Science.gov

Sample records for filament-carrying magnetic-cavity solar

  1. Probing Solar Eruption by Tracking Magnetic Cavities and Filaments

    NASA Astrophysics Data System (ADS)

    Sterling, A. C.; Johnson, J. R.; Moore, R. L.; Gibson, S. E.

    2015-12-01

    A solar eruption is a tremendous explosion on the Sun that happens when energy stored in twisted (or distorted) magnetic fields is suddenly released. When this field is viewed along the axis of the twist in projection at the limb, e.g. in EUV or white-light coronal images, the outer portions of the pre-eruption magnetic structure sometimes appears as a region of weaker emission, called a "coronal cavity," surrounded by a brighter envelope. Often a chromospheric filament resides near the base of the cavity and parallel to the cavity's central axis. Typically, both the cavity and filament move outward from the Sun at the start of an eruption of the magnetic field in which the cavity and filament reside. Studying properties the cavities and filaments just prior to and during eruption can help constrain models that attempt to explain why and how the eruptions occur. In this study, we examined six different at-limb solar eruptions using images from the Extreme Ultraviolet Imaging Telescope (EIT) aboard the Solar and Heliospheric Observatory (SOHO). For four of these eruptions we observed both cavities and filaments, while for the remaining two eruptions, one had only a cavity and the other only a filament visible in EIT images. All six eruptions were in comparatively-quiet solar regions, with one in the neighborhood of the polar crown. We measured the height and velocities of the cavities and filaments just prior to and during the start of their fast-eruption onsets. Our results support that the filament and cavity are integral parts of a single large-scale erupting magnetic-field system. We examined whether the eruption-onset heights were correlated with the expected magnetic field strengths of the eruption-source regions, but no clear correlation was found. We discuss possible reasons for this lack of correlation, and we also discuss future research directions. The research performed was supported by the National Science Foundation under Grant No. AGS-1460767; J

  2. Laboratory Facility for Simulating Solar Wind Sails

    SciTech Connect

    Funaki, Ikkoh; Ayabe, Tomohiro; Horisawa, Hideyuki; Yamakawa, Hiroshi

    2008-12-31

    Magnetic sail (MagSail) is a deep space propulsion system, in which an artificial magnetic cavity captures the energy of the solar wind to propel a spacecraft in the direction leaving the sun. For a scale-model experiment of the plasma flow of MagSail, we employed a magnetoplasmadynamic arcjet as a solar wind simulator. It is observed that a plasma flow from the solar wind simulator reaches a quasi-steady state of about 0.8 ms duration after a transient phase when initiating the discharge. During this initial phase of the discharge, a blast-wave was observed to develop radially in a vacuum chamber. When a solenoidal coil (MagSail scale model) is immersed into the quasi-steady flow where the velocity is 45 km/s, and the number density is 10{sup 19} m-3, a bow shock as well as a magnetic cavity were formed in front of the coil. As a result of the interaction between the plasma flow and the magnetic cavity, the momentum of the simulated solar wind is decreased, and it is found from the thrust measurement that the solar wind momentum is transferred to the coil simulating MagSail.

  3. Handbook of solar-terrestrial data systems, version 1

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The interaction between the solar wind and the earth's magnetic field creates a large magnetic cavity which is termed the magnetosphere. Energy derived from the solar wind is ultimately dissipated by particle acceleration-precipitation and Joule heating in the magnetosphere-ionosphere. The rate of energy dissipation is highly variable, with peak levels during geomagnetic storms and substorms. The degree to which solar wind and magnetospheric conditions control the energy dissipation processes remains one of the major outstanding questions in magnetospheric physics. A conference on Solar Wind-Magnetospheric Coupling was convened to discuss these issues and this handbook is the result.

  4. Initiation of Solar Eruptions

    NASA Technical Reports Server (NTRS)

    Sterling, Alphonse C.; Moore, Ronald L.

    2007-01-01

    We consider processes occurring just prior to and at the start of the onset of flare- and CME-producing solar eruptions. Our recent work uses observations of filament motions around the time of eruption onset as a proxy for the evolution of the fields involved in the eruption. Frequently the filaments show a slow rise prior to fast eruption, indicative of a slow expansion of the field that is about co explode. Work by us and others suggests that reconnection involving emerging or canceling flux results in a lengthening of fields restraining the filament-carrying field, and the consequent upward expansion of the field in and around the filament produces the filament's slow rise: that is, the reconnection weakens the magnetic "tethers" ("tether-weakening" reconnection), and results in the slow rise of the filament. It is still inconclusive, however, what mechanism is responsible for the switch from the slow rise to the fast eruption.

  5. Solar collection

    NASA Astrophysics Data System (ADS)

    Cole, S. I.

    1984-08-01

    Solar dishes, photovoltaics, passive solar building and solar hot water systems, Trombe walls, hot air panels, hybrid solar heating systems, solar grain dryers, solar greenhouses, solar hot water worhshops, and solar workshops are discussed. These solar technologies are applied to residential situations.

  6. Study of the Solar Wind Interaction with Comet 19P/Borrelly

    NASA Astrophysics Data System (ADS)

    Jia, Y.; Hansen, K. C.; Combi, M. R.; Gombosi, T. I.; Crary, F.; Young, D. T.

    2003-05-01

    A new study of the solar wind-comet Borrelly interaction is provided using a three-dimensional MHD model (BATS-R-US). A point implicit solver and a block-adaptive mesh refinement method allow us to simulate the physics on parallel computers. The simulation starts four million kilometers sunward of the nucleus, which is a hundred times the cometary bowshock distance, to make sure the entire mass loading volume is included. The smallest computational cells are thirty meters across in the vicinity of the nucleus. Inside the magnetic cavity, multiple jet configurations as well as gas production rates have been explored in order to give the best fit to the Deep Space 1 PEPE measurements, i.e., the velocity and density profile along the space craft trajectory, bowshock position and the offset density peak. In addition, ion-neutral interactions are included in the model and the effects of variable solar wind conditions are discussed.

  7. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  8. Early time interaction of lithium ions with the solar wind in the AMPTE mission

    NASA Technical Reports Server (NTRS)

    Lui, A. T. Y.; Goodrich, C. C.; Papadopoulos, K.; Mankofsky, A.

    1986-01-01

    The early time interaction of an artifically injected lithium cloud with the solar wind is simulated with a one-dimensional hybrid code. Simulation results indicate that the lithium cloud presents an obstacle to the solar wind flow, forming a shock-like interaction region. Several notable features are found: (1) The magnetic field is enhanced up to a factor of about 6, followed by a magnetic cavity downstream. (2) Solar wind ions are slowed down inside the lithium cloud, with substantial upstream reflection. (3) Most of the lithium ions gradually pick up the velocity of the solar wind and move downstream. (4) Intense and short-wavelength electric fields exist ahead of the interaction region. (5) Strong electron heating occurs within the lithium cloud. (6) The convection electric field in the solar wind is modulated in the interaction region. The simulation results are in remarkable agreement with in situ spacecraft measurements made during lithium releases in the solar wind by the AMPTE (Active Magnetospheric Particle Tracer Explorers) Program.

  9. Solar Cookers.

    ERIC Educational Resources Information Center

    King, Richard C.

    1981-01-01

    Describes the use of solar cookers in the science classroom. Includes instructions for construction of a solar cooker, an explanation of how solar cookers work, and a number of suggested activities. (DS)

  10. Solar Energy.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Presented is the utilization of solar radiation as an energy resource principally for the production of electricity. Included are discussions of solar thermal conversion, photovoltic conversion, wind energy, and energy from ocean temperature differences. Future solar energy plans, the role of solar energy in plant and fossil fuel production, and…

  11. Solar Geometry

    Atmospheric Science Data Center

    2014-09-25

    Solar Noon (GMT time) The time when the sun is due south in the ... and sunset.   Daylight average of hourly cosine solar zenith angles (dimensionless) The average cosine of the angle ... overhead during daylight hours.   Cosine solar zenith angle at mid-time between sunrise and solar noon ...

  12. Solar energy

    NASA Technical Reports Server (NTRS)

    Rapp, D.

    1981-01-01

    The book opens with a review of the patterns of energy use and resources in the United States, and an exploration of the potential of solar energy to supply some of this energy in the future. This is followed by background material on solar geometry, solar intensities, flat plate collectors, and economics. Detailed attention is then given to a variety of solar units and systems, including domestic hot water systems, space heating systems, solar-assisted heat pumps, intermediate temperature collectors, space heating/cooling systems, concentrating collectors for high temperatures, storage systems, and solar total energy systems. Finally, rights to solar access are discussed.

  13. Solar Systems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar collectors shown are elements of domestic solar hot water systems produced by Solar One Ltd., Virginia Beach, Virginia. Design of these systems benefited from technical expertise provided Solar One by NASA's Langley Research Center. The company obtained a NASA technical support package describing the d e sign and operation of solar heating equipment in NASA's Tech House, a demonstration project in which aerospace and commercial building technology are combined in an energy- efficient home. Solar One received further assistance through personal contact with Langley solar experts. The company reports that the technical information provided by NASA influenced Solar One's panel design, its selection of a long-life panel coating which increases solar collection efficiency, and the method adopted for protecting solar collectors from freezing conditions.

  14. Solar Collectors

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Solar Energy's solar panels are collectors for a solar energy system which provides heating for a drive-in bank in Akron, OH. Collectors were designed and manufactured by Solar Energy Products, a firm established by three former NASA employees. Company President, Frank Rom, an example of a personnel-type technology transfer, was a Research Director at Lewis Research Center, which conducts extensive solar heating and cooling research, including development and testing of high-efficiency flat-plate collectors. Rom acquired solar energy expertise which helped the company develop two types of collectors, one for use in domestic/commercial heating systems and the other for drying grain.

  15. Solar collectors

    SciTech Connect

    Cassidy, V.M.

    1981-11-01

    Practical applications of solar energy in commercial, industrial and institutional buildings are considered. Two main types of solar collectors are described: flat plate collectors and concentrating collectors. Efficiency of air and hydronic collectors among the flat plate types are compared. Also several concentrators are described, including their sun tracking mechanisms. Descriptions of some recent solar installations are presented and a list representing the cross section of solar collector manufacturers is furnished.

  16. Solar holography

    NASA Astrophysics Data System (ADS)

    Ludman, Jacques E.; Riccobono, Juanita R.; Caulfield, H. John; Upton, Timothy D.

    2002-07-01

    A solar photovoltaic energy collection system using a reflection hologram is described herein. The system uses a single-axis tracking system in conjunction with a spectral- splitting holographic element. The hologram accurately focuses the desired regions of the solar spectrum to match the bandgaps of two ro more different solar cells, while diverting unused IR wavelengths away. Other applications for solar holography include daylighting and greenhouses.

  17. Solar reflector

    SciTech Connect

    Stone, D. C.

    1981-02-17

    A solar reflector having a flexible triangular reflective sheet or membrane for receiving and reflecting solar energy therefrom. The reflector is characterized by the triangular reflective sheet which is placed under tension thereby defining a smooth planar surface eliminating surface deflection which heretofore has reduced the efficiency of reflectors or heliostats used in combination for receiving and transmitting solar energy to an absorber tower.

  18. Solar Equipment

    NASA Astrophysics Data System (ADS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  19. Buying Solar.

    ERIC Educational Resources Information Center

    Dawson, Joe

    Presented are guidelines for buying solar systems for the individual consumer. This is intended to help the consumer reduce many of the risks associated with the purchase of solar systems, particularly the risks of fraud and deception. Engineering terms associated with solar technology are presented and described to enable the consumer to discuss…

  20. Solar Equipment

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A medical refrigeration and a water pump both powered by solar cells that convert sunlight directly into electricity are among the line of solar powered equipment manufactured by IUS (Independent Utility Systems) for use in areas where conventional power is not available. IUS benefited from NASA technology incorporated in the solar panel design and from assistance provided by Kerr Industrial Applications Center.

  1. Solar Meter

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The instrument pictured is an inexpensive solar meter which is finding wide acceptance among architects, engineers and others engaged in construction of solar energy facilities. It detects the amount of solar energy available at a building site, information necessary to design the most efficient type of solar system for a particular location. Incorporating technology developed by NASA's Lewis Research Center, the device is based upon the solar cell, which provides power for spacecraft by converting the sun's energy to electricity. The meter is produced by Dodge Products, Inc., Houston, Texas, a company formed to bring the technology to the commercial marketplace.

  2. Solar flair.

    PubMed Central

    Manuel, John S

    2003-01-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams. PMID:12573926

  3. Solar flair.

    PubMed

    Manuel, John S

    2003-02-01

    Design innovations and government-sponsored financial incentives are making solar energy increasingly attractive to homeowners and institutional customers such as school districts. In particular, the passive solar design concept of daylighting is gaining favor among educators due to evidence of improved performance by students working in daylit classrooms. Electricity-generating photovoltaic systems are also becoming more popular, especially in states such as California that have high electric rates and frequent power shortages. To help spread the word about solar power, the U.S. Department of Energy staged its first-ever Solar Decathlon in October 2002. This event featured solar-savvy homes designed by 14 college teams.

  4. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  5. Solar Energy: Solar System Economics.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system economics is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  6. Solar Sailing

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2009-01-01

    Solar sailing is a topic of growing technical and popular interest. Solar sail propulsion will make space exploration more affordable and offer access to destinations within (and beyond) the solar system that are currently beyond our technical reach. The lecture will describe solar sails, how they work, and what they will be used for in the exploration of space. It will include a discussion of current plans for solar sails and how advanced technology, such as nanotechnology, might enhance their performance. Much has been accomplished recently to make solar sail technology very close to becoming an engineering reality and it will soon be used by the world s space agencies in the exploration of the solar system and beyond. The first part of the lecture will summarize state-of-the-art space propulsion systems and technologies. Though these other technologies are the key to any deep space exploration by humans, robots, or both, solar-sail propulsion will make space exploration more affordable and offer access to distant and difficult destinations. The second part of the lecture will describe the fundamentals of space solar sail propulsion and will describe the near-, mid- and far-term missions that might use solar sails as a propulsion system. The third part of the lecture will describe solar sail technology and the construction of current and future sailcraft, including the work of both government and private space organizations.

  7. Solar Simulator

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Oriel Corporation's simulators have a high pressure xenon lamp whose reflected light is processed by an optical system to produce a uniform solar beam. Because of many different types of applications, the simulators must be adjustable to replicate many different areas of the solar radiation spectrum. Simulators are laboratory tools for such purposes as testing and calibrating solar cells, or other solar energy systems, testing dyes, paints and pigments, pharmaceuticals and cosmetic preparations, plant and animal studies, food and agriculture studies and oceanographic research.

  8. Solar Physics

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    The areas of emphasis are: (1) develop theoretical models of the transient release of magnetic energy in the solar atmosphere, e.g., in solar flares, eruptive prominences, coronal mass ejections, etc.; (2) investigate the role of the Sun's magnetic field in the structuring of solar corona by the development of three-dimensional numerical models that describe the field configuration at various heights in the solar atmosphere by extrapolating the field at the photospheric level; (3) develop numerical models to investigate the physical parameters obtained by the ULYSSES mission; (4) develop numerical and theoretical models to investigate solar activity effects on the solar wind characteristics for the establishment of the solar-interplanetary transmission line; and (5) develop new instruments to measure solar magnetic fields and other features in the photosphere, chromosphere transition region and corona. We focused our investigation on the fundamental physical processes in solar atmosphere which directly effect our Planet Earth. The overall goal is to establish the physical process for the Sun-Earth connections.

  9. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-19

    ...   View Larger Image On June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an ... in which 99.6 percent of the solar disk was shadowed by the Moon, was situated in the central Pacific Ocean. Since there are no populated ...

  10. Solar Eclipse

    Atmospheric Science Data Center

    2013-04-16

    ... a solar eclipse where an observer on Earth can watch the Moon's shadow obscure more than 90% the Sun's disk, the Multiangle Imaging ... total solar eclipse of November 23, 2003. The path of the Moon's umbral shadow began in the Indian Ocean in the far Southern Hemisphere, ...

  11. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  12. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  13. Solar Sprint

    ERIC Educational Resources Information Center

    Tabor, Richard; Anderson, Stephen

    2007-01-01

    In the "Solar Sprint" activity, students design, test, and race a solar-powered car built with Legos. The use of ratios is incorporated to simulate the actual work of scientists and engineers. This method encourages fourth-grade students to think about multiple variables and stimulates their curiosity when an activity doesn't come out as…

  14. Solar cooking

    USDA-ARS?s Scientific Manuscript database

    Over two billion people face fuel wood shortages, causing tremendous personal and environmental stress. Over 4 million people die prematurely from indoor air pollution. Solar cooking can reduce fuel wood consumption and indoor air pollution. Solar cooking has been practiced and published since th...

  15. Solar Technologies

    ERIC Educational Resources Information Center

    von Hippel, Frank; Williams, Robert H.

    1975-01-01

    As fossil fuels decrease in availability and environmental concerns increase, soalr energy is becoming a potential major energy source. Already solar energy is used for space heating in homes. Proposals for solar-electric generating systems include land-based or ocean-based collectors and harnessing wind and wave power. Photosynthesis can also…

  16. Solar sail

    SciTech Connect

    Drexler, K.E.

    1986-09-30

    This patent describes a solar sail propulsion system comprising: solar sail means for intercepting light pressure to produce thrust, the solar sail means being a thin metal film; tension truss means having two ends attached at one end to the solar sail means for transferring the thrust from the solar sail and for preventing gross deformation of the solar sail under light pressure, the solar sail means being a plurality of separate generally two-dimensional pieces joined by springs to the tension truss means; a payload attached to the other end of the tension truss means, the tension truss means comprising a plurality of attachment means for attaching shroud lines to the top of the tension truss means and a plurality of the shroud lines attached to the attachment means at one of their ends and the payload at the other; a plurality of reel means attached to the shroud lines for controllably varying the length of the lines; and a plurality of reflective panel means attached to the sail means for controlling the orientation of the system.

  17. Solar ponds

    SciTech Connect

    Jayadev, T.S.; Edesess, M.

    1980-04-01

    This report first describes the different types of solar ponds including the nonconvecting salt gradient pond and various saltless pond designs. It then discusses the availability and cost of salts for salt gradient ponds, and compares the economics of salty and saltless ponds as a function of salt cost. A simple computational model is developed to approximate solar pond performance. This model is later used to size solar ponds for district heating and industrial process heat applications. For district heating, ponds are sized to provide space conditioning for a group of homes, in different regions of the United States. Size requirements is on the order of one acre for a group of 25 to 50 homes. An economic analysis is performed of solar ponds used in two industrial process heat applications. The analysis finds that solar ponds are competitive when conventional heat sources are priced at $5 per million Btu and expected to rise in price at a rate of 10% per year. The application of solar ponds to the generation of electricity is also discussed. Total solar pond potential for displacing conventional energy sources is estimated in the range of from one to six quadrillion Btu per year in the near and intermediate future.

  18. Solar pruritus.

    PubMed

    Bech-Thomsen, N; Thomsen, K

    1995-11-01

    A case of solar pruritus is reported. Severe pruritus of the back, shoulders and upper lateral aspects of the arms, without any eruption, developed in a 28-year-old outdoor worker during 4 to 6 weeks of intensive solar exposure. The pruritus was intense and described as a burning sensation deep in the skin. Only a few excoriations and slight xerosis were found. Solar pruritus or brachioradial pruritus is a condition primarily seen in Caucasian people living in the tropics or subtropics. Previously the disease has only been reported once outside these areas.

  19. Solar Two

    SciTech Connect

    Not Available

    1998-04-01

    Solar Two is a concentrating solar power plant that can supply electric power on demand to the local utility, Southern California Edison Company. It can do so because it operates not only during sunny parts of the day, but it can store enough thermal energy from the sun to operate during cloudy periods and after dark, for up to three hours, at its rated output of 10 megawatts (MW). For the first time ever, a utility scale solar power plant can supply electricity when the utility needs it most, to satisfy the energy requirements of its customers.

  20. Solar chulha

    NASA Astrophysics Data System (ADS)

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-01

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  1. Solar chulha

    SciTech Connect

    Jadhao, P. H.; Patrikar, S. R.

    2016-05-06

    The main goal of the proposed system is to transfer energy from sun to the cooking load that is located in the kitchen. The energy is first collected by the solar collector lens system and two curve bars of same radius of curvature are mounted parallel and adjacent to each other at different height the solar collector is clamed on this two bars such that solar collector is exactly perpendicular to sunlight. The topology includes an additional feature which is window in the wall through which the beam is collimated is directed in the of kitchen. The solar energy that is collected is directed by the mirror system into the kitchen, where it is redirected to cooking platform located in the kitchen. The special feature in this system full Indian meal can be made since cooking platform is indoors.

  2. Solar Nexus.

    ERIC Educational Resources Information Center

    Murphy, Jim

    1980-01-01

    The design team for the Solar Energy Research Institute (SERI) has pushed the state of the energy art to its current limits for the initial phase, with provisions for foreseeable and even speculative future applications. (Author/MLF)

  3. Solar fuels

    NASA Astrophysics Data System (ADS)

    Viitanen, M.

    1990-12-01

    The aim of this paper is to give a review concerning the storage of solar energy by converting it to chemical energy. This is based on several articles published during the last fifteen years. The methods to convert solar energy to chemical energy, e.g., to produce hydrogen, can be divided into three different methods. The most common one is probably the usage of solar cells; thus the solar energy is first converted into electrical energy and further the water is split electrochemically to produce hydrogen. It could be also done in a photoelectrochemical cell, or simply photochemically. A photobiological system can also be considered as a photochemical system, although it is discussed separately from the photochemical systems. These three last mentioned methods will be discussed in this paper.

  4. Solar Triumvirate

    NASA Image and Video Library

    2016-02-09

    The magnetic field lines of three active regions in close proximity to one another interacted with each other over two and a half days Feb. 8-10, 2016. This image is from NASA Solar Dynamics Observatory.

  5. Solar Pump

    NASA Technical Reports Server (NTRS)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  6. Solar Cells

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The Heat Exchanger Method (HEM) produces high efficiency crystal ingots in an automated well-insulated furnace offering low equipment, labor and energy costs. The "grown" silicon crystals are used to make solar cells, or photovoltaic cells which convert sunlight directly into electricity. The HEM method is used by Crystal Systems, Inc. and was developed under a NASA/Jet Propulsion Laboratory contract. The square wafers which are the result of the process are sold to companies manufacturing solar panels.

  7. Solar Schematic

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The home shown at right is specially designed to accommodate solar heating units; it has roof planes in four directions, allowing placement of solar collectors for best exposure to the sun. Plans (bottom) and complete working blueprints for the solar-heated house are being marketed by Home Building Plan Service, Portland, Oregon. The company also offers an inexpensive schematic (center) showing how a homeowner only moderately skilled in the use of tools can build his own solar energy system, applicable to new or existing structures. The schematic is based upon the design of a low-cost solar home heating system built and tested by NASA's Langley Research Center; used to supplement a warm-air heating system, it can save the homeowner about 40 percent of his annual heating bill for a modest investment in materials and components. Home Building Plan Service saved considerable research time by obtaining a NASA technical report which details the Langley work. The resulting schematic includes construction plans and simplified explanations of solar heat collection, collectors and other components, passive heat factors, domestic hot water supply and how to work with local heating engineers.

  8. Solar ponds

    NASA Astrophysics Data System (ADS)

    Tabor, H.

    1981-01-01

    The history and current status of salt-gradient non-convecting solar ponds are presented. These ponds are large-area collectors, capable of providing low-cost thermal, mechanical, or electrical energy using low-temperature turbo-generators. The basic theory of salt-gradient solar ponds is sketched; the effects of wind, leakage, and fouling and their constraints on location selection for solar ponds are discussed. The methods of building and filling the ponds, as well as extracting heat from them are explained in detail. Practical operating temperatures of 90 C can be obtained with collection efficiencies between 15% and 25%, demonstrating the practical use of the ponds for heating and cooling purposes, power production, and desalination. A condensed account of solar pond experience in several countries is given. This includes the 150 kW solar pond power station (SPPS) operating in Israel since December, 1979 and a 5000 kW unit currently under development. A study of the economics involved in using the ponds is presented: despite a low conversion efficiency, the SPPS is shown to have applications in many countries.

  9. Revisiting the Single-Fluid Modeling of the Solar Wind-Comet Interaction: Closer Look at the Cometosheath

    NASA Astrophysics Data System (ADS)

    Kartalev, M.; Keremidarska, V.; Dryer, M.

    2016-04-01

    Earlier developed single fluid gas-dynamic model of solar wind-comet ionosphere interaction is applied to reveal some specifics in the morphology of the shocked "contaminated" solar wind region (cometosheath). The model is based on the Euler equations with added mass-loading, mass-loss and frictional force terms. Numerous reactions are taken into account in these terms including photoionization, charge transfer, dissociative recombination and ion-neutral frictional force. The electromagnetic terms are omitted, thus reducing the MHD single-fluid system of equations to gas-dynamic one. The used shock-fitting numerical scheme allows the separation of distinct areas formed by the considered interaction and exploration of their properties in detail. Attention is focused on the region between the shock wave and the contact surface as well as on the positions of these boundaries. Accurate examination of the distribution of density, temperature and velocity reveals spatial variations that resemble the variations registered by a number of spacecraft in the vicinity of comets. No specific comparisons with data are made at this stage. Two very first events of the Rosetta spacecraft's crossing of the magnetic cavity boundary around Comet 67P/Churyumov-Gerasimenko are discussed using a "faux-transient" application of our steady-state model.

  10. Solar ADEPT: Efficient Solar Energy Systems

    SciTech Connect

    2011-01-01

    Solar ADEPT Project: The 7 projects that make up ARPA-E's Solar ADEPT program, short for 'Solar Agile Delivery of Electrical Power Technology,' aim to improve the performance of photovoltaic (PV) solar energy systems, which convert the sun's rays into electricity. Solar ADEPT projects are integrating advanced electrical components into PV systems to make the process of converting solar energy to electricity more efficient.

  11. Solar Neutrinos

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Harmer, D. S.

    1964-12-01

    The prospect of studying the solar energy generation process directly by observing the solar neutrino radiation has been discussed for many years. The main difficulty with this approach is that the sun emits predominantly low energy neutrinos, and detectors for observing low fluxes of low energy neutrinos have not been developed. However, experimental techniques have been developed for observing neutrinos, and one can foresee that in the near future these techniques will be improved sufficiently in sensitivity to observe solar neutrinos. At the present several experiments are being designed and hopefully will be operating in the next year or so. We will discuss an experiment based upon a neutrino capture reaction that is the inverse of the electron-capture radioactive decay of argon-37. The method depends upon exposing a large volume of a chlorine compound, removing the radioactive argon-37 and observing the characteristic decay in a small low-level counter.

  12. Solar Minimum

    NASA Astrophysics Data System (ADS)

    Lopresto, James C.; Mathews, John; Manross, Kevin

    1995-12-01

    Calcium K plage, H alpha plage and sunspot area have been monitored daily on the INTERNET since November of 1992. The plage and sunspot area have been measured by image processing. The purpose of the project is to investigate the degree of correlation between plage area and solar irradiance. The plage variation shows the expected variation produced by solar rotation and the longer secular changes produced by the solar cycle. The H alpha and sunspot plage area reached a minimum in about late 1994 or early 1995. This is in agreement with the K2 spectral index obtained daily from Sacramento Peak Observatory. The Calcium K plage area minimum seems delayed with respect to the others mentioned above. The minimum of the K line plage area is projected to come within the last few months of 1995.

  13. Solar retinitis.

    PubMed

    SHIRLEY, S Y

    1963-07-20

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb.

  14. Solar Retinitis

    PubMed Central

    Shirley, S. Y.

    1963-01-01

    Retinal burns can be produced by direct gazing at the sun. This lesion is caused by the thermal effects of the visible and near infrared rays focused on the pigment structure behind the retina. It is rarely seen, as the normal eye will tolerate only fleeting glances at the sun, but is fairly common during a solar eclipse. A case of solar retinitis is presented in which treatment with corticosteroids lessened the retinal edema but the patient suffered a bilateral central scotoma and vision reduced to the 20/40 level. In viewing a solar eclipse a No. 4 density filter is recommended; as a rough test this filter will abolish the readability of print on a 60-watt incandescent frosted electric light bulb. ImagesFig. 1Fig. 2 PMID:13977409

  15. Solar flare particle radiation

    NASA Technical Reports Server (NTRS)

    Lanzerotti, L. J.

    1972-01-01

    The characteristics of the solar particles accelerated by solar flares and subsequently observed near the orbit of the earth are studied. Considered are solar particle intensity-time profiles, the composition and spectra of solar flare events, and the propagation of solar particles in interplanetary space. The effects of solar particles at the earth, riometer observations of polar cap cosmic noise absorption events, and the production of solar cell damage at synchronous altitudes by solar protons are also discussed.

  16. Solar panel

    SciTech Connect

    Bayles, B.R.

    1981-09-29

    A solar panel includes a base within which are mounted transversely extending conduits. A heat collector plate in the base is in heat conductive relationship with the conduits for the heating of a fluid medium. The base additionally supports a transparent cover outwardly spaced from the heat collector plate to provide a protective insulative air space over the plate. A manifold communicates one series of panels with those of an adjacent series. A modified base dispenses with a collector plate and is formed so as to define integral lengthwise extending passageways for the solar heated medium. Inserted nipples interconnect the passageways of adjacent panels.

  17. Solar trap

    SciTech Connect

    Lew, H.S.

    1988-02-09

    A solar trap for collecting solar energy at a concentrated level is described comprising: (a) a compound light funnel including a pair of light reflecting substantially planar members arranged into a trough having a substantially V-shaped cross section; (b) a two dimensional Fresnel lens cover covering the opening of the compound light funnel, the opening being the open diverging end of the substantially V-shaped cross section of the compound light funnel; (c) at least one conduit for carrying a heat transfer fluid disposed substantially adjacent and substantially parallel to the apex line of the compound light funnel.

  18. Solar Energy and You.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    This booklet provides an introduction to solar energy by discussing: (1) how a home is heated; (2) how solar energy can help in the heating process; (3) the characteristics of passive solar houses; (4) the characteristics of active solar houses; (5) how solar heat is stored; and (6) other uses of solar energy. Also provided are 10 questions to…

  19. Solar maximum: Solar array degradation

    NASA Technical Reports Server (NTRS)

    Miller, T.

    1985-01-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  20. Solar maximum: solar array degradation

    SciTech Connect

    Miller, T.

    1985-08-01

    The 5-year in-orbit power degradation of the silicon solar array aboard the Solar Maximum Satellite was evaluated. This was the first spacecraft to use Teflon R FEP as a coverglass adhesive, thus avoiding the necessity of an ultraviolet filter. The peak power tracking mode of the power regulator unit was employed to ensure consistent maximum power comparisons. Telemetry was normalized to account for the effects of illumination intensity, charged particle irradiation dosage, and solar array temperature. Reference conditions of 1.0 solar constant at air mass zero and 301 K (28 C) were used as a basis for normalization. Beginning-of-life array power was 2230 watts. Currently, the array output is 1830 watts. This corresponds to a 16 percent loss in array performance over 5 years. Comparison of Solar Maximum Telemetry and predicted power levels indicate that array output is 2 percent less than predictions based on an annual 1.0 MeV equivalent election fluence of 2.34 x ten to the 13th power square centimeters space environment.

  1. Solar cooker

    SciTech Connect

    Long, J. B.; Ware, R. R.

    1985-12-31

    A solar cooking device made of a flat array of concentric mirrors tilted to focus at a small area, the array being movable mounted on a stand to be movable around a ball joint and with a carrier for a cooking vessel held by a double crank to be at the focal area of the mirrors.

  2. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  3. Solar Power

    ERIC Educational Resources Information Center

    Ford, Norman C.; Kane, Joseph W.

    1971-01-01

    Proposes a method of collecting solar energy by using available plastics for Fresnel lenses to focus heat onto a converter where thermal dissociation of water would produce hydrogen. The hydrogen would be used as an efficient non-polluting fuel. Cost estimates are included. (AL)

  4. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  5. Solar heating

    SciTech Connect

    Resnick, M.; Startevant, R.C.

    1985-01-22

    A solar heater has an outlet conduit above an inlet conduit intercoupling a solar heating chamber with the inside of a building through a window opening. In one form the solar collecting chamber is outside the building below the window and the outlet conduit and inlet conduit are contiguous and pass through the window opening between the windowsill and the lower sash. In another form of the invention the solar collecting chambers are located beside each side of the window and joined at the top by the outlet conduit that passes through an opening between the upper window sash and the top of the window frame and at the bottom by an inlet conduit that passes through an opening between the lower sash and the windowsill. The outlet conduit carries photoelectric cells that provide electrical energy for driving a squirrel-cage fan in the outlet conduit through a mercury switch seated on a damper actuated by a bimetallic coil that closes the damper when the temperature in the outlet conduit goes below a predetermined temperature.

  6. Solar activity

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1983-03-01

    The increased data base and scope of the theoretical models for solar flares are reviewed. Data have been gathered from the Skylab instrumentation, the Solar Maximum Mission, and the Very Large Array. Skylab X ray images revealed regularly spaced bright spots on the solar surface. Studies have also been performed on the emergence of magnetic fields, the coronal structures defined by magnetic fields above active regions, and the behavior and composition of post-flare loops. It has been found that coronal transients are associated with eruptive prominences with and without flares up to 70 pct of the time. Two classes of solar flares have been identified, i.e., small volume, low altitude with a short rise time, and long decay events with a larger coronal loop structure. Evidence for thermal and nonthermal causes for the electron velocity distribution in the flares is discussed. Finally, SMM data has shown chromospheric reactions to magnetic field variations in the photosphere and the response of the interplanetary medium to coronal transients.

  7. Solar Directory.

    ERIC Educational Resources Information Center

    Pesko, Carolyn, Ed.

    This directory is designed to help the researcher and developer, the manufacturer and distributor, and the general public communicate together on a mutually beneficial basis. Its content covers the wide scope of solar energy activity in the United States primarily, but also in other countries, at the academic, governmental, and industrial levels.…

  8. Solar electric systems

    SciTech Connect

    Warfield, G.

    1984-01-01

    Electricity from solar sources is the subject. The state-of-the-art of photovoltaics, wind energy and solar thermal electric systems is presented and also a broad range of solar energy activities throughout the Arab world is covered. Contents, abridged: Solar radiation fundamentals. Basic theory solar cells. Solar thermal power plants. Solar energy activities at the scientific research council in Iraq. Solar energy program at Kuwait Institute for Scientific Research. Prospects of solar energy for Egypt. Non-conventional energy in Syria. Wind and solar energies in Sudan. Index.

  9. Solar Impulse's Solar-Powered Plane

    ScienceCinema

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2016-07-12

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  10. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  11. Collecting Solar Energy. Solar Energy Education Project.

    ERIC Educational Resources Information Center

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  12. Solar Impulse's Solar-Powered Plane

    SciTech Connect

    Moniz, Ernest; Piccard, Bertrand; Reicher, Dan

    2013-07-08

    Solar Impulse lands in Washington, DC at Washington Dulles International Airport as part of its journey across the United States. Secretary Ernest Moniz speaks about how advancements like those at the Department of Energy are leading the way for innovations like the solar-powered plane. Footage of the solar-powered plane courtesy of Solar Impulse.

  13. Concentrated solar power generation using solar receivers

    DOEpatents

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  14. Solar Flares

    NASA Technical Reports Server (NTRS)

    Savage, Sabrina

    2013-01-01

    Because the Earth resides in the atmosphere of our nearest stellar neighbor, events occurring on the Sun's surface directly affect us by interfering with satellite operations and communications, astronaut safety, and, in extreme circumstances, power grid stability. Solar flares, the most energetic events in our solar system, are a substantial source of hazardous space weather affecting our increasingly technology-dependent society. While flares have been observed using ground-based telescopes for over 150 years, modern space-bourne observatories have provided nearly continuous multi-wavelength flare coverage that cannot be obtained from the ground. We can now probe the origins and evolution of flares by tracking particle acceleration, changes in ionized plasma, and the reorganization of magnetic fields. I will walk through our current understanding of why flares occur and how they affect the Earth and also show several examples of these fantastic explosions.

  15. Solar rotation.

    NASA Astrophysics Data System (ADS)

    Dziembowski, W.

    Sunspot observations made by Johannes Hevelius in 1642 - 1644 are the first ones providing significant information about the solar differential rotation. In modern astronomy the determination of the rotation rate is done in a routine way by measuring positions of various structures on the solar surface as well as by studying the Doppler shifts of spectral lines. In recent years a progress in helioseismology enabled determination of the rotation rate in the layers inaccessible for direct observations. There are still uncertainties concerning, especially, the temporal variations of the rotation rate and its behaviour in the radiative interior. We are far from understanding the observations. Theoretical works have not yet resulted in a satisfactory model for the angular momentum transport in the convective zone.

  16. Solar Arches

    NASA Image and Video Library

    2017-09-28

    The magnetic field lines between a pair of active regions formed a beautiful set of swaying arches, seen in this footage captured by NASA’s Solar Dynamics Observatory on April 24-26, 2017. The arches are traced out by charged particles spinning along the magnetic field lines. These arches, which form a connection between regions of opposite magnetic polarity, are visible in exquisite detail in this wavelength of extreme ultraviolet light. Extreme ultraviolet light is typically invisible to our eyes, but is colorized here in gold. Read more: go.nasa.gov/2pGgYZt NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Solar collectors

    SciTech Connect

    Uroshevich, M.

    1981-09-22

    The disclosure illustrates a solar collector of the focusing type comprising a trough like element with an interior reflective surface that faces a main reflector of the collector. A tubular receiver providing a passage for heat transfer fluid is positioned in the trough like element generally along the focal line of the main reflector. A flat glass plate covers the trough along a perimeter seal so that subatmospheric conditions may be maintained within the trough like element to minimize convection heat losses.

  18. Solar retinopathy.

    PubMed

    Galainena, M L

    1976-03-01

    Two cases of solar retinopathy following prolonged sun gazing are presented. Both patients were seen within an interval of 11 months, both with the diagnosis of schizophrenia paranoid type. These patients gave a history of sun gazing while praying to God, resulting in pigmentary disturbances of the macula, characterized by central and parafoveal depigmentation with perifoveal hyperpigmentation, as well as permanent impairment of vision in both eyes.

  19. Solar Interior

    NASA Astrophysics Data System (ADS)

    Zahn, J.; Murdin, P.

    2000-11-01

    The interior of the Sun is hidden from our sight, because it is opaque to electromagnetic waves: the radiation we receive from it on Earth is emitted in the outermost layers. Our knowledge of the solar interior is based solely on theoretical models which are built with some assumptions about the physical conditions and processes that are likely to prevail there, and on helioseismology, a very pow...

  20. Solar Oscillations

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas

    2004-01-01

    Oscillations were first detected in the solar photosphere in 1962 by Leighton and students. In 1970 it was calculated that these oscillations, with a period near five minutes, were the manifestations of acoustic waves trapped in the interior. The subsequent measurements of the frequencies of global oscillation modes from the spatio-temporal power spectrum of the waves made possible the refinement of solar interior models. Over the years, increased understanding of the nuclear reaction rates, the opacity, the equation of state, convection, and gravitational settling have resulted. Mass flows shift the frequencies of modes leading to very accurate measurements of the interior rotation as a function of radius and latitude. In recent years, analogues of terrestrial seismology have led to a tomography of the interior, including measurements of global north-south flows and flow and wave speed measurements below features such as sunspots. The future of helioseismology seems bright with the approval of NASA's Solar Dynamics Observatory mission, to be launched in 2008.

  1. Solar chameleons

    SciTech Connect

    Brax, Philippe

    2010-08-15

    We analyze the creation of chameleons deep inside the Sun (R{approx}0.7R{sub sun}) and their subsequent conversion to photons near the magnetized surface of the Sun. We find that the spectrum of the regenerated photons lies in the soft x-ray region, hence addressing the solar corona problem. Moreover, these back-converted photons originating from chameleons have an intrinsic difference with regenerated photons from axions: their relative polarizations are mutually orthogonal before Compton interacting with the surrounding plasma. Depending on the photon-chameleon coupling and working in the strong coupling regime of the chameleons to matter, we find that the induced photon flux, when regenerated resonantly with the surrounding plasma, coincides with the solar flux within the soft x-ray energy range. Moreover, using the soft x-ray solar flux as a prior, we find that with a strong enough photon-chameleon coupling, the chameleons emitted by the Sun could lead to a regenerated photon flux in the CAST magnetic pipes, which could be within the reach of CAST with upgraded detector performance. Then, axion helioscopes have thus the potential to detect and identify particle candidates for the ubiquitous dark energy in the Universe.

  2. SOLAR - ASTRONOMY

    NASA Image and Video Library

    1973-09-09

    S73-33788 (10 June 1973) --- The solar eruption of June 10, 1973, is seen in this spectroheliogram obtained during the first manned Skylab mission (Skylab 2), with the SO82A experiment, an Apollo Telescope Mount (ATM) component covering the wavelength region from 150 to 650 angstroms (EUV). The solid disk in the center was produced from 304 angstrom ultraviolet light from He + ions. At the top of this image a great eruption is visible extending more than one-third of a solar radius from the sun's surface. This eruption preceded the formation of an enormous coronal bubble which extended a distance of several radii from the sun's surface, and which was observed with the coronagraph aboard Skylab. In contrast, the Fe XV image at 285 angstrom just to the right of the 304 angstrom image does not show this event. Instead, it shows the bright emission from a magnetic region in the lower corona. In this picture, solar north is to the right, and east is up. The wavelength scale increases to the left. The U.S. Naval Research Laboratory is principal investigator in charge of the SO82 experiment. Photo credit: NASA

  3. Solar Tomography

    NASA Astrophysics Data System (ADS)

    Davila, J. M.

    1993-12-01

    Images obtained by observing the solar corona from a single spacecraft typically measure the line-of-sight integral of the volumetric emissivity through the source. The resulting two-dimensional observations have an unavoidable ambiguity along the line of sight that can be removed only by making assumptions about the three dimensional nature of the emission. These ambiguities can be removed by observing the Sun from different vantage points, at the same time, i.e. solar tomography. The basic concept of tomographic is fairly simple. For an optically thin emission source, like the solar corona, each pixel in an image represents the line of sight integration of the volumetric emissivity of the plasma at the wavelength of observation. By obtaining several of these observations, from various angles, the underlying three dimensional structure of the emission can be deduced. This principle has been used extensively in the Medical community for the imaging of internal structure of the body with such techniques as Computer Aided Tomography (CAT) scanners and Magnetic Resonance Imaging (MRI). The purpose of this paper is to take an intial look at the following two questions: (1) Is tomography feasible with a few spacecraft?; and (2) What scientific objectives can be addressed?

  4. Solar cooker

    SciTech Connect

    Zwach, D.M.

    1987-09-29

    A solar unit is described comprising a solar oven having an open end. A generally concave parabolic main reflector is joined to the oven to move therewith and reflect solar radiation away from the oven. The main reflector has a central opening to the oven open end, a generally parabolic convex secondary reflector for reflecting the radiation from the main reflector through the central opening to the open end of the oven, means for mounting the secondary reflector on the main reflector for movement, a frame, and means for mounting the oven on the frame for adjustable movement relative to the frame. This permits adjusting the angular position relative to the earth. The last mentioned means includes means for supporting the oven including first and second pairs of pivot members that respectively have a fist pivot axis and a second pivot axis that extends perpendicular to the first pivot axis. The oven extends between each of the first pivot members and each of the second pivot members.

  5. Solar physics at APL.

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    1999-12-01

    Solar reserach at APL aims to understand the fundamental physics that govern solar activity. The tools are telescopes, models, and interplanetary sampling of solar ejecta. The work is relevant to APL's mission because solar energetic protons disable satellites and endanger astronauts. Solar activity also causes geomagnetic storms, which can lead to communications disruptions, electric power network problems, satellite orbit shifts and, sometimes, satellite failure. Predicting storm conditions requires understanding solar magnetism and its fluctuations. APL scientists have made major contributions to solar activity research and have taken the lead in developing a variety of new solar research tools. They are now starting work on the Solar Terrestrial Relations Observatory, a major space mission.

  6. Nanostructured Solar Cells

    PubMed Central

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-01-01

    We are glad to announce the Special Issue “Nanostructured Solar Cells”, published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  7. Solar Sail Spaceflight Simulation

    NASA Technical Reports Server (NTRS)

    Lisano, Michael; Evans, James; Ellis, Jordan; Schimmels, John; Roberts, Timothy; Rios-Reyes, Leonel; Scheeres, Daniel; Bladt, Jeff; Lawrence, Dale; Piggott, Scott

    2007-01-01

    The Solar Sail Spaceflight Simulation Software (S5) toolkit provides solar-sail designers with an integrated environment for designing optimal solar-sail trajectories, and then studying the attitude dynamics/control, navigation, and trajectory control/correction of sails during realistic mission simulations. Unique features include a high-fidelity solar radiation pressure model suitable for arbitrarily-shaped solar sails, a solar-sail trajectory optimizer, capability to develop solar-sail navigation filter simulations, solar-sail attitude control models, and solar-sail high-fidelity force models.

  8. Nanostructured Solar Cells.

    PubMed

    Chen, Guanying; Ning, Zhijun; Ågren, Hans

    2016-08-09

    We are glad to announce the Special Issue "Nanostructured Solar Cells", published in Nanomaterials. This issue consists of eight articles, two communications, and one review paper, covering major important aspects of nanostructured solar cells of varying types. From fundamental physicochemical investigations to technological advances, and from single junction solar cells (silicon solar cell, dye sensitized solar cell, quantum dots sensitized solar cell, and small molecule organic solar cell) to tandem multi-junction solar cells, all aspects are included and discussed in this issue to advance the use of nanotechnology to improve the performance of solar cells with reduced fabrication costs.

  9. Solar Sails

    NASA Technical Reports Server (NTRS)

    Young, Roy

    2006-01-01

    The Solar Sail Propulsion investment area has been one of the three highest priorities within the In-Space Propulsion Technology (ISPT) Project. In the fall of 2003, the NASA Headquarters' Science Mission Directorate provided funding and direction to mature the technology as far as possible through ground research and development from TRL 3 to 6 in three years. A group of experts from government, industry, and academia convened in Huntsville, Alabama to define technology gaps between what was needed for science missions to the inner solar system and the current state of the art in ultra1ightweight materials and gossamer structure design. This activity set the roadmap for development. The centerpiece of the development would be the ground demonstration of scalable solar sail systems including masts, sails, deployment mechanisms, and attitude control hardware and software. In addition, new materials would be subjected to anticipated space environments to quantify effects and assure mission life. Also, because solar sails are huge structures, and it is not feasible to validate the technology by ground test at full scale, a multi-discipline effort was established to develop highly reliable analytical models to serve as mission assurance evidence in future flight program decision-making. Two separate contractor teams were chosen to develop the SSP System Ground Demonstrator (SGD). After a three month conceptual mission/system design phase, the teams developed a ten meter diameter pathfinder set of hardware and subjected it to thermal vacuum tests to compare analytically predicted structural behavior with measured characteristics. This process developed manufacturing and handling techniques and refined the basic design. In 2005, both contractor teams delivered 20 meter, four quadrant sail systems to the largest thermal vacuum chamber in the world in Plum Brook, Ohio, and repeated the tests. Also demonstrated was the deployment and articulation of attitude control

  10. Updated seismic solar model

    NASA Astrophysics Data System (ADS)

    Dziembowski, W. A.; Goode, Philip R.; Pamyatnykh, A. A.; Sienkiewicz, R.

    1995-05-01

    Recently released low-l solar oscillation data from the BISON network are combined with BBSO data to obtain an updated solar seismic model of the Sun's interior. For the core, the solar seismic model from the new data is more consistent with the current standard solar models than our earlier seismic model. An astrophysical solution to the solar neutrino problem fades away.

  11. Solar energy collector

    DOEpatents

    Brin, Raymond L.; Pace, Thomas L.

    1978-01-01

    The invention relates to a solar energy collector comprising solar energy absorbing material within chamber having a transparent wall, solar energy being transmitted through the transparent wall, and efficiently absorbed by the absorbing material, for transfer to a heat transfer fluid. The solar energy absorbing material, of generally foraminous nature, absorbs and transmits the solar energy with improved efficiency.

  12. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2016-07-12

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  13. Solar Innovator | Alta Devices

    SciTech Connect

    Mattos, Laila; Le, Minh

    2012-01-01

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  14. Solar Flare Forecasting

    NASA Astrophysics Data System (ADS)

    Bai, T.; Murdin, P.

    2000-11-01

    Like weather forecasting, solar flare forecasting (or forecasting solar activity in general) is motivated by pragmatic needs. Solar flares, coronal mass ejections, solar winds and other solar activity intimately influence the near-Earth space environment. All kinds of spacecraft including weather and communication satellites are orbiting Earth, and their performance and lifetimes are greatly infl...

  15. Solar Neutrino Problem

    DOE R&D Accomplishments Database

    Davis, R. Jr.; Evans, J. C.; Cleveland, B. T.

    1978-04-28

    A summary of the results of the Brookhaven solar neutrino experiment is given and discussed in relation to solar model calculations. A review is given of the merits of various new solar neutrino detectors that were proposed.

  16. High solar intensity radiometer

    NASA Technical Reports Server (NTRS)

    Jack, J. R.; Spisz, E. W.

    1972-01-01

    Silicon solar cells are used to measure visible radiant energy and radiation intensities to 20 solar constants. Future investigations are planned for up to 100 solar constants. Radiometer is small, rugged, accurate and inexpensive.

  17. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  18. Solar Generator

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Vanguard I dish-Stirling module program, initiated in 1982, produced the Vanguard I module, a commercial prototype erected by the Advanco Corporation. The module, which automatically tracks the sun, combines JPL mirrored concentrator technology, an advanced Stirling Solar II engine/generator, a low cost microprocessor-controlled parabolic dish. Vanguard I has a 28% sunlight to electricity conversion efficiency. If tests continue to prove the system effective, Advanco will construct a generating plant to sell electricity to local utilities. An agreement has also been signed with McDonnell Douglas to manufacture a similar module.

  19. Solar greenhouses in Minnesota

    SciTech Connect

    Polich, M.

    1981-12-01

    After a discussion of solar greenhouse phenomena and the potential for heat collection and food production, design recommendations are provided for attached heat collecting solar sunspaces and for attached food producing solar greenhouses. Also, design of a single solar structure to maximize heat collection and food production is considered. A method of predicting the performance for attached heat collecting solar sunspaces is given in which the solar savings fraction is calculated. (LEW)

  20. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  1. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Calibrated in kilowatt hours per square meter, the solar counter produced by Dodge Products, Inc. provides a numerical count of the solar energy that has accumulated on a surface. Solar energy sensing, measuring and recording devices in corporate solar cell technology developed by Lewis Research Center. Customers for their various devices include architects, engineers and others engaged in construction and operation of solar energy facilities; manufacturers of solar systems or solar related products, such as glare reducing windows; and solar energy planners in federal and state government agencies.

  2. Solar Heating and Cooling

    ERIC Educational Resources Information Center

    Duffie, John A.; Beckman, William A.

    1976-01-01

    Describes recent research that has made solar energy economically competitive with other energy sources. Includes solar energy building architecture, storage systems, and economic production data. (MLH)

  3. Solar radiation resource assessment

    SciTech Connect

    Not Available

    1990-11-01

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  4. Solar collector

    DOEpatents

    Wilhelm, William G.

    1982-01-01

    The field of this invention is solar collectors, and more particularly, the invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame (14). A thin film window (42) is bonded to one planar side of the frame. An absorber (24) of laminate construction is comprised of two thin film layers (24a, 24b) that are sealed perimetrically. The layers (24a, 24b) define a fluid-tight planar envelope (24c) of large surface area to volume through which a heat transfer fluid flows. Absorber (24) is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  5. Solar skylight

    DOEpatents

    Adamson, James C.

    1984-01-01

    A reflective shutter rotates within a skylight housing in such a fashion as to control solar energy thereby providing a combination of heating, lighting, and ventilation. The skylight housing has three faces: a glazed southern face, a glazed northern face, and an open downwardly oriented face to the interior of the structure. Counter-weighted pivot arms support the shutter at either end causing the center of rotation to pass through the center of gravity. The shutter has three basic positions: In the first position, during the winter day, the shutter closes off the northern face, allowing solar energy to enter directly into the supporting structure providing heat gain and daylighting. In the second position, during the winter night, the shutter closes off the open face to the interior, providing insulation between the structure and the skylight housing. In the third position, during the non-heating season, the shutter closes off the southern face blocking unwanted heat gain but allowing diffuse northern light to penetrate for daylighting. In this last position, a means is provided for ventilating by natural convection. The apparatus can be operated either manually or by motor.

  6. Solar Energy: Solar System Design Fundamentals.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar system design fundamentals is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy…

  7. Solar Energy: Solar and the Weather.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on solar and the weather is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies.…

  8. EDITORIAL Solar harvest Solar harvest

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2010-12-01

    The first observations of the photoelectric effect date back to the early 19th century from work by Alexandre Edmond Becquerel, Heinrich Hertz, Wilhelm Hallwachs and J J Thomson. The theory behind the phenomena was clarified in a seminal paper by Einstein in 1905 and became an archetypical feature of the wave-particle description of light. A different manifestation of quantised electron excitation, whereby electrons are not emitted but excited into the valence band of the material, is what we call the photoconductive effect. As well as providing an extension to theories in fundamental physics, the phenomenon has spawned a field with enormous ramifications in the energy industry through the development of solar cells. Among advances in photovoltaic technology has been the development of organic photovoltaic technology. These devices have many benefits over their inorganic counterparts, such as light-weight, flexible material properties, as well as versatile materials' synthesis and low-cost large-scale production—all highly advantageous for manufacturing. The first organic photovoltaic systems were reported over 50 years ago [1], but the potential of the field has escalated in recent years in terms of efficiency, largely through band offsetting. Since then, great progress has been made in studies for optimising the efficiency of organic solar cells, such as the work by researchers in Germany and the Netherlands, where investigations were made into the percentage composition and annealing effects on composites of poly(3-hexylthiophene) (P3HT) and the fullerene derivative [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) [2]. Hybrid devices that aim to exploit the advantages of both inorganic and organic constituents have also proven promising. One example of this is the work reported by researchers in Tunisia and France on a systematic study for optimising the composition morphology of TiO2 nanoparticles in poly(N-vinylcarbazole) (PVK), which also led to insights

  9. Solar collector

    DOEpatents

    Wilhelm, W.G.

    The invention pertains to a flat plate collector that employs high performance thin films. The solar collector of this invention overcomes several problems in this field, such as excessive hardware, cost and reliability, and other prior art drawbacks outlined in the specification. In the preferred form, the apparatus features a substantially rigid planar frame. A thin film window is bonded to one planar side of the frame. An absorber of laminate construction is comprised of two thin film layers that are sealed perimetrically. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. Absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  10. Solar flares

    NASA Technical Reports Server (NTRS)

    Zirin, H.

    1974-01-01

    A review of the knowledge about solar flares which has been obtained through observations from the earth and from space by various methods. High-resolution cinematography is best carried out at H-alpha wavelengths to reveal the structure, time history, and location of flares. The classification flares in H alpha according to either physical or morphological criteria is discussed. The study of flare morphology, which shows where, when, and how flares occur, is important for evaluating theories of flares. Consideration is given to studies of flares by optical spectroscopy, radio emissions, and at X-ray and XUV wavelengths. Research has shown where and possibly why flares occur, but the physics of the instability involved, of the particle acceleration, and of the heating are still not understood.

  11. Solar collector

    SciTech Connect

    Miller, R.L.

    1983-05-31

    A solar energy water heating unit is provided which heats water from a swimming pool by passing the water through a series of spiral hoses mounted on a supporting surface. The supporting surface is mounted on a platform raised from the ground and is cone-shaped to allow for at least a portion of each hose line to be exposed to the sun at all times of the day. The spiral hose lines are mounted in spiral grooves provided on the supporting surface. A pump pumps the water from the swimming pool to the inlet of the hose lines, which inlet is adjacent the lowermost edge of the supporting surface so that the water is always pumped upwardly to the outlet end of the hose lines adjacent the apex of the supporting surface.

  12. Solar Flares

    NASA Technical Reports Server (NTRS)

    Shih, Albert

    2011-01-01

    Solar flares accelerate both ions and electrons to high energies, and their X-ray and gamma-ray signatures not only probe the relationship between their respective acceleration, but also allow for the measurement of accelerated and ambient abundances. RHESSI observations have shown a striking close linear correlation of gamma-ray line fluence from accelerated ions > approx.20 MeV and bremsstrahlung emission from relativistic accelerated electrons >300 keV, when integrated over complete flares, suggesting a common acceleration mechanism. SMM/GRS observations, however, show a weaker correlation, and this discrepancy might be associated with previously observed electron-rich episodes within flares and/or temporal variability of gamma-ray line fluxes over the course of flares. We use the latest RHESSI gamma-ray analysis techniques to study the temporal behavior of the RHESSI flares, and determine what changes can be attributed to an evolving acceleration mechanism or to evolving abundances.

  13. Solar neutrinos.

    NASA Astrophysics Data System (ADS)

    Cremonesi, O.

    1993-12-01

    The main purpose of this paper is to review the progress made in the field of solar-neutrino physics with the results of the last-generation experiments together with the new perspectives suggested by the future projects. An elementary introduction to energy production mechanisms and stellar models is given. Neutrino properties and oscillations are discussed with particular interest in matter effects. Present experiments and future projects are reviewed. Particular attention is devoted to the compelling background and low-statistics problems. Finally, presently available results from running experiments are discussed, in the framework of the SNP. Some conclusions on the possibilities of the new proposed projects to actually slove the problem are also given.

  14. Solar pond

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1978-01-01

    Shallow pools of liquid to collect low-temperature solar generated thermal energy are described. Narrow elongated trenches, grouped together over a wide area, are lined with a heat-absorbing black liner. The heat-absorbing liquid is kept separate from the thermal energy removing fluid by means such as clear polyethylene material. The covering for the pond may be a fluid or solid. If the covering is a fluid, fire fighting foam, continuously generated, or siloons are used to keep the surface covering clean and insulated. If the thermal energy removing fluid is a gas, a fluid insulation layer contained in a flat polyethlene tubing is used to cover the pond. The side of the tube directed towards the sun is treated to block out ultraviolet radiation and trap in infrared radiation.

  15. Solar Heating Equipment

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Solar Unlimited, Inc.'s suncatcher line includes a variety of solar arrays, derived from NASA's satellite program: water heating only, partial home heating, or water and whole house central heating. Solar Unlimited developed a set of vigorous requirements to avoid problems common to solar heating technologies.

  16. Solar heating and you

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This fact sheet for use with primary school classes describes what solar collectors are and how they work, passive solar rooms, flat-plate collectors, and why one should use solar heating systems. Making a solar air heater is described step-by-step with illustrations. A resource list for both students and teachers is provided for further information.

  17. The solar neutrino problem.

    NASA Astrophysics Data System (ADS)

    Xu, Renxin; Luo, Xianhan

    1995-12-01

    The solar neutrino problem (SNP) is reviewed on the bases of neutrino physics, solar neutrino detection and standard solar model. It is interesting that the detected neutrino flux values of different solar neutrino detectors are lower than the values calculated by SMM in different degree. The studies on SNP in particle physics and in astrophysics are also discussed respectively.

  18. Toward a Solar Civilization

    ERIC Educational Resources Information Center

    Hippel, Frank von; Williams, Robert H.

    1977-01-01

    The future of solar energy is examined environmentally, socially, and economically. Coal and nuclear fission are discussed as long-range energy alternatives and U. S. regional strategies are suggested. Discussed in detail are low temperature solar heat, solar electricity, and chemical fuels from solar energy. (MA)

  19. A Solar Energy Bibliography.

    ERIC Educational Resources Information Center

    Guthrie, David L.; Riley, Robert A.

    This document contains 5,000 references to literature through 1976 dealing with various aspects of solar energy. Categories are established according to area of solar research. These categories include: (1) overview; (2) measurement; (3) low-range solar energy collection (below 120 degrees C); (4) intermediate-range solar energy collection (120…

  20. Toward a Solar Civilization

    ERIC Educational Resources Information Center

    Hippel, Frank von; Williams, Robert H.

    1977-01-01

    The future of solar energy is examined environmentally, socially, and economically. Coal and nuclear fission are discussed as long-range energy alternatives and U. S. regional strategies are suggested. Discussed in detail are low temperature solar heat, solar electricity, and chemical fuels from solar energy. (MA)

  1. Solar cycle variations in the solar wind

    NASA Technical Reports Server (NTRS)

    Freeman, John W.; Lopez, Ramon E.

    1986-01-01

    The solar cycle variations of various solar wind parameters are reviewed. It is shown that there is a gradual decrease in the duration of high-speed streams from the declining phase of solar cycle 20 through the ascending phase of cycle 21 and a corresponding decrease in the annual average of the proton speed toward solar maximum. Beta, the ratio of the proton thermal pressure to magnetic pressure, undergoes a significant solar cycle variation, as expected from the variation in the IMF. Individual hourly averages of beta often exceed unity with 20 cases exceeding 10 and one case as high as 25. The Alfven Mach number shows a solar cycle variation similar to beta, lower aboard solar maximum. High-speed streams can be seen clearly in epsilon and the y component of the interplanetary magnetic field.

  2. Solar mass loss, solar lithium, and solar oscillations

    NASA Astrophysics Data System (ADS)

    Cox, A. N.; Guzik, J. A.

    Swenson and Faulkner, and Boothroyd et al. investigated the possibility that early main-sequence mass loss via a stronger early solar wind could be responsible for the observed solar lithium and beryllium depletion. This depletion requires a total mass loss of approx. 0.1, nearly independent of the mass loss timescale. The authors have calculated the evolution and oscillation frequencies of solar models including helium and heavier element diffusion, and such early solar mass loss. For models with gradual early mass loss (during approx. 1 Gyr), the early mass loss phase decreases the total amount of helium and heavier elements diffused from the convection zone, and the extent of the diffusion-produced composition gradient just below the convection zone, deteriorating the agreement with observed frequencies for intermediate (ell) modes. The mass loss phase must be confined to approx. 0.2 Gyr or less to solve simultaneously the solar Li/Be problem and avoid discrepancies with solar oscillation frequencies.

  3. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  4. Development of Solar Research

    NASA Astrophysics Data System (ADS)

    Wittmann, Axel D.; Wolfschmidt, Gudrun; Duerbeck, Hilmar W.

    Originally based on a workshop on “Development of Solar Research”, held in Freiburg/Breisgau, this book contains articles on megalithic structures, the Nebra sky-disk, ancient sun cults, the observation of sunspots, the photography of the sun during eclipses, eclipse maps and expeditions, solar telescopes, solar physics during the Nazi era, archives of solar observations, scientific ballooning for solar research, site-testing on the Canary Islands, as well as on international cooperation.

  5. Solar collector array

    DOEpatents

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  6. Photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1991-05-16

    This invention consists of a planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation which includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  7. Solar trap

    SciTech Connect

    Lew, H.S.

    1990-01-09

    This patent describes a solar energy collecting apparatus. It comprises: a light funneling trough including two flat light reflecting surfaces disposed in a face-to-face arrangement having an oblique angle therebetween; a two dimensional Fresnel lens covering the opening of the light funneling trough at the diverging extremity thereof; a photovoltaic panel facing the two dimensional Fresnel lens disposed adjacent to the converging extremity of the light funneling trough; and at least one dual-sided light reflecting planar member disposed radially intermediate the two light reflecting surfaces. The dual-sided light reflecting planar member extending from the converging extremity of the light funneling trough towards the diverging extremity thereof and terminated at a substantial distance away from the plane including the opening of the light funneling trough. Wherein the sunlight entering the light funneling trough through the two-dimensional Fresnel lens is refracted by the two dimensional Fresnel lens and funneled by the light funneling trough towards the converging extremity of the light funneling trough and irradiates the photovoltaic panel.

  8. Solar oven

    SciTech Connect

    Burns, T.J.; Burns, C.L.

    1989-07-18

    This patent describes a solar oven. It comprises: an oven chamber having an open end and defining an interior cooking chamber; means providing a flat-back interior surface on the cooking chamber for absorbing sunlight and converting the absorbed sunlight into heat; an oven door hingedly mounted over the open end and movable between open and closed positions relative to the open end; means for pivotably supporting the oven chamber about a first substantially horizontal pivot axis; user-actuable latch means for selectively retaining the oven chamber in selected positions around the first horizontal axis, the user-actuable latch means including a user releasable ratchet mechanism including a plurality of ratchet teeth formed on the oven chamber and ratchet pawl pivoted to the support means in a position to engage selective ones of the ratchet teeth to retain the over chamber in selected orientations around the horizontal axis, the latch means further including means for pivoting the pawl into and out of the path of movement of the ratchet teeth to thereby achieve the selective positioning; a tray disposed within the interior cooking chamber for supporting foodstuffs during coking; pivot means for pivotally mounting the tray within the interior cooking chamber for movement around a second substantially horizontal pivot axis such that the tray can be positioned so as to maintain the foodstuffs in a substantially level position independently of the position of the oven chamber around the first pivot axis.

  9. Advanced solar space missions

    NASA Technical Reports Server (NTRS)

    Bohlin, J. D.

    1979-01-01

    The space missions in solar physics planned for the next decade are similar in that they will have, for the most part, distinct, unifying science objectives in contrast to the more general 'exploratory' nature of the Orbiting Solar Observatory and Skylab/ATM missions of the 1960's and 70's. In particular, the strategy for advanced solar physics space missions will focus on the quantitative understanding of the physical processes that create and control the flow of electromagnetic and particulate energy from the sun and through interplanetary space at all phases of the current sunspot cycle No. 21. Attention is given to the Solar Maximum Mission, the International Solar Polar Mission, solar physics on an early Shuttle mission, principal investigator class experiments for future spacelabs, the Solar Optical Telescope, the Space Science Platform, the Solar Cycle and Dynamics Mission, and an attempt to send a spacecraft to within 4 solar radii of the sun's surface.

  10. Amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Konagai, M.

    The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided.

  11. Solar Design Workbook

    SciTech Connect

    Franta, G.; Baylin, F.; Crowther, R.; Dubin, F.; Grace, A., Griffith, J.W.; Holtz, M.; Kutscher, C.; Nordham, D.; Selkowitz, S.; Villecco, M.

    1981-06-01

    This Solar Design Workbook presents solar building design applications for commercial buildir^s. The book is divided into four sections. The first section describes the variety of solar applications in buildings including conservation aspects, solar fundamentals, passive systems, active systems, daylighting, and other solar options. Solar system design evaluation techniques including considerations for building energy requirements, passive systems, active systems, and economics are presented in Section II. The third section attempts to assist the designer in the building design process for energy conservation and solar applications including options and considerations for pre-design, design, and post-design phases. The information required for the solar design proee^ has not been fully developed at this time. Therefore, Section III is incomplete, but an overview of the considerations with some of the design proces elements is presented. Section IV illustrates ease studies that utilize solar applications in the building design.

  12. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given.

  13. SOLARES - A new hope for solar energy

    NASA Technical Reports Server (NTRS)

    Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.

    1978-01-01

    A system of orbiting reflectors, SOLARES, has been studied as a possible means of reducing the diurnal variation and enhancing the average intensity of sunlight with a space system of minimum mass and complexity. The key impact that such a system makes on the economic viability of solar farming and other solar applications is demonstrated. The system is compatible with incremental implementation and continual expansion to meet the world's power needs. Key technology, environmental, and economic issues and payoffs are identified. SOLARES appears to be economically superior to other advanced, and even competitive with conventional, energy systems and could be scaled to completely abate our fossil fuel usage for power generation. Development of the terrestrial solar conversion technique, optimized for this new artificial source of solar radiation, yet remains.

  14. Spectropolarimetry of Solar Corona during Solar Eclipses

    NASA Astrophysics Data System (ADS)

    Qu, Zhongquan

    2017-08-01

    We present the results from spectropolarimetry of solar corona. These observations were conducted during solar eclipses in 2008 China, 2013 Gabon, and probably 2017 United States of America respectively. From the former two observations, it is shown that the patterns of linear polarization of radiation from the solar corona are very abundant, and the abundance may be related to the complexity of mass motions and magnetic configuration in the corona. And the spectropolarimetry during solar eclipses may open a new window to probe precisely the physical features of the local corona, especially its magnetic configuration.

  15. Solar prominences

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Aulanier, Guillaume; Török, Tibor

    2009-03-01

    Solar filaments (or prominences) are magnetic structures in the corona. They can be represented by twisted flux ropes in a bipolar magnetic environment. In such models, the dipped field lines of the flux rope carry the filament material and parasitic polarities in the filament channel are responsible for the existence of the lateral feet of prominences. Very simple laws do exist for the chirality of filaments, the so-called “filament chirality rules”: commonly dextral/sinistral filaments corresponding to left- (resp. right) hand magnetic twists are in the North/South hemisphere. Combining these rules with 3D weakly twisted flux tube models, the sign of the magnetic helicity in several filaments were identified. These rules were also applied to the 180° disambiguation of the direction of the photospheric transverse magnetic field around filaments using THEMIS vector magnetograph data (López Ariste et al. 2006). Consequently, an unprecedented evidence of horizontal magnetic support in filament feet has been observed, as predicted by former magnetostatic and recent MHD models. The second part of this review concerns the role of emerging flux in the vicinity of filament channels. It has been suggested that magnetic reconnection between the emerging flux and the pre-existing coronal field can trigger filament eruptions and CMEs. For a particular event, observed with Hinode/XRT, we observe signatures of such a reconnection, but no eruption of the filament. We present a 3D numerical simulation of emerging flux in the vicinity of a flux rope which was performed to reproduce this event and we briefly discuss, based on the simulation results, why the filament did not erupt.

  16. Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold P., Jr.

    2003-01-01

    This paper presents viewgraphs on Solar Thermal Propulsion (STP). Some of the topics include: 1) Ways to use Solar Energy for Propulsion; 2) Solar (fusion) Energy; 3) Operation in Orbit; 4) Propulsion Concepts; 5) Critical Equations; 6) Power Efficiency; 7) Major STP Projects; 8) Types of STP Engines; 9) Solar Thermal Propulsion Direct Gain Assembly; 10) Specific Impulse; 11) Thrust; 12) Temperature Distribution; 13) Pressure Loss; 14) Transient Startup; 15) Axial Heat Input; 16) Direct Gain Engine Design; 17) Direct Gain Engine Fabrication; 18) Solar Thermal Propulsion Direct Gain Components; 19) Solar Thermal Test Facility; and 20) Checkout Results.

  17. Solar synthetic fuel production

    NASA Astrophysics Data System (ADS)

    Bilgen, E.; Bilgen, C.

    In this paper, a thermodynamic study is presented on solar hydrogen production using concentrated solar energy. In the first part, the direct decomposition process has been studied. The temperature requirements at various partial pressures of H2O, H2 and H yields, thermal efficiency and separation of products are discussed. In the second part, using consistent costing bases, the cost of hydrogen is estimated for solar-direct decomposition process and solar-electrolysis process. It has been found that the solar-direct decomposition process concept provides hydrogen costs in the range of $22/GJ which are lower by $15-$26 than those provided by a solar electrolysis process.

  18. Solar assisted cooker

    SciTech Connect

    Sofrata, H.

    1992-12-31

    This paper introduces a new idea which overcomes most of the problems and contradictions encountered in solar cookers. The idea is to turn from a solar stand alone system to a solar assisted wood fired cooker (SAWOFIC). This concept solves four major problems with solar cookers; heat storage and indoor-, year round-, and locally-available techniques. To increase the effectiveness of solar cookers a simple solar pressurized cooking pot has been designed. This pot prevents the steam leakage that produces energy losses. An overview of the design and performance of the cooker is presented.

  19. Solarization of heliostat glasses

    NASA Astrophysics Data System (ADS)

    Vitko, J., Jr.; Shelby, J. E.

    1980-09-01

    A solar-induced decrease in Fe(2+) absorption was observed in heliostat glasses from the solar furnace at Odeillo, France. This decrease occurs throughout the sample and is of sufficient magnitude to result in an increase of 2.5% in solar transmittance in a period of nine years. Optical and ESR studies did not detect a corresponding increase in Fe(3+) concentration. The effect of these results on a microscopic model for the observed solarization is discussed. Solar simulation studies produced changes of magnitude and sign similar to those observed in the field exposed samples, and offer attractive means for screening samples for solarization tendencies.

  20. Simplified Calculation Of Solar Fluxes In Solar Receivers

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep

    1990-01-01

    Simplified Calculation of Solar Flux Distribution on Side Wall of Cylindrical Cavity Solar Receivers computer program employs simple solar-flux-calculation algorithm for cylindrical-cavity-type solar receiver. Results compare favorably with those of more complicated programs. Applications include study of solar energy and transfer of heat, and space power/solar-dynamics engineering. Written in FORTRAN 77.

  1. Solar power roof shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G.

    1975-01-01

    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant.

  2. Solar Control design package

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Information used in the evaluation of design of Solar Control's solar heating and cooling system controller and the Solarstat is given. Some of the information includes system performance specifications, design data brochures, and detailed design drawings.

  3. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  4. Purification of Solar Ponds

    NASA Technical Reports Server (NTRS)

    Carpenter, S.

    1985-01-01

    Flocculatory agents added to solar saltponds remove turbidity to increase solar-energy collection efficiency. Flocculating agent or bacteriocide used to remove micro-organisms sprayed onto pond from airplane and allowed to settle to bottom of pond.

  5. Solar Resource Assessment

    SciTech Connect

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  6. The global solar dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, Robert

    2016-07-01

    I will review our understanding of the solar dynamo, concentrating on how observations constrain the theoretical possibilities. Possibilities for future progress, including understanding the Sun in the solar-stellar context will be outlined.

  7. Solar Wind Five

    NASA Technical Reports Server (NTRS)

    Neugebauer, M. (Editor)

    1983-01-01

    Topics of discussion were: solar corona, MHD waves and turbulence, acceleration of the solar wind, stellar coronae and winds, long term variations, energetic particles, plasma distribution functions and waves, spatial dependences, and minor ions.

  8. Solar Thermal Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Sercel, J. C.

    1986-01-01

    Paper analyzes potential of solar thermal rockets as means of propulsion for planetary spacecraft. Solar thermal rocket uses concentrated Sunlight to heat working fluid expelled through nozzle to produce thrust.

  9. Solar-Heated Gasifier

    NASA Technical Reports Server (NTRS)

    Qader, S. A.

    1985-01-01

    Catalytic coal and biomass gasifer system heated by solar energy. Sunlight from solar concentrator focused through quartz window onto ceramic-honeycomb absorber surface, which raises temperature of reactant steam, fluidizing gas, and reactor walls.

  10. Solar Neutral Particles

    NASA Image and Video Library

    This animation shows a neutral solar particle's path leaving the sun, following the magnetic field lines out to the heliosheath. The solar particle hits a hydrogen atom, stealing its electron, and ...

  11. Glory Solar Array Deployment

    NASA Image and Video Library

    The Glory spacecraft uses Orbital Sciences Corporation Space Systems Group's LEOStar-1 bus design, with deployable, four-panel solar arrays. This conceptual animation reveals Glory's unique solar a...

  12. Solar cooking in China

    SciTech Connect

    Wang Xiping

    1992-12-31

    In the past 20 years, solar cooking has developed rapidly in China. Its popularity is easy to understand since China is a nation with a rural population of 800 million, 30% to 40% of which lack firewood. In recent years a number of scientists and engineers have researched solar cooking and tested solar cookers. The Solar Energy Laboratory has worked on the application of solar energy, especially solar cookers, and has made a number of significant achievements in the following areas: solar cooker theory; methods of designing solar cookers, testing characteristics of thermal efficiency; materials for cooker construction, and technological processes for producing cookers. This paper discusses their achievements and plans for future research.

  13. Solar Energy Project, Activities: General Solar Topics.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This guide contains lesson plans and outlines of activities which introduce students to concepts and issues relating to solar energy. Lessons frequently presented in the context of solar energy as it relates to contemporary energy problems. Each unit presents an introduction; objectives; necessary skills and knowledge; materials; method;…

  14. Durable solar mirror films

    DOEpatents

    O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.

    2017-02-14

    The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.

  15. Solar Activity and TECHNOSPHERE

    NASA Astrophysics Data System (ADS)

    Kuznetsov, V. D.

    2017-05-01

    A review of solar activity factors impacting on the near-Earth space and technosphere are given. Solar activity in the form of enhanced fluxes of hard electromagnetic and corpuscular radiation, solar wind streams and mass ejections is considered as a principal source of space weather creating the dangerous for the astronauts, satellites, International Space Station and for the ground technical systems. The examples of effects of solar activity on the space and ground technosphere are given.

  16. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  17. Solar Energy Technician/Installer

    ERIC Educational Resources Information Center

    Moore, Pam

    2007-01-01

    Solar power (also known as solar energy) is solar radiation emitted from the sun. Large panels that absorb the sun's energy as the sun beats down on them gather solar power. The energy in the rays can be used for heat (solar thermal energy) or converted to electricity (photovoltaic energy). Each solar energy project, from conception to…

  18. Solar Coronal Magneto- Seismology With Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Verth, G.; Erdéyi, R.

    2007-01-01

    MHD waves in solar coronal loops, which were previously only predicted by theory have now actually been detected with instruments such as TRACE and SUMER on-board SOHO. These observations have given the solar community an important and novel tool to measure fundamental parameters in the magnetically embedded solar corona. Theory has been developed to derive detailed diagnostic information, e.g., density, magnetic field look structure, geometry, and stratifications. In this paper we demonstrate through examples of case studies how the EUV imager on Solar Orbiter can be used for solar atmospheric (coronal) magneto-seismology. Possible methods will be discussed to determine (i) if magnetic field divergence or plasma density stratification is the dominating factor in transversal loop oscillations (ii) important parameters such as the density scale heigh and magnetic dipole depth of a loop.

  19. Alternatives in solar energy

    NASA Technical Reports Server (NTRS)

    Schueler, D. G.

    1978-01-01

    Although solar energy has the potential of providing a significant source of clean and renewable energy for a variety of applications, it is expected to penetrate the nation's energy economy very slowly. The alternative solar energy technologies which employ direct collection and conversion of solar radiation as briefly described.

  20. Inexpensive Photovoltaic Solar Radiometer.

    ERIC Educational Resources Information Center

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  1. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  2. Solar Photovoltaic Cells.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1981-01-01

    Reviews information on solar radiation as an energy source. Discusses these topics: the key photovoltaic material; the bank theory of solids; conductors, semiconductors, and insulators; impurity semiconductors; solid-state photovoltaic cell operation; limitations on solar cell efficiency; silicon solar cells; cadmium sulfide/copper (I) sulfide…

  3. Inexpensive Photovoltaic Solar Radiometer.

    ERIC Educational Resources Information Center

    Kissner, Fritz

    1981-01-01

    Describes a low-cost instrument using a solar cell as a sensor to measure both instantaneous and integrated value of solar flux. Constructing and calibrating such an instrument constitutes an undergraduate experimental project, affording students an opportunity to examine a variety of aspects associated with solar energy measurements. (Author/SK)

  4. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  5. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  6. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  7. Experimenting with Solar Energy

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2004-01-01

    Over the past 25 years, the author has had the opportunity to study the subject of solar energy and to get involved with the installation, operation, and testing of solar energy systems. His work has taken him all over the United States and put him in contact with solar experts from around the world. He has also had the good fortune of seeing some…

  8. Solar Energy Usage.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with solar energy use. Its objective is for the student to be able to discuss the broad aspects of solar energy use and to explain the general operation of solar systems. Some topics covered are availability and economics of solar…

  9. (Solar dryer. Final report)

    SciTech Connect

    Scanlin, D.

    1985-01-01

    A small solar lumber dryer was designed and constructed with the involvement of junior high students. The dryer is a natural convection solar collector similar in shape to an attached solar greenhouse. The design of the kiln is described, modifications are proposed, and the performance is briefly discussed. (LEW)

  10. Build a Solar Greenhouse.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    Attached solar greenhouses are relatively inexpensive and easy to build; they can provide additional heat to homes all winter as well as fresh vegetables and flowers. This bulletin: (1) describes the characteristics of a solar greenhouse; (2) provides a checklist of five items to consider before building a solar greenhouse; (3) describes the four…

  11. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  12. Offset paraboloidal solar concentrator

    NASA Technical Reports Server (NTRS)

    Chow, E. Y.

    1981-01-01

    Section of conventional paraboloid, offset from its major axis, is used as reflector in solar concentrator. Design increases solar gathering efficiency by 3 to 4 percent by eliminating shadowing and blocking of solar rays. In addition, reflector can be folded toward receiver, reducing wind-loading and making maintenance easier.

  13. Solar disk sextant

    NASA Technical Reports Server (NTRS)

    Sofia, S.; Chiu, H.-Y.; Maier, E.; Schatten, K. H.; Minott, P.; Endal, A. S.

    1984-01-01

    This paper presents the conceptual design of an instrument, called the solar disk sextant, to be used in space to measure the shape and the size of the sun and their variations. The instrumental parameters required to produce sufficient sensitivity to address the problems of solar oblateness, solar pulsations, and global size changes of climatic importance are given.

  14. Solar Job Related Training.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Dallas, TX.

    This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…

  15. Solar Job Related Training.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Dallas, TX.

    This book contains comprehensive instruction in design, installation, and service procedures for typical solar space heat and domestic hot water systems. The book is comprised of five major sections. Solar Systems: Past and Present presents a brief look at how far solar technology has advanced. Included in this section are descriptions of over…

  16. Solar Proton Events in Six Solar Cycles

    NASA Astrophysics Data System (ADS)

    Vitaly, Ishkov

    Based on materials the catalogs of solar proton events (SPE) in 1955 ‒ 2010 and list SPE for the current 24 solar cycle (SC) are examined confirmed SPE with E> 10 MeV proton flux in excess of 1 proton cm-2 s ster-1 (pfu) from Švestka and Simon’s (1955 - 1969) and 5 volumes Logachev’s (1970 - 2006) Catalogs of SPE. Historically thus it was formed, that the measurements of the proton fluxes began in the epoch “increased” solar activity (SC 18 ‒ 22), and includes transition period of the solar magnetic fields reconstruction from epoch “increased” to the epoch “lowered” solar activity (22 ‒ 23 SC). In current 24 SC ‒ first SC of the incipient epoch of “lowered” SA ‒ SPE realize under the new conditions, to that of previously not observed. As showed a study of five solar cycles with the reliable measurements of E> 10 MeV proton flux in excess of 1 pfu (1964 - 2013): ‒ a quantity of SPEs remained approximately identical in SC 20, 21, somewhat decreased in the initial solar cycle of the solar magnetic fields reconstruction period (22), but it returned to the same quantity in, the base for the period of reconstruction, SC 23. ‒ Into the first 5 years of the each solar cycle development the rate of the proton generation events noticeably increased in 22 cycles of solar activity and returned to the average in cycles 23 and 24. ‒ Extreme solar flare events are achieved, as a rule, in the solar magnetic fields reconstruction period (August - September 1859; June 1991; October ‒ November 2003.), it is confirmed also for SPE: the extreme fluxes of solar protons (S4) except one (August 1972) were occurred in period of perestroika (SC 22 and 23). This can speak, that inside the epochs SA, when the generation of magnetic field in the convective zone works in the steady-state regime, extreme SPE are improbable. ‒ The largest in the fluxes of protons (S3, S4) occur in the complexes of the active regions flare events, where magnetic field more

  17. Solar power station

    SciTech Connect

    Wenzel, J.

    1982-11-30

    Solar power station with semiconductor solar cells for generating electric power is described, wherein the semiconductor solar cells are provided on a member such as a balloon or a kite which carries the solar cells into the air. The function of the balloon or kite can also be fulfilled by a glider or airship. The solar power station can be operated by allowing the system to ascend at sunrise and descend at sunset or when the wind is going to be too strong in order to avoid any demage.

  18. Solar-terrestrial interactions

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The effects of solar radiation on man's environment are discussed. It is solar radiation that is the basic energy source driving the circulations of the earth's atmosphere and oceans. Solar radiation is responsible for the ionization of the earth's upper atmosphere to form the ionosphere, which is important to our understanding of the magnetosphere and its interaction with the solar wind. The solar wind, which is the continuous (but not steady) flow of the sun's coronal plasma and magnetic field into interplanetary space, plays both an active and passive role in its interaction with the earth's environment.

  19. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Chipman, E. G.

    1981-03-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  20. The Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Chipman, E. G.

    1981-01-01

    The Solar Maximum Mission spacecraft, launched on 1980 February 14, carries seven instruments for the study of solar flares and other aspects of solar activity. These instruments observe in spectral ranges from gamma-rays through the visible, using imaging, spectroscopy, and high-time-resolution light curves to study flare phenomena. In addition, one instrument incorporates an active cavity radiometer for accurate measurement of the total solar radiant output. This paper reviews some of the most important current observational and theoretical questions of solar flare physics and indicates the ways in which the experiments on SMM will be able to attack these questions. The SMM observing program is described.

  1. Solar radiation absorbing material

    DOEpatents

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  2. Experiences with solar power

    NASA Astrophysics Data System (ADS)

    Kesselring, P.

    1985-11-01

    Experience with solar thermal plants is reviewed. The component and subsystems development of the last decade and particularly the receiver, collector and heliostat field development is a technical success. Solar specific problems on the system and component level arose, when off the shelf solutions of fossile fired plants were transferred uncritically. It is shown that concentrated solar radiation is a relatively cheap high quality fuel. Other uses than electricity generation are high temperature processes and the production of solar fuels and chemicals. A technical and economic comparison of solar thermal and photovoltaic electricity generation is made.

  3. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth; Pesnell, W. Dean

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun's polar field plays a major role in forecasting the next cycle s activity based upon the Babcock-Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130 plus or minus 30 (2 sigma), in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (approx. 7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun's open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes

  4. Solar Cycle #24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean; Schatten, Kenneth

    2007-01-01

    We focus on two solar aspects related to flight dynamics. These are the solar dynamo and long-term solar activity predictions. The nature of the solar dynamo is central to solar activity predictions, and these predictions are important for orbital planning of satellites in low earth orbit (LEO). The reason is that the solar ultraviolet (UV) and extreme ultraviolet (EUV) spectral irradiances inflate the upper atmospheric layers of the Earth, forming the thermosphere and exosphere through which these satellites orbit. Concerning the dynamo, we discuss some recent novel approaches towards its understanding. For solar predictions we concentrate on a solar precursor method, in which the Sun s polar field plays a major role in forecasting the next cycle s activity based upon the Babcock- Leighton dynamo. With a current low value for the Sun s polar field, this method predicts that solar cycle #24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 130+ 30 (2 4, in the 2013 timeframe. One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. Concomitant effects of low solar activity upon satellites in LEO will need to be considered, such as enhancements in orbital debris. Support for our prediction of a low solar cycle #24 is borne out by the lack of new cycle sunspots at least through the first half of 2007. Usually at the present epoch in the solar cycle (-7+ years after the last solar maximum), for a normal size following cycle, new cycle sunspots would be seen. The lack of their appearance at this time is only consistent with a low cycle #24. Polar field observations of a weak magnitude are consistent with unusual structures seen in the Sun s corona. Polar coronal holes are the hallmarks of the Sun s open field structures. At present, it appears that the polar coronal holes are relatively weak, and there have been many equatorial coronal holes. This appears

  5. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  6. Mars Solar Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas W.; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    NASA missions to Mars, both robotic and human, rely on solar arrays for the primary power system. Mars presents a number of challenges for solar power system operation, including a dusty atmosphere which modifies the spectrum and intensity of the incident solar illumination as a function of time of day, degradation of the array performance by dust deposition, and low temperature operation. The environmental challenges to Mars solar array operation will be discussed and test results of solar cell technology operating under Mars conditions will be presented, along with modeling of solar cell performance under Mars conditions. The design implications for advanced solar arrays for future Mars missions is discussed, and an example case, a Martian polar rover, are analyzed.

  7. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  8. Photovoltaic solar concentrator

    DOEpatents

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  9. Solar variability datalogger

    SciTech Connect

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.

  10. Solar variability datalogger

    DOE PAGES

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understandingmore » of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.« less

  11. Solar energy modulator

    NASA Technical Reports Server (NTRS)

    Hale, R. R. (Inventor); Mcdougal, A. R.

    1984-01-01

    A module is described with a receiver having a solar energy acceptance opening and supported by a mounting ring along the optic axis of a parabolic mirror in coaxial alignment for receiving solar energy from the mirror, and a solar flux modulator plate for varying the quantity of solar energy flux received by the acceptance opening of the module. The modulator plate is characterized by an annular, plate-like body, the internal diameter of which is equal to or slightly greater than the diameter of the solar energy acceptance opening of the receiver. Slave cylinders are connected to the modulator plate for supporting the plate for axial displacement along the axis of the mirror, therby shading the opening with respect to solar energy flux reflected from the surface of the mirror to the solar energy acceptance opening.

  12. Solar variability datalogger

    SciTech Connect

    Lave, Matthew; Stein, Joshua; Smith, Ryan

    2016-07-28

    To address the lack of knowledge of local solar variability, we have developed and deployed a low-cost solar variability datalogger (SVD). While most currently used solar irradiance sensors are expensive pyranometers with high accuracy (relevant for annual energy estimates), low-cost sensors display similar precision (relevant for solar variability) as high-cost pyranometers, even if they are not as accurate. In this work, we present evaluation of various low-cost irradiance sensor types, describe the SVD, and present validation and comparison of the SVD collected data. In conclusion, the low cost and ease of use of the SVD will enable a greater understanding of local solar variability, which will reduce developer and utility uncertainty about the impact of solar photovoltaic (PV) installations and thus will encourage greater penetrations of solar energy.

  13. Thermochemical solar hydrogen generation.

    PubMed

    Licht, Stuart

    2005-10-07

    Solar direct, indirect and hybrid thermochemical processes are presented for the generation of hydrogen and compared to alternate solar hydrogen processes. A hybrid solar thermal/electrochemical process combines efficient photovoltaics and concentrated excess sub-bandgap heat into highly efficient elevated temperature solar electrolysis of water and generation of H2 fuel utilizing the thermodynamic temperature induced decrease of E(H2O) with increasing temperature. Theory and experiment is presented for this process using semiconductor bandgap restrictions and combining photodriven charge transfer, with excess sub-bandgap insolation to lower the water potential, and their combination into highly efficient solar generation of H2 is attainable. Fundamental water thermodynamics and solar photosensitizer constraints determine solar energy to hydrogen fuel conversion efficiencies in the 50% range over a wide range of insolation, temperature, pressure and photosensitizer bandgap conditions.

  14. Progress in solar engineering

    SciTech Connect

    Yogi Goswami, D.

    1987-01-01

    This book presents reviews of various areas of solar energy technology, including wind energy technology and ocean thermal energy conversion (OTEC). It also identifies and suggests needs and future directions of research and development. The subjects covered in this book include solar thermal power technology, solar thermal storage, solar ponds, industrial process heat, solar water heating, active and passive solar cooling methods, low-cost collector development, photovoltaic research and applications, wind energy technology, and OTEC. Also covered are the status of the technology, basic and applied research, design and analysis methods, and performance and operational experiences of various systems. The book will thus be helpful as a review of various solar, wind, and OTEC technologies.

  15. Polymer solar cells

    NASA Astrophysics Data System (ADS)

    Li, Gang; Zhu, Rui; Yang, Yang

    2012-03-01

    Recent progress in the development of polymer solar cells has improved power-conversion efficiencies from 3% to almost 9%. Based on semiconducting polymers, these solar cells are fabricated from solution-processing techniques and have unique prospects for achieving low-cost solar energy harvesting, owing to their material and manufacturing advantages. The potential applications of polymer solar cells are broad, ranging from flexible solar modules and semitransparent solar cells in windows, to building applications and even photon recycling in liquid-crystal displays. This Review covers the scientific origins and basic properties of polymer solar cell technology, material requirements and device operation mechanisms, while also providing a synopsis of major achievements in the field over the past few years. Potential future developments and the applications of this technology are also briefly discussed.

  16. Solar wind acceleration in the solar corona

    NASA Technical Reports Server (NTRS)

    Giordano, S.; Antonucci, E.; Benna, C.; Kohl, J. L.; Noci, G.; Michels, J.; Fineschi, S.

    1997-01-01

    The intensity ratio of the O VI doublet in the extended area is analyzed. The O VI intensity data were obtained with the ultraviolet coronagraph spectrometer (UVCS) during the SOHO campaign 'whole sun month'. The long term observations above the north pole of the sun were used for the polar coronal data. Using these measurements, the solar wind outflow velocity in the extended corona was determined. The 100 km/s level is running along the streamer borders. The acceleration of the solar wind is found to be high in regions between streamers. In the central part of streamers, the outflow velocity of the coronal plasma remains below 100 km/s at least within 3.8 solar radii. The regions at the north and south poles, characterized by a more rapid acceleration of the solar wind, correspond to regions where the UVCS observes enhanced O VI line broadenings.

  17. National Community Solar Platform

    SciTech Connect

    Rupert, Bart

    2016-06-30

    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  18. Solar Neutrino Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feilitzsch, F. v.

    1999-01-01

    Since the pioneering experiment of R. Davis et al., which started neutrino astronomy by measuring the solar neutrinos via the inverse beta decay reaction on 37Cl, all solar neutrino experiments find a considerably lower flux than expected by standard solar models. This finding is generally called the solar neutrino problem. Many attempts have been made to explain this result by altering the solar models, or assuming different nuclear cross sections for fusion processes assumed to be the energy sources in the sun. There have been performed numerous experiments recently to investigate the different possibilities to explain the solar neutrino problem. These experiments covered solar physics with helioseismology, nuclear cross section measurements, and solar neutrino experiments. Up to now no convincing explanation based on "standard" physics was suggested. However, assuming nonstandard neutrino properties, i.e. neutrino masses and mixing as expected in most extensions of the standard theory of elementary particle physics, natural solutions for the solar neutrino problem can be found. It appears that with this newly invented neutrino astronomy fundamental information on astrophysics as well as elementary particle physics are tested uniquely. In this contribution an attempt is made to review the situation of the neutrino astronomy for solar neutrino spectroscopy and discuss the future prospects in this field.

  19. Solar Cycle 24 and the Solar Dynamo

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Schatten, K.

    2007-01-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 plus or minus 35 (2 sigma), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 plus or minus 35 [2 sigma]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  20. Solar Cycle 24 and the Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.; Schatten, K.

    2007-05-01

    We will discuss the polar field precursor method for solar activity prediction, which predicts cycle 24 will be significantly lower than recent activity cycles, and some new ideas rejuvenating Babcock's shallow surface dynamo. The polar field precursor method is based on Babcock and Leighton's dynamo models wherein the polar field at solar minimum plays a major role in generating the next cycle's toroidal field and sunspots. Thus, by examining the polar fields of the Sun near solar minimum, a forecast for the next cycle's activity is obtained. With the current low value for the Sun's polar fields, this method predicts solar cycle 24 will be one of the lowest in recent times, with smoothed F10.7 radio flux values peaking near 135 ± 35 (2 σ), in the 2012-2013 timeframe (equivalent to smoothed Rz near 80 ± 35 [2 σ]). One may have to consider solar activity as far back as the early 20th century to find a cycle of comparable magnitude. We discuss unusual behavior in the Sun's polar fields that support this prediction. Normally, the solar precursor method is consistent with the geomagnetic precursor method, wherein geomagnetic variations are thought to be a good measure of the Sun's polar field strength. Because of the unusual polar field, the Earth does not appear to be currently bathed in the Sun's extended polar field (the interplanetary field), hence negating the primal cause behind the geomagnetic precursor technique. We also discuss how percolation may support Babcock's original shallow solar dynamo. In this process ephemeral regions from the solar magnetic carpet, guided by shallow surface fields, may collect to form pores and sunspots.

  1. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  2. Hybrids of Solar Sail, Solar Electric, and Solar Thermal Propulsion for Solar-System Exploration

    NASA Technical Reports Server (NTRS)

    Wilcox, Brian H.

    2012-01-01

    Solar sails have long been known to be an attractive method of propulsion in the inner solar system if the areal density of the overall spacecraft (S/C) could be reduced to approx.10 g/sq m. It has also long been recognized that the figure (precise shape) of useful solar sails needs to be reasonably good, so that the reflected light goes mostly in the desired direction. If one could make large reflective surfaces with reasonable figure at an areal density of approx.10 g/sq m, then several other attractive options emerge. One is to use such sails as solar concentrators for solar-electric propulsion. Current flight solar arrays have a specific output of approx. 100W/kg at 1 Astronomical Unit (AU) from the sun, and near-term advances promise to significantly increase this figure. A S/C with an areal density of 10 g/sq m could accelerate up to 29 km/s per year as a solar sail at 1 AU. Using the same sail as a concentrator at 30 AU, the same spacecraft could have up to approx. 45 W of electric power per kg of total S/C mass available for electric propulsion (EP). With an EP system that is 50% power-efficient, exhausting 10% of the initial S/C mass per year as propellant, the exhaust velocity is approx. 119 km/s and the acceleration is approx. 12 km/s per year. This hybrid thus opens attractive options for missions to the outer solar system, including sample-return missions. If solar-thermal propulsion were perfected, it would offer an attractive intermediate between solar sailing in the inner solar system and solar electric propulsion for the outer solar system. In the example above, both the solar sail and solar electric systems don't have a specific impulse that is near-optimal for the mission. Solar thermal propulsion, with an exhaust velocity of the order of 10 km/s, is better matched to many solar system exploration missions. This paper derives the basic relationships between these three propulsion options and gives examples of missions that might be enabled by

  3. Climate Fundamentals for Solar Heating.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The design of any solar heating system is influenced heavily by climate; in this bulletin, information on climate as related to solar heating is as related to solar heating is provided. Topics discussed include: (1) solar radiation; (2) degree days; (3) climate and calculations which make use of solar radiation and degree days; and (4)…

  4. Solar Renewable Energy. Teaching Unit.

    ERIC Educational Resources Information Center

    Buchanan, Marion; And Others

    This unit develops the concept of solar energy as a renewable resource. It includes: (1) an introductory section (developing understandings of photosynthesis and impact of solar energy); (2) information on solar energy use (including applications and geographic limitations of solar energy use); and (3) future considerations of solar energy…

  5. Solar energy: Program summary document

    NASA Astrophysics Data System (ADS)

    1980-08-01

    Solar programs and the eight solar technologies are discussed, including biomass energy systems, photovoltaic energy systems, wind energy conversion systems, solar thermal power, ocean systems, agricultural and industrial process heat, active solar heating and cooling, passive and hybrid solar heating and cooling.

  6. SOLAR EFFECTS ON BUILDING DESIGN.

    ERIC Educational Resources Information Center

    Building Research Inst., Inc., Washington, DC.

    A REPORT OF A PROGRAM HELD AS PART OF THE BUILDING RESEARCH INSTITUTE 1962 SPRING CONFERENCE ON THE SOLAR EFFECTS ON BUILDING DESIGN. TOPICS DISCUSSED ARE--(1) SOLAR ENERGY DATA APPLICABLE TO BUILDING DESIGN, (2) THERMAL EFFECTS OF SOLAR RADIATION ON MAN, (3) SOLAR EFFECTS ON ARCHITECTURE, (4) SOLAR EFFECTS ON BUILDING COSTS, (5) SELECTION OF…

  7. Bright Idea: Solar Energy Primer.

    ERIC Educational Resources Information Center

    Missouri State Dept. of Natural Resources, Jefferson City.

    This booklet is intended to address questions most frequently asked about solar energy. It provides basic information and a starting point for prospective solar energy users. Information includes discussion of solar space heating, solar water heating, and solar greenhouses. (Author/RE)

  8. The Solar Cycle

    NASA Astrophysics Data System (ADS)

    Hathaway, David H.

    2015-12-01

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24.

  9. Solar Decathlon 2005

    SciTech Connect

    Warner, C.; Nahan, R.; King, R.

    2005-01-01

    Solar Decathlon 2005 is a U.S. Department of Energy and National Renewable Energy Laboratory competition involving 19 colleges and universities from the United States, Canada, and Spain. These teams will compete to design, build, and demonstrate solar homes. In fall 2005, teams will transport their competition solar houses to Washington, D.C., where they will construct a solar village on the National Mall. When the houses are assembled, the teams will compete against each other in 10 contests (hence, a decathlon) for about a week. The contests range from design to comfort to energy performance. Each team must provide an aesthetically pleasing entry that produces sufficient solar energy for space conditioning, hot water, lighting, appliances, and an electric car. The Solar Decathlon is co-sponsored by BP, The Home Depot, the American Institute of Architects, the National Association of Home Builders, and the DIY Network. For more information, visit the Web site at www.solardecathlon.org.

  10. Semiconductor Solar Superabsorbers

    PubMed Central

    Yu, Yiling; Huang, Lujun; Cao, Linyou

    2014-01-01

    Understanding the maximal enhancement of solar absorption in semiconductor materials by light trapping promises the development of affordable solar cells. However, the conventional Lambertian limit is only valid for idealized material systems with weak absorption, and cannot hold for the typical semiconductor materials used in solar cells due to the substantial absorption of these materials. Herein we theoretically demonstrate the maximal solar absorption enhancement for semiconductor materials and elucidate the general design principle for light trapping structures to approach the theoretical maximum. By following the principles, we design a practical light trapping structure that can enable an ultrathin layer of semiconductor materials, for instance, 10 nm thick a-Si, absorb > 90% sunlight above the bandgap. The design has active materials with one order of magnitude less volume than any of the existing solar light trapping designs in literature. This work points towards the development of ultimate solar light trapping techniques. PMID:24531211

  11. Report from solar physics

    NASA Technical Reports Server (NTRS)

    Walker, A. B. C.; Acton, L.; Brueckner, G.; Chupp, E. L.; Hudson, H. S.; Roberts, W.

    1989-01-01

    A discussion of the nature of solar physics is followed by a brief review of recent advances in the field. These advances include: the first direct experimental confirmation of the central role played by thermonuclear processes in stars; the discovery that the 5-minute oscillations of the Sun are a global seismic phenomenon that can be used as a probe of the structure and dynamical behavior of the solar interior; the discovery that the solar magnetic field is subdivided into individual flux tubes with field strength exceeding 1000 gauss. Also covered was a science strategy for pure solar physics. Brief discussions are given of solar-terrestrial physics, solar/stellar relationships, and suggested space missions.

  12. Solar energy systems cost

    SciTech Connect

    Lavender, J.A.

    1980-01-01

    Five major areas of work currently being pursued in the United States in solar energy which will have a significant impact on the world's energy situation in the future are addressed. The five significant areas discussed include a technical description of several solar technologies, current and projected cost of the selected solar systems, and cost methodologies which are under development. In addition, sensitivity considerations which are unique to solar energy systems and end user applications are included. A total of six solar technologies - biomass, photovoltaics, wind, ocean thermal energy conversion (OTEC), solar thermal, and industrial process heat (IPH) have been included in a brief technical description to present the variety of systems and their techncial status. System schematics have been included of systems which have been constructed, are currently in the detail design and test stage of development, or are of a conceptual nature.

  13. Solar Cycle Prediction

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2011-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan your next vacation. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. I will describe the current state of solar cycle predictions and anticipate how those predictions could be made more accurate in the future.

  14. Solar thermal aircraft

    DOEpatents

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  15. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  16. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  17. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  18. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen as it starts passing in front of the Sun during a solar eclipse from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  19. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Sun is seen as it rises behind Jack Mountain head of the solar eclipse, Monday, Aug. 21, 2017, Ross Lake, Northern Cascades National Park, Washington. A total solar eclipse will sweep across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  20. The solar dynamo.

    PubMed

    Tobias, S M

    2002-12-15

    In this article I review the fundamentals of solar-dynamo theory. I describe both historical and contemporary observations of the solar magnetic field before outlining why it is believed that the solar field is maintained by a hydromagnetic dynamo. Having explained the basic dynamo process and applications of the theory to the Sun, I shall conclude by speculating on future directions for the theory.

  1. Solar Asset Management Software

    SciTech Connect

    Iverson, Aaron; Zviagin, George

    2016-09-30

    Ra Power Management (RPM) has developed a cloud based software platform that manages the financial and operational functions of third party financed solar projects throughout their lifecycle. RPM’s software streamlines and automates the sales, financing, and management of a portfolio of solar assets. The software helps solar developers automate the most difficult aspects of asset management, leading to increased transparency, efficiency, and reduction in human error. More importantly, our platform will help developers save money by improving their operating margins.

  2. Solar energy emplacement developer

    NASA Technical Reports Server (NTRS)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  3. (Solar pods (greenhouses))

    SciTech Connect

    Kerr, R.T.

    1985-01-01

    Detailed instructions for the construction of solar pads are presented. The materials necessary for constructing the solar pad are made available in kit form. A list of the materials includes: dome shaped double glazing; end plates and supports; 2 x 4's; a snow support rib; and pressure strips. Assembly of the structure is made easy with an electric drill and simple hand tools. The solar pads resemble miniature greenhouses and are used for year round horticulture. (BCS)

  4. Heterojunction solar cell

    SciTech Connect

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  5. Heterojunction solar cell

    DOEpatents

    Olson, Jerry M.

    1994-01-01

    A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

  6. Heterojunction solar cell

    DOEpatents

    Olson, J.M.

    1994-08-30

    A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

  7. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    This composite image shows the progression of a partial solar eclipse over Ross Lake, in Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  8. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    This composite image of nine pictures shows the progression of a partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  9. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun at the point of the maximum of the partial solar eclipse near Banner, Wyoming on Monday, Aug. 21, 2017. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Joel Kowsky)

  10. Solar cell encapsulation

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  11. Solar Filament Eruption, Solar Tsunami - Close-up

    NASA Image and Video Library

    Close-up of magnetic solar filament erupting during the early hours of February 24, 2012. Notice closer to the surface the solar atmosphere splits and waves of solar material fan out in opposite di...

  12. Solar Cycle Predictions

    NASA Technical Reports Server (NTRS)

    Pesnell, William Dean

    2012-01-01

    Solar cycle predictions are needed to plan long-term space missions; just like weather predictions are needed to plan the launch. Fleets of satellites circle the Earth collecting many types of science data, protecting astronauts, and relaying information. All of these satellites are sensitive at some level to solar cycle effects. Predictions of drag on LEO spacecraft are one of the most important. Launching a satellite with less propellant can mean a higher orbit, but unanticipated solar activity and increased drag can make that a Pyrrhic victory as you consume the reduced propellant load more rapidly. Energetic events at the Sun can produce crippling radiation storms that endanger all assets in space. Solar cycle predictions also anticipate the shortwave emissions that cause degradation of solar panels. Testing solar dynamo theories by quantitative predictions of what will happen in 5-20 years is the next arena for solar cycle predictions. A summary and analysis of 75 predictions of the amplitude of the upcoming Solar Cycle 24 is presented. The current state of solar cycle predictions and some anticipations how those predictions could be made more accurate in the future will be discussed.

  13. Tension solar mirror

    SciTech Connect

    Russo, W.P.

    1986-09-02

    A solar collector is described comprising a central tower having a solar receiver thereon; tension towers positioned concentrically about the central tower;a rigid inner ring disposed about the central tower and sized to permit vertical movement relative to the central tower; cables extending between the inner ring and the tops of each of the tension towers; and a reflectively-coated sheet of flexible material attached to the upper surface of the cables; whereby the action of gravity on the cables and the sheet form a concave reflector for focusing solar energy onto the solar receiver.

  14. Long Island Solar Farm

    SciTech Connect

    Anders, R.

    2013-05-01

    The Long Island Solar Farm (LISF) is a remarkable success story, whereby very different interest groups found a way to capitalize on unusual circumstances to develop a mutually beneficial source of renewable energy. The uniqueness of the circumstances that were necessary to develop the Long Island Solar Farm make it very difficult to replicate. The project is, however, an unparalleled resource for solar energy research, which will greatly inform large-scale PV solar development in the East. Lastly, the LISF is a superb model for the process by which the project developed and the innovation and leadership shown by the different players.

  15. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Robert Wilson of the Solar/Solar terrestrial Studies team at the National Space Science and Technology Center, a joint research and collaborative think tank partnership of the University of Alabama in Huntsville (UAH) and the Marshall Space Flight Center, adjusts his telescope which is set up as a viewing opportunity for MSFC employees prior to the August 21, 2017 solar eclipse event. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  16. Solar coal gasification

    NASA Astrophysics Data System (ADS)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  17. Preface: Solar Dynamo Frontiers

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.

    2016-10-01

    The last six years have seen substantial progress in our understanding of the solar dynamo, fueled by continuing advances in observations and modeling. With the launch of NASAs Solar Dynamics Observatory (SDO) in 2010 came an unprecedented window on the evolving magnetic topology of the Sun, highlighting its intricate 3D structure and global connectivity. The Helioseismic Magnetic Imager (HMI) instrument on SDO in particular has provided potentially transformative yet enigmatic insights into the internal dynamics of the solar convection zone that underlie the dynamo. One of these enigmas is the amplitude and structure of deep solar convection.

  18. Passive solar technology

    SciTech Connect

    Watson, D

    1981-04-01

    The present status of passive solar technology is summarized, including passive solar heating, cooling and daylighting. The key roles of the passive solar system designer and of innovation in the building industry are described. After definitions of passive design and a summary of passive design principles are given, performance and costs of passive solar technology are discussed. Passive energy design concepts or methods are then considered in the context of the overall process by which building decisions are made to achieve the integration of new techniques into conventional design. (LEW).

  19. Solar corona and prediction of the solar cycle 24 amplitude..

    NASA Astrophysics Data System (ADS)

    Pishkalo, M.

    2012-12-01

    Investigation of the solar cycle amplitude dependence on such quantitative parameters of shape and structure of the solar corona as indexes of photometrical and geometrical flattening and extension of polar coronal rays along the solar limb have been made. Observation of the solar corona during total solar eclipses in solar cycles 11-23 were used. The amplitude of solar cycle 24 was predicted on the basis of the parameters values at the cycle minimum. Solar cycle 24 is expected to be weaker than previous cycle 23. The Wolf number in the cycle maximum will amount to 83-113.

  20. Make Your Own Solar Panel.

    ERIC Educational Resources Information Center

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  1. Make Your Own Solar Panel.

    ERIC Educational Resources Information Center

    Suzuki, David

    1992-01-01

    Presents an activity in which students make a simulated solar panel to learn about the principles behind energy production using solar panels. Provides information about how solar panels function to produce energy. (MCO)

  2. Activities for Teaching Solar Energy.

    ERIC Educational Resources Information Center

    Mason, Jack Lee; Cantrell, Joseph S.

    1980-01-01

    Plans and activities are suggested for teaching elementary children about solar energy. Directions are included for constructing a flat plate collector and a solar oven. Activities for a solar field day are given. (SA)

  3. Solar luminosity variations in solar cycle 21

    NASA Technical Reports Server (NTRS)

    Willson, Richard C.; Hudson, H. S.

    1988-01-01

    Long-term variations in the solar total irradiance found in the ACRIM I experiment on the SMM satellite have revealed a downward trend during the declining phase of solar cycle 21 of the sunspot cycle, a flat period between mid-1095 and mid-1987, and an upturn in late 1987 which suggests a direct correlation of luminosity and solar active region population. If the upturn continues into the activity maximum of solar cycle 22, a relation between solar activity and luminosity of possible climatological significance could be ascertained. The best-fit relationship for the variation of total irradiance S with sunspot number Rz and 10-cm flux F(10) are S = 1366.82 + 7.71 x 10 to the -3rd Rz and S = 1366.27 + 8.98 x 10 to the -3rd F(10)(W/sq m). These findings could be used to approximate total irradiance variations over the periods for which these indices have been compiled.

  4. The solar wind throughout the solar cycle

    NASA Astrophysics Data System (ADS)

    von Steiger, Rudolf

    The existence of solar corpuscular radiation (SCR) was conjectured by Biermann (1951) based on the fact that the ion tails of comets always point radially away from the Sun. Earlier it had been thought that this was due to solar radiation pressure, but when the relevant cross-sections were measured it became clear that these were far too small. This is visible in Figure 3.1, where stars can be seen shining through the ion tail of comet Hale-Bopp, one of the more spectacular sights in the sky of the 20th century. Parker (1958) provided the first theoretical description of the SCR in terms of a supersonic magnetized fluid. He coined the term "solar wind" in order to set it apart from other ideas of a (subsonic) solar breeze that were around at the time. The solar wind was ultimately observed in the early 1960s by the Soviets and independently with the American Mariner 2 mission to Venus (Gringauz et al., 1961; Neugebauer and Snyder, 1962). An excellent account of these early developments is given by Parker (2001).

  5. Solar light bulb

    SciTech Connect

    Smith, D.A.

    1983-07-26

    A system for generating light directly using solar energy is provided herein. It includes a concentrator and accumulator for the sun's rays to generate a concentrated beam of visible solar radiation. A distributor shaft is provided for distributing the beam of visible solar radiation. A fork is provided in the distributor shaft to define a plurality of branch lines, each provided with a mirror at the intersection to direct the beam down the respective branch line to permit parallel fractions of the beam to be reflected off the respective mirrors and to pass down the respective branch line. A solar bulb is provided including a double walled upper bulbous portion including the inlet from the branch line and a pair of heat outlet tubes, and a double walled lower bulbous portion, the upper portion thereof being divergently reflective, with the lower portion having walls which are either transparent or translucent to provide greater light diffusion, and the space between the two walls being maintained under vacuum to provide heat insulation values. A structure is provided within the solar bulb for the absorption and radiation of the concentrated beam of visible solar radiation. Preferably structure is provided connected to the solar bulb to draw in outside air in the summer to direct it past the solar bulb and to air vent hot air produced at the solar bulb to the outside, thereby providing light with minimal heat in the summer. The same structure is operated in the winter to draw in household air to direct it past the solar bulb and to recirculate such heated air produced at the solar bulb to the house, thereby providing light and heat in the winter.

  6. An introduction to solar radiation

    SciTech Connect

    Iqbal, M.

    1983-01-01

    This book was written for energy analysts, designers of thermal devices, photovoltaic engineers, architects, agronomists, and hydrologists who must calculate an amount of solar radiation incident on a surface. Includes reading lists, diagrams, a subject index and tables with useful data. Contents, abridged: Sun-earth astronomical relationship. The solar constant and its spectral distribution. Extraterrestrial solar irradiation. Solar spectral radiation under cloudless skies. Solar radiation under cloudy skies. Grand albedo. Solar radiation measuring instruments. Appendices. Index.

  7. Solar Power System Design for the Solar Probe+ Mission

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Schmitz, Paul C.; Kinnison, James; Fraeman, Martin; Roufberg, Lew; Vernon, Steve; Wirzburger, Melissa

    2008-01-01

    Solar Probe+ is an ambitious mission proposed to the solar corona, designed to make a perihelion approach of 9 solar radii from the surface of the sun. The high temperature, high solar flux environment makes this mission a significant challenge for power system design. This paper summarizes the power system conceptual design for the solar probe mission. Power supplies considered included nuclear, solar thermoelectric generation, solar dynamic generation using Stirling engines, and solar photovoltaic generation. The solar probe mission ranges from a starting distance from the sun of 1 AU, to a minimum distance of about 9.5 solar radii, or 0.044 AU, from the center of the sun. During the mission, the solar intensity ranges from one to about 510 times AM0. This requires power systems that can operate over nearly three orders of magnitude of incident intensity.

  8. Solar electron source and thermionic solar cell

    NASA Astrophysics Data System (ADS)

    Yaghoobi, Parham; Vahdani Moghaddam, Mehran; Nojeh, Alireza

    2012-12-01

    Common solar technologies are either photovoltaic/thermophotovoltaic, or use indirect methods of electricity generation such as boiling water for a steam turbine. Thermionic energy conversion based on the emission of electrons from a hot cathode into vacuum and their collection by an anode is also a promising route. However, thermionic solar conversion is extremely challenging as the sunlight intensity is too low for heating a conventional cathode to thermionic emission temperatures in a practical manner. Therefore, compared to other technologies, little has been done in this area, and the devices have been mainly limited to large experimental apparatus investigated for space power applications. Based on a recently observed "Heat Trap" effect in carbon nanotube arrays, allowing their efficient heating with low-power light, we report the first compact thermionic solar cell. Even using a simple off-the-shelf focusing lens, the device delivered over 1 V across a load. The device also shows intrinsic storage capacity.

  9. Solar Radiation Research Laboratory (Poster)

    SciTech Connect

    Stoffel, T.; Andreas, A.; Reda, I.; Dooraghi, M.; Habte, A.; Kutchenreiter, M.; Wilcox, S.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  10. Foundational Solar Resource Research (Poster)

    SciTech Connect

    Orwig, K.; Wilcox, S.; Sengupta, M.; Habte, A.; Anderberg, M.; Stoffel, T.

    2012-07-01

    SunShot Initiative awardee posters describing the different technologies within the four subprograms of the DOE Solar Program (Photovoltaics, Concentrating Solar Power, Soft Costs, and Systems Integration).

  11. Radio observations of solar eclipse.

    NASA Astrophysics Data System (ADS)

    Liu, Yuying; Fu, Qijun

    1998-09-01

    For radio astronomy, a solar eclipse provides an opportunity for making solar radio observations with high one-dimension spatial resolution. The radio observation of a solar eclipse has played an important role in solar radio physics. Some important factors for radio observation of a solar eclipse are introduced and analysed. Solar eclipse radio observation has also played an important role in the progress of solar radio atronomy in China. The solar eclipses of 1958, 1968, 1980 and 1987, which were observed in China, are introduced, and the main results of these observations are briefly shown.

  12. Solar ponds: a selected bibliography

    SciTech Connect

    Not Available

    1981-11-01

    This bibliography contains citations on: regular solar ponds; shallow solar ponds; and patents. Certain references are specifically recommended. The data bases searched for the bibliography are listed. (LEW)

  13. Solar School House.

    ERIC Educational Resources Information Center

    Harrison, David

    The Solar Schoolhouse at the Lathrop E. Smith Environmental Education Center (Rockville, Maryland) is described. Background and construction information is given. Drawings of the Schoolhouse's four sides are provided, as well as drawings illustrating the greenhouse effect, a solar collector, the Schoolhouse's summer cooling and winter heating…

  14. The SOLAR Alternative.

    ERIC Educational Resources Information Center

    Warren, E. H., Jr.; Walton, A. L.

    1984-01-01

    Only when the sun's energy can be captured at a comparable or lower opportunity cost than that of competing sources will solar energy systems become viable alternatives. Economic issues of solar energy are discussed. The legitimate role of government is also examined. (RM)

  15. Residential Solar Systems.

    ERIC Educational Resources Information Center

    Fulkerson, Dan

    This publication contains student and teacher instructional materials for a course in residential solar systems. The text is designed either as a basic solar course or as a supplement to extend student skills in areas such as architectural drafting, air conditioning and refrigeration, and plumbing. The materials are presented in four units…

  16. Reliable solar cookers

    SciTech Connect

    Magney, G.K.

    1992-12-31

    The author describes the activities of SERVE, a Christian relief and development agency, to introduce solar ovens to the Afghan refugees in Pakistan. It has provided 5,000 solar cookers since 1984. The experience has demonstrated the potential of the technology and the need for a durable and reliable product. Common complaints about the cookers are discussed and the ideal cooker is described.

  17. Pioneering with Solar Power.

    ERIC Educational Resources Information Center

    Pollack, George; Pollack, Mary

    1982-01-01

    Describes the development of Mississippi County Community College's (MCCC's) solar energy system. Explains the functioning of the campus's computer-controlled photovoltaic concentrator system, MCCC's cooperative agreement with the Arkansas-Missouri Power Company, program funding, the integration of the solar system with other building components,…

  18. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  19. Solar Energy Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A waste water treatment plant in Wilton, Maine, where sludge is converted to methane gas, and Monsanto Company's Environmental Health Laboratory in St. Louis Missouri, where more than 200 solar collectors provide preheating of boiler feed water for laboratory use are representative of Grumman's Sunstream line of solar energy equipment. This equipment was developed with technology from NASA's Apollo lunar module program.

  20. Pioneering with Solar Power.

    ERIC Educational Resources Information Center

    Pollack, George; Pollack, Mary

    1982-01-01

    Describes the development of Mississippi County Community College's (MCCC's) solar energy system. Explains the functioning of the campus's computer-controlled photovoltaic concentrator system, MCCC's cooperative agreement with the Arkansas-Missouri Power Company, program funding, the integration of the solar system with other building components,…

  1. Solar versus seismic design

    SciTech Connect

    Reitherman, R.K.

    1980-01-01

    There are several recurring seismic problems induced by passive solar design trends. The structural significance of the amount and distribution of mass, asymmetry, fluid-filled container dynamics, setbacks, atria, and buried buildings is briefly explained. It is intended to assist the solar designer in developing a better conceptual understanding of these issues from a practical viewpoint, especially during the preliminary design phase.

  2. Solar Energy Project: Text.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    The text is a compilation of background information which should be useful to teachers wishing to obtain some technical information on solar technology. Twenty sections are included which deal with topics ranging from discussion of the sun's composition to the legal implications of using solar energy. The text is intended to provide useful…

  3. Solar Energy Project: Reader.

    ERIC Educational Resources Information Center

    Tullock, Bruce, Ed.; And Others

    This document is designed to give both teachers and students the opportunity to review a variety of representative articles on solar energy. Consideration is given to the sun's role in man's past, present, and future. The present state of solar technology is examined theoretically, economically, and comparatively in light of growing need for…

  4. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  5. Solar Electricity for Homes

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  6. Leaves: Nature's Solar Collectors

    ERIC Educational Resources Information Center

    Isabelle, Aaron D.; de Groot, Cornelis

    2009-01-01

    One of the most captivating things about plants is the way they capture the Sun's energy, but this can be a difficult topic to cover with elementary students. Therefore, to help students to make a concrete connection to this abstract concept, this series of solar-energy lessons focuses on leaves and how they act as "solar collectors." As students…

  7. Solar batteries: a bibliography

    SciTech Connect

    Vance, M.

    1981-01-01

    A bibliography with 621 references is presented on solar batteries. Listings are alphabetical according to the author's name and all types of solar cells (organic and inorganic) are considered as well as articles of general interest in the area. In addition, an author index and a journal index are included. (MJJ)

  8. The Solar Energy Notebook.

    ERIC Educational Resources Information Center

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  9. Solar neutrino oscillations

    SciTech Connect

    Haxton, W.C.

    1993-12-31

    The special properties of solar neutrinos that render this flux so uniquely important in searches for neutrino masses and flavor mixing are reviewed. The effects of matter, including density fluctuations and turbulence, on solar neutrino oscillations are explained through analogies with more familiar atomic physics phenomena.

  10. Solar Technology Curriculum, 1980.

    ERIC Educational Resources Information Center

    Seward County Community Coll., Liberal, KS.

    This curriculum guide contains lecture outlines and handouts for training solar technicians in the installation, maintenance, and repair of solar energy hot water and space heating systems. The curriculum consists of four modular units developed to provide a model through which community colleges and area vocational/technical schools can respond…

  11. Homemade Solar Systems

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Through the use of NASA Tech Briefs, Peter Kask, was able to build a solarized domestic hot water system. Also by applying NASA's solar energy design information, he was able to build a swimming pool heating system with minimal outlay for materials.

  12. Solar Energy: Home Heating.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on home heating is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  13. Solar Energy: Heat Transfer.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat transfer is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The…

  14. Solar Energy: Heat Storage.

    ERIC Educational Resources Information Center

    Knapp, Henry H., III

    This module on heat storage is one of six in a series intended for use as supplements to currently available materials on solar energy and energy conservation. Together with the recommended texts and references (sources are identified), these modules provide an effective introduction to energy conservation and solar energy technologies. The module…

  15. Solar heat pump

    NASA Astrophysics Data System (ADS)

    Hermanson, R.

    Brief discussions of the major components of a solar powered, chemical ground source heat pump are presented. The components discussed are the solar collectors and the chemical heat storage battery. Sodium sulfide is the medium used for heat storage. Catalog information which provides a description of all of the heat pump systems is included.

  16. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Marshall Space Flight Center employee, Phillip Domen, safely views the August 21, 2017 solar eclipse with his homemade viewing box. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  17. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Marshall Space Flight Center employees view the August 21, 2017 solar eclipse at the center’s activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  18. Solar Technology Curriculum, 1980.

    ERIC Educational Resources Information Center

    Seward County Community Coll., Liberal, KS.

    This curriculum guide contains lecture outlines and handouts for training solar technicians in the installation, maintenance, and repair of solar energy hot water and space heating systems. The curriculum consists of four modular units developed to provide a model through which community colleges and area vocational/technical schools can respond…

  19. Indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving

    1991-01-01

    The direction for InP solar cell research; reduction of cell cost; increase of cell efficiency; measurements needed to better understand cell performance; n/p versus p/n; radiation effects; major problems in cell contacting; and whether the present level of InP solar cell research in the USA should be maintained, decreased, or increased were considered.

  20. Million Solar Roofs

    SciTech Connect

    2003-11-01

    Since its announcement in June 1997, the Million Solar Roofs Initiative has generated a major buzz in communities, states, and throughout the nation. With more than 300,000 installations, the buzz is getting louder. This brochure describes Million Solar Roofs activities and partnerships.

  1. Solar still. Final report

    SciTech Connect

    Adams, W.D.

    1983-07-20

    Passive solar heating was used in a still in which a packed column packed with popped popcorn separates the alcohol and water vapors. The still's performance was not satisfactory, and it is concluded that passive solar heating could have been better used to preheat makeup water for the fermentation process and to maintain proper fermentation temperatures during the winter. (LEW)

  2. Solar System Dynamics

    NASA Astrophysics Data System (ADS)

    Murray, Carl D.; Dermott, Stanley F.

    2000-02-01

    Preface; 1. Structure of the solar system; 2. The two-body problem; 3. The restricted three-body problem; 4. Tides, rotation and shape; 5. Spin-orbit coupling; 6. The disturbing function; 7. Secular perturbations; 8. Resonant perturbations; 9. Chaos and long-term evolution; 10. Planetary rings; Appendix A. Solar system data; Appendix B. Expansion of the disturbing function; Index.

  3. Solar array cost reduction

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1972-01-01

    A brief description is given of the cost of solar power systems over the last decade and means by which cost reductions may be achieved in the future. Costs were broken down into nonrecurring and recurring costs for solar array, battery, and power conditioning. Correlation of costs with power were poor; however, costs correlated reasonably well with the array area.

  4. Curriculum Reviews: Solar Energy.

    ERIC Educational Resources Information Center

    Riley, Joseph P.

    1982-01-01

    Reviews Solar Energy Education Project (SEEP), a set of 10 curriculum guides emphasizing process skills as well as content for grades K-9. Solar concepts are taught almost exclusively through process activities and, although developed in Australia, the curriculum is easily adaptable to American classrooms. (Author/JN)

  5. The Solar Energy Notebook.

    ERIC Educational Resources Information Center

    Rankins, William H., III; Wilson, David A.

    This publication is a handbook for the do-it-yourselfer or anyone else interested in solar space and water heating. Described are methods for calculating sun angles, available energy, heating requirements, and solar heat storage. Also described are collector and system designs with mention of some design problems to avoid. Climatological data for…

  6. The SOLAR Alternative.

    ERIC Educational Resources Information Center

    Warren, E. H., Jr.; Walton, A. L.

    1984-01-01

    Only when the sun's energy can be captured at a comparable or lower opportunity cost than that of competing sources will solar energy systems become viable alternatives. Economic issues of solar energy are discussed. The legitimate role of government is also examined. (RM)

  7. Solar Electricity for Homes

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Every day, the sun showers the Earth with millions of times more energy than its people use. The only problem is that energy is spread out over the entire Earth's surface and must be harvested. Engineers are learning to capture and use some of this energy to make electricity for homes. Solar panels make up the heart of a solar system. They can be…

  8. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    A total solar eclipse is seen on Monday, August 21, 2017 from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  9. Solar array deployment mechanism

    NASA Technical Reports Server (NTRS)

    Calassa, Mark C.; Kackley, Russell

    1995-01-01

    This paper describes a Solar Array Deployment Mechanism (SADM) used to deploy a rigid solar array panel on a commercial spacecraft. The application required a deployment mechanism design that was not only lightweight, but also could be produced and installed at the lowest possible cost. This paper covers design, test, and analysis of a mechanism that meets these requirements.

  10. Solar insolation model

    NASA Technical Reports Server (NTRS)

    Smith, J. H.

    1980-01-01

    Computer program SOLINS helps engineers with relatively complex task of choosing best orientation of fixed flat-plate solar collectors for local conditions. Program models average hourly solar insolation on fixed but arbitrarily-oriented surface. Consideration is given to problems of array spacing, shadowing, and use of augmentation reflectors to increase insolation at collector surface.

  11. Reinventing the solar panel

    SciTech Connect

    Scanlon, M.

    1995-08-01

    This article discusses new technology in solar panels. PowerSource is a solar collector which not only is less expensive than conventional panels to purchase and install, but also increases the electrical output by almost 20%. This article describes the results of testing this system.

  12. Solar oscillation frequency and solar neutrino predictions

    SciTech Connect

    Cox, A.N.

    1990-07-05

    The light and velocity variations of the Sun and solar-like stars are unique among intrinsic variable stars. Unlike all other standard classes, such as Cepheids, B stars, and white dwarfs, the pulsation driving is caused by coupling with the acoustic noise in the upper convection zone. Each global pulsation mode is just another degree of freedom for the turbulent convection, and energy is shared equally between these g{sup {minus}}-modes and the solar oscillation modes. This driving and damping, together with the normal stellar pulsation mechanisms produce extremely low amplitude solar oscillations. Actually, the surface layer radiative damping is strong, and the varying oscillation mode amplitudes manifest the stochastic convection driving and the steady damping. Thus stability calculations for solar-like pulsations are difficult and mostly inconclusive, but calculations of pulsation periods are as straightforward as for all the other classes of intrinsic variable stars. The issue that is important for the Sun is its internal structure, because the mass, radius, and luminosity are extremely well known. Conventionally, we need the pulsation constants for each of millions of modes. Unknown parameters for constructing solar models are the composition and its material pressure, energy, and opacity, as well as the convection mixing length. We treat the nuclear energy and neutrino production formulas as sufficiently well known. The presence of weakly interacting massive particles (WIMPs) orbiting the solar center affects the predicted oscillation frequencies so that they do not agree with observations as well as those for models without WIMPs. 34 refs., 4 figs.

  13. Solar cooling in Madrid: Available solar energy

    SciTech Connect

    Izquierdo, M.; Hernandez, F.; Martin, E. )

    1994-11-01

    This paper analyzes the behaviour of an absorption chiller lithium bromide installation fed by a field of flat-plate solar collectors and condensed by swimming pool water. A method of calculation in a variable regime is developed in terms of the obtained experimental results. Starting from the meteorological variables of a clear summer day and from the project data (collector normalization curve, collector and installation mass), the minimum solar radiation level necessary to initiate the process, I[sub min], and the instantaneous available solar energy, Q[sub u] + W[sub 1] is determined. The solar radiation threshold, I[sub min], necessary to obtain the process temperature, t[sub ave], in each instant, is obtained by adding to the corrected Klein radiation threshold, I[sub k,c], the heat capacity effects of the collector, HCE[sub CO], and of the installation, HCE[sub ins], as well as the losses of heat of the pipes to the surroundings, Q[sub 1]. The instantaneous available solar energy, available useful heat, in addition to the wind collector losses to the surroundings, Q[sub u] + W[sub 1], is the difference, in each instant, between the radiation, I[sub g1T], and the radiation threshold, I[sub min].The integration during the day of the instantaneous available solar energy allows us to calculate the daily available function, H[sub T]. The value of H[sub T], measured in the swimming-pool water condensation installation reached 6.92 MJ/(m[sup 2] day ). The calculated values of H[sub T] for a conventional installation condensed by tower water, or air, have been 6.35 and 0.56 MJ/(m[sup 2] day). respectively.

  14. Correlation analysis of solar constant, solar activity and cosmic ray

    NASA Astrophysics Data System (ADS)

    Utomo, Y. S.

    2017-04-01

    Actually, solar constant is not constant but fluctuated by ±1.5% of their average value. Solar constant indicates that the value is not constant but varies with time. Such variation is correlated with solar activity and cosmic ray. Correlation analysis shows a strong correlation between solar activity and cosmic ray and between solar activity and solar constant. Solar activity indicates by sunspot number. Correlations between solar constant variations and sunspot number variations were found to be higher than ones between variations in cosmic ray and solar constant. It was also found a positive correlation between solar constant and sunspot number, with correlation coefficient about +0.77/month and +0.95/year. In other hand, negative correlation between solar constant and cosmic ray flux i.e. -0.50/month and -0.62/year were found for monthly and yearly data respectively. A similar result was also found for the relationship between solar activity and cosmic ray flux with a negative correlation, i.e. -0.61/month and -0.69/year. When solar activities decrease, the clouds cover rate increase due to secondary ions produced by cosmic rays. The increase in the cloud cover rate causes the decrease in solar constant value and solar radiation on the earth’s surface. Solar constant plays an important role in the planning and technical analysis of equipment utilizing solar energy.

  15. Solar cell shingle

    NASA Technical Reports Server (NTRS)

    Forestieri, A. F.; Ratajczak, A. F.; Sidorak, L. G. (Inventor)

    1977-01-01

    A solar cell shingle was made of an array of solar cells on a lower portion of a substantially rectangular shingle substrate made of fiberglass cloth or the like. The solar cells may be encapsulated in flourinated ethylene propylene or some other weatherproof translucent or transparent encapsulant to form a combined electrical module and a roof shingle. The interconnected solar cells were connected to connectors at the edge of the substrate through a connection to a common electrical bus or busses. An overlap area was arranged to receive the overlap of a cooperating similar shingle so that the cell portion of the cooperating shingle may overlie the overlap area of the roof shingle. Accordingly, the same shingle serves the double function of an ordinary roof shingle which may be applied in the usual way and an array of cooperating solar cells from which electrical energy may be collected.

  16. Parabolic solar systems

    NASA Astrophysics Data System (ADS)

    Parsons, W. L., IV; Goetchius, W.

    The further development of parabolic solar collectors to increase their efficiency and simplify their operation was the prime objective of this research project. Three primary objectives were pursued. The first of these was to investigate the simplest and most efficient techniques to build and mass-produce parabolic solar collectors. The second objective was to further develop and simplify absorber tubes used to collect and transfer the solar energy. Absorber tubes represented a significant area of this research project. The third objective was to develop accurate, low cost, and durable tracking systems for solar collectors. Solar tracking systems are covered including several schematic representations of various systems and designs. The testing systems and associated mechanisms for the designs discussed in this report are described.

  17. Solar energy collector

    SciTech Connect

    Penney, R.J.

    1980-09-02

    A sun tracking solar energy collector assembly having both a longitudinally extending flat plate absorber and a tube absorber spaced from and extending longitudinally generally parallel to the flat plate absorber. In one form a parabolic reflector focuses direct rays of solar radiation on the tube absorber and directs diffused rays of solar radiation onto the plate absorber. In another form a fresnel lens plate focuses direct rays of solar radiation on the tube absorber and flat reflector surfaces direct diffused solar radiation passing through the lens plate onto the plate absorber. In both forms a fluid is first heated as it circulates through passages in the flat plate absorber and then is further heated to a higher temperature as it passes through the tube absorber.

  18. The solar optical telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Objectives of the Solar Optical Telescope are to study the physics of the Sun on the scale at which many of the important physical processes occur and to attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution. Topics discussed in this overview of the Solar Optical Telescope include: why is the Solar Optical Telescope needed; current picture of the Sun's atmosphere and convection zone; scientific problems for the Solar Optical Telescope; a description of the telescope; the facility - science management, contamination control, and accessibility to the instruments; the scientific instruments - a coordinated instrument package for unlocking the Sun's secrets; parameters of the coordinated instrument package; science operations from the Space Shuttle; and the dynamic solar atmosphere.

  19. Contrasting Large Solar Events

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2010-10-01

    After an unusually long solar minimum, solar cycle 24 is slowly beginning. A large coronal mass ejection (CME) from sunspot 1092 occurred on 1 August 2010, with effects reaching Earth on 3 August and 4 August, nearly 38 years to the day after the huge solar event of 4 August 1972. The prior event, which those of us engaged in space research at the time remember well, recorded some of the highest intensities of solar particles and rapid changes of the geomagnetic field measured to date. What can we learn from the comparisons of these two events, other than their essentially coincident dates? One lesson I took away from reading press coverage and Web reports of the August 2010 event is that the scientific community and the press are much more aware than they were nearly 4 decades ago that solar events can wreak havoc on space-based technologies.

  20. Solar Variability and Climate

    NASA Astrophysics Data System (ADS)

    Haigh, Joanna D.

    Solar radiation is the fundamental energy source for the atmosphere and the global average equilibrium temperature of the Earth is determined by a balance between the energy acquired by the solar radiation absorbed and the energy lost to space by the emission of heat radiation. The interaction of this radiation with the climate system is complex but it is clear that any change in total solar irradiance (TSI) has the potential to influence climate. In the past, although many papers were written on relationships between sunspot numbers and the weather, the topic of solar influences on climate was often disregarded by meteorologists. This was due to a combination of factors of which the key was the lack of any robust measurements indicating that solar radiation did indeed vary. There was also mistrust of the statistical validity of the evidence and, importantly, no established scientific mechanisms whereby the apparent changes in the Sun might induce detectable signals near the Earth's surface. Another influence was a desire by the meteorological profession to distance itself from the Astrometeorology movement popular in the 19th century (anderson1999). Nowadays, with improved measurements of solar and climate parameters, evidence for an influence of solar variability on the climate of the lower atmosphere has emerged from the noise. This article provides a brief review of the observational evidence and an outline of the mechanisms whereby rather small changes in solar radiation may induce detectable signals near the Earth's surface is not possible to review here all potential mechanisms for solar-climate links. What is presented offers, necessarily, a personal perspective but, of the areas that are not covered, two may be pertinent: the effects of solar energetic particles on stratospheric composition (see e.g. jackman et al. 2005) and the possible influence of galactic cosmic rays on clouds through ionisation processes (see Marsh, this volume).

  1. Solar heating and cooling.

    PubMed

    Duffie, J A; Beckman, W A

    1976-01-16

    We have adequate theory and engineering capability to design, install, and use equipment for solar space and water heating. Energy can be delivered at costs that are competitive now with such high-cost energy sources as much fuel-generated, electrical resistance heating. The technology of heating is being improved through collector developments, improved materials, and studies of new ways to carry out the heating processes. Solar cooling is still in the experimental stage. Relatively few experiments have yielded information on solar operation of absorption coolers, on use of night sky radiation in locations with clear skies, on the combination of a solar-operated Rankine engine and a compression cooler, and on open cycle, humidification-dehumidification systems. Many more possibilities for exploration exist. Solar cooling may benefit from collector developments that permit energy delivery at higher temperatures and thus solar operation of additional kinds of cycles. Improved solar cooling capability can open up new applications of solar energy, particularly for larger buildings, and can result in markets for retrofitting existing buildings. Solar energy for buildings can, in the next decade, make a significant contribution to the national energy economy and to the pocketbooks of many individual users. very large-aggregate enterprises in manufacture, sale, and installation of solar energy equipment can result, which can involve a spectrum of large and small businesses. In our view, the technology is here or will soon be at hand; thus the basic decisions as to whether the United States uses this resource will be political in nature.

  2. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    ERIC Educational Resources Information Center

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  3. Solar '80s: A Teacher's Handbook for Solar Energy Education.

    ERIC Educational Resources Information Center

    LaHart, David E.

    This guide is intended to assist the teacher in exploring energy issues and the technology of solar energy conversion and associated technologies. Sections of the guide include: (1) Rationale; (2) Technology Overview; (3) Sun Day Suggestions for School; (4) Backyard Solar Water Heater; (5) Solar Tea; (6) Biogas; (7) Solar Cells; (8) Economics; (9)…

  4. Renewing Solar Science. The Solar Maximum Repair Mission.

    ERIC Educational Resources Information Center

    Neal, Valerie

    This publication describes the Solar Maximum Repair Mission for restoring the operational capability of the solar observatory in space by using the Space Shuttle. Major sections include: (1) "The Solar Maximum Mission" (describing the duties of the mission); (2) "Studying Solar Flares" (summarizing the major scientific…

  5. Solar Simulator Represents the Mars Surface Solar Environment

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Dawson, Stephen F.; Mueller, Robert L.; Mardesich, Nick; Rapp, Donald

    2009-01-01

    A report discusses the development of a Mars surface, laboratory-based solar simulator to create solar cells that can function better on Mars. The Mars Optimized Solar cell Technology (MOST) required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and developing and testing commercial cells modified for the Mars surface spectrum.

  6. Preliminary design package for solar collector and solar pump

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A solar-operated pump using an existing solar collector, for use on solar heating and cooling and hot water systems is described. Preliminary design criteria of the collector and solar-powered pump is given including: design drawings, verification plans, and hazard analysis.

  7. Solar Fuels and Solar Chemicals Industry.

    PubMed

    Nocera, Daniel G

    2017-03-21

    Two decades of solar energy research, since the "Holy Grails" Account on Artificial Photosynthesis, has delivered astounding discovery that sets the stage for a paradigm shift from a fuels and chemicals industry powered by fossil fuels to one powered by the sun.

  8. Portable solar/non-solar cooker

    SciTech Connect

    Way, L.V.

    1980-05-20

    A portable, solar cooker of the type having an insulated housing with an oven compartment and associated reflector elements is adapted for cooking with a portion of the housing removed and using a conventional source of heat such as canned heat, gasfired lantern heat, and the like.

  9. Solar Energetic Particles

    NASA Astrophysics Data System (ADS)

    Király, Péter

    Energetic particles recorded in the Earth environment and in interplanetary space have a multitude of origins, i.e. acceleration and propagation histories. At early days practically all sufficiently energetic particles were considered to have come either from solar flares or from interstellar space. Later on, co-rotating interplanetary shocks, the termination shock of the supersonic solar wind, planetary bow shocks and magnetospheres, and also coronal mass ejections (CME) were recognized as energetic particle sources. It was also recognized that less energetic (suprathermal) particles of solar origin and pick-up ions have also a vital role in giving rise to energetic particles in interplanetary disturbances. The meaning of the term "solar energetic particles" (SEP) is now somewhat vague, but essentially it refers to particles produced in disturbances fairly directly related to solar processes. Variation of intensity fluctuations with energy and with the phase of the solar cycle will be discussed. Particular attention will be given to extremes of time variation, i.e. to very quiet periods and to large events. While quiet-time fluxes are expected to shed light on some basic coronal processes, large events dominate the fluctuation characteristics of cumulated fluence, and the change of that fluctuation with energy and with the phase of the solar cycle may also provide important clues. Mainly ISEE-3 and long-term IMP-8 data will be invoked. Energetic and suprathermal particles that may never escape into interplanetary space may play an important part in heating the corona of the sun.

  10. Anomalously Weak Solar Convection

    NASA Technical Reports Server (NTRS)

    Hanasoge, Shravan M.; Duvall, Thomas L.; Sreenivasan, Katepalli R.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical- harmonic degree l..Within the wavenumber band l < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers l < 60, with Rossby numbers smaller than approximately 10(exp -2) at r/R-solar = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  11. Solar Eagle 2

    NASA Technical Reports Server (NTRS)

    Roberto, Richard D.

    1995-01-01

    During a 22-month period from February 1991 to December 1993, a dedicated group of students, faculty, and staff at California State University, Los Angeles completed a project to design, build, and race their second world class solar-powered electric vehicle, the Solar Eagle 2. This is the final report of that project. As a continuation of the momentum created by the success of the GM-sponsored Sunrayce USA in 1990, the U.S. Department of Energy (DOE) picked up the banner from General Motors as sponsors of Sunrayce 93. In February 1991, the DOE sent a request for proposals to all universities in North America inviting them to submit a proposal outlining how they would design, build, and test a solar-powered electric vehicle for a seven-day race from Arlington, Texas to Minneapolis, Minnesota, to be held in June 1993. Some 70 universities responded. At the end of a proposal evaluation process, 36 universities including CSLA were chosen to compete. This report documents the Solar Eagle 2 project--the approaches take, what was learned, and how our experience from the first Solar Eagle was incorporated into Solar Eagle 2. The intent is to provide a document that would assist those who may wish to take up the challenge to build Solar Eagle 3.

  12. Solar Hot Water Heater

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The solar panels pictured below, mounted on a Moscow, Idaho home, are part of a domestic hot water heating system capable of providing up to 100 percent of home or small business hot water needs. Produced by Lennox Industries Inc., Marshalltown, Iowa, the panels are commercial versions of a collector co-developed by NASA. In an effort to conserve energy, NASA has installed solar collectors at a number of its own facilities and is conducting research to develop the most efficient systems. Lewis Research Center teamed with Honeywell Inc., Minneapolis, Minnesota to develop the flat plate collector shown. Key to the collector's efficiency is black chrome coating on the plate developed for use on spacecraft solar cells, the coating prevents sun heat from "reradiating," or escaping outward. The design proved the most effective heat absorber among 23 different types of collectors evaluated in a Lewis test program. The Lennox solar domestic hot water heating system has three main components: the array of collectors, a "solar module" (blue unit pictured) and a conventional water heater. A fluid-ethylene glycol and water-is circulated through the collectors to absorb solar heat. The fluid is then piped to a double-walled jacket around a water tank within the solar module.

  13. Understanding Solar Cycle Variability

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Schüssler, M.

    2017-07-01

    The level of solar magnetic activity, as exemplified by the number of sunspots and by energetic events in the corona, varies on a wide range of timescales. Most prominent is the 11-year solar cycle, which is significantly modulated on longer timescales. Drawing from dynamo theory, together with the empirical results of past solar activity and similar phenomena for solar-like stars, we show that the variability of the solar cycle can be essentially understood in terms of a weakly nonlinear limit cycle affected by random noise. In contrast to ad hoc “toy models” for the solar cycle, this leads to a generic normal-form model, whose parameters are all constrained by observations. The model reproduces the characteristics of the variable solar activity on timescales between decades and millennia, including the occurrence and statistics of extended periods of very low activity (grand minima). Comparison with results obtained with a Babcock-Leighton-type dynamo model confirm the validity of the normal-mode approach.

  14. Ozark Mountain solar home

    SciTech Connect

    Miller, B.

    1998-03-01

    If seeing is believing, Kyle and Christine Sarratt are believers. The couple has been living in their passive solar custom home for almost two years, long enough to see a steady stream of eye-opening utility bills and to experience the quality and comfort of energy-efficient design. Skeptical of solar homes at first, the Sarratts found an energy-conscious designer that showed them how they could realize their home-building dreams and live in greater comfort while spending less money. As Kyle says, {open_quotes}We knew almost nothing about solar design and weren`t looking for it, but when we realized we could get everything we wanted in a home and more, we were sold.{close_quotes} Now the couple is enjoying the great feeling of solar and wood heat in the winter, natural cooling in the summer and heating/cooling bills that average less than $20/month. The Sarratts` home overlooks a large lake near the town of Rogers, tucked up in the northwest corner of Arkansas. It is one of three completed homes out of 29 planned for the South Sun Estates subdivision, where homes are required by covenant to incorporate passive solar design principles. Orlo Stitt, owner of Stitt Energy Systems and developer of the subdivision, has been designing passive solar, energy-efficient homes for twenty years. His passive solar custom home development is the first in Arkansas.

  15. Solar flares: an overview.

    PubMed

    Rust, D M

    1992-01-01

    This is a survey of solar phenomena and physical models that may be useful for improving forecasts of solar flares and proton storms in interplanetary space. Knowledge of the physical processes that accelerate protons has advanced because of gamma-ray and X-ray observations from the Solar Maximum Mission telescopes. Protons are accelerated at the onset of flares, but the duration of any subsequent proton storm at 1 AU depends on the structure of the interplanetary fields. X-ray images of the solar corona show possible fast proton escape paths. Magnetographs and high-resolution visible-band images show the magnetic field structure near the acceleration region and the heating effects of sunward-directed protons. Preflare magnetic field growth and shear may be the most important clues to the physical processes that generate high energy solar particles. Any dramatic improvement in flare forecasts will require high resolution solar telescopes in space. Several possibilities for improvements in the art of flare forecasting are presented, among them: the use of acoustic tomography to probe for subsurface magnetic fields; a satellite-borne solar magnetograph; and an X-ray telescope to monitor the corona for eruptions.

  16. Understanding Solar Flares

    NASA Astrophysics Data System (ADS)

    Antiochos, Spiro K.; Karpen, J. T.; DeVore, C. R.

    2012-05-01

    Solar flares and their associated coronal mass ejections are the most energetic explosions in the solar system. The largest events pose the greatest space weather dangers to life and civilization, and are of extreme importance to human space exploration. They also provide the best opportunity to study the universal processes of magnetic reconnection and particle acceleration that underlie most solar activity. The two great mysteries of solar flares are: how can so much energy be released so quickly, and how can such a large fraction (50% or more) end up in energetic particles. We present results from recent numerical modeling that sheds new light on these mysteries. These calculations use the highest spatial resolution yet achieved in order to resolve the flare dynamics as clearly as possible. We conclude from this work that magnetic island formation is the defining property of magnetic reconnection in the solar corona, at least, in the large-scale current sheet required for a solar flare. Furthermore, we discuss the types of future observations and modeling that will be required to solve definitively the solar flare mysteries. This work was supported, in part, by the NASA TR&T and SR&T Programs.

  17. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  18. The solar flare myth

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.

    1993-01-01

    Many years of research have demonstrated that large, nonrecurrent geomagnetic storms, shock wave disturbances in the solar wind, and energetic particle events in interplanetary space often occur in close association with large solar flares. This result has led to a pradigm of cause and effect - that large solar flares are the fundamental cause of these events in the near-Earth space environmemt. This paradigm, which I call 'the solar flare myth,' dominates the popular perception of the relationship between solar activity and interplanetary and geomagnetic events and has provided much of the pragmatic rationale for the study of the solar flare phenomenon. Yet there is good evidence that this paradigm is wrong and that flares do not generally play a central role in producing major transient disturbances in the near-Earth space environment. In this paper I outline a different paradigm of cause and effect that removes solar flares from their central position in the chain of events leading from the Sun to near-Earth space. Instead, this central role is given to events known as coronal mass ejections.

  19. The solar UV related changes in total ozone from a solar rotation to a solar cycle

    NASA Technical Reports Server (NTRS)

    Chandra, S.

    1991-01-01

    The Nimbus-7 TOMS version 6 data, corrected for the instrument degradation, are analyzed to delineate the solar UV related changes in total ozone (TOZ) against background signals of dynamical origin. It is shown that the solar UV related change in TOZ over a solar cycle is about 1.5 percent that may be attributed to about 6 percent change in the solar UV flux near 200 nm. This estimate is also consistent with the solar UV related changes in TOZ over a time scale of a solar rotation. In the solar rotation case, ozone lags the solar UV by 3-4 days and its sensitivity to solar UV change is a factor of 2-3 less than for the solar cycle case. Both these effects are attributed to chemical time constants in the lower stratosphere that are comparable to the period of a solar rotation.

  20. The solar UV related changes in total ozone from a solar rotation to a solar cycle

    SciTech Connect

    Chandra, S.

    1991-05-01

    The Nimbus-7 TOMS version 6 data, corrected for the instrument degradation, are analyzed to delineate the solar UV related changes in total ozone (TOZ) against background signals of dynamical origin. It is shown that the solar UV related change in TOZ over a solar cycle is about 1.5 percent that may be attributed to about 6 percent change in the solar UV flux near 200 nm. This estimate is also consistent with the solar UV related changes in TOZ over a time scale of a solar rotation. In the solar rotation case, ozone lags the solar UV by 3-4 days and its sensitivity to solar UV change is a factor of 203 less than for the solar cycle case. Both these effects are attributed to chemical time constants in the lower stratosphere that are comparable to the period of a solar rotation.

  1. The solar UV related changes in total ozone from a solar rotation to a solar cycle

    NASA Technical Reports Server (NTRS)

    Chandra, S.

    1991-01-01

    The Nimbus-7 TOMS version 6 data, corrected for the instrument degradation, are analyzed to delineate the solar UV related changes in total ozone (TOZ) against background signals of dynamical origin. It is shown that the solar UV related change in TOZ over a solar cycle is about 1.5 percent that may be attributed to about 6 percent change in the solar UV flux near 200 nm. This estimate is also consistent with the solar UV related changes in TOZ over a time scale of a solar rotation. In the solar rotation case, ozone lags the solar UV by 3-4 days and its sensitivity to solar UV change is a factor of 2-3 less than for the solar cycle case. Both these effects are attributed to chemical time constants in the lower stratosphere that are comparable to the period of a solar rotation.

  2. Four-cell solar tracker

    NASA Technical Reports Server (NTRS)

    Berdahl, C. M.

    1981-01-01

    Forty cm Sun tracker, consisting of optical telescope and four solar cells, stays pointed at Sun throughout day for maximum energy collection. Each solar cell generates voltage proportional to part of solar image it receives; voltages drive servomotors that keep image centered. Mirrored portion of cylinder extends acquisition angle of device by reflecting Sun image back onto solar cells.

  3. Understanding solar cookers. Technical paper

    SciTech Connect

    Bowman, T.

    1985-01-01

    Topics include: Potential applications for solar cookers; An historical overview on the development of solar cooking technology; Design, operation, and maintenance characteristics and functions of solar cookers; And points to consider, in regard to solar cooker acquisition, installation, and potential problems.

  4. Solar Technician Program Blows Hot

    ERIC Educational Resources Information Center

    Ziegler, Peg Moran

    1977-01-01

    A training program for solar heating technicians was initiated at Sonoma State College's School of Environmental Studies for CETA applicants. Among the projects designed and built were a solar alternative energy center, a solar hot water system, and a solar greenhouse. (MF)

  5. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  6. Solar Water Heater

    NASA Technical Reports Server (NTRS)

    1993-01-01

    As a Jet Propulsion Laboratory (JPL) scientist Dr. Eldon Haines studied the solar energy source and solar water heating. He concluded he could build a superior solar water heating system using the geyser pumping principle. He resigned from JPL to develop his system and later form Sage Advance Corporation to market the technology. Haines' Copper Cricket residential system has no moving parts, is immune to freeze damage, needs no roof-mounted tanks, and features low maintenance. It provides 50-90 percent of average hot water requirements. A larger system, the Copper Dragon, has been developed for commercial installations.

  7. Solar Energy Demonstrations

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar energy furnishes all of the heating and hot water needs, plus 80 percent of the air conditioning, for the two-story Reedy Creek building. A unique feature of this installation is that the 16 semi-cylindrical solar collectors (center photo on opposite page with closeup of a single collector below it) are not mounted atop the roof as is customary, they actually are the roof. This arrangement eliminates the usual trusses, corrugated decking and insulating concrete in roof construction; that, in turn, reduces overall building costs and makes the solar installation more attractive economically. The Reedy Creek collectors were designed and manufactured by AAI Corporation of Baltimore, Maryland.

  8. Can solar power deliver?

    PubMed

    Nelson, Jenny; Emmott, Christopher J M

    2013-08-13

    Solar power represents a vast resource which could, in principle, meet the world's needs for clean power generation. Recent growth in the use of photovoltaic (PV) technology has demonstrated the potential of solar power to deliver on a large scale. Whilst the dominant PV technology is based on crystalline silicon, a wide variety of alternative PV materials and device concepts have been explored in an attempt to decrease the cost of the photovoltaic electricity. This article explores the potential for such emerging technologies to deliver cost reductions, scalability of manufacture, rapid carbon mitigation and new science in order to accelerate the uptake of solar power technologies.

  9. Solar thermal power towers

    NASA Astrophysics Data System (ADS)

    Kreith, F.; Meyer, R. T.

    1984-07-01

    The solar thermal central receiver technology, known as solar power towers, is rapidly evolving to a state of near-term energy availability for electrical power generation and industrial process heat applications. The systems consist of field arrays of heliostat reflectors, a central receiver boiler, short term thermal storage devices, and either turbine-generators or heat exchangers. Fluid temperatures up to 550 C are currently achievable, and technology developments are underway to reach 1100 C. Six solar power towers are now under construction or in test operation in five countries around the world.

  10. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.

    1977-01-01

    Solar cell theory cells are manufactured, and how they are modeled mathematically is reviewed. The interaction of energetic charged particle radiation with solar cells is discussed in detail and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Finally, an extensive body of data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence is presented.

  11. Solar array welding developement

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.

    1974-01-01

    The present work describes parallel gap welding as used for joining solar cells to the cell interconnect system. Sample preparation, weldable cell parameter evaluation, bond scheduling, bond strength evaluation, and bonding and thermal shock tests are described. A range of weld schedule parameters - voltage, time, and force - can be identified for various cell/interconnect designs that will provide adequate bond strengths and acceptably small electrical degradation. Automation of solar array welding operations to a significant degree has been achieved in Europe and will be receiving increased attention in the U.S. to reduce solar array fabrication costs.

  12. Solar technologies and potential

    NASA Astrophysics Data System (ADS)

    Faninger, G.

    1982-11-01

    The rapid escalation of energy costs, the depletion of fossil fuel reserves and especially the increase of global energy requirements necessitate the utilization of all sources of energy, especially of renewables. With the present knowledge it could be expected that solar energy can play a significant role in rural areas in the form of decentralized applications. Many of the solar technologies are ready for immediate use in a multiplicity of applications. Other solar technologies are in an advanced stage of research and development and must be demonstrated, in various climatic zones, on a broad scale in order to prove their technical and economic viability.

  13. Infrared Solar Physics.

    PubMed

    Penn, Matthew J

    The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  14. Solar energy control system

    NASA Astrophysics Data System (ADS)

    Currie, J. R.

    1981-12-01

    A solar energy control system for a hot air type solar energy heating system wherein thermocouples are arranged to sense the temperature of a solar collector, a space to be heated, and a top and bottom of a heat storage unit is disclosed. Pertinent thermocouples are differentially connected together, and these are employed to effect the operation of dampers, a fan, and an auxiliary heat source. In accomplishing this, the differential outputs from the thermocouples are amplified by a single amplifier by multiplexing techniques. Additionally, the amplifier is corrected as to offset by including as one multiplex channel a common reference signal.

  15. Your affordable solar home

    SciTech Connect

    Hibshman, D.

    1983-01-01

    The economy of solar principles can put home ownership within the reach of many more people. Featuring six designs that can be built for $20,000 or less, this illustrated guide outlines a variety of options. It includes a solar primer to explain the process and practice of solar heating and cooling systems; floor plans and cutaway drawings; prefabricated and kit houses; log and timber, domes, and post-and beam houses; the pros and cons of mobile homes; and the story of a small community that dealt creatively with the housing shortage. 26 references, 56 figures, 5 tables.

  16. Solar powered highway sign

    NASA Astrophysics Data System (ADS)

    Hayden, R. L.; Hutter, W.

    1980-09-01

    A roadside sign was equipped with lights powered by photovoltaic solar panels to improve nighttime visibility and evaluate equipment performance and needs. The photovoltaic panels were found to be reliable and effective for powering flashing lights on a highway warning sign. Cost of the panels is high so their use should be limited to locations where commercial electrical power is not available. Solar electric systems should be carefully designed to minimize costs and produce a reliable system. Sufficient prediction for the solar panels should be provided in areas where theft or vandalism might be a problem.

  17. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-03-16

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed.

  18. Fixed solar energy concentrator

    SciTech Connect

    Houghton, A.J.; Knasel, T.M.

    1981-01-20

    An apparatus for the concentration of solar energy upon a fixed array of solar cells is disclosed. A transparent material is overlayed upon the cell array, and a diffuse reflective coating is applied to the surface area of the transparent medium in between cells. Radiant light, which reflects through the transparent layer and does not fall directly incident to a cell surface is reflected by the coating layer in an approximate cosine pattern. Thereafter, such light undergoes internal reflection and rediffusion until subsequently it either strikes a solar cell surface or is lost through the upper surface of the transparent material.

  19. Iron sulphide solar cells

    NASA Astrophysics Data System (ADS)

    Ennaoui, A.; Tributsch, H.

    1984-12-01

    The abundant, naturally occurring natural compound pyrite (FeS2) can be used as a semiconducting material for photoelectrochemical and photovoltaic solar cells. Unlike most of the intensively studied photoactive materials, pyrite solar cell production would never be limited by the availability of the elements or by their compatibility with the environment. An energy gap of 0.95 eV has been determined for pyrite, and it is noted that the theoretical efficiency limit for solar energy conversion in this material is of the order of 15-20 percent.

  20. Solar powered Stirling engine

    SciTech Connect

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  1. The solar dynamo

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.

    1994-01-01

    The solar dynamo is the process by which the Sun's magnetic field is generated through the interaction of the field with convection and rotation. In this, it is kin to planetary dynamos and other stellar dynamos. Although the precise mechanism by which the Sun generates its field remains poorly understood in spite of decades of theoretical and observational work, recent advances suggest that solutions to this solar dynamo problem may be forthcoming. The two basic processes involved in dynamo activity are demonstrated and the Sun's activity effects are presented in this document, along with a historical perspective regarding solar dynamos and the efforts to understand and measure them.

  2. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  3. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    The Moon is seen passing in front of the Sun during a total solar eclipse on Monday, August 21, 2017 from onboard a NASA Gulfstream III aircraft flying 25,000 feet above the Oregon coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Carla Thomas)

  4. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    This composite image of seven pictures shows the progression of a partial solar eclipse near from Ross Lake, Northern Cascades National Park, Washington on Monday, Aug. 21, 2017. The second to the last frame shows the International Space Station, with a crew of six onboard, in silhouette as it transits the Sun at roughly five miles per second. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. A partial solar eclipse was visible across the entire North American continent along with parts of South America, Africa, and Europe. Photo Credit: (NASA/Bill Ingalls)

  5. Solar powered aircraft

    SciTech Connect

    Phillips, W.H.

    1983-11-15

    A cruciform wing structure for a solar powered aircraft is disclosed. Solar cells are mounted on horizontal wing surfaces. Wing surfaces with spanwise axis perpendicular to surfaces maintain these surfaces normal to the sun's rays by allowing aircraft to be flown in a controlled pattern at a large bank angle. The solar airplane may be of conventional design with respect to fuselage, propeller and tail, or may be constructed around a core and driven by propeller mechanisms attached near the tips of the airfoils.

  6. Solar Thermal Conversion

    SciTech Connect

    Kreith, F.; Meyer, R. T.

    1982-11-01

    The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

  7. Spectral distribution of solar radiation

    NASA Technical Reports Server (NTRS)

    Mecherikunnel, A. T.; Richmond, J.

    1980-01-01

    Available quantitative data on solar total and spectral irradiance are examined in the context of utilization of solar irradiance for terrestrial applications of solar energy. The extraterrestrial solar total and spectral irradiance values are also reviewed. Computed values of solar spectral irradiance at ground level for different air mass values and various levels of atmospheric pollution or turbidity are presented. Wavelengths are given for computation of solar, absorptance, transmittance and reflectance by the 100 selected-ordinate method and by the 50 selected-ordinate method for air mass 1.5 and 2 solar spectral irradiance for the four levels of atmospheric pollution.

  8. Solar Installation Labor Market Analysis

    SciTech Connect

    Friedman, B.; Jordan, P.; Carrese, J.

    2011-12-01

    The potential economic benefits of the growing renewable energy sector have led to increased federal, state, and local investments in solar industries, including federal grants for expanded workforce training for U.S. solar installers. However, there remain gaps in the data required to understand the size and composition of the workforce needed to meet the demand for solar power. Through primary research on the U.S. solar installation employer base, this report seeks to address that gap, improving policymakers and other solar stakeholders understanding of both the evolving needs of these employers and the economic opportunity associated with solar market development. Included are labor market data covering current U.S. employment, expected industry growth, and employer skill preferences for solar installation-related occupations. This study offers an in-depth look at the solar installation sectors. A study published by the Solar Foundation in October 2011 provides a census of labor data across the entire solar value chain.

  9. The 3-D solar radioastronomy and the structure of the corona and the solar wind. [solar probes of solar activity

    NASA Technical Reports Server (NTRS)

    Steinberg, J. L.; Caroubalos, C.

    1976-01-01

    The mechanism causing solar radio bursts (1 and 111) is examined. It is proposed that a nonthermal energy source is responsible for the bursts; nonthermal energy is converted into electromagnetic energy. The advantages are examined for an out-of-the-ecliptic solar probe mission, which is proposed as a means of stereoscopically viewing solar radio bursts, solar magnetic fields, coronal structure, and the solar wind.

  10. Requirements for solar predictions

    NASA Astrophysics Data System (ADS)

    Davenport, G.

    1986-01-01

    The types of data analyzed and disseminated by the Space Environment Services Center (SESC) and the Air Force Global Weather Central (AFGWC) are outlined. Manned by U.S. Air Force and NOAA personnel under the auspices of the DoD and the DoC, the services provide solar predictions on X-ray events, optical flares, radio bursts, high energy particle events, solar wind variations or geomagnetic activity, background radio flux and the general level of solar activity in terms of real-time data and probabilities of events. Sample forecast documents are provided for the various types of events. It is noted that new facilities are being planned or constructed to upgraded existing computing capabilities and to incorporate state-of-the-art predictive models of the solar processes being monitored.

  11. Space solar power systems

    NASA Technical Reports Server (NTRS)

    Toliver, C.

    1977-01-01

    Studies were done on the feasibility of placing a solar power station called POwersat, in space. A general description of the engineering features are given as well as a brief discussion of the economic considerations.

  12. Saltless Solar Ponds

    NASA Technical Reports Server (NTRS)

    Lin, E. I.

    1984-01-01

    Problems associated with heat storage in solar ponds eliminated by transparent insulating cover at surface of pond. Cover makes unnecessary salt gradient that suppresses natural convection within pond to promote thermal storage.

  13. Towards understanding solar flares

    NASA Astrophysics Data System (ADS)

    Acton, L. W.

    1982-05-01

    Instrumentation and spacecraft payloads developed at Lockheed for solar flare studies are reviewed, noting the significance of the observations for adding to a data base for eventual prediction of the occurrence of flares and subsequent radiation hazards to people in space. Developmental work on the two solar telescopes on board the Skylab pallet was performed at a Lockheed facility, as was the fabrication of very-large-area proportional counter for flights on the Aerobee rocket in 1967. The rocket work led to the fabrication of the Mapping X Ray Heliometer on the Orbiting Solar Observatory and the X Ray Polychromator for the Solar Maximum Mission. The Polychromator consists of a bent crystal spectrometer for high time resolution flare studies over a wide field of view, and a flat crystal spectrometer for simultaneous polychromatic imaging at 7 different X ray wavelengths.

  14. Solar eclipse predictions

    NASA Astrophysics Data System (ADS)

    Mottmann, J.

    1980-08-01

    A method suitable for intermediate level astronomy courses is presented for the calculations of solar eclipses. The results are surprisingly good considering the simplifications used and the avoidance of spherical trigonometry.

  15. Solar array switching unit

    NASA Technical Reports Server (NTRS)

    Craig, Jr., Calvin L. (Inventor)

    2000-01-01

    A solar array switching (SASU) unit (22) according to the present invention includes a control system (24), a solar cell array (26) and switch circuits (28). The SASU unit (22) is associated with a power card (30) for receiving an output from the array (26). The array (26) has a number (0.5Y) of rows (38) each of which includes a pair of cell strings (42) separated by one of the switch circuits (28). Each of the strings (42) includes a number (X) of cells in electrical series. The SASU (22) switches the array (26) between a short string configuration where the array (26) effectively includes Y strings of X length, and a long string configuration where the array (26) effectively includes 0.5Y strings of 2X length. The SASU (22) thereby facilitates the use of solar power for space missions where solar intensity, operating temperature or other factors vary significantly.

  16. Solar Furnance Model

    ERIC Educational Resources Information Center

    Palmer, Dennis L.; Olsen, Richard W.

    1977-01-01

    Described is how to build a solar furnace model. A detailed list of materials and methods are included along with diagrams. This particular activity is part of an audiotutorial unit concerned with the energy crisis and energy alternatives. (MA)

  17. Solar Electric Propulsion (SEP)

    NASA Image and Video Library

    Future Human Exploration requires high power solar electric propulsion vehicles to move cargo and humans beyond Low Earth Orbit, which requires large light weight arrays, high power processing, and...

  18. Solar Data Hub (Presentation)

    SciTech Connect

    Orwig, K.

    2011-04-01

    As power grid integration of renewables becomes ever more important and detailed, the need for a centralized place for solar-related resource data is needed. This presentation describes such a place and website.

  19. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  20. Photovoltaic solar cell

    DOEpatents

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  1. Solar Eclipse from Space

    NASA Image and Video Library

    While flying at about 240 statute miles above Earth, NASA Astronaut Don Pettit captured the rare solar eclipse as the moon casted its dark shadow across the planet below as it lined up between Eart...

  2. The Solar Eclipse

    ERIC Educational Resources Information Center

    Stern, David

    1970-01-01

    Instructions for observing the Solar Eclipse on Saturday, March 7, 1970, which will be total along a strip about 85 miles wide along the Atlantic Seaboard. Safety precautions and how to construct a pinhole camera to observe eclipse. (BR)

  3. Glass for Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Bouquet, F. L.

    1984-01-01

    Report identifies four commercially available glasses as promising reflectors for solar concentrators. Have properties of high reflectance (80 to 96 percent), lower cost than first-surface silver metalization, and resistance to environmental forces.

  4. Modeling of Solar Concentrators

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.

    1984-01-01

    Algorithm developed for predicting power output, uniformity of intensity and operating temperature of concentrator-enhanced photovoltaic solar cell arrays. Optimum values for parameters such as reflector geometry found prior to constructing scale models for testing.

  5. Electrostatically clean solar array

    NASA Technical Reports Server (NTRS)

    Stern, Theodore Garry (Inventor); Krumweide, Duane Eric (Inventor)

    2004-01-01

    Provided are methods of manufacturing an electrostatically clean solar array panel and the products resulting from the practice of these methods. The preferred method uses an array of solar cells, each with a coverglass where the method includes machining apertures into a flat, electrically conductive sheet so that each aperture is aligned with and undersized with respect to its matched coverglass sheet and thereby fashion a front side shield with apertures (FSA). The undersized portion about each aperture of the bottom side of the FSA shield is bonded to the topside portions nearest the edges of each aperture's matched coverglass. Edge clips are attached to the front side aperture shield edges with the edge clips electrically and mechanically connecting the tops of the coverglasses to the solar panel substrate. The FSA shield, edge clips and substrate edges are bonded so as to produce a conductively grounded electrostatically clean solar array panel.

  6. The Solar Dynamo Zoo

    NASA Astrophysics Data System (ADS)

    Egeland, Ricky; Soon, Willie H.; Baliunas, Sallie L.; Hall, Jeffrey C.; Pevtsov, Alexei A.; Henry, Gregory W.

    2016-05-01

    We present composite time series of Ca II H & K line core emission indices of up to 50 years in length for a set of 27 solar-analog stars (spectral types G0-G5; within ~10% of the solar mass) and the Sun. These unique data are available thanks to the long-term dedicated efforts of the Mount Wilson Observatory HK project, the Lowell Observatory Solar-Stellar Spectrograph, and the National Solar Observatory/Air Force Research Laboratory/Sacremento Peak K-line monitoring program. The Ca II H & K emission originates in the lower chromosphere and is strongly correlated with the presence of magnetic plage regions in the Sun. These synoptic observations allow us to trace the patterns long-term magnetic variability and explore dynamo behavior over a wide range of rotation regimes and stellar evolution timescales.

  7. Solar and magnetospheric science

    NASA Technical Reports Server (NTRS)

    Timothy, A. F.; Schmerling, E. R.; Chapman, R. D.

    1976-01-01

    The current status of the Solar Physics Program and the Magnetospheric Physics Program is discussed. The scientific context for each of the programs is presented, then the current programs and future plans are outlined.

  8. Solar cell array interconnects

    DOEpatents

    Carey, Paul G.; Thompson, Jesse B.; Colella, Nicolas J.; Williams, Kenneth A.

    1995-01-01

    Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

  9. Solar cell array interconnects

    DOEpatents

    Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

    1995-11-14

    Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

  10. Saltless solar pond

    NASA Technical Reports Server (NTRS)

    Lin, E. I. H. (Inventor)

    1984-01-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  11. Solar Power, Seville, Spain

    NASA Image and Video Library

    2009-09-01

    The world largest solar power tower recently began operating outside Seville, Spain -- and it marks a historic moment in the saga of renewable energy. This image was acquired by NASA Terra spacecraft.

  12. Solar thermoelectric generator

    DOEpatents

    Toberer, Eric S.; Baranowski, Lauryn L.; Warren, Emily L.

    2016-05-03

    Solar thermoelectric generators (STEGs) are solid state heat engines that generate electricity from concentrated sunlight. A novel detailed balance model for STEGs is provided and applied to both state-of-the-art and idealized materials. STEGs can produce electricity by using sunlight to heat one side of a thermoelectric generator. While concentrated sunlight can be used to achieve extremely high temperatures (and thus improved generator efficiency), the solar absorber also emits a significant amount of black body radiation. This emitted light is the dominant loss mechanism in these generators. In this invention, we propose a solution to this problem that eliminates virtually all of the emitted black body radiation. This enables solar thermoelectric generators to operate at higher efficiency and achieve said efficient with lower levels of optical concentration. The solution is suitable for both single and dual axis solar thermoelectric generators.

  13. The Solar Eclipse

    ERIC Educational Resources Information Center

    Stern, David

    1970-01-01

    Instructions for observing the Solar Eclipse on Saturday, March 7, 1970, which will be total along a strip about 85 miles wide along the Atlantic Seaboard. Safety precautions and how to construct a pinhole camera to observe eclipse. (BR)

  14. Solar Furnance Model

    ERIC Educational Resources Information Center

    Palmer, Dennis L.; Olsen, Richard W.

    1977-01-01

    Described is how to build a solar furnace model. A detailed list of materials and methods are included along with diagrams. This particular activity is part of an audiotutorial unit concerned with the energy crisis and energy alternatives. (MA)

  15. An adjustable solar concentrator

    NASA Technical Reports Server (NTRS)

    Collins, E. R., Jr.

    1980-01-01

    Fixed cylindrical converging lenses followed by movable parabolic mirror focus solar energy on conventional linear collector. System is low cost and accomodates daily and seasonal movements of the sun. Mirrors may be moved using simple, low-power electrical motors.

  16. Energy 101: Solar PV

    ScienceCinema

    None

    2016-07-12

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  17. Solar flare energetics

    NASA Astrophysics Data System (ADS)

    Lin, R. P.

    A review is presented regarding the current knowledge of the energetics of solar flares. Recent observations by the Solar Maximum Mission and by balloon-borne instrumentation indicate that the flare hard X-ray emission arises from nonthermal bremsstrahlung - the collisions of fast electrons into a cold ambient medium (Ee much greater than kT). Under this interpretation, most of the energy released for many flares is initially contained in the energetic electrons. These electrons can produce most of the observed flare phenomena via interactions with the solar atmosphere. In large flares a shock wave may result from explosive heating of the solar atmosphere by these electrons. This shock wave can accelerate nuclei to relativistic energies. It is argued that recent SMM observations of fast gamma-ray bursts are consistent with this picture of shock acceleration of nuclei.

  18. Solar flare energetics

    NASA Technical Reports Server (NTRS)

    Lin, R. P.

    1982-01-01

    A review is presented regarding the current knowledge of the energetics of solar flares. Recent observations by the Solar Maximum Mission and by balloon-borne instrumentation indicate that the flare hard X-ray emission arises from nonthermal bremsstrahlung - the collisions of fast electrons into a cold ambient medium (Ee much greater than kT). Under this interpretation, most of the energy released for many flares is initially contained in the energetic electrons. These electrons can produce most of the observed flare phenomena via interactions with the solar atmosphere. In large flares a shock wave may result from explosive heating of the solar atmosphere by these electrons. This shock wave can accelerate nuclei to relativistic energies. It is argued that recent SMM observations of fast gamma-ray bursts are consistent with this picture of shock acceleration of nuclei.

  19. Commercializing solar hydrogen production

    SciTech Connect

    Holmes, J.T.; Prairie, M.R.

    1991-01-01

    This paper discusses the need for a government-supported program to commercialize hydrogen production methods which use solar energy as the main source of energy. Current methods use hydrocarbons and generate large amounts of carbon dioxide. The paper describes results from a literature survey performed to identify technologies using direct solar energy that were likely to succeed on an industrial scale in the near term. Critical parameters included calculated efficiencies, measured efficiencies, and development status. The cost of solar collectors is cited as the reason most promising solar hydrogen research is not taken to the pilot plant stage. The author recommends use of existing DOE facilities already in operation for pilot plant testing. 14 refs. (CK)

  20. Complex Solar Eruption

    NASA Image and Video Library

    On August 1, 2010 around 0855 UT, Earth orbiting satellites detected a C3-class solar flare. The origin of the blast was sunspot 1092. At about the same time, an enormous magnetic filament stretchi...

  1. Solar Probe Plus

    NASA Technical Reports Server (NTRS)

    Szabo, Adam

    2011-01-01

    The NASA Solar Probe Plus mission is planned to be launched in 2018 to study the upper solar corona with both.in-situ and remote sensing instrumentation. The mission will utilize 6 Venus gravity assist maneuver to gradually lower its perihelion to 9.5 Rs below the expected Alfven pOint to study the sub-alfvenic solar wind that is still at least partially co-rotates with the Sun. The detailed science objectives of this mission will be discussed. SPP will have a strong synergy with The ESA/NASA Solar orbiter mission to be launched a year ahead. Both missions will focus on the inner heliosphere and will have complimentary instrumentations. Strategies to exploit this synergy will be also presented.

  2. Triple Solar Eruption

    NASA Image and Video Library

    Solar activity surged on the morning of Dec 12, 2010 when the sun erupted three times in quick succession, hurling a trio of bright coronal mass ejections (CMEs) into space. Coronagraphs onboard th...

  3. Solar system fault detection

    DOEpatents

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  4. SDO Sees Solar Ballet

    NASA Image and Video Library

    A solar eruption gracefully rose up from the sun on December 31, 2012, twisting and turning. Magnetic forces drove the flow of plasma, but without sufficient force to overcome the sun’s gravity m...

  5. Solar system fault detection

    DOEpatents

    Farrington, Robert B.; Pruett, Jr., James C.

    1986-01-01

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  6. Striking a Solar Balance

    NASA Image and Video Library

    This short film explores the vital connection between Earth and the sun. NASA's Glory mission and the Total Irradiance Monitor will continue nearly three decades of solar irradiance measurements. T...

  7. Concentrating Solar Power

    SciTech Connect

    Weinstein, Lee A.; Loomis, James; Bhatia, Bikram; Bierman, David M.; Wang, Evelyn N.; Chen, Gang

    2015-12-09

    Solar energy is a bountiful renewable energy resource: the energy in the sunlight that reaches Earth in an hour exceeds the energy consumed by all of humanity in a year.(1) While the phrase “solar energy conversion” probably brings photovoltaic (PV) cells to mind first, PV is not the only option for generating electricity from sunlight. Another promising technology for solar energy conversion is solar–thermal conversion, commonly referred to as concentrating solar power (CSP).(2) The first utility-scale CSP plants were constructed in the 1980s, but in the two decades that followed, CSP saw little expansion.(3, 4) More recent years, however, have seen a CSP renaissance due to unprecedented growth in the adoption of CSP.(3, 5) Photographs of two operating CSP plants, a parabolic trough collector plant and a central receiver (or “power tower”), are shown here.

  8. Saltless solar pond

    NASA Astrophysics Data System (ADS)

    Lin, E. I. H.

    1984-09-01

    A solar pond adapted for efficiently trapping and storing radiant solar energy without the use of a salt concentration gradient in the pond is disclosed. A body of water which may be fresh, saline, relatively clear or turbid, is substantially covered by a plurality of floating honeycomb panels. The honeycomb panels are made of a material such as glass which is pervious to short wave solar radiation but impervious to infrared radiation. Each honeycomb panel includes a multitude of honeycomb cells. The honeycomb panels are divided into the elongated honeycomb cells by a multitude of intermediate plates disposed between a bottom plate and top plate of the panel. The solar pond is well suited for providing hot water of approximately 85 to 90 C temperature for direct heating applications, and for electrical power generation.

  9. Ceramic Solar Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C., Jr.

    1984-01-01

    Solar receiver uses ceramic honeycomb matrix to absorb heat from Sun and transfer it to working fluid at temperatures of 1,095 degrees and 1,650 degrees C. Drives gas turbine engine or provides heat for industrial processes.

  10. Solar cell radiation handbook

    NASA Technical Reports Server (NTRS)

    Tada, H. Y.; Carter, J. R., Jr.; Anspaugh, B. E.; Downing, R. G.

    1982-01-01

    The handbook to predict the degradation of solar cell electrical performance in any given space radiation environment is presented. Solar cell theory, cell manufacturing and how they are modeled mathematically are described. The interaction of energetic charged particles radiation with solar cells is discussed and the concept of 1 MeV equivalent electron fluence is introduced. The space radiation environment is described and methods of calculating equivalent fluences for the space environment are developed. A computer program was written to perform the equivalent fluence calculations and a FORTRAN listing of the program is included. Data detailing the degradation of solar cell electrical parameters as a function of 1 MeV electron fluence are presented.

  11. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  12. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Stephens, J. B. (Inventor)

    1979-01-01

    A fixed, linear, ground-based primary reflector having an extended curved sawtooth-contoured surface covered with a metalized polymeric reflecting material, reflects solar energy to a movably supported collector that is kept at the concentrated line focus reflector primary. The primary reflector may be constructed by a process utilizing well known freeway paving machinery. The solar energy absorber is preferably a fluid transporting pipe. Efficient utilization leading to high temperatures from the reflected solar energy is obtained by cylindrical shaped secondary reflectors that direct off-angle energy to the absorber pipe. A seriatim arrangement of cylindrical secondary reflector stages and spot-forming reflector stages produces a high temperature solar energy collection system of greater efficiency.

  13. Broad spectrum solar cell

    DOEpatents

    Walukiewicz, Wladyslaw; Yu, Kin Man; Wu, Junqiao; Schaff, William J.

    2007-05-15

    An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

  14. Solar System: Lethal billiards

    NASA Astrophysics Data System (ADS)

    Claeys, Philippe; Goderis, Steven

    2007-09-01

    A huge collision in the asteroid belt 160 million years ago sent fragments bagatelling around the inner Solar System. One piece might have caused the mass extinction that wiped out the dinosaurs 65 million years ago.

  15. Lancaster Landfill Solar Facility

    SciTech Connect

    Pacheco, Orlando

    2014-06-12

    The Town of Lancaster constructed a 500KWH Solar Array on our landfill parcel, that using other financial mechanisms in the deregulated Massachusetts Electric Market would allow the Town to obtain free electricity.

  16. Energy 101: Solar PV

    SciTech Connect

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  17. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  18. Hybrid Solar GHP Simulator

    SciTech Connect

    Yavuzturk, Cy; Chiasson, Andrew; Shonder, John

    2012-12-11

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is

  19. Solar Cycle Prediction.

    PubMed

    Petrovay, Kristóf

    A review of solar cycle prediction methods and their performance is given, including forecasts for cycle 24. The review focuses on those aspects of the solar cycle prediction problem that have a bearing on dynamo theory. The scope of the review is further restricted to the issue of predicting the amplitude (and optionally the epoch) of an upcoming solar maximum no later than right after the start of the given cycle. Prediction methods form three main groups. Precursor methods rely on the value of some measure of solar activity or magnetism at a specified time to predict the amplitude of the following solar maximum. Their implicit assumption is that each numbered solar cycle is a consistent unit in itself, while solar activity seems to consist of a series of much less tightly intercorrelated individual cycles. Extrapolation methods, in contrast, are based on the premise that the physical process giving rise to the sunspot number record is statistically homogeneous, i.e., the mathematical regularities underlying its variations are the same at any point of time and, therefore, it lends itself to analysis and forecasting by time series methods. Finally, instead of an analysis of observational data alone, model based predictions use physically (more or less) consistent dynamo models in their attempts to predict solar activity. In their overall performance during the course of the last few solar cycles, precursor methods have clearly been superior to extrapolation methods. Nevertheless, most precursor methods overpredicted cycle 23, while some extrapolation methods may still be worth further study. Model based forecasts have not yet had a chance to prove their skills. One method that has yielded predictions consistently in the right range during the past few solar cycles is that of K. Schatten et al., whose approach is mainly based on the polar field precursor. The incipient cycle 24 will probably mark the end of the Modern Maximum, with the Sun switching to a state of

  20. Space solar cell research

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    A brief overview is given of the scope of the NASA space solar cell research and development program. Silicon cells, gallium arsenide cells, indium phosphide cells, and superlattice solar cells are addressed, indicating the state of the art of each type in outer space and their advantages and drawbacks for use in outer space. Contrasts between efficiency in space and on earth are pointed out.

  1. Solar Powered Classroom

    ScienceCinema

    none

    2016-07-12

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  2. Energy from solar balloons

    SciTech Connect

    Grena, Roberto

    2010-04-15

    Solar balloons are hot air balloons in which the air is heated directly by the sun, by means of a black absorber. The lift force of a tethered solar balloon can be used to produce energy by activating a generator during the ascending motion of the balloon. The hot air is then discharged when the balloon reaches a predefined maximum height. A preliminary study is presented, along with an efficiency estimation and some considerations on possible realistic configurations. (author)

  3. Alternative Solar Indices

    SciTech Connect

    Lantz, L.J.

    1980-07-01

    Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

  4. Solar Environmental Disturbances

    DTIC Science & Technology

    2007-11-02

    Mauna Kea and the Big Bear Solar Observatory that provided “ground truth” data for thermal and seeing models. For the site survey, effort included...Balasubramaniam, Louis Strous and Philip H. Wiborg. We recognize the following employees of the National Solar Observatory , without whose assistance we...observations of about 30 sunlike stars from Mount Wilson, Lowell, and Fairborn Observatories to extend our joint time series to more than 35 years. The full

  5. Solar fuels generator

    SciTech Connect

    Lewis, Nathan S.; Spurgeon, Joshua M.

    2016-10-25

    The solar fuels generator includes an ionically conductive separator between a gaseous first phase and a second phase. A photoanode uses one or more components of the first phase to generate cations during operation of the solar fuels generator. A cation conduit is positioned provides a pathway along which the cations travel from the photoanode to the separator. The separator conducts the cations. A second solid cation conduit conducts the cations from the separator to a photocathode.

  6. Lightweight solar cell

    SciTech Connect

    Hotaling, S.P.

    1993-06-22

    A lightweight solar cell is described comprising: (a) an LD aerogel substrate having a density of between 10-1,000 mg/cc, the surface of the substrate being polished (b) a dielectric planarization layer being applied to the polished surface, and (c) at least one layer of PV material deposited thereon. The solar cell having a plurality of PV layers deposited on the planarization layer.

  7. Solar Radiation Alert System

    DTIC Science & Technology

    2005-07-01

    the earth’s atmosphere at high geomagnetic latitudes were calculated for the solar proton event of 20 January 2005. The event started at 06:50...excluding them does not significantly affect the calculated dose rates. The data are available in near real-time from the file transfer protocol (ftp...form a com- plete spectrum used to calculate effective doses in Step 9. A piecewise-continuous spectrum is needed because during solar proton events

  8. Thin silicon solar cells

    SciTech Connect

    Hall, R.B.; Bacon, C.; DiReda, V.; Ford, D.H.; Ingram, A.E.; Cotter, J.; Hughes-Lampros, T.; Rand, J.A.; Ruffins, T.R.; Barnett, A.M.

    1992-12-01

    The silicon-film design achieves high performance by using a dun silicon layer and incorporating light trapping. Optimally designed thin crystalline solar cells (<50 microns thick) have performance advantages over conventional thick devices. The high-performance silicon-film design employs a metallurgical barrier between the low-cost substrate and the thin silicon layer. Light trapping properties of silicon-film on ceramic solar cells are presented and analyzed. Recent advances in process development are described here.

  9. Alternative solar indices

    NASA Astrophysics Data System (ADS)

    Lantz, L. J.

    1980-07-01

    Possible alternative Solar Indices which could either be a perturbation from the currently defined Solar Index or possible indices based on current technologies for other media markets are discussed. An overview is given of the current project, including the logic that was utilized in defining its current structure and then alternative indices and definitions are presented and finally, recommendations are made for adopting alternative indices.

  10. Sea shell solar collector

    DOEpatents

    Rabl, Ari

    1976-01-01

    A device is provided for the collection and concentration of solar radiant energy including a longitudinally extending structure having a wall for directing radiant energy. The wall is parabolic with its focus along a line parallel to an extreme ray of the sun at one solstice and with its axis along a line parallel to an extreme ray of the sun at the other solstice. An energy absorber is positioned to receive the solar energy thereby collected.

  11. LED Solar Simulator

    NASA Image and Video Library

    2016-11-18

    NASA Glenn's new LED solar simulator was developed by Angstrom Designs and UC Santa Barbara under a Small Business Innovative Research program to test the next generation of high-efficiency space solar cells for future missions. The new simulator contains over 1500 individually adjustable light sources, most of which emit light invisible to the human eye, to cover a 10 x10 foot area.

  12. LED Solar Simulator

    NASA Image and Video Library

    2016-11-16

    NASA Glenn's new LED solar simulator was developed by Angstrom Designs and UC Santa Barbara under a Small Business Innovative Research program to test the next generation of high-efficiency space solar cells for future missions. The new simulator contains over 1500 individually adjustable light sources, most of which emit light invisible to the human eye, to cover a 10 x10 foot area.

  13. Space solar cell research

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    A brief overview is given of the scope of the NASA space solar cell research and development program. Silicon cells, gallium arsenide cells, indium phosphide cells, and superlattice solar cells are addressed, indicating the state of the art of each type in outer space and their advantages and drawbacks for use in outer space. Contrasts between efficiency in space and on earth are pointed out.

  14. Fragmentary Solar System History

    NASA Technical Reports Server (NTRS)

    Marti, Kurt

    1997-01-01

    The objective of this research is an improved understanding of the early solar system environment and of the processes involved in the nebula and in the evolution of solid bodies. We present results of our studies on the isotopic signatures in selected primitive solar system objects and on the evaluation of the cosmic ray records and of inferred collisional events. Furthermore, we report data of trapped martian atmospheric gases in meteorites and the inferred early evolution of Mars' atmosphere.

  15. Solar energy collection system

    NASA Technical Reports Server (NTRS)

    Selcuk, M. K. (Inventor)

    1977-01-01

    An improved solar energy collection system, having enhanced energy collection and conversion capabilities, is delineated. The system is characterized by a plurality of receivers suspended above a heliostat field comprising a multiplicity of reflector surfaces, each being adapted to direct a concentrated beam of solar energy to illuminate a target surface for a given receiver. A magnitude of efficiency, suitable for effectively competing with systems employed in collecting and converting energy extracted from fossil fuels, is indicated.

  16. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Judy Darwin of the Marshall Space Flight Center’s Office of the Chief Information Officer (CIO) views the August 21, 2017 solar eclipse through the telescope set up for Marshall employees. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  17. 2017 Solar Eclipse Event

    NASA Image and Video Library

    2017-06-11

    Krisdon Manecke and Danielle Burleson of the Office of the Chief Information Officer (OCIO) view the August 21, 2017 solar eclipse at the Marshall Space Flight Center’s viewing opportunity at the activities building. The Huntsville area experienced 97 percent occultation, nearly a complete blocking out of the sun by the orbit of Earth's moon. The next opportunity to view a solar eclipse in the eastern and central United States will occur in April 2024.

  18. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  19. SPA: Solar Position Algorithm

    NASA Astrophysics Data System (ADS)

    Reda, Ibrahim; Andreas, Afshin

    2015-04-01

    The Solar Position Algorithm (SPA) calculates the solar zenith and azimuth angles in the period from the year -2000 to 6000, with uncertainties of +/- 0.0003 degrees based on the date, time, and location on Earth. SPA is implemented in C; in addition to being available for download, an online calculator using this code is available at http://www.nrel.gov/midc/solpos/spa.html.

  20. Solar Wind Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Smith, E. J.

    1995-01-01

    The magnetic fields originate as coronal fields that are converted into space by the supersonic, infinitely conducting, solar wind. On average, the sun's rotation causes the field to wind up and form an Archimedes Spiral. However, the field direction changes almost continuously on a variety of scales and the irregular nature of these changes is often interpreted as evidence that the solar wind flow is turbulent.

  1. 2017 Total Solar Eclipse

    NASA Image and Video Library

    2017-08-21

    Robert Lightfoot, acting NASA administrator and Thomas Zurbuchen NASA AA for the science mission directorate view a partial eclipse solar eclipse Monday, August 21, 2017, from onboard a NASA Armstrong Flight Research Center’s Gulfstream III 35,000 feet above the Oregon Coast. A total solar eclipse swept across a narrow portion of the contiguous United States from Lincoln Beach, Oregon to Charleston, South Carolina. Photo Credit: (NASA/Carla Thomas)

  2. Solar photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Forney, R. G.

    1978-01-01

    The Department of Energy's photovoltaic program is outlined. The main objective of the program is the development of low cost reliable terrestrial photovoltaic systems. A second objective is to foster widespread use of the system in residential, industrial and commercial application. The system is reviewed by examining each component; silicon solar cell, silicon solar cell modules, advanced development modules and power systems. Cost and applications of the system are discussed.

  3. Flank solar wind interaction

    NASA Technical Reports Server (NTRS)

    Moses, Stewart L.; Greenstadt, Eugene W.; Coroniti, Ferdinand V.

    1994-01-01

    In this report we will summarize the results of the work performed under the 'Flank Solar Wind Interaction' investigation in support of NASA's Space Physics Guest Investigator Program. While this investigation was focused on the interaction of the Earth's magnetosphere with the solar wind as observed by instruments on the International Sun-Earth Explorer (ISEE) 3 spacecraft, it also represents the culmination of decades of research performed by scientists at TRW on the rich phenomenology of collisionless shocks in space.

  4. Solar Powered Classroom

    SciTech Connect

    2013-06-13

    A group of fourth graders in Durham, North Carolina, are showing America the way to a clean energy future. They are installing solar panels on their classroom roof for a project that goes above and beyond a normal day in school. From researching solar panel installation, to generating funds for the project via Kickstarter, these are students who put their plans into action. Their accomplishments go beyond the classroom and stress the importance of getting people of all ages involved in renewable energy.

  5. Solar education project workshop

    SciTech Connect

    Smith, J.B.

    1980-10-31

    A summary of proceedings of the Solar Education Project Workshop is presented. The workshop had as its focus the dissemination of curriculum materials developed by the Solar Energy Project of the New York State Department of Education under the sponsorship of the US Department of Energy. It includes, in addition to presentations by speakers and workshop leaders, specific comments from participants regarding materials available and energy-related activities underway in their respective states and suggested strategies from them for ongoing dissemination efforts.

  6. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  7. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  8. Planar photovoltaic solar concentrator module

    SciTech Connect

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  9. Anomalously weak solar convection.

    PubMed

    Hanasoge, Shravan M; Duvall, Thomas L; Sreenivasan, Katepalli R

    2012-07-24

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20-100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10(-2) at r/R([symbol: see text]) = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient.

  10. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  11. Solar Energy Reporting

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Last year the people of Cleveland, Ohio were troubled by natural gas shortages during one of the coldest winters on record. The severe winter generated a great deal of interest in solar energy as an alternative source of heat. Home owners, home builders and civic officials wanted to know just how much solar energy is available in Cleveland. Now they get a daily report through the city's news media, from information supplied as a community service by NASA's Lewis Research Center. Lewis routinely makes daily measurements of solar energy as part of its continuing research in behalf of the Department of Energy. The measuring device is a sun sensor called a pyranometer (upper photo) located atop a building at the NASA Center. To make the information conveniently available to news media, Lewis developed a Voice Output Integrating Insolometer, an automated system that acquires information from the sun sensor and translates it into a recorded telephone message. The Lewis pyranometer collects sun data for 15 hours daily and measures the total solar energy yield. For reporting to the public, the information is electronically converted to a specific reading. A media representative calling in gets a voice-synthesized announcement of a two or three digit number; the number corresponds to the kilowatt-hours of solar energy that would be available to a typical 500-square-foot solar collector system. Response in Cleveland has been favorable and interest is developing in other parts of the country.

  12. Advanced Solar Panel Designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1995-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 sq cm coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual-junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 sq cm coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg.

  13. The solar terrestrial observatory

    NASA Technical Reports Server (NTRS)

    Chappell, C. R.

    1978-01-01

    The larger system of the earth environment is controlled externally by electromagnetic and particle energy from the sun. Recent studies have shown that the sun is a variable star with changes in its radiation which produce significant effects in the earth's climate and weather. The study of the solar-terrestrial system requires simultaneous, long-duration observations of the different elements or 'links' in the solar-terrestrial chain. Many investigations must be conducted in space from a vantage point above the earth's atmosphere where all of the sun's emissions can be observed free from atmospheric distortion, where the magnetospheric particles and fields can be measured directly, and where the atmosphere can be observed on a global scale. The extension of the Shuttle on-orbit capability in connection with the development of the power module will offer an important near-term step in an evolutionary process leading toward a permanent manned Solar Terrestrial Observatory capability in low-earth orbit. Attention is given to the required solar-terrestrial measurements, the operation of the Solar Terrestrial Observatory, and an evolutionary approach to the Solar Terrestrial Observatory.

  14. Solar Thermal Propulsion Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Researchers at the Marshall Space Flight Center (MSFC) have designed, fabricated, and tested the first solar thermal engine, a non-chemical rocket engine that produces lower thrust but has better thrust efficiency than a chemical combustion engine. MSFC turned to solar thermal propulsion in the early 1990s due to its simplicity, safety, low cost, and commonality with other propulsion systems. Solar thermal propulsion works by acquiring and redirecting solar energy to heat a propellant. The 20- by 24-ft heliostat mirror (not shown in this photograph) has a dual-axis control that keeps a reflection of the sunlight on the 18-ft diameter concentrator mirror, which then focuses the sunlight to a 4-in focal point inside the vacuum chamber. The focal point has 10 kilowatts of intense solar power. This image, taken during the test, depicts the light being concentrated into the focal point inside the vacuum chamber. As part of MSFC's Space Transportation Directorate, the Propulsion Research Center serves as a national resource for research of advanced, revolutionary propulsion technologies. The mission is to move the Nation's capabilities beyond the confines of conventional chemical propulsion into an era of aircraft-like access to Earth orbit, rapid travel throughout the solar system, and exploration of interstellar space.

  15. The Solar Cycle.

    PubMed

    Hathaway, David H

    The solar cycle is reviewed. The 11-year cycle of solar activity is characterized by the rise and fall in the numbers and surface area of sunspots. A number of other solar activity indicators also vary in association with the sunspots including; the 10.7 cm radio flux, the total solar irradiance, the magnetic field, flares and coronal mass ejections, geomagnetic activity, galactic cosmic ray fluxes, and radioisotopes in tree rings and ice cores. Individual solar cycles are characterized by their maxima and minima, cycle periods and amplitudes, cycle shape, the equatorward drift of the active latitudes, hemispheric asymmetries, and active longitudes. Cycle-to-cycle variability includes the Maunder Minimum, the Gleissberg Cycle, and the Gnevyshev-Ohl (even-odd) Rule. Short-term variability includes the 154-day periodicity, quasi-biennial variations, and double-peaked maxima. We conclude with an examination of prediction techniques for the solar cycle and a closer look at cycles 23 and 24. Supplementary material is available for this article at 10.1007/lrsp-2015-4.

  16. The Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Sutton, C.

    1980-07-01

    The objectives, instruments, operation and spacecraft design for the Solar Maximum Mission are discussed. The satellite, first in a series of Multi-Mission Modular Spacecraft, was launched on February 14, 1980, to take advantage of the current maximum in the solar activity cycle to study solar flares at wavelengths from the visible to the gamma-ray. The satellite carries six instruments for the simultaneous study of solar flares, namely the coronagraph/polarimeter, X-ray polychromator, ultraviolet spectrometer and polarimeter, hard X-ray imaging spectrometer, hard X-ray burst spectrometer and gamma-ray spectrometer, and an active cavity radiometer for the accurate determination of the solar constant. In contrast to most satellite operations, Solar Maximum Mission investigators work together for the duration of the flight, comparing data obtained by the various instruments and planning observing programs daily on the basis of flare predictions and indicators. Thus far into the mission, over 50 data sets on reasonably large flares have been obtained, and important observations of coronal transients, magnetic fields in the transition region, flare time spectra, and material emitting X-rays between flares have been obtained.

  17. Solar Orbiter Status Report

    NASA Astrophysics Data System (ADS)

    Gilbert, Holly; St. Cyr, Orville Chris; Mueller, Daniel; Zouganelis, Yannis; Velli, Marco

    2017-08-01

    With the delivery of the instruments to the spacecraft builder, the Solar Orbiter mission is in the midst of Integration & Testing phase at Airbus in Stevenage, U.K. This mission to “Explore the Sun-Heliosphere Connection” is the first medium-class mission of ESA’s Cosmic Vision 2015-2025 program and is being jointly implemented with NASA. The dedicated payload of 10 remote-sensing and in-situ instruments will orbit the Sun as close as 0.3 A.U. and will provide measurments from the photosphere into the solar wind. The three-axis stabilized spacecraft will use Venus gravity assists to increase the orbital inclination out of the ecliptic to solar latitudes as high as 34 degrees in the extended mission. The science team of Solar Orbiter has been working closely with the Solar Probe Plus scientists to coordinate observations between these two highly-complementary missions. This will be a status report on the mission development; the interested reader is referred to the recent summary by Müller et al., Solar Physics 285 (2013).

  18. Possible Space Missions for Solar Research After Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Beckers, J. M.; Brown, J. C.; Canfield, R. C.; Harvey, J.; Holzer, T. E.; Hoyng, T. E.; Hudson, H. S.; Lin, R. P.; Linsky, J. L.

    1977-01-01

    This ad hoc panel met in February 1977 to consider the needs of solar physics for space missions after the scheduled flight of Solar Maximum Mission in 1979. We were concerned only with scientific needs and opportunities. Neither budgetary implications nor payload feasibility were considered. This report on the panel deliberations therefore makes suggestions only. We hope it will be a useful input to the more extensive and careful analysis of the appropriate committees, such as the Solar Physics Working Group. We have made no attempt to prioritize our proposed mission. The following possible missions are describes briefly: A Solar Terrestrial Environment Mission; two versions of a Stereo Mission; a Large Scale Solar Structure Mission; a Solar Atmosphere Mission; a Solar Particle Acceleration Mission; and a Solar Pinhole Mission. We also append a brief account of the proposed Solar Probe Mission.

  19. Simulations of Solar Jets

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-02-01

    Formation of a coronal jet from twisted field lines that have reconnected with the ambient field. The colors show the radial velocity of the plasma. [Adapted from Szente et al. 2017]How do jets emitted from the Suns surface contribute to its corona and to the solar wind? In a recent study, a team of scientists performed complex three-dimensional simulations of coronal jets to answer these questions.Small ExplosionsCoronal jets are relatively small eruptions from the Suns surface, with heights of roughly 100 to 10,000 km, speeds of 10 to 1,000 km/s, and lifetimes of a few minutes to around ten hours. These jets are constantly present theyre emitted even from the quiet Sun, when activity is otherwise low and weve observed them with a fleet of Sun-watching space telescopes spanning the visible, extreme ultraviolet (EUV), and X-ray wavelength bands.A comparison of simulated observations based on the authors model (left panels) to actual EUV and X-ray observations of jets (right panels). [Szente et al. 2017]Due to their ubiquity, we speculate that these jets might contribute to heating the global solar corona (which is significantly hotter than the surface below it, a curiosity known as the coronal heating problem). We can also wonder what role these jets might play in driving the overall solar wind.Launching a JetLed by Judit Szente (University of Michigan), a team of scientists has explored the impact of coronal jets on the global corona and solar wind with a series of numerical simulations. Szente and collaborators used three-dimensional, magnetohydrodynamic simulations that provide realistic treatment of the solar atmosphere, the solar wind acceleration, and the complexities of heat transfer throughout the corona.In the authors simulations, a jet is initiated as a magnetic dipole rotates at the solar surface, winding up field lines. Magnetic reconnection between the twisted lines and the background field then launches the jet from the dense and hot solar

  20. Solar thermophotovoltaics: reshaping the solar spectrum

    DOE PAGES

    Zhou, Zhiguang; Sakr, Enas; Sun, Yubo; ...

    2016-06-11

    There has been increasing interest in utilizing solar thermophotovoltaics (STPV) to convert sunlight into electricity, given their potential to exceed the Shockley-Queisser limit. Encouragingly, there have also been several recent demonstrations of improved system-level efficiency as high as 6.2%. Here, we review prior work in the field, with particular emphasis on the role of several key principles in their experimental operation, performance, and reliability. In particular, for the problem of designing selective solar absorbers, we consider the trade-off between solar absorption and thermal losses, particularly radiative and convective mechanisms. For the selective thermal emitters, we consider the tradeoff between emissionmore » at critical wavelengths and parasitic losses. Then for the thermophotovoltaic (TPV) diodes, we consider the trade-off between increasing the potential short-circuit current, and maintaining a reasonable opencircuit voltage. This treatment parallels the historic development of the field, but also connects early insights with recent developments in adjacent fields.With these various components connecting in multiple ways, a system-level end-to-end modeling approach is necessary for a comprehensive understanding and appropriate improvement of STPV systems. Our approach will ultimately allow researchers to design STPV systems capable of exceeding recently demonstrated efficiency values.« less

  1. Solar thermophotovoltaics: reshaping the solar spectrum

    SciTech Connect

    Zhou, Zhiguang; Sakr, Enas; Sun, Yubo; Bermel, Peter

    2016-06-11

    There has been increasing interest in utilizing solar thermophotovoltaics (STPV) to convert sunlight into electricity, given their potential to exceed the Shockley-Queisser limit. Encouragingly, there have also been several recent demonstrations of improved system-level efficiency as high as 6.2%. Here, we review prior work in the field, with particular emphasis on the role of several key principles in their experimental operation, performance, and reliability. In particular, for the problem of designing selective solar absorbers, we consider the trade-off between solar absorption and thermal losses, particularly radiative and convective mechanisms. For the selective thermal emitters, we consider the tradeoff between emission at critical wavelengths and parasitic losses. Then for the thermophotovoltaic (TPV) diodes, we consider the trade-off between increasing the potential short-circuit current, and maintaining a reasonable opencircuit voltage. This treatment parallels the historic development of the field, but also connects early insights with recent developments in adjacent fields.With these various components connecting in multiple ways, a system-level end-to-end modeling approach is necessary for a comprehensive understanding and appropriate improvement of STPV systems. Our approach will ultimately allow researchers to design STPV systems capable of exceeding recently demonstrated efficiency values.

  2. Solar thermophotovoltaics: reshaping the solar spectrum

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Sakr, Enas; Sun, Yubo; Bermel, Peter

    2016-06-01

    Recently, there has been increasing interest in utilizing solar thermophotovoltaics (STPV) to convert sunlight into electricity, given their potential to exceed the Shockley-Queisser limit. Encouragingly, there have also been several recent demonstrations of improved system-level efficiency as high as 6.2%. In this work, we review prior work in the field, with particular emphasis on the role of several key principles in their experimental operation, performance, and reliability. In particular, for the problem of designing selective solar absorbers, we consider the trade-off between solar absorption and thermal losses, particularly radiative and convective mechanisms. For the selective thermal emitters, we consider the tradeoff between emission at critical wavelengths and parasitic losses. Then for the thermophotovoltaic (TPV) diodes, we consider the trade-off between increasing the potential short-circuit current, and maintaining a reasonable opencircuit voltage. This treatment parallels the historic development of the field, but also connects early insights with recent developments in adjacent fields.With these various components connecting in multiple ways, a system-level end-to-end modeling approach is necessary for a comprehensive understanding and appropriate improvement of STPV systems. This approach will ultimately allow researchers to design STPV systems capable of exceeding recently demonstrated efficiency values.

  3. Astroparticle physics with solar neutrinos.

    PubMed

    Nakahata, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the "solar neutrino problem". Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. (Communicated by Toshimitsu Yamazaki, M.J.A.).

  4. Astroparticle physics with solar neutrinos

    PubMed Central

    NAKAHATA, Masayuki

    2011-01-01

    Solar neutrino experiments observed fluxes smaller than the expectations from the standard solar model. This discrepancy is known as the “solar neutrino problem”. Flux measurements by Super-Kamiokande and SNO have demonstrated that the solar neutrino problem is due to neutrino oscillations. Combining the results of all solar neutrino experiments, parameters for solar neutrino oscillations are obtained. Correcting for the effect of neutrino oscillations, the observed neutrino fluxes are consistent with the prediction from the standard solar model. In this article, results of solar neutrino experiments are reviewed with detailed descriptions of what Kamiokande and Super-Kamiokande have contributed to the history of astroparticle physics with solar neutrino measurements. PMID:21558758

  5. The New Solar System

    NASA Astrophysics Data System (ADS)

    Beatty, J. Kelly; Collins Petersen, Carolyn; Chaikin, Andrew

    1999-01-01

    As the definitive guide for the armchair astronomer, The New Solar System has established itself as the leading book on planetary science and solar system studies. Incorporating the latest knowledge of the solar system, a distinguished team of researchers, many of them Principal Investigators on NASA missions, explain the solar system with expert ease. The completely-revised text includes the most recent findings on asteroids, comets, the Sun, and our neighboring planets. The book examines the latest research and thinking about the solar system; looks at how the Sun and planets formed; and discusses our search for other planetary systems and the search for life in the solar system. In full-color and heavily-illustrated, the book contains more than 500 photographs, portrayals, and diagrams. An extensive set of tables with the latest characteristics of the planets, their moon and ring systems, comets, asteroids, meteorites, and interplanetary space missions complete the text. New to this edition are descriptions of collisions in the solar system, full scientific results from Galileo's mission to Jupiter and its moons, and the Mars Pathfinder mission. For the curious observer as well as the student of planetary science, this book will be an important library acquisition. J. Kelly Beatty is the senior editor of Sky & Telescope, where for more than twenty years he has reported the latest in planetary science. A renowned science writer, he was among the first journalists to gain access to the Soviet space program. Asteroid 2925 Beatty was named on the occasion of his marriage in 1983. Carolyn Collins Petersen is an award-winning science writer and co-author of Hubble Vision (Cambridge 1995). She has also written planetarium programs seen at hundreds of facilities around the world. Andrew L. Chaikin is a Boston-based science writer. He served as a research geologist at the Smithsonian Institution's Center for Earth and Planetary Studies. He is a contributing editor to

  6. Solar neutrino spectroscopy

    NASA Astrophysics Data System (ADS)

    Wurm, Michael

    2017-04-01

    More than forty years after the first detection of neutrinos from the Sun, the spectroscopy of solar neutrinos has proven to be an on-going success story. The long-standing puzzle about the observed solar neutrino deficit has been resolved by the discovery of neutrino flavor oscillations. Today's experiments have been able to solidify the standard MSW-LMA oscillation scenario by performing precise measurements over the whole energy range of the solar neutrino spectrum. This article reviews the enabling experimental technologies: On the one hand multi-kiloton-scale water Cherenkov detectors performing measurements in the high-energy regime of the spectrum, on the other end ultrapure liquid-scintillator detectors that allow for a low-threshold analysis. The current experimental results on the fluxes, spectra and time variation of the different components of the solar neutrino spectrum will be presented, setting them in the context of both neutrino oscillation physics and the hydrogen fusion processes embedded in the Standard Solar Model. Finally, the physics potential of state-of-the-art detectors and a next generation of experiments based on novel techniques will be assessed in the context of the most interesting open questions in solar neutrino physics: a precise measurement of the vacuum-matter transition curve of electron-neutrino oscillation probability that offers a definitive test of the basic MSW-LMA scenario or the appearance of new physics; and a first detection of neutrinos from the CNO cycle that will provide new information on solar metallicity and stellar physics.

  7. The Solar Wind

    NASA Technical Reports Server (NTRS)

    Herring, J. R.; Licht, A. L.

    1960-01-01

    Parker's model of a spherically expanding corona, the "solar wind," is compared with D. E. Blackwell's observations of the 1954 minimum equatorial corona. A significant discrepancy is found between the predicted and the observed electron densities at distances from the sun greater than 20 solar radii. Blackwell's data are found to be consistent with a model in which the corona expands mostly within a disk less than 25 solar radii thick, lying within the sun's equatorial plane. The thickness of the disk as a function of distance from the sun is qualitatively explained in terms of magnetic pressure. The solar wind is found to have a considerable effect on the lunar atmosphere. First, the calculated density of the lunar atmosphere is greatly reduced by collisions with protons in the solar wind. If the flux of particles in this wind has the conventional values ranging between 10(exp 10) to 10(exp 11) per sq cm-sec, the calculations yield a lunar pressure of 10(exp -13) atmosphere of argon, in agreement with the value predicted by Elsmore and Whitfield on the basis of observations on the occultation of radio stars. Second, following a suggestion by Gold, it was found that the collisions of solar-wind protons with the lunar surface produce an atmosphere of cold neutral hydrogen with a density of 10(exp 5) per cu cm at the lunar surface. The density falls off at greater distances in accordance with the inverse-square law. Estimates indicate that the interaction of solar particles with the neutral hydrogen will produce an extended lunar ionosphere with a density of the order of 400 protons/cu cm in the vicinity of the moon.

  8. Technical use of solar energy: Conversion from solar to thermal energy, solar cooling and thermal energy storage

    NASA Astrophysics Data System (ADS)

    Arafa, A.; Fisch, N.; Hahne, E.; Kraus, K.; Seemann, D.; Seifert, B.; Sohns, J.; Schetter, G.; Schweigerer, W.

    1983-12-01

    Experimental and theoretical studies in the field of solar energy utilization are reviewed. Specific topics considered are: flat plate water collectors, solar absorbers, air collectors, solar absorption cooling, solar simulators, aquifiers, latent heat stores, and space heating systems.

  9. Exploring Venus by Solar Airplane

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.

    2001-01-01

    A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level, the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars, and the slow rotation of Venus allows an airplane to be designed for continuous sunlight, with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

  10. Helioseismology with Solar Orbiter

    NASA Astrophysics Data System (ADS)

    Löptien, Björn; Birch, Aaron C.; Gizon, Laurent; Schou, Jesper; Appourchaux, Thierry; Blanco Rodríguez, Julián; Cally, Paul S.; Dominguez-Tagle, Carlos; Gandorfer, Achim; Hill, Frank; Hirzberger, Johann; Scherrer, Philip H.; Solanki, Sami K.

    2015-12-01

    The Solar Orbiter mission, to be launched in July 2017, will carry a suite of remote sensing and in-situ instruments, including the Polarimetric and Helioseismic Imager (PHI). PHI will deliver high-cadence images of the Sun in intensity and Doppler velocity suitable for carrying out novel helioseismic studies. The orbit of the Solar Orbiter spacecraft will reach a solar latitude of up to 21∘ (up to 34∘ by the end of the extended mission) and thus will enable the first local helioseismology studies of the polar regions. Here we consider an array of science objectives to be addressed by helioseismology within the baseline telemetry allocation (51 Gbit per orbit, current baseline) and within the science observing windows (baseline 3×10 days per orbit). A particularly important objective is the measurement of large-scale flows at high latitudes (rotation and meridional flow), which are largely unknown but play an important role in flux transport dynamos. For both helioseismology and feature tracking methods convection is a source of noise in the measurement of longitudinally averaged large-scale flows, which decreases as T -1/2 where T is the total duration of the observations. Therefore, the detection of small amplitude signals (e.g., meridional circulation, flows in the deep solar interior) requires long observation times. As an example, one hundred days of observations at lower spatial resolution would provide a noise level of about three m/s on the meridional flow at 80∘ latitude. Longer time-series are also needed to study temporal variations with the solar cycle. The full range of Earth-Sun-spacecraft angles provided by the orbit will enable helioseismology from two vantage points by combining PHI with another instrument: stereoscopic helioseismology will allow the study of the deep solar interior and a better understanding of the physics of solar oscillations in both quiet Sun and sunspots. We have used a model of the PHI instrument to study its

  11. Solar energy conversion.

    SciTech Connect

    Crabtree, G. W.; Lewis, N. S.

    2008-03-01

    If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces

  12. Solar neutrinos, solar flares, solar activity cycle and the proton decay

    NASA Technical Reports Server (NTRS)

    Raychaudhuri, P.

    1985-01-01

    It is shown that there may be a correlation between the galactic cosmic rays and the solar neutrino data, but it appears that the neutrino flux which may be generated during the large solar cosmic ray events cannot in any way effect the solar neutrino data in Davis experiment. Only initial stage of mixing between the solar core and solar outer layers after the sunspot maximum in the solar activity cycle can explain the higher (run number 27 and 71) of solar neutrino data in Davis experiment. But solar flare induced atmospheric neutrino flux may have effect in the nucleon decay detector on the underground. The neutrino flux from solar cosmic rays may be a useful guide to understand the background of nucleon decay, magnetic monopole search, and the detection of neutrino flux in sea water experiment.

  13. Workshop on Solar Activity, Solar Wind, Terrestrial Effects, and Solar Acceleration

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A summary of the proceedings from the workshop are presented. The areas covered were solar activity, solar wind, terrestrial effects, and solar acceleration. Specific topics addressed include: (1) solar cycle manifestations, both large and small scale, as well as long-term and short-term changes, including transients such as flares; (2) sources of solar wind, as identified by interplanetary observations including coronal mass ejections (CME's) or x-ray bright points, and the theory for and evolution of large-scale and small-scale structures; (3) magnetosphere responses, as observed by spacecraft, to variable solar wind and transient energetic particle emissions; and (4) origin and propagation of solar cosmic rays as related to solar activity and terrestrial effects, and solar wind coronal-hole relationships and dynamics.

  14. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  15. Solar structure without computers

    NASA Astrophysics Data System (ADS)

    Clayton, Donald D.

    1986-04-01

    We derive succinctly the equations of solar structure. We first present models of objects in hydrostatic equilibrium that fail as models of the sun in order to illustrate important physical requirements. Then by arguing physically that the pressure gradient can be matched to the simple function dP/dr=-kre-(r/a)2, we derive a complete analytic representation of the solar interior in terms of a one-parameter family of models. Two different conditions are then used to select the appropriate value of the parameter specifying the best model within the family: (1) the solar luminosity is equated to the thermonuclear power generated near the center and/or (2) the solar luminosity is equated to the radiative diffusion of energy from a central region. The two methods of selecting the parameter agree to within a few percent. The central conditions of the sun are well calculated by these analytic formulas, all without aid of a computer. This is an original treatment, yielding much the best description of the solar center to be found by methods of differential and integral calculus, rendering it an excellent laboratory for applied calculus.

  16. Unconventional Solar Sailing

    NASA Astrophysics Data System (ADS)

    Ceriotti, Matteo

    The idea of exploiting solar radiation pressure for space travel, or solar sailing, is more than a 100 years old, and yet most of the research thus far has considered only a limited number of sail configurations. However solar sails do not have to be inertially-pointing squares, spin-stabilised discs or heliogyros: there is a range of different configurations and concepts that present some advantageous features. This chapter will show and discuss three non-conventional solar sail configurations and their applications. In the first, the sail is complemented by an electric thruster, resulting in a hybrid-propulsion spacecraft which is capable to hover above the Earth's Poles in a stationary position (pole-sitter). The second concept makes use of a variable-geometry pyramidal sail, naturally pointing towards the sun, to increase or decrease the orbit altitude without the need of propellant or attitude manoeuvres. Finally, the third concept shows that the orbit altitude can also be changed, without active manoeuvres or geometry change, if the sail naturally oscillates synchronously with the orbital motion. The main motivation behind these novel configurations is to overcome some of the engineering limitations of solar sailing; the resulting concepts pose some intriguing orbital and attitude dynamics problems, which will be discussed.

  17. Solar thermal financing guidebook

    SciTech Connect

    Williams, T.A.; Cole, R.J.; Brown, D.R.; Dirks, J.A.; Edelhertz, H.; Holmlund, I.; Malhotra, S.; Smith, S.A.; Sommers, P.; Willke, T.L.

    1983-05-01

    This guidebook contains information on alternative financing methods that could be used to develop solar thermal systems. The financing arrangements discussed include several lease alternatives, joint venture financing, R and D partnerships, industrial revenue bonds, and ordinary sales. In many situations, alternative financing arrangements can significantly enhance the economic attractiveness of solar thermal investments by providing a means to efficiently allocate elements of risk, return on investment, required capital investment, and tax benefits. A net present value approach is an appropriate method that can be used to investigate the economic attractiveness of alternative financing methods. Although other methods are applicable, the net present value approach has advantages of accounting for the time value of money, yielding a single valued solution to the financial analysis, focusing attention on the opportunity cost of capital, and being a commonly understood concept that is relatively simple to apply. A personal computer model for quickly assessing the present value of investments in solar thermal plants with alternative financing methods is presented in this guidebook. General types of financing arrangements that may be desirable for an individual can be chosen based on an assessment of his goals in investing in solar thermal systems and knowledge of the individual's tax situation. Once general financing arrangements have been selected, a screening analysis can quickly determine if the solar investment is worthy of detailed study.

  18. SMART Solar Sail

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2005-01-01

    A report summarizes the design concept of a super miniaturized autonomous reconfigurable technology (SMART) solar sail a proposed deployable, fully autonomous solar sail for use in very fine station keeping of a spacecraft. The SMART solar sail would include a reflective film stretched among nodes of a SMART space frame made partly of nanotubule struts. A microelectromechanical system (MEMS) at each vertex of the frame would spool and unspool nanotubule struts between itself and neighboring nodes to vary the shape of the frame. The MEMSs would be linked, either wirelessly or by thin wires within the struts, to an evolvable neural software system (ENSS) that would control the MEMSs to reconfigure the sail as needed. The solar sail would be highly deformable from an initially highly compressed configuration, yet also capable of enabling very fine maneuvering of the spacecraft by means of small sail-surface deformations. The SMART Solar Sail would be connected to the main body of the spacecraft by a SMART multi-tether structure, which would include MEMS actuators like those of the frame plus tethers in the form of longer versions of the struts in the frame.

  19. Solar photovoltaic power stations

    NASA Technical Reports Server (NTRS)

    Chowaniec, C. R.; Pittman, P. F.; Ferber, R. R.; Marshall, B. W.

    1977-01-01

    The subsystems of a solar photovoltaic central power system are identified and the cost of major components are estimated. The central power system, which would have a peak power capability in the range of 50 to 1000 MW, utilizes two types of subsystems - a power conditioner and a solar array. Despite differences in costs of inverters, the overall cost of the total power conditioning subsystem is about the same for all approaches considered. A combination of two inverters operating from balanced dc buses as a pair of 6-pulse groups is recommended. A number of different solar cell modules and tracking array structures were analyzed. It is concluded that when solar cell costs are high (greater than $500/kW), high concentration modules are more cost effective than those with low concentration. Vertical-axis tracking is the most effective of the studied tracking modes. For less expensive solar cells (less than $400/kW), fixed tilt collector/reflector modules are more cost effective than those which track.

  20. Solar tomography adaptive optics.

    PubMed

    Ren, Deqing; Zhu, Yongtian; Zhang, Xi; Dou, Jiangpei; Zhao, Gang

    2014-03-10

    Conventional solar adaptive optics uses one deformable mirror (DM) and one guide star for wave-front sensing, which seriously limits high-resolution imaging over a large field of view (FOV). Recent progress toward multiconjugate adaptive optics indicates that atmosphere turbulence induced wave-front distortion at different altitudes can be reconstructed by using multiple guide stars. To maximize the performance over a large FOV, we propose a solar tomography adaptive optics (TAO) system that uses tomographic wave-front information and uses one DM. We show that by fully taking advantage of the knowledge of three-dimensional wave-front distribution, a classical solar adaptive optics with one DM can provide an extra performance gain for high-resolution imaging over a large FOV in the near infrared. The TAO will allow existing one-deformable-mirror solar adaptive optics to deliver better performance over a large FOV for high-resolution magnetic field investigation, where solar activities occur in a two-dimensional field up to 60'', and where the near infrared is superior to the visible in terms of magnetic field sensitivity.

  1. COMPTEL solar flare observations

    NASA Technical Reports Server (NTRS)

    Ryan, J. M.; Aarts, H.; Bennett, K.; Debrunner, H.; Devries, C.; Denherder, J. W.; Eymann, G.; Forrest, D. J.; Diehl, R.; Hermsen, W.

    1992-01-01

    COMPTEL as part of a solar target of opportunity campaign observed the sun during the period of high solar activity from 7-15 Jun. 1991. Major flares were observed on 9 and 11 Jun. Although both flares were large GOES events (greater than or = X10), they were not extraordinary in terms of gamma-ray emission. Only the decay phase of the 15 Jun. flare was observed by COMPTEL. We report the preliminary analysis of data from these flares, including the first spectroscopic measurement of solar flare neutrons. The deuterium formation line at 2.223 MeV was present in both events and for at least the 9 Jun. event, was comparable to the flux in the nuclear line region of 4-8 MeV, consistent with Solar-Maximum Mission (SSM) Observations. A clear neutron signal was present in the flare of 9 Jun. with the spectrum extending up to 80 MeV and consistent in time with the emission of gamma-rays, confirming the utility of COMPTEL in measuring the solar neutron flux at low energies. The neutron flux below 100 MeV appears to be lower than that of the 3 Jun. 1982 flare by more than an order of magnitude. The neutron signal of the 11 Jun. event is under study. Severe dead time effects resulting from the intense thermal x-rays require significant corrections to the measured flux which increase the magnitude of the associated systematic uncertainties.

  2. Solar coronal jets

    NASA Astrophysics Data System (ADS)

    Dobrzyck, D.

    The solar jets were first observed by SOHO instruments (EIT, LASCO, UVCS) during the previous solar minimum. They were small, fast ejections originating from flaring UV bright points within large polar coronal holes. The obtained data provided us with estimates of the jet plasma conditions, dynamics, evolution of the electron temperature and heating rate required to reproduce the observed ionization state. To follow the polar jets through the solar cycle a special SOHO Joint Observing Program (JOP 155) was designed. It involves a number of SOHO instruments (EIT, CDS, UVCS, LASCO) as well as TRACE. The coordinated observations have been carried out since April 2002. The data enabled to identify counterparts of the 1996-1998 solar minimum jets. Their frequency of several events per day appear comparable to the frequency from the previous solar minimum. The jets are believed to be triggered by field line reconnection between emerging magnetic dipole and pre-existing unipolar field. Existing models predict that the hot jet is formed together with another jet of a cool material. The particular goal of the coordinated SOHO and TRACE observations was to look for possible association of the hot and cool plasma ejections. Currently there is observational evidence that supports these models.

  3. LINEAR SOLAR MODELS

    SciTech Connect

    Villante, F. L.; Ricci, B.

    2010-05-01

    We present a new approach to studying the properties of the Sun. We consider small variations of the physical and chemical properties of the Sun with respect to standard solar model predictions and we linearize the structure equations to relate them to the properties of the solar plasma. By assuming that the (variation of) present solar composition can be estimated from the (variation of) nuclear reaction rates and elemental diffusion efficiency in the present Sun, we obtain a linear system of ordinary differential equations which can be used to calculate the response of the Sun to an arbitrary modification of the input parameters (opacity, cross sections, etc.). This new approach is intended to be a complement to the traditional methods for solar model (SM) calculation and allows us to investigate in a more efficient and transparent way the role of parameters and assumptions in SM construction. We verify that these linear solar models recover the predictions of the traditional SMs with a high level of accuracy.

  4. Solar System Educators Program

    NASA Astrophysics Data System (ADS)

    Knudsen, R.

    2004-11-01

    The Solar System Educators Program is a nationwide network of highly motivated teachers who lead workshops that show other teachers in their local communities how to successfully incorporate NASA materials and research into their classes. Currently there are 57 Solar System Educators in 37 states whose workshops are designed to assist their fellow teachers in understanding and including standards-based NASA materials into their classroom activities. Solar System Educators attend a training institute during their first year in the program and have the option of attending subsequent annual institutes. The volunteers in this program receive additional web-based mission-specific telecon trainings in conjunction with the Solar System Ambassadors. Resource and handout materials in the form of DVDs, posters, pamphlets, fact sheets, postcards and bookmarks are also provided. Scientists can get involved with this program by partnering with the Solar System Educators in their regions, presenting at their workshops and mentoring these outstanding volunteers. This formal education program helps optimize project funding set aside for education through the efforts of these volunteer master teachers. At the same time, teachers become familiar with NASA's educational materials with which to inspire students into pursuing careers in science, technology, engineering and math.

  5. Site-specific solar resource measurements for industrial solar applications

    SciTech Connect

    Marion, W

    1994-06-01

    The solar industry can borrow solar radiation measuring equipment from the National Renewable Energy Laboratory (NREL) as part of NREL`s Solar Industrial Program. This program provides assistance to qualified parties in quantifying the solar radiation resource at prospective sites to reduce the risks of deploying industrial solar energy systems. Up-to-date solar radiation measurements permit comparisons of fresh data with existing data to verify established data bases and also provide data based on actual measurements instead of on less accurate models. This report outlines the responsibilities and obligations of NREL and the solar industry participant. It also describes the equipment for measuring solar radiation, the data quality assessment procedures, and the format of the data provided.

  6. Solar America Cities Awards: Solar America Initiative Fact Sheet

    SciTech Connect

    Not Available

    2008-03-01

    This fact sheet provides an overview of the Solar America Cities activities within the Solar America Initiative and lists the 25 cities that have received financial awards from the U.S. Department of Energy.

  7. Fundamentals of solar energy conversion

    NASA Astrophysics Data System (ADS)

    Anderson, E. E.

    This textbook strives to strengthen a student's knowledge of the basic sciences as well as to provide a practical background in solar energy conversion. Particular consideration is given to solar geometry, the availability of solar energy, solar concentrators, elements of fluid mechanics and heat transfer in solar systems, flat-plate collectors, and thermal storage of solar energy. The use of solar energy for specific types of loads is then discussed. The application of active solar systems to space and hot-water heating is considered, and a description is given of the empirical f-chart method for thermal-performance analysis. The economics of solar systems is examined along with the application of solar energy to cooling and dehumidification loads as well as the application of solar energy to industrial and other thermal loads. The concept of passive systems is explained, and the evaluation of thermal performance on the basis of the empirical load/collector ratio method is described. Appendixes are presented with such information as solar-position charts, tables of solar radiation and climatic data, and programs for hand-held calculators.

  8. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  9. Real World: Solar Power on Earth

    NASA Image and Video Library

    Learn how NASA-inspired technologies produce solar power here on Earth. Go behind the scenes at the "Solar Decathlon," a competition to design a solar-powered house. Explore the benefits of solar e...

  10. Space Station Freedom solar dynamic power generation

    NASA Technical Reports Server (NTRS)

    Springer, T.; Friefeld, Jerry M.

    1990-01-01

    Viewgraphs on Space Station Freedom solar dynamic power generation are presented. Topics covered include: prime contract activity; key solar dynamic power module requirements; solar dynamic heat receiver technology; and solar concentrator advanced development.

  11. Terrestrial solar thermionic energy conversion systems concept

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Swerdling, M.

    1975-01-01

    Results obtained from studies of a (1) solar concentrator, (2) solar energy receiver - thermionic converter system, and (3) solar thermionic topping system are described. Peripheral subsystems, which are required for any solar energy conversion system, are also discussed.

  12. Solar sphere viewed through the Skylab solar physics experiment

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The solar sphere viewed through the Skylab solar physics experiment (S082) Extreme Ultraviolet Spectroheliographis seen in this photographic reproduction taken from a color television transmission made by a TV camera aboard the Skylab space station in Earth orbit. The solar chromosphere and lower corona are much hotter than the surface of the Sun characterized by the white light emissions. This image was recorded during the huge solar prominence which occurred on August 21, 1973.

  13. Terrestrial solar spectra, solar simulation and solar cell short-circuit current calibration - A review

    NASA Astrophysics Data System (ADS)

    Matson, R. J.; Emery, K. A.; Bird, R. E.

    1984-03-01

    In this paper, the main issues in modeling and measuring terrestrial solar spectra and their relation to the short-circuit current of solar cells are addressed. These issues are (1) the measured and modeled terrestrial solar spectra, (2) the optimal light sources and their filtering for simulating the standard terrestrial solar irradiance spectrum and (3) the consequences of a mismatch between the chosen standard terrestrial solar spectrum and the actual irradiance conditions for the rated efficiency of a solar cell. In addition, this review provides the photovoltaics community with a tutorial document and a summary of the current activities and results in this field.

  14. Solar Pumped Laser Microthruster

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-01

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  15. Solar system exploration

    NASA Astrophysics Data System (ADS)

    Briggs, Geoffrey A.; Quaide, William L.

    Two fundamental goals lie at the heart of U.S. solar system exploration efforts: first, to characterize the evolution of the solar system; second, to understand the processes which produced life. Progress in planetary science is traced from Newton's definition of the principles of gravitation through a variety of NASA planetary probes in orbit, on other planets and traveling beyond the solar system. It is noted that most of the planetary data collected by space probes are always eventually applied to improving the understanding of the earth, moon, Venus and Mars, the planets of greatest interest to humans. Significant data gathered by the Mariner, Viking, Apollo, Pioneer, and Voyager spacecraft are summarized, along with the required mission support capabilities and mission profiles. Proposed and planned future missions to Jupiter, Saturn, Titan, the asteroids and for a comet rendzvous are described.

  16. SOLAR PUMPED LASER MICROTHRUSTER

    SciTech Connect

    Rubenchik, A M; Beach, R; Dawson, J; Siders, C W

    2010-02-05

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  17. Winnebago Tribe Solar Project

    SciTech Connect

    Nieman, Autumn

    2016-02-26

    The strategy of the Solar Project was to reduce fuel use within two years by a roof mounted photovoltaic system. The police/fire building is completely powered by electricity. The renewable energy system we have selected has a power capacity of 23kW and the ability to export 44.3 MWh. We anticipate 32.55% kWh energy savings, an excess of the required 30% reduction, in the building’s total fuel use based on the most current 12 months of data (2012). The solar electric system is a grid-tie, ballast mounted on a flat roof over the police/fire station. The solar electric system includes 280 Watt modules for a nominal total of 22.80 kW. Approximately 84 modules are ballast mounted to the flat roof facing south.

  18. Solar drum positioner mechanisms

    NASA Technical Reports Server (NTRS)

    Briggs, L. W.

    1982-01-01

    The need for additional power on spinning satellites required development of deployable solar arrays activated, as on a 3-axis vehicle, after separation from a booster or shuttle orbiter. Mechanisms were developed for telescopically extending a secondary 36.3 kg (80 lb.), 2.13 m (84 in.) diameter spinning solar drum for a distance of 2.0 m (80 in.) or more along the spin axis. After extension, the system has the capability of dynamically controlling the drum tilt angle about the spin axis to provide precision in-orbit balancing of the spacecraft. This approach was selected for the SBS, ANIK C, ANIK D, WESTAR B and PALAPA B satellites. It was successfully demonstrated during the in orbit deployment of the aft solar panels of the SBS F-3 and F-1 satellites, subsequent to the November 1980 and September 1981 launches.

  19. Solar thermal energy receiver

    NASA Technical Reports Server (NTRS)

    Baker, Karl W. (Inventor); Dustin, Miles O. (Inventor)

    1992-01-01

    A plurality of heat pipes in a shell receive concentrated solar energy and transfer the energy to a heat activated system. To provide for even distribution of the energy despite uneven impingement of solar energy on the heat pipes, absence of solar energy at times, or failure of one or more of the heat pipes, energy storage means are disposed on the heat pipes which extend through a heat pipe thermal coupling means into the heat activated device. To enhance energy transfer to the heat activated device, the heat pipe coupling cavity means may be provided with extensions into the device. For use with a Stirling engine having passages for working gas, heat transfer members may be positioned to contact the gas and the heat pipes. The shell may be divided into sections by transverse walls. To prevent cavity working fluid from collecting in the extensions, a porous body is positioned in the cavity.

  20. Hydrogen from solar energy

    NASA Astrophysics Data System (ADS)

    Schnurnberger, W.; Seeger, W.; Steeb, H.

    1981-11-01

    It is expected that, at some time in the foreseeable future, processes for obtaining hydrogen on the basis of a use of nonfossil energy will be economically feasible. Nonfossil energy sources considered are related to water power, nuclear energy, and solar energy. The current status of various approaches for the decomposition of water is examined, taking into account a supply of the required energy in form of heat, electric power, or light energy. At the present time only the technology of water electrolysis is sufficiently advanced to provide hydrogen on a large scale. Considerable improvements regarding current electrolysis technology with respect to efficiency and required capital costs should be possible within the foreseeable future. Approaches are considered to obtain the required electric power for the electrolysis with the aid of processes based on the utilization of solar cells. Attention is given to improved procedures for water electrolysis, and approaches for achieving optimal operational relations between solar-cell generators and electrolysis equipment.

  1. Solar ventilation and tempering

    NASA Astrophysics Data System (ADS)

    Adámek, Karel; Pavlů, Miloš; Bandouch, Milan

    2014-08-01

    The paper presents basic information about solar panels, designed, realized and used for solar ventilation of rooms. Used method of numerical flow simulation gives good overview about warming and flowing of the air in several kinds of realized panels (window, facade, chimney). Yearlong measurements give a good base for calculations of economic return of invested capital. The operation of the system in transient period (spring, autumn) prolongs the period without classical heating of the room or building, in winter the classical heating is supported. In the summer period the system, furnished with chimney, can exhaust inner warm air together with necessary cooling of the system by gravity circulation, only. System needs not any invoiced energy source; it is supplied entirely by solar energy. Large building systems are supported by classical electric fan respectively.

  2. Solar energy unlimited

    SciTech Connect

    Mahjouri, F.S.

    1997-06-01

    Energy efficiency and renewable energy are valued resources in meeting future energy demands. Aside from environmental incentives, the economic value of these alternate energy resources is measured primarily by the avoided costs of conventional supplies. The renewable energy technologies are significantly more market-mature and ready for large-scale economic application than is commonly thought. Advanced solar thermal technologies - Evacuated Heat Pipe Solar Collectors (Tubes) - have been used for eighteen years. Technology has overcome the limitations of flat-plate solar panels, especially in unfavorable weather conditions. These kinds of collectors easily produce temperatures higher than 160 degrees F. This paper addresses Photo-Thermal Conversion, Vacuum, Heat Pipe, Thermomax, and Desiccant Technologies. Further, the integration of these technologies in three commercial/residential units is briefly described.

  3. Catalysis in solar energy

    NASA Astrophysics Data System (ADS)

    Maugh, T. H., II

    1983-09-01

    The progress of technologies to convert solar energy into useful work is reviewed, with particular attention given to the functional principles of solar cells and photoelectrochemical cells. The current in a solar cell is completely electronic, while in a photoelectric cell (PC) the current is partially ionic, i.e., the electrical contact between electrodes is accomplished chemically. The PC can be activated by photons to perform photoassisted electrolysis in the presence of an external potential, thus producing hydrogen fuel. Various materials are under study as photoanodes, with layered metal dichalcogenide semiconductors the best performers so far. The chalcogenides include MoS2, WS2, MoSe2, and WSe2, which could be applied to photochemical synthesis of redox products. Employment of Pt or Rh on the electrode surface has increased H2 production efficiency to 13.3 percent.

  4. Quasivacuum solar neutrino oscillations

    NASA Astrophysics Data System (ADS)

    Fogli, G. L.; Lisi, E.; Montanino, D.; Palazzo, A.

    2000-12-01

    We discuss in detail solar neutrino oscillations with δm2/E in the range [10-10,10-7] eV2/MeV. In this range, which interpolates smoothly between the so-called ``just-so'' and ``Mikheyev-Smirnov-Wolfenstein'' oscillation regimes, neutrino flavor transitions are increasingly affected by matter effects as δm2/E increases. As a consequence, the usual vacuum approximation has to be improved through the matter-induced corrections, leading to a ``quasivacuum'' oscillation regime. We perform accurate numerical calculations of such corrections, using both the true solar density profile and its exponential approximation. Matter effects are shown to be somewhat overestimated in the latter case. We also discuss the role of Earth crossing and of energy smearing. Prescriptions are given to implement the leading corrections in the quasivacuum oscillation range. Finally, the results are applied to a global analysis of solar ν data in a three-flavor framework.

  5. Understanding Solar Flare Statistics

    NASA Astrophysics Data System (ADS)

    Wheatland, M. S.

    2005-12-01

    A review is presented of work aimed at understanding solar flare statistics, with emphasis on the well known flare power-law size distribution. Although avalanche models are perhaps the favoured model to describe flare statistics, their physical basis is unclear, and they are divorced from developing ideas in large-scale reconnection theory. An alternative model, aimed at reconciling large-scale reconnection models with solar flare statistics, is revisited. The solar flare waiting-time distribution has also attracted recent attention. Observed waiting-time distributions are described, together with what they might tell us about the flare phenomenon. Finally, a practical application of flare statistics to flare prediction is described in detail, including the results of a year of automated (web-based) predictions from the method.

  6. Major Solar Flare

    NASA Image and Video Library

    2017-09-11

    A large sunspot was the source of a powerful solar flare (an X 9.3) and a coronal mass ejection (Sept. 6, 2017). The flare was the largest solar flare of the last decade. For one thing, it created a strong shortwave radio blackout over Europe, Africa and the Atlantic Ocean. Sunspot 2673 has been also the source of several other smaller to medium-sized solar flares over the past few days. Data from the SOHO spacecraft shows the large cloud of particles blasting into space just after the flare. Note: the bright vertical line and the other rays with barred lines are aberrations in our instruments caused by the bright flash of the flare. https://photojournal.jpl.nasa.gov/catalog/PIA21949

  7. Comparing solar energy alternatives

    NASA Astrophysics Data System (ADS)

    White, J. R.

    1984-03-01

    This paper outlines a computational procedure for comparing the merits of alternative processes to convert solar radiation to heat, electrical power, or chemical energy. The procedure uses the ratio of equipment investment to useful work as an index. Comparisons with conversion counterparts based on conventional fuels are also facilitated by examining this index. The procedure is illustrated by comparisons of (1) photovoltaic converters of differing efficiencies; (2) photovoltaic converters with and without focusing concentrators; (3) photovoltaic conversion plus electrolysis vs photocatalysis for the production of hydrogen; (4) photovoltaic conversion plus plasma arcs vs photocatalysis for nitrogen fixation. Estimates for conventionally-fuelled processes are included for comparison. The reasons why solar-based concepts fare poorly in such comparisons are traced to the low energy density of solar radiation and its low stream time factor resulting from the limited number of daylight hours available and clouds obscuring the sun.

  8. Solar neutrino detection

    SciTech Connect

    Miramonti, Lino

    2009-04-30

    More than 40 years ago, neutrinos where conceived as a way to test the validity of the solar models which tell us that stars are powered by nuclear fusion reactions. The first measurement of the neutrino flux, in 1968 in the Homestake mine in South Dakota, detected only one third of the expected value, originating what has been known as the Solar Neutrino Problem. Different experiments were built in order to understand the origin of this discrepancy. Now we know that neutrinos undergo oscillation phenomenon changing their nature traveling from the core of the Sun to our detectors. In the work the 40 year long saga of the neutrino detection is presented; from the first proposals to test the solar models to last real time measurements of the low energy part of the neutrino spectrum.

  9. The Global Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Dikpati, M.; Brandenburg, A.

    2017-09-01

    A brief summary of the various observations and constraints that underlie solar dynamo research are presented. The arguments that indicate that the solar dynamo is an alpha-omega dynamo of the Babcock-Leighton type are then shortly reviewed. The main open questions that remain are concerned with the subsurface dynamics, including why sunspots emerge at preferred latitudes as seen in the familiar butterfly wings, why the cycle is about 11 years long, and why the sunspot groups emerge tilted with respect to the equator (Joy's law). Next, we turn to magnetic helicity, whose conservation property has been identified with the decline of large-scale magnetic fields found in direct numerical simulations at large magnetic Reynolds numbers. However, magnetic helicity fluxes through the solar surface can alleviate this problem and connect theory with observations, as will be discussed.

  10. Bright Solar Flare

    NASA Image and Video Library

    2017-09-27

    A bright solar flare is captured by the EIT 195Å instrument on 1998 May 2. A solar flare (a sudden, rapid, and intense variation in brightness) occurs when magnetic energy that has built up in the solar atmosphere is suddenly released, launching material outward at millions of km per hour. The Sun’s magnetic fields tend to restrain each other and force the buildup of tremendous energy, like twisting rubber bands, so much that they eventually break. At some point, the magnetic lines of force merge and cancel in a process known as magnetic reconnection, causing plasma to forcefully escape from the Sun. Credit: NASA/GSFC/SOHO/ESA To learn more go to the SOHO website: sohowww.nascom.nasa.gov/home.html To learn more about NASA's Sun Earth Day go here: sunearthday.nasa.gov/2010/index.php

  11. Cadmium sulfide solar cells

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.

    1975-01-01

    Development, fabrication and applications of CdS solar cells are reviewed in detail. The suitability of CdS cells for large solar panels and microcircuitry, and their low cost, are emphasized. Developments are reviewed by manufacturer-developer. Vapor phase deposition of thin-film solar cells, doping and co-evaporation, sputtering, chemical spray, and sintered layers are reviewed, in addition to spray deposition, monograin layer structures, and silk screening. Formation of junctions by electroplating, evaporation, brushing, CuCl dip, and chemiplating are discussed, along with counterelectrode fabrication, VPD film structures, the Cu2S barrier layer, and various photovoltaic effects (contact photovoltage, light intensity variation, optical enhancement), and various other CdS topics.

  12. Solar Pumped Laser Microthruster

    SciTech Connect

    Rubenchik, A. M.; Beach, R.; Dawson, J.; Siders, C. W.

    2010-10-08

    The development of microsatellites requires the development of engines to modify their orbit. It is natural to use solar energy to drive such engines. For an unlimited energy source the optimal thruster must use a minimal amount of expendable material to minimize launch costs. This requires the ejected material to have the maximal velocity and, hence, the ejected atoms must be as light as possible and be ejected by as high an energy density source as possible. Such a propulsion can be induced by pulses from an ultra-short laser. The ultra-short laser provides the high-energy concentration and high-ejected velocity. We suggest a microthruster system comprised of an inflatable solar concentrator, a solar panel, and a diode-pumped fiber laser. We will describe the system design and give weight estimates.

  13. Solar coronal non-thermal processes (Solar Maximum Mission)

    NASA Technical Reports Server (NTRS)

    Hudson, H. S.

    1983-01-01

    The Solar Maximum Mission was used to study solar coronal phenomena in hard X-radiation, since its instrument complement included the first solar hard X-ray telescope. Phenomena related to those discovered from OSO-5 and OSO-7 observations were emphasized.

  14. Solar Program Assessment: Environmental Factors - Solar Total Energy Systems.

    ERIC Educational Resources Information Center

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    The purpose of this report is to present and prioritize the major environmental, safety, and social/institutional issues associated with the further development of Solar Total Energy Systems (STES). Solar total energy systems represent a specific application of the Federally-funded solar technologies. To provide a background for this analysis, the…

  15. Development of nonmetallic solar collector and solar-powered pump

    NASA Technical Reports Server (NTRS)

    Parker, J. C.

    1979-01-01

    Design and building of two unique components for solar heating (1. flatplate solar collector using no metal components, and 2. solar powered pump for heating and cooling systems are outlined in report. Report also discusses hardware, deliverable end items, problems encountered during fabrication and testing, and performance certification.

  16. Anomalously weak solar convection

    PubMed Central

    Hanasoge, Shravan M.; Duvall, Thomas L.

    2012-01-01

    Convection in the solar interior is thought to comprise structures on a spectrum of scales. This conclusion emerges from phenomenological studies and numerical simulations, though neither covers the proper range of dynamical parameters of solar convection. Here, we analyze observations of the wavefield in the solar photosphere using techniques of time-distance helioseismology to image flows in the solar interior. We downsample and synthesize 900 billion wavefield observations to produce 3 billion cross-correlations, which we average and fit, measuring 5 million wave travel times. Using these travel times, we deduce the underlying flow systems and study their statistics to bound convective velocity magnitudes in the solar interior, as a function of depth and spherical-harmonic degree ℓ. Within the wavenumber band ℓ < 60, convective velocities are 20–100 times weaker than current theoretical estimates. This constraint suggests the prevalence of a different paradigm of turbulence from that predicted by existing models, prompting the question: what mechanism transports the heat flux of a solar luminosity outwards? Advection is dominated by Coriolis forces for wavenumbers ℓ < 60, with Rossby numbers smaller than approximately 10-2 at r/R⊙ = 0.96, suggesting that the Sun may be a much faster rotator than previously thought, and that large-scale convection may be quasi-geostrophic. The fact that isorotation contours in the Sun are not coaligned with the axis of rotation suggests the presence of a latitudinal entropy gradient. PMID:22665774

  17. Solar Indices Forecasting Tool

    NASA Astrophysics Data System (ADS)

    Henney, Carl John; Shurkin, Kathleen; Arge, Charles; Hill, Frank

    2016-05-01

    Progress to forecast key space weather parameters using SIFT (Solar Indices Forecasting Tool) with the ADAPT (Air Force Data Assimilative Photospheric flux Transport) model is highlighted in this presentation. Using a magnetic flux transport model, ADAPT, we estimate the solar near-side field distribution that is used as input into empirical models for predicting F10.7(solar 10.7 cm, 2.8 GHz, radio flux), the Mg II core-to-wing ratio, and selected bands of solar far ultraviolet (FUV) and extreme ultraviolet (EUV) irradiance. Input to the ADAPT model includes the inferred photospheric magnetic field from the NISP ground-based instruments, GONG & VSM. Besides a status update regarding ADAPT and SIFT models, we will summarize the findings that: 1) the sum of the absolute value of strong magnetic fields, associated with sunspots, is shown to correlate well with the observed daily F10.7 variability (Henney et al. 2012); and 2) the sum of the absolute value of weak magnetic fields, associated with plage regions, is shown to correlate well with EUV and FUV irradiance variability (Henney et al. 2015). This work utilizes data produced collaboratively between Air Force Research Laboratory (AFRL) and the National Solar Observatory (NSO). The ADAPT model development is supported by AFRL. The input data utilized by ADAPT is obtained by NISP (NSO Integrated Synoptic Program). NSO is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the National Science Foundation (NSF). The 10.7 cm solar radio flux data service, utilized by the ADAPT/SIFT F10.7 forecasting model, is operated by the National Research Council of Canada and National Resources Canada, with the support of the Canadian Space Agency.

  18. Advanced solar panel designs

    NASA Technical Reports Server (NTRS)

    Ralph, E. L.; Linder, E. B.

    1996-01-01

    Solar panel designs that utilize new high-efficiency solar cells and lightweight rigid panel technologies are described. The resulting designs increase the specific power (W/kg) achievable in the near-term and are well suited to meet the demands of higher performance small satellites (smallsats). Advanced solar panel designs have been developed and demonstrated on two NASA SBIR contracts at Applied Solar. The first used 19% efficient, large area (5.5 cm x 6.5 cm) GaAs/Ge solar cells with a lightweight rigid graphite epoxy isogrid substrate configuration. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 60 W/kg with a high potential of achieving 80 W/kg. The second panel design used new 22% efficiency, dual junction GaInP2/GaAs/Ge solar cells combined with a lightweight aluminum core/graphite fiber mesh facesheet substrate. A 1,445 cm(exp 2) coupon was fabricated and tested to demonstrate 105 W/kg with the potential of achieving 115 W/kg. This paper will address the construction details for the GaAs/isogrid and dual-junction GaAs/carbon mesh panel configurations. These are ultimately sized to provide 75 Watts and 119 Watts respectively for smallsats or may be used as modular building blocks for larger systems. GaAs/isogrid and dual-junction GaAs/carbon mesh coupons have been fabricated and tested to successfully demonstrate critical performance parameters and results are also provided here.

  19. Concentrating Solar Power (Fact Sheet)

    SciTech Connect

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  20. Chicago's Solar-Powered Schools.

    ERIC Educational Resources Information Center

    Martin, Gabriela; O'Toole, Mary

    2002-01-01

    Introduces the Chicago Solar Schools Project which promotes solar energy and provides students the opportunity to develop an awareness of the environment. Implements an integrated curriculum approach with the cooperation of community and business. (YDS)