, and the adhesion strength between individual filaments. However, another property of importance is the ability for the filaments to slide freely against one another. Everyday experience indicates that it is much easier to bend a stack of papers in which individual sheets freely slide past each other than the same stack of papers in which all the sheets are irreversibly glued together. Similarly, in filamentous structures the ability for local re-arrangement is of the utmost importance in determining the properties of the structures observed. In order to study this phenomenon we create bundles of biopolymers by inducing attractive interactions between actin filaments via the depletion mechanism. We find that bundles of actin filaments to do not slide freely across one another. In order to characterize these sliding interactions, we perform active experiments using laser tweezers to pull one filament across the other at constant velocity.

  2. Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation.

    PubMed

    Schumacher, Maria A

    2008-05-15

    DNA segregation or partition is an essential process that ensures stable genome transmission. In prokaryotes, partition is best understood for plasmids, which serve as tractable model systems to study the mechanistic underpinnings of DNA segregation at a detailed atomic level owing to their simplicity. Specifically, plasmid partition requires only three elements: a centromere-like DNA site and two proteins: a motor protein, generally an ATPase, and a centromere-binding protein. In the first step of the partition process, multiple centromere-binding proteins bind co-operatively to the centromere, which typically consists of several tandem repeats, to form a higher-order nucleoprotein complex called the partition complex. The partition complex recruits the ATPase to form the segrosome and somehow activates the ATPase for DNA separation. Two major families of plasmid par systems have been delineated based on whether they utilize ATPase proteins with deviant Walker-type motifs or actin-like folds. In contrast, the centromere-binding proteins show little sequence homology even within a given family. Recent structural studies, however, have revealed that these centromere-binding proteins appear to belong to one of two major structural groups: those that employ helix-turn-helix DNA-binding motifs or those with ribbon-helix-helix DNA-binding domains. The first structure of a higher-order partition complex was recently revealed by the structure of pSK41 centromere-binding protein, ParR, bound to its centromere site. This structure showed that multiple ParR ribbon-helix-helix motifs bind symmetrically to the tandem centromere repeats to form a large superhelical structure with dimensions suitable for capture of the filaments formed by the actinlike ATPases. Surprisingly, recent data indicate that the deviant Walker ATPase proteins also form polymer-like structures, suggesting that, although the par families harbour what initially appeared to be structurally and functionally

  3. Solution structures and molecular interactions of selective melanocortin receptor antagonists.

    PubMed

    Lee, Chul-Jin; Yun, Ji-Hye; Lim, Sung-Kil; Lee, Weontae

    2010-12-01

    The solution structures and inter-molecular interaction of the cyclic melanocortin antagonists SHU9119, JKC363, HS014, and HS024 with receptor molecules have been determined by NMR spectroscopy and molecular modeling. While SHU9119 is known as a nonselective antagonist, JKC363, HS014, and HS024 are selective for the melanocortin subtype-4 receptor (MC4R) involved in modulation of food intake. Data from NMR and molecular dynamics suggest that the conformation of the Trp9 sidechain in the three MC4R-selective antagonists is quite different from that of SHU9119. This result strongly supports the concept that the spatial orientation of the hydrophobic aromatic residue is more important for determining selectivity than the presence of a basic, "arginine-like" moiety responsible for biological activity. We propose that the conformation of hydrophobic residues of MCR antagonists is critical for receptor-specific selectivity.

  4. Study of the structuring of pure molecular liquids

    NASA Astrophysics Data System (ADS)

    Letamendia, L.; Duplessix, R.; Nouchi, G.; Vaucamps, C.

    Recent experiments have shown that changes in the slope of specific heat variation as a function of temperature in liquids are not always regular. In this study, the authors consider the possibility that fluid structure can change with temperature, by shifting from one form to another. They study such molecular liquids as benzene, hexafluorobenzene, and quinoleine using Rayleigh-Brillouin and depolarized Rayleigh diffusion, and total intensity diffusion. The authors clearly found anomalies for all collective properties of the medium in the liquids studied, though purely molecular properties were undisturbed. The accidents observed occurred at the same temperatures, whatever the collective or intermolecular property under study. But it took some time (several hours) for them to manifest themselves, which suggests that molecular liquids are characterized by a long thermodynamic equilibrium. Results also show a disturbance in hydrodynamic state at accident temperatures, which are similar to those generated by long spatial correlation processes.

  5. Molecular structures in the charmonium spectrum: the XYZ puzzle

    NASA Astrophysics Data System (ADS)

    Ortega, P. G.; Entem, D. R.; Fernández, F.

    2013-06-01

    We study in the framework of a constituent quark model the possible contributions of molecular structures to the XYZ charmonium-like states. We analyze simultaneously the c\\bar{c} structures and the possible molecular components in the coupled channel formalism. In the 1++ sector two states appear which could be identified with X(3872) and X(3940). The recently confirmed X(3915) state appears as a mixture of c\\bar{c} and D\\bar{D} components as a JPC = 0++ state in agreement with the new measurements. A second broad resonance which may correspond with the so-called Y(3940) state is found with these quantum numbers. In the JPC = 1-- sector we also found significant contributions of the molecular structures which may affect the phenomenology. In particular the study allows us to understand the G(3900) state recently observed in Belle and BaBar. All these resonances together with the prediction of the model of a c\\bar{c} structure for Z(3930) provide a reasonable scenario for the so-called XYZ states with masses near 3.9 GeV.

  6. Structural characterization of human vimentin rod 1 and the sequencing of assembly steps in intermediate filament formation in vitro using site-directed spin labeling and electron paramagnetic resonance.

    PubMed

    Hess, John F; Budamagunta, Madhu S; Voss, John C; FitzGerald, Paul G

    2004-10-22

    We have previously established the utility of site-directed spin labeling and electron paramagnetic resonance to determine structural relationships among proteins in intact intermediate filaments. Using this same approach we have introduced spin labels at 21 residues between amino acids 169 and 193 in rod domain 1 of human vimentin. The electron paramagnetic resonance spectra provide direct evidence for the coiled coil nature of the vimentin dimer in this region. This finding is consistent with predictions but has never been demonstrated previously. In a previous study we identified residue 348 in the rod domain 2 as one point of overlap between adjacent dimers in intact filaments. In the present study we defined residue 191 in the rod domain 1 as a second point of overlap and established that the dimers are arranged in an anti-parallel and staggered orientation at this site. Finally, by isolating spin-labeled samples at successive stages during the dialysis that lead to filament assembly in vitro, we have been able to establish a sequence of interactions that occurs during in vitro assembly, starting with the alpha helix and loose coiled coil dimer formation, then the formation of tetrameric species centered on residue 191, followed by interactions centered on residue 348 suggestive of octamer or higher order multimer formation. A continuation of this strategy revealed that both 191-191 and 348-348 interactions are present in low ionic strength Tris buffers when vimentin is maintained at the "protofilament" stage of assembly.

  7. Beam wandering of femtosecond laser filament in air.

    PubMed

    Yang, Jing; Zeng, Tao; Lin, Lie; Liu, Weiwei

    2015-10-05

    The spatial wandering of a femtosecond laser filament caused by the filament heating effect in air has been studied. An empirical formula has also been derived from the classical Karman turbulence model, which determines quantitatively the displacement of the beam center as a function of the propagation distance and the effective turbulence structure constant. After fitting the experimental data with this formula, the effective turbulence structure constant has been estimated for a single filament generated in laboratory environment. With this result, one may be able to estimate quantitatively the displacement of a filament over long distance propagation and interpret the practical performance of the experiments assisted by femtosecond laser filamentation, such as remote air lasing, pulse compression, high order harmonic generation (HHG), etc.

  8. Filamentation with nonlinear Bessel vortices.

    PubMed

    Jukna, V; Milián, C; Xie, C; Itina, T; Dudley, J; Courvoisier, F; Couairon, A

    2014-10-20

    We present a new type of ring-shaped filaments featured by stationary nonlinear high-order Bessel solutions to the laser beam propagation equation. Two different regimes are identified by direct numerical simulations of the nonlinear propagation of axicon focused Gaussian beams carrying helicity in a Kerr medium with multiphoton absorption: the stable nonlinear propagation regime corresponds to a slow beam reshaping into one of the stationary nonlinear high-order Bessel solutions, called nonlinear Bessel vortices. The region of existence of nonlinear Bessel vortices is found semi-analytically. The influence of the Kerr nonlinearity and nonlinear losses on the beam shape is presented. Direct numerical simulations highlight the role of attractors played by nonlinear Bessel vortices in the stable propagation regime. Large input powers or small cone angles lead to the unstable propagation regime where nonlinear Bessel vortices break up into an helical multiple filament pattern or a more irregular structure. Nonlinear Bessel vortices are shown to be sufficiently intense to generate a ring-shaped filamentary ionized channel in the medium which is foreseen as opening the way to novel applications in laser material processing of transparent dielectrics.

  9. Improving structure-based function prediction using molecular dynamics

    PubMed Central

    Glazer, Dariya S.; Radmer, Randall J.; Altman, Russ B.

    2009-01-01

    Summary The number of molecules with solved three-dimensional structure but unknown function is increasing rapidly. Particularly problematic are novel folds with little detectable similarity to molecules of known function. Experimental assays can determine the functions of such molecules, but are time-consuming and expensive. Computational approaches can identify potential functional sites; however, these approaches generally rely on single static structures and do not use information about dynamics. In fact, structural dynamics can enhance function prediction: we coupled molecular dynamics simulations with structure-based function prediction algorithms that identify Ca2+ binding sites. When applied to 11 challenging proteins, both methods showed substantial improvement in performance, revealing 22 more sites in one case and 12 more in the other, with a modest increase in apparent false positives. Thus, we show that treating molecules as dynamic entities improves the performance of structure-based function prediction methods. PMID:19604472

  10. THE FORMATION OF FILAMENTARY BUNDLES IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Moeckel, Nickolas; Burkert, Andreas E-mail: burkert@usm.uni-muenchen.de

    2015-07-01

    The classical picture of a star-forming filament is a near-equilibrium structure with its collapse dependent on its gravitational criticality. Recent observations have complicated this picture, revealing filaments to be a mess of apparently interacting subfilaments with transsonic internal velocity dispersions and mildly supersonic intra-subfilament dispersions. How structures like this form is unresolved. Here, we study the velocity structure of filamentary regions in a simulation of a turbulent molecular cloud. We present two main findings. First, the observed complex velocity features in filaments arise naturally in self-gravitating hydrodynamic simulations of turbulent clouds without the need for magnetic or other effects. Second, a region that is filamentary only in projection and is in fact made of spatially distinct features can display these same velocity characteristics. The fact that these disjoint structures can masquerade as coherent filaments in both projection and velocity diagnostics highlights the need to continue developing sophisticated filamentary analysis techniques for star formation observations.

  11. The magnetic field and dust filaments in the Polaris Flare

    NASA Astrophysics Data System (ADS)

    Panopoulou, G. V.; Psaradaki, I.; Tassis, K.

    2016-10-01

    In diffuse molecular clouds, possible precursors of star-forming clouds, the effect of the magnetic field is unclear. In this work, we compare the orientations of filamentary structures in the Polaris Flare, as seen through dust emission by Herschel, to the plane-of-the-sky magnetic field orientation (Bpos) as revealed by stellar optical polarimetry with RoboPol. Dust structures in this translucent cloud show a strong preference for alignment with Bpos. Of the field orientations, 70 per cent are consistent with those of the filaments (within 30°). We explore the spatial variation of the relative orientations and find it to be uncorrelated with the dust emission intensity and correlated to the dispersion of polarization angles. Concentrating on the area around the highest column density filament, and on the region with the most uniform field, we infer the Bpos strength to be 24-120 μG. Assuming that the magnetic field can be decomposed into a turbulent and an ordered component, we find a turbulent-to-ordered ratio of 0.2-0.8, implying that the magnetic field is dynamically important, at least in these two areas. We discuss implications for three-dimensional field properties, as well as for the distance estimate of the cloud.

  12. Line Profiles of Cores within Clusters. I. The Anatomy of a Filament

    NASA Astrophysics Data System (ADS)

    Smith, Rowan J.; Shetty, Rahul; Stutz, Amelia M.; Klessen, Ralf S.

    2012-05-01

    Observations are revealing the ubiquity of filamentary structures in molecular clouds. As cores are often embedded in filaments, it is important to understand how line profiles from such systems differ from those of isolated cores. We perform radiative transfer calculations on a hydrodynamic simulation of a molecular cloud in order to model line emission from collapsing cores embedded in filaments. We model two optically thick lines, CS(2-1) and HCN(1-0), and one optically thin line, N2H+(1-0), from three embedded cores. In the hydrodynamic simulation, gas self-gravity, turbulence, and bulk flows create filamentary regions within which cores form. Though the filaments have large dispersions, the N2H+(1-0) lines indicate subsonic velocities within the cores. We find that the observed optically thick line profiles of CS(2-1) and HCN(1-0) vary drastically with viewing angle. In over 50% of viewing angles, there is no sign of a blue asymmetry, an idealized signature of infall motions in an isolated spherical collapsing core. Profiles that primarily trace the cores, with little contribution from the surrounding filament, are characterized by a systematically higher HCN(1-0) peak intensity. The N2H+(1-0) lines do not follow this trend. We demonstrate that red asymmetric profiles are also feasible in the optically thick lines, due to emission from the filament or one-sided accretion flows onto the core. We conclude that embedded cores may frequently undergo collapse without showing a blue asymmetric profile, and that observational surveys including filamentary regions may underestimate the number of collapsing cores if based solely on profile shapes of optically thick lines.

  13. LINE PROFILES OF CORES WITHIN CLUSTERS. I. THE ANATOMY OF A FILAMENT

    SciTech Connect

    Smith, Rowan J.; Shetty, Rahul; Klessen, Ralf S.; Stutz, Amelia M.

    2012-05-01

    Observations are revealing the ubiquity of filamentary structures in molecular clouds. As cores are often embedded in filaments, it is important to understand how line profiles from such systems differ from those of isolated cores. We perform radiative transfer calculations on a hydrodynamic simulation of a molecular cloud in order to model line emission from collapsing cores embedded in filaments. We model two optically thick lines, CS(2-1) and HCN(1-0), and one optically thin line, N{sub 2}H{sup +}(1-0), from three embedded cores. In the hydrodynamic simulation, gas self-gravity, turbulence, and bulk flows create filamentary regions within which cores form. Though the filaments have large dispersions, the N{sub 2}H{sup +}(1-0) lines indicate subsonic velocities within the cores. We find that the observed optically thick line profiles of CS(2-1) and HCN(1-0) vary drastically with viewing angle. In over 50% of viewing angles, there is no sign of a blue asymmetry, an idealized signature of infall motions in an isolated spherical collapsing core. Profiles that primarily trace the cores, with little contribution from the surrounding filament, are characterized by a systematically higher HCN(1-0) peak intensity. The N{sub 2}H{sup +}(1-0) lines do not follow this trend. We demonstrate that red asymmetric profiles are also feasible in the optically thick lines, due to emission from the filament or one-sided accretion flows onto the core. We conclude that embedded cores may frequently undergo collapse without showing a blue asymmetric profile, and that observational surveys including filamentary regions may underestimate the number of collapsing cores if based solely on profile shapes of optically thick lines.

  14. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment.

    PubMed

    Jensen, Rasmus Hare

    2016-10-01

    Antifungal drug resistance is a multifaceted clinical challenge, and when present, a primary cause of treatment failure in patients with severe fungal infections. Changing epidemiology, increasing resistance rates and a narrow antifungal armamentarium may further underline the required attention on resistance particularly within the most prevalent invasive fungal infections caused by Candida yeasts and Aspergillus moulds. In Denmark, the resistance epidemiology remains to be fully elucidated. This thesis sought to address this demand as well as provide insight into the landscape of underlying molecular resistance mechanisms. Paper I and II both contributed to the understanding of FKS (β-glucan synthase) mediated echinocandin resistance in Candida species. Paper I covered a unique stepwise acquisition of a homozygous mutation in FKS1 of Candida tropicalis leading to an amino acid change corresponding to a well-known S645P in Candida albicans. Paper II presented a failure case due to Candida krusei displaying high-level echinocandin resistance likely attributable to an acquired D662Y amino acid substitution in FKS1. Intrinsic differences in FKS1 among Candida species may explain why the level of resistance both depends on the mutation as well as the species and cannot be easily translated to the level of clinical resistance. Intrinsic fluconazole resistance in C. krusei further substantiated the clinical implications of acquired echinocandin resistance. Paper III presented a rare multidrug resistance case in a series of isogenic C. albicans isolates, almost covering the entire spectrum of known resistance mechanisms in Candida and involved the proposal of novel resistance mutations. An A61E change in ERG11 was potentially involved in reduced susceptibility to long-structured azoles. Increased expression levels of azole efflux pumps were probably accredited to novel gain-of-function variants in the transcription factor TAC1 (R688Q and R673L). Echinocandin resistance

  15. Nonequilibrium structure and dynamics in a microscopic model of thin-film active gels

    NASA Astrophysics Data System (ADS)

    Head, D. A.; Briels, W. J.; Gompper, Gerhard

    2014-03-01

    In the presence of adenosine triphosphate, molecular motors generate active force dipoles that drive suspensions of protein filaments far from thermodynamic equilibrium, leading to exotic dynamics and pattern formation. Microscopic modeling can help to quantify the relationship between individual motors plus filaments to organization and dynamics on molecular and supramolecular length scales. Here, we present results of extensive numerical simulations of active gels where the motors and filaments are confined between two infinite parallel plates. Thermal fluctuations and excluded-volume interactions between filaments are included. A systematic variation of rates for motor motion, attachment, and detachment, including a differential detachment rate from filament ends, reveals a range of nonequilibrium behavior. Strong motor binding produces structured filament aggregates that we refer to as asters, bundles, or layers, whose stability depends on motor speed and differential end detachment. The gross features of the dependence of the observed structures on the motor rate and the filament concentration can be captured by a simple one-filament model. Loosely bound aggregates exhibit superdiffusive mass transport, where filament translocation scales with lag time with nonunique exponents that depend on motor kinetics. An empirical data collapse of filament speed as a function of motor speed and end detachment is found, suggesting a dimensional reduction of the relevant parameter space. We conclude by discussing the perspectives of microscopic modeling in the field of active gels.

  16. Molecular solutes in ionic liquids: a structural perspective.

    PubMed

    Pádua, Agílio A H; Costa Gomes, Margarida F; Canongia Lopes, José N A

    2007-11-01

    Understanding physicochemical properties of ionic liquids is important for their rational use in extractions, reactions, and other applications. Ionic liquids are not simple fluids: their ions are generally asymetric, flexible, with delocalized electrostatic charges, and available in a wide variety. It is difficult to capture their subtle properties with models that are too simplistic. Molecular simulation using atomistic force fields, which describe structures and interactions in detail, is an excellent tool to gain insights into their liquid-state organization, how they solvate different compounds, and what molecular factors determine their properties. The identification of certain ionic liquids as self-organized phases, with aggregated nonpolar and charged domains, provides a new way to interpret the solvation and structure of their mixtures. Many advances are the result of a successful interplay between experiment and modeling, possible in this field where none of the two methodologies had a previous advance.

  17. Molecular modelling of miraculin: Structural analyses and functional hypotheses.

    PubMed

    Paladino, Antonella; Costantini, Susan; Colonna, Giovanni; Facchiano, Angelo M

    2008-02-29

    Miraculin is a plant protein that displays the peculiar property of modifying taste by swiching sour into a sweet taste. Its monomer is flavourless at all pH as well as at high concentration; the dimer form elicits its taste-modifying activity at acidic pH; a tetrameric form is also reported as active. Two histidine residues, located in exposed regions, are the main responsible of miraculin activity, as demonstrated by mutagenesis studies. Since structural data of miraculin are not available, we have predicted its three-dimensional structure and simulated both its dimer and tetramer forms by comparative modelling and molecular docking techniques. Finally, molecular dynamics simulations at different pH conditions have indicated that at acidic pH the dimer assumes a widely open conformation, in agreement with the hypotheses coming from other studies.

  18. Localizing and extracting filament distributions from microscopy images.

    PubMed

    Basu, S; Liu, C; Rohde, G K

    2015-04-01

    Detailed quantitative measurements of biological filament networks represent a crucial step in understanding architecture and structure of cells and tissues, which in turn explain important biological events such as wound healing and cancer metastases. Microscopic images of biological specimens marked for different structural proteins constitute an important source for observing and measuring meaningful parameters of biological networks. Unfortunately, current efforts at quantitative estimation of architecture and orientation of biological filament networks from microscopy images are predominantly limited to visual estimation and indirect experimental inference. Here, we describe a new method for localizing and extracting filament distributions from 2D microscopy images of different modalities. The method combines a filter-based detection of pixels likely to contain a filament with a constrained reverse diffusion-based approach for localizing the filaments centrelines. We show with qualitative and quantitative experiments, using both simulated and real data, that the new method can provide more accurate centreline estimates of filament in comparison to other approaches currently available. In addition, we show the algorithm is more robust with respect to variations in the initial filter-based filament detection step often used. We demonstrate the application of the method in extracting quantitative parameters from confocal microscopy images of actin filaments and atomic force microscopy images of DNA fragments.

  19. Liquid-like bundles of crosslinked actin filaments contract without motors

    NASA Astrophysics Data System (ADS)

    Weirich, Kimberly

    The actin cytoskeleton is a dynamic, structural material that drives cellular-scale deformations during processes such as cell migration and division. Motor proteins are responsible for actively driving many deformations by buckling and translocating actin filaments. However, there is evidence that deformations, such as the constriction of the actin bundle that drives the separation of cells during division, can occur without motors, mediated instead by crosslinker proteins. How might crosslinkers, independent of motors, drive contraction of a bundle? Using a model system of purified proteins, we show that crosslinkers, analogous to molecular cohesion, create an effective surface tension that induces bundle contraction. Crosslinked short actin filaments form micron-sized spindle-shaped bundles. Similar to tactoid granules found at the isotropic-nematic phase transition in liquid crystals, these bundles coarsen and coalesce like liquid droplets. In contrast, crosslinked long filaments coarsen into a steady state of bundles that are frozen in a solid-like network. Near the liquid-solid boundary, filaments of intermediate length initially form bundles that spontaneously contract into tactoid droplets. Our results, that crosslinked actin bundles are liquid-like with an effective surface tension, provide evidence for a mechanism of motor-independent contractility in biological materials.

  20. Actin Filaments and Myosin I Alpha Cooperate with Microtubules for the Movement of LysosomesV⃞

    PubMed Central

    Cordonnier, Marie-Neige; Dauzonne, Daniel; Louvard, Daniel; Coudrier, Evelyne

    2001-01-01

    An earlier report suggested that actin and myosin I alpha (MMIα), a myosin associated with endosomes and lysosomes, were involved in the delivery of internalized molecules to lysosomes. To determine whether actin and MMIα were involved in the movement of lysosomes, we analyzed by time-lapse video microscopy the dynamic of lysosomes in living mouse hepatoma cells (BWTG3 cells), producing green fluorescent protein actin or a nonfunctional domain of MMIα. In GFP-actin cells, lysosomes displayed a combination of rapid long-range directional movements dependent on microtubules, short random movements, and pauses, sometimes on actin filaments. We showed that the inhibition of the dynamics of actin filaments by cytochalasin D increased pauses of lysosomes on actin structures, while depolymerization of actin filaments using latrunculin A increased the mobility of lysosomes but impaired the directionality of their long-range movements. The production of a nonfunctional domain of MMIα impaired the intracellular distribution of lysosomes and the directionality of their long-range movements. Altogether, our observations indicate for the first time that both actin filaments and MMIα contribute to the movement of lysosomes in cooperation with microtubules and their associated molecular motors. PMID:11739797

  1. Molecular cell biology and immunobiology of mammalian rod/ring structures.

    PubMed

    Carcamo, Wendy C; Calise, S John; von Mühlen, Carlos A; Satoh, Minoru; Chan, Edward K L

    2014-01-01

    Nucleotide biosynthesis is a highly regulated process necessary for cell growth and replication. Cytoplasmic structures in mammalian cells, provisionally described as rods and rings (RR), were identified by human autoantibodies and recently shown to include two key enzymes of the CTP/GTP biosynthetic pathways, cytidine triphosphate synthetase (CTPS) and inosine monophosphate dehydrogenase (IMPDH). Several studies have described CTPS filaments in mammalian cells, Drosophila, yeast, and bacteria. Other studies have identified IMPDH filaments in mammalian cells. Similarities among these studies point to a common evolutionarily conserved cytoplasmic structure composed of a subset of nucleotide biosynthetic enzymes. These structures appear to be a conserved metabolic response to decreased intracellular GTP and/or CTP pools. Antibodies to RR were found to develop in some hepatitis C patients treated with interferon-α and ribavirin. Additionally, the presence of anti-RR antibodies was correlated with poor treatment outcome.

  2. Nanoparticle Probes for Structural and Functional Photoacoustic Molecular Tomography

    PubMed Central

    Chen, Haobin; Yuan, Zhen; Wu, Changfeng

    2015-01-01

    Nowadays, nanoparticle probes have received extensive attention largely due to its potential biomedical applications in structural, functional, and molecular imaging. In addition, photoacoustic tomography (PAT), a method based on the photoacoustic effect, is widely recognized as a robust modality to evaluate the structure and function of biological tissues with high optical contrast and high acoustic resolution. The combination of PAT with nanoparticle probes holds promises for detecting and imaging diseased tissues or monitoring their treatments with high sensitivity. This review will introduce the recent advances in the emerging field of nanoparticle probes and their preclinical applications in PAT, as well as relevant perspectives on future development. PMID:26609534

  3. Growth of filaments and saturation of the filamentation instability

    SciTech Connect

    Gedalin, M.; Medvedev, M.; Spitkovsky, A.; Krasnoselskikh, V.; Vaivads, A.; Perri, S.

    2010-03-15

    The filamentation instability of counterstreaming beams is a nonresonant hydrodynamic-type instability whose growth rate is a smooth function of the wavelength (scale). As a result, perturbations with all unstable wavelengths develop, and the growth saturates due to the saturation of available current. For a given scale, the magnetic field at saturation is proportional to the scale. As a result, the instability develops in a nearly linear regime, where the unstable modes stop growing as soon as the saturation of the corresponding wavelength is reached. At each moment there exists a dominant scale of the magnetic field which is the scale that reached saturation at this particular time. The smaller scales do not disappear and can be easily distinguished in the current structure. The overall growth of the instability stops when the loss of the streaming ion energy because of deceleration is comparable to the initial ion energy.

  4. Sculpting Molecular Potentials to Design Optimized Materials: The Inverse Design of New Molecular Structures

    DTIC Science & Technology

    2010-05-10

    Miloradovic, A. Persoons, T . Verbiest, M. J . Therien, and K. Clays, "Molecular Symmetry and Solution Phase Structure Interrogated by Hyper-Raleigh...34 Nano Lett., 8, 2814-2818 (2008).  T . V. Duncan, K. Song, S.- T . Hung, I. Miloradovic, A. Persoons, T . Verbiest, M. J . Therien, and K. Clays...Beratan, Weitao Yang, Michael J . Therien, Koen Clays Duke University Office of Research Support Duke University Durham, NC 27705 - REPORT

  5. Molecular structures of amyloid and prion fibrils: consensus versus controversy.

    PubMed

    Tycko, Robert; Wickner, Reed B

    2013-07-16

    Many peptides and proteins self-assemble into amyloid fibrils. Examples include mammalian and fungal prion proteins, polypeptides associated with human amyloid diseases, and proteins that may have biologically functional amyloid states. To understand the propensity for polypeptides to form amyloid fibrils and to facilitate rational design of amyloid inhibitors and imaging agents, it is necessary to elucidate the molecular structures of these fibrils. Although fibril structures were largely mysterious 15 years ago, a considerable body of reliable structural information about amyloid fibril structures now exists, with essential contributions from solid state nuclear magnetic resonance (NMR) measurements. This Account reviews results from our laboratories and discusses several structural issues that have been controversial. In many cases, the amino acid sequences of amyloid fibrils do not uniquely determine their molecular structures. Self-propagating, molecular-level polymorphism complicates the structure determination problem and can lead to apparent disagreements between results from different laboratories, particularly when different laboratories study different polymorphs. For 40-residue β-amyloid (Aβ₁₋₄₀) fibrils associated with Alzheimer's disease, we have developed detailed structural models from solid state NMR and electron microscopy data for two polymorphs. These polymorphs have similar peptide conformations, identical in-register parallel β-sheet organizations, but different overall symmetry. Other polymorphs have also been partially characterized by solid state NMR and appear to have similar structures. In contrast, cryo-electron microscopy studies that use significantly different fibril growth conditions have identified structures that appear (at low resolution) to be different from those examined by solid state NMR. Based on solid state NMR and electron paramagnetic resonance (EPR) measurements, the in-register parallel β-sheet organization

  6. Probing the sliding interactions between bundled actin filaments

    NASA Astrophysics Data System (ADS)

    Ward, Andy; Dogic, Zvonimir

    2012-02-01

    Assemblies of filamentous biopolymers are hierarchical materials in which the properties of the overall assemblage are determined by structure and interactions between constituent particles at all hierarchical levels. For example, the overall bending rigidity of a two bundled filaments greatly depends on the bending rigidity of, and the adhesion strength between individual filaments. However, another property of importance is the ability for the filaments to slide freely against one another. Everyday experience indicates that it is much easier to bend a stack of papers in which individual sheets freely slide past each other than the same stack of papers in which all the sheets are irreversibly glued together. Similarly, in filamentous structures the ability for local re-arrangement is of the utmost importance in determining the properties of the structures observed. We have developed a method to directly measure the frictional interactions between a pair of aligned filaments in a well-defined and controllable configuration. This enables us to systematically investigate the role of adhesion strength, filament orientation, length, and surface structure.

  7. Sensor yarns for real-time in situ detection of damage behavior for the purpose of structural health monitoring of textile-reinforced thermoset composites: development of a continuous wet-chemical silvering process for high-performance filament yarn

    NASA Astrophysics Data System (ADS)

    Onggar, T.; Häntzsche, E.; Nocke, A.; Hund, R. D.; Cherif, Ch

    2017-04-01

    High-performance textile yarns such as glass filament (GF) yarn will be used as the base material for the development of sensor yarns because glass filament yarns offer both high tensile strengths and moduli of elasticity, as well as high melting temperatures and elongation. A new continuous wet-chemical metallization process has been developed for GF yarns on a laboratory scale to achieve special properties such as electrical conductivity. The aim of the work is to develop a continuous wet-chemical silver plating process for the GF-filament yarn in order to achieve electrical conductivity on the GF-surface. The process was carried out continuously in order to metallize the GF, which is sensitive to the shear force. A homogeneous, completely covered and adhered silver layer on the GF yarn surfaces was obtained by the application of this technology. The surface morphology was been determined by light and scanning electron microscopy to assess the silver layer properties such as structure, homogeneity, and cracking. The chemical structure of the surfaces was analyzed by means of energy dispersive x-ray spectroscopy. For structural analysis, GF yarns were investigated using a Fourier transform infrared spectrometer. The dispersive and polar component of the surface energy of the sized and silvered GF yarn was measured by using a single fiber Tensiometer K100. The silver layer thickness and the silver content were determined after the metallization. Textile physical tests of the tensile strength, elasticity modulus, elongation at break, and yarn fineness of the single GF yarns as well as GF bundle were carried out.

  8. Three-dimensional cryo-electron microscopy on intermediate filaments.

    PubMed

    Kirmse, Robert; Bouchet-Marquis, Cédric; Page, Cynthia; Hoenger, Andreas

    2010-01-01

    Together with microtubules and actin filaments (F-actin), intermediate filaments (IFs) form the cytoskeleton of metazoan cells. However, unlike the other two entities that are extremely conserved, IFs are much more diverse and are grouped into five different families. In contrast to microtubules and F-actin, IFs do not exhibit a polarity, which may be the reason that no molecular motors travel along them. The molecular structure of IFs is less well resolved than that of the other cytoskeletal systems. This is partially due to their functional variability, tissue-specific expression, and their intrinsic structural properties. IFs are composed mostly of relatively smooth protofibrils formed by antiparallel arranged α-helical coiled-coil bundles flanked by small globular domains at either end. These features make them difficult to study by various electron microscopy methods or atomic force microscopy (AFM). Furthermore, the elongated shape of monomeric or dimeric IF units interferes with the formation of highly ordered three-dimensional (3-D) crystals suitable for atomic resolution crystallography. So far, most of the data we currently have on IF macromolecular structures come from electron microscopy of negatively stained samples, and fragmented α-helical coiled-coil units solved by X-ray diffraction. In addition, AFM allows the observation of the dynamic states of IFs in solution and delivers a new view into the assembly properties of IFs. Here, we discuss the applicability of cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET) for the field. Both methods are strongly related and have only recently been applied to IFs. However, cryo-EM revealed distinct new features within IFs that have not been seen before, and cryo-ET adds a 3-D view of IFs revealing the path and number of protofilaments within the various IF assemblies.

  9. Particles trajectories in magnetic filaments

    SciTech Connect

    Bret, A.

    2015-07-15

    The motion of a particle in a spatially harmonic magnetic field is a basic problem involved, for example, in the mechanism of formation of a collisionless shock. In such settings, it is generally reasoned that particles entering a Weibel generated turbulence are trapped inside it, provided their Larmor radius in the peak field is smaller than the field coherence length. The goal of this work is to put this heuristic conclusion on firm ground by studying, both analytically and numerically, such motion. A toy model is analyzed, consisting of a relativistic particle entering a region of space occupied by a spatially harmonic field. The particle penetrates the magnetic structure in a direction aligned with the magnetic filaments. Although the conclusions are not trivial, the main result is confirmed.

  10. INTERMEDIATE FILAMENTS IN SMOOTH MUSCLE

    PubMed Central

    Tang, Dale D.

    2008-01-01

    The intermediate filament (IF) network is one of the three cytoskeletal systems in smooth muscle. The type III IF proteins vimentin and desmin are major constituents of the network in smooth muscle cells and tissues. Lack of vimentin or desmin impairs contractile ability of various smooth muscle preparations, implying their important role for smooth muscle force development. The IF framework has long been viewed as a fixed cytostructure that solely provides mechanical integrity for the cell. However, recent studies suggest that the IF cytoskeleton is dynamic in mammalian cells in response to various external stimulation. In this review, the structure and biological properties of IF proteins in smooth muscle are summarized. The role of IF proteins in the modulation of smooth muscle force development and redistribution/translocation of signaling partners (such as p130 Crk-associated substrate, CAS) is depicted. This review also summarizes our latest understanding on how the IF network may be regulated in smooth muscle. PMID:18256275

  11. Plasma filamentation in the Rijnhuizen tokamak RTP

    SciTech Connect

    Lopes Cardozo, N.J.; Schueller, F.C.; Barth, C.J.; Chu, C.C.; Pijper, F.J.; Lok, J.; Oomens, A.A.M. )

    1994-07-11

    Evidence for small scale magnetic structures in the Rijnhuizen tokamak RTP is presented. These are manifest through steps and peaks in the electron temperature and pressure, measured with multiposition Thomson scattering. During central electron cyclotron heating, several filaments of high pressure are found in the power deposition region. They live hundreds of microseconds. Near the sawtooth inversion radius a step'' in the temperature profile occurs. Further out, quasiperiodic structures are observed, in both Ohmic and heated discharges.

  12. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  13. Structural characterization of polymorphs and molecular complexes of finasteride

    NASA Astrophysics Data System (ADS)

    Wawrzycka, Irena; Stȩpniak, Krystyna; Matyjaszczyk, Sławomir; Kozioł, Anna E.; Lis, Tadeusz; Abboud, Khalil A.

    1999-01-01

    The molecular structure of finasteride, 17 β-( N-tert-butylcarbamoyl)-4-aza-5 α-androst-1-en-3-one, and structures of three related crystalline forms have been determined by X-ray analysis. The rigid steroid skeleton of the molecule adopts a half-chair/chair/chair/half-chair conformation. Two peptide groups, one cyclic (lactam) in the ring A and a second being a part of the substituent at C17, are the main factors influencing intermolecular contacts. Different hydrogen-bond interactions of these hydrophilic groups are observed in the crystal structures. An infinite ribbon of finasteride molecules is formed between lactam groups in the orthorhombic homomolecular crystal ( 1) obtained from an ethanol solution. The linear molecular complex finasteride-acetic acid ( 1a) is connected by hydrogen bonds between the lactam of finasteride and the carboxyl group of acetic acid. The crystallization from an ethyl acetate solution gives a complex structure of bis-finasteride monohydrate ethyl acetate clathrate ( 1b) with guest molecule disordered in channels. Crystals of a second (monoclinic) finasteride polymorph ( 2) were obtained during thermal decomposition of 1a, and sublimation of 1, 1a and 1b. Two polymorphic forms show different IR spectra.

  14. The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X

    NASA Astrophysics Data System (ADS)

    Hennemann, M.; Motte, F.; Schneider, N.; Didelon, P.; Hill, T.; Arzoumanian, D.; Bontemps, S.; Csengeri, T.; André, Ph.; Konyves, V.; Louvet, F.; Marston, A.; Men'shchikov, A.; Minier, V.; Nguyen Luong, Q.; Palmeirim, P.; Peretto, N.; Sauvage, M.; Zavagno, A.; Anderson, L. D.; Bernard, J.-Ph.; Di Francesco, J.; Elia, D.; Li, J. Z.; Martin, P. G.; Molinari, S.; Pezzuto, S.; Russeil, D.; Rygl, K. L. J.; Schisano, E.; Spinoglio, L.; Sousbie, T.; Ward-Thompson, D.; White, G. J.

    2012-07-01

    In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities higher than 1023 cm-2 over a region of 2.3 pc2. It shows substructured column density profiles and branches into two major filaments in the north. The masses in the filaments range between 130 and 1400 M⊙, whereas the mass in the ridge is 15 000 M⊙. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in, e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These coresformed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA (Pilbratt et al. 2010).Appendices are available in electronic form at http://www.aanda.org

  15. Large Molecule Structures by Broadband Fourier Transform Molecular Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Evangelisti, Luca; Seifert, Nathan A.; Spada, Lorenzo; Pate, Brooks

    2016-06-01

    Fourier transform molecular rotational resonance spectroscopy (FT-MRR) using pulsed jet molecular beam sources is a high-resolution spectroscopy technique that can be used for chiral analysis of molecules with multiple chiral centers. The sensitivity of the molecular rotational spectrum pattern to small changes in the three dimensional structure makes it possible to identify diastereomers without prior chemical separation. For larger molecules, there is the additional challenge that different conformations of each diastereomer may be present and these need to be differentiated from the diastereomers in the spectral analysis. Broadband rotational spectra of several larger molecules have been measured using a chirped-pulse FT-MRR spectrometer. Measurements of nootkatone (C15H22O), cedrol (C15H26O), ambroxide (C16H28O) and sclareolide (C16H26O2) are presented. These spectra are measured with high sensitivity (signal-to-noise ratio near 1,000:1) and permit structure determination of the most populated isomers using isotopic analysis of the 13C and 18O isotopologues in natural abundance. The accuracy of quantum chemistry calculations to identify diastereomers and conformers and to predict the dipole moment properties needed for three wave mixing measurements is examined.

  16. Evolutionarily divergent, unstable filamentous actin is essential for gliding motility in apicomplexan parasites.

    PubMed

    Skillman, Kristen M; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L David

    2011-10-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility.

  17. Evolutionarily Divergent, Unstable Filamentous Actin Is Essential for Gliding Motility in Apicomplexan Parasites

    PubMed Central

    Skillman, Kristen M.; Diraviyam, Karthikeyan; Khan, Asis; Tang, Keliang; Sept, David; Sibley, L. David

    2011-01-01

    Apicomplexan parasites rely on a novel form of actin-based motility called gliding, which depends on parasite actin polymerization, to migrate through their hosts and invade cells. However, parasite actins are divergent both in sequence and function and only form short, unstable filaments in contrast to the stability of conventional actin filaments. The molecular basis for parasite actin filament instability and its relationship to gliding motility remain unresolved. We demonstrate that recombinant Toxoplasma (TgACTI) and Plasmodium (PfACTI and PfACTII) actins polymerized into very short filaments in vitro but were induced to form long, stable filaments by addition of equimolar levels of phalloidin. Parasite actins contain a conserved phalloidin-binding site as determined by molecular modeling and computational docking, yet vary in several residues that are predicted to impact filament stability. In particular, two residues were identified that form intermolecular contacts between different protomers in conventional actin filaments and these residues showed non-conservative differences in apicomplexan parasites. Substitution of divergent residues found in TgACTI with those from mammalian actin resulted in formation of longer, more stable filaments in vitro. Expression of these stabilized actins in T. gondii increased sensitivity to the actin-stabilizing compound jasplakinolide and disrupted normal gliding motility in the absence of treatment. These results identify the molecular basis for short, dynamic filaments in apicomplexan parasites and demonstrate that inherent instability of parasite actin filaments is a critical adaptation for gliding motility. PMID:21998582

  18. Manufacturing developments of filament winding for thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Kimura, Minoru; Saigoku, Haruyoshi; Tsuchiya, Kiyoshi; Ishikawa, Takashi

    Thermoplastic composite materials for aerospace structures are examined. A forming method for filament windings is described, and the hot pressing technology is discussed. The test results are given, and the nondestructive inspection of fracture surfaces is considered.

  19. Biological spectra analysis: Linking biological activity profiles to molecular structure

    PubMed Central

    Fliri, Anton F.; Loging, William T.; Thadeio, Peter F.; Volkmann, Robert A.

    2005-01-01

    Establishing quantitative relationships between molecular structure and broad biological effects has been a longstanding challenge in science. Currently, no method exists for forecasting broad biological activity profiles of medicinal agents even within narrow boundaries of structurally similar molecules. Starting from the premise that biological activity results from the capacity of small organic molecules to modulate the activity of the proteome, we set out to investigate whether descriptor sets could be developed for measuring and quantifying this molecular property. Using a 1,567-compound database, we show that percent inhibition values, determined at single high drug concentration in a battery of in vitro assays representing a cross section of the proteome, provide precise molecular property descriptors that identify the structure of molecules. When broad biological activity of molecules is represented in spectra form, organic molecules can be sorted by quantifying differences between biological spectra. Unlike traditional structure–activity relationship methods, sorting of molecules by using biospectra comparisons does not require knowledge of a molecule's putative drug targets. To illustrate this finding, we selected as starting point the biological activity spectra of clotrimazole and tioconazole because their putative target, lanosterol demethylase (CYP51), was not included in the bioassay array. Spectra similarity obtained through profile similarity measurements and hierarchical clustering provided an unbiased means for establishing quantitative relationships between chemical structures and biological activity spectra. This methodology, which we have termed biological spectra analysis, provides the capability not only of sorting molecules on the basis of biospectra similarity but also of predicting simultaneous interactions of new molecules with multiple proteins. PMID:15625110

  20. Discovering structural alerts for mutagenicity using stable emerging molecular patterns.

    PubMed

    Métivier, Jean-Philippe; Lepailleur, Alban; Buzmakov, Aleksey; Poezevara, Guillaume; Crémilleux, Bruno; Kuznetsov, Sergei O; Le Goff, Jérémie; Napoli, Amedeo; Bureau, Ronan; Cuissart, Bertrand

    2015-05-26

    This study is dedicated to the introduction of a novel method that automatically extracts potential structural alerts from a data set of molecules. These triggering structures can be further used for knowledge discovery and classification purposes. Computation of the structural alerts results from an implementation of a sophisticated workflow that integrates a graph mining tool guided by growth rate and stability. The growth rate is a well-established measurement of contrast between classes. Moreover, the extracted patterns correspond to formal concepts; the most robust patterns, named the stable emerging patterns (SEPs), can then be identified thanks to their stability, a new notion originating from the domain of formal concept analysis. All of these elements are explained in the paper from the point of view of computation. The method was applied to a molecular data set on mutagenicity. The experimental results demonstrate its efficiency: it automatically outputs a manageable number of structural patterns that are strongly related to mutagenicity. Moreover, a part of the resulting structures corresponds to already known structural alerts. Finally, an in-depth chemical analysis relying on these structures demonstrates how the method can initiate promising processes of chemical knowledge discovery.

  1. Association of actin filaments with axonal microtubule tracts.

    PubMed

    Bearer, E L; Reese, T S

    1999-02-01

    Axoplasmic organelles move on actin as well as microtubules in vitro and axons contain a large amount of actin, but little is known about the organization and distribution of actin filaments within the axon. Here we undertake to define the relationship of the microtubule bundles typically found in axons to actin filaments by applying three microscopic techniques: laser-scanning confocal microscopy of immuno-labeled squid axoplasm; electronmicroscopy of conventionally prepared thin sections; and electronmicroscopy of touch preparations-a thin layer of axoplasm transferred to a specimen grid and negatively stained. Light microscopy shows that longitudinal actin filaments are abundant and usually coincide with longitudinal microtubule bundles. Electron microscopy shows that microfilaments are interwoven with the longitudinal bundles of microtubules. These bundles maintain their integrity when neurofilaments are extracted. Some, though not all microfilaments decorate with the S1 fragment of myosin, and some also act as nucleation sites for polymerization of exogenous actin, and hence are definitively identified as actin filaments. These actin filaments range in minimum length from 0.5 to 1.5 microm with some at least as long as 3.5 microm. We conclude that the microtubule-based tracks for fast organelle transport also include actin filaments. These actin filaments are sufficiently long and abundant to be ancillary or supportive of fast transport along microtubules within bundles, or to extend transport outside of the bundle. These actin filaments could also be essential for maintaining the structural integrity of the microtubule bundles.

  2. Chaperonin filaments: The archael cytoskeleton

    SciTech Connect

    Trent, J.D.; Kagawa, H.K.; Yaoi, Takuro; Olle, E.; Zaluzec, N.J.

    1997-08-01

    Chaperonins are multi-subunit double-ring complexed composed of 60-kDa proteins that are believed to mediate protein folding in vivo. The chaperonins in the hyperthermophilic archaeon Sulfolobus shibatae are composed of the organism`s two most abundant proteins, which represent 4% of its total protein and have an intracellular concentration of {ge} 3.0 mg/ml. At concentrations of 1.0 mg/ml, purified chaperonin proteins aggregate to form ordered filaments. Filament formation, which requires Mg{sup ++} and nucleotide binding (not hydrolysis), occurs at physiological temperatures under conditions suggesting filaments may exist in vivo. If the estimated 4,600 chaperonins per cell, formed filaments in vivo, they could create a matrix of filaments that would span the diameter of an average S. shibatae cell 100 times. Direct observations of unfixed, minimally treated cells by intermediate voltage electron microscopy (300 kV) revealed an intracellular network of filaments that resembles chaperonin filaments produced in vitro. The hypothesis that the intracellular network contains chaperonins is supported by immunogold analyses. The authors propose that chaperonin activity may be regulated in vivo by filament formation and that chaperonin filaments may serve a cytoskeleton-like function in archaea and perhaps in other prokaryotes.

  3. Heat-induced changes to lipid molecular structure in Vimy flaxseed: Spectral intensity and molecular clustering

    NASA Astrophysics Data System (ADS)

    Yu, Peiqiang; Damiran, Daalkhaijav

    2011-06-01

    Autoclaving was used to manipulate nutrient utilization and availability. The objectives of this study were to characterize any changes of the functional groups mainly associated with lipid structure in flaxseed ( Linum usitatissimum, cv. Vimy), that occurred on a molecular level during the treatment process using infrared Fourier transform molecular spectroscopy. The parameters included lipid CH 3 asymmetric (ca. 2959 cm -1), CH 2 asymmetric (ca. 2928 cm -1), CH 3 symmetric (ca. 2871 cm -1) and CH 2 symmetric (ca. 2954 cm -1) functional groups, lipid carbonyl C dbnd O ester group (ca. 1745 cm -1), lipid unsaturation group (CH attached to C dbnd C) (ca. 3010 cm -1) as well as their ratios. Hierarchical cluster analysis (CLA) and principal components analysis (PCA) were conducted to identify molecular spectral differences. Flaxseed samples were kept raw for the control or autoclaved in batches at 120 °C for 20, 40 or 60 min for treatments 1, 2 and 3, respectively. Molecular spectral analysis of lipid functional group ratios showed a significant decrease ( P < 0.05) in the CH 2 asymmetric to CH 3 asymmetric stretching band peak intensity ratios for the flaxseed. There were linear and quadratic effects ( P < 0.05) of the treatment time from 0, 20, 40 and 60 min on the ratios of the CH 2 asymmetric to CH 3 asymmetric stretching vibration intensity. Autoclaving had no significant effect ( P > 0.05) on lipid carbonyl C dbnd O ester group and lipid unsaturation group (CH attached to C dbnd C) (with average spectral peak area intensities of 138.3 and 68.8 IR intensity units, respectively). Multivariate molecular spectral analyses, CLA and PCA, were unable to make distinctions between the different treatment original spectra at the CH 3 and CH 2 asymmetric and symmetric region (ca. 2988-2790 cm -1). The results indicated that autoclaving had an impact to the mid-infrared molecular spectrum of flaxseed to identify heat-induced changes in lipid conformation. A future study

  4. State of water, molecular structure, and cytotoxicity of silk hydrogels.

    PubMed

    Numata, Keiji; Katashima, Takuya; Sakai, Takamasa

    2011-06-13

    A novel technique was developed to regulate the bulk water content of silk hydrogels by adjusting the concentrations of silk proteins, which is helpful to investigate the effects of the state of water in polymeric hydrogel on its biological functions, such as cytotoxicity. Gelation of the silk hydrogel was induced with ethanol and its gelation behavior was analyzed by rheometry. The silk hydrogels prepared at various silk concentrations were characterized with respect to their water content, molecular and network structures, state of water, mechanical properties, and cytotoxicity to human mesenchymal stem cells. The network structure of silk hydrogel was heterogeneous with β-sheet and fibrillar structures. The influence of the state of water in the silk hydrogel on the cytotoxicity was recognized by means of differential scanning calorimetry and cell proliferation assay, which revealed that the bound water will support cell-adhesion proteins in the cellular matrix to interact with the surface of the silk hydrogels.

  5. Theoretical investigation of the molecular structure of the isoquercitrin molecule

    NASA Astrophysics Data System (ADS)

    Cornard, J. P.; Boudet, A. C.; Merlin, J. C.

    1999-09-01

    Isoquercitrin is a glycosilated flavonoid that has received a great deal of attention because of its numerous biological effects. We present a theoretical study on isoquercitrin using both empirical (Molecular Mechanics (MM), with MMX force field) and quantum chemical (AM1 semiempirical method) techniques. The most stable structures of the molecule obtained by MM calculations have been used as input data for the semiempirical treatment. The position and orientation of the glucose moiety with regard to the remainder of the molecule have been investigated. The flexibility of isoquercitrin principally lies in rotations around the inter-ring bond and the sugar link. In order to know the structural modifications generated by the substitution by a sugar, geometrical parameters of quercetin (aglycon) and isoquercitrin have been compared. The good accordance between theoretical and experimental electronic spectra permits to confirm the reliability of the structural model.

  6. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  7. Molecular Clouds: Observation to Experiment

    SciTech Connect

    Kane, J O; Ryutov, D D; Mizuta, A; Remington, B A; Pound, M W

    2004-05-06

    Our ongoing investigation of how 'Pillars' and other structure form in molecular clouds irradiated by ultraviolet (UV) stars has revealed that the Rayleigh-Taylor instability is strongly suppressed by recombination in the photoevaporated outflow, that clumps and filaments may be key, that the evolution of structure is well-modeled by compressible hydrodynamics, and that directionality of the UV radiation may have significant effects. We discuss a generic, flexible set of laboratory experiments that can address these issues.

  8. The molecular structure of the left-handed supra-molecular helix of eukaryotic polyribosomes

    NASA Astrophysics Data System (ADS)

    Myasnikov, Alexander G.; Afonina, Zhanna A.; Ménétret, Jean-François; Shirokov, Vladimir A.; Spirin, Alexander S.; Klaholz, Bruno P.

    2014-11-01

    During protein synthesis, several ribosomes bind to a single messenger RNA (mRNA) forming large macromolecular assemblies called polyribosomes. Here we report the detailed molecular structure of a 100 MDa eukaryotic poly-ribosome complex derived from cryo electron tomography, sub-tomogram averaging and pseudo-atomic modelling by crystal structure fitting. The structure allowed the visualization of the three functional parts of the polysome assembly, the central core region that forms a rather compact left-handed supra-molecular helix, and the more open regions that harbour the initiation and termination sites at either ends. The helical region forms a continuous mRNA channel where the mRNA strand bridges neighbouring exit and entry sites of the ribosomes and prevents mRNA looping between ribosomes. This structure provides unprecedented insights into protein- and RNA-mediated inter-ribosome contacts that involve conserved sites through 40S subunits and long protruding RNA expansion segments, suggesting a role in stabilizing the overall polyribosomal assembly.

  9. Three decades of structure- and property-based molecular design.

    PubMed

    Müller, Klaus

    2014-01-01

    Roche has pioneered structure- and property-based molecular design to drug discovery. While this is an ongoing development, the past three decades feature key events that have revolutionized the way drug discovery is conducted in Big Pharma industry. It has been a great privilege to have been involved in this transformation process, to have been able to collaborate with, direct, guide, or simply encourage outstanding experts in various disciplines to build and further develop what has become a major pillar of modern small-molecule drug discovery. This article is an account of major events that took place since the early decision of Roche to implement computer-assisted molecular modeling 32 years ago and is devoted to the key players involved. It highlights the internal build-up of structural biology, with protein X-ray structure determination at its core, and the early setup of bioinformatics. It describes the strategic shift to large compound libraries and high-throughput screening with the development of novel compound storage and ultra-high-throughput screening facilities, as well as the strategic return to focused screening of small motif-based compound libraries. These developments were accompanied by the rise of miniaturized parallel compound property analytics which resulted in a major paradigm shift in medicinal chemistry from linear to multi-dimensional lead optimization. The rapid growth of huge collections of property data stimulated the development of various novel data mining concepts with 'matched molecular pair' analysis and novel variants thereof playing crucial roles. As compound properties got more prominent in molecular design, exploration of specific structural motifs for property modulation became a research activity complementary to target-oriented medicinal chemistry. The exploration of oxetane is given as an example. For the sake of brevity, this account cannot detail all further developments that have taken place in each individual area of

  10. Structure of a molecular liquid GeI4

    NASA Astrophysics Data System (ADS)

    Fuchizaki, Kazuhiro; Sakagami, Takahiro; Kohara, Shinji; Mizuno, Akitoshi; Asano, Yuta; Hamaya, Nozomu

    2016-11-01

    A molecular liquid GeI4 is a candidate that undergoes a pressure-induced liquid-to-liquid phase transition. This study establishes the reference structure of the low-pressure liquid phase. Synchrotron x-ray diffraction measurements were carried out at several temperatures between the melting and the boiling points under ambient pressure. The molecule has regular tetrahedral symmetry, and the intramolecular Ge-I length of 2.51 Å is almost temperature-independent within the measured range. A reverse Monte Carlo (RMC) analysis is employed to find that the distribution of molecular centers remains self-similar against heating, and thus justifying the length-scaling method adopted in determining the density. The RMC analysis also reveals that the vertex-to-face orientation of the nearest molecules are not straightly aligned, but are inclined at about 20 degrees, thereby making the closest intermolecular I-I distance definitely shorter than the intramolecular one. The prepeak observed at  ˜1 Å-1 in the structural factor slightly shifts and increases in height with increasing temperature. The origin of the prepeak is clearly identified to be traces of the 111 diffraction peak in the crystalline state. The prepeak, assuming the residual spatial correlation between germanium sites in the densest direction, thus shifts toward lower wavenumbers with thermal expansion. The aspect that a relative reduction in molecular size associated with the volume expansion is responsible for the increase in the prepeak’s height is confirmed by a simulation, in which the molecular size is changed.

  11. Morgellons disease: a filamentous borrelial dermatitis

    PubMed Central

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined. PMID:27789971

  12. Morgellons disease: a filamentous borrelial dermatitis.

    PubMed

    Middelveen, Marianne J; Stricker, Raphael B

    2016-01-01

    Morgellons disease (MD) is a dermopathy characterized by multicolored filaments that lie under, are embedded in, or project from skin. Although MD was initially considered to be a delusional disorder, recent studies have demonstrated that the dermopathy is associated with tickborne infection, that the filaments are composed of keratin and collagen, and that they result from proliferation of keratinocytes and fibroblasts in epithelial tissue. Culture, histopathological and molecular evidence of spirochetal infection associated with MD has been presented in several published studies using a variety of techniques. Spirochetes genetically identified as Borrelia burgdorferi sensu stricto predominate as the infective agent in most of the Morgellons skin specimens studied so far. Other species of Borrelia including Borrelia garinii, Borrelia miyamotoi, and Borrelia hermsii have also been detected in skin specimens taken from MD patients. The optimal treatment for MD remains to be determined.

  13. Drop dynamics on a stretched viscoelastic filament: An experimental study

    NASA Astrophysics Data System (ADS)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  14. Current filamentation model for the Weibel/Filamentation instabilities

    NASA Astrophysics Data System (ADS)

    Ryu, Chang-Mo; Huynh, Cong Tuan; Kim, Chul Min

    2016-10-01

    A current filamentaion model for a nonrelativistic plasma with e +/e- beam has been presented together with PIC simulations, which can explain the mangetic field enhancement during the Weibel/ Filamentation instabilities. This filament model assumes the Hammer-Rostoker equilibrium. In addition, this model predicts preferential acceleration/deceleration for electron-ion plasmas depending on the injected beam to be e +/e-.

  15. A study of short wave instability on vortex filaments

    SciTech Connect

    Wang, Hong Yun

    1996-12-01

    The numerical stability and accuracy of the vortex method are studied. The effect of the ordinary differential equations (ODE) solver and of the time step on the numerical stability is analyzed. Various ODE solvers are compared and a best performer is chosen. A new constraint on the time step based on numerical stability is proposed and verified in numerical simulations. It is shown through numerical examples that empirical rules for selecting the spatial discretization obtained in simple test problems may not be extended to more general problems. The thin tube vortex filament method is applied to the problem of Widnall's instability on vortex rings. Numerical results different from previous calculations are presented and the source of the discrepancies is explained. The long time behavior of the unstable mode on thin vortex rings is simulated and analyzed. The short wave instability on vortex filaments is investigated both theoretically and numerically. It is shown that the short wave instability always occurs on co-rotating vortex filaments of fixed core structure. Furthermore when they are close to each other, vortex filaments produce short wave unstable modes which lead to wild stretching and folding. However, when the inter-filament distance is large in comparison with the core size of the filaments, unstable modes are bounded by a small fraction of the core size and the vortex filaments do not create hairpins nor wild stretching. These findings may explain the smooth behavior of the superfluid vortices. The formation of hairpin structures on numerical vortex filaments is investigated. It is shown that the formation of hairpin structures is independent of the ODE solver, of the time step and of other numerical parameters. The hairpin structures are primarily caused by short wave instability on co-rotating vortex filaments.

  16. Structure-based molecular modeling approaches to GPCR oligomerization.

    PubMed

    Kaczor, Agnieszka A; Selent, Jana; Poso, Antti

    2013-01-01

    Classical structure-based drug design techniques using G-protein-coupled receptors (GPCRs) as targets focus nearly exclusively on binding at the orthosteric site of a single receptor. Dimerization and oligomerization of GPCRs, proposed almost 30 years ago, have, however, crucial relevance for drug design. Targeting these complexes selectively or designing small molecules that affect receptor-receptor interactions might provide new opportunities for novel drug discovery. In order to study the mechanisms and dynamics that rule GPCRs oligomerization, it is essential to understand the dynamic process of receptor-receptor association and to identify regions that are suitable for selective drug binding, which may be determined with experimental methods such as Förster resonance energy transfer (FRET) or Bioluminescence resonance energy transfer (BRET) and computational sequence- and structure-based approaches. The aim of this chapter is to provide a comprehensive description of the structure-based molecular modeling methods for studying GPCR dimerization, that is, protein-protein docking, molecular dynamics, normal mode analysis, and electrostatics studies.

  17. Optical investigation of molecular structure of sophisticated materials for photonics

    NASA Astrophysics Data System (ADS)

    Gnyba, Marcin; Keraenen, Mikko

    2003-10-01

    Permanent development of photonics stimulates a searching for new materials, which have better optical, mechanical and electrical properties. One of the new classes of materials with large application and development potential are hybrid polymers, synthesized in sol-gel technology. Thanks to incorporation of organic components into an in organic network, a combination of advantages of both class of materials became available. Properties of hybrids may be formed in wide range. These materials can be used in photonics to produce planar waveguides, lenses, Bragg gratings and components for integrated optics. Moreover, dielectric layers, coatings and packaging are made from hybrids. Additionally, research to apply them in optical fiber sensors (including bio-sensors) and solid state lasers is underway. However, to obtain a high quality product, a strict control of its molecular structure must be ensured. This is a very difficult task, because of a sophisticated structure of hybrid polymers. To address these problems, optical, non-destructive measurement techniques such as Raman and infrared spectroscopy were used. They are compementary methods, so their simultaneous application, as it was shown in this paper, can significantly increase the amoung of information about molecular structure of materials and process of their synthesis.

  18. Special Feature: Liquids and Structural Glasses Special Feature: An active biopolymer network controlled by molecular motors

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje H.; Dogic, Zvonimir; Nakamura, Fumihiko; Bendix, Poul M.; MacKintosh, Frederick C.; Hartwig, John H.; Stossel, Thomas P.; Weitz, David A.

    2009-09-01

    We describe an active polymer network in which processive molecular motors control network elasticity. This system consists of actin filaments cross-linked by filamin A (FLNa) and contracted by bipolar filaments of muscle myosin II. The myosin motors stiffen the network by more than two orders of magnitude by pulling on actin filaments anchored in the network by FLNa cross-links, thereby generating internal stress. The stiffening response closely mimics the effects of external stress applied by mechanical shear. Both internal and external stresses can drive the network into a highly nonlinear, stiffened regime. The active stress reaches values that are equivalent to an external stress of 14 Pa, consistent with a 1-pN force per myosin head. This active network mimics many mechanical properties of cells and suggests that adherent cells exert mechanical control by operating in a nonlinear regime where cell stiffness is sensitive to changes in motor activity. This design principle may be applicable to engineering novel biologically inspired, active materials that adjust their own stiffness by internal catalytic control.

  19. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  20. Impact damage in filament wound composite bottles

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1993-01-01

    Increasingly, composite materials are being used in advanced structural applications because of the significant weight savings they offer when compared to more traditional engineering materials. The higher cost of composites must be offset by the increased performance that results from reduced structural weight if these new materials are to be used effectively. At present, there is considerable interest in fabricating solid rocket motor cases out of composite materials, and capitalizing on the reduced structural weight to increase rocket performance. However, one of the difficulties that arises when composite materials are used is that composites can develop significant amounts of internal damage during low velocity impacts. Such low velocity impacts may be encountered in routine handling of a structural component like a rocket motor case. The ability to assess the reduction in structural integrity of composite motor cases that experience accidental impacts is essential if composite rocket motor cases are to be certified for manned flight. While experimental studies of the post-impact performance of filament wound composite motor cases haven been proven performed (2,3), scaling impact data from small specimens to full scale structures has proven difficult. If such a scaling methodology is to be achieved, an increased understanding of the damage processes which influence residual strength is required. The study described herein was part of an ongoing investigation of damage development and reduction of tensile strength in filament wound composites subjected to low velocity impacts. The present study, which focused on documenting the damage that develops in filament wound composites as a result of such impacts, included two distinct tasks. The first task was to experimentally assess impact damage in small, filament wound pressure bottles using x-ray radiography. The second task was to study the feasibility of using digital image processing techniques to assist in

  1. Helicity within the vortex filament model

    PubMed Central

    Hänninen, R.; Hietala, N.; Salman, H.

    2016-01-01

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments. PMID:27883029

  2. Using Drosophila for Studies of Intermediate Filaments.

    PubMed

    Bohnekamp, Jens; Cryderman, Diane E; Thiemann, Dylan A; Magin, Thomas M; Wallrath, Lori L

    2016-01-01

    Drosophila melanogaster is a useful organism for determining protein function and modeling human disease. Drosophila offers a rapid generation time and an abundance of genomic resources and genetic tools. Conservation in protein structure, signaling pathways, and developmental processes make studies performed in Drosophila relevant to other species, including humans. Drosophila models have been generated for neurodegenerative diseases, muscular dystrophy, cancer, and many other disorders. Recently, intermediate filament protein diseases have been modeled in Drosophila. These models have revealed novel mechanisms of pathology, illuminated potential new routes of therapy, and make whole organism compound screens feasible. The goal of this chapter is to outline steps to study intermediate filament function and model intermediate filament-associated diseases in Drosophila. The steps are general and can be applied to study the function of almost any protein. The protocols outlined here are for both the novice and experienced Drosophila researcher, allowing the rich developmental and cell biology that Drosophila offers to be applied to studies of intermediate filaments.

  3. Helicity within the vortex filament model

    NASA Astrophysics Data System (ADS)

    Hänninen, R.; Hietala, N.; Salman, H.

    2016-11-01

    Kinetic helicity is one of the invariants of the Euler equations that is associated with the topology of vortex lines within the fluid. In superfluids, the vorticity is concentrated along vortex filaments. In this setting, helicity would be expected to acquire its simplest form. However, the lack of a core structure for vortex filaments appears to result in a helicity that does not retain its key attribute as a quadratic invariant. By defining a spanwise vector to the vortex through the use of a Seifert framing, we are able to introduce twist and henceforth recover the key properties of helicity. We present several examples for calculating internal twist to illustrate why the centreline helicity alone will lead to ambiguous results if a twist contribution is not introduced. Our choice of the spanwise vector can be expressed in terms of the tangential component of velocity along the filament. Since the tangential velocity does not alter the configuration of the vortex at later times, we are able to recover a similar equation for the internal twist angle to that of classical vortex tubes. Our results allow us to explain how a quasi-classical limit of helicity emerges from helicity considerations for individual superfluid vortex filaments.

  4. Bohm's Quantum Potential and the Visualization of Molecular Structure

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    David Bohm's ontological interpretation of quantum theory can shed light on otherwise counter-intuitive quantum mechanical phenomena including chemical bonding. In the field of quantum chemistry, Richard Bader has shown that the topology of the Laplacian of the electronic charge density characterizes many features of molecular structure and reactivity. Visual and computational examination suggests that the Laplacian of Bader and the quantum potential of Bohm are morphologically equivalent. It appears that Bohmian mechanics and the quantum potential can make chemistry as clear as they makes physics.

  5. Structurally Defined Molecular Hypervalent Iodine Catalysts for Intermolecular Enantioselective Reactions

    PubMed Central

    Haubenreisser, Stefan; Wöste, Thorsten H.; Martínez, Claudio; Ishihara, Kazuaki

    2015-01-01

    Abstract Molecular structures of the most prominent chiral non‐racemic hypervalent iodine(III) reagents to date have been elucidated for the first time. The formation of a chirally induced supramolecular scaffold based on a selective hydrogen‐bonding arrangement provides an explanation for the consistently high asymmetric induction with these reagents. As an exploratory example, their scope as chiral catalysts was extended to the enantioselective dioxygenation of alkenes. A series of terminal styrenes are converted into the corresponding vicinal diacetoxylation products under mild conditions and provide the proof of principle for a truly intermolecular asymmetric alkene oxidation under iodine(I/III) catalysis. PMID:26596513

  6. Relationship between antimold activity and molecular structure of cinnamaldehyde analogues.

    PubMed

    Zhang, Yuanyuan; Li, Shujun; Kong, Xianchao

    2013-03-01

    A quantitative structure-activity relationship (QSAR) modeling of the antimold activity of cinnamaldehyde analogues against of Aspergillus niger and Paecilomyces variotii was presented. The molecular descriptors of cinnamaldehyde analogues were calculated by the CODESSA program, and these descriptors were selected by best multi-linear regression method (BMLR). Satisfactory multilinear regression models of Aspergillus niger and Paecilomyces variotii were obtained with R(2)=0.9099 and 0.9444, respectively. The models were also satisfactorily validated using internal validation and leave one out validation. The QSAR models provide the guidance for further synthetic work.

  7. Structural Organization of {pi} Conjugated Highly Luminescent Molecular Material

    SciTech Connect

    Toudic, B.; Limelette, P.; Le Gac, F.; Moreac, A.; Rabiller, P.; Froyer, G.

    2005-11-18

    We report on striking evidence for a room temperature structural phase instability in p-hexaphenyl, inducing a nonplanar conformation of the molecules. Solid state proton NMR and single crystal x-ray diffraction allow the analysis of the organization, the individual dynamics and the involved symmetry breaking. The analysis of Raman spectra above and below room temperature reveals a singular behavior suggesting a modification of the overlap between the electronic wave function induced by the nonplanarity. These results provide a new basis to answer fundamental issues related to molecular and electronic materials and, in particular, luminescent organic devices.

  8. Molecular and electronic structures of cerium and cerium suboxide clusters

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Topolski, Josey E.; Jarrold, Caroline Chick

    2016-10-01

    The anion photoelectron (PE) spectra of Ce2Oy- (y = 1, 2), Ce3Oy- (y = 0-4), Ce4Oy- (y = 0-2), and Ce5Oy- (y = 1, 2) are reported and analyzed with supporting results from density functional theory calculations. The PE spectra all exhibit an intense electronic transition to the neutral ground state, all falling in the range of 0.7 to 1.1 eV electron binding energy, with polarization dependence consistent with detachment from diffuse Ce 6s-based molecular orbitals. There is no monotonic increase in electron affinity with increasing oxidation. A qualitative picture of how electronic structure evolves with an oxidation state emerges from comparison between the spectra and the computational results. The electronic structure of the smallest metallic cluster observed in this study, Ce3, is similar to the bulk structure in terms of atomic orbital occupancy (4f 5d2 6s). Initial cerium cluster oxidation involves largely ionic bond formation via Ce 5d and O 2p orbital overlap (i.e., larger O 2p contribution), with Ce—O—Ce bridge bonding favored over Ce=O terminal bond formation. With subsequent oxidation, the Ce 5d-based molecular orbitals are depleted of electrons, with the highest occupied orbitals described as diffuse Ce 6s based molecular orbitals. In the y ≤ (x + 1) range of oxidation states, each Ce center has a singly occupied non-bonding 4f orbital. The PE spectrum of Ce3O4- is unique in that it exhibits a single nearly vertical transition. The highly symmetric structure predicted computationally is the same structure determined from Ce3O4+ IR predissociation spectra [A. M. Burow et al., Phys. Chem. Chem. Phys. 13, 19393 (2011)], indicating that this structure is stable in -1, 0, and +1 charge states. Spectra of clusters with x ≥ 3 exhibit considerable continuum signal above the ground state transition; the intensity of the continuum signal decreases with increasing oxidation. This feature is likely the result of numerous quasi-bound anion states or two

  9. Evaluation of filamentous green algae as feedstocks for biofuel production.

    PubMed

    Zhang, Wei; Zhao, Yonggang; Cui, Binjie; Wang, Hui; Liu, Tianzhong

    2016-11-01

    Compared with unicellular microalgae, filamentous algae have high resistance to grazer-predation and low-cost recovery in large-scale production. Green algae, as the most diverse group of algae, included numerous filamentous genera and species. In this study, records of filamentous genera and species in green algae were firstly censused and classified. Then, seven filamentous strains subordinated in different genera were cultivated in bubbled-column to investigate their growth rate and energy molecular (lipid and starch) capacity. Four strains including Stigeoclonium sp., Oedogonium nodulosum, Hormidium sp. and Zygnema extenue were screened out due to their robust growth. And they all could accumulate triacylglycerols and starch in their biomass, but with different capacity. After nitrogen starvation, Hormidium sp. and Oedogonium nodulosum respectively exhibited high capacity of lipid (45.38% in dry weight) and starch (46.19% in dry weight) accumulation, which could be of high potential as feedstocks for biodiesel and bioethanol production.

  10. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.

    PubMed

    Li, Huawei; Liu, Hong; Balt, Steve; Mann, Sabine; Corrales, C Eduardo; Heller, Stefan

    2004-01-01

    The vertebrate hair cell is named for its stereociliary bundle or hair bundle that protrudes from the cell's apical surface. Hair bundles mediate mechanosensitivity, and their highly organized structure plays a critical role in mechanoelectrical transduction and amplification. The prototypical hair bundle is composed of individual stereocilia, 50-300 in number, depending on the animal species and on the type of hair cell. The assembly of stereocilia, in particular, the formation during development of individual rows of stereocilia with descending length, has been analyzed in great morphological detail. Electron microscopic studies have demonstrated that stereocilia are filled with actin filaments that are rigidly cross-linked. The growth of individual rows of stereocilia is associated with the addition of actin filaments and with progressively increasing numbers of cross-bridges between actin filaments. Recently, a mutation in the actin filament-bundling protein espin has been shown to underlie hair bundle degeneration in the deaf jerker mouse, subsequently leading to deafness. Our study was undertaken to investigate the appearance and developmental expression of espin in chicken inner ear sensory epithelia. We found that the onset of espin expression correlates with the initiation and growth of stereocilia bundles in vestibular and cochlear hair cells. Intense espin immunolabeling of stereocilia was colocalized with actin filament staining in all types of hair cells at all developmental stages and in adult animals. Our analysis of espin as a molecular marker for actin filament cross-links in stereocilia is in full accordance with previous morphological studies and implicates espin as an important structural component of hair bundles from initiation of bundle assembly to mature chicken hair cells.

  11. Force Generation, Polymerization Dynamics and Nucleation of Actin Filaments

    NASA Astrophysics Data System (ADS)

    Wang, Ruizhe

    We study force generation and actin filament dynamics using stochastic and deterministic methods. First, we treat force generation of bundled actin filaments by polymerization via molecular-level stochastic simulations. In the widely-used Brownian Ratchet model, actin filaments grow freely whenever the tip-obstacle gap created by thermal fluctuation exceeds the monomer size. We name this model the Perfect Brownian Ratchet (PBR) model. In the PBR model, actin monomer diffusion is treated implicitly. We perform a series of simulations based on the PBR, in which obstacle motion is treated explicitly; in most previous studies, obstacle motion has been treated implicitly. We find that the cooperativity of filaments is generally weak in the PBR model, meaning that more filaments would grow more slowly given the same force per filament. Closed-form formulas are also developed, which match the simulation results. These portable and accurate formulas provide guidance for experiments and upper and lower bounds for theoretical analyses. We also studied a variation of the PBR, called the Diffusing Brownian Ratchet (DBR) model, in which both actin monomer and obstacle diffusion are treated explicitly. We find that the growth rate of multiple filaments is even lower, compared with that in PBR. This finding challenges the widely-accepted PBR assumption and suggests that pushing the study of actin dynamics down to the sub-nanometer level yields new insights. We subsequently used a rate equation approach to model the effect of local depletion of actin monomers on the nucleation of actin filaments on biomimetic beads, and how the effect is regulated by capping protein (CP). We find that near the bead surface, a higher CP concentration increases local actin concentration, which leads to an enhanced activities of actin filaments' nucleation. Our model analysis matches the experimental results and lends support to an important but undervalued hypothesis proposed by Carlier and

  12. Metabolomics protocols for filamentous fungi.

    PubMed

    Gummer, Joel P A; Krill, Christian; Du Fall, Lauren; Waters, Ormonde D C; Trengove, Robert D; Oliver, Richard P; Solomon, Peter S

    2012-01-01

    Proteomics and transcriptomics are established functional genomics tools commonly used to study filamentous fungi. Metabolomics has recently emerged as another option to complement existing techniques and provide detailed information on metabolic regulation and secondary metabolism. Here, we describe broad generic protocols that can be used to undertake metabolomics studies in filamentous fungi.

  13. Molecular structure of uranium carbides: isomers of UC3.

    PubMed

    Zalazar, M Fernanda; Rayón, Víctor M; Largo, Antonio

    2013-03-21

    In this article, the most relevant isomers of uranium tricarbide are studied through quantum chemical methods. It is found that the most stable isomer has a fan geometry in which the uranium atom is bonded to a quasilinear C3 unit. Both, a rhombic and a ring CU(C2) structures are found about 104-125 kJ/mol higher in energy. Other possible isomers including linear geometries are located even higher. For each structure, we provide predictions for those molecular properties (vibrational frequencies, IR intensities, dipole moments) that could eventually help in their experimental detection. We also discuss the possible routes for the formation of the different UC3 isomers as well as the bonding situation by means of a topological analysis of the electron density.

  14. Crystal and molecular structures of new enantiopure quinuclidines.

    PubMed

    Kania, Iwona; Stadnicka, Katarzyna; Oleksyn, Barbara J

    2004-03-01

    X-ray crystal structure analysis was performed on single crystals of two diastereomeric enantiopure quinuclidines, (3R,8R)-3-vinyl-8-hydroxymethyl-quinuclidine (quincoridine, QCD) and (3R,8S)-3-vinyl-8-hydroxymethyl-quinuclidine (quincorine, QCI) as their salts with tartaric and p-toluenesulphonate anions, respectively. The molecules of these quinuclidine derivatives are considered here as fragments of the Cinchona alkaloids, quinidine and quinine. A comparison of the conformational features of QCD, QCI, and Cinchona alkaloids in the crystalline state shows that the molecular geometry of the title compounds is similar to that of threo-alkaloids (e.g., R,R isomer of epicinchonine) rather than to quinidine and quinine. The packing of the molecules in both structures is dominated by intermolecular hydrogen bonds.

  15. Dynamic liquid-liquid-solid microextraction based on molecularly imprinted polymer filaments on-line coupling to high performance liquid chromatography for direct analysis of estrogens in complex samples.

    PubMed

    Zhong, Qisheng; Hu, Yufei; Hu, Yuling; Li, Gongke

    2012-06-08

    A novel sample preparation technique termed dynamic liquid-liquid-solid microextraction (DLLSME) was developed and on-line coupled to high performance liquid chromatography (HPLC) for direct extraction, desorption, and analysis of trace estrogens in complex samples. The DLLSME consists of the aqueous donor phase, the organic medium phase and the molecularly imprinted polymer filaments (MIPFs) as solid acceptor phase. The organic solvent with lesser density was directly added on top of the aqueous sample, and the dynamic extraction was performed by circulating the organic solvent through the MIPFs inserted into a PEEK tube which served as an extraction and desorption chamber. Afterwards, the extracted analytes on the MIPFs were on-line desorbed and then introduced into the HPLC for analysis. To evaluate the feasibility of the on-line system, a new DLLSME-HPLC method was developed for the analysis of five estrogens in aqueous samples by using 17β-estradiol MIPFs as the solid phase. Under the optimized conditions, the enrichment factors of 51-70, limits of detection of 0.08-0.25 μg/L and precision within 4.5-6.9% were achieved. Furthermore, the proposed method was applied to the analysis of real samples including urine, milk and skin toner, satisfactory recovery (81.9-99.8%) and reproducibility (4.1-7.9%) were obtained. Especially, 0.59 μg/L of 17β-estradiol was determined in female urine sample. The DLLSME offers an attractive alternative for direct analysis of trace analytes in aqueous samples and could potentially be extended to other adsorptive materials.

  16. Noninvasive structural, functional, and molecular imaging in drug development.

    PubMed

    Rudin, Markus

    2009-06-01

    Modern drug research is mechanism-based and the development of disease modifying therapies involves the identification of molecular key players in the pathological cascade. Today, noninvasive imaging tools enable the visualization and quantitative assessment of the expression of molecular targets, of their interaction with potential ligands, as well as of the functional consequence of this interaction at a molecular (e.g. activation of signaling cascades), cellular, metabolic, physiological, and morphological level in a temporo-spatially resolved manner. The ability to gather such information from the intact organism with all regulatory processes in place renders imaging highly attractive for the biomedical researcher and for the drug developer in particular. Molecular imaging is potentially capable of providing this information. Today, proof-of-principle has been established that imaging is in fact adding value to the drug discovery and development processes. Numerous studies have used structural and functional imaging readouts to document therapy efficacy, mainly during lead optimization. Similarly, major efforts have been devoted to the development and evaluation of imaging biomarkers that might serve as early readouts for therapy response with the potential of being used in the clinical drug evaluation thereby facilitating translational research. In this contribution, we illustrate the role and potential of imaging in modern drug discovery and development with selected examples. Yet, despite its huge potential the impact of imaging on drug discovery has been modest in the past; potential reasons will be discussed. Nevertheless, noninvasive imaging methods are rapidly evolving and it is beyond doubt that their importance for biomedical research will increase.

  17. Phenol-formaldehyde resins: A quantitative NMR study of molecular structure and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Ottenbourgs, Benjamin Tony

    Phenol-formaldehyde (PF) resins have been the subject of this work. 13C liquid-state and solid-state NMR has been used to investigate the molecular structure of mainly novolak and partially of resole resins. 1H wideline in combination with 13C solid-state NMR relaxometry has been applied to study the curing and the molecular dynamics of phenolic resins. It was the intention to provide an insight in the relationship between resin composition, resin structure and subsequent resin properties (by means of the molecular dynamics). An improved 13C liquid-state NMR quantification technique of novolaks in THF-CDCl3 solutions is demonstrated. Full quantitative 13C liquid-state spectra of phenol-formaldehyde resins with high signal- to-noise ratio were obtained by using chromium acetylacetonate under optimized spectral conditions within a few hours spectrometer time. Attached proton test (APT) spectra enabled proper peak assignments in the region with significant overlap. For several novolaks, prepared under different catalytic conditions, the degree of polymerization, degree of branching, number average molecular weight, isomeric distribution, and the number of unreacted ortho and para phenol ring positions was determined with a reduced margin of error, by analyzing and integrating the 13C spectra. The power of 13C solid-state NMR in the analysis of cured PF resins is shown. Particular importance was ascribed to the question of the quantifiability of the experiments when it was desired to measure the degree of conversion by means of a 13C CP/MAS contact time study. The network structure present, and thus also the mechanical properties, is critically dependent upon the final degree of conversion obtained after curing. The degree of conversion, which depended on the cure conditions (cure temperature, cure pressure and cure time), was limited by vitrification as was demonstrated by DSC experiments. Changes in the spin-lattice relaxation time T 1H were observed, providing

  18. The molecular structure of waxy maize starch nanocrystals.

    PubMed

    Angellier-Coussy, Hélène; Putaux, Jean-Luc; Molina-Boisseau, Sonia; Dufresne, Alain; Bertoft, Eric; Perez, Serge

    2009-08-17

    The insoluble residues obtained by submitting amylopectin-rich native starch granules from waxy maize to a mild acid hydrolysis consist of polydisperse platelet nanocrystals that have retained the allomorphic type of the parent granules. The present investigation is a detailed characterization of their molecular composition. Two major groups of dextrins were found in the nanocrystals and were isolated. Each group was then structurally characterized using beta-amylase and debranching enzymes (isoamylase and pullulanase) in combination with anion-exchange chromatography. The chain lengths of the dextrins in both groups corresponded with the thickness of the crystalline lamellae in the starch granules. Only approximately 62 mol% of the group of smaller dextrins with an average degree of polymerization (DP) 12.2 was linear, whereas the rest consisted of branched dextrins. The group of larger dextrins (DP 31.7) apparently only consisted of branched dextrins, several of which were multiply branched molecules. It was shown that many of the branch linkages were resistant to the action of the debranching enzymes. The distribution of branched molecules in the two populations of dextrins suggested that the nanocrystals possessed a regular and principally homogeneous molecular structure.

  19. Anti-cancer chalcones: Structural and molecular target perspectives.

    PubMed

    Mahapatra, Debarshi Kar; Bharti, Sanjay Kumar; Asati, Vivek

    2015-06-15

    Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.

  20. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity.

  1. Experiments on the Propagation of Plasma Filaments

    SciTech Connect

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Porkolab, Miklos

    2008-07-04

    We investigate experimentally the motion and structure of isolated plasma filaments propagating through neutral gas. Plasma filaments, or 'blobs,' arise from turbulent fluctuations in a range of plasmas. Our experimental geometry is toroidally symmetric, and the blobs expand to a larger major radius under the influence of a vertical electric field. The electric field, which is caused by {nabla}B and curvature drifts in a 1/R magnetic field, is limited by collisional damping on the neutral gas. The blob's electrostatic potential structure and the resulting ExB flow field give rise to a vortex pair and a mushroom shape, which are consistent with nonlinear plasma simulations. We observe experimentally this characteristic mushroom shape for the first time. We also find that the blob propagation velocity is inversely proportional to the neutral density and decreases with time as the blob cools.

  2. The Molecular Structure of a Phosphatidylserine Bilayer Determined by Scattering and Molecular Dynamics Simulations

    SciTech Connect

    Pan, Jianjun; Cheng, Xiaolin; Monticelli, Luca; Heberle, Frederick A; Kucerka, Norbert; Tieleman, D. Peter; Katsaras, John

    2014-01-01

    Phosphatidylserine (PS) lipids play essential roles in biological processes, including enzyme activation and apoptosis. We report on the molecular structure and atomic scale interactions of a fluid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS). A scattering density profile model, aided by molecular dynamics (MD) simulations, was developed to jointly refine different contrast small-angle neutron and X-ray scattering data, which yielded a lipid area of 62.7 A2 at 25 C. MD simulations with POPS lipid area constrained at different values were also performed using all-atom and aliphatic united-atom models. The optimal simulated bilayer was obtained using a model-free comparison approach. Examination of the simulated bilayer, which agrees best with the experimental scattering data, reveals a preferential interaction between Na+ ions and the terminal serine and phosphate moieties. Long-range inter-lipid interactions were identified, primarily between the positively charged ammonium, and the negatively charged carboxylic and phosphate oxygens. The area compressibility modulus KA of the POPS bilayer was derived by quantifying lipid area as a function of surface tension from area-constrained MD simulations. It was found that POPS bilayers possess a much larger KA than that of neutral phosphatidylcholine lipid bilayers. We propose that the unique molecular features of POPS bilayers may play an important role in certain physiological functions.

  3. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    ERIC Educational Resources Information Center

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  4. Maintain rigid structures in Verlet based cartesian molecular dynamics simulations.

    PubMed

    Tao, Peng; Wu, Xiongwu; Brooks, Bernard R

    2012-10-07

    An algorithm is presented to maintain rigid structures in Verlet based cartesian molecular dynamics (MD) simulations. After each unconstrained MD step, the coordinates of selected particles are corrected to maintain rigid structures through an iterative procedure of rotation matrix computation. This algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations of Lagrange multipliers, so that the complexity of computation does not increase with the number of particles in a rigid structure. The implementation of this algorithm does not require significant modification of propagation integrator, and can be plugged into any cartesian based MD integration scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any object that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE, the SHAPE method can be applied to large linear (with three or more centers) and planar (with four or more centers) rigid bodies. Numerical tests with four model systems including two proteins demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE method, but with much more applicability and efficiency.

  5. Electronic and Magnetic Structure of Octahedral Molecular Sieves

    NASA Astrophysics Data System (ADS)

    Morey-Oppenheim, Aimee M.

    The major part of this research consists of magnetic and electronic studies of metal doped cryptomelane-type manganese oxide octahedral molecular sieves (KOMS-2). The second part of this study involves the magnetic characterization of cobalt doped MCM-41 before and after use in the synthesis of single walled carbon nanotubes. Manganese oxides have been used widely as bulk materials in catalysis, chemical sensors, and batteries due to the wide range of possible stable oxidation states. The catalytic function of manganese oxides is further tuned by doping the material with numerous transition metals. It is of particular interest the oxidation states of Mn present after doping. New titrations to determine the oxidation state of Mn were investigated. To further examine the structure of KOMS-2, the magnetic contribution of dopant metals was also examined. The KOMS-2 structure having both diamagnetic and paramagnetic metal ions substitutions was studied. MCM-41 with the incorporation of cobalt into the structure was analyzed for its magnetic properties. The material undergoes significant structural change during the synthesis of single walled carbon nanotubes. It was the focus of this portion of the research to do a complete magnetic profile of both the before and after reaction material.

  6. Influence of Filament and Substrate Temperatures on Structural and Optoelectronic Properties of Narrow Gap a-SiGe:H Alloys Deposited by Hot-Wire CVD: Preprint

    SciTech Connect

    Xu, Y.; Nelson, B. P.; Gedvilas, L. M.; Reedy, R. C.; Williamson, D. L.

    2003-04-01

    We have found that narrow-bandgap--1.25< Tauc Gap< 1.50 eV--amorphous silicon germanium (a-SiGe:H) alloys grown by hot-wire chemical vapor deposition (CVD) can be improved by lowering both substrate and filament temperatures. We systematically studied films deposited using a one-tungsten filament, decreasing filament temperature (Tf) from our standard temperature of 2150ý down to 1750ýC, and fixing all other deposition parameters. By decreasing Tf at the fixed substrate temperature (Ts) of 180ýC, the Ge-H bonding increases, whereas the Si-H2 bonding is eliminated. Films with higher Ge-H bonding and less Si-H2 have improved photoconductivity. For the series of films deposited using the same germane gas fraction at 35%, the energy where the optical absorption is 1x104 (E04) drops from 1.54 to 1.41 eV with decreasing Tf. This is mainly due to the combination of an increasing Ge solid fraction (x) in the film, and an improved homogeneity and compactness due to significant reduction of microvoids, which was confirmed by small-angle X-ray scattering (SAXS). We also studied a series of films grown by decreasing the Ts from our previous standard temperature of 350ýC down to 125ýC, fixing all other deposition parameters including Tf at 1800ýC. By decreasing Ts, both the total hydrogen content and the Ge-H bonding increased, but the Si-H2 bonding is not measurable in the Ts range of 180ý-300ýC. The E04 increases from 1.40 to 1.51 eV as Ts decreased from 350ý to 125ýC, mainly due to the increased total hydrogen content. At the same time, the photo-to-dark conductivity ratio increases almost three orders of magnitude over this range of Ts.

  7. Large-scale filaments associated with Milky Way spiral arms

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Testi, Leonardo; Ginsburg, Adam; Walmsley, C. Malcolm; Molinari, Sergio; Schisano, Eugenio

    2015-07-01

    The ubiquity of filamentary structure at various scales throughout the Galaxy has triggered a renewed interest in their formation, evolution, and role in star formation. The largest filaments can reach up to Galactic scale as part of the spiral arm structure. However, such large-scale filaments are hard to identify systematically due to limitations in identifying methodology (i.e. as extinction features). We present a new approach to directly search for the largest, coldest, and densest filaments in the Galaxy, making use of sensitive Herschel Hi-GAL (Herschel Infrared Galactic Plane Survey) data complemented by spectral line cubes. We present a sample of the nine most prominent Herschel filaments, including six identified from a pilot search field plus three from outside the field. These filaments measure 37-99 pc long and 0.6-3.0 pc wide with masses (0.5-8.3) × 104 M⊙, and beam-averaged (28 arcsec, or 0.4-0.7 pc) peak H2 column densities of (1.7-9.3)× 1022 cm- 2. The bulk of the filaments are relatively cold (17-21 K), while some local clumps have a dust temperature up to 25-47 K. All the filaments are located within ≲60 pc from the Galactic mid-plane. Comparing the filaments to a recent spiral arm model incorporating the latest parallax measurements, we find that 7/9 of them reside within arms, but most are close to arm edges. These filaments are comparable in length to the Galactic scaleheight and therefore are not simply part of a grander turbulent cascade.

  8. Sufficient conditions for the additivity of stall forces generated by multiple filaments or motors

    NASA Astrophysics Data System (ADS)

    Bameta, Tripti; Das, Dipjyoti; Das, Dibyendu; Padinhateeri, Ranjith; Inamdar, Mandar M.

    2017-02-01

    Molecular motors and cytoskeletal filaments work collectively most of the time under opposing forces. This opposing force may be due to cargo carried by motors or resistance coming from the cell membrane pressing against the cytoskeletal filaments. Some recent studies have shown that the collective maximum force (stall force) generated by multiple cytoskeletal filaments or molecular motors may not always be just a simple sum of the stall forces of the individual filaments or motors. To understand this excess or deficit in the collective force, we study a broad class of models of both cytoskeletal filaments and molecular motors. We argue that the stall force generated by a group of filaments or motors is additive, that is, the stall force of N number of filaments (motors) is N times the stall force of one filament (motor), when the system is reversible at stall. Conversely, we show that this additive property typically does not hold true when the system is irreversible at stall. We thus present a novel and unified understanding of the existing models exhibiting such non-addivity, and generalise our arguments by developing new models that demonstrate this phenomena. We also propose a quantity similar to thermodynamic efficiency to easily predict this deviation from stall-force additivity for filament and motor collectives.

  9. Molecular Clouds in the North American and Pelican Nebulae: Structures

    NASA Astrophysics Data System (ADS)

    Zhang, Shaobo; Xu, Ye; Yang, Ji

    2014-03-01

    We present observations of a 4.25 deg2 area toward the North American and Pelican Nebulae in the J = 1-0 transitions of 12CO, 13CO, and C18O. Three molecules show different emission areas with their own distinct structures. These different density tracers reveal several dense clouds with a surface density of over 500 M ⊙ pc-2 and a mean H2 column density of 5.8, 3.4, and 11.9 × 1021 cm-2 for 12CO, 13CO, and C18O, respectively. We obtain a total mass of 5.4 × 104 M ⊙ (12CO), 2.0 × 104 M ⊙ (13CO), and 6.1 × 103 M ⊙ (C18O) in the complex. The distribution of excitation temperature shows two phases of gas: cold gas (~10 K) spreads across the whole cloud; warm gas (>20 K) outlines the edge of the cloud heated by the W80 H II region. The kinetic structure of the cloud indicates an expanding shell surrounding the ionized gas produced by the H II region. There are six discernible regions in the cloud: the Gulf of Mexico, Caribbean Islands and Sea, and Pelican's Beak, Hat, and Neck. The areas of 13CO emission range within 2-10 pc2 with mass of (1-5) × 103 M ⊙ and line width of a few km s-1. The different line properties and signs of star-forming activity indicate they are in different evolutionary stages. Four filamentary structures with complicated velocity features are detected along the dark lane in LDN 935. Furthermore, a total of 611 molecular clumps within the 13CO tracing cloud are identified using the ClumpFind algorithm. The properties of the clumps suggest that most of the clumps are gravitationally bound and at an early stage of evolution with cold and dense molecular gas.

  10. Mathematical analysis of compressive/tensile molecular and nuclear structures

    NASA Astrophysics Data System (ADS)

    Wang, Dayu