Sample records for fill factor resulting

  1. Estimation of Image Sensor Fill Factor Using a Single Arbitrary Image

    PubMed Central

    Wen, Wei; Khatibi, Siamak

    2017-01-01

    Achieving a high fill factor is a bottleneck problem for capturing high-quality images. There are hardware and software solutions to overcome this problem. In the solutions, the fill factor is known. However, this is an industrial secrecy by most image sensor manufacturers due to its direct effect on the assessment of the sensor quality. In this paper, we propose a method to estimate the fill factor of a camera sensor from an arbitrary single image. The virtual response function of the imaging process and sensor irradiance are estimated from the generation of virtual images. Then the global intensity values of the virtual images are obtained, which are the result of fusing the virtual images into a single, high dynamic range radiance map. A non-linear function is inferred from the original and global intensity values of the virtual images. The fill factor is estimated by the conditional minimum of the inferred function. The method is verified using images of two datasets. The results show that our method estimates the fill factor correctly with significant stability and accuracy from one single arbitrary image according to the low standard deviation of the estimated fill factors from each of images and for each camera. PMID:28335459

  2. The plasma filling factor of coronal bright points. II. Combined EIS and TRACE results

    NASA Astrophysics Data System (ADS)

    Dere, K. P.

    2009-04-01

    Aims: In a previous paper, the volumetric plasma filling factor of coronal bright points was determined from spectra obtained with the Extreme ultraviolet Imaging Spectrometer (EIS). The analysis of these data showed that the median plasma filling factor was 0.015. One interpretation of this result was that the small filling factor was consistent with a single coronal loop with a width of 1-2´´, somewhat below the apparent width. In this paper, higher spatial resolution observations with the Transition Region and Corona Explorer (TRACE) are used to test this interpretation. Methods: Rastered spectra of regions of the quiet Sun were recorded by the EIS during operations with the Hinode satellite. Many of these regions were simultaneously observed with TRACE. Calibrated intensities of Fe xii lines were obtained and images of the quiet corona were constructed from the EIS measurements. Emission measures were determined from the EIS spectra and geometrical widths of coronal bright points were obtained from the TRACE images. Electron densities were determined from density-sensitive line ratios measured with EIS. A comparison of the emission measure and bright point widths with the electron densities yielded the plasma filling factor. Results: The median electron density of coronal bright points is 3 × 109 cm-3 at a temperature of 1.6 × 106 K. The volumetric plasma filling factor of coronal bright points was found to vary from 3 × 10-3 to 0.3 with a median value of 0.04. Conclusions: The current set of EIS and TRACE coronal bright-point observations indicate the median value of their plasma filling factor is 0.04. This can be interpreted as evidence of a considerable subresolution structure in coronal bright points or as the result of a single completely filled plasma loop with widths on the order of 0.2-1.5´´ that has not been spatially resolved in these measurements.

  3. Competition between recombination and extraction of free charges determines the fill factor of organic solar cells

    PubMed Central

    Bartesaghi, Davide; Pérez, Irene del Carmen; Kniepert, Juliane; Roland, Steffen; Turbiez, Mathieu; Neher, Dieter; Koster, L. Jan Anton

    2015-01-01

    Among the parameters that characterize a solar cell and define its power-conversion efficiency, the fill factor is the least well understood, making targeted improvements difficult. Here we quantify the competition between charge extraction and recombination by using a single parameter θ, and we demonstrate that this parameter is directly related to the fill factor of many different bulk-heterojunction solar cells. Our finding is supported by experimental measurements on 15 different donor:acceptor combinations, as well as by drift-diffusion simulations of organic solar cells in which charge-carrier mobilities, recombination rate, light intensity, energy levels and active-layer thickness are all varied over wide ranges to reproduce typical experimental conditions. The results unify the fill factors of several very different donor:acceptor combinations and give insight into why fill factors change so much with thickness, light intensity and materials properties. To achieve fill factors larger than 0.8 requires further improvements in charge transport while reducing recombination. PMID:25947637

  4. SU-E-T-35: A General Fill Factor Definition Serving to Characterise the MLC Misalignment Detection Capabilities of Two-Dimensional Detector Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stelljes, T.S.; Looe, H.K.; Poppe, B.

    Purpose: To present a general definition of the fill factor realistically characterizing the “field coverage”, i.e. the MLC misalignment detection capabilities of a detector array. Methods: According to Gago-Arias et al.{sup 1} the fill factor of a 2D array is defined as the ratio of the area enclosed by the FWHM of the fluence response function KM(x) of a single detector and its cell area defined by the detector spacing. More generally - accounting also for the possible overlap between FWHM’s of neighboured detectors - the fill factor is here defined as that fraction of the sum of the detectormore » cell areas in which a defined MLC misalignment is detectable when the induced percentage signal changes exceed a detection threshold d. Ideally the generalized fill factor may reach 100 %. With user code EGS-chamber and a 2 MeV photon slit beam 0.25 mm wide, both types of the fill factor were calculated for an array with total cell area 100 cm{sup 2} for chamber widths 1–9 mm, using =1mm, d=5%. Results: For single chamber width 5 mm, fill factors were 0.49 (FWHM) and 0.61 (generalized). For chamber width 2 mm the FWHM fill factor was 0.13 whereas the generalized fill factor was 0.32. For chamber widths above 7 mm, the FWHM fill factor exceeds unity, and the general fill factor is exactly 1.00. Conclusions: An updated fill factor definition is introduced which, as a generalization of the FWHM-based definition, more closely estimates the performance of small array chambers and gives a realistic value in the case of overlapping sensitive areas of neighboured chambers. References:{sup 1}A. Gago-Arias, L. Brualla-Gonzalez, D.M. Gonzalez-Castano, F. Gomez, M.S. Garcia, V.L. Vega, J.M. Sueiro, J. Pardo-Montero, “Evaluation of chamber response function influence on IMRT verification using 2D commercial detector arrays,” Phys. Med. Biol. 57, 2005–2020 (2012)« less

  5. Maximum projection designs for computer experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, V. Roshan; Gul, Evren; Ba, Shan

    Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less

  6. Maximum projection designs for computer experiments

    DOE PAGES

    Joseph, V. Roshan; Gul, Evren; Ba, Shan

    2015-03-18

    Space-filling properties are important in designing computer experiments. The traditional maximin and minimax distance designs only consider space-filling in the full dimensional space. This can result in poor projections onto lower dimensional spaces, which is undesirable when only a few factors are active. Restricting maximin distance design to the class of Latin hypercubes can improve one-dimensional projections, but cannot guarantee good space-filling properties in larger subspaces. We propose designs that maximize space-filling properties on projections to all subsets of factors. We call our designs maximum projection designs. As a result, our design criterion can be computed at a cost nomore » more than a design criterion that ignores projection properties.« less

  7. The "collimator monitoring fill factor" of a two-dimensional detector array, a measure of its ability to detect collimation errors.

    PubMed

    Stelljes, Tenzin Sonam; Looe, Hui Khee; Harder, Dietrich; Poppe, Björn

    2017-03-01

    Two-dimensional detector arrays are routinely used for constancy checks and treatment plan verification in photon-beam radiotherapy. In addition to the spatial resolution of the dose profiles, the "coverage" of the radiation field with respect to the detection of any beam collimation deficiency appears as the second characteristic feature of a detector array. The here proposed "collimator monitoring fill factor" (CM fill factor) has been conceived to serve as a quantitative characteristic of this "coverage". The CM fill factor is defined as the probability of a 2D array to detect any collimator position error. Therefore, it is represented by the ratio of the "sensitive area" of a single detector, in which collimator position errors are detectable, and the geometrical "cell area" associated with this detector within the array. Numerical values of the CM fill factor have been Monte Carlo simulated for 2D detector arrays equipped with air-vented ionization chambers, liquid-filled ionization chambers and diode detectors and were compared with the "FWHM fill factor" defined by Gago-Arias et al. (2012). For arrays with vented ionization chambers, the differences between the CM fill factor and the FWHM fill factor are moderate, but occasionally the latter exceeds unity. For narrower detectors such as liquid-filled ionization chambers and Si diodes and for small sampling distances, large differences between the FWHM fill factor and the CM fill factor have been observed. These differences can be explained by the shapes of the fluence response functions of these narrow detectors. A new parameter "collimator monitoring fill factor" (CM fill factor), applicable to quantitate the collimator position error detection probability of a 2D detector array, has been proposed. It is designed as a help in classifying the clinical performance of two-dimensional detector arrays in photon-beam radiotherapy. © 2017 American Association of Physicists in Medicine.

  8. NASA LeRC's Acoustic Fill Effect Test Program and Results

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Mcnelis, Mark E.; Manning, Jerome E.

    1994-01-01

    NASA Lewis Research Center, in conjunction with General Dynamics Space Systems Division, has performed a test program to investigate the acoustic fill effect for an unblanketed payload fairing for a variety of payload simulators. This paper will discuss this test program and fill factor test data, and make comparisons with theoretical predictions. This paper will also address the NASA acoustic fill effect standard which was verified from the test data analysis.

  9. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  10. The Surface Brightness Contribution of II Peg: A Comparison of TiO Band Analysis and Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Senavci, H. V.; O'Neal, D.; Hussain, G. A. J.; Barnes, J. R.

    2015-01-01

    We investigate the surface brightness contribution of the very well known active SB1 binary II Pegasi , to determine the star spot filling factor and the spot temperature parameters. In this context, we analyze 54 spectra of the system taken over 6 nights in September - October of 1996, using the 2.1m Otto Struve Telescope equipped with SES at the McDonald Observatory. We measure the spot temperatures and spot filling factors by fitting TiO molecular bands in this spectroscopic dataset, with model atmosphere approximation using ATLAS9 and with proxy stars obtained with the same instrument. The same dataset is then used to also produce surface spot maps using the Doppler imaging technique. We compare the spot filling factors obtained with the two independent techniques in order to better characterise the spot properties of the system and to better assess the limitations inherent to both techniques. The results obtained from both techniques show that the variation of spot filling factor as a function of phase agree well with each other, while the amount of TiO and DI spot

  11. Spatial evolution of laser filaments in turbulent air

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Zhu, Shiping; Zhou, Shengling; He, Yan

    2018-04-01

    In this study, the spatial evolution properties of laser filament clusters in turbulent air were evaluated using numerical simulations. Various statistical parameters were calculated, such as the percolation probability, filling factor, and average cluster size. The results indicate that turbulence-induced multi-filamentation can be described as a new phase transition universality class. In addition, during this process, the relationship between the average cluster size and filling factor could be fit by a power function. Our results are valuable for applications involving filamentation that can be influenced by the geometrical features of multiple filaments.

  12. Using Temporal Fill Factor to Reduce Frame Reconstruction Rates

    NASA Technical Reports Server (NTRS)

    Larimer, James; Balram, Nikhil; Gille, Jennifer; Luszcz, Jeffery

    1997-01-01

    The newer active matrix display technologies such as TFT-LCD, DMD, PDP maintain their pixel values through the entire frame time, presenting a 100% temporal fill factor, in contrast to the duty cycle produced by the phosphor impulse response of the CRT. This sample-and-hold characteristic can be exploited to lower the displayed frame rate without affecting visual quality. The lower frame rate results in significantly lower transmission bandwidth, power, and cost.

  13. The dynamics of particle disks. III - Dense and spinning particle disks. [development of kinetic theory for planetary rings

    NASA Technical Reports Server (NTRS)

    Araki, Suguru

    1991-01-01

    The kinetic theory of planetary rings developed by Araki and Tremaine (1986) and Araki (1988) is extended and refined, with a focus on the implications of finite particle size: (1) nonlocal collisions and (2) finite filling factors. Consideration is given to the derivation of the equations for the local steady state, the low-optical-depth limit, and the steady state at finite filling factors (including the effects of collision inelasticity, spin degrees of freedom, and self-gravity). Numerical results are presented in extensive graphs and characterized in detail. The importance of distinguishing effects (1) and (2) at low optical depths is stressed, and the existence of vertical density profiles with layered structures at high filling factors is demonstrated.

  14. A Fuzzy Rule-Base Model for Classification of Spirometric FVC Graphs in Chronical Obstructive Pulmonary Diseases

    DTIC Science & Technology

    2001-10-25

    questionnaire was filled out before test which is very important criteria for each subject for investigating are smoking cigarettes, having asthma, chronic...9, 12]. Secondly, observed FVC and FEV1 data plotted are taken under investigation. According to the questionnaire filled out, subjects... questionnaire filled in by each subject on the result of the diagnosing (categorizing FVC graphs) COPD, elimination of erroneous factors affecting

  15. Training the Trainers: Mission Analysis and Support for USAR Training Divisions

    DTIC Science & Technology

    1991-03-25

    the Department of Defense (DOD),! mobilization expansion is a key factor In Limited Mobilization9 or Graduated Military Responseio theories of...less filled units of their personnel to fill earlier deploying units. After stripping units at random with 19 disastrous morale results it was decided...28 assigned) once all companies In the division are filled. This mission is identified in the unit’s Table of Distribution and Allowance ( TDA ) and

  16. Poling-assisted bleaching of soda-lime float glasses containing silver nanoparticles with a decreasing filling factor across the depth

    NASA Astrophysics Data System (ADS)

    Deparis, Olivier; Kazansky, Peter G.; Podlipensky, Alexander; Abdolvand, Amin; Seifert, Gerhard; Graener, Heinrich

    2006-08-01

    The recently discovered poling-assisted bleaching of glass with embedded silver nanoparticles has renewed the interest in thermal poling as a simple, reliable, and low-cost technique for controlling locally the surface-plasmon-resonant optical properties of metal-doped nanocomposite glasses. In the present study, the emphasis is put on the influence of the volume filling factor of metallic clusters on poling-assisted bleaching. Soda-lime silicate glass samples containing spherical silver nanoparticles with a decreasing filling factor across the depth were subject to thermal poling experiments with various poling temperatures, voltages, and times. Optical extinction spectra were measured from ultraviolet to near-infrared ranges and the surface-plasmon-resonant extinction due to silver nanoparticles (around 410nm) was modeled by the Maxwell Garnett [Philos. Trans. R. Soc. London, Ser. A 203, 385 (1904); 205, 237 (1906)] effective medium theory which was adapted in order to take into account the filling factor depth profile. A method was proposed for the retrieval of the filling factor depth profile from optical extinction spectra recorded in fresh and chemically etched samples. A stretched exponential depth profile turned out to be necessary in order to model samples having a high filling factor near the surface. Based on the fact that the electric-field-assisted dissolution of embedded metallic nanoparticles proceeded progressively from the top surface, a bleaching front was defined that moved forward in depth as time elapsed. The position of the bleaching front was determined after each poling experiment by fitting the measured extinction spectrum to the theoretical one. In samples with higher peak value and steeper gradient of the filling factor, the bleaching front reached more rapidly a steady-state depth as poling time increased. Also it increased less strongly with increasing poling voltage. These results were in agreement with the physics of the dissolution process. Finally, clear evidence of injection of hydrogenated ionic species from the atmosphere into the sample during poling was obtained from the growth of the infrared extinction peak associated with OH radicals.

  17. An energy- and depth-dependent model for x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallas, Brandon D.; Boswell, Jonathan S.; Badano, Aldo

    In this paper, we model an x-ray imaging system, paying special attention to the energy- and depth-dependent characteristics of the inputs and interactions: x rays are polychromatic, interaction depth and conversion to optical photons is energy-dependent, optical scattering and the collection efficiency depend on the depth of interaction. The model we construct is a random function of the point process that begins with the distribution of x rays incident on the phosphor and ends with optical photons being detected by the active area of detector pixels to form an image. We show how the point-process representation can be used tomore » calculate the characteristic statistics of the model. We then simulate a Gd{sub 2}O{sub 2}S:Tb phosphor, estimate its characteristic statistics, and proceed with a signal-detection experiment to investigate the impact of the pixel fill factor on detecting spherical calcifications (the signal). The two extremes possible from this experiment are that SNR{sup 2} does not change with fill factor or changes in proportion to fill factor. In our results, the impact of fill factor is between these extremes, and depends on the diameter of the signal.« less

  18. Increasing Polymer Solar Cell Fill Factor by Trap-Filling with F4-TCNQ at Parts Per Thousand Concentration.

    PubMed

    Yan, Han; Manion, Joseph G; Yuan, Mingjian; García de Arquer, F Pelayo; McKeown, George R; Beaupré, Serge; Leclerc, Mario; Sargent, Edward H; Seferos, Dwight S

    2016-08-01

    Intrinsic traps in organic semiconductors can be eliminated by trap-filling with F4-TCNQ. Photovoltaic tests show that devices with F4-TCNQ at parts per thousand concentration outperform control devices due to an improved fill factor. Further studies confirm the trap-filling pathway and demonstrate the general nature of this finding. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials

    NASA Astrophysics Data System (ADS)

    Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan

    2018-05-01

    In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.

  20. Rear surface effects in high efficiency silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenham, S.R.; Robinson, S.J.; Dai, X.

    1994-12-31

    Rear surface effects in PERL solar cells can lead not only to degradation in the short circuit current and open circuit voltage, but also fill factor. Three mechanisms capable of changing the effective rear surface recombination velocity with injection level are identified, two associated with oxidized p-type surfaces, and the third with two dimensional effects associated with a rear floating junction. Each of these will degrade the fill factor if the range of junction biases corresponding to the rear surface transition, coincides with the maximum power point. Despite the identified non idealities, PERL cells with rear floating junctions (PERF cells)more » have achieved record open circuit voltages for silicon solar cells, while simultaneously achieving fill factor improvements relative to standard PERL solar cells. Without optimization, a record efficiency of 22% has been demonstrated for a cell with a rear floating junction. The results of both theoretical and experimental studies are provided.« less

  1. High-surface-area architectures for improved charge transfer kinetics at the dark electrode in dye-sensitized solar cells.

    PubMed

    Hoffeditz, William L; Katz, Michael J; Deria, Pravas; Martinson, Alex B F; Pellin, Michael J; Farha, Omar K; Hupp, Joseph T

    2014-06-11

    Dye-sensitized solar cell (DSC) redox shuttles other than triiodide/iodide have exhibited significantly higher charge transfer resistances at the dark electrode. This often results in poor fill factor, a severe detriment to device performance. Rather than moving to dark electrodes of untested materials that may have higher catalytic activity for specific shuttles, the surface area of platinum dark electrodes could be increased, improving the catalytic activity by simply presenting more catalyst to the shuttle solution. A new copper-based redox shuttle that experiences extremely high charge-transfer resistance at conventional Pt dark electrodes yields cells having fill-factors of less than 0.3. By replacing the standard Pt dark electrode with an inverse opal Pt electrode fabricated via atomic layer deposition, the dark electrode surface area is boosted by ca. 50-fold. The resulting increase in interfacial electron transfer rate (decrease in charge-transfer resistance) nearly doubles the fill factor and therefore the overall energy conversion efficiency, illustrating the utility of this high-area electrode for DSCs.

  2. Advancements in high-power high-brightness laser bars and single emitters for pumping and direct diode application

    NASA Astrophysics Data System (ADS)

    An, Haiyan; Jiang, Ching-Long J.; Xiong, Yihan; Zhang, Qiang; Inyang, Aloysius; Felder, Jason; Lewin, Alexander; Roff, Robert; Heinemann, Stefan; Schmidt, Berthold; Treusch, Georg

    2015-03-01

    We have continuously optimized high fill factor bar and packaging design to increase power and efficiency for thin disc laser system pump application. On the other hand, low fill factor bars packaged on the same direct copper bonded (DCB) cooling platform are used to build multi-kilowatt direct diode laser systems. We have also optimized the single emitter designs for fiber laser pump applications. In this paper, we will give an overview of our recent advances in high power high brightness laser bars and single emitters for pumping and direct diode application. We will present 300W bar development results for our next generation thin disk laser pump source. We will also show recent improvements on slow axis beam quality of low fill factor bar and its application on performance improvement of 4-5 kW TruDiode laser system with BPP of 30 mm*mrad from a 600 μm fiber. Performance and reliability results of single emitter for multiemitter fiber laser pump source will be presented as well.

  3. Utilization of tooth filling services by people with disabilities in Taiwan.

    PubMed

    Chen, Ming-Chuan; Kung, Pei-Tseng; Su, Hsun-Pi; Yen, Suh-May; Chiu, Li-Ting; Tsai, Wen-Chen

    2016-04-05

    The oral condition of people with disabilities has considerable influence on their physical and mental health. However, nationwide surveys regarding this group have not been conducted. For this study, we used the National Health Insurance Research Database to explore the tooth filling utilization among people with disabilities. Using the database of the Ministry of the Interior in 2008 which included people with disabilities registered, we merged with the medical claims database in 2008 of the Bureau of National Health Insurance to calculate the tooth filling utilization and to analyze relative factors. We recruited 993,487 people with disabilities as the research sample. The tooth filling utilization was 17.53 %. The multiple logistic regression result showed that the utilization rate of men was lower than that of women (OR = 0.78, 95 % CI = 0.77-0.79) and older people had lower utilization rates (aged over 75, OR = 0.22, 95 % CI = 0.22-0.23) compared to those under the age of 20. Other factors that significantly influenced the low tooth filling utilization included a low education level, living in less urbanized areas, low economic capacity, dementia, and severe disability. We identified the factors that influence and decrease the tooth-filling service utilization rate: male sex, old age, low education level, being married, indigenous ethnicity, residing in a low urbanization area, low income, chronic circulatory system diseases, dementia, and severe disabilities. We suggest establishing proper medical care environments for high-risk groups to maintain their quality of life.

  4. Analyses of mode filling factor of a laser end-pumped by a LD with high-order transverse modes

    NASA Astrophysics Data System (ADS)

    Han, Juhong; Wang, You; An, Guofei; Rong, Kepeng; Yu, Hang; Wang, Shunyan; Zhang, Wei; Cai, He; Xue, Liangping; Wang, Hongyuan; Zhou, Jie

    2017-05-01

    Although the concept of the mode filling factor (also named as "mode-matching efficiency") has been well discussed decades before, the concept of so-called overlap coefficient is often confused by the laser technicians because there are several different formulae for various engineering purposes. Furthermore, the LD-pumped configurations have become the mainstream of solid-state lasers since their compact size, high optical-to-optical efficiency, low heat generation, etc. As the beam quality of LDs are usually very unsatisfactory, it is necessary to investigate how the mode filling factor of a laser system is affected by a high-powered LD pump source. In this paper, theoretical analyses of an end-pumped laser are carried out based on the normalized overlap coefficient formalism. The study provides a convenient tool to describe the intrinsically complex issue of mode interaction corresponding to a laser and an end-pumped source. The mode filling factor has been studied for many cases in which the pump mode and the laser mode have been considered together in the calculation based on analyses of the rate equations. The results should be applied for analyses of any other types of lasers with the similar optical geometry.

  5. Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays

    DTIC Science & Technology

    2010-02-28

    Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam

  6. Small-bandgap polymer solar cells with unprecedented short-circuit current density and high fill factor.

    PubMed

    Choi, Hyosung; Ko, Seo-Jin; Kim, Taehyo; Morin, Pierre-Olivier; Walker, Bright; Lee, Byoung Hoon; Leclerc, Mario; Kim, Jin Young; Heeger, Alan J

    2015-06-03

    Small-bandgap polymer solar cells (PSCs) with a thick bulk heterojunction film of 340 nm exhibit high power conversion efficiencies of 9.40% resulting from high short-circuit current density (JSC ) of 20.07 mA cm(-2) and fill factor of 0.70. This remarkable efficiency is attributed to maximized light absorption by the thick active layer and minimized recombination by the optimized lateral and vertical morphology through the processing additive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Thickness dependences of solar cell performance

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1982-01-01

    The significance of including factors such as the base resistivity loss for solar cells thicker than 100 microns and emitter and BSF layer recombination for thin cells in predicting the fill factor and efficiency of solar cells is demonstrated analytically. A model for a solar cell is devised with the inclusion of the dopant impurity concentration profile, variation of the electron and hole mobility with dopant concentration, the concentration and thermal capture and emission rates of the recombination center, device temperature, the AM1 spectra and the Si absorption coefficient. Device equations were solved by means of the transmission line technique. The analytical results were compared with those of low-level theory for cell performance. Significant differences in predictions of the fill factor resulted, and inaccuracies in the low-level approximations are discussed.

  8. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice.

    PubMed

    Schmidt, Romy; Schippers, Jos H M; Mieulet, Delphine; Watanabe, Mutsumi; Hoefgen, Rainer; Guiderdoni, Emmanuel; Mueller-Roeber, Bernd

    2014-02-01

    Grain quality is an important agricultural trait that is mainly determined by grain size and composition. Here, we characterize the role of the rice transcription factor (TF) SALT-RESPONSIVE ERF1 (SERF1) during grain development. Through genome-wide expression profiling and chromatin immunoprecipitation, we found that SERF1 directly regulates RICE PROLAMIN-BOX BINDING FACTOR (RPBF), a TF that functions as a positive regulator of grain filling. Loss of SERF1 enhances RPBF expression resulting in larger grains with increased starch content, while SERF1 overexpression represses RPBF resulting in smaller grains. Consistently, during grain filling, starch biosynthesis genes such as GRANULE-BOUND STARCH SYNTHASEI (GBSSI), STARCH SYNTHASEI (SSI), SSIIIa, and ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT2 (AGPL2) are up-regulated in SERF1 knockout grains. Moreover, SERF1 is a direct upstream regulator of GBSSI. In addition, SERF1 negatively regulates germination by controlling RPBF expression, which mediates the gibberellic acid (GA)-induced expression of RICE AMYLASE1A (RAmy1A). Loss of SERF1 results in more rapid seedling establishment, while SERF1 overexpression has the opposite effect. Our study reveals that SERF1 represents a negative regulator of grain filling and seedling establishment by timing the expression of RPBF.

  9. Influence of fundamental mode fill factor on disk laser output power and laser beam quality

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiyong; Yang, Zhuo; Shao, Xichun; Li, Wei; Zhu, Mengzhen

    2017-11-01

    An three-dimensional numerical model based on finite element method and Fox-Li method with angular spectrum diffraction theoy is developed to calculate the output power and power density distribution of Yb:YAG disk laser. We invest the influence of fundamental mode fill factor(the ratio of fundamental mode size and pump spot size) on the output power and laser beam quality. Due to aspherical aberration and soft aperture effect in laser disk, high beam quality can be achieve with relative lower efficiency. The highest output power of fundamental laser mode is influenced by the fundamental mode fill factor. Besides we find that optimal mode fill factor increase with pump spot size.

  10. Extracting Information about the Electronic Quality of Organic Solar-Cell Absorbers from Fill Factor and Thickness

    NASA Astrophysics Data System (ADS)

    Kaienburg, Pascal; Rau, Uwe; Kirchartz, Thomas

    2016-08-01

    Understanding the fill factor in organic solar cells remains challenging due to its complex dependence on a multitude of parameters. By means of drift-diffusion simulations, we thoroughly analyze the fill factor of such low-mobility systems and demonstrate its dependence on a collection coefficient defined in this work. We systematically discuss the effect of different recombination mechanisms, space-charge regions, and contact properties. Based on these findings, we are able to interpret the thickness dependence of the fill factor for different experimental studies from the literature. The presented model provides a facile method to extract the photoactive layer's electronic quality which is of particular importance for the fill factor. We illustrate that over the past 15 years, the electronic quality has not been continuously improved, although organic solar-cell efficiencies increased steadily over the same period of time. Only recent reports show the synthesis of polymers for semiconducting films of high electronic quality that are able to produce new efficiency records.

  11. Thermodynamic models for bounding pressurant mass requirements of cryogenic tanks

    NASA Technical Reports Server (NTRS)

    Vandresar, Neil T.; Haberbusch, Mark S.

    1994-01-01

    Thermodynamic models have been formulated to predict lower and upper bounds for the mass of pressurant gas required to pressurize a cryogenic tank and then expel liquid from the tank. Limiting conditions are based on either thermal equilibrium or zero energy exchange between the pressurant gas and initial tank contents. The models are independent of gravity level and allow specification of autogenous or non-condensible pressurants. Partial liquid fill levels may be specified for initial and final conditions. Model predictions are shown to successfully bound results from limited normal-gravity tests with condensable and non-condensable pressurant gases. Representative maximum collapse factor maps are presented for liquid hydrogen to show the effects of initial and final fill level on the range of pressurant gas requirements. Maximum collapse factors occur for partial expulsions with large final liquid fill fractions.

  12. Solution-processed small molecule:fullerene bulk-heterojunction solar cells: impedance spectroscopy deduced bulk and interfacial limits to fill-factors.

    PubMed

    Guerrero, Antonio; Loser, Stephen; Garcia-Belmonte, Germà; Bruns, Carson J; Smith, Jeremy; Miyauchi, Hiroyuki; Stupp, Samuel I; Bisquert, Juan; Marks, Tobin J

    2013-10-21

    Using impedance spectroscopy, we demonstrate that the low fill factor (FF) typically observed in small molecule solar cells is due to hindered carrier transport through the active layer and hindered charge transfer through the anode interfacial layer (IFL). By carefully tuning the active layer thickness and anode IFL in BDT(TDPP)2 solar cells, the FF is increased from 33 to 55% and the PCE from 1.9 to 3.8%. These results underscore the importance of simultaneously optimizing active layer thickness and IFL in small molecule solar cells.

  13. First third filling parameters of left ventricle assessed from gated equilibrium studies in patients with various heart diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adatepe, M.H.; Nichols, K.; Powell, O.M.

    1984-01-01

    The authors determined the first third filling fraction (1/3 FF), the maximum filling rate (1/3 FR) and the mean filling rate (1/3 MFR) for the first third diastolic filling period of the left ventricle in patients with coronary artery disease (CAD), valvular heart disease (VHD), pericardial effusion (PE), cardiomyopathies (CM), chronic obstructive lung disease (COPD) and in 5 normals-all from resting gated equilibrium studies. Parameters are calculated from the third order Fourier fit to the LV volume curve and its derivative. 1/3 FF% = 1/3 diastolic count - end systolic count / 1/3 diastolic count x 100. Patients with CADmore » are divided into two groups: Group I with normal ejection fraction (EF) and wall motion (WM); Group II with abnormal EF and WM. Results are shown in the table. Abnormal filling parameters are found not only in CAD but in VHD, PE and CM. The authors conclude that the first third LV filling parameters are sensitive but non-specific indicators of filling abnormalities caused by diverse etiologic factors. Abnormal first third filling parameters may occur in the presence of a normal resting EF and WM in CAD.« less

  14. Optical properties study of nano-composite filled D shape photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  15. ASRM Case Insulation development

    NASA Technical Reports Server (NTRS)

    Tam, W. F. S.; Bell, M.

    1993-01-01

    The ASRM Case Insulation Program used design of experiments to develop a high performance case insulation. The program traded-off more than thirty properties in areas of ablation performance, material properties, processibility, bonding/aging. Kevlar pulp was found to be the most significant factor. The low-molecular weight ethylene propylene diene monomer, EPDM was the second most significant factor. The curative was the third most significant factor. The tackifier was the fourth most significant factor. The stripwinding process for applying the insulation onto the case inner surfaces was also studied. The parameters selected for experiment were extruder speed, upper roller temperature and extruder nozzle temperature. The extrudability results showed that non-Kevlar filled formulations displayed optimum edges but poor thickness continuity. High Kevlar filled formulations displayed optimum thickness continuity but poor strip edge ratings.

  16. ASRM Case Insulation development

    NASA Astrophysics Data System (ADS)

    Tam, W. F. S.; Bell, M.

    1993-06-01

    The ASRM Case Insulation Program used design of experiments to develop a high performance case insulation. The program traded-off more than thirty properties in areas of ablation performance, material properties, processibility, bonding/aging. Kevlar pulp was found to be the most significant factor. The low-molecular weight ethylene propylene diene monomer, EPDM was the second most significant factor. The curative was the third most significant factor. The tackifier was the fourth most significant factor. The stripwinding process for applying the insulation onto the case inner surfaces was also studied. The parameters selected for experiment were extruder speed, upper roller temperature and extruder nozzle temperature. The extrudability results showed that non-Kevlar filled formulations displayed optimum edges but poor thickness continuity. High Kevlar filled formulations displayed optimum thickness continuity but poor strip edge ratings.

  17. Experimental study on energy absorption of foam filled kraft paper honeycomb subjected to quasi-static uniform compression loading

    NASA Astrophysics Data System (ADS)

    Abd Kadir, N.; Aminanda, Y.; Ibrahim, M. S.; Mokhtar, H.

    2016-10-01

    A statistical analysis was performed to evaluate the effect of factor and to obtain the optimum configuration of Kraft paper honeycomb. The factors considered in this study include density of paper, thickness of paper and cell size of honeycomb. Based on three level factorial design, two-factor interaction model (2FI) was developed to correlate the factors with specific energy absorption and specific compression strength. From the analysis of variance (ANOVA), the most influential factor on responses and the optimum configuration was identified. After that, Kraft paper honeycomb with optimum configuration is used to fabricate foam-filled paper honeycomb with five different densities of polyurethane foam as filler (31.8, 32.7, 44.5, 45.7, 52 kg/m3). The foam-filled paper honeycomb is subjected to quasi-static compression loading. Failure mechanism of the foam-filled honeycomb was identified, analyzed and compared with the unfilled paper honeycomb. The peak force and energy absorption capability of foam-filled paper honeycomb are increased up to 32% and 30%, respectively, compared to the summation of individual components.

  18. Determination of sendust intrinsic permeability from microwave constitutive parameters of composites with sendust spheres and flakes

    NASA Astrophysics Data System (ADS)

    Starostenko, Sergey N.; Rozanov, Konstantin N.; Shiryaev, Artem O.; Shalygin, Alexander N.; Lagarkov, Andrey N.

    2017-06-01

    Intrinsic permeability of sendust alloys is determined from the measured microwave permittivity and permeability of composites filled with either spherical or flaky sendust powders. The permittivity and permeability measurements are performed applying the coaxial reflection-transmission technique in the 0.05 to 18 GHz frequency range. The effects of the filling factor, inclusion shape, and size on composite constitutive parameters are discussed. The permeability of metal inclusion is retrieved from the measured permeability of composites using a generalized Maxwell Garnett equation that accounts for the percolation threshold. The equation parameters are found by fitting the measured dependence of composite permittivity and permeability on frequency and filling. The inclusion dimensions calculated from the found parameters agree with the results of grain-size analyses. The alloy intrinsic permeability is retrieved from inclusion permeability with the account for skinning. The fitted frequency and damping factor of ferromagnetic resonance depend on the inclusion shape. The calculated reflectivity map of the flake-filled composite shows that sendust powders are promising fillers for interference suppressors and microwave absorbers at frequencies close to 1 GHz.

  19. Mathematical modelling of anisotropy of illite-rich shale

    USGS Publications Warehouse

    Chesnokov, E.M.; Tiwary, D.K.; Bayuk, I.O.; Sparkman, M.A.; Brown, R.L.

    2009-01-01

    The estimation of illite-rich shale anisotropy to account for the alignment of clays and gas- or brine-filled cracks is presented via mathematical modelling. Such estimation requires analysis to interpret the dominance of one effect over another. This knowledge can help to evaluate the permeability in the unconventional reservoir, stress orientation, and the seal capacity for the conventional reservoir. Effective media modelling is used to predict the elastic properties of the illite-rich shale and to identify the dominant contributions to the shale anisotropy. We consider two principal reasons of the shale anisotropy: orientation of clay platelets and orientation of fluid-filled cracks. In reality, both of these two factors affect the shale anisotropy. The goal of this study is, first, to separately analyse the effect of these two factors to reveal the specific features in P- and S-wave velocity behaviour typical of each of the factors, and, then, consider a combined effect of the factors when the cracks are horizontally or vertically aligned. To do this, we construct four models of shale. The behaviour of P- and S-wave velocities is analysed when gas- and water-filled cracks embedded in a host matrix are randomly oriented, or horizontally or vertically aligned. The host matrix can be either isotropic or anisotropic (of VTI symmetry). In such a modelling, we use published data on mineralogy and clay platelet alignment along with other micromechanical measurements. In the model, where the host matrix is isotropic, the presence of a singularity point (when the difference VS1 - VS2 changes its sign) in shear wave velocities is an indicator of brine-filled aligned cracks. In the model with the VTI host matrix and horizontally aligned cracks filled with gas, an increase in their volume concentration leads to that the azimuth at which the singularity is observed moves toward the symmetry axis. In this case, if the clay content is small (around 20 per cent), the singularity point may even vanish. The Thomsen parameters are helpful in fluid type indication in shale. An indicator of gas-filled aligned cracks is ?? > ??. If aligned cracks in illite-rich shale are brine-filled, ?? < ??. Negative value of ?? indicates brine-filled cracks in illite-rich shale. A shale with brine-filled cracks exhibits higher Vp/Vs ratio in the vertical direction as compared to the gas-filled shale. A disorientation of clay platelets and brine-filled cracks may lead to that the singularity point is absent for brine-saturated shale as well. In this case one can also observe ?? > ?? and decreased values of Vp/Vs in the vertical direction as in the case of gas-filled cracks. In the presence of vertically aligned cracks, shales exhibit distinctly revealed features of orthorhombic symmetry. The results have important applications where seismic measurements are applied to predict the maturity state of the shale. ?? 2009 The Authors Journal compilation ?? 2009 RAS.

  20. Open circuit voltage-decay behavior in amorphous p-i-n solar due to injection

    NASA Astrophysics Data System (ADS)

    Smrity, Manu; Dhariwal, S. R.

    2018-05-01

    The paper deals with the basic recombination processes at the dangling bond and the band tail states at various levels of injection, expressed in terms of short-circuit current density and their role in the behavior of amorphous solar cells. As the level of injection increases the fill factor decreases whereas the open circuit voltage increases very slowly, showing a saturation tendency. Calculations have been done for two values of tail state densities and shows that with an increase in tail state densities both, the fill factor and open circuit voltage decreases, results an overall degradation of the solar cell.

  1. Determinants of immediate price impacts at the trade level in an emerging order-driven market

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing

    2012-02-01

    Common wisdom argues that, in general, large trades cause large price changes, whereas small trades cause small price changes. However, for extremely large price changes, the trade size and news play a minor role, while liquidity (especially price gaps on the limit order book) is a more influential factor. Hence, there might be other factors influencing the immediate price impacts of trades. In this paper, through mechanical analysis of price variations before and after a trade of arbitrary size, we identify that the trade size, the bid-ask spread, the price gaps and the outstanding volumes at the bid and ask sides of the limit order book have an impact on the changes in prices. We propose two regression models to investigate the influence of these microscopic factors on the price impact of buyer-initiated partially filled trades, seller-initiated partially filled trades, buyer-initiated filled trades and seller-initiated filled trades. We find that they have quantitatively similar explanatory powers and these factors can account for up to 44% of the price impacts. Large trade sizes, wide bid-ask spreads, high liquidity at the same side and low liquidity at the opposite side will cause a large price impact. We also find that the liquidity at the opposite side has a more influential impact than the liquidity at the same side. Our results shed new light on the determinants of immediate price impacts.

  2. Urothelium update: how the bladder mucosa measures bladder filling.

    PubMed

    Janssen, D A W; Schalken, J A; Heesakkers, J P F A

    2017-06-01

    This review critically evaluates the evidence on mechanoreceptors and pathways in the bladder urothelium that are involved in normal bladder filling signalling. Evidence from in vitro and in vivo studies on (i) signalling pathways like the adenosine triphosphate pathway, cholinergic pathway and nitric oxide and adrenergic pathway, and (ii) different urothelial receptors that are involved in bladder filling signalling like purinergic receptors, sodium channels and TRP channels will be evaluated. Other potential pathways and receptors will also be discussed. Bladder filling results in continuous changes in bladder wall stretch and exposure to urine. Both barrier and afferent signalling functions in the urothelium are constantly adapting to cope with these dynamics. Current evidence shows that the bladder mucosa hosts essential pathways and receptors that mediate bladder filling signalling. Intracellular calcium ion increase is a dominant factor in this signalling process. However, there is still no complete understanding how interacting receptors and pathways create a bladder filling signal. Currently, there are still novel receptors investigated that could also be participating in bladder filling signalling. Normal bladder filling sensation is dependent on multiple interacting mechanoreceptors and signalling pathways. Research efforts need to focus on how these pathways and receptors interact to fully understand normal bladder filling signalling. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  3. On the generation of a bubbly universe - A quantitative assessment of the CfA slice

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Strassler, M. J.

    1989-01-01

    A first attempt is made to calculate the properties of the matter distribution in a universe filled with overlapping bubbles produced by multiple explosions. Each spherical shell follows the cosmological Sedov-Taylor solution until it encounters another shell. Thereafter, mergers are allowed to occur in pairs on the basis of N-body results. At the final epoch, the matrix of overlapping shells is populated with 'galaxies' and the properties of slices through the numerically constructed cube compare well with CfA survey results for specified initial conditions. A statistic is found which measures the distance distribution from uniformly distributed points to the nearest galaxies on the projected plane which appears to provide a good measure of the bubbly character of the galaxy distribution. In a quantitative analysis of the CfA 'slice of the universe', a very good match is found between simulation and the real data for final average bubble radii of (13.5 + or - 1.5)/h Mpc with formal filling factor 1.0-1.5 or actual filling factor of 65-80 percent.

  4. Effects of natural and human factors on groundwater quality of basin-fill aquifers in the southwestern United States-conceptual models for selected contaminants

    USGS Publications Warehouse

    Bexfield, Laura M.; Thiros, Susan A.; Anning, David W.; Huntington, Jena M.; McKinney, Tim S.

    2011-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, the Southwest Principal Aquifers (SWPA) study is building a better understanding of the factors that affect water quality in basin-fill aquifers in the Southwestern United States. The SWPA study area includes four principal aquifers of the United States: the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; the Rio Grande aquifer system in New Mexico and Colorado; and the California Coastal Basin and Central Valley aquifer systems in California. Similarities in the hydrogeology, land- and water-use practices, and water-quality issues for alluvial basins within the study area allow for regional analysis through synthesis of the baseline knowledge of groundwater-quality conditions in basins previously studied by the NAWQA Program. Resulting improvements in the understanding of the sources, movement, and fate of contaminants are assisting in the development of tools used to assess aquifer susceptibility and vulnerability.This report synthesizes previously published information about the groundwater systems and water quality of 15 information-rich basin-fill aquifers (SWPA case-study basins) into conceptual models of the primary natural and human factors commonly affecting groundwater quality with respect to selected contaminants, thereby helping to build a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to those contaminants. Four relatively common contaminants (dissolved solids, nitrate, arsenic, and uranium) and two contaminant classes (volatile organic compounds (VOCs) and pesticide compounds) were investigated for sources and controls affecting their occurrence and distribution above specified levels of concern in groundwater of the case-study basins. Conceptual models of factors that are important to aquifer vulnerability with respect to those contaminants and contaminant classes were subsequently formed. The conceptual models are intended in part to provide a foundation for subsequent development of regional-scale statistical models that relate specific constituent concentrations or occurrence in groundwater to natural and human factors.

  5. Structure and Filling Characteristics of Paleokarst Reservoirs in the Northern Tarim Basin, Revealed by Outcrop, Core and Borehole Images

    NASA Astrophysics Data System (ADS)

    Tian, Fei; Lu, Xinbian; Zheng, Songqing; Zhang, Hongfang; Rong, Yuanshuai; Yang, Debin; Liu, Naigui

    2017-06-01

    The Ordovician paleokarst reservoirs in the Tahe oilfield, with burial depths of over 5300 m, experienced multiple phases of geologic processes and exhibit strong heterogeneity. Core testing can be used to analyse the characteristics of typical points at the centimetre scale, and seismic datasets can reveal the macroscopic outlines of reservoirs at the >10-m scale. However, neither method can identify caves, cave fills and fractures at the meter scale. Guided by outcrop investigations and calibrations based on core sample observations, this paper describes the interpretation of high longitudinal resolution borehole images, the identification of the characteristics of caves, cave fills (sedimentary, breccia and chemical fills) and fractures in single wells, and the identification of structures and fill characteristics at the meter scale in the strongly heterogeneous paleokarst reservoirs. The paleogeomorphology, a major controlling factor in the distribution of paleokarst reservoirs, was also analysed. The results show that one well can penetrate multiple cave layers of various sizes and that the caves are filled with multiple types of fill. The paleogeomorphology can be divided into highlands, slopes and depressions, which controlled the structure and fill characteristics of the paleokarst reservoirs. The results of this study can provide fundamental meter-scale datasets for interpreting detailed geologic features of deeply buried paleocaves, can be used to connect core- and seismic-scale interpretations, and can provide support for the recognition and development of these strongly heterogeneous reservoirs.

  6. Different Signatures of the Total Filling Factor 1 State

    NASA Astrophysics Data System (ADS)

    Tiemann, Lars; Yoon, Youngsoo; Schmult, Stefan; Hauser, Maik; Dietsche, Werner; von Klitzing, Klaus

    2009-03-01

    Bringing two 2-dimensional electron systems in close proximity can yield a correlated state as the electrons will experience the presence of the neighboring system. At the individual filling factors of 1/2 this leads to a new double-layer ground state as positive and negative charges from opposite layers couple to excitons. Many remarkable properties were found such as vanishing Hall and longitudinal resistances in the counterflow configuration [1], a resonantly enhanced zero bias tunneling peak [2], and more recently, a critical DC tunneling current and vanishingly small interlayer resistances in DC measurements [3]. We will show how it is possible to combine the results of these three different measurements into a consistent picture. Under certain conditions it is possible to exceed the critical currents but still observe a minimum at total filling factor 1 in the counterflow configuration.[1] M. Kellogg et al. PRL 93, 036801 (2004); E. Tutuc et al. PRL 93, 036802 (2004)[2] I.B. Spielman et al., PRL 87, 036803 (2001)[3] L. Tiemann et al., New Journal of Physics 10, 045018 (2008)

  7. Relative elemental abundance and heating constraints determined for the solar corona from SERTS measurements

    NASA Technical Reports Server (NTRS)

    Falconer, David A.

    1994-01-01

    Intensities of EUV spectral lines were measured as a function of radius off the solar limb by two flights of Goddard's Solar EUV Rocket Telescope and Spectrograph (SERTS) for three quiet sun regions. The density scale height, line-ratio densities, line-ratio temperatures, and emission measures were determined. The line-ratio temperature determined from the ionization balances of Arnaud and Rothenflug (1985) were more self-consistent than the line-ratio temperatures obtained from the values of Arnaud and Raymond (1992). Limits on the filling factor were determined from the emission measure and the line-ratio densities for all three regions. The relative abundances of silicon, aluminum, and chromium to iron were determined. Results did agree with standard coronal relative elemental abundances for one observation, but did not agree for another. Aluminum was overabundant while silicon was underabundant. Heating was required above 1.15 solar radii for all three regions studied. For two regions, local nonconductive heating is needed for any filling factor, and in all three regions for filling factor of 0.1.

  8. Rangewide determinants of population performance in Prunus lusitanica: Lessons for the contemporary conservation of a Tertiary relict tree

    NASA Astrophysics Data System (ADS)

    Pardo, Adara; Cáceres, Yonatan; Pulido, Fernando

    2018-01-01

    Relict species are an extremely important part of biodiversity and as such studies on the factors that allow their current persistence are required. The aim of this study was to assess the determinants of the distribution and range-wide population performance of the Tertiary relict tree Prunus lusitanica L. This threatened species is confined to Iberia, Northern Morocco and Macaronesia with a fragmented and scattered distribution. Using ecological niche modelling, we calculated the level of range filling across the range and tested its relationship with human impact. We then assessed the relative importance of climatic suitability as obtained through niche modelling, topographic factors and contemporary human impact on range-wide population performance. Results showed that the species occupies only 2.4% of the overall area predicted to be climatically suitable for its presence and the level of range filling varied across regions. A weak negative relationship among range filling and human impact was found. Overall climatic suitability was the strongest predictor of population performance. However, it showed high variability across regions: the effect was positive in Iberia whereas negative but not significant in Macaronesia and Morocco. Human impact showed a significant negative effect and finally topographic factors such as altitude had a minor negative effect. Our results highlight that both climate and human impact play a major role in the current limited range filling and performance of the species. Management plans to minimize anthropogenic disturbances together with reforestation measures are urgently needed in order to conserve this unique species.

  9. ECO fill: automated fill modification to support late-stage design changes

    NASA Astrophysics Data System (ADS)

    Davis, Greg; Wilson, Jeff; Yu, J. J.; Chiu, Anderson; Chuang, Yao-Jen; Yang, Ricky

    2014-03-01

    One of the most critical factors in achieving a positive return for a design is ensuring the design not only meets performance specifications, but also produces sufficient yield to meet the market demand. The goal of design for manufacturability (DFM) technology is to enable designers to address manufacturing requirements during the design process. While new cell-based, DP-aware, and net-aware fill technologies have emerged to provide the designer with automated fill engines that support these new fill requirements, design changes that arrive late in the tapeout process (as engineering change orders, or ECOs) can have a disproportionate effect on tapeout schedules, due to the complexity of replacing fill. If not handled effectively, the impacts on file size, run time, and timing closure can significantly extend the tapeout process. In this paper, the authors examine changes to design flow methodology, supported by new fill technology, that enable efficient, fast, and accurate adjustments to metal fill late in the design process. We present an ECO fill methodology coupled with the support of advanced fill tools that can quickly locate the portion of the design affected by the change, remove and replace only the fill in that area, while maintaining the fill hierarchy. This new fill approach effectively reduces run time, contains fill file size, minimizes timing impact, and minimizes mask costs due to ECO-driven fill changes, all of which are critical factors to ensuring time-to-market schedules are maintained.

  10. Conceptual understanding and groundwater quality of selected basin-fill aquifers in the Southwestern United States

    USGS Publications Warehouse

    Thiros, Susan A.; Bexfield, Laura M.; Anning, David W.; Huntington, Jena M.

    2010-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey has been conducting a regional analysis of water quality in the principal aquifer systems in the southwestern United States (hereinafter, “Southwest”) since 2005. Part of the NAWQA Program, the objective of the Southwest Principal Aquifers (SWPA) study is to develop a better understanding of water quality in basin-fill aquifers in the region by synthesizing information from case studies of 15 basins into a common set of important natural and human-related factors found to affect groundwater quality.The synthesis consists of three major components:1. Summary of current knowledge about the groundwater systems, and the status of, changes in, and influential factors affecting quality of groundwater in basin-fill aquifers in 15 basins previously studied by NAWQA (this report).2. Development of a conceptual model of the primary natural and human-related factors commonly affecting groundwater quality, thereby building a regional understanding of the susceptibility and vulnerability of basin-fill aquifers to contaminants.3. Development of statistical models that relate the concentration or occurrence of specific chemical constituents in groundwater to natural and human-related factors linked to the susceptibility and vulnerability of basin-fill aquifers to contamination.Basin-fill aquifers occur in about 200,000 mi2 of the 410,000 mi2 SWPA study area and are the primary source of groundwater supply for cities and agricultural communities. Four of the principal aquifers or aquifer systems of the United States are included in the basin-fill aquifers of the study area: (1) the Basin and Range basin-fill aquifers in California, Nevada, Utah, and Arizona; (2) the Rio Grande aquifer system in New Mexico and Colorado; (3) the California Coastal Basin aquifers; and (4) the Central Valley aquifer system in California. Because of the generally limited availability of surface-water supplies in the arid to semiarid climate, cultural and economic activities in the Southwest are particularly dependent on supplies of good-quality groundwater. Irrigation and public-supply withdrawals from basin-fill aquifers in the study area account for about one quarter of the total withdrawals from all aquifers in the United States.Many factors influence the quality of groundwater in the 15 case-study basins, but some common factors emerge from the basin summaries presented in this report. These factors include the chemical composition of the recharge water, consolidated rock geology and composition of aquifer materials derived from consolidated rock, and land and water use. The major water-quality issues in many of the developed case-study basins are increased concentrations of dissolved solids, nitrate, and VOCs in groundwater as a result of human activities.The information presented and the citations listed in this report serve as a resource for those interested in the groundwater-flow systems in the NAWQA case-study basins. The summaries of water-development history, hydrogeology, conceptual understanding of the groundwater system under both predevelopment and modern conditions, and effects of natural and human-related factors on groundwater quality presented in the sections on each basin also serve as a foundation for the synthesis and modeling phases of the SWPA regional study.

  11. Antibiotic Prescription Fills for Acute Conjunctivitis among Enrollees in a Large United States Managed Care Network.

    PubMed

    Shekhawat, Nakul S; Shtein, Roni M; Blachley, Taylor S; Stein, Joshua D

    2017-08-01

    Antibiotics are seldom necessary to treat acute conjunctivitis. We assessed how frequently patients with newly diagnosed acute conjunctivitis fill prescriptions for topical antibiotics and factors associated with antibiotic prescription fills. Retrospective, observational cohort study. A total of 340 372 enrollees in a large nationwide United States managed care network with newly diagnosed acute conjunctivitis, from 2001 through 2014. We identified all enrollees newly diagnosed with acute conjunctivitis, calculating the proportion filling 1 or more topical antibiotic prescription within 14 days of initial diagnosis. Multivariate logistic regression assessed sociodemographic, medical, and other factors associated with antibiotic prescription fills for acute conjunctivitis. Geographic variation in prescription fills also was studied. Odds ratios (ORs) with 95% confidence intervals (CIs) for filling an antibiotic prescription for acute conjunctivitis. Among 340 372 enrollees with acute conjunctivitis, 198 462 (58%) filled ≥1 topical antibiotic prescriptions; 38 774 filled prescriptions for antibiotic-corticosteroid combination products. Compared with whites, blacks (OR, 0.89; 95% CI, 0.86-0.92) and Latinos (OR, 0.83; 95% CI, 0.81-0.86) had lower odds of filling antibiotic prescriptions. More affluent and educated enrollees had higher odds of filling antibiotic prescriptions compared with those with lesser affluence and education (P < 0.01 for all). Compared with persons initially diagnosed with acute conjunctivitis by ophthalmologists, enrollees had considerably higher odds of antibiotic prescription fills if first diagnosed by an optometrist (OR, 1.26; 95% CI, 1.21-1.31), urgent care physician (OR, 3.29; 95% CI, 3.17-3.41), internist (OR, 2.79; 95% CI, 2.69-2.90), pediatrician (OR, 2.27; 95% CI, 2.13-2.43), or family practitioner (OR, 2.46; 95% CI, 2.37-2.55). Antibiotic prescription fills did not differ for persons with versus without risk factors for development of serious infections, such as contact lens wearers (P = 0.21) or patients with human immunodeficiency virus infection or AIDS (P = 0.60). Nearly 60% of enrollees in this managed care network filled antibiotic prescriptions for acute conjunctivitis, and 1 of every 5 antibiotic users filled prescriptions for antibiotic-corticosteroids, which are contraindicated for acute conjunctivitis. These potentially harmful practices may prolong infection duration, may promote antibiotic resistance, and increase costs. Filling antibiotic prescriptions seems to be driven more by sociodemographic factors and type of provider diagnosing the enrollee than by medical indication. Copyright © 2017 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  12. Dental metal-induced innate reactivity in keratinocytes.

    PubMed

    Mortazavi, S M J; Mortazavi, Ghazal; Paknahad, Maryam

    2016-06-01

    In their paper that is published in Toxicology in Vitro, Rachmawati et al. have recently claimed that in spite of the growing concern about the safety of amalgam, negative reports about the health effects of dental amalgam are still scarce or controversial. Substantial evidence indicates that mercury release from dental amalgam fillings may adversely affect human health. Over the past years, we have shown that exposure to electromagnetic fields (EMFs) can increase the release of mercury from dental amalgam fillings. It is worth mentioning that the results of investigations on the microleakage of amalgam fillings following MRI have confirmed our results. Furthermore, exposure to X-rays as a part of the electromagnetic spectrum has also been linked to increased mercury release from dental amalgam fillings. Considering the explosive rise in human exposure to electromagnetic fields, the role of human exposure to EMF as a key factor in increasing the release of mercury from dental amalgam restorations cannot be simply ignored. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Major factors controlling fracture development in the Middle Permian Lucaogou Formation tight oil reservoir, Junggar Basin, NW China

    NASA Astrophysics Data System (ADS)

    Zhang, Chen; Zhu, Deyu; Luo, Qun; Liu, Luofu; Liu, Dongdong; Yan, Lin; Zhang, Yunzhao

    2017-09-01

    Natural fractures in seven wells from the Middle Permian Lucaogou Formation in the Junggar Basin were evaluated in light of regional structural evolution, tight reservoir geochemistry (including TOC and mineral composition), carbon and oxygen isotopes of calcite-filled fractures, and acoustic emission (AE). Factors controlling the development of natural fractures were analyzed using qualitative and/or semi-quantitative techniques, with results showing that tectonic factors are the primary control on fracture development in the Middle Permian Lucaogou Formation of the Junggar Basin. Analyses of calcite, dolomite, and TOC show positive correlations with the number of fractures, while deltaic lithofacies appear to be the most favorable for fracture development. Mineral content was found to be a major control on tectonic fracture development, while TOC content and sedimentary facies mainly control bedding fractures. Carbon and oxygen isotopes vary greatly in calcite-filled fractures (δ13C ranges from 0.87‰ to 7.98‰, while δ18O ranges from -12.63‰ to -5.65‰), indicating that fracture development increases with intensified tectonic activity or enhanced diagenetic alteration. By analyzing the cross-cutting relationships of fractures in core, as well as four Kaiser Effect points in the acoustic emission curve, we observed four stages of tectonic fracture development. First-stage fractures are extensional, and were generated in the late Triassic, with calcite fracture fills formed between 36.51 °C and 56.89 °C. Second-stage fractures are shear fractures caused by extrusion stress from the southwest to the northeast, generated by the rapid uplift of the Tianshan in the Middle and Late Jurassic; calcite fracture fills formed between 62.91 °C and 69.88 °C. Third-stage fractures are NNW-trending shear fractures that resulted from north-south extrusion and thrusting in a foreland depression along the front of the Early Cretaceous Bogda Mountains. Calcite fracture fills formed between 81.74 °C and 85.43 °C. Fourth-stage fractures inherited the tectonic framework of the third stage, resulting in fractures with the same orientation, but without calcite filling. By differentiating the various stages of fracture development, we were able to better understand the origin of fractures in tight oil reservoirs and their significance for exploration and development.

  14. Investigating Liquid Leak from Pre-Filled Syringes upon Needle Shield Removal: Effect of Air Bubble Pressure.

    PubMed

    Chan, Edwin; Maa, Yuh-Fun; Overcashier, David; Hsu, Chung C

    2011-01-01

    This study is to investigate the effect of headspace air pressure in pre-filled syringes on liquid leak (dripping) from the syringe needle upon needle shield removal. Drip tests to measure drip quantity were performed on syringes manually filled with 0.5 or 1.0 mL of various aqueous solutions. Parameters assessed included temperature (filling and test), bulk storage conditions (tank pressure and the type of the pressurized gas), solution composition (pure water, 0.9% sodium chloride, and a monoclonal antibody formulation), and testing procedures. A headspace pressure analyzer was used to verify the drip test method. Results suggested that leakage is indeed caused by headspace pressure increase, and the temperature effect (ideal gas expansion) is a major, but not the only, factor. The dissolved gases in the liquid bulk prior to or during filling may contribute to leakage, as these gases could be released into the headspace due to solubility changes (in response to test temperature and pressure conditions) and cause pressure increase. Needle shield removal procedures were found to cause dripping, but liquid composition played little role. Overall, paying attention to the processing history (pressure and temperature) of the liquid bulk is the key to minimize leakage. The headspace pressure could be reduced by decreasing liquid bulk storage pressure, filling at a higher temperature, or employing lower solubility gas (e.g., helium) for bulk transfer and storage. Leakage could also be mitigated by simply holding the syringe needle pointing upward during needle shield removal. Substantial advances in pre-filled syringe technology development, particularly in syringe filling accuracy, have been made. However, there are factors, as subtle as how the needle shield (or tip cap) is removed, that may affect dosing accuracy. We recently found that upon removal of the tip cap from a syringe held vertically with needle pointed downwards, a small amount of solution, up to 3-4% of the 1 mL filled volume or higher for filled volume of <1 mL, leaked out from the needle. This paper identified the root causes of this problem and offered solutions from the perspectives of the syringe fill process and the end user procedure. The readers will benefit from this paper by understanding how each process step prior to and during syringe filling may affect delivery performance of the pre-filled syringe device.

  15. Effect of masking phase-only holograms on the quality of reconstructed images.

    PubMed

    Deng, Yuanbo; Chu, Daping

    2016-04-20

    A phase-only hologram modulates the phase of the incident light and diffracts it efficiently with low energy loss because of the minimum absorption. Much research attention has been focused on how to generate phase-only holograms, and little work has been done to understand the effect and limitation of their partial implementation, possibly due to physical defects and constraints, in particular as in the practical situations where a phase-only hologram is confined or needs to be sliced or tiled. The present study simulates the effect of masking phase-only holograms on the quality of reconstructed images in three different scenarios with different filling factors, filling positions, and illumination intensity profiles. Quantitative analysis confirms that the width of the image point spread function becomes wider and the image quality decreases, as expected, when the filling factor decreases, and the image quality remains the same for different filling positions as well. The width of the image point spread function as derived from different filling factors shows a consistent behavior to that as measured directly from the reconstructed image, especially as the filling factor becomes small. Finally, mask profiles of different shapes and intensity distributions are shown to have more complicated effects on the image point spread function, which in turn affects the quality and textures of the reconstructed image.

  16. Characteristic investigation of Golay9 multiple mirror telescope with a spherical primary mirror

    NASA Astrophysics Data System (ADS)

    Wu, Feng; Wu, Quanying; Zhu, Xifang; Xiang, Ruxi; Qian, Lin

    2017-10-01

    The sparse aperture provides a novel solution to the manufacturing difficulties of modern super large telescopes. Golay configurations are optimal in the sparse aperture family. Characteristics of the Golay9 multiple mirror telescope having a spherical primary mirror are investigated. The arrangement of the nine sub-mirrors is discussed after the planar Golay9 configuration is analyzed. The characteristics of the entrance pupil are derived by analyzing the sub-aperture shapes with different relative apertures and sub-mirror sizes. Formulas about the fill factor and the overlay factor are deduced. Their maximal values are presented based on the derived tangency condition. Formulas for the point spread function (PSF) and the modulation transfer function (MTF) of the Golay9 MMT are also deduced. Two Golay9 MMT have been developed by Zemax simulation. Their PSF, MTF, fill factors, and overlay factors prove that our theoretical results are consistent with the practical simulation ones.

  17. Risk factors and monitoring for water quality to determine best management practices for splash parks.

    PubMed

    de Man, H; Leenen, E J T M; van Knapen, F; de Roda Husman, A M

    2014-09-01

    Splash parks have been associated with infectious disease outbreaks as a result of exposure to poor water quality. To be able to protect public health, risk factors were identified that determine poor water quality. Samples were taken at seven splash parks where operators were willing to participate in the study. Higher concentrations of Escherichia coli were measured in water of splash parks filled with rainwater or surface water as compared with sites filled with tap water, independent of routine inspection intervals and employed disinfection. Management practices to prevent fecal contamination and guarantee maintaining good water quality at splash parks should include selection of source water of acceptable quality.

  18. Investigation of sub-slab pressure field extension in specified granular fill materials incorporating a sump-based soil depressurisation system for radon mitigation.

    PubMed

    Hung, Le Chi; Goggins, Jamie; Fuente, Marta; Foley, Mark

    2018-05-14

    Design of bearing layers (granular fill material layers) is important for a house with a soil depressurisation (SD) system for indoor radon mitigation. These layers should not only satisfy the bearing capacity and serviceability criteria but should also provide a sufficient degree of the air permeability for the system. Previous studies have shown that a critical parameter for a SD system is the sub-slab pressure field extension in the bearing layers, but this issue has not been systematically investigated. A series of two-dimensional computational fluid dynamic simulations that investigate the behaviour of the sub-slab pressure field extension developed in a SD system is presented in this paper. The SD system considered in this paper consists of a granular fill material layer and a radon sump. The granular fill materials are 'T1 Struc' and 'T2 Perm', which are standard materials for building in the Republic of Ireland. Different conditions, which might be encountered in a practical situation, were examined. The results show that the air permeability and thickness of the granular fill materials are the two key factors which affect the sub slab pressure field extension (SPFE) significantly. Furthermore, the air permeability of native soil is found to be a fundamental factor for the SPFE so that it should be well understood when designing a SD system. Therefore, these factors should be considered sufficiently in each practical situation. Finally, a significant improvement of the pressure field extension can be achieved by ensuring air tightness of the SD system. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Dissolved solids in basin-fill aquifers and streams in the southwestern United States

    USGS Publications Warehouse

    Anning, David W.; Bauch, Nancy J.; Gerner, Steven J.; Flynn, Marilyn E.; Hamlin, Scott N.; Moore, Stephanie J.; Schaefer, Donald H.; Anderholm, Scott K.; Spangler, Lawrence E.

    2007-01-01

    The U.S. Geological Survey National Water-Quality Assessment Program performed a regional study in the Southwestern United States (Southwest) to describe the status and trends of dissolved solids in basin-fill aquifers and streams and to determine the natural and human factors that affect dissolved solids. Basin-fill aquifers, which include the Rio Grande aquifer system, Basin and Range basin-fill aquifers, and California Coastal Basin aquifers, are the most extensively used ground-water supplies in the Southwest. Rivers, such as the Colorado, the Rio Grande, and their tributaries, are also important water supplies, as are several smaller river systems that drain internally within the Southwest, or drain externally to the Pacific Ocean in southern California. The study included four components that characterize (1) the spatial distribution of dissolved-solids concentrations in basin-fill aquifers, and dissolved-solids concentrations, loads, and yields in streams; (2) natural and human factors that affect dissolved-solids concentrations; (3) major sources and areas of accumulation of dissolved solids; and (4) trends in dissolved-solids concentrations over time in basin-fill aquifers and streams, and the relation of trends to natural or human factors.

  20. A Semi-parametric Multivariate Gap-filling Model for Eddy Covariance Latent Heat Flux

    NASA Astrophysics Data System (ADS)

    Li, M.; Chen, Y.

    2010-12-01

    Quantitative descriptions of latent heat fluxes are important to study the water and energy exchanges between terrestrial ecosystems and the atmosphere. The eddy covariance approaches have been recognized as the most reliable technique for measuring surface fluxes over time scales ranging from hours to years. However, unfavorable micrometeorological conditions, instrument failures, and applicable measurement limitations may cause inevitable flux gaps in time series data. Development and application of suitable gap-filling techniques are crucial to estimate long term fluxes. In this study, a semi-parametric multivariate gap-filling model was developed to fill latent heat flux gaps for eddy covariance measurements. Our approach combines the advantages of a multivariate statistical analysis (principal component analysis, PCA) and a nonlinear interpolation technique (K-nearest-neighbors, KNN). The PCA method was first used to resolve the multicollinearity relationships among various hydrometeorological factors, such as radiation, soil moisture deficit, LAI, and wind speed. The KNN method was then applied as a nonlinear interpolation tool to estimate the flux gaps as the weighted sum latent heat fluxes with the K-nearest distances in the PCs’ domain. Two years, 2008 and 2009, of eddy covariance and hydrometeorological data from a subtropical mixed evergreen forest (the Lien-Hua-Chih Site) were collected to calibrate and validate the proposed approach with artificial gaps after standard QC/QA procedures. The optimal K values and weighting factors were determined by the maximum likelihood test. The results of gap-filled latent heat fluxes conclude that developed model successful preserving energy balances of daily, monthly, and yearly time scales. Annual amounts of evapotranspiration from this study forest were 747 mm and 708 mm for 2008 and 2009, respectively. Nocturnal evapotranspiration was estimated with filled gaps and results are comparable with other studies. Seasonal and daily variability of latent heat fluxes were also discussed.

  1. Accurate expressions for solar cell fill factors including series and shunt resistances

    NASA Astrophysics Data System (ADS)

    Green, Martin A.

    2016-02-01

    Together with open-circuit voltage and short-circuit current, fill factor is a key solar cell parameter. In their classic paper on limiting efficiency, Shockley and Queisser first investigated this factor's analytical properties showing, for ideal cells, it could be expressed implicitly in terms of the maximum power point voltage. Subsequently, fill factors usually have been calculated iteratively from such implicit expressions or from analytical approximations. In the absence of detrimental series and shunt resistances, analytical fill factor expressions have recently been published in terms of the Lambert W function available in most mathematical computing software. Using a recently identified perturbative relationship, exact expressions in terms of this function are derived in technically interesting cases when both series and shunt resistances are present but have limited impact, allowing a better understanding of their effect individually and in combination. Approximate expressions for arbitrary shunt and series resistances are then deduced, which are significantly more accurate than any previously published. A method based on the insights developed is also reported for deducing one-diode fits to experimental data.

  2. Staggered Orbital Currents in the Half-Filled Two-Leg Ladder

    NASA Astrophysics Data System (ADS)

    Fjaerestad, J. O.; Marston, Brad; Sudbo, A.

    2002-03-01

    We present strong analytical and numerical evidence for the existence of a staggered flux (SF) phase in the half-filled two-leg ladder, with true long-range order in the counter-circulating currents. Using abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.(J. O. Fjærestad and J. B. Marston, cond- mat/0107094.) This result, combined with a weak-coupling renormalization-group analysis, implies that the SF phase exists in a region of the phase diagram of the half-filled t-U-V-J ladder. Using the density-matrix renormalization-group (DMRG) approach generalized to complex-valued wavefunctions, we demonstrate that the SF phase exhibits robust currents at intermediate values of the interaction strengths.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ -ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed bymore » shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.« less

  4. Improving poor fill factors for solar cells via light-induced plating

    NASA Astrophysics Data System (ADS)

    Zhao, Xing; Rui, Jia; Wuchang, Ding; Yanlong, Meng; Zhi, Jin; Xinyu, Liu

    2012-09-01

    Silicon solar cells are prepared following the conventional fabrication processes, except for the metallization firing process. The cells are divided into two groups with higher and lower fill factors, respectively. After light-induced plating (LIP), the fill factors of the solar cells in both groups with different initial values reach the same level. Scanning electron microscope (SEM) images are taken under the bulk silver electrodes, which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process. Moreover, the application of LIP to cells with poor electrode contact performance, such as nanowire cells and radial junction solar cells, is proposed.

  5. Human CST has independent functions during telomere duplex replication and C-strand fill-in

    PubMed Central

    Wang, Feng; Stewart, Jason A.; Kasbek, Christopher; Zhao, Yong; Wright, Woodring E.; Price, Carolyn M.

    2012-01-01

    Summary Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S-phase but a delay in subsequent overhang shortening. This delay resulted from a defect in C-strand fill-in. Short telomeres exhibited the fill-in defect but normal telomere duplex replication, indicating that STN1/CST functions independently in these processes. Our work also indicates that the requirement for STN1/CST in telomere duplex replication correlates with increasing telomere length and replication stress. Our results provide the first direct evidence that STN1/CST participates in C-strand fill-in. They also demonstrate that STN1/CST participates in two mechanistically separate steps during telomere replication and identify CST as a novel replication factor that solves diverse replication-associated problems. PMID:23142664

  6. Mobile spin impurity in an optical lattice

    NASA Astrophysics Data System (ADS)

    Duncan, C. W.; Bellotti, F. F.; Öhberg, P.; Zinner, N. T.; Valiente, M.

    2017-07-01

    We investigate the Fermi polaron problem in a spin-1/2 Fermi gas in an optical lattice for the limit of both strong repulsive contact interactions and one dimension. In this limit, a polaronic-like behaviour is not expected, and the physics is that of a magnon or impurity. While the charge degrees of freedom of the system are frozen, the resulting tight-binding Hamiltonian for the impurity’s spin exhibits an intriguing structure that strongly depends on the filling factor of the lattice potential. This filling dependency also transfers to the nature of the interactions for the case of two magnons and the important spin balanced case. At low filling, and up until near unit filling, the single impurity Hamiltonian faithfully reproduces a single-band, quasi-homogeneous tight-binding problem. As the filling is increased and the second band of the single particle spectrum of the periodic potential is progressively filled, the impurity Hamiltonian, at low energies, describes a single particle trapped in a multi-well potential. Interestingly, once the first two bands are fully filled, the impurity Hamiltonian is a near-perfect realisation of the Su-Schrieffer-Heeger model. Our studies, which go well beyond the single-band approximation, that is, the Hubbard model, pave the way for the realisation of interacting one-dimensional models of condensed matter physics.

  7. Silicon Schottky photovoltaic diodes for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Anderson, W. A.

    1975-01-01

    Various factors in Schottky barrier solar cell fabrication are evaluated in order to improve understanding of the current flow mechanism and to isolate processing variables that improve efficiency. Results of finger design, substrate resistivity, surface finishing and activation energy studies are detailed. An increased fill factor was obtained by baking of the vacuum system to remove moisture.

  8. Choosing Between Public and Private Providers of Depot Maintenance: A Proposed New Approach

    DTIC Science & Technology

    1997-09-01

    Appendix A Mathematical Form of the Model Appendix B Assumed Distributions for Evaluation Factors vm Contents Appendix C Trial Evaluation Workbook ...Figure 4-2. Revised Factor Scale Anchors 4-5 Figure 4-3. Workbook Display Establishing Relevance of Factor 4-5 Figure 4-4. Comparing Results of...Introduction process. To fill voids we conducted additional research in the areas of classical microeconomics , transaction cost economics, public

  9. A comparison of glass cermet cement and amalgam restorations in primary molars.

    PubMed

    Hickel, R; Voss, A

    1990-01-01

    The aim of this clinical study was to compare the efficacy of GCC with amalgam as a filling material in primary molars. Two hundred fifteen restorations were placed in the first and second primary molars of seventy-four patients, ranging in age from four to ten years. The overall failure rate of amalgam is lower than that of GCC, but not significantly different. In older children, amalgam has greater advantages. An advantage of GCC is the short time required to fill the cavity. This might be an important factor in young and/or difficult children. In these cases amalgam cannot be placed under optimal conditions and, therefore, the results are less satisfactory. GCC is a viable alternative filling material.

  10. Molecular and morphological surface analysis: effect of filling pastes and cleaning agents on root dentin

    PubMed Central

    DAINEZI, Vanessa Benetello; IWAMOTO, Alexsandra Shizue; MARTIN, Airton Abrahão; SOARES, Luís Eduardo Silva; HOSOYA, Yumiko; PASCON, Fernanda Miori; PUPPIN-RONTANI, Regina Maria

    2017-01-01

    Abstract The quality of the dentin root is the most important factor for restoration resin sealing and drives the outcome of endodontic treatment. Objective This study evaluated the effect of different filling pastes and cleaning agents on the root dentin of primary teeth using Fourier-transformed Raman spectroscopy (FT-Raman), micro energy-dispersive X-ray fluorescence (µ-EDXRF) and scanning electron microscopic (SEM) analysis. Material and Methods Eighty roots of primary teeth were endodontically prepared and distributed into 4 groups and filled according to the following filling pastes: Control-no filling (CP), Calen®+zinc oxide (CZ), Calcipex II® (CII), Vitapex® (V). After seven days, filling paste groups were distributed to 4 subgroups according to cleaning agents (n=5): Control-no cleaning (C), Ethanol (E), Tergenform® (T), 35% Phosphoric acid (PA). Then, the roots were sectioned and the dentin root sections were internally evaluated by FT-Raman, µ-EDXRF and SEM. Data was submitted to two-way ANOVA and Tukey tests (α=0.05). Results Regarding filling pastes, there was no significant difference in organic content. CP provided the lowest calcium values and, calcium/phosphoric ratio (Ca/P), and the highest phosphoric values. For cleaning agents there was no difference in organic content when compared to the C; however, T showed significantly higher calcium and Ca/P than PA. All groups showed similar results for phosphorus. The dentin smear layer was present after use of the cleaning agents, except PA. Conclusion The filling pastes changed the inorganic content, however they did not change the organic content. Cleaning agents did not alter the inorganic and organic content. PA cleaned and opened dentin tubules. PMID:28198982

  11. Impact of the quality of coronal restoration and root canal filling on the periapical health in adult syrian subpopulation

    PubMed Central

    Alafif, Hisham

    2014-01-01

    Background: The purpose of this study was to determine the status of periapical tissues of endodontically treated teeth according to coronal restorations and root canal fillings separately and in concomitant in adult Syrian subpopulation. Methods: 784 endodontically treated teeth from two hundred randomly selected Syrian adult patients were radiographically evaluated. According to predetermined criteria, the quality of coronal restorations and root canal filling of each tooth was scored as adequate or inadequate. The status of periapical tissues was also classified as healthy or diseased. Results were analyzed using Chi-squared test. Results: Adequate coronal restorations were determined in 58.54% of cases which was accompanied with less periapical pathosis than that in teeth with inadequate restorations (P < 0.01). 14% of teeth were restored by posts which showed no significant impact on the periapical tissues health. 18.5% of endodontic treatments were evaluated as adequate with less number of periapical radiolucencies than that of inadequate root canal fillings (P < 0.01). Absence of periapical pathosis was 96.6% in cases with both adequate coronal restorations and root canals fillings. The rate was 88.5% in cases with only adequate root canals fillings, and about 70% in cases with only adequate coronal restorations. When the treatment was inadequate in both coronal and root canals fillings, success rate was only observed in 48.8%. Conclusion: The most important factor with regard to the periradicular tissue health is the quality of root canal filling without neglecting the influence of coronal restoration (regardless of its type). There is a high prevalence rate of periapical pathosis in Syrian subpopulation due to poor dental practice. PMID:25565729

  12. Investigation of the Mechanism of Roof Caving in the Jinchuan Nickel Mine, China

    NASA Astrophysics Data System (ADS)

    Ding, Kuo; Ma, Fengshan; Guo, Jie; Zhao, Haijun; Lu, Rong; Liu, Feng

    2018-04-01

    On 13 March 2016, a sudden, violent roof caving event with a collapse area of nearly 11,000 m2 occurred in the Jinchuan Nickel Mine and accompanied by air blasts, loud noises and ground vibrations. This collapse event coincided with related, conspicuous surface subsidence across an area of nearly 19,000 m2. This article aims to analyse this collapse event. In previous studies, various mining-induced collapses have been studied, but collapse accidents associated with the filling mining method are very rare and have not been thoroughly studied. The filling method has been regarded as a safe mining method for a long time, so research on associated collapse mechanisms is of considerable significance. In this study, a detailed field investigation of roadway damage was performed, and GPS monitoring results were used to analyse the surface failure. In addition, a numerical model was constructed based on the geometry of the ore body and a major fault. The analysis of the model revealed three failure mechanisms acting during different stages of destruction: double-sided embedded beam deformation, fault activation, and cantilever-articulated rock beam failure. The fault activation and the specific filling method are the key factors of this collapse event. To gain a better understanding of these factors, the shear stress and normal stress along the fault plane were monitored to determine the variation in stress at different failure stages. Discrete element models were established to study two filling methods and to analyse the stability of different filling structures.

  13. Asymmetrical color filling-in from the nasal to the temporal side of the blind spot

    PubMed Central

    Li, Hui; Luo, Junxiang; Lu, Yiliang; Kan, Janis; Spillmann, Lothar; Wang, Wei

    2014-01-01

    The physiological blind spot, corresponding to the optic disk in the retina, is a relatively large (6 × 8°) area in the visual field that receives no retinal input. However, we rarely notice the existence of it in daily life. This is because the blind spot fills in with the brightness, color, texture, and motion of the surround. The study of filling-in enables us to better understand the creative nature of the visual system, which generates perceptual information where there is none. Is there any retinotopic rule in the color filling-in of the blind spot? To find out, we used mono-colored and bi-colored annuli hugging the boundary of the blind spot. We found that mono-colored annuli filled in the blind spot uniformly. By contrast, bi-colored annuli, where one half had a given color, while the other half had a different one, filled in the blind spot asymmetrically. Specifically, the color surrounding the nasal half typically filled in about 75% of the blind spot area, whereas the color surrounding the temporal half filled in only about 25%. This asymmetry was dependent on the relative size of the half rings, but not the two colors used, and was absent when the bi-colored annulus was rotated by 90°. Here, the two colors on the upper and lower sides of the blind spot filled in the enclosed area equally. These results suggest that the strength of filling-in decreases with distance from the fovea consistent with the decrease of the cortical magnification factor. PMID:25100977

  14. Asymmetrical color filling-in from the nasal to the temporal side of the blind spot.

    PubMed

    Li, Hui; Luo, Junxiang; Lu, Yiliang; Kan, Janis; Spillmann, Lothar; Wang, Wei

    2014-01-01

    The physiological blind spot, corresponding to the optic disk in the retina, is a relatively large (6 × 8°) area in the visual field that receives no retinal input. However, we rarely notice the existence of it in daily life. This is because the blind spot fills in with the brightness, color, texture, and motion of the surround. The study of filling-in enables us to better understand the creative nature of the visual system, which generates perceptual information where there is none. Is there any retinotopic rule in the color filling-in of the blind spot? To find out, we used mono-colored and bi-colored annuli hugging the boundary of the blind spot. We found that mono-colored annuli filled in the blind spot uniformly. By contrast, bi-colored annuli, where one half had a given color, while the other half had a different one, filled in the blind spot asymmetrically. Specifically, the color surrounding the nasal half typically filled in about 75% of the blind spot area, whereas the color surrounding the temporal half filled in only about 25%. This asymmetry was dependent on the relative size of the half rings, but not the two colors used, and was absent when the bi-colored annulus was rotated by 90°. Here, the two colors on the upper and lower sides of the blind spot filled in the enclosed area equally. These results suggest that the strength of filling-in decreases with distance from the fovea consistent with the decrease of the cortical magnification factor.

  15. Composite fermions on a torus

    NASA Astrophysics Data System (ADS)

    Pu, Songyang; Wu, Ying-Hai; Jain, J. K.

    2017-11-01

    We achieve an explicit construction of the lowest Landau level (LLL) projected wave functions for composite fermions in the periodic (torus) geometry. To this end, we first demonstrate how the vortex attachment of the composite fermion (CF) theory can be accomplished in the torus geometry to produce the "unprojected" wave functions satisfying the correct (quasi)periodic boundary conditions. We then consider two methods for projecting these wave functions into the LLL. The direct projection produces valid wave functions but can be implemented only for very small systems. The more powerful and more useful projection method of Jain and Kamilla fails in the torus geometry because it does not preserve the periodic boundary conditions and thus takes us out of the original Hilbert space. We have succeeded in constructing a modified projection method that is consistent with both the periodic boundary conditions and the general structure of the CF theory. This method is valid for a large class of states of composite fermions, called "proper states," which includes the incompressible ground states at electron filling factors ν =n/2 p n +1 , their charged and neutral excitations, and also the quasidegenerate ground states at arbitrary filling factors of the form ν =ν/*2pν*+1 , where n and p are integers and ν* is the CF filling factor. Comparison with exact results known for small systems for the ground and excited states at filling factors ν =1 /3 , 2/5, and 3/7 demonstrates our LLL-projected wave functions to be extremely accurate representations of the actual Coulomb eigenstates. Our construction enables the study of large systems of composite fermions on the torus, thereby opening the possibility of investigating numerous interesting questions and phenomena.

  16. Distance descending ordering method: An O(n) algorithm for inverting the mass matrix in simulation of macromolecules with long branches

    NASA Astrophysics Data System (ADS)

    Xu, Xiankun; Li, Peiwen

    2017-11-01

    Fixman's work in 1974 and the follow-up studies have developed a method that can factorize the inverse of mass matrix into an arithmetic combination of three sparse matrices-one of them is positive definite and needs to be further factorized by using the Cholesky decomposition or similar methods. When the molecule subjected to study is of serial chain structure, this method can achieve O (n) time complexity. However, for molecules with long branches, Cholesky decomposition about the corresponding positive definite matrix will introduce massive fill-in due to its nonzero structure. Although there are several methods can be used to reduce the number of fill-in, none of them could strictly guarantee for zero fill-in for all molecules according to our test, and thus cannot obtain O (n) time complexity by using these traditional methods. In this paper we present a new method that can guarantee for no fill-in in doing the Cholesky decomposition, which was developed based on the correlations between the mass matrix and the geometrical structure of molecules. As a result, the inverting of mass matrix will remain the O (n) time complexity, no matter the molecule structure has long branches or not.

  17. Effect of customization of master gutta-percha cone on apical control of root filling using different techniques: an ex vivo study.

    PubMed

    van Zyl, S P; Gulabivala, K; Ng, Y-L

    2005-09-01

    (i) To compare the prevalence of extrusion of root filling material when placed using different root filling techniques, with or without customization of the master gutta-percha (GP) cone; and (ii) to investigate the effects of some factors influencing root filling extrusion and presence of voids. A total of 180 roots were selected, prepared and randomly allocated to three groups. Five general dental practitioners performed the root fillings; each filled one group of roots (n = 60) using each of three techniques; 'cold lateral compaction' (n = 20), 'warm vertical compaction' (n = 20) and 'continuous-wave' (n = 20) techniques. For each obturation technique, the master GP cone was customized using chloroform in 10 samples. Two groups of the roots were recycled to allow all five operators to fulfill their remit. Two observers, blind to operator and obturation technique, examined the radiographs (master apical file, post-obturation) to determine the presence of root filling extrusion and voids within the apical 5 mm, independently. Root filling extrusion was also confirmed by direct inspection of the root apex after obturation. The data were analysed using logistic regression models. A total of 300 root fillings were performed; nine were excluded from the analysis. Most of the root fillings (80%, n = 233) were placed within 0.5 mm of the working length; only 20% (n = 58) were placed >0.5 mm beyond the working length. The odds of prevalence of extrusion (>0.5 mm) were significantly reduced by about 50% when cold lateral compaction or customization of GP were used. One operator produced 2.5 times more extruded root fillings than others. Curvature & length of root canal, apical size of prepared canal, as well as operator's preferred obturation technique had no significant influence on the prevalence of extrusion. Customization of GP was the sole factor to significantly reduce the prevalence of voids within the apical 5 mm of working length. Root filling extrusion was significantly influenced by 'operator' and was reduced by cold lateral compaction and customization of the master cone. Customization of master cone was the only factor that reduced voids apically.

  18. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-11-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of ``cut-and-try`` methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  19. Gating geometry studies of thin-walled 17-4PH investment castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, M.C.; Zanner, F.J.

    1992-01-01

    The ability to design gating systems that reliably feed and support investment castings is often the result of cut-and-try'' methodology. Factors such as hot tearing, porosity, cold shuts, misruns, and shrink are defects often corrected by several empirical gating design iterations. Sandia National Laboratories is developing rules that aid in removing the uncertainty involved in the design of gating systems for investment castings. In this work, gating geometries used for filling of thin walled investment cast 17-4PH stainless steel flat plates were investigated. A full factorial experiment evaluating the influence of metal pour temperature, mold preheat temperature, and mold channelmore » thickness were conducted for orientations that filled a horizontal flat plate from the edge. A single wedge gate geometry was used for the edge-gated configuration. Thermocouples placed along the top of the mold recorded metal front temperatures, and a real-time x-ray imaging system tracked the fluid flow behavior during filling of the casting. Data from these experiments were used to determine the terminal fill volumes and terminal fill times for each gate design.« less

  20. [Development, factor-analytical control and psychometric evaluation of a questionnaire on specialty choices among medical students].

    PubMed

    Hermann, K; Buchholz, A; Loh, A; Kiolbassa, K; Miksch, A; Joos, S; Götz, K

    2012-07-01

    A questionnaire was developed and validated which assesses factors influencing career choices of medical students and their perception of possibilities in general practice. The first questionnaire version, which was developed based on a systematic literature review, was checked for comprehensibility and redundancy using concurrent think aloud. The revised version was filled out by a pilot sample of medical students and the factor structure was assessed using principal component analysis (PCA). The final version was filled out in an online survey by medical students of all 5 Medical Faculties in the federal state of Baden-Wuerttemberg. The factor structure was validated with a confirmatory factor analysis (CFA). Reliability was assessed as internal consistency using Cronbach's α. The questionnaire comprises 2 parts: ratings of (A) the individual importance and of (B) the possibilities in general practice on 5-point scales. The first version comprising 118 items was shortened to 63 items after conducting interviews using concurrent think aloud. A further 3 items giving no information were removed after piloting the questionnaire on 179 students. The 27 items of part A were structured in 7 factors (PCA): image, personal ambition, patient orientation, work-life balance, future perspectives, job-related ambition, and variety in job. This structure had a critical fit in the CFA applied to the final version filled out by 1 299 students. Internal consistency of the factors was satisfactory to very good (Cronbach's α=0.55-0.81). The questionnaire showed good psychometric properties. Further, not assessed factors influence career choice resulting in unexplained variance in our dataset and the critical fit of the model. © Georg Thieme Verlag KG Stuttgart · New York.

  1. R & D of a Gas-Filled RF Beam Profile Monitor for Intense Neutrino Beam Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonehara, K.; Backfish, M.; Moretti, A.

    We report the R&D of a novel radiation-robust hadron beam profile monitor based on a gas-filled RF cavity for intense neutrino beam experiments. An equivalent RF circuit model was made and simulated to optimize the RF parameter in a wide beam intensity range. As a result, the maximum acceptable beam intensity in the monitor is significantly increased by using a low-quality factor RF cavity. The plan for the demonstration test is set up to prepare for future neutrino beam experiments.

  2. Combination film/splash fill for overcoming film fouling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phelps, P.M.; Minett, T.O.

    1995-02-01

    In summary, this large cooling tower user has found the Phelps film/splash Stack-Pack fill design to attain a substantial improvement in capability of their existing crossflow cooling towers, without increasing fan power or tower size. The lack of fouling in the film fill component of this fill design is due to the use of film fill with large (1 inch) spacing between sheets, coupled with effective water treatment as provided by Nalco. This combination of factors provides a proven method for significantly increasing crossflow or counterflow cooling tower capability while minimizing chances of serious fill fouling.

  3. An Analytical Solution and Numerical Modeling Study of Gas Hydrate Saturation Effects on Porosity and Permeability of Porous Media

    NASA Astrophysics Data System (ADS)

    Zerpa, L.; Gao, F.; Wang, S.

    2017-12-01

    There are two major types of natural gas hydrate distributions in porous media: pore filling and contact cementing. The difference between these two distribution types is related to hydrate nucleation and growth processes. In the pore filling distribution, hydrate nucleates from a gas-dissolved aqueous phase at the grain boundary and grows away from grain contacts and surfaces into the pore space. In the contact cementing distribution, hydrate nucleates and grows at the gas-water interface and at intergranular contacts. Previous attempts to correlate changes on porosity and permeability during hydrate formation/dissociation were based on the length difference between the pore body and pore throat, and only considered contact cementing hydrate distribution. This work consists of a study of mathematical models of permeability and porosity as a function of gas hydrate saturation during formation and dissociation of gas hydrates in porous media. In this work, first we derive the permeability equation for the pore filling hydrate deposition as a function of hydrate saturation. Then, a more comprehensive model considering both types of gas hydrate deposition is developed to represent changes in permeability and porosity during hydrate formation and dissociation. This resulted in a model that combines pore filling and contact cementing deposition types in the same reservoir. Finally, the TOUGH+Hydrate numerical reservoir simulator was modified to include these models to analyze the response of production and saturation during a depressurization process, considering different combinations of pore filling and contact cementing hydrate distributions. The empirical exponent used in the permeability adjustment factor model influences both production profile and saturation results. This empirical factor describes the permeability dependence to changes in porosity caused by solid phase formation in the porous medium. The use of the permeability exponent decreases the permeability of the system for a given hydrate saturation, which affects the hydraulic performance of the system. However, from published experimental work, there is only a rough estimation of this permeability exponent. This factor could be represented with an empirical equation if more laboratory and field data becomes available.

  4. Impact of fill-level in twin-screw granulation on critical quality attributes of granules and tablets.

    PubMed

    Meier, Robin; Moll, Klaus-Peter; Krumme, Markus; Kleinebudde, Peter

    2017-06-01

    In a previous study a change of the fill-level in the barrel exerted a huge influence on the twin-screw granulation (TSG) process of a high drug loaded, simplified formulation. The present work investigated this influence systematically. The specific feed load (SFL) indicating the mass per revolution as surrogate parameter for the fill-level was applied and the correlation to the real volumetric fill level of an extruder could be demonstrated by a newly developed method. A design of experiments was conducted to examine the combined influence of SFL and screw speed on the process and on critical quality attributes of granules and tablets. The same formulation was granulated at constant liquid level with the same screw configuration and led to distinctively different results by only changing the fill-level and the screw speed. The power consumption of the extruder increased at higher SFLs with hardly any influence of screw speed. At low SFL the median residence time was mainly fill-level dependent and at higher SFL mainly screw speed dependent. Optimal values for the product characteristics were found at medium values for the SFL. Granule size distributions shifted from mono-modal and narrow shape to broader and even bimodal distributions of larger median granule sizes, when exceeding or falling below a certain fill-level. Deviating from the optimum fill-level, tensile strength of tablets decreased by about 25% and disintegration times of tablets increased for more than one third. At low fill-levels, material accumulation in front of the kneading zone was detected by pressure measurements and was assumed to be responsible for the unfavored product performance. At high fill-levels, granule consolidation due to higher propensity of contact with the result of higher material temperature was accounted for inferior product performance. The fill-level was found to be an important factor in assessment and development of twin-screw granulation processes as it impacted process and product attributes enormously. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dynamic Analysis of Gene Expression in Rice Superior and Inferior Grains by RNA-Seq

    PubMed Central

    Sun, Hongzheng; Peng, Ting; Zhao, Yafan; Du, Yanxiu; Zhang, Jing; Li, Junzhou; Xin, Zeyu; Zhao, Quanzhi

    2015-01-01

    Poor grain filling of inferior grains located on lower secondary panicle branch causes great drop in rice yield and quality. Dynamic gene expression patterns between superior and inferior grains were examined from the view of the whole transcriptome by using RNA-Seq method. In total, 19,442 genes were detected during rice grain development. Genes involved in starch synthesis, grain storage and grain development were interrogated in particular in superior and inferior grains. Of the genes involved in sucrose to starch transformation process, most were expressed at lower level in inferior grains at early filling stage compared to that of superior grains. But at late filling stage, the expression of those genes was higher in inferior grains and lower in superior grains. The same trends were observed in the expression of grain storage protein genes. While, evidence that genes involved in cell cycle showed higher expression in inferior grains during whole period of grain filling indicated that cell proliferation was active till the late filling stage. In conclusion, delayed expression of most starch synthesis genes in inferior grains and low capacity of sink organ might be two important factors causing low filling rate of inferior grain at early filling stage, and shortage of carbohydrate supply was a limiting factor at late filling stage. PMID:26355995

  6. Protein aggregation studied by forward light scattering and light transmission analysis

    NASA Astrophysics Data System (ADS)

    Penzkofer, A.; Shirdel, J.; Zirak, P.; Breitkreuz, H.; Wolf, E.

    2007-12-01

    The aggregation of the circadian blue-light photo-receptor cryptochrome from Drosophila melanogaster (dCry) is studied by transmission and forward light scattering measurement in the protein transparent wavelength region. The light scattering in forward direction is caused by Rayleigh scattering which is proportional to the degree of aggregation. The light transmission through the samples in the transparent region is reduced by Mie light scattering in all directions. It depends on the degree of aggregation and the monomer volume fill factor of the aggregates (less total scattering with decreasing monomer volume fill factor of protein globule) allowing a distinction between tightly packed protein aggregation (monomer volume fill factor 1) and loosely packed protein aggregation (monomer volume fill factor less than 1). An increase in aggregation with temperature, concentration, and blue-light exposure is observed. At a temperature of 4 °C and a protein concentration of less than 0.135 mM no dCry aggregation was observed, while at 24 °C and 0.327 mM gelation occurred (loosely packed aggregates occupying the whole solution volume).

  7. Interconnect patterns for printed organic thermoelectric devices with large fill factors

    NASA Astrophysics Data System (ADS)

    Gordiz, Kiarash; Menon, Akanksha K.; Yee, Shannon K.

    2017-09-01

    Organic materials can be printed into thermoelectric (TE) devices for low temperature energy harvesting applications. The output voltage of printed devices is often limited by (i) small temperature differences across the active materials attributed to small leg lengths and (ii) the lower Seebeck coefficient of organic materials compared to their inorganic counterparts. To increase the voltage, a large number of p- and n-type leg pairs is required for organic TEs; this, however, results in an increased interconnect resistance, which then limits the device output power. In this work, we discuss practical concepts to address this problem by positioning TE legs in a hexagonal closed-packed layout. This helps achieve higher fill factors (˜91%) than conventional inorganic devices (˜25%), which ultimately results in higher voltages and power densities due to lower interconnect resistances. In addition, wiring the legs following a Hilbert spacing-filling pattern allows for facile load matching to each application. This is made possible by leveraging the fractal nature of the Hilbert interconnect pattern, which results in identical sub-modules. Using the Hilbert design, sub-modules can better accommodate non-uniform temperature distributions because they naturally self-localize. These device design concepts open new avenues for roll-to-roll printing and custom TE module shapes, thereby enabling organic TE modules for self-powered sensors and wearable electronic applications.

  8. Settlement behavior of municipal solid waste due to internal and external environmental factors in a lysimeter.

    PubMed

    Melo, Márcio C; Caribé, Rômulo M; Ribeiro, Libânia S; Sousa, Raul B A; Monteiro, Veruschka E D; de Paiva, William

    2016-12-05

    Long-term settlement magnitude is influenced by changes in external and internal factors that control the microbiological activity in the landfill waste body. To improve the understanding of settlement phenomena, it is instructive to study lysimeters filled with MSW. This paper aims to understand the settlement behavior of MSW by correlating internal and external factors that influence waste biodegradation in a lysimeter. Thus, a lysimeter was built, instrumented and filled with MSW from the city of Campina Grande, the state of Paraíba, Brazil. Physicochemical analysis of the waste (from three levels of depth of the lysimeter) was carried out along with MSW settlement measurements. Statistical tools such as descriptive analysis and principal component analysis (PCA) were also performed. The settlement/compression, coefficient of variation and PCA results indicated the most intense rate of biodegradation in the top layer. The PCA results of intermediate and bottom levels presented fewer physicochemical and meteorological variables correlated with compression data in contrast with the top layer. It is possible to conclude that environmental conditions may influence internal indicators of MSW biodegradation, such as the settlement.

  9. Selective Equilibration of Spin-Polarized Quantum Hall Edge States in Graphene

    NASA Astrophysics Data System (ADS)

    Amet, F.; Williams, J. R.; Watanabe, K.; Taniguchi, T.; Goldhaber-Gordon, D.

    2014-05-01

    We report on transport measurements of dual-gated, single-layer graphene devices in the quantum Hall regime, allowing for independent control of the filling factors in adjoining regions. Progress in device quality allows us to study scattering between edge states when the fourfold degeneracy of the Landau level is lifted by electron correlations, causing edge states to be spin and/or valley polarized. In this new regime, we observe a dramatic departure from the equilibration seen in more disordered devices: edge states with opposite spins propagate without mixing. As a result, the degree of equilibration inferred from transport can reveal the spin polarization of the ground state at each filling factor. In particular, the first Landau level is shown to be spin polarized at half filling, providing an independent confirmation of a conclusion of Young et al. [Nat. Phys. 8, 550 (2012)]. The conductance in the bipolar regime is strongly suppressed, indicating that copropagating edge states, even with the same spin, do not equilibrate along PN interfaces. We attribute this behavior to the formation of an insulating ν =0 stripe at the PN interface.

  10. The watercolor effect: a new principle of grouping and figure-ground organization.

    PubMed

    Pinna, Baingio; Werner, John S; Spillmann, Lothar

    2003-01-01

    The watercolor effect is perceived when a dark (e.g., purple) contour is flanked by a lighter chromatic contour (e.g., orange). Under these conditions, the lighter color will assimilate over the entire enclosed area. This filling-in determines figure-ground organization when it is pitted against the classical Gestalt factors of proximity, good continuation, closure, symmetry, convexity, as well as amodal completion, and past experience. When it is combined with a given Gestalt factor, the resulting effect on figure-ground organization is stronger than for each factor alone. When the watercolor effect is induced by a dark red edge instead of an orange edge, its figural strength is reduced, but still stronger than without it. Finally, when a uniform surface is filled physically using the color of the orange fringe, figure-ground organization is not different from that for the purple contour only. These findings show that the watercolor effect induced by the edge could be an independent factor, different from the classical Gestalt factors of figure-ground organization. Copyright 2002 Elsevier Science Ltd.

  11. Mid-infrared interferometry of Seyfert galaxies: Challenging the Standard Model

    NASA Astrophysics Data System (ADS)

    López-Gonzaga, N.; Jaffe, W.

    2016-06-01

    Aims: We aim to find torus models that explain the observed high-resolution mid-infrared (MIR) measurements of active galactic nuclei (AGN). Our goal is to determine the general properties of the circumnuclear dusty environments. Methods: We used the MIR interferometric data of a sample of AGNs provided by the instrument MIDI/VLTI and followed a statistical approach to compare the observed distribution of the interferometric measurements with the distributions computed from clumpy torus models. We mainly tested whether the diversity of Seyfert galaxies can be described using the Standard Model idea, where differences are solely due to a line-of-sight (LOS) effect. In addition to the LOS effects, we performed different realizations of the same model to include possible variations that are caused by the stochastic nature of the dusty models. Results: We find that our entire sample of AGNs, which contains both Seyfert types, cannot be explained merely by an inclination effect and by including random variations of the clouds. Instead, we find that each subset of Seyfert type can be explained by different models, where the filling factor at the inner radius seems to be the largest difference. For the type 1 objects we find that about two thirds of our objects could also be described using a dusty torus similar to the type 2 objects. For the remaining third, it was not possible to find a good description using models with high filling factors, while we found good fits with models with low filling factors. Conclusions: Within our model assumptions, we did not find one single set of model parameters that could simultaneously explain the MIR data of all 21 AGN with LOS effects and random variations alone. We conclude that at least two distinct cloud configurations are required to model the differences in Seyfert galaxies, with volume-filling factors differing by a factor of about 5-10. A continuous transition between the two types cannot be excluded.

  12. Clinical and laboratory evaluation of microstructural changes in the physical, mechanical and chemical properties of dental filling materials under the influence of an electromagnetic field.

    PubMed

    Moiseeva, Natalia S; Kunin, Anatoly A

    2018-03-01

    Restorative filling materials used for dental caries prevention and treatment consist of various components including monomers or oligomers, which play a significant role in forming the main structure of these materials, as well as in characterising their physical, mechanical and chemical properties. The necessity for the development and improvement of structural characteristics of polymeric dental filling materials intended for caries prevention and their life duration increase served as the initiating factor of our research. According to the research purpose and challenges, we studied the changes in the physical, mechanical and chemical properties of composite filling materials with and without electromagnetic field influence. The investigations in vivo include the study of microstructural features of polymeric filling materials by scanning electron microscopy (SEM) and the investigations in vitro include the study of sealed and extracted human teeth chips by using X-ray spectral analysis. We also evaluated the changes in the strength characteristics of dental filling materials with and without electromagnetic field influence. The analysis of the obtained data indicates the presence of structural changes in polymeric dental filling materials, including the material microstructure condensation confirmed by the SEM results, an increase in the strength and adhesion characteristics and certain regularities of the chemical elemental composition concentration change in the area of hard tooth tissue and dental filling material. These scientific data will provide tooth caries prevention and promote the increase of treatment quality.

  13. High Fill Factors of Si Solar Cells Achieved by Using an Inverse Connection Between MOS and PN Junctions.

    PubMed

    Wang, Liang-Xing; Zhou, Zhi-Quan; Zhang, Tian-Ning; Chen, Xin; Lu, Ming

    2016-12-01

    Fill factors (FFs) of ~0.87 have been obtained for crystalline Si (c-Si) solar cells based on Ag front contacts after rapid thermal annealing. The usual single PN junction model fails to explain the high FF result. A metal/oxide/semiconductor (MOS) junction at the emitter is found to be inversely connected to the PN one, and when its barrier height/e is close to the open-circuit voltage of the solar cell, very high FF is obtainable. In this work, although the open-circuit voltage (<580 mV) is not high here, the efficiency of c-Si solar cell still reaches the state-of-the-art value (>20 %) due to the high FF achieved.

  14. Measuring engagement in fourth to twelfth grade classrooms: the Classroom Engagement Inventory.

    PubMed

    Wang, Ze; Bergin, Christi; Bergin, David A

    2014-12-01

    Research on factors that may promote engagement is hampered by the absence of a measure of classroom-level engagement. Literature has suggested that engagement may have 3 dimensions--affective, behavioral, and cognitive. No existing engagement scales measure all 3 dimensions at the classroom level. The Classroom Engagement Inventory (CEI) was developed to fill this gap. In Study 1, exploratory and confirmatory factor analyses were conducted on data from 3,481 students from the 4th to 12th grade. The results suggested a 4-factor model of the CEI. Using these results, in Study 2 several items were revised and data were collected 1 year later from 4th to 12th grade students in the same school district as Study 1. Analyses were conducted on data from 3,560 students after data cleaning. A series of potential models was tested. The final results suggest a 5-factor 24-item CEI: (1) Affective Engagement, (2) Behavioral Engagement-Compliance, (3) Behavioral Engagement-Effortful Class Participation, (4) Cognitive Engagement, and (5) Disengagement. Results advance understanding of the construct of classroom engagement. The CEI fills a significant gap in measurement of engagement. The CEI is classroom level, measures multiple dimensions of engagement, uses self-report, is relatively short, and can be readily administered in classrooms from the 4th to 12th grade. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  15. Photodiode area effect on performance of X-ray CMOS active pixel sensors

    NASA Astrophysics Data System (ADS)

    Kim, M. S.; Kim, Y.; Kim, G.; Lim, K. T.; Cho, G.; Kim, D.

    2018-02-01

    Compared to conventional TFT-based X-ray imaging devices, CMOS-based X-ray imaging sensors are considered next generation because they can be manufactured in very small pixel pitches and can acquire high-speed images. In addition, CMOS-based sensors have the advantage of integration of various functional circuits within the sensor. The image quality can also be improved by the high fill-factor in large pixels. If the size of the subject is small, the size of the pixel must be reduced as a consequence. In addition, the fill factor must be reduced to aggregate various functional circuits within the pixel. In this study, 3T-APS (active pixel sensor) with photodiodes of four different sizes were fabricated and evaluated. It is well known that a larger photodiode leads to improved overall performance. Nonetheless, if the size of the photodiode is > 1000 μm2, the degree to which the sensor performance increases as the photodiode size increases, is reduced. As a result, considering the fill factor, pixel-pitch > 32 μm is not necessary to achieve high-efficiency image quality. In addition, poor image quality is to be expected unless special sensor-design techniques are included for sensors with a pixel pitch of 25 μm or less.

  16. Mid-frequency MTF compensation of optical sparse aperture system.

    PubMed

    Zhou, Chenghao; Wang, Zhile

    2018-03-19

    Optical sparse aperture (OSA) can greatly improve the spatial resolution of optical system. However, because of its aperture dispersion and sparse, its mid-frequency modulation transfer function (MTF) are significantly lower than that of a single aperture system. The main focus of this paper is on the mid-frequency MTF compensation of the optical sparse aperture system. Firstly, the principle of the mid-frequency MTF decreasing and missing of optical sparse aperture are analyzed. This paper takes the filling factor as a clue. The method of processing the mid-frequency MTF decreasing with large filling factor and method of compensation mid-frequency MTF with small filling factor are given respectively. For the MTF mid-frequency decreasing, the image spatial-variant restoration method is proposed to restore the mid-frequency information in the image; for the mid-frequency MTF missing, two images obtained by two system respectively are fused to compensate the mid-frequency information in optical sparse aperture image. The feasibility of the two method are analyzed in this paper. The numerical simulation of the system and algorithm of the two cases are presented using Zemax and Matlab. The results demonstrate that by these two methods the mid-frequency MTF of OSA system can be compensated effectively.

  17. PHOTOMETRIC PROPERTIES FOR SELECTED ALGOL-TYPE BINARIES. II. AO SERPENTIS AND V338 HERCULIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Y.-G.; Dai, H.-F.; Hu, S.-M.

    2010-04-15

    We present the first multiband photometry for the semidetached eclipsing binary AO Serpentis, observed on seven nights between 2009 April and July at the Weihai Observatory of Shandong University. By using the 2003 version of the Wilson-Devinney code, the photometric solutions of AO Ser and a similar object V338 Her were (re)deduced. The spectral types and orbital periods are A2 and P = 0.8793 days for AO Ser, F1V and P = 1.3057 days for V338 Her. The results reveal that two binaries are low mass ratio systems, whose secondary components fill their Roche lobes. The fill-out factors of themore » primary components are f = 58.6% for AO Ser and f = 54.2% for V338 Her, respectively. From the O - C curves of AO Ser and V338 Her, it is discovered that secular period changes with cyclic variations exist. The periods and semiamplitudes are 17.32({+-}0.01) yr and 0.0051({+-}0.0001) days for AO Ser, 29.07({+-}0.04) yr and 0.0116({+-}0.0015) days for V338 Her, respectively. This kind of cyclic oscillation may be attributed to either the light-time effect via an assumed third body or perhaps cyclic magnetic activity on the secondary component. For AO Ser, the long-term period decreases at a rate of dP/dt = -5.35({+-}0.03) x 10{sup -7} days yr{sup -1}, which may be caused by mass and angular momentum loss from the system. Considering the period decreasing, the fill-out factor of the primary for AO Ser will increase and it will finally fill its Roche lobe. Meanwhile, the secular period increase rate for V338 Her is dP/dt = +1.44({+-}0.24) x 10{sup -7} days yr{sup -1}, indicating that mass transfers from the less massive component to the more massive component. This will also cause the fill-out factor of the primary to increase. When the primaries fill their Roche lobes, AO Ser and V338 Her may evolve into contact stars, as predicted by the theory of thermal relaxation oscillations.« less

  18. Effect of filling factor on photonic bandgap of chalcogenide photonic crystal

    NASA Astrophysics Data System (ADS)

    Singh, Rajpal; Suthar, B.; Bhargava, A.

    2018-05-01

    In the present work, the photonic band structure of 1-D chalcogenide photonic crystal of As2S3/air multilayered structure is calculated using the plane wave expansion method. The study is extended to investigate the effect of filling factor on the photonic bandgap. The increase of bandgap is explained in the study.

  19. General analysis of slab lasers using geometrical optics.

    PubMed

    Chung, Te-yuan; Bass, Michael

    2007-02-01

    A thorough and general geometrical optics analysis of a slab-shaped laser gain medium is presented. The length and thickness ratio is critical if one is to achieve the maximum utilization of absorbed pump power by the laser light in such a medium; e.g., the fill factor inside the slab is to be maximized. We point out that the conditions for a fill factor equal to 1, laser light entering and exiting parallel to the length of the slab, and Brewster angle incidence on the entrance and exit faces cannot all be satisfied at the same time. Deformed slabs are also studied. Deformation along the width direction of the largest surfaces is shown to significantly reduce the fill factor that is possible.

  20. Doppler echocardiographic analysis of left ventricular filling in treated hypertensive patients.

    PubMed

    Phillips, R A; Coplan, N L; Krakoff, L R; Yeager, K; Ross, R S; Gorlin, R; Goldman, M E

    1987-02-01

    Early detection and prevention of cardiac dysfunction is an important goal in the management of hypertensive patients. In this study, Doppler echocardiography was used to evaluate the pattern of left ventricular diastolic filling in 38 subjects: 18 treated hypertensive patients (blood pressure 141 +/- 17/83 +/- 10 mm Hg, mean +/- SD) without other coronary risk factors and 20 risk-free normotensive subjects of similar age (47 +/- 10 and 49 +/- 13 years, respectively). Peak velocity of late left ventricular filling due to the atrial contraction was greater in hypertensive compared with normotensive subjects (69 +/- 14 versus 52 +/- 13 cm/s; p less than 0.001). Peak velocity of late filling was significantly greater in hypertensive versus normotensive subjects in those aged 50 years or younger and those older than age 50 (65 +/- 12 versus 50 +/- 11; p less than 0.01 and 75 +/- 15 versus 56 +/- 15 cm/s; p less than 0.05, respectively). In hypertensive subjects, peak velocity of late filling did not correlate with routine indexes of hypertensive heart disease (including posterior wall thickness and left ventricular mass), systolic and diastolic blood pressure or duration of hypertension. These results indicate that increased velocity of late left ventricular filling may be independent of left ventricular hypertrophy and persist despite effective blood pressure control.

  1. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  2. The Tennessee study: factors affecting treatment outcome and healing time following nonsurgical root canal treatment.

    PubMed

    Azim, A A; Griggs, J A; Huang, G T-J

    2016-01-01

    To determine factors that may influence treatment outcome and healing time following root canal treatment. Root filled and restored teeth by pre-doctoral students were included in this study. Teeth/roots were followed-up regularly, and treatment outcome was evaluated at every follow-up appointment (healed, healing, uncertain or unsatisfactory). Host (age, immune condition, pulp/periapical diagnosis, tooth/root type, location and anatomy) and treatment factors (master apical file size, apical extension, voids and density of root filling) were recorded from patient dental records. Univariate, bivariate and multivariate analyses were performed to determine the impact of the factors on treatment outcomes and healing times. A total of 422 roots from 291 teeth met the inclusion criteria with a mean follow-up period of 2 years. The preoperative pulp condition, procedural errors during treatment, apical extension and density of root fillings significantly affected the treatment outcome. The average time required for a periapical lesion to heal was 11.78 months. The healing time increased in patients with compromised healing, patients older than 40 years, roots with Weine type II root canal systems, root canal systems prepared to a master apical file size <35, and roots with overextended fillings (P < 0.1). Multiple host and treatment factors affected the healing time and outcome of root canal treatment. Follow-up protocols should consider these factors before concluding the treatment outcome: patient's age, immune condition, as well as roots with overextended fillings, root canal systems with smaller apical preparations (size <35) or roots with complex canal systems. Intervention may be recommended if the treatment quality was inadequate or if patients became symptomatic. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Via fill properties of organic BARCs in dual-damascene application

    NASA Astrophysics Data System (ADS)

    Huang, Runhui

    2004-05-01

    With the introduction of copper as the interconnect metal, the Dual Damascene (DD) process has been integrated into integrated circuit (IC) device fabrication. The DD process utilizes organic bottom anti-reflective coatings (BARCs) not only to eliminate the thin film interference effects but also to act as via fill materials. However, three serious processing problems are encountered with organic BARCs. One is the formation of voids, which are trapped gas bubbles (evaporating solvent, byproduct of the curing reaction and air) inside the vias. Another problem is non-uniform BARC layer thickness in different via pitch areas. The third problem is the formation of fences during plasma etch. Fences are formed from materials that are removed by plasma and subsequently deposited on the sidewall surrounding the via openings during the etching process. Voids can cause variations in BARC top thickness, optical properties, via fill percentage, and plasma etch rate. This study focuses on the factors that influence the formation of voids and addresses the ways to eliminate them by optimizing the compositions of formulations and the processing conditions. Effects of molecular weight of the polymer, nature of the crosslinker, additives, and bake temperature were examined. The molecular weight of the polymer is one of the important factors that needs to be controlled carefully. Polymers with high molecular weights tend to trap voids inside the vias. Low molecular weight polymers have low Tg and low viscosity, which enables good thermal flow so that the BARC can fill vias easily without voids. Several kinds of crosslinkers were investigated in this study. When used with the same polymer system, formulations with different crosslinkers show varying results that affect planar fill, sidewall coverage, and, in some cases, voids. Additives also can change via fill behavior dramatically, and choosing the right additive will improve the via fill property. Processing conditions such as bake temperature also greatly affect via fill. Depending on the polymer thermal property and crosslinking reaction, varying the bake temperature can change the via fill behavior of the BARC. By understanding the nature of the polymer, the crosslinking reaction, and the processing conditions, we are able to design BARCs with better flow property to provide planar topography without voids inside the vias.

  4. Factors affecting marginal integrity of class II bulk-fill composite resin restorations

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Jafari Navimipour, Elmira; Ajami, Amir Ahmad; Ghiasvand, Negar; Savadi Oskoee, Ayda

    2017-01-01

    Background. Bulk-fill composite resins are a new type of resin-based composite resins, claimed to have the capacity to be placed in thick layers, up to 4 mm. This study was carried out to evaluate factors affecting gap formation in Cl II cavities restored using the bulk-fill technique. Methods. A total of 60 third molars were used in this study. Two Cl II cavities were prepared in each tooth, one on the mesial aspect 1 mm coronal to the CEJ and one on the distal aspect 1 mm apical to the CEJ. The teeth were divided into 4 groups: A: The cavities were restored using the bulk-fill technique with Filtek P90 composite resin and its adhesive system and light-cured with quartz tungsten halogen (QTH) light-curing unit. B: The cavities were restored similar to that in group A but light-cured with an LED light-curing unit. C: The cavities were restored using the bulk-fill technique with X-tra Fil composite resin and Clearfil SE Bond adhesive system and light-cured with a QTH curing unit. D: The cavities were restored similar to that in group C but light-cured with an LED light-curing unit. The gaps were examined under a stereomicroscope at ×60. Data were analyzed with General Linear Model test. In cases of statistical significance (P<0.05), post hoc Bonferroni test was used for further analyses. Results. The light-curing unit type had no effect on gap formation. However, the results were significant in relation to the composite resin type and margin location (P<0.001). The cumulative effects of light-curing unit*gingival margin and light-curing unit*composite resin type were not significant; however, the cumulative effect of composite rein type*gingival margin was significant (P=0.04) Conclusion. X-tra Fil composite exhibited smaller gaps compared with Filtek P90 composite with both light-curing units. Both composite resins exhibited smaller gaps at enamel margins. PMID:28748051

  5. Estimates of Active Region Area Coverage through Simultaneous Measurements of the He i λλ 5876 and 10830 Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andretta, Vincenzo; Covino, Elvira; Giampapa, Mark S.

    2017-04-20

    Simultaneous, high-quality measurements of the neutral helium triplet features at 5876 Å and 10830 Å in a sample of solar-type stars are presented. The observations were made with ESO telescopes at the La Silla Paranal Observatory under program ID 088.D-0028(A) and MPG Utility Run for Fiber Extended-range Optical Spectrograph 088.A-9029(A). The equivalent widths of these features combined with chromospheric models are utilized to infer the fractional area coverage, or filling factor, of magnetic regions outside of spots. We find that the majority of the sample is characterized by filling factors less than unity. However, discrepancies occur among the coolest K-typemore » and the warmest and most rapidly rotating F-type dwarf stars. We discuss these apparently anomalous results and find that in the case of K-type stars, they are an artifact of the application of chromospheric models best suited to the Sun than to stars with significantly lower T {sub eff}. The case of the F-type rapid rotators can be explained by the measurement uncertainties of the equivalent widths, but they may also be due to a non-magnetic heating component in their atmospheres. With the exceptions noted above, preliminary results suggest that the average heating rates in the active regions are the same from one star to the other, differing in the spatially integrated, observed level of activity due to the area coverage. Hence, differences in activity in this sample are mainly due to the filling factor of active regions.« less

  6. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species.

    PubMed

    Lin, Ligang; Zhang, Yuzhong; Li, Hong

    2010-10-01

    Polyethylene glycol (PEG)-CuY zeolite hybrid membranes were prepared for sulfur removal from gasoline feed. The sorption and diffusion behavior of typical gasoline components through the hybrid membranes has been investigated by systematic studies of dynamic sorption curves. Influencing factors including feed temperature, permeate pressure, and zeolite content in the membranes on membrane performance have been evaluated. Immersion experiments results showed the preferential sorption of thiophene, which is key in fulfilling the separation of thiophene/hydrocarbon mixtures. The sorption, diffusion, and permeation coefficients of gasoline components in filled membranes are higher than those in unfilled membranes. Pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the discussions on dynamic sorption curves. PV experiments showed that lower permeate pressure meant higher separation performance. The optimum temperature occurred at 383K, and an Arrhenius relationship existed between permeation flux and operating temperature. The CuY zeolite filling led to a significant increase of flux since the porous zeolite provides for more diffusion for small molecules in mixed matrix membranes. The sulfur enrichment factor increased first and then decreased with the increasing zeolite content, which was attributed to the combined influence of complexation force between CuY and thiophenes as well as the trade-off phenomenon between flux and selectivity. At 9 wt% CuY content, a higher permeation flux (3.19 kg/(m(2) h)) and sulfur enrichment factor (2.95) were obtained with 1190 microg/g sulfur content level in gasoline feed. Copyright 2010 Elsevier Inc. All rights reserved.

  7. INFERRING THE CORONAL DENSITY IRREGULARITY FROM EUV SPECTRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Savin, D. W., E-mail: mhahn@astro.columbia.edu

    2016-09-20

    Understanding the density structure of the solar corona is important for modeling both coronal heating and the solar wind. Direct measurements are difficult because of line-of-sight integration and possible unresolved structures. We present a new method for quantifying such structures using density-sensitive extreme ultraviolet line intensities to derive a density irregularity parameter, a relative measure of the amount of structure along the line of sight. We also present a simple model to relate the inferred irregularities to physical quantities, such as the filling factor and density contrast. For quiet-Sun regions and interplume regions of coronal holes, we find a densitymore » contrast of at least a factor of 3–10 and corresponding filling factors of about 10%–20%. Our results are in rough agreement with other estimates of the density structures in these regions. The irregularity diagnostic provides a useful relative measure of unresolved structure in various regions of the corona.« less

  8. Six Sigma methods applied to cryogenic coolers assembly line

    NASA Astrophysics Data System (ADS)

    Ventre, Jean-Marc; Germain-Lacour, Michel; Martin, Jean-Yves; Cauquil, Jean-Marc; Benschop, Tonny; Griot, René

    2009-05-01

    Six Sigma method have been applied to manufacturing process of a rotary Stirling cooler: RM2. Name of the project is NoVa as main goal of the Six Sigma approach is to reduce variability (No Variability). Project has been based on the DMAIC guideline following five stages: Define, Measure, Analyse, Improve, Control. Objective has been set on the rate of coolers succeeding performance at first attempt with a goal value of 95%. A team has been gathered involving people and skills acting on the RM2 manufacturing line. Measurement System Analysis (MSA) has been applied to test bench and results after R&R gage show that measurement is one of the root cause for variability in RM2 process. Two more root causes have been identified by the team after process mapping analysis: regenerator filling factor and cleaning procedure. Causes for measurement variability have been identified and eradicated as shown by new results from R&R gage. Experimental results show that regenerator filling factor impacts process variability and affects yield. Improved process haven been set after new calibration process for test bench, new filling procedure for regenerator and an additional cleaning stage have been implemented. The objective for 95% coolers succeeding performance test at first attempt has been reached and kept for a significant period. RM2 manufacturing process is now managed according to Statistical Process Control based on control charts. Improvement in process capability have enabled introduction of sample testing procedure before delivery.

  9. Critical Evaluation of Risk Factors and Early Complications in 564 Consecutive Two-Stage Implant-Based Breast Reconstructions Using Acellular Dermal Matrix at a Single Center.

    PubMed

    Selber, Jesse C; Wren, James H; Garvey, Patrick B; Zhang, Hong; Erickson, Cameron; Clemens, Mark W; Butler, Charles E

    2015-07-01

    Acellular dermal matrix for implant-based breast reconstruction appears to cause higher early complication rates, but long-term outcomes are perceived to be superior. This dichotomy is the subject of considerable debate. The authors hypothesized that patient characteristics and operative variables would have a greater impact on complications than the type of acellular dermal matrix used. A retrospective cohort study was performed of consecutive patients who underwent two-stage, implant-based breast reconstruction with human cadaveric or bovine acellular dermal matrix from 2006 to 2012 at a single institution. Patient characteristics and operative variables were analyzed using logistic regression analyses to identify risk factors for complications. The authors included 564 reconstructions in the study. Radiation therapy and obesity increased the odds of all complications. Every 100-ml increase in preoperative breast volume increased the odds of any complication by 1 percent, the odds of infection by 27 percent, and the risk of explantation by 16 percent. The odds of seroma increased linearly with increasing surface area of acellular dermal matrix. Odds of infection were higher with an intraoperative expander fill volume greater than 50 percent of the total volume. Risk of explantation was twice as high when intraoperative expander fill volume was greater than 300 ml. Radiation therapy, obesity, larger breasts, higher intraoperative fill volumes, and larger acellular dermal matrices are all independent risk factors for early complications. Maximizing the initial mastectomy skin envelope fill must be balanced with the understanding that higher complication rates may result from a larger intraoperative breast mound. Risk, III.

  10. Maternal self-report of oral health in six-year-old Pacific children from South Auckland, New Zealand.

    PubMed

    Paterson, Janis E; Gao, Wanzhen; Sundborn, Gerhard; Cartwright, Susan

    2011-02-01

    To examine maternal and socio-demographic factors associated with oral health practices and experiences in six-year-old Pacific children. The longitudinal Pacific Islands Families (PIF) study is following a cohort of Pacific children born in Auckland, New Zealand in 2000. At approximately six years postpartum maternal reports (n = 1001) on child oral health practices and experiences of fillings and extractions were gathered. Forty-five per cent of mothers reported that their child had experienced fillings or extractions. After adjusting for confounding factors, we found that Tongan children were almost twice as likely to have their teeth filled or extracted than Samoan children (OR, 1.93; 95%, 1.34-2.77). Differences between Samoan children and children of other ethnic groups were not significant. Children of mothers who had secondary qualifications were significantly less likely to have their teeth filled or extracted compared to children of mothers who had postsecondary qualifications (OR, 0.634; 95%, 0.44-0.90). Prolonged duration of breastfeeding was associated with an increased likelihood of filling or extraction experience. In terms of maternal oral hygiene, maternal tooth brushing frequency of less that once a day was significantly associated with increased odds of fillings and/or extractions in their children (OR, 1.35; 95% CI, 1.02-1.79). Children who were sometimes supervised for tooth brushing were significantly more likely to have fillings or extractions than children who were not provided supervision. These findings highlight the role of cultural factors and maternal hygiene in child oral health outcomes and suggest that health promotion efforts should encompass the whole family and embrace a culturally appropriate approach. © 2010 John Wiley & Sons A/S.

  11. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei

    2016-05-04

    Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%.

  12. Angle-resolved reflection spectroscopy of high-quality PMMA opal crystal

    NASA Astrophysics Data System (ADS)

    Nemtsev, Ivan V.; Tambasov, Igor A.; Ivanenko, Alexander A.; Zyryanov, Victor Ya.

    2018-02-01

    PMMA opal crystal was prepared by a simple hybrid method, which includes sedimentation, meniscus formation and evaporation. We investigated three surfaces of this crystal by angle-resolved reflective light spectroscopy and SEM study. The angle-resolved reflective measurements were carried out in the 400-1100 nm range. We have determined the high-quality ordered surface of the crystal region. Narrow particle size distribution of the surface has been revealed. The average particle diameter obtained with SEM was nearly 361 nm. The most interesting result was that reflectivity of the surface turned out up to 98% at normal light incidence. Using a fit of dependences of the maximum reflectivity wavelength from an angle based on the Bragg-Snell law, the wavelength of maximum 0° reflectivity, the particle diameter and the fill factor have been determined. For the best surface maximum reflectivity wavelength of a 0° angle was estimated to be 869 nm. The particle diameter and fill factor were calculated as 372 nm and 0.8715, respectively. The diameter obtained by fitting is in excellent agreement with the particle diameter obtained with SEM. The reflectivity maximum is assumed to increase significantly when increasing the fill factor. We believe that using our simple approach to manufacture PMMA opal crystals will significantly increase the fabrication of high-quality photonic crystal templates and thin films.

  13. Unconventional imaging with contained granular media

    NASA Astrophysics Data System (ADS)

    Quadrelli, Marco B.; Basinger, Scott; Sidick, Erkin

    2017-09-01

    Typically, the cost of a space-borne imaging system is driven by the size and mass of the primary aperture. The solution that we propose uses a method to construct an imaging system in space in which the nonlinear optical properties of a cloud of micron-sized particles, shaped into a specific surface by electromagnetic means, and allows one to form a very large and lightweight aperture of an optical system, hence reducing overall mass and cost. Recent work at JPL has investigated the feasibility of a granular imaging system, concluding that such a system could be built and controlled in orbit. We conducted experiments and simulation of the optical response of a granular lens. In all cases, the optical response, measured by the Modulation Transfer Function, of hexagonal reflectors was closely comparable to that of a conventional spherical mirror. We conducted some further analyses by evaluating the sensitivity to fill factor and grain shape, and found a marked sensitivity to fill factor but no sensitivity to grain shape. We have also found that at fill factors as low as 30%, the reflection from a granular lens is still excellent. Furthermore, we replaced the monolithic primary mirror in an existing integrated model of an optical system (WFIRST Coronagraph) with a granular lens, and found that the granular lens that can be useful for exoplanet detection provides excellent contrast levels. We will present our testbed and simulation results in this paper.

  14. Spin-dependent electron many-body effects in GaAs

    NASA Astrophysics Data System (ADS)

    Nemec, P.; Kerachian, Y.; van Driel, H. M.; Smirl, Arthur L.

    2005-12-01

    Time- and polarization-resolved differential transmission measurements employing same and oppositely circularly polarized 150fs optical pulses are used to investigate spin characteristics of conduction band electrons in bulk GaAs at 295K . Electrons and holes with densities in the 2×1016cm-3-1018cm-3 range are generated and probed with pulses whose center wavelength is between 865 and 775nm . The transmissivity results can be explained in terms of the spin sensitivity of both phase-space filling and many-body effects (band-gap renormalization and screening of the Coulomb enhancement factor). For excitation and probing at 865nm , just above the band-gap edge, the transmissivity changes mainly reflect spin-dependent phase-space filling which is dominated by the electron Fermi factors. However, for 775nm probing, the influence of many-body effects on the induced transmission change are comparable with those from reduced phase space filling, exposing the spin dependence of the many-body effects. If one does not take account of these spin-dependent effects one can misinterpret both the magnitude and time evolution of the electron spin polarization. For suitable measurements we find that the electron spin relaxation time is 130ps .

  15. High-resolution observations of the polar magnetic fields of the sun

    NASA Technical Reports Server (NTRS)

    Lin, H.; Varsik, J.; Zirin, H.

    1994-01-01

    High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor (the ratio of the area occupied by the magnetic elements to the total area) of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993. We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle. We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70-80 deg) and low (60-70 deg) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.

  16. Effects of selective attention on perceptual filling-in.

    PubMed

    De Weerd, P; Smith, E; Greenberg, P

    2006-03-01

    After few seconds, a figure steadily presented in peripheral vision becomes perceptually filled-in by its background, as if it "disappeared". We report that directing attention to the color, shape, or location of a figure increased the probability of perceiving filling-in compared to unattended figures, without modifying the time required for filling-in. This effect could be augmented by boosting attention. Furthermore, the frequency distribution of filling-in response times for attended figures could be predicted by multiplying the frequencies of response times for unattended figures with a constant. We propose that, after failure of figure-ground segregation, the neural interpolation processes that produce perceptual filling-in are enhanced in attended figure regions. As filling-in processes are involved in surface perception, the present study demonstrates that even very early visual processes are subject to modulation by cognitive factors.

  17. High altitude current-voltage measurement of GaAs/Ge solar cells

    NASA Astrophysics Data System (ADS)

    Hart, Russell E., Jr.; Brinker, David J.; Emery, Keith A.

    Measurements of high-voltage (Voc of 1.2 V) gallium arsenide on germanium tandem junction solar cells at air mass 0.22 showed that the insolation in the red portion of the solar spectrum is insufficient to obtain high fill factor. On the basis of measurements in the LeRC X-25L solar simulator, these cells were believed to be as efficient as 21.68 percent AM0. Solar simulator spectrum errors in the red end allowed the fill factor to be as high as 78.7 percent. When a similar cell's current-voltage characteristic was measured at high altitude in the NASA Lear Jet Facility, a loss of 15 percentage points in fill factor was observed. This decrease was caused by insufficient current in the germanium bottom cell of the tandem stack.

  18. Using remote sensing data to predict road fill areas and areas affected by fill erosion with planned forest road construction: a case study in Kastamonu Regional Forest Directorate (Turkey).

    PubMed

    Aricak, Burak

    2015-07-01

    Forest roads are essential for transport in managed forests, yet road construction causes environmental disturbance, both in the surface area the road covers and in erosion and downslope deposition of road fill material. The factors affecting the deposition distance of eroded road fill are the slope gradient and the density of plant cover. Thus, it is important to take these factors into consideration during road planning to minimize their disturbance. The aim of this study was to use remote sensing and field surveying to predict the locations that would be affected by downslope deposition of eroding road fill and to compile the data into a geographic information system (GIS) database. The construction of 99,500 m of forest roads is proposed for the Kastamonu Regional Forest Directorate in Turkey. Using GeoEye satellite images and a digital elevation model (DEM) for the region, the location and extent of downslope deposition of road fill were determined for the roads as planned. It was found that if the proposed roads were constructed by excavators, the fill material would cover 910,621 m(2) and the affected surface area would be 1,302,740 m(2). Application of the method used here can minimize the adverse effects of forest roads.

  19. Failure to unmask pseudonormal diastolic function by a valsalva maneuver: tricuspid insufficiency is a major factor.

    PubMed

    Hu, Kai; Liu, Dan; Niemann, Markus; Hatle, Liv; Herrmann, Sebastian; Voelker, Wolfram; Ertl, Georg; Bijnens, Bart; Weidemann, Frank

    2011-11-01

    For the clinical assessment of patients with dyspnea, the inversion of the early (E) and late (A) transmitral flow during Valsalva maneuver (VM) frequently helps to distinguish pseudonormal from normal filling pattern. However, in an important number of patients, VM fails to reveal the change from dominant early mitral flow velocity toward larger late velocity. From December 2009 to October 2010, we selected consecutive patients with abnormal filling with (n=25) and without E/A inversion (n=25) during VM. Transmitral, tricuspid, and pulmonary Doppler traces were recorded and the degree of insufficiency was estimated. After evaluating all standard echocardiographic morphological, functional, and flow-related parameters, it became evident that the failure to unmask the pseudonormal filling pattern by VM was related to the degree of the tricuspid insufficiency (TI). TI was graded as mild in 24 of 25 patients in the group with E/A inversion during VM, whereas TI was graded as moderate to severe in 24 of the 25 patients with pseudonormal diastolic function without E/A inversion during VM. Our data suggest that TI is a major factor to prevent E/A inversion during a VM in patients with pseudonormal diastolic function. This probably is due to a decrease in TI resulting in an increase in forward flow rather than the expected decrease during the VM. Thus, whenever a pseudonormal diastolic filling pattern is suspected, the use of a VM is not an informative discriminator in the presence of moderate or severe TI.

  20. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Technical Reports Server (NTRS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2007-01-01

    The research testing and demonstration of new bulk-fill materials for cryogenic thermal insulation systems was performed by the Cryogenics Test Laboratory at NASA Kennedy Space Center. Thermal conductivity testing under actual-use cryogenic conditions is a key to understanding the total system performance encompassing engineering, economics, and materials factors. A number of bulk fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, were tested using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boil-off method were 293 K and 78 K. Tests were performed as a function of cold vacuum pressure from high vacuum to no vacuum conditions. Results are compared with other complementary test methods in the range of 300 K to 20 K. Various testing techniques are shown to be required to obtain a complete understanding of the operating performance of a material and to provide data for answers to design engineering questions.

  1. Effect of Continuous Multi-Walled Carbon Nanotubes on Thermal and Mechanical Properties of Flexible Composite Film

    PubMed Central

    Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee

    2016-01-01

    To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310

  2. High throughput fabrication of large-area plasmonic color filters by soft-X-ray interference lithography.

    PubMed

    Sun, Libin; Hu, Xiaolin; Wu, Qingjun; Wang, Liansheng; Zhao, Jun; Yang, Shumin; Tai, Renzhong; Fecht, Hans-Jorg; Zhang, Dong-Xian; Wang, Li-Qiang; Jiang, Jian-Zhong

    2016-08-22

    Plasmonic color filters in mass production have been restricted from current fabrication technology, which impede their applications. Soft-X-ray interference lithography (XIL) has recently generated considerable interest as a newly developed technique for the production of periodic nano-structures with resolution theoretically below 4 nm. Here we ameliorate XIL by adding an order sorting aperture and designing the light path properly to achieve perfect-stitching nano-patterns and fast fabrication of large-area color filters. The fill factor of nanostructures prepared on ultrathin Ag films can largely affect the transmission minimum of plasmonic color filters. By changing the fill factor, the color can be controlled flexibly, improving the utilization efficiency of the mask in XIL simultaneously. The calculated data agree well with the experimental results. Finally, an underlying mechanism has been uncovered after systematically analyzing the localized surface plasmon polaritons (LSPPs) coupling in electric field distribution.

  3. Volatile-rich Crater Interior Deposits on Mars: An Energy Balance Model of Modification

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Several craters on Mars are partially filled by material emplaced by post-impact processes. Populations of such craters include those in the circumsouth polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. In this study, crater fill material refers to an interior mound, generally separated from the interior walls of the crater by a trough that may be continuous along the crater s circumference (i.e. a ring-shaped trough), or may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently off-center from the crater center and may be asymmetric, (i.e. not circular) in plan view shape. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. We first focus on Korolev crater in the northern lowlands. We can then apply this model to other craters in different regions. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget within the crater (and erosive processes such as eolian deflation are not necessary).

  4. Filling defects in the pancreatic duct on endoscopic retrograde pancreatography.

    PubMed

    Taylor, A J; Carmody, T J; Schmalz, M J; Wiedmeyer, D A; Stewart, E T

    1992-12-01

    Filling defects in the pancreatic duct are a frequent finding during endoscopic retrograde pancreatography (ERP) and have a variety of causes. Some filling defects may be artifactual or related to technical factors and, once their origin is recognized, can be disregarded. Others may be due to acute changes of pancreatitis and should prompt more careful injection of contrast material into the duct. Intraluminal masses may represent calculi or a neoplasm, either of which may require surgery or endoscopic intervention. The exact nature of these filling defects may not be apparent on radiographs, and other studies may be needed. This article reviews our approach to the evaluation of filling defects in the pancreatic duct.

  5. High fill-factor micromirror array using a self-aligned vertical comb drive actuator with two rotational axes

    NASA Astrophysics Data System (ADS)

    Kim, Minsoo; Park, Jae-Hyoung; Jeon, Jin-A.; Yoo, Byung-Wook; Park, I. H.; Kim, Yong-Kweon

    2009-03-01

    We present a two-axis micromirror array with high fill-factor, using a new fabrication procedure on the full wafer scale. The micromirror comprises a self-aligned vertical comb drive actuator with a mirror plate mounted on it and electrical lines on a bottom substrate. A high-aspect-ratio vertical comb drive was built using a bulk micromachining technique on a silicon-on-insulator (SOI) wafer. The thickness of the torsion spring was adjusted using multiple silicon etching steps to enhance the static angular deflection of the mirrors. To address the array, electrical lines were fabricated on a glass substrate and combined with the comb actuators using an anodic bonding process. The silicon mirror plate was fabricated together with the actuator using a wafer bonding process and segmented at the final release step. The actuator and addressing lines were hidden behind the mirror plate, resulting in a high fill-factor of 84% in an 8 × 8 array of micromirrors, each 340 µm × 340 µm. The fabricated mirror plate has a high-quality optical surface with an average surface roughness (Ra) of 4 nm and a curvature radius of 0.9 m. The static and dynamic responses of the micromirror were characterized by comparing the measured results with the calculated values. The maximum static optical deflection for the outer axis is 4.32° at 60 V, and the maximum inner axis tilting angle is 2.82° at 96 V bias. The torsion resonance frequencies along the outer and inner axes were 1.94 kHz and 0.95 kHz, respectively.

  6. Effect of chamber characteristics, loading and analysis time on motility and kinetic variables analysed with the CASA-mot system in goat sperm.

    PubMed

    Del Gallego, R; Sadeghi, S; Blasco, E; Soler, C; Yániz, J L; Silvestre, M A

    2017-02-01

    Several factors unrelated to the semen samples could be influencing in the sperm motility analysis. The aim of the present research was to study the effect of four chambers with different characteristics, namely; slide-coverslip, Spermtrack, ISAS D4C10, and ISAS D4C20 on the sperm motility. The filling procedure (drop or capillarity) and analysis time (0, 120 and 240s), depth of chamber (10 or 20μm) and field on motility variables were analysed by use of the CASA-mot system in goat sperm. Use of the drop-filling chambers resulted in greater values than capillarity-filling chambers for all sperm motility and kinetic variables, except for LIN (64.5% compared with 56.3% of motility for drop- and capillarity-filling chambers respectively, P<0.05). There were no significant differences in total sperm motility between different chamber depths, however, use of the 20μm-chambers resulted in greater sperm progressive motility rate, VSL and LIN, and less VCL and VAP than chambers with a lesser depth. There was less sperm motility and lesser values for kinetic variables as time that elapsed increased between sample loading and sperm evaluation. For sperm motility, use of droplet-loaded chambers resulted in similar values of MOT in all microscopic fields, but sperm motility assessed in capillarity-loaded chambers was less in the central fields than in the outermost microscopic fields. For goats, it is recommended that sperm motility be analysed using the CASA-mot system with a drop-loaded chamber within 2min after filling the chamber. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%

    NASA Astrophysics Data System (ADS)

    Gasparini, Nicola; Jiao, Xuechen; Heumueller, Thomas; Baran, Derya; Matt, Gebhard J.; Fladischer, Stefanie; Spiecker, Erdmann; Ade, Harald; Brabec, Christoph J.; Ameri, Tayebeh

    2016-09-01

    In recent years the concept of ternary blend bulk heterojunction (BHJ) solar cells based on organic semiconductors has been widely used to achieve a better match to the solar irradiance spectrum, and power conversion efficiencies beyond 10% have been reported. However, the fill factor of organic solar cells is still limited by the competition between recombination and extraction of free charges. Here, we design advanced material composites leading to a high fill factor of 77% in ternary blends, thus demonstrating how the recombination thresholds can be overcome. Extending beyond the typical sensitization concept, we add a highly ordered polymer that, in addition to enhanced absorption, overcomes limits predicted by classical recombination models. An effective charge transfer from the disordered host system onto the highly ordered sensitizer effectively avoids traps of the host matrix and features an almost ideal recombination behaviour.

  8. New dual-curvature microlens array with a high fill-factor for organic light emitting diode modules

    NASA Astrophysics Data System (ADS)

    Lin, Tsung-Hung; Yang, Hsiharng; Chao, Ching-Kong; Shui, Hung-Chi

    2013-09-01

    A new method for fabricating a novel dual-curvature microlens array with a high fill-factor using proximity printing in a lithography process is reported. The lens shapes include dual-curvature, which is a novel shape composed of triangles and hexagons. We utilized UV proximity printing by controlling a printing gap between the mask and substrate. The designed high density microlens array pattern can fabricate a dual-curvature microlens array with a high fill-factor in a photoresist material. It is due to the UV light diffraction which deflects away from the aperture edges and produces a certain exposure in the photoresist material outside the aperture edges. A dual-curvature microlens array with a height ratio of 0.48 can boost axial luminance up to 22%. Therefore, the novel dual-curvature microlens array offers an economical solution for increasing the luminance of organic light emitting diodes.

  9. External cardiac compression may be harmful in some scenarios of pulseless electrical activity.

    PubMed

    Hogan, T S

    2012-10-01

    Pulseless electrical activity occurs when organised or semi-organised electrical activity of the heart persists but the product of systemic vascular resistance and the increase in systemic arterial flow generated by the ejection of the left venticular stroke volume is not sufficient to produce a clinically detectable pulse. Pulseless electrical activity encompasses a very heterogeneous variety of severe circulatory shock states ranging in severity from pseudo-cardiac arrest to effective cardiac arrest. Outcomes of cardiopulmonary resuscitation for pulseless electrical activity are generally poor. Impairment of cardiac filling is the limiting factor to cardiac output in many scenarios of pulseless electrical activity, including extreme vasodilatory shock states. There is no evidence that external cardiac compression can increase cardiac output when impaired cardiac filling is the limiting factor to cardiac output. If impaired cardiac filling is the limiting factor to cardiac output and the heart is effectively ejecting all the blood returning to it, then external cardiac compression can only increase cardiac output if it increases venous return and cardiac filling. Repeated cardiac compression asynchronous with the patient's cardiac cycle and raised mean intrathoracic pressure due to chest compression can be expected to reduce rather than to increase cardiac filling and therefore to reduce rather than to increase cardiac output in such circumstances. The hypothesis is proposed that the performance of external cardiac compression will have zero or negative effect on cardiac output in pulseless electrical activity when impaired cardiac filling is the limiting factor to cardiac output. External cardiac compression may be both directly and indirectly harmful to significant sub-groups of patients with pulseless electrical activity. We have neither evidence nor theory to provide comfort that external cardiac compression is not harmful in many scenarios of pulseless electrical activity. Investigation using a variety of animal models of pulseless electrical activity produced by different shock-inducing mechanisms is required to provide an evidence base for resuscitation guidelines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Theoretical basal Ca II fluxes for late-type stars: results from magnetic wave models with time-dependent ionization and multi-level radiation treatments

    NASA Astrophysics Data System (ADS)

    Fawzy, Diaa E.; Stȩpień, K.

    2018-03-01

    In the current study we present ab initio numerical computations of the generation and propagation of longitudinal waves in magnetic flux tubes embedded in the atmospheres of late-type stars. The interaction between convective turbulence and the magnetic structure is computed and the obtained longitudinal wave energy flux is used in a self-consistent manner to excite the small-scale magnetic flux tubes. In the current study we reduce the number of assumptions made in our previous studies by considering the full magnetic wave energy fluxes and spectra as well as time-dependent ionization (TDI) of hydrogen, employing multi-level Ca II atomic models, and taking into account departures from local thermodynamic equilibrium. Our models employ the recently confirmed value of the mixing-length parameter α=1.8. Regions with strong magnetic fields (magnetic filling factors of up to 50%) are also considered in the current study. The computed Ca II emission fluxes show a strong dependence on the magnetic filling factors, and the effect of time-dependent ionization (TDI) turns out to be very important in the atmospheres of late-type stars heated by acoustic and magnetic waves. The emitted Ca II fluxes with TDI included into the model are decreased by factors that range from 1.4 to 5.5 for G0V and M0V stars, respectively, compared to models that do not consider TDI. The results of our computations are compared with observations. Excellent agreement between the observed and predicted basal flux is obtained. The predicted trend of Ca II emission flux with magnetic filling factor and stellar surface temperature also agrees well with the observations but the calculated maximum fluxes for stars of different spectral types are about two times lower than observations. Though the longitudinal MHD waves considered here are important for chromosphere heating in high activity stars, additional heating mechanism(s) are apparently present.

  11. Material flow data for numerical simulation of powder injection molding

    NASA Astrophysics Data System (ADS)

    Duretek, I.; Holzer, C.

    2017-01-01

    The powder injection molding (PIM) process is a cost efficient and important net-shape manufacturing process that is not completely understood. For the application of simulation programs for the powder injection molding process, apart from suitable physical models, exact material data and in particular knowledge of the flow behavior are essential in order to get precise numerical results. The flow processes of highly filled polymers are complex. Occurring effects are very hard to separate, like shear flow with yield stress, wall slip, elastic effects, etc. Furthermore, the occurrence of phase separation due to the multi-phase composition of compounds is quite probable. In this work, the flow behavior of a 316L stainless steel feedstock for powder injection molding was investigated. Additionally, the influence of pre-shearing on the flow behavior of PIM-feedstocks under practical conditions was examined and evaluated by a special PIM injection molding machine rheometer. In order to have a better understanding of key factors of PIM during the injection step, 3D non-isothermal numerical simulations were conducted with a commercial injection molding simulation software using experimental feedstock properties. The simulation results were compared with the experimental results. The mold filling studies amply illustrate the effect of mold temperature on the filling behavior during the mold filling stage. Moreover, the rheological measurements showed that at low shear rates no zero shear viscosity was observed, but instead the viscosity further increased strongly. This flow behavior could be described with the Cross-WLF approach with Herschel-Bulkley extension very well.

  12. Intermittent surface water connectivity: Fill and spill vs. fill and merge dynamics

    USGS Publications Warehouse

    Leibowitz, Scott G.; Mushet, David M.; Newton, Wesley E.

    2016-01-01

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining differences in response was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes.

  13. Observations on the microvasculature of bone defects filled with biodegradable nanoparticulate hydroxyapatite.

    PubMed

    Kilian, Olaf; Wenisch, Sabine; Karnati, Srikanth; Baumgart-Vogt, Eveline; Hild, Anne; Fuhrmann, Rosemarie; Jonuleit, Tarja; Dingeldein, Elvira; Schnettler, Reinhard; Franke, Ralf-Peter

    2008-01-01

    The microvascularization of metaphyseal bone defects filled with nanoparticulate, biodegradable hydroxyapatite biomaterial with and without platelet factors enrichment was investigated in a minipig model. Results from morphological analysis and PECAM-1 immunohistochemistry showed the formation of new blood vessels into the bone defects by sprouting and intussusception of pre-existing ones. However, no significant differences were observed in the microvascularization of the different biomaterials applied (pure versus platelet factors-enriched hydroxyapatite), concerning the number of vessels and their morphological structure at day 20 after operation. The appearance of VEGFR-2 positive endothelial progenitor cells in the connective tissue between hydroxyapatite particles was also found to be independent from platelet factors enrichment of the hydroxyapatite bone substitute. In both groups formation of lymphatic vessels was detected with a podoplanin antibody. No differences were noted between HA/PLF- and HA/PLF+ implants with respect to the podoplanin expression level, the staining pattern or number of lymphatic vessels. In conclusion, the present study demonstrates different mechanisms of blood and lymphatic vessel formation in hydroxyapatite implants in minipigs.

  14. Comparison of phase unwrapping algorithms for topography reconstruction based on digital speckle pattern interferometry

    NASA Astrophysics Data System (ADS)

    Li, Yuanbo; Cui, Xiaoqian; Wang, Hongbei; Zhao, Mengge; Ding, Hongbin

    2017-10-01

    Digital speckle pattern interferometry (DSPI) can diagnose the topography evolution in real-time, continuous and non-destructive, and has been considered as a most promising technique for Plasma-Facing Components (PFCs) topography diagnostic under the complicated environment of tokamak. It is important for the study of digital speckle pattern interferometry to enhance speckle patterns and obtain the real topography of the ablated crater. In this paper, two kinds of numerical model based on flood-fill algorithm has been developed to obtain the real profile by unwrapping from the wrapped phase in speckle interference pattern, which can be calculated through four intensity images by means of 4-step phase-shifting technique. During the process of phase unwrapping by means of flood-fill algorithm, since the existence of noise pollution, and other inevitable factors will lead to poor quality of the reconstruction results, this will have an impact on the authenticity of the restored topography. The calculation of the quality parameters was introduced to obtain the quality-map from the wrapped phase map, this work presents two different methods to calculate the quality parameters. Then quality parameters are used to guide the path of flood-fill algorithm, and the pixels with good quality parameters are given priority calculation, so that the quality of speckle interference pattern reconstruction results are improved. According to the comparison between the flood-fill algorithm which is suitable for speckle pattern interferometry and the quality-guided flood-fill algorithm (with two different calculation approaches), the errors which caused by noise pollution and the discontinuous of the strips were successfully reduced.

  15. Structural, electronic, and thermal properties of indium-filled InxIr4Sb12 skutterudites

    NASA Astrophysics Data System (ADS)

    Wallace, M. K.; Li, Jun; Subramanian, M. A.

    2018-06-01

    The "phonon-glass/electron-crystal" approach has been implemented through incorporation of "rattlers" into skutterudite void sites to increase phonon scattering and thus increase the thermoelectric efficiency. Indium filled IrSb3 skutterudites are reported for the first time. Polycrystalline samples of InxIr4Sb12 (0 ≤ x ≤ 0.2) were prepared by solid-state reaction under a gas mixture of 5% H2 and 95% Ar. The solubility limit of InxIr4Sb12 was found to be close to 0.18. Synchrotron X-ray diffraction refinements reveal all InxIr4Sb12 phases crystallized in body-centered cubic structure (space group : Im 3 bar) with ∼8% antimony site vacancy and with indium partially occupying the 16f site. Unlike known rattler filled skutterudites, under synthetic conditions employed, indium filling in IrSb3 significantly increases the electrical resistivity and decreases the Seebeck coefficient (n-type) while reducing the thermal conductivity by ∼30%. The resultant power factor offsets the decrease in total thermal conductivity giving rise to a substantial decrease in ZT. Principal thermoelectric properties of InxM4Sb12 (M = Co, Rh, Ir) phases are compared. As iridium is a 5d transition metal, zero field cooled (ZFC) magnetization were performed to unravel the effect of spin-orbit interaction on the electronic properties. These results serve to advance the understanding of filled skutterudites, and provide additional insight on the less explored smaller "rattlers" and their influence on key thermoelectric properties.

  16. Factors influencing the appropriateness of restorative dental treatment: an epidemiologic perspective.

    PubMed

    Grembowski, D; Fiset, L; Milgrom, P; Forrester, K; Spadafora, A

    1997-01-01

    An epidemiology analysis was performed to identify patient and dentist factors influencing over- and undertreatment of restorative services in a sample of insured adults. At baseline, 681 Washington State employees and their spouses, aged 20 to 34 years and residing in the Olympia or Pullman areas, were interviewed by telephone. Oral assessments were conducted to measure personal characteristics, oral disease, and restoration quality. Adults were followed for two years to measure use of restorative services from dental insurance claims. Each adult's baseline and claims data were linked with provider and practice variables collected from the dentist who provided treatment. For overtreatment, 39 percent of adults received one or more replacement restorations in nondecayed teeth with satisfactory fillings at baseline, while 18 percent of adults had one or more restorations placed in teeth with no decay and fillings. An adult's probability of overtreatment was higher if the adult had more fillings at baseline, or if an adult's dentist was younger, had a busy practice, advertised, charged higher fees, had less continuing education, or had a solo practice. For undertreatment, about 16 percent of adults either received no replacement restorations in teeth with unsatisfactory fillings at baseline, or had decayed teeth at baseline that were not filled or crowned. An adult's probability of undertreatment was higher if an adult had less decayed or more missing surfaces at baseline, or if an adult's dentist believed in sharing information with patients, had a busy practice, or reported not placing fillings when radiographic evidence of new caries was present. A minority of adults aged 20 to 34 experienced potential over- or undertreatment of restorative services, which are influenced by both patient and dentist factors.

  17. Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells.

    PubMed

    Ke, Weijun; Xiao, Chuanxiao; Wang, Changlei; Saparov, Bayrammurad; Duan, Hsin-Sheng; Zhao, Dewei; Xiao, Zewen; Schulz, Philip; Harvey, Steven P; Liao, Weiqiang; Meng, Weiwei; Yu, Yue; Cimaroli, Alexander J; Jiang, Chun-Sheng; Zhu, Kai; Al-Jassim, Mowafak; Fang, Guojia; Mitzi, David B; Yan, Yanfa

    2016-07-01

    Lead thiocyanate in the perovskite precursor can increase the grain size of a perovskite thin film and reduce the conductivity of the grain boundaries, leading to perovskite solar cells with reduced hysteresis and enhanced fill factor. A planar perovskite solar cell with grain boundary and interface passivation achieves a steady-state efficiency of 18.42%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spatial Light Modulators and Applications: Summaries of Papers Presented at the Spatial Light Modulators and Applications Topical Meeting Held on March 15-17, 1993 in Palm Springs, California

    DTIC Science & Technology

    1993-03-17

    modulator: Number of Elements 16 x 16 Pixel Size 1 mmxl mm Area Fill Factor > 90% Reflectance > 90% Phase Shift 900 Frame Rate > 1 kHz Operational Spectral...electro-optic constants. By using reflected light from the second interface a factor of two increase in phase shift is obtained for an applied voltage vs...wavelengths in general require thinner PLZT wafers. One of the objectives of the SLM design was to maximize pixel area fill factor and thereby the

  19. Colligative thermoelectric transport properties in n-type filled CoSb{sub 3} determined by guest electrons in a host lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Young Soo, E-mail: yslim@pknu.ac.kr, E-mail: wsseo@kicet.re.kr, E-mail: pmoka@lgchem.com; Park, Kwan-Ho; Tak, Jang Yeul

    2016-03-21

    Among many kinds of thermoelectric materials, CoSb{sub 3} has received exceptional attention for automotive waste heat recovery. Its cage structure provides an ideal framework for the realization of phonon-glass electron-crystal strategy, and there have been numerous reports on the enhanced thermoelectric performance through the independent control of the thermal and electrical conductivity by introducing fillers into its cage sites. Herein, we report colligative thermoelectric transport properties in n-type CoSb{sub 3} from the viewpoint of “guest electrons in a host lattice.” Both the Seebeck coefficient and the charge transport properties are fundamentally determined by the concentration of the guest electrons, whichmore » are mostly donated by the fillers, in the conduction band of the host CoSb{sub 3}. Comparing this observation to our previous results, colligative relations for both the Seebeck coefficient and the mobility were deduced as functions of the carrier concentration, and thermoelectric transport constants were defined to predict the power factor in filled CoSb{sub 3}. This discovery not only increases the degree of freedom for choosing a filler but also provides the predictability of power factor in designing and engineering the n-type filled CoSb{sub 3} materials.« less

  20. Geospatial data to support analysis of water-quality conditions in basin-fill aquifers in the southwestern United States

    USGS Publications Warehouse

    McKinney, Tim S.; Anning, David W.

    2009-01-01

    The Southwest Principal Aquifers study area consists of most of California and Nevada and parts of Utah, Arizona, New Mexico, and Colorado; it is about 409,000 square miles. The Basin-fill aquifers extend through about 201,000 square miles of the study area and are the primary source of water for cities and agricultural communities in basins in the arid and semiarid southwestern United States (Southwest). The demand on limited ground-water resources in areas in the southwestern United States has increased significantly. This increased demand underscores the importance of understanding factors that affect the water quality in basin-fill aquifers in the region, which are being studied through the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) program. As a part of this study, spatial datasets of natural and anthropogenic factors that may affect ground-water quality of the basin-fill aquifers in the southwestern United States were developed. These data include physical characteristics of the region, such as geology, elevation, and precipitation, as well as anthropogenic factors, including population, land use, and water use. Spatial statistics for the alluvial basins in the Southwest have been calculated using the datasets. This information provides a foundation for the development of conceptual and statistical models that relate natural and anthropogenic factors to ground-water quality across the Southwest. A geographic information system (GIS) was used to determine and illustrate the spatial distribution of these basin-fill variables across the region. One hundred-meter resolution raster data layers that represent the spatial characteristics of the basins' boundaries, drainage areas, population densities, land use, and water use were developed for the entire Southwest.

  1. Effective g-factors of carriers in inverted InAs/GaSb bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Xiaoyang; Collaborative Innovation Center of Quantum Matter, Beijing 100871; Sullivan, Gerard

    2016-01-04

    We perform tilt-field transport experiment on inverted InAs/GaSb, which hosts quantum spin Hall insulator. By means of coincidence method, Landau level (LL) spectra of electron and hole carriers are systematically studied at different carrier densities tuned by gate voltages. When Fermi level stays in the conduction band, we observe LL crossing and anti-crossing behaviors at odd and even filling factors, respectively, with a corresponding g-factor of 11.5. It remains nearly constant for varying filling factors and electron densities. On the contrary, for GaSb holes, only a small Zeeman splitting is observed even at large tilt angles, indicating a g-factor ofmore » less than 3.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T; Eldib, A; Hossain, M

    Purpose: Patient in-vivo measurements report lower readings than those predicted from TMR-based treatment planning on TBI patient knees and ankles where rice was placed to fill the gap between patient’s legs. This study is to understand and correct the under dosage of Total Body Irradiation(TBI) with rice tissue equivalent bolus placement at TBI treatment patient setup. Methods: Bilateral TBI scheme was investigated with rice bags bolus placing between patient’s two legs acting as missing tissue. In-house TMR based treatment planning system was commissioned with measurements under TBI condition at 10MV, i.e. source-to-reference distance 383.4cm with 40×40cm field size with 1cmmore » thickness Lucite. Predictions of patient specific dose points are reported at different sites with 200cGy prescription at patient umbilicus point. Solid water and rice bag phantoms are used at TBI conditions for the attenuation factor verification and CT scanned to verify the CT number and electron density. Results: We found that the rice bag bolus overall density is 11% lower than the water; however, the attenuation factor of rice bags could become 15% lower than that of water at TBI condition. This overestimate of rice bag electron density could cause the lack of lateral scatter and the lack of backscatter. This could Result in an overestimate of dose at in-vivo dosimeter measurement points with TMR-based treatment planning systems. Observations of patient specific optically stimulated luminescent dosimeters(OSLDs) were used to confirm this overestimation. Measurements of setups with increasing the rice bag filled patient leg separation were performed to demonstrate eliminating the overdose issue. Conclusion: Rice bolus has a lower electron density than water does(11%) but results in 15% lower in attenuation factor at TBI condition. This effect was observed in patient delivery with OSLD measurements and can be corrected by increasing the filling rice bolus thickness with 15% longer of separation.« less

  3. Investigating Methodological Differences in the Assessment of Dendritic Morphology of Basolateral Amygdala Principal Neurons-A Comparison of Golgi-Cox and Neurobiotin Electroporation Techniques.

    PubMed

    Klenowski, Paul M; Wright, Sophie E; Mu, Erica W H; Noakes, Peter G; Lavidis, Nickolas A; Bartlett, Selena E; Bellingham, Mark C; Fogarty, Matthew J

    2017-12-19

    Quantitative assessments of neuronal subtypes in numerous brain regions show large variations in dendritic arbor size. A critical experimental factor is the method used to visualize neurons. We chose to investigate quantitative differences in basolateral amygdala (BLA) principal neuron morphology using two of the most common visualization methods: Golgi-Cox staining and neurobiotin (NB) filling. We show in 8-week-old Wistar rats that NB-filling reveals significantly larger dendritic arbors and different spine densities, compared to Golgi-Cox-stained BLA neurons. Our results demonstrate important differences and provide methodological insights into quantitative disparities of BLA principal neuron morphology reported in the literature.

  4. Build-and-fill sequences: How subtle paleotopography affects 3-D heterogeneity of potential reservoir facies

    USGS Publications Warehouse

    McKirahan, J.R.; Goldstein, R.H.; Franseen, E.K.

    2005-01-01

    This study analyzes the three-dimensional variability of a 20-meter-thick section of Pennsylvanian (Missourian) strata over a 600 km2 area of northeastern Kansas, USA. It hypothesizes that sea-level changes interact with subtle variations in paleotopography to influence the heterogeneity of potential reservoir systems in mixed carbonate-silidclastic systems, commonly produdng build-and-fill sequences. For this analysis, ten lithofacies were identified: (1) phylloid algal boundstone-packstone, (2) skeletal wackestone-packstone, (3) peloidal, skeletal packstone, (4) sandy, skeletal grainstone-packstone, (5) oolite grainstone-packstone, (6) Osagia-brachiopod packstone, (7) fossiliferous siltstone, (8) lenticular bedded-laminated siltstone and fine sandstone, (9) organic-rich mudstone and coal, and (10) massive mudstone. Each facies can be related to depositional environment and base-level changes to develop a sequence stratigraphy consisting of three sequence boundaries and two flooding surfaces. Within this framework, eighteen localities are used to develop a threedimensional framework of the stratigraphy and paleotopography. The studied strata illustrate the model of "build-and-fill". In this example, phylloid algal mounds produce initial relief, and many of the later carbonate and silidclastic deposits are focused into subtle paleotopographic lows, responding to factors related to energy, source, and accommodation, eventually filling the paleotopography. After initial buildup of the phylloid algal mounds, marine and nonmarine siliciclastics, with characteristics of both deltaic lobes and valley fills, were focused into low areas between mounds. After a sea-level rise, oolitic carbonates formed on highs and phylloid algal facies accumulated in lows. A shift in the source direction of siliciclastics resulted from flooding or filling of preexisting paleotopographic lows. Fine-grained silidclastics were concentrated in paleotopographic low areas and resulted in clay-rich phylloid algal carbonates that would have made poor reservoirs. In areas more distant from silidclastic influx, phylloid algal facies with better reservoir potential formed in topographic lows. After another relative fall in sea level, marine carbonates and silidclastics were concentrated in paleotopographic low areas. After the next relative rise in sea level, there is little thickness or fades variation in phylloid algal limestone throughout the study area because: (1) substrate paleotopography had been subdued by filling, and (2) no silidclastics were deposited in the area. Widespread subaerial exposure and erosion during a final relative fall in sea level resulted in redevelopment of variable paleotopography. Build-and-fill sequences, such as these, are well known in other surface and subsurface examples. Initial relief is built by folding or faulting, differential compaction, erosion, or deposition of relief-building facies, such as phylloid algal and carbonate grainstone reservoir fades, or silidclastic wedges. Relief is filled through deposition of reservoir-fades siliciclastics, phylloid algal fades, and grainy carbonates, as well as nonreservoir facies, resulting in complex heterogeneity.

  5. Permanent magnet machine with windings having strand transposition

    DOEpatents

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  6. NMR study of partially filled skutterudites AxCo4Sb12 (A = Yb, Ba, Sr, Ca) and BaxYbyCo4Sb12.

    NASA Astrophysics Data System (ADS)

    Tian, Yefan; Sirusi, Ali; Ross, Joseph; Ballikaya, Sedat; Uher, Ctirad; Chen, Yuqi; Sekine, Chihiro

    Partially filled Co-Sb skutterudites have been of considerable interest as thermoelectric materials, particularly with multiple filling for which high ZT values can be obtained. This is due in part to control of phonon thermal conductivity, but also the change in composition leads to subtle changes in electronic behavior as well as magnetism due both to rare earth filler atoms and to native defects. We measured 59Co NMR on several partially filled AxCo4Sb12 skutterudites in order to investigate such behavior. From the T-dependent NMR shifts along with T1 relaxation times we can separate metallic shift contributions from those due to local moments. We compare the results to predicted band-edge behavior with multiple minima, and the estimated g factors, by matching this behavior to transport measurements. Also the behavior of Yb-filled samples provides an estimate of the conduction band mediation of the magnetic response, and we also find magnetic shifts in Ba-doped skutterudite which we address in terms of Co mixed-valence behavior. This work was supported by the Robert A. Welch Foundation, Grant No. A-1526. Synthesis work was partly supported by the Center for Solar and Thermal Energy Conversion and a Grant-in-Aid for Scientific Research (B) (No. 23340092) from the Japan Society.

  7. Factors Affecting the Reading Media Used by Visually Impaired Adults

    ERIC Educational Resources Information Center

    Goudiras, Dimitrios B.; Papadopoulos, Konstantinos S.; Koutsoklenis, Athanasios Ch.; Papageorgiou, Virginia E.; Stergiou, Maria S.

    2009-01-01

    The aim of this study was to examine reading media (braille, cassettes, screen-reader, screen-magnifier, large print, low vision aids, CCTV) used by visually impaired adults. This article reports the results of a research project involving 100 people with visual impairment. The participants were interviewed and asked to fill in a questionnaire to…

  8. Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy

    NASA Astrophysics Data System (ADS)

    Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto

    2016-06-01

    In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07923c

  9. Intermittent Surface Water Connectivity: Fill and Spill vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  10. Intermittent Surface Water Connectivity: Fill and Spill Vs. Fill ...

    EPA Pesticide Factsheets

    Intermittent surface connectivity can influence aquatic systems, since chemical and biotic movements are often associated with water flow. Although often referred to as fill and spill, wetlands also fill and merge. We examined the effects of these connection types on water levels, ion concentrations, and biotic communities of eight prairie pothole wetlands between 1979 and 2015. Fill and spill caused pulsed surface water connections that were limited to periods following spring snow melt. In contrast, two wetlands connected through fill and merge experienced a nearly continuous, 20-year surface water connection and had completely coincident water levels. Fill and spill led to minimal convergence in dissolved ions and macroinvertebrate composition, while these constituents converged under fill and merge. The primary factor determining difference in responses was duration of the surface water connection between wetland pairs. Our findings suggest that investigations into the effects of intermittent surface water connections should not consider these connections generically, but need to address the specific types of connections. In particular, fill and spill promotes external water exports while fill and merge favors internal storage. The behaviors of such intermittent connections will likely be accentuated under a future with more frequent and severe climate extremes. Under the Safe and Sustainable Water Resources National Program, work is being done to qu

  11. Hydroxyapatite paste Ostim, without elevation of full-thickness flaps, improves alveolar healing stimulating BMP- and VEGF-mediated signal pathways: an experimental study in humans.

    PubMed

    Canuto, R A; Pol, R; Martinasso, G; Muzio, G; Gallesio, G; Mozzati, M

    2013-08-01

    Tooth extraction is considered as the starting point of jaw atrophy via osteoclast activity stimulation. The maintenance of dental alveolar bone depends on surgery procedure and use of materials to maintain prior space favoring bone regeneration. Among substitutes used in dentistry to fill bone defects, Ostim-Pastes (Ostim) is a nanocrystalline paste tested for treatment of severe clinical conditions. This research first investigated the effect of Ostim on alveolar healing, comparing in the same healthy subjects, an Ostim-filled socket with a not-filled one. Moreover, it also proposed a new surgical protocol for the post-extractive socket treatment using the graft materials without elevation of full-thickness flaps. Fourteen patients were enrolled to bilateral maxillary or mandibular extraction that was performed without elevation of full-thickness flaps. In each patient, one socket was filled using Ostim, and the other one was allowed to undergo natural healing. No suture was carried out. Clinical and biologic parameters were screened at 1, 7, and 14 days. Obtained results evidenced that nanocrystalline hydroxyapatite supports bone regeneration, increasing the synthesis of pro-osteogenic factors as bone morphogenetics protein (BMP)-4, BMP-7, alkaline phosphatase, and osteocalcin. Moreover, filling post-extractive socket with nanocrystalline hydroxyapatite paste leads to a complete epithelialization already at 7 days after extraction, despite the fact that the teeth were extracted without elevation of full-thickness flaps . The improved epithelialization is mediated by increased vascular endothelial growth factor (VEGF) expression. No significant change was observed in inflammatory parameters, with exception of an early and transient IL-1β induction, that could trigger and improve alveolar healing. Clinical and biomolecular observations of this explorative study evidenced that nanocrystalline hydroxyapatite improves alveolar socket healing, increasing angiogenesis, epithelialization, and osteogenesis, also in absence of elevation of full-thickness flaps. © 2011 John Wiley & Sons A/S.

  12. A carbon nanotube filled polydimethylsiloxane hybrid membrane for enhanced butanol recovery

    PubMed Central

    Xue, Chuang; Du, Guang-Qing; Chen, Li-Jie; Ren, Jian-Gang; Sun, Jian-Xin; Bai, Feng-Wu; Yang, Shang-Tian

    2014-01-01

    The carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) hybrid membrane was fabricated to evaluate its potential for butanol recovery from acetone-butanol-ethanol (ABE) fermentation broth. Compared with the homogeneous PDMS membrane, the CNTs filled into the PDMS membrane were beneficial for the improvement of butanol recovery in butanol flux and separation factor. The CNTs acting as sorption-active sites with super hydrophobicity could give an alternative route for mass transport through the inner tubes or along the smooth surface. The maximum total flux and butanol separation factor reached up to 244.3 g/m2·h and 32.9, respectively, when the PDMS membrane filled with 10 wt% CNTs was used to separate butanol from the butanol/water solution at 80°C. In addition, the butanol flux and separation factor increased dramatically as temperature increased from 30°C to 80°C in feed solution since the higher temperature produced more free volumes in polymer chains to facilitate butanol permeation. A similar increase was also observed when butanol titer in solution increased from 10 g/L to 25 g/L. Overall, the CNTs/PDMS hybrid membrane with higher butanol flux and selectivity should have good potential for pervaporation separation of butanol from ABE fermentation broth. PMID:25081019

  13. Enhanced sensitivity to near-infrared with high fill factor in small molecular organic solar cells

    NASA Astrophysics Data System (ADS)

    Shim, Hyun-Sub; Kim, Hyo Jung; Kim, Ji Whan; Kim, Sei-Yong; Jeong, Won-Ik; Kim, Tae-Min; Kim, Jang-Joo

    2012-09-01

    High efficiency near-infrared (NIR) absorbing solar cells based on lead phthalocyanine (PbPc) are reported using copper iodide (CuI) as a templating layer to control the crystal structure of PbPc. Devices with CuI inserted between the ITO and PbPc layers exhibit a two times enhancement of the JSC compared to the case in the absence of the CuI layer. This is due to the increase of crystallinity in the molecules grown on the CuI templating layer, which is investigated via an x-ray diffraction study. Moreover, fill factor is also enhanced to 0.63 from 0.57 due to low series resistance although the additional CuI layer is inserted between the ITO and the PbPc layer. As a result, the corrected power conversion efficiency of 2.5% was obtained, which is the highest one reported up to now among the PbPc based solar cells.

  14. A molecular nematic liquid crystalline material for high-performance organic photovoltaics

    PubMed Central

    Sun, Kuan; Xiao, Zeyun; Lu, Shirong; Zajaczkowski, Wojciech; Pisula, Wojciech; Hanssen, Eric; White, Jonathan M.; Williamson, Rachel M.; Subbiah, Jegadesan; Ouyang, Jianyong; Holmes, Andrew B.; Wong, Wallace W.H.; Jones, David J.

    2015-01-01

    Solution-processed organic photovoltaic cells (OPVs) hold great promise to enable roll-to-roll printing of environmentally friendly, mechanically flexible and cost-effective photovoltaic devices. Nevertheless, many high-performing systems show best power conversion efficiencies (PCEs) with a thin active layer (thickness is ~100 nm) that is difficult to translate to roll-to-roll processing with high reproducibility. Here we report a new molecular donor, benzodithiophene terthiophene rhodanine (BTR), which exhibits good processability, nematic liquid crystalline behaviour and excellent optoelectronic properties. A maximum PCE of 9.3% is achieved under AM 1.5G solar irradiation, with fill factor reaching 77%, rarely achieved in solution-processed OPVs. Particularly promising is the fact that BTR-based devices with active layer thicknesses up to 400 nm can still afford high fill factor of ~70% and high PCE of ~8%. Together, the results suggest, with better device architectures for longer device lifetime, BTR is an ideal candidate for mass production of OPVs. PMID:25586307

  15. Analytical & Experimental Study of Radio Frequency Cavity Beam Profile Monitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcazar, Mario D.; Yonehara, Katsuya

    The purpose of this analytical and experimental study is multifold: 1) To explore a new, radiation-robust, hadron beam profile monitor for intense neutrino beam applications; 2) To test, demonstrate, and develop a novel gas-filled Radio-Frequency (RF) cavity to use in this monitoring system. Within this context, the first section of the study analyzes the beam distribution across the hadron monitor as well as the ion-production rate inside the RF cavity. Furthermore a more effecient pixel configuration across the hadron monitor is proposed to provide higher sensitivity to changes in beam displacement. Finally, the results of a benchtop test of themore » tunable quality factor RF cavity will be presented. The proposed hadron monitor configuration consists of a circular array of RF cavities located at a radial distance of 7cm { corresponding to the standard deviation of the beam due to scatering { and a gas-filled RF cavity with a quality factor in the range 400 - 800.« less

  16. Emergence of Yalom's therapeutic factors in a peer-led, asynchronous, online support group for family caregivers.

    PubMed

    Diefenbeck, Cynthia A; Klemm, Paula R; Hayes, Evelyn R

    2014-01-01

    Support groups fill a critical void in the health care system, harnessing the power of shared experiences to provide support to group members. Likewise, family caregivers fill a void in the health care system, providing billions in unpaid care to the chronically ill. Caregiver support groups offer an opportunity for alleviating the psychological burden of caregiving. The power of any group, including a support group, to foster psychological well-being lies in its ability to cultivate Yalom's therapeutic factors. Gaps in the literature remain regarding the ability of non-prototypical groups to promote therapeutic mechanisms of change. The purpose of this study was to determine if and when Yalom's therapeutic group factors emerged in a peer-led support group delivered in an asynchronous, online format. Qualitative content analysis utilizing deductive category application was employed. Participants' responses were coded and frequency counts were conducted. Results revealed that 9 of 11 therapeutic factors emerged over the course of the group, with Group Cohesiveness, Catharsis, Imparting of Information, and Universality occurring most often. Several factors, including Interpersonal Learning, Corrective Recapitulation of the Primary Family Group, Imitative Behavior, and Development of Socializing Techniques were absent or virtually absent, likely due to the peer-led format of the group. Progression of therapeutic factors over the course of the group is presented. Findings demonstrate the presence of a variety of Yalom's therapeutic factors in an asynchronous, peer-led online support group.

  17. The Tubular Penetration Depth and Adaption of Four Sealers: A Scanning Electron Microscopic Study

    PubMed Central

    Chen, Huan; Zhao, Xinyuan; Qiu, Yu; Xu, Dengyou

    2017-01-01

    Background. The tubular penetration and adaptation of the sealer are important factors for successful root canal filling. The aim of this study was to evaluate the tubular penetration depth of four different sealers in the coronal, middle, and apical third of root canals as well as the adaptation of these sealers to root canal walls. Materials and Methods. 50 single-rooted teeth were prepared in this study. Forty-eight of them were filled with different sealers (Cortisomol, iRoot SP, AH-Plus, and RealSeal SE) and respective core filling materials. Then the specimens were sectioned and scanning electron microscopy was employed to assess the tubular penetration and adaptation of the sealers. Results. Our results demonstrated that the maximum penetration was exhibited by RealSeal SE, followed by AH-Plus, iRoot SP, and Cortisomol. As regards the adaptation property to root canal walls, AH-Plus has best adaptation capacity followed by iRoot SP, RealSeal SE, and Cortisomol. Conclusion. The tubular penetration and adaptation vary with the different sealers investigated. RealSeal SE showed the most optimal tubular penetration, whereas AH-Plus presented the best adaptation to the root canal walls. PMID:29479539

  18. Quality aspects of ex vivo root canal treatments done by undergraduate dental students using four different endodontic treatment systems.

    PubMed

    Jungnickel, Luise; Kruse, Casper; Vaeth, Michael; Kirkevang, Lise-Lotte

    2018-04-01

    To evaluate factors associated with treatment quality of ex vivo root canal treatments performed by undergraduate dental students using different endodontic treatment systems. Four students performed root canal treatment on 80 extracted human teeth using four endodontic treatment systems in designated treatment order following a Latin square design. Lateral seal and length of root canal fillings was radiographically assessed; for lateral seal, a graded visual scale was used. Treatment time was measured separately for access preparation, biomechanical root canal preparation, obturation and for the total procedure. Mishaps were registered. An ANOVA mirroring the Latin square design was performed. Use of machine-driven nickel-titanium systems resulted in overall better quality scores for lateral seal than use of the manual stainless-steel system. Among systems with machine-driven files, scores did not significantly differ. Use of machine-driven instruments resulted in shorter treatment time than manual instrumentation. Machine-driven systems with few files achieved shorter treatment times. With increasing number of treatments, root canal-filling quality increased, treatment time decreased; a learning curve was plotted. No root canal shaping file separated. The use of endodontic treatment systems with machine-driven files led to higher quality lateral seal compared to the manual system. The three contemporary machine-driven systems delivered comparable results regarding quality of root canal fillings; they were safe to use and provided a more efficient workflow than the manual technique. Increasing experience had a positive impact on the quality of root canal fillings while treatment time decreased.

  19. Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines

    PubMed Central

    Li, Guohui; Pan, Junfeng; Cui, Kehui; Yuan, Musong; Hu, Qiuqian; Wang, Wencheng; Mohapatra, Pravat K.; Nie, Lixiao; Huang, Jianliang; Peng, Shaobing

    2017-01-01

    Remobilisation of non-structural carbohydrates (NSC) from leaves and stems and unloading into developing grains are essential for yield formation of rice. In present study, three recombinant inbred lines of rice, R91, R156 and R201 have been tested for source-flow-sink related attributes determining the nature of NSC accumulation and translocation at two nitrogen levels in the field. Compared to R91 and R156, R201 had lower grain filling percentage, harvest index, and grain yield. Meanwhile, R201 had significantly lower stem NSC translocation during grain filling stage. Grain filling percentage, harvest index, and grain yield showed the consistent trend with stem NSC translocation among the three lines. In comparison with R91 and R156, R201 had similarity in leaf area index, specific leaf weight, stem NSC concentration at heading, biomass, panicles m-2, spikelets per panicle, remobilization capability of assimilation in stems, sink capacity, sink activity, number and cross sectional area of small vascular bundles, greater number and cross sectional area of large vascular bundles, and higher SPAD, suggesting that source, flow, and sink were not the limiting factors for low stem NSC translocation and grain filling percentage of R201. However, R201 had significant higher stem and rachis NSC concentrations at maturity, which implied that unloading in the developing grains might result in low NSC translocation in R201. The results indicate that stem NSC translocation could be beneficial for enhancement of grain yield potential, and poor unloading into caryopsis may be the possible cause of low stem NSC translocation, poor grain filling and yield formation in R201. PMID:28848573

  20. Improving Crotalidae polyvalent immune Fab reconstitution times.

    PubMed

    Quan, Asia N; Quan, Dan; Curry, Steven C

    2010-06-01

    Crotalidae polyvalent immune Fab (CroFab) is used to treat rattlesnake envenomations in the United States. Time to infusion may be a critical factor in the treatment of these bites. Per manufacturer's instructions, 10 mL of sterile water for injection (SWI) and hand swirling are recommended for reconstitution. We wondered whether completely filling vials with 25 mL of SWI would result in shorter reconstitution times than using 10-mL volumes and how hand mixing compared to mechanical agitation of vials or leaving vials undisturbed. Six sets of 5 vials were filled with either 10 mL or 25 mL. Three mixing techniques were used as follows: undisturbed; agitation with a mechanical agitator; and continuous hand rolling and inverting of vials. Dissolution was determined by observation and time to complete dissolution for each vial. Nonparametric 2-tailed P values were calculated. Filling vials completely with 25 mL resulted in quicker dissolution than using 10-mL volumes, regardless of mixing method (2-tailed P = .024). Mixing by hand was shorter than other methods (P < .001). Reconstitution with 25 mL and hand mixing resulted in the shortest dissolution times (median, 1.1 minutes; range, 0.9-1.3 minutes). This appeared clinically important because dissolution times using 10 mL and mechanical rocking of vials (median, 26.4 minutes) or leaving vials undisturbed (median, 33.6 minutes) was several-fold longer. Hand mixing after filling vials completely with 25 mL results in shorter dissolution times than using 10 mL or other methods of mixing and is recommended, especially when preparing initial doses of CroFab. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  1. Controlling coulomb interactions in infrared stereometamaterials for unity light absorption

    NASA Astrophysics Data System (ADS)

    Mudachathi, Renilkumar; Moritake, Yuto; Tanaka, Takuo

    2018-05-01

    We investigate the influence of near field interactions between the constituent 3D split ring resonators on the absorbance and resonance frequency of a stereo metamaterial based perfect light absorber. The experimental and theoretical analyses reveal that the magnetic resonance red shifts and broadens for both the decreasing vertical and lateral separations of the constituents within the metamaterial lattice, analogous to plasmon hybridization. The strong interparticle interactions for higher density reduce the effective cross-section per resonator, which results in weak light absorption observed in both experimental and theoretical analyses. The red shift of the magnetic resonance with increasing lattice density is an indication of the dominating electric dipole interactions and we analyzed the metamaterial system in an electrostatic point of view to explain the observed resonance shift and decreasing absorption peak. From these analyses, we found that the fill factor introduces two competing factors determining the absorption efficiency such as coulomb interactions between the constituent resonators and their number density in a given array structure. We predicted unity light absorption for a fill factor of 0.17 balancing these two opposing factors and demonstrate an experimental absorbance of 99.5% at resonance with our 3D device realized using residual stress induced bending of 2D patterns.

  2. Field-reversed configuration (FRC) experiments

    NASA Astrophysics Data System (ADS)

    Siemon, R. E.; Chrien, R. E.; Hugrass, W. N.; Okada, S.; Rej, D. J.; Taggart, D. P.; Tuszewski, M.; Webster, R. B.; Wright, B. L.; Slough, J. T.

    FRCs with equilibrium separatrix radii up to 0.18 m have been formed and studied in FRX-C/LSM. For best formation conditions at low fill pressure, the particle confinement exceeds the predictions of LHD transport calculations by up to a factor of two; however, the inferred flux confinement is more anomalous than in smaller FRCs. Higher bias field produces axial shocks and degradation in confinement, while higher fill pressure results in gross fluting during formation. FRCs have been formed in TRX with s from 2 to 6. These relatively collisional FRCs exhibit flux lifetimes of 10 yields 20 kinetic growth times for the internal tilt mode. The coaxial slow source has produced annular FRCs in a coaxial coil geometry on slow time scales using low voltages.

  3. Universal DC Hall conductivity of Jain's state ν = N/2N +/- 1

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung; Son, Dam

    We present the Fermi-liquid theory of the fractional quantum Hall effect to describe Jain's states with filling fraction ν =N/2 N +/- 1 , that are near half filling. We derive the DC Hall conductivity σH (t) in closed form within the validity of our model. The results show that, without long range interaction, DC Hall conductivity has the universal form which doesn't depend on the detail of short range Landau's parameters Fn. When long range interaction is included, DC Hall conductivity depends on both long range interaction and Landau's parameters. We also analyze the relation between DC Hall conductivity and static structure factor. This work was supported by the Chicago MRSEC, which is funded by NSF through Grant DMR-1420709.

  4. Experimental Characterization of the Energy Absorption of Functionally Graded Foam Filled Tubes Under Axial Crushing Loads

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Saeed; Vahdatazad, Nader; Liaghat, Gholamhossein

    2018-03-01

    This paper deals with the energy absorption characterization of functionally graded foam (FGF) filled tubes under axial crushing loads by experimental method. The FGF tubes are filled axially by gradient layers of polyurethane foams with different densities. The mechanical properties of the polyurethane foams are firstly obtained from axial compressive tests. Then, the quasi-static compressive tests are carried out for empty tubes, uniform foam filled tubes and FGF filled tubes. Before to present the experimental test results, a nonlinear FEM simulation of the FGF filled tube is carried out in ABAQUS software to gain more insight into the crush deformation patterns, as well as the energy absorption capability of the FGF filled tube. A good agreement between the experimental and simulation results is observed. Finally, the results of experimental test show that an FGF filled tube has excellent energy absorption capacity compared to the ordinary uniform foam-filled tube with the same weight.

  5. Integration of different data gap filling techniques to facilitate assessment of polychlorinated biphenyls: A proof of principle case study (ASCCT meeting)

    EPA Science Inventory

    Data gap filling techniques are commonly used to predict hazard in the absence of empirical data. The most established techniques are read-across, trend analysis and quantitative structure-activity relationships (QSARs). Toxic equivalency factors (TEFs) are less frequently used d...

  6. Characterization of subvisible particle formation during the filling pump operation of a monoclonal antibody solution.

    PubMed

    Nayak, Arpan; Colandene, James; Bradford, Victor; Perkins, Melissa

    2011-10-01

    Characterization and control of aggregate and subvisible particle formation during fill-finish process steps are important for biopharmaceutical products. The filling step is of key importance as there is no further filtration of the drug product beyond sterile filtration. Filling processes can impact product quality by introducing physical stresses such as shear, friction, and cavitation. Other detrimental factors include temperature generated in the process of filling, foaming, and contact with filling system materials, including processing aids such as silicone oil. Certain pumps may shed extrinsic particles that may lead to heterogeneous nucleation-induced aggregation. In this work, microflow imaging, size-exclusion chromatography (SEC), and turbidimetry were utilized to quantify subvisible particles, aggregation, and opalescence, respectively. The filling process was performed using several commonly used filling systems, including rotary piston pump, rolling diaphragm pump, peristaltic pump, and time-pressure filler. The rolling diaphragm pump, peristaltic pump, and time-pressure filler generated notably less protein subvisible particles than the rotary piston pump, although no change in aggregate content by SEC was observed by any pump. An extreme increase in subvisible particles was also reflected in an increase in turbidity. Copyright © 2011 Wiley-Liss, Inc.

  7. Review of Plasmonic Nanocomposite Metamaterial Absorber

    PubMed Central

    Hedayati, Mehdi Keshavarz; Faupel, Franz; Elbahri, Mady

    2014-01-01

    Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface _lasmon). These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on) perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented. PMID:28788511

  8. Factors influencing caries status and treatment needs among pregnant women attending a maternity hospital in Udaipur city, India

    PubMed Central

    Tadakamadla, Jyothi; Tibdewal, Harish; Duraiswamy, Prabu; Kulkarni, Suhas

    2013-01-01

    Objectives: To estimate the prevalence and severity of dental caries along with the treatment needs; to determine the factors that influence dental caries status among pregnant women attending a district maternity hospital in Udaipur, India. Study design: Study sample comprised of 206 pregnant women attending a district maternity hospital in Udaipur, India. Clinical data were collected on dental caries by DMFT and treatment needs as described in World Health Organization Dentition status and Treatment needs. Results: The overall caries prevalence was 87%. Mean caries experience differed significantly among women in various trimesters, it was found to be 3.59 and 3.00 in 1st and 2nd trimester subjects respectively while it was greatest (4.13) among those in 3rd trimester. One surface filling was the most predominant treatment need. Age and occupation of husband explained a variance of 6.8% and 4.2% for decayed and filled components respectively while the only predictor for missing teeth and DMFT that explained a variance of 9.6% and 5.7% respectively was trimester of pregnancy. Conclusions: Dental caries experience and the need for one surface restoration increased with age. Trimester of pregnancy was a significant predictor for missing teeth and DMFT, while decayed teeth and filled teeth were influenced by age and socio-economic level respectively. Key words:Dental caries, treatment needs, pregnant, age, trimester. PMID:24455060

  9. Investigating factors leading to fogging of glass vials in lyophilized drug products.

    PubMed

    Abdul-Fattah, Ahmad M; Oeschger, Richard; Roehl, Holger; Bauer Dauphin, Isabelle; Worgull, Martin; Kallmeyer, Georg; Mahler, Hanns-Christian

    2013-10-01

    Vial "Fogging" is a phenomenon observed after lyophilization due to drug product creeping upwards along the inner vial surface. After the freeze-drying process, a haze of dried powder is visible inside the drug product vial, making it barely acceptable for commercial distribution from a cosmetic point of view. Development studies were performed to identify the root cause for fogging during manufacturing of a lyophilized monoclonal antibody drug product. The results of the studies indicate that drug product creeping occurs during the filling process, leading to vial fogging after lyophilization. Glass quality/inner surface, glass conversion/vial processing (vial "history") and formulation excipients, e.g., surfactants (three different surfactants were tested), all affect glass fogging to a certain degree. Results showed that the main factor to control fogging is primarily the inner vial surface hydrophilicity/hydrophobicity. While Duran vials were not capable of reliably improving the level of fogging, hydrophobic containers provided reliable means to improve the cosmetic appearance due to reduction in fogging. Varying vial depyrogenation treatment conditions did not lead to satisfying results in removal of the fogging effect. Processing conditions of the vial after filling with drug product had a strong impact on reducing but not eliminating fogging. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index.

    PubMed

    Liu, Bing-Hong; Jiang, Yong-Xiang; Zhu, Xiao-Song; Tang, Xiao-Li; Shi, Yi-Wei

    2013-12-30

    A new kind of surface plasmon resonance (SPR) sensor based on silver-coated hollow fiber (HF) structure for the detection of liquids with high refractive index (RI) is presented. Liquid sensed medium with high RI is filled in the hollow core of the HF and its RI can be detected by measuring the transmission spectra of the HF SPR sensor. The designed sensors with different silver thicknesses are fabricated and the transmission spectra for filled liquids with different RI are measured to investigate the performances of the sensors. Theoretical analysis is also carried out to evaluate the performance. The simulation results agree well with the experimental results. Factors that might affect sensitivity and detection accuracy of the sensor are discussed. The highest sensitivity achieved is 6,607 nm/RIU, which is comparable to the sensitivities of the other reported fiber SPR sensors.

  11. Energy propagation by transverse waves in multiple flux tube systems using filling factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Doorsselaere, T.; Gijsen, S. E.; Andries, J.

    2014-11-01

    In the last few years, it has been found that transverse waves are present at all times in coronal loops or spicules. Their energy has been estimated with an expression derived for bulk Alfvén waves in homogeneous media, with correspondingly uniform wave energy density and flux. The kink mode, however, is localized in space with the energy density and flux dependent on the position in the cross-sectional plane. The more relevant quantities for the kink mode are the integrals of the energy density and flux over the cross-sectional plane. The present paper provides an approximation to the energy propagated bymore » kink modes in an ensemble of flux tubes by means of combining the analysis of single flux tube kink oscillations with a filling factor for the tube cross-sectional area. This finally allows one to compare the expressions for energy flux of Alfvén waves with an ensemble of kink waves. We find that the correction factor for the energy in kink waves, compared to the bulk Alfvén waves, is between f and 2f, where f is the density filling factor of the ensemble of flux tubes.« less

  12. Studies on unsaturated flow in dual-scale fiber fabrics

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Yan, Shilin; Li, Yongjing

    2018-03-01

    Fiber fabrics in liquid composite molding (LCM) can be recognized as a dual-scale structure. As sink theory developed, this unsaturated flow behavior has already been simulated successfully; however, most of simulated results based on a unit cell under ideal status, thus making results were not agreement with experiment. In this study, an experimental method to establish sink function was proposed. After compared the simulation results by this sink function, it shows high accuracy with the experimental data. Subsequently, the key influencing factors for unsaturated flow have been further investigated; results show that the filling time for unsaturated flow was much longer than saturated flow. In addition, the injection pressure and permeability were the key factors lead to unsaturated flow.

  13. Rouse-Bueche Theory and The Calculation of The Monomeric Friction Coefficient in a Filled System

    NASA Astrophysics Data System (ADS)

    Martinetti, Luca; Macosko, Christopher; Bates, Frank

    According to flexible chain theories of viscoelasticity, all relaxation and retardation times of a polymer melt (hence, any dynamic property such as the diffusion coefficient) depend on the monomeric friction coefficient, ζ0, i.e. the average drag force per monomer per unit velocity encountered by a Gaussian submolecule moving through its free-draining surroundings. Direct experimental access to ζ0 relies on the availability of a suitable polymer dynamics model. Thus far, no method has been suggested that is applicable to filled systems, such as filled rubbers or microphase-segregated A-B-A thermoplastic elastomers at temperatures where one of the blocks is glassy. Building upon the procedure proposed by Ferry for entangled and unfilled polymer melts, the Rouse-Bueche theory is applied to an undiluted triblock copolymer to extract ζ0 from the linear viscoelastic behavior in the rubber-glass transition region, and to estimate the size of Gaussian submolecules. At iso-free volume conditions, the so-obtained matrix monomeric friction factor is consistent with the corresponding value for the homopolymer melt. In addition, the characteristic Rouse dimensions are in good agreement with independent estimates based on the Kratky-Porod worm-like chain model. These results seem to validate the proposed approach for estimating ζ0 in a filled system. Although preliminary tested on a thermoplastic elastomer of the A-B-A type, the method may be extended and applied to filled homopolymers as well.

  14. Electrode pattern design for GaAs betavoltaic batteries

    NASA Astrophysics Data System (ADS)

    Haiyang, Chen; Jianhua, Yin; Darang, Li

    2011-08-01

    The sensitivities of betavoltaic batteries and photovoltaic batteries to series and parallel resistance are studied. Based on the study, an electrode pattern design principle of GaAs betavoltaic batteries is proposed. GaAs PIN junctions with and without the proposed electrode pattern are fabricated and measured under the illumination of 63Ni. Results show that the proposed electrode can reduce the backscattering and shadowing for the beta particles from 63Ni to increase the GaAs betavoltaic battery short circuit currents effectively but has little impact on the fill factors and ideal factors.

  15. Stability analysis of Caisson Cofferdam Based on Strength Reduction Method

    NASA Astrophysics Data System (ADS)

    Xu, B. B.; Zhang, N. S.

    2018-05-01

    The working mechanism of the caisson cofferdam depends on the self-weight of the structure and internal filling to ensure its skid resistance and overturn resistance stability. Using the strength reduction method, the safety factor of the caisson cofferdam can be obtained. The potential slide surface can be searched automatically without constraining the range of the arc center. According to the results, the slippage surface goes through the bottom of the caisson. Based on the judgement criterion of the strength reduction method, the final safety factor is about 1.65.

  16. Visualization of electrolyte filling process and influence of vacuum during filling for hard case prismatic lithium ion cells by neutron imaging to optimize the production process

    NASA Astrophysics Data System (ADS)

    Weydanz, W. J.; Reisenweber, H.; Gottschalk, A.; Schulz, M.; Knoche, T.; Reinhart, G.; Masuch, M.; Franke, J.; Gilles, R.

    2018-03-01

    The process of filling electrolyte into lithium ion cells is time consuming and critical to the overall battery quality. However, this process is not well understood. This is partially due to the fact, that it is hard to observe it in situ. A powerful tool for visualization of the process is neutron imaging. The filling and wetting process of the electrode stack can be clearly visualized in situ without destruction of the actual cell. The wetting of certain areas inside the electrode stack can clearly be seen when using this technique. Results showed that wetting of the electrode stack takes place in a mostly isotropic manner from the outside towards a center point of the cell at very similar speed. When the electrolyte reaches the center point, the wetting process can be considered complete. The electrode wetting is a slow but rather steady process for hard case prismatic cells. It starts with a certain speed, which is reduced over the progress of the wetting. Vacuum can assist the process and accelerate it by about a factor of two as was experimentally shown. This gives a considerable time and cost advantage for designing the production process for large-scale battery cell production.

  17. An Efficient Scheme for Updating Sparse Cholesky Factors

    NASA Technical Reports Server (NTRS)

    Raghavan, Padma

    2002-01-01

    Raghavan had earlier developed the software package DCSPACK which can be used for solving sparse linear systems where the coefficient matrix is symmetric and positive definite (this project was not funded by NASA but by agencies such as NSF). DSCPACK-S is the serial code and DSCPACK-P is a parallel implementation suitable for multiprocessors or networks-of-workstations with message passing using MCI. The main algorithm used is the Cholesky factorization of a sparse symmetric positive positive definite matrix A = LL(T). The code can also compute the factorization A = LDL(T). The complexity of the software arises from several factors relating to the sparsity of the matrix A. A sparse N x N matrix A has typically less that cN nonzeroes where c is a small constant. If the matrix were dense, it would have O(N2) nonzeroes. The most complicated part of such sparse Cholesky factorization relates to fill-in, i.e., zeroes in the original matrix that become nonzeroes in the factor L. An efficient implementation depends to a large extent on complex data structures and on techniques from graph theory to reduce, identify, and manage fill. DSCPACK is based on an efficient multifrontal implementation with fill-managing algorithms and implementation arising from earlier research by Raghavan and others. Sparse Cholesky factorization is typically a four step process: (1) ordering to compute a fill-reducing numbering, (2) symbolic factorization to determine the nonzero structure of L, (3) numeric factorization to compute L, and, (4) triangular solution to solve L(T)x = y and Ly = b. The first two steps are symbolic and are performed using the graph of the matrix. The numeric factorization step is of dominant cost and there are several schemes for improving performance by exploiting the nested and dense structure of groups of columns in the factor. The latter are aimed at better utilization of the cache-memory hierarchy on modem processors to prevent cache-misses and provide execution rates (operations/second) that are close to the peak rates for dense matrix computations. Currently, EPISCOPACY is being used in an application at NASA directed by J. Newman and M. James. We propose the implementation of efficient schemes for updating the LL(T) or LDL(T) factors computed in DSCPACK-S to meet the computational requirements of their project. A brief description is provided in the next section.

  18. Risk Assessment for Children Exposed to Arsenic on Baseball Fields with Contaminated Fill Material

    PubMed Central

    Ferguson, Alesia C.; Black, Jennifer C.; Sims, Isaac B.; Welday, Jennifer N.; Elmir, Samir M.; Goff, Kendra F.; Higginbotham, J. Mark

    2018-01-01

    Children can be exposed to arsenic through play areas which may have contaminated fill material from historic land use. The objective of the current study was to evaluate the risk to children who play and/or spend time at baseball fields with soils shown to have arsenic above background levels. Arsenic in soils at the study sites located in Miami, FL, USA showed distinct distributions between infield, outfield, and areas adjacent to the fields. Using best estimates of exposure factors for children baseball scenarios, results show that non-cancer risks depend most heavily upon the age of the person and the arsenic exposure level. For extreme exposure scenarios evaluated in this study, children from 1 to 2 years were at highest risk for non-cancer effects (Hazard Quotient, HQ > 2.4), and risks were higher for children exhibiting pica (HQ > 9.7) which shows the importance of testing fill for land use where children may play. At the study sites, concentration levels of arsenic resulted in a range of computed cancer risks that differed by a factor of 10. In these sites, the child’s play position also affected risk. Outfield players, with a lifetime exposure to these arsenic levels, could have 10 times more increased chance of experiencing cancers associated with arsenic (i.e., lung, bladder, skin) in comparison to infielders. The distinct concentration distributions observed between these portions of the baseball fields emphasize the need to delineate contaminated areas in public property where citizens may spend more free time. This study also showed a need for more tools to improve the risk estimates for child play activities. For instance, more refined measurements of exposure factors for intake (e.g., inhalation rates under rigorous play activities, hand to mouth rates), exposure frequency (i.e., time spent in various activities) and other exposure factors (e.g., soil particulate emission rates at baseball play fields) can help pinpoint risk on baseball fields where arsenic levels may be a concern. PMID:29300352

  19. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    NASA Astrophysics Data System (ADS)

    Ye, Hongfei; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen; Zong, Zhi; Zheng, Yonggang

    2014-03-01

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å-1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale.

  20. Volatile-rich Crater Interior Deposits in the Polar Regions of Mars: Evidence for Ice Cap Advance and Retreat

    NASA Technical Reports Server (NTRS)

    Russell, Patrick S.; Head, James W.; Hecht, Michael H.

    2003-01-01

    Many craters on Mars are partially filled by distinctive material emplaced by post-impact processes. This crater fill material is an interior mound which is generally separated from the walls of the crater by a trough that may be continuous along the crater circumference (i.e. a ring-shaped trough), or which may only partially contact the crater walls (i.e. a crescent-shaped trough). The fill deposit is frequently offset from the crater center and may be asymmetric in plan view. Populations of such craters include those in the circum-south polar cap region, in Arabia Terra, associated with the Medusae Fossae Formation, and in the northern lowlands proximal to the north polar cap. We focus on those craters in circumpolar regions and assess their relationship to polar cap advance and retreat, especially the possibility that fill material represents remnants of a formerly larger contiguous cap. Volatile-rich deposits have the property of being modifiable by the local stability of the solid volatile, which is governed by local energy balance. Here we test the hypothesis that asymmetries in volatile fill shape, profile, and center-location within a crater result from asymmetries in local energy balance within the crater, due mainly to variation of solar insolation and radiative effects of the crater walls over the crater interior. Model profiles of crater fill are compared with MOLA topographic profiles to assess this hypothesis. If asymmetry in morphology and location of crater fill are consistent with radiative-dominated asymmetries in energy budget within the crater, then 1) the volatile-rich composition of the fill is supported (this process should not be effective at shaping volcanic or sedimentary deposits), and 2) the dominant factor determining the observed shape of volatile-rich crater fill is the local radiative energy budget (and erosive processes such as eolian deflation are secondary or unnecessary). We also use a geographic and energy model approach to specifically test the idea that material in partially filled craters around the south pole may once have been contiguous to the cap and may have been sustained and modified by radiative processes specific to the crater environment (as opposed to the surrounding plains) as the cap retreated.

  1. Miniaturized dielectric waveguide filters

    NASA Astrophysics Data System (ADS)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  2. Eccentricity-driven fluvial fill terrace formation in the southern-central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Tofelde, Stefanie; Savi, Sara; Wickert, Andrew D.; Wittmann, Hella; Alonso, Ricardo; Strecker, Manfred R.; Schildgen, Taylor F.

    2016-04-01

    Across the world, fill-terrace formation in glaciated catchments has been linked to variable sediment production and river discharge over glacial-interglacial cycles. Little is known, however, how variability in global climate may have affected rainfall patterns and associated surface-processes on multi-millennial timescales in regions far from major glaciers and ice sheets, and how those changes might be reflected in the landscape. Here, we investigate the timing of fluvial fill terrace planation and abandonment in the Quebrada del Toro, an intermontane basin located in the Eastern Cordillera of the southern-central Andes of NW Argentina. Fluvial fills in the valley reach more than 150 m above the current river level. Sculpted into the fills, we observe at least 5 terrace levels with pronounced differences in their extent and preservation. We sampled four TCN (in situ 10Be) depth profiles to date the abandonment of the most extensive terrace surfaces in locations, where subsequent overprint by erosion and deposition was not pronounced. We interpret unexpectedly low 10Be concentrations at shallow depths and surface samples to be related to aeolian input, causing surface inflation. Correcting the depth profiles for inflation results in a reduction of the terrace surface ages by up to 70 ka. The inflation-corrected ages fall within the late Pleistocene (~140 - 370 ka) and suggest a potential link to orbital eccentricity (~100 ka) cycles. The studied fills in the Toro Basin document successive episodes of incision, punctuated by periods of lateral planation and possible partial re-filling. We propose climate cycles as a potentially-dominant factor in forming these terraces. To our knowledge, none of the previously studied fluvial terraces in the Andes date back more than 2 glacial cycles, thus making the Quebrada del Toro an important archive of paleoenvironmental conditions over longer timescales.

  3. Preparation of highly ordered mesoporous Al2O3/TiO2 and its application in dye-sensitized solar cells.

    PubMed

    Kim, Jae-Yup; Kang, Soon Hyung; Kim, Hyun Sik; Sung, Yung-Eun

    2010-02-16

    Highly ordered mesoporous Al(2)O(3)/TiO(2) was prepared by sol-gel reaction and evaporation-induced self-assembly (EISA) for use in dye-sensitized solar cells. The prepared materials had two-dimensional, hexagonal pore structures with anatase crystalline phases. The average pore size of mesoporous Al(2)O(3)/TiO(2) remained uniform and in the range of 6.33-6.58 nm while the Brunauer-Emmett-Teller (BET) surface area varied from 181 to 212 m(2)/g with increasing the content of Al(2)O(3). The incorporation of Al content retarded crystallite growth, thereby decreasing crystallite size while simultaneously improving the uniformity of pore size and volume. The thin Al(2)O(3) layer was located mostly on the mesopore surface, as confirmed by X-ray photoelectron spectroscopy (XPS). The Al(2)O(3) coating on the mesoporous TiO(2) film contributes to the essential energy barrier which blocks the charge recombination process in dye-sensitized solar cells. Mesoporous Al(2)O(3)/TiO(2) (1 mol % Al(2)O(3)) exhibited enhanced power conversion efficiency (V(oc) = 0.74 V, J(sc) = 15.31 mA/cm(2), fill factor = 57%, efficiency = 6.50%) compared to pure mesoporous TiO(2) (V(oc) = 0.72 V, J(sc) = 16.03 mA/cm(2), fill factor = 51%, efficiency = 5.88%). Therefore, the power conversion efficiency was improved by approximately 10.5%. In particular, the increase in V(oc) and fill factor resulted from the inhibition of charge recombination and the improvement of pore structure.

  4. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay

    2017-11-01

    GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.

  5. Influences of gender role socialization and anxiety on spatial cognitive style.

    PubMed

    Nori, Raffaella; Mercuri, Noemi; Giusberti, Fiorella; Bensi, Luca; Gambetti, Elisa

    2009-01-01

    Research on the relationship between personality and social factors in spatial cognitive style is sparse. The present research was conducted to help fill the gap in this domain. We investigated the influence of specific personality traits (masculine/feminine, spatial and trait anxiety), state anxiety, and sex on spatial cognitive style. One hundred forty-two participants completed a battery of spatial tasks in order to assess their spatial cognitive style and filled in questionnaires about the personality traits under examination. Results showed that state anxiety, spatial anxiety, sex, and masculine/feminine trait of personality are predictors of spatial cognitive style. More specifically, it seems that masculine/feminine trait mediates the relationship between sex and spatial cognitive style. Such findings confirm the importance of personality in determining differences in spatial representation.

  6. Cryogenic Thermal Performance Testing of Bulk-Fill and Aerogel Insulation Materials

    NASA Astrophysics Data System (ADS)

    Scholtens, B. E.; Fesmire, J. E.; Sass, J. P.; Augustynowicz, S. D.; Heckle, K. W.

    2008-03-01

    Thermal conductivity testing under actual-use conditions is a key to understanding how cryogenic thermal insulation systems perform in regard to engineering, economics, and materials factors. The Cryogenics Test Laboratory at NASA's Kennedy Space Center tested a number of bulk-fill insulation materials, including aerogel beads, glass bubbles, and perlite powder, using a new cylindrical cryostat. Boundary temperatures for the liquid nitrogen boiloff method were 78 K and 293 K. Tests were performed as a function of cold vacuum pressure under conditions ranging from high vacuum to no vacuum. Results were compared with those from complementary test methods in the range of 20 K to 300 K. Various testing techniques are required to completely understand the operating performance of a material and to provide data for answers to design engineering questions.

  7. [Cermet cements for milk tooth fillings. Preliminary results].

    PubMed

    Hickel, R; Petschelt, A; Voss, A

    1989-06-01

    106 Ketac-Silver fillings in deciduous molars were reevaluated after 1 to 3.3 years, i.e. 25 month on the average. About 90% of 50 occlusal fillings and about 84% of 56 multisurface restorations were unchanged. Without claiming statistical evidence for their conclusiveness, we consider these results as an indication that cermet cements are a useful alternative to amalgam fillings in deciduous teeth, particularly since the life of these fillings is limited to the time until the milk tooth is physiologically lost.

  8. Experimental investigation on no-vent fill process using tetrafluoromethane (CF4)

    NASA Astrophysics Data System (ADS)

    Kim, Youngcheol; Lee, Cheonkyu; Park, Jiho; Seo, Mansu; Jeong, Sangkwon

    2016-03-01

    This paper investigates the transfer of liquid cryogens using a no-vent fill (NVF) process experimentally to identify the dominant NVF parameters. The experimental apparatus has been fabricated with extensive instrumentations to precisely study the effects of each NVF parameter. Liquid tetrafluoromethane (CF4) is selected as the working fluid due to its similar molecular structures and similar normal boiling point and triple point with liquid methane which has been considered as an attractive future cryogenic propellant. The experimental results show that the initial receiver tank wall temperature and the incoming liquid temperature are the primary factors that characterize the (non-equilibrium) thermodynamic state at the start of a NVF transfer. The supply pressure is also critical as it indicates the ability to condense vapor in the receiver tank. A non-dimensional map based on energy balance is proposed to find acceptable initial conditions of the filling volume at the desired final tank pressure. The non-dimensional map shows good agreement with the NVF data not only in this paper but also in the previous research.

  9. Analysis of photonic band gap in novel piezoelectric photonic crystal

    NASA Astrophysics Data System (ADS)

    Malar Kodi, A.; Doni Pon, V.; Joseph Wilson, K. S.

    2018-03-01

    The transmission properties of one-dimensional novel photonic crystal having silver-doped novel piezoelectric superlattice and air as the two constituent layers have been investigated by means of transfer matrix method. By changing the appropriate thickness of the layers and filling factor of nanocomposite system, the variation in the photonic band gap can be studied. It is found that the photonic band gap increases with the filling factor of the metal nanocomposite and with the thickness of the layer. These structures possess unique characteristics enabling one to operate as optical waveguides, selective filters, optical switches, integrated piezoelectric microactuators, etc.

  10. Prospect of the high efficiency for the VEST (Via-hole Etching for the Separation of Thin films) cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deguchi, M.; Kawama, Y.; Matsuno, Y.

    1994-12-31

    The optimum design of the via-holes for the VEST cell was studied. Using a simple model, fill factors of the VEST cell were calculated. As for the via-hole distribution pattern, square grid pattern was found to be most suitable from the view points of the cell performance and the easiness of the electrode designing. It was found that the fill factor large enough (> 0.79) for the high efficiency can be obtained. A fabricated test cell showed the efficiency of 14.4%. Further improvement (efficiency over 18%) is possibly expected.

  11. Detection of sulfur in the galactic center

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1983-01-01

    A strong detection at the S III forbidden 18.71 micron line is reported for the galactic center region, Sgr A West. A line flux of 1.7 + or - 0.2 x 10 to the -17th W/sq cm is found for a 20 inch beam size measurement centered on IRS 1. A preliminary analysis indicates that the S III abundance relative to hydrogen is consistent with the cosmic abundance of sulfur, 0.000016, if a filling factor of unity within the known clumps is assumed. However, the sulfur abundance in the galactic center may be as much as a factor of 3 overabundant if a filling factor of 0.03 is adopted, a value found to hold for some galactic H II regions.

  12. Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings.

    PubMed

    Rakhimov, Abdulla; Askerzade, Iman N

    2014-09-01

    We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases.

  13. Quality factor and dose equivalent investigations aboard the Soviet Space Station Mir

    NASA Astrophysics Data System (ADS)

    Bouisset, P.; Nguyen, V. D.; Parmentier, N.; Akatov, Ia. A.; Arkhangel'Skii, V. V.; Vorozhtsov, A. S.; Petrov, V. M.; Kovalev, E. E.; Siegrist, M.

    1992-07-01

    Since Dec 1988, date of the French-Soviet joint space mission 'ARAGATZ', the CIRCE device, had recorded dose equivalent and quality factor values inside the Mir station (380-410 km, 51.5 deg). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high linear energy transfer events with quality factors in the range 10-20.

  14. Variability of site response in Seattle, Washington

    USGS Publications Warehouse

    Hartzell, S.; Carver, D.; Cranswick, E.; Frankel, A.

    2000-01-01

    Ground motion from local earthquakes and the SHIPS (Seismic Hazards Investigation in Puget Sound) experiment is used to estimate site amplification factors in Seattle. Earthquake and SHIPS records are analyzed by two methods: (1) spectral ratios relative to a nearby site on Tertiary sandstone, and (2) a source/site spectral inversion technique. Our results show site amplifications between 3 and 4 below 5 Hz for West Seattle relative to Tertiary rock. These values are approximately 30% lower than amplification in the Duwamish Valley on artificial fill, but significantly higher than the calculated range of 2 to 2.5 below 5 Hz for the till-covered hills east of downtown Seattle. Although spectral amplitudes are only 30% higher in the Duwamish Valley compared to West Seattle, the duration of long-period ground motion is significantly greater on the artificial fill sites. Using a three-dimensional displacement response spectrum measure that includes the effects of ground-motion duration, values in the Duwamish Valley are 2 to 3 times greater than West Seattle. These calculations and estimates of site response as a function of receiver azimuth point out the importance of trapped surface-wave energy within the shallow, low-velocity, sedimentary layers of the Duwamish Valley. One-dimensional velocity models yield spectral amplification factors close to the observations for till sites east of downtown Seattle and the Duwamish Valley, but underpredict amplifications by a factor of 2 in West Seattle. A two-dimensional finite-difference model does equally well for the till sites and the Duwamish Valley and also yields duration estimates consistent with the observations for the Duwamish Valley. The two-dimensional model, however, still underpredicts amplification in West Seattle by up to a factor of 2. This discrepancy is attributed to 3D effects, including basin-edge-induced surface waves and basin-geometry-focusing effects, caused by the proximity of the Seattle thrust fault and the sediment-filled Seattle basin.

  15. Microtensile bond strength of bulk-fill restorative composites to dentin.

    PubMed

    Mandava, Jyothi; Vegesna, Divya-Prasanna; Ravi, Ravichandra; Boddeda, Mohan-Rao; Uppalapati, Lakshman-Varma; Ghazanfaruddin, M D

    2017-08-01

    To facilitate the easier placement of direct resin composite in deeper cavities, bulk fill composites have been introduced. The Mechanical stability of fillings in stress bearing areas restored with bulk-fill resin composites is still open to question, since long term clinical studies are not available so far. Thus, the objective of the study was to evaluate and compare the microtensile bond strength of three bulk-fill restorative composites with a nanohybrid composite. Class I cavities were prepared on sixty extracted mandibular molars. Teeth were divided into 4 groups (n= 15 each) and in group I, the prepared cavities were restored with nanohybrid (Filtek Z250 XT) restorative composite in an incremental manner. In group II, III and IV, the bulk-fill composites (Filtek, Tetric EvoCeram, X-tra fil bulk-fill restoratives) were placed as a 4 mm single increment and light cured. The restored teeth were subjected to thermocycling and bond strength testing was done using instron testing machine. The mode of failure was assessed by scanning electron microscope (SEM). The bond strength values obtained in megapascals (MPa) were subjected to statistical analysis, using SPSS/PC version 20 software.One-way ANOVA was used for groupwise comparison of the bond strength. Tukey's Post Hoc test was used for pairwise comparisons among the groups. The highest mean bond strength was achieved with Filtek bulk-fill restorative showing statistically significant difference with Tetric EvoCeram bulk-fill ( p < 0.003) and X-tra fil bulk-fill ( p <0.001) composites. Adhesive failures are mostly observed with X-tra fil bulk fill composites, whereas mixed failures are more common with other bulk fill composites. Bulk-fill composites exhibited adequate bond strength to dentin and can be considered as restorative material of choice in posterior stress bearing areas. Key words: Bond strength, Bulk-fill restoratives, Configuration factor, Polymerization shrinkage.

  16. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; Zschornack, G.; Kentsch, U.

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor ofmore » 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.« less

  17. Permanent magnet electron beam ion source/trap systems with bakeable magnets for improved operation conditions.

    PubMed

    Schmidt, M; Zschornack, G; Kentsch, U; Ritter, E

    2014-02-01

    The magnetic system of a Dresden electron beam ion source (EBIS) generating the necessary magnetic field with a new type of permanent magnet made of high energy density NdFeB-type material operable at temperatures above 100 °C has been investigated and tested. The employment of such kind of magnets provides simplified operation without the time-consuming installation and de-installation procedures of the magnets for the necessary baking of the ion source after commissioning and maintenance work. Furthermore, with the use of a new magnetization technique the geometrical filling factor of the magnetic Dresden EBIS design could be increased to a filling factor of 100% leading to an axial magnetic field strength of approximately 0.5 T exceeding the old design by 20%. Simulations using the finite element method software Field Precision and their results compared with measurements are presented as well. It could be shown that several baking cycles at temperatures higher than 100 °C did not change the magnetic properties of the setup.

  18. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.

    PubMed

    Liu, Yuanyuan; Mou, Haiyan; Chen, Liqun; Mirza, Zakaria A; Liu, Li

    2015-11-15

    Permeable reactive barriers (PRBs) are efficient technologies for in situ remediation of contaminated groundwater, the effectiveness of which greatly depends on the reactive media filled. Natural pyrite is an iron sulfide material with a very low content of iron and sulfur, and a mining waste which is a potential material for Cr(VI) immobilization. In this study, we conducted a series of batch tests to research the effects of typical environmental factors on Cr(VI) removal and also simulated PRB filled with natural pyrite to investigate its effectiveness, in order to find a both environmentally and economically fine method for groundwater remediation. Batch tests showed that pH had the significant impact on Cr(VI) removal with an apparently higher efficiency under acidic conditions, and dissolved oxygen (DO) would inhibit Cr(VI) reduction; a relatively high initial Cr(VI) concentration would decrease the rate of Cr(VI) sorption; ionic strength and natural organic matter resulted in no significant effects on Cr(VI) removal. Column tests demonstrated that the simulated PRB with natural pyrite as the reactive media was considerably effective for removing Cr(VI) from groundwater, with a sorption capability of 0.6222 mg Cr per gram of natural pyrite at an initial Cr(VI) concentration of 10mg/L at pH 5.5 in an anoxic environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Navigation lock for Bonneville Dam, Columbia River, Oregon. Volume II. Appendix A. Pressures during lock operations. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stockstill, R.L.; George, J.F.

    1996-09-01

    Tests were conducted on two different 1:25-scale models of the New Bonneville Lock located on the Columbia River in Oregon. The lock models were built to study the filling and emptying systems, which consisted of designs utilizing bottom longitudinal floor culverts. The first design studied, defined as the H-H pattern system, consisted of four longitudinal flood culverts in each end of the lock chamber. The second system studied had two longitudinal floor culverts in each end of the lock chamber and was defined as the H pattern system. In the H-H pattern system, the filling culverts, which were located undermore » the lock chamber floor, connected to a crossover culvert with a horizontal splitter wall dividing the flow to upstream and downstream splitter manifolds were equal divisions led into four longitudinal flood culverts in each end of the lock chamber. With the type 6 (recommended) design and a 1-min valve opening time, the lock chamber filled in 8.7 min and emptied in 12.1 min. Due to differences in friction losses, the prototype can be expected to fill and empty about 20 percent faster than the model (7.0 min and 9.7 min, respectively). Modifications involving installing a slope in the lower sill and a v-notch design in the high sill were significant factors that resulted in fast filling and emptying times, low hawser forces, and only minor movement with various tow arrangements for different operating scenarios.« less

  20. Moist air state above counterflow wet-cooling tower fill based on Merkel, generalised Merkel and Klimanek & Białecky models

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2017-09-01

    The article deals with an evaluation of moist air state above counterflow wet-cooling tower fill. The results based on Klimanek & Białecky model are compared with results of Merkel model and generalised Merkel model. Based on the numerical simulation it is shown that temperature is predicted correctly by using generalised Merkel model in the case of saturated or super-saturated air above the fill, but the temperature is underpredicted in the case of unsaturated moist air above the fill. The classical Merkel model always under predicts temperature above the fill. The density of moist air above the fill, which is calculated using generalised Merkel model, is strongly over predicted in the case of unsaturated moist air above the fill.

  1. Hormonal Changes in the Grains of Rice Subjected to Water Stress during Grain Filling1

    PubMed Central

    Yang, Jianchang; Zhang, Jianhua; Wang, Zhiqing; Zhu, Qingsen; Wang, Wei

    2001-01-01

    Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed 14CO2 into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA1 + GA4) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed 14C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate. PMID:11553759

  2. Outdoor module testing and comparison of photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Fabick, L. B.; Rifai, R.; Mitchell, K.; Woolston, T.; Canale, J.

    A comparison of outdoor test results for several module technologies is presented. The technologies include thin-film silicon:hydrogen alloys (TFS), TFS modules with semitransparent conductor back contacts, and CuInSe2 module prototypes. A method for calculating open-circuit voltage and fill-factor temperature coefficients is proposed. The method relies on the acquisition of large statistical data samples to average effects due to varying insolation level.

  3. Process Research On Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.; Wohlgemuth, J. H.

    1982-01-01

    Performance limiting mechanisms in polycrystalline silicon are investigated by fabricating a matrix of solar cells of various thicknesses from polycrystalline silicon wafers of several bulk resistivities. The analysis of the results for the entire matrix indicates that bulk recombination is the dominant factor limiting the short circuit current in large grain (greater than 1 to 2 mm diameter) polycrystalline silicon, the same mechanism that limits the short circuit current in single crystal silicon. An experiment to investigate the limiting mechanisms of open circuit voltage and fill factor for large grain polycrystalline silicon is designed. Two process sequences to fabricate small cells are investigated.

  4. The effect of split pixel HDR image sensor technology on MTF measurements

    NASA Astrophysics Data System (ADS)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  5. Study of the Peak Shear Strength of a Cement-Filled Hard Rock Joint

    NASA Astrophysics Data System (ADS)

    She, Cheng-Xue; Sun, Fu-Ting

    2018-03-01

    The peak shear strength of a cement-filled hard rock joint is studied by theoretical analysis and laboratory testing. Based on the concept of the shear resistance angle, by combining the statistical method and fractal theory, three new parameters are proposed to characterize the three-dimensional joint morphology, reflecting the effects of the average roughness, multi-scale asperities and the dispersion degree of the roughness distribution. These factors are independent of the measurement scale, and they reflect the anisotropy of the joint roughness. Compressive shear tests are conducted on cement-filled joints. Because joints without cement can be considered special cement-filled joints in which the filling degree of cement is zero, they are also tested. The cement-filled granite joint fails primarily along the granite-cement interfaces. The filling degree of cement controls the joint failure and affects its mechanical behaviour. With a decrease in the filling degree of cement, the joint cohesion decreases; however, the dilatancy angle and the basic friction angle of the interface increase. As the filling degree approaches zero, the cohesion approaches zero, while the dilatancy angle and the basic friction angle increase to those of the joint without cement. A set of formulas is proposed to evaluate the peak shear strength of the joints with and without cement. The formulas are shown to be reasonable by comparison with the tested peak shear strength, and they reflect the anisotropy of the strength. This research deepens the understanding of cement-filled joints and provides a method to evaluate their peak shear strength.

  6. Ten years on: Is dental general anaesthesia in childhood a risk factor for caries and anxiety?

    PubMed Central

    Haworth, S.; Dudding, T.; Waylen, A.; Thomas, S. J.; Timpson, N. J.

    2017-01-01

    Objectives To identify whether dental general anaesthesia (DGA) status is informative in assessing risk of caries or dental anxiety by (a) describing long-term oral health and dental anxiety for people who underwent DGA in childhood and (b) testing whether DGA status in childhood is associated with incident future dental caries or anxiety independently of preconceived risk factors. Design Analysis of prospectively obtained data. Setting An established population based cohort in the UK, the Avon Longitudinal Study of Parents and Children. Participants and methods In total 1,695 participants with dental data in childhood and adolescence were included in analysis. DGA status by age 7 and oral health measures at age 17 were identified from questionnaire data. Main outcome measures Filled or extracted permanent teeth at age 17, Corah Dental Anxiety Scale. Results One hundred and twenty-eight (7.6%) participants underwent DGA in childhood. Individuals who underwent DGA had higher measures of filled or extracted permanent teeth in adolescence (0.36 more affected teeth in fully-adjusted model [95% confidence interval: 0.27, 0.55; P <0.001]). Conclusions DGA in childhood predicts burden of treated caries in adolescence, independently of other risk factors. DGA status may be a clinically useful adjunct in identifying young people at high risk of further disease. PMID:28232699

  7. Ten years on: Is dental general anaesthesia in childhood a risk factor for caries and anxiety?

    PubMed

    Haworth, S; Dudding, T; Waylen, A; Thomas, S J; Timpson, N J

    2017-02-24

    Objectives To identify whether dental general anaesthesia (DGA) status is informative in assessing risk of caries or dental anxiety by (a) describing long-term oral health and dental anxiety for people who underwent DGA in childhood and (b) testing whether DGA status in childhood is associated with incident future dental caries or anxiety independently of preconceived risk factors.Design Analysis of prospectively obtained data.Setting An established population based cohort in the UK, the Avon Longitudinal Study of Parents and Children.Participants and methods In total 1,695 participants with dental data in childhood and adolescence were included in analysis. DGA status by age 7 and oral health measures at age 17 were identified from questionnaire data.Main outcome measures Filled or extracted permanent teeth at age 17, Corah Dental Anxiety Scale.Results One hundred and twenty-eight (7.6%) participants underwent DGA in childhood. Individuals who underwent DGA had higher measures of filled or extracted permanent teeth in adolescence (0.36 more affected teeth in fully-adjusted model [95% confidence interval: 0.27, 0.55; P <0.001]).Conclusions DGA in childhood predicts burden of treated caries in adolescence, independently of other risk factors. DGA status may be a clinically useful adjunct in identifying young people at high risk of further disease.

  8. Validity and Reliability Testing of an e-learning Questionnaire for Chemistry Instruction

    NASA Astrophysics Data System (ADS)

    Guspatni, G.; Kurniawati, Y.

    2018-04-01

    The aim of this paper is to examine validity and reliability of a questionnaire used to evaluate e-learning implementation in chemistry instruction. 48 questionnaires were filled in by students who had studied chemistry through e-learning system. The questionnaire consisted of 20 indicators evaluating students’ perception on using e-learning. Parametric testing was done as data were assumed to follow normal distribution. Item validity of the questionnaire was examined through item-total correlation using Pearson’s formula while its reliability was assessed with Cronbach’s alpha formula. Moreover, convergent validity was assessed to see whether indicators building a factor had theoretically the same underlying construct. The result of validity testing revealed 19 valid indicators while the result of reliability testing revealed Cronbach’s alpha value of .886. The result of factor analysis showed that questionnaire consisted of five factors, and each of them had indicators building the same construct. This article shows the importance of factor analysis to get a construct valid questionnaire before it is used as research instrument.

  9. Evaluating the Factor Validity of the Children's Organizational Skills Scale in Youth with ADHD.

    PubMed

    Molitor, Stephen J; Langberg, Joshua M; Evans, Steven W; Dvorsky, Melissa R; Bourchtein, Elizaveta; Eddy, Laura D; Smith, Zoe R; Oddo, Lauren E

    2017-06-01

    Children and adolescents with ADHD often have difficulties with organization, time management, and planning (OTMP) skills, and these skills are a common target of intervention. A limited array of tools for measuring these abilities in youth is available, and one of the most prominent measures is the Children's Organizational Skills Scale (COSS). Although the COSS fills an important need, a replication of the COSS factor structure outside of initial measure development has not been conducted in any population. Given that the COSS is frequently used in ADHD research, the current study evaluated the factor structure of the parent-rated COSS in a sample ( N = 619) of adolescents with ADHD. Results indicated that the original factor structure could be replicated, although the use of item parcels appeared to affect model fit statistics. An alternative bi-factor model was also tested that did not require the use of parcels, with results suggesting similar model fit in comparison to the original factor structure. Exploratory validity tests indicated that the domain-general factor of the bi-factor model appears related to broad executive functioning abilities.

  10. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... products, maximum fill-in or drained weight, or other critical factors specified in the scheduled process... end of the holding period; nature of container. (6) Food preservation methods wherein critical factors... scheduled processes used, including the thermal process, its associated critical factors, as well as other...

  11. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... products, maximum fill-in or drained weight, or other critical factors specified in the scheduled process... end of the holding period; nature of container. (6) Food preservation methods wherein critical factors... scheduled processes used, including the thermal process, its associated critical factors, as well as other...

  12. 21 CFR 113.100 - Processing and production records.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... products, maximum fill-in or drained weight, or other critical factors specified in the scheduled process... end of the holding period; nature of container. (6) Food preservation methods wherein critical factors... scheduled processes used, including the thermal process, its associated critical factors, as well as other...

  13. Decreased Charge Transport Barrier and Recombination of Organic Solar Cells by Constructing Interfacial Nanojunction with Annealing-Free ZnO and Al Layers.

    PubMed

    Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing

    2017-07-05

    To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.

  14. High Fill-out, Extreme Mass Ratio Overcontact Binary Systems. X. The Newly Discovered Binary XY Leonis Minoris

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Yang, Y.-G.; Bernasconi, L.

    2011-05-01

    The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 × 10-7 days yr-1, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

  15. Pore-Scale Determination of Gas Relative Permeability in Hydrate-Bearing Sediments Using X-Ray Computed Micro-Tomography and Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Chen, Xiongyu; Verma, Rahul; Espinoza, D. Nicolas; Prodanović, Maša.

    2018-01-01

    This work uses X-ray computed micro-tomography (μCT) to monitor xenon hydrate growth in a sandpack under the excess gas condition. The μCT images give pore-scale hydrate distribution and pore habit in space and time. We use the lattice Boltzmann method to calculate gas relative permeability (krg) as a function of hydrate saturation (Shyd) in the pore structure of the experimental hydrate-bearing sand retrieved from μCT data. The results suggest the krg - Shyd data fit well a new model krg = (1-Shyd)·exp(-4.95·Shyd) rather than the simple Corey model. In addition, we calculate krg-Shyd curves using digital models of hydrate-bearing sand based on idealized grain-attaching, coarse pore-filling, and dispersed pore-filling hydrate habits. Our pore-scale measurements and modeling show that the krg-Shyd curves are similar regardless of whether hydrate crystals develop grain-attaching or coarse pore-filling habits. The dispersed pore filling habit exhibits much lower gas relative permeability than the other two, but it is not observed in the experiment and not compatible with Ostwald ripening mechanisms. We find that a single grain-shape factor can be used in the Carman-Kozeny equation to calculate krg-Shyd data with known porosity and average grain diameter, suggesting it is a useful model for hydrate-bearing sand.

  16. Periodic Anderson model with correlated conduction electrons: Variational and exact diagonalization study

    NASA Astrophysics Data System (ADS)

    Hagymási, I.; Itai, K.; Sólyom, J.

    2012-06-01

    We investigate an extended version of the periodic Anderson model (the so-called periodic Anderson-Hubbard model) with the aim to understand the role of interaction between conduction electrons in the formation of the heavy-fermion and mixed-valence states. Two methods are used: (i) variational calculation with the Gutzwiller wave function optimizing numerically the ground-state energy and (ii) exact diagonalization of the Hamiltonian for short chains. The f-level occupancy and the renormalization factor of the quasiparticles are calculated as a function of the energy of the f orbital for a wide range of the interaction parameters. The results obtained by the two methods are in reasonably good agreement for the periodic Anderson model. The agreement is maintained even when the interaction between band electrons, Ud, is taken into account, except for the half-filled case. This discrepancy can be explained by the difference between the physics of the one- and higher-dimensional models. We find that this interaction shifts and widens the energy range of the bare f level, where heavy-fermion behavior can be observed. For large-enough Ud this range may lie even above the bare conduction band. The Gutzwiller method indicates a robust transition from Kondo insulator to Mott insulator in the half-filled model, while Ud enhances the quasiparticle mass when the filling is close to half filling.

  17. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    PubMed Central

    Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-01-01

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous photodiode arrays was observed to result in no degradation in MTF due to charge sharing between pixels. While the continuous designs exhibited relatively high levels of charge trapping and release, as well as shorter ranges of linearity, it is possible that these behaviors can be addressed through further refinements to pixel design. Both the continuous and the most recent discrete photodiode designs accommodate more sophisticated pixel circuitry than is present on conventional AMFPIs – such as a pixel clamp circuit, which is demonstrated to limit signal saturation under conditions corresponding to high exposures. It is anticipated that photodiode structures such as the ones reported in this study will enable the development of even more complex pixel circuitry, such as pixel-level amplifiers, that will lead to further significant improvements in imager performance. PMID:19673228

  18. Mechanism for Angular Deformation of L-shaped Specimens —Influence of Filling Material and Shrinkage Factor—

    NASA Astrophysics Data System (ADS)

    Furuhashi, Hiroshi; Aoki, Takerou; Okabe, Sayaka; Arai, Tsuyoshi; Seto, Masahiro; Yamabe, Masashi

    L-shape is the important and fundamental shape for injection molded parts. Therefore to reveal the corner angular deformation mechanism of this shape is also valuable for understanding the warpage mechanism of injection molded parts. In this study, we investigated the influence of the filling materials (fiber, talc and not filled) and two kinds of anisotropic shrinkage factors, solidification shrinkage and shrinkage caused by thermal expansion coefficient during cooling, to the angular deformation of L-shaped specimens and the following conclusions were obtained 1) The anisotropic solidification shrinkage of MD/TD and the anisotropic thermal expansion coefficient of MD/TD are considered to cause the angular deformation of L-shaped specimens. But the contribution ratios of these two anisotropies depend on the filling material for plastics. 2) The angular deformation of PP and PBT filled with glass fiber is mainly caused by the anisotropic thermal expansion coefficient and on the other hand, that of PP and PBT without filling material is caused by anisotropic solidification shrinkage. However both anisotropies cause the angular deformation of PP filled with talc. 3) The plate thickness dependence of the angular deformation of PP filled with talc is the singular peculiar phenomenon. The plate thickness dependence of anisotropic solidification shrinkage of this material (it is also singular) is considered to have an important influence on this phenomenon.

  19. Stent-Assisted Coil Embolization of Vertebrobasilar Dissecting Aneurysms: Procedural Outcomes and Factors for Recanalization

    PubMed Central

    Jeon, Jin Pyeong; Rhim, Jong Kook; Park, Jeong Jin; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Jeong Eun; Hwang, Gyojun; Kwon, O-Ki; Han, Moon Hee

    2016-01-01

    Objective Outcomes of stent-assisted coil embolization (SACE) have not been well established in the setting of vertebrobasilar dissecting aneurysms (VBDAs) due to the low percentage of cases that need treatment and the array of available therapeutic options. Herein, we presented clinical and radiographic results of SACE in patients with VBDAs. Materials and Methods A total of 47 patients (M:F, 30:17; mean age ± SD, 53.7 ± 12.6 years), with a VBDA who underwent SACE between 2008 and 2014 at two institutions were evaluated retrospectively. Medical records and radiologic data were analyzed to assess the outcome of SACE procedures. Cox proportional hazards regression analysis was conducted to determine the factors that were associated with aneurysmal recanalization after SACE. Results Stent-assisted coil embolization technically succeeded in all patients. Three cerebellar infarctions occurred on postembolization day 1, week 2, and month 2, but no other procedure-related complications developed. Immediately following SACE, 25 aneurysms (53.2%) showed no contrast filling into the aneurysmal sac. During a mean follow-up of 20.2 months, 37 lesions (78.7%) appeared completely occluded, whereas 10 lesions showed recanalization, 5 of which required additional embolization. Overall recanalization rate was 12.64% per lesion-year, and mean postoperative time to recanalization was 18 months (range, 3–36 months). In multivariable analysis, major branch involvement (hazard ratio [HR]: 7.28; p = 0.013) and the presence of residual sac filling (HR: 8.49, p = 0.044) were identified as statistically significant independent predictors of recanalization. No bleeding was encountered in follow-up monitoring. Conclusion Stent-assisted coil embolization appears feasible and safe for treatment of VBDAs. Long-term results were acceptable in a majority of patients studied, despite a relatively high rate of incomplete occlusion immediately after SACE. Major branch involvement and coiled aneurysms with residual sac filling may predispose to recanalization. PMID:27587971

  20. Risk factors associated with treatment discontinuation and down-titration in type 2 diabetes patients treated with sulfonylureas.

    PubMed

    Iglay, Kristy; Qiu, Ying; Steve Fan, Chun-Po; Li, Zhiyi; Tang, Jackson; Laires, Pedro

    2016-09-01

    Sulfonylurea therapy among patients with type 2 diabetes mellitus (T2DM) can be disrupted due to adverse events, including hypoglycemia. A retrospective study using the MarketScan claims database quantified the frequency of sulfonylurea discontinuation or down-titration and identified associated risk factors. Adult patients with an index sulfonylurea prescription between 2008 and 2012 and 1 year continuous enrollment pre- and post-index were included. Therapy changes assessed over 1 year post-index included discontinuation and down-titration. Discontinuation occurred if the date of a fill was >90 days from the end date of the preceding fill. Down-titration occurred when a fill had a lower equivalent dose than the fill on the index date. Kaplan-Meier methods estimated the probability of either discontinuation or down-titration over 12 months, and Cox regression models identified associated risk factors. A total of 104,082 sulfonylurea users were included in the study and the probability of either discontinuation or down-titration at 3, 6 and 12 months was 23.2%, 38.9%, and 52.3%, respectively. Major risk factors associated with therapy changes included post-index hypoglycemia (discontinuation hazard ratio [HR] = 1.78 [1.68, 1.89]; down-titration HR =2.79 [2.40, 3.23]) and concomitant use of insulin (discontinuation HR =1.48 [1.40, 1.57]; down-titration HR =1.82 [1.56, 2.11]). Other risk factors included younger age, female gender, use of second generation sulfonylureas, prior cardiovascular comorbidity and liver disease. The study was not able to assess unreported, potentially mild cases of hypoglycemia, nor was it able to evaluate the association between changes in therapy and HbA1c levels or body weight. More than half of T2DM patients who initiated sulfonylurea therapy discontinued or down-titrated within 1 year. Insulin use and hypoglycemia were associated with sulfonylurea therapy change.

  1. IgG particle formation during filling pump operation: a case study of heterogeneous nucleation on stainless steel nanoparticles.

    PubMed

    Tyagi, Anil K; Randolph, Theodore W; Dong, Aichun; Maloney, Kevin M; Hitscherich, Carl; Carpenter, John F

    2009-01-01

    This study investigated factors associated with vial filling with a positive displacement piston pump leading to formation of protein particles in a formulation of an IgG. We hypothesized that nanoparticles shed from the pump's solution-contact surfaces nucleated protein aggregation and particle formation. Vials of IgG formulation filled at a clinical manufacturing site contained a few visible particles and about 100,000 particles (1.5-3 microm) per mL. In laboratory studies with the same model (National Instruments FUS-10) of pump, pumping of 20 mg/mL IgG formulation resulted in about 300,000 particles (1.5-3 microm) per mL. Pumping of protein-free formulation resulted in 13,000 particles (1.5-15 microm) per mL. More than 99% of the particles were 0.25-0.95 microm in size. Mixing of protein-free pumped solution with an equal volume of 40 mg/mL IgG resulted in 300,000 particles (1.5-15 microm) per mL. Also, mixing IgG formulation with 30,000/mL stainless steel nanoparticles resulted in formation of 30,000 protein microparticles (1.5-15 microm) per mL. Infrared spectroscopy showed that secondary structure of IgG in microparticles formed by pumping or mixing with steel nanoparticles was minimally perturbed. Our results document that nanoparticles of foreign materials shed by pumps can serve as heterogeneous nuclei for formation of protein microparticles. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  2. Effectiveness of Non-Lethal Capabilities in a Maritime Environment

    DTIC Science & Technology

    2006-09-01

    demonstrates both the space filling properties for quantitative factors of the NOLH and the lack of correlation between the factors. 27 Figure 12 ...11 b. Optical Dazzler ........................................................................ 12 c...Warning Munitions................................................................. 12 2. Lethal Capabilities

  3. Efficient photovoltaic heterojunctions of indium tin oxides on silicon

    NASA Technical Reports Server (NTRS)

    Dubow, J. B.; Sites, J. R.; Burk, D. E.

    1976-01-01

    Heterojunction diodes of indium tin oxide films sputtered on to p-silicon using ion-beam techniques display significant photovoltaic effects when exposed to sunlight. Galvanomagnetic and optical measurements confirm that the oxide films are highly degenerate transparent semiconductors. At a tin oxide concentration of 10%, an open-circuit voltage of 0.51 V was observed along with a short-circuit current of 32 mA/sq cm, a fill factor of 0.70, and a conversion efficiency of 12%. As the concentration was raised to 70%, the voltage remained steady, the current fell to 27 mA/sq cm, and the fill factor fell to 0.60

  4. Tailoring the dispersion behavior of silicon nanophotonic slot waveguides.

    PubMed

    Mas, Sara; Caraquitena, José; Galán, José V; Sanchis, Pablo; Martí, Javier

    2010-09-27

    We investigate the chromatic dispersion properties of silicon channel slot waveguides in a broad spectral region centered at ~1.5 μm. The variation of the dispersion profile as a function of the slot fill factor, i.e., the ratio between the slot and waveguide widths, is analyzed. Symmetric as well as asymmetric geometries are considered. In general, two different dispersion regimes are identified. Furthermore, our analysis shows that the zero and/or the peak dispersion wavelengths can be tailored by a careful control of the geometrical waveguide parameters including the cross-sectional area, the slot fill factor, and the slot asymmetry degree.

  5. Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain.

    PubMed

    Gaiser, Patrick; Binz, Jonas; Gompf, Bruno; Berrier, Audrey; Dressel, Martin

    2015-03-14

    Tunable metal/dielectric composites are promising candidates for a large number of potential applications in electronics, sensor technologies and optical devices. Here we systematically investigate the dielectric properties of Ag-nanoparticles embedded in the highly flexible elastomer poly-dimethylsiloxane (PDMS). As tuning parameter we use uniaxial and biaxial strain applied to the composite. We demonstrate that both static variations of the filling factor and applied strain lead to the same behavior, i.e., the filling factor of the composite can be tuned by application of strain. In this way the effective static permittivity εeff of the composite can be varied over a very large range. Once the Poisson's ratio of the composite is known, the strain dependent dielectric constant can be accurately described by effective medium theory without any additional free fit parameter up to metal filling factors close to the percolation threshold. It is demonstrated that, starting above the percolation threshold in the metallic phase, applying strain provides the possibility to cross the percolation threshold into the insulating region. The change of regime from conductive phase down to insulating follows the description given by percolation theory and can be actively controlled.

  6. Detection of sulphur in the galactic center

    NASA Technical Reports Server (NTRS)

    Herter, T.; Briotta, D. A., Jr.; Gull, G. E.; Shure, M. A.; Houck, J. R.

    1983-01-01

    A strong detection at the (SIII) 18.71 micron line is reported for the Galactic Center region, Sgr A West. A line flux of 1.7 + or - 0.2x10 to the -17th power W cm(-2) is found for a 20-arc second beam-size measurement centered on IRS 1. A preliminary analysis indicates that the SIII abundance relative to hydrogen is consistent with the cosmic abundance of sulfur, 1.6x10 to the -5th power, if a filling factor of unity within the known clumps is assumed. However, the sulfur abundance in the Galactic Center may be as much as a factor of 3 overabundant if a filling factor of 0.03 is adopted, a value found to hold for some galactic HII regions.

  7. Crack propagation and arrest in pressurized containers

    NASA Technical Reports Server (NTRS)

    Erdogan, F.; Delale, F.; Owczarek, J. A.

    1976-01-01

    The problem of crack propagation and arrest in a finite volume cylindrical container filled with pressurized gas is considered. It is assumed that the cylinder contains a symmetrically located longitudinal part-through crack with a relatively small net ligament. The net ligament suddenly ruptures initiating the process of fracture propagation and depressurization in the cylinder. Thus the problem is a coupled gas dynamics and solid mechanics problem the exact formulation of which does not seem to be possible. The problem is reduced to a proper initial value problem by introducing a dynamic fracture criterion which relates the crack acceleration to the difference between a load factor and the corresponding strength parameter. The results indicate that generally in gas filled cylinders fracture arrest is not possible unless the material behaves in a ductile manner and the container is relatively long.

  8. Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling.

    PubMed

    Deng, Xiaohu; Zeng, Zhi; Peng, Bei; Yan, Shuo; Ke, Wenchao

    2018-01-30

    Compared to the common selective laser sintering (SLS) manufacturing method, fused deposition modeling (FDM) seems to be an economical and efficient three-dimensional (3D) printing method for high temperature polymer materials in medical applications. In this work, a customized FDM system was developed for polyether-ether-ketone (PEEK) materials printing. The effects of printing speed, layer thickness, printing temperature and filling ratio on tensile properties were analyzed by the orthogonal test of four factors and three levels. Optimal tensile properties of the PEEK specimens were observed at a printing speed of 60 mm/s, layer thickness of 0.2 mm, temperature of 370 °C and filling ratio of 40%. Furthermore, the impact and bending tests were conducted under optimized conditions and the results demonstrated that the printed PEEK specimens have appropriate mechanical properties.

  9. Micro-channel filling flow considering surface tension effect

    NASA Astrophysics Data System (ADS)

    Kim, Dong Sung; Lee, Kwang-Cheol; Kwon, Tai Hun; Lee, Seung S.

    2002-05-01

    Understanding filling flow into micro-channels is important in designing micro-injection molding, micro-fluidic devices and an MIMIC (micromolding in capillaries) process. In this paper, we investigated, both experimentally and numerically, 'transient filling' flow into micro-channels, which differs from steady-state completely 'filled' flow in micro-channels. An experimental flow visualization system was devised to facilitate observation of flow characteristics in filling into micro-channels. Three sets of micro-channels of various widths of different thicknesses (20, 30, and 40 μm) were fabricated using SU-8 on the silicon substrate to find a geometric effect with regard to pressure gradient, viscous force and, in particular, surface tension. A numerical analysis system has also been developed taking into account the surface tension effect with a contact angle concept. Experimental observations indicate that surface tension significantly affects the filling flow to such an extent that even a flow blockage phenomenon was observed at channels of small width and thickness. A numerical analysis system also confirms that the flow blockage phenomenon could take place due to the flow hindrance effect of surface tension, which is consistent with experimental observation. For proper numerical simulations, two correction factors have also been proposed to correct the conventional hydraulic radius for the filling flow in rectangular cross-sectioned channels.

  10. Enhanced thermoelectric response in the fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Roura-Bas, Pablo; Arrachea, Liliana; Fradkin, Eduardo

    2018-02-01

    We study the linear thermoelectric response of a quantum dot embedded in a constriction of a quantum Hall bar with fractional filling factors ν =1 /m within Laughlin series. We calculate the figure of merit Z T for the maximum efficiency at a fixed temperature difference. We find a significant enhancement of this quantity in the fractional filling in relation to the integer-filling case, which is a direct consequence of the fractionalization of the electron in the fractional quantum Hall state. We present simple theoretical expressions for the Onsager coefficients at low temperatures, which explicitly show that Z T and the Seebeck coefficient increase with m .

  11. Evaluation of ground-penetrating radar to detect free-phase hydrocarbons in fractured rocks - Results of numerical modeling and physical experiments

    USGS Publications Warehouse

    Lane, J.W.; Buursink, M.L.; Haeni, F.P.; Versteeg, R.J.

    2000-01-01

    The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.The suitability of common-offset ground-penetrating radar (GPR) to detect free-phase hydrocarbons in bedrock fractures was evaluated using numerical modeling and physical experiments. The results of one- and two-dimensional numerical modeling at 100 megahertz indicate that GPR reflection amplitudes are relatively insensitive to fracture apertures ranging from 1 to 4 mm. The numerical modeling and physical experiments indicate that differences in the fluids that fill fractures significantly affect the amplitude and the polarity of electromagnetic waves reflected by subhorizontal fractures. Air-filled and hydrocarbon-filled fractures generate low-amplitude reflections that are in-phase with the transmitted pulse. Water-filled fractures create reflections with greater amplitude and opposite polarity than those reflections created by air-filled or hydrocarbon-filled fractures. The results from the numerical modeling and physical experiments demonstrate it is possible to distinguish water-filled fracture reflections from air- or hydrocarbon-filled fracture reflections, nevertheless subsurface heterogeneity, antenna coupling changes, and other sources of noise will likely make it difficult to observe these changes in GPR field data. This indicates that the routine application of common-offset GPR reflection methods for detection of hydrocarbon-filled fractures will be problematic. Ideal cases will require appropriately processed, high-quality GPR data, ground-truth information, and detailed knowledge of subsurface physical properties. Conversely, the sensitivity of GPR methods to changes in subsurface physical properties as demonstrated by the numerical and experimental results suggests the potential of using GPR methods as a monitoring tool. GPR methods may be suited for monitoring pumping and tracer tests, changes in site hydrologic conditions, and remediation activities.

  12. Ground testing on the nonvented fill method of orbital propellant transfer: Results of initial test series

    NASA Technical Reports Server (NTRS)

    Chato, David J.

    1991-01-01

    The results are presented of a series of no-vent fill experiments conducted on a 175 cu ft flightweight hydrogen tank. The experiments consisted of the nonvented fill of the tankage with liquid hydrogen using two different inlet systems (top spray, and bottom spray) at different tank initial conditions and inflow rates. Nine tests were completed of which six filled in excess of 94 percent. The experiments demonstrated a consistent and repeatable ability to fill the tank in excess of 94 percent using the nonvented fill technique. Ninety-four percent was established as the high level cutoff due to requirements for some tank ullage to prevent rapid tank pressure rise which occurs in a tank filled entirely with liquid. The best fill was terminated at 94 percent full with a tank internal pressure less than 26 psia. Although the baseline initial tank wall temperature criteria was that all portions of the tank wall be less than 40 R, fills were achieved with initial wall temperatures as high as 227 R.

  13. [Inactivating Effect of Heat-Denatured Lysozyme on Murine Norovirus in Bread Fillings].

    PubMed

    Takahashi, Michiko; Yasuda, Yuka; Takahashi, Hajime; Takeuchi, Akira; Kuda, Takashi; Kimura, Bon

    2018-01-01

    In this study, we investigated the viability of murine norovirus strain 1 (MNV-1), a surrogate for human norovirus, in bread fillings used for making stuffed buns and pastries. The inactivating effect of heat-denatured lysozyme, which was recently reported to have an antiviral effect, on MNV-1 contaminating the bread fillings was also examined. MNV-1 was inoculated into two types of fillings (chocolate cream, marmalade jam) at 4.5 log PFU/g, and the bread fillings were stored at 4℃ for 5 days. MNV-1 remained viable in the bread fillings during storage. However, addition of 1% heat-denatured lysozyme to the fillings resulted in a decrease of MNV-1 infectivity immediately after inoculation, in both fillings. On the fifth day of storage, MNV-1 infectivity was decreased by 1.2 log PFU/g in chocolate cream and by 0.9 log PFU/g in marmalade jam. Although the mechanism underlying the anti-norovirus effect of heat-denatured lysozyme has not been clarified, our results suggest that heat-denatured lysozyme can be used as an inactivating agent against norovirus in bread fillings.

  14. SEMICONDUCTOR TECHNOLOGY Dummy fill effect on CMP planarity

    NASA Astrophysics Data System (ADS)

    Junxiong, Zhou; Lan, Chen; Wenbiao, Ruan; Zhigang, Li; Weixiang, Shen; Tianchun, Ye

    2010-10-01

    With the use of a chemical-mechanical polishing (CMP) simulator verified by testing data from a foundry, the effect of dummy fill characteristics, such as fill size, fill density and fill shape, on CMP planarity is analyzed. The results indicate that dummy density has a significant impact on oxide erosion, and copper dishing is in proportion to dummy size. We also demonstrate that cross shape dummy fill can have the best dishing performance at the same density.

  15. Subresolution Fibrillation in X-Ray Microflares Observed by Yohkoh SXT

    NASA Technical Reports Server (NTRS)

    Moore, Ron; Falconer, David; Porter, Jason

    1999-01-01

    We analyze the cooling of the X-ray plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope (SXT). A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approx. 2 x 10(exp 8) cm). The plasma heated to X-ray temperatures in the body of the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is fluid by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (X-ray brightness through the thin aluminum filter - 4 x 10(exp 3) DN/s/pixeL lifetime approx. 5 min, temperature approx. 6 x 10(exp 6) K, loop length approx. 10(exp 9) cm, loop diameter approx. 3 x 10(exp 8) cm), we find that for filling factors greater than approx. 1%: (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that: (1) heating to X-ray temperatures continues through nearly the entire lifetime of the microflare, (2) die heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (approx. 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from the Yohkoh SXT will show plenty of rapidly changing filamentary substructure in microflares. Our results also suggest that the heating in microflares may result from progressive reconnection similar to that inferred in many larger flares.

  16. Predictors of Intervention Success in a Sports-Based Program for Adolescents at Risk of Juvenile Delinquency

    PubMed Central

    Spruit, Anouk; van der Put, Claudia; van Vugt, Eveline; Stams, Geert Jan

    2017-01-01

    To prevent juvenile delinquency, there is growing interest in the use of sports-based interventions. To date, there is little empirical research that provides insights into for whom, how, and when sports-based crime prevention programs are most effective. Therefore, the current study assessed which youth, coach, and context factors were predictive of change in risk factors and protective factors for delinquency in a sports-based crime prevention program for at-risk adolescents. Participants (N = 155) and their teachers filled in questionnaires about risk and protective factors for delinquency at the start of the intervention and 13 months later. In addition, the coaches and participants filled in questionnaires about the predictors of intervention success. The youths showed significant improvements over the course of the intervention. Various youth, coach, and context factors (e.g., the type of education of youth and the sociomoral climate at the sports club) were associated to change in the outcome variables. PMID:28741394

  17. Predictors of Intervention Success in a Sports-Based Program for Adolescents at Risk of Juvenile Delinquency.

    PubMed

    Spruit, Anouk; van der Put, Claudia; van Vugt, Eveline; Stams, Geert Jan

    2018-05-01

    To prevent juvenile delinquency, there is growing interest in the use of sports-based interventions. To date, there is little empirical research that provides insights into for whom, how, and when sports-based crime prevention programs are most effective. Therefore, the current study assessed which youth, coach, and context factors were predictive of change in risk factors and protective factors for delinquency in a sports-based crime prevention program for at-risk adolescents. Participants ( N = 155) and their teachers filled in questionnaires about risk and protective factors for delinquency at the start of the intervention and 13 months later. In addition, the coaches and participants filled in questionnaires about the predictors of intervention success. The youths showed significant improvements over the course of the intervention. Various youth, coach, and context factors (e.g., the type of education of youth and the sociomoral climate at the sports club) were associated to change in the outcome variables.

  18. The Shock and Vibration Digest. Volume 18, Number 1

    DTIC Science & Technology

    1986-01-01

    polyurethanes reduced the loss factor and emphasized the correlation between molecular storage modulus by increasing the length of the structure and...one tempera- static deformations. He gave storage and loss ture/frequency range is difficult with copoly- moduli for a carbon black filled and an...has been described (18). The shear loss author states that the frequency dependence of and storage moduli of a void-filled polyurethane the elastomers

  19. Development of a short-form Learning Organization Survey: the LOS-27.

    PubMed

    Singer, Sara J; Moore, Scott C; Meterko, Mark; Williams, Sandra

    2012-08-01

    Despite urgent need for innovation, adaptation, and change in health care, few tools enable researchers or practitioners to assess the extent to which health care facilities perform as learning organizations or the effects of initiatives that require learning. This study's objective was to develop and test a short-form Learning Organization Survey to fill this gap. The authors applied exploratory factor analysis and confirmatory factor analysis to data from Veterans Health Administration personnel to derive a short-form survey and then conducted further confirmatory factor analysis and factor invariance testing on additional Veterans Health Administration data to evaluate the short form. Results suggest that a 27-item, 7-factor survey (2 environmental factors, 1 on leadership, and 4 on concrete learning processes and practices) reliably measures key features of organizational learning, allowing researchers to evaluate theoretical propositions about organizational learning, its antecedents, and outcomes and enabling managers to assess and enhance organizations' learning capabilities and performance.

  20. Parameter analysis on the ultrasonic TSV-filling process and electrochemical characters

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Ren, Xinyu; Wang, Yan; Zeng, Peng; Zhou, Zhaohua; Xiao, Hongbin; Zhu, Wenhui

    2017-10-01

    As one of the key technologies in 3D packaging, through silicon via (TSV) interconnection technology has become a focus recently. In this paper, an electrodeposition method for TSV filling with the assistance of ultrasound and additives are introduced. Two important parameters i.e. current density and ultrasonic power are studied for TSV filling process and electrochemical properties. It is found that ultrasound can improve the quality of TSV-filling and change the TSV-filling mode. The experimental results also indicate that the filling rate enhances more significantly with decreasing current density under ultrasonic conditions than under silent conditions. In addition, according to the voltammetry curve, the increase of ultrasonic power can significantly increase the current density of cupric reduction, and decrease the thickness of diffusion layer. So that the reduction speed of copper ions is accelerated, resulting in a higher TSV-filling rate.

  1. USE OF GEOSPATIAL DATA TO PREDICT DOWNSTREAM IMPACTS OF COAL MINING IN AN APPALACHIAN WATERSHED

    EPA Science Inventory

    Mountaintop removal and valley filling is a method of mining coal that results in burial of Appalachian headwater streams. Leaching of fill material often results in elevated ion concentrations below fills. A primary objective of this study was to quantify downstream extent of mi...

  2. Densities and filling factors of the diffuse ionized gas in the Solar neighbourhood

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Müller, P.

    2008-10-01

    Aims: We analyse electron densities and filling factors of the diffuse ionized gas (DIG) in the Solar neighbourhood. Methods: We have combined dispersion measures and emission measures towards 38 pulsars at distances known to better than 50%, from which we derived the mean density in clouds, N_c, and their volume filling factor, F_v, averaged along the line of sight. The emission measures were corrected for absorption by dust and contributions from beyond the pulsar distance. Results: The scale height of the electron layer for our sample is 0.93± 0.13 kpc and the midplane electron density is 0.023± 0.004 cm-3, in agreement with earlier results. The average density along the line of sight is < n_e> = 0.018± 0.002 cm-3 and is nearly constant. Since < n_e> = F_vN_c, an inverse relationship between Fv and Nc is expected. We find F_v(N_c) = (0.011± 0.003) N_c-1.20± 0.13, which holds for the ranges N_c= 0.05-1 cm-3 and F_v= 0.4-0.01. Near the Galactic plane the dependence of Fv on Nc is significantly stronger than away from the plane. Fv does not systematically change along or perpendicular to the Galactic plane, but the spread about the mean value of 0.08± 0.02 is considerable. The total pathlength through the ionized regions increases linearly to about 80 pc towards |z| = 1 kpc. Conclusions: Our study of Fv and Nc of the DIG is the first one based on a sample of pulsars with known distances. We confirm the existence of a tight, nearly inverse correlation between Fv and Nc in the DIG. The exact form of this relation depends on the regions in the Galaxy probed by the pulsar sample. The inverse F_v-Nc relation is consistent with a hierarchical, fractal density distribution in the DIG caused by turbulence. The observed near constancy of < n_e> then is a signature of fractal structure in the ionized medium, which is most pronounced outside the thin disk.

  3. Types of stratigraphic traps in Lower Cretaceous Muddy Formation, northern Powder River Basin, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovekin, J.R.; Odland, S.K.; Quartarone, T.S. Gardner, M.H.

    1986-08-01

    Stratigraphic traps account for most of the oil produced from the Muddy Sandstone in the northern Powder River basin. Two categories of traps exist. The first trap type is the result of lateral and vertical facies changes. Reservoir facies include tidal channels, point bars, bayhead deltas, barrier islands, and strand-plain sandstones; trapping facies include bay-fill and estuarine sediments, mud-filled tidal channels, and flood-plain deposits. The second of the two categories of traps results from an unconformity that juxtaposes permeable and impermeable sediments of quite different ages. Structural and diagenetic factors often modify and locally enhance reservoir quality within both categoriesmore » of stratigraphic traps. The various types of traps are demonstrated by studies of six field areas: (1) barrier-island sandstones, sealed updip by back-barrier shales, produce at Ute and Kitty fields; (2) tidal channels produce at Collums and Kitty fields; (3) bayhead deltas, encased in estuarine sediments, form traps at Oedekoven and Kitty fields; (4) fluvial point-bar sandstones form traps at Oedekoven, Store, and Kitty fields; (5) unconformity-related traps exist where Muddy fluvial valley-fill sediments lap out against impermeable valley walls of Skull Creek Shale on the updip side at Store, Oedekoven, and Kitty fields; and (6) the clay-rich weathered zone, directly beneath an intraformational unconformity, forms the seal to the reservoirs at Amos Draw field.« less

  4. Factors associated with surface-level caries incidence in children aged 9 to 13: the Iowa Fluoride Study

    PubMed Central

    Broffitt, Barbara; Levy, Steven M.; Warren, John; Cavanaugh, Joseph E.

    2017-01-01

    Objective Since dental caries can progress throughout a person’s lifetime, understanding caries risk factors unique to specific life phases is important. This study aims to assess caries incidence and risk factors for young adolescents. Methods Participants in the longitudinal Iowa Fluoride Study were assessed for dental caries at approximately age 9 and again at age 13. These participants also filled out questionnaires concerning water sources, oral health habits, beverage intakes, parent education and family income. Caries progression (D2+F) was analyzed at the surface level. Mixed effects logistic regression was used to assess associations between surface-specific first molar occlusal caries incidence and risk factors. Results Caries incidence was quite low except on the first molar occlusal surfaces. In initial models of specific risk factors, incidence was positively associated with the surface having a D1 lesion at baseline, low family income, having untreated decay or fillings on other teeth at baseline, lower home water fluoride level, and higher soda pop consumption. In the final multiple variable model, significant interactions were found between tooth brushing frequency and initial D1 status, and also between family income and home tap water fluoride level. Conclusions D2+F incidence on first molar occlusal surfaces in these young adolescents was associated with prior caries experience on other teeth as well as prior evidence of a D1 lesion on the occlusal surface. More frequent tooth brushing was protective of sound surfaces, and fluoride in home tap water was also protective, but significantly more so for adolescents in low income families. PMID:23889610

  5. The application of waste fly ash and construction-waste in cement filling material in goaf

    NASA Astrophysics Data System (ADS)

    Chen, W. X.; Xiao, F. K.; Guan, X. H.; Cheng, Y.; Shi, X. P.; Liu, S. M.; Wang, W. W.

    2018-01-01

    As the process of urbanization accelerated, resulting in a large number of abandoned fly ash and construction waste, which have occupied the farmland and polluted the environment. In this paper, a large number of construction waste and abandoned fly ash are mixed into the filling material in goaf, the best formula of the filling material which containing a large amount of abandoned fly ash and construction waste is obtained, and the performance of the filling material is analyzed. The experimental results show that the cost of filling material is very low while the performance is very good, which have a good prospect in goaf.

  6. Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill

    PubMed Central

    Yin, Zixin; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing

    2017-01-01

    The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70–80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw. PMID:28773243

  7. Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill.

    PubMed

    Yin, Zixin; Peng, Yuxing; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing

    2017-07-31

    The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70-80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw.

  8. Polymerization shrinkage and spherical glass mega fillers: effects on cuspal deflection

    PubMed Central

    BASSI, M. ANDREASI; SERRA, S.; ANDRISANI, C.; LICO, S.; BAGGI, L.; LAURITANO, D.

    2016-01-01

    SUMMARY Purpose The Authors analyzed the effect of spherical glass mega fillers (SGMF) on reducing contraction stress in dental composite resins, by means of a cavity model simulating the cuspal deflection which occurs on filled tooth cavity walls in clinical condition. Materials and methods 20 stylized MOD cavities (C-factor = 0.83) were performed in acrylic resin. The inner surface of each cavity was sand blasted and adhesively treated in order to ensure a valid bond with the composite resin. Three different diameter of SGMF were used (i.e. 1, 1,5, 2 mm). The samples were divided in 4 groups of 5 each: Group 1 samples filled with the composite only; Group 2 samples filled with composite added with SGMFs, Ø1mm (16 spheres for each sample); Group 3 samples filled with composite added with SGMFs, Ø1,5 mm (5 spheres for each sample); Group 4 samples filled with composite added with SGMFs, Ø2 mm (2 spheres for each sample). Digital pictures were taken, in standardized settings, before and immediately after the polymerization of the composite material, placed into the cavities. With a digital image analysis software the distances from the coronal reference points of the cavity walls were measured. Then the difference between the first and second measurement was calculated. The data were analyzed by means of the ANOVA test. Results A significative reduction on cavity walls deflection, when the composite resin is used in addiction with the SGMFs was observed. The SGMFs of smallest diameter (1mm) showed the better outcome. Conclusion The SGMFs are reliable in reducing contraction stress in dental composite resins. PMID:28280535

  9. Factors Influencing Career Choice among Police Recruits

    ERIC Educational Resources Information Center

    Cole, Bryan

    2012-01-01

    This quantitative, non-experimental study examined the career choice factors of 154 (n = 154) police recruits to determine a correlation of age group generation to the five career choice factors presented in the Sibson Reward of Work Model. Law enforcement agencies faced a shortage of viable candidates to fill vacant positions. While extensive…

  10. An Investigation of Relationships between Internal and External Factors Affecting Technology Integration in Classrooms

    ERIC Educational Resources Information Center

    Hur, Jung Won; Shannon, David; Wolf, Sara

    2016-01-01

    Various factors affecting technology integration have been identified, but little research has examined the relationships between factors, especially internal and external ones, and whether they directly or indirectly influenced each other. To fill this research gap, this study examined the significance and relationships of five factors…

  11. Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment

    NASA Astrophysics Data System (ADS)

    Liu, Huihui; He, Xiongwei; Guo, Peng

    2017-04-01

    Three factors (pouring temperature, injection speed and mold temperature) were selected to do three levels L9 (33)orthogonal experiment, then simulate processing of semi-solid die-casting of magnesium matrix composite by Flow-3D software. The stress distribution, temperature field and defect distribution of filling process were analyzed to find the optimized processing parameter with the help of orthogonal experiment. The results showed that semi-solid has some advantages of well-proportioned stress and temperature field, less defect concentrated in the surface. The results of simulation were the same as the experimental results.

  12. Measurement of factors that negatively influence the outcome of quitting smoking among patients with COPD: psychometric analyses of the Try To Quit Smoking instrument.

    PubMed

    Lundh, Lena; Alinaghizadeh, Hassan; Törnkvist, Lena; Gilljam, Hans; Galanti, Maria Rosaria

    2014-12-01

    To test internal consistency and factor structure of a brief instrument called Trying to Quit smoking. The most effective treatment for patients with chronic obstructive pulmonary disease is to quit smoking. Constant thoughts about quitting and repeated quit attempts can generate destructive feelings and make it more difficult to quit. Development and psychometric testing of the Trying to Quit smoking scale. The Trying to Quit smoking, an instrument designed to assess pressure-filled states of mind and corresponding pressure-relief strategies, was tested among 63 Swedish patients with chronic obstructive pulmonary disease. Among these, the psychometric properties of the instrument were analysed by Exploratory Factor Analyses. Fourteen items were included in the factor analyses, loading on three factors labelled: (1) development of pressure-filled mental states; (2) use of destructive pressure-relief strategies; and (3) ambivalent thoughts when trying to quit smoking. These three factors accounted for more than 80% of the variance, performed well on the Kaiser-Meyer-Olkin (KMO) test and had high internal consistency.

  13. The effect of exchange interaction on quasiparticle Landau levels in narrow-gap quantum well heterostructures.

    PubMed

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2012-04-04

    Using the 'screened' Hartree-Fock approximation based on the eight-band k·p Hamiltonian, we have extended our previous work (Krishtopenko et al 2011 J. Phys.: Condens. Matter 23 385601) on exchange enhancement of the g-factor in narrow-gap quantum well heterostructures by calculating the exchange renormalization of quasiparticle energies, the density of states at the Fermi level and the quasiparticle g-factor for different Landau levels overlapping. We demonstrate that exchange interaction yields more pronounced Zeeman splitting of the density of states at the Fermi level and leads to the appearance of peak-shaped features in the dependence of the Landau level energies on the magnetic field at integer filling factors. We also find that the quasiparticle g-factor does not reach the maximum value at odd filling factors in the presence of large overlapping of spin-split Landau levels. We advance an argument that the behavior of the quasiparticle g-factor in weak magnetic fields is defined by a random potential of impurities in narrow-gap heterostructures. © 2012 IOP Publishing Ltd

  14. Potential of scrap tire rubber as lightweight aggregate in flowable fill.

    PubMed

    Pierce, C E; Blackwell, M C

    2003-01-01

    Flowable fill is a self-leveling and self-compacting material that is rapidly gaining acceptance and application in construction, particularly in transportation and utility earthworks. When mixed with concrete sand, standard flowable fill produces a mass density ranging from 1.8 to 2.3 g/cm(3) (115-145 pcf). Scrap tires can be granulated to produce crumb rubber, which has a granular texture and ranges in size from very fine powder to coarse sand-sized particles. Due to its low specific gravity, crumb rubber can be considered a lightweight aggregate. This paper describes an experimental study on replacing sand with crumb rubber in flowable fill to produce a lightweight material. To assess the technical feasibility of using crumb rubber, the fluid- and hardened-state properties of nine flowable fill mixtures were measured. Mixture proportions were varied to investigate the effects of water-to-cement ratio and crumb rubber content on fill properties. Experimental results indicate that crumb rubber can be successfully used to produce a lightweight flowable fill (1.2-1.6 g/cm(3) [73-98 pcf]) with excavatable 28-day compressive strengths ranging from 269 to 1194 kPa (39-173 psi). Using a lightweight fill reduces the applied stress on underlying soils, thereby reducing the potential for bearing capacity failure and minimizing soil settlement. Based on these results, a crumb rubber-based flowable fill can be used in a substantial number of construction applications, such as bridge abutment fills, trench fills, and foundation support fills.

  15. Fill-factor improvement of Si CMOS single-photon avalanche diode detector arrays by integration of diffractive microlens arrays.

    PubMed

    Intermite, Giuseppe; McCarthy, Aongus; Warburton, Ryan E; Ren, Ximing; Villa, Federica; Lussana, Rudi; Waddie, Andrew J; Taghizadeh, Mohammad R; Tosi, Alberto; Zappa, Franco; Buller, Gerald S

    2015-12-28

    Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

  16. ESR Detection of optical dynamic nuclear polarization in GaAs/Al{sub x}Ga{sub 1-x}As quantum wells at unity filling factor in the quantum Hall effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitkalov, Sergey A.; Bowers, C. Russell; Simmons, Jerry A.

    2000-02-15

    This paper presents a study of the enhancement of the Zeeman energy of two-dimensional (2D) conduction electrons near the {nu}=1 filling factor of the quantum Hall effect by optical dynamic nuclear polarization. The change in the Zeeman energy is determined from the Overhauser shift of the transport detected electron spin resonance in GaAs/Al{sub x}Ga{sub 1-x}As multiquantum wells. In a separate experiment the NMR signal enhancement factor is obtained by radio frequency detected nuclear magnetic resonance under similar conditions in the same sample. These measurements afford an estimation of the hyperfine coupling constant between the nuclei and 2D conduction electrons. (c)more » 2000 The American Physical Society.« less

  17. In vitro modifications of the scala tympani environment and the cochlear implant array surface.

    PubMed

    Kontorinis, Georgios; Scheper, Verena; Wissel, Kirsten; Stöver, Timo; Lenarz, Thomas; Paasche, Gerrit

    2012-09-01

    To investigate the influence of alterations of the scala tympani environment and modifications of the surface of cochlear implant electrode arrays on insertion forces in vitro. Research experimental study. Fibroblasts producing neurotrophic factors were cultivated on the surface of Nucleus 24 Contour Advance electrodes. Forces were recorded by an Instron 5542 Force Measurement System as three modified arrays were inserted into an artificial scala tympani model filled with phosphate-buffered saline (PBS). The recorded forces were compared to control groups including three unmodified electrodes inserted into a model filled with PBS (unmodified environment) or Healon (current practice). Fluorescence microscopy was used before and after the insertions to identify any remaining fibroblasts. Additionally, three Contour Advance electrodes were inserted into an artificial model, filled with alginate/barium chloride solution at different concentrations, while insertion forces were recorded. Modification of the scala tympani environment with 50% to 75% alginate gel resulted in a significant decrease in the insertion forces. The fibroblast-coated arrays also led to decreased forces comparable to those recorded with Healon. Fluorescence microscopy revealed fully cell-covered arrays before and partially covered arrays after the insertion; the fibroblasts on the arrays' modiolar surface remained intact. Modifications of the scala tympani's environment with 50% to 75% alginate/barium chloride and of the cochlear implant electrode surface with neurotrophic factor-producing fibroblasts drastically reduce the insertion forces. As both modifications may serve future intracochlear therapies, it is expected that these might additionally reduce possible insertion trauma. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  18. The Utilization of Opioid Analgesics Following Common Upper Extremity Surgical Procedures: A National, Population-Based Study

    PubMed Central

    Waljee, Jennifer F.; Zhong, Lin; Hou, Hechuan; Sears, Erika; Brummet, Chad; Chung, Kevin C.

    2016-01-01

    Background The misuse of opioid analgesics is a major public health concern, and guidelines regarding postoperative opioid use are sparse. We examined the use of opioids following outpatient upper extremity procedures. We hypothesized that opioid use varies widely by procedure and patient factors. Methods We studied opioid prescriptions among 296,452 adults ages ≥ 18 years who underwent carpal tunnel release, trigger finger release, cubital tunnel release, and thumb carpometacarpal (CMC) arthroplasty from 2009 to 2013. We analyzed insurance claims drawn using Truven Health MarketScan Commercial Claims and Encounters, which encompasses over 100 health plans in the United States. Using multivariable regression, we compared the receipt of opioids, number of days supplied, indicators of inappropriate prescriptions, and number of refills by patient factors. Results In this cohort, 59% filled a postoperative prescription for opioid medication, and 8.8% patients had an indicator of inappropriate prescribing. The probability of filling an opioid prescription declined linearly with advancing age. In multivariate analysis, patients who had previously received opioids were more likely to fill a postoperative opioid prescription (66% vs. 59%), receive longer prescriptions (24 vs. 5 days), receive refills following surgery (24% vs. 5%), and have at least one indicator of potentially inappropriate prescribing (19% vs 6%). Conclusions Current opioid users are more likely to require postoperative opioid analgesics for routine procedures, and more likely to receive inappropriate prescriptions. More evidence is needed to identify patients who derive the greatest benefit from opioids in order to curb opioids prescriptions when alternative analgesics may be equally effective and available. PMID:26818326

  19. Identification and Characterization of microRNAs during Maize Grain Filling

    PubMed Central

    Lv, Panqing; Peng, Qian; Ding, Dong; Li, Weihua; Tang, Jihua

    2015-01-01

    The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patternsof miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assistedin the understanding of how miRNAs are functioning about the grain filling rate. PMID:25951054

  20. Identification and Characterization of microRNAs during Maize Grain Filling.

    PubMed

    Jin, Xining; Fu, Zhiyuan; Lv, Panqing; Peng, Qian; Ding, Dong; Li, Weihua; Tang, Jihua

    2015-01-01

    The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patterns of miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assisted in the understanding of how miRNAs are functioning about the grain filling rate.

  1. Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling

    NASA Astrophysics Data System (ADS)

    Menzer, Olaf; Meiring, Wendy; Kyriakidis, Phaedon C.; McFadden, Joseph P.

    2015-01-01

    A small, but growing, number of flux towers in urban environments measure surface-atmospheric exchanges of carbon dioxide by the eddy covariance method. As in all eddy covariance studies, obtaining annual sums of urban CO2 exchange requires imputation of data gaps due to low turbulence and non-stationary conditions, adverse weather, and instrument failures. Gap-filling approaches that are widely used for measurements from towers in natural vegetation are based on light and temperature response models. However, they do not account for key features of the urban environment including tower footprint heterogeneity and localized CO2 sources. Here, we present a novel gap-filling modeling framework that uses machine learning to select explanatory variables, such as continuous traffic counts and temporal variables, and then constrains models separately for spatially classified subsets of the data. We applied the modeling framework to a three year time series of measurements from a tall broadcast tower in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. The gap-filling performance was similar to that reported for natural measurement sites, explaining 64% to 88% of the variability in the fluxes. Simulated carbon budgets were in good agreement with an ecophysiological bottom-up study at the same site. Total annual carbon dioxide flux sums for the tower site ranged from 1064 to 1382 g C m-2 yr-1, across different years and different gap-filling methods. Bias errors of annual sums resulting from gap-filling did not exceed 18 g C m-2 yr-1 and random uncertainties did not exceed ±44 g C m-2 yr-1 (or ±3.8% of the annual flux). Regardless of the gap-filling method used, the year-to-year differences in carbon exchange at this site were small. In contrast, the modeled annual sums of CO2 exchange differed by a factor of two depending on wind direction. This indicated that the modeled time series captured the spatial variability in both the biogenic and anthropogenic CO2 sources and sinks in a reproducible way. The gap-filling approach developed here may also be useful for inhomogeneous sites other than urban areas, such as logged forests or ecosystems under disturbance from fire or pests.

  2. Infilling of the Hudson River Estuary During the Late Holocene (3000ka to Present): Implications for Estuarine Stratigraphic Models

    NASA Astrophysics Data System (ADS)

    McHugh, C. M.; Pekar, S. F.; Ryan, W. B.; Carbotte, S.; Bell, R.; Burckle, L.

    2002-12-01

    Estuaries are widely preserved in the geologic record and the estuarine fill, contained between non-marine sediment, provides an excellent temporal marker for continental margin studies. Estuarine stratigraphic models have provided a framework within which to interpret the estuarine fill. However, estuarine systems differ greatly in the shape of their valleys, the tectonic boundaries they cross, and in sediment supply so that their position in the geologic record may be out of sequence with that predicted by the models. New insights into estuarine systems and models are provided by the Hudson River Estuary (HRE; New York State) based on >150 cores and grab sediment samples and acoustic images documenting in great detail how the HRE filled its earlier excavated valley during the latest Holocene (3ka to present). Radiocarbon and 137-Cs radioisotope ages, borehole, and core data document the sedimentation patterns of the estuary. Diatom assemblages provide estimates of the shallowing-upwards of the estuary as its basin filled with sediments. The three areas of the stratigraphic model present in the HRE, include zones formed within inner fluvial and outer marine areas, (containing coarse-grained, sands and gravels), and a central area (containing fine-grained, silts and clays), that are nearly filled with little room for sediments to accumulate at or near sea-level. This has resulted in sedimentary bypass for almost the entire length the estuary. South of Kingston, fine-grained sediments have ceased accumulating when the bottom approaches wave base. Upstream from Kingston, final filling occurs as sediments fill in the remaining accommodation, forming islands. This should result in the export of sediment to the coastal zone. Instead, localized areas of sediment trapping still exist, which are related to the Hudson Valley Highlands and to the location of the estuarine turbidity maximum that hold large volumes of sediment. As a result minor volumes of Recent sediment are accumulating in coastal bays (Sandy Hook, New Jersey) and on the inner shelf, and sediment export to the Hudson Shelf Valley on the mid-shelf is nearly non-existent, with sediments dated at 14ka from 14-C on the outer shelf. Additionally, anthropogenic activities (construction of bridges and dredging) alter sedimentation patterns in the estuary leading to continued localized erosion and deposition. For example, sediment export onto the shelf is taking place, not by natural processes but by dredging. The variability documented for the HRE indicates that although estuarine and stratigraphic models provide a framework for continental margin studies, the models need to be interpreted, taking into consideration these factors.

  3. DOSIMETRIC response of a REM-500 in low energy neutron fields typical of nuclear power plants.

    PubMed

    Aslam; Matysiak, W; Atanackovic, J; Waker, A J

    2012-06-01

    This study investigates the response of a REM-500 to assess neutron quality factor and dose equivalent in low energy neutron fields, which are commonly encountered in the workplace environment of nuclear power stations. The McMaster University 3 MV Van de Graaff accelerator facility was used to measure the response of the instrument in monoenergetic neutron fields in the energy range 51 to 727 keV by bombarding a thin LiF target with 1.93-2.50 MeV protons. The energy distribution of the neutron fields produced in the facility was measured by a (3)He filled gas ionization chamber. The MCA mode of the REM-500 instrument was used to collect lineal energy distributions at varying neutron energies and to calculate the frequency and dose-mean lineal energies. The effective quality factor, Q-, was also calculated using the values of Q(y)listed in the REM-500 operation manual and compared with those of ICRP 60. The authors observed a continuously increasing trend in y - F, y-D, and Q-with an increase in neutron energy. It is interesting to note that standard tissue equivalent proportional counters (TEPCs) filled with tissue equivalent(TE) gas give rise to a similar trend for these microdosimetric quantities of interest in the same energy range; however, the averages calculated in this study are larger by about 15%compared to a TEPC filled with propane-based TE gas probably because of the larger stopping power of protons in propane compared to TE gas. These somewhat larger event sizes did not result in any significant increase in the Q-compared to those obtained from a TEPC filled with TE gas and were found to be in good agreement with other measurements reported earlier at corresponding neutron energies. The instrument quality factor response, R(Q), defined as the ratio of measured quality factor to the calculated quality factor in an ICRU tissue sphere,was found to vary with neutron energy. The instrument response,R(Q), was ~0.6 at 727 keV, which deteriorates further to ~0.3 at 51 keV neutron energy. The counter response based on ICRP 60 was comparable to an ideal response of 1.0 above 600 keV, which dropped to ~0.8 at 159 keV and ~0.4 at 51 keV neutron energy. The decline in counter quality factor response based on ICRP 60 was found to be much steeper than that when using the instrument’s built-in function for quality factor.The REM-500 measures a dose equivalent at 727 keV,which is 60% of the ambient dose equivalent, 40% at 159 keV,and 15% at 51 keV. Two algorithms have been developed, one for real time measurement and another to be used post measurement,and their efficacy is demonstrated in determining the quality factor and the ambient dose equivalent in low energy neutron fields, which are typical for the workplace environment in CANDU® nuclear power generating stations.

  4. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caër, Charles; Le Roux, Xavier; Cassan, Eric, E-mail: eric.cassan@u-psud.fr

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics.

  5. Is motivation for marathon a protective factor or a risk factor of injury?

    PubMed

    Chalabaev, A; Radel, R; Ben Mahmoud, I; Massiera, B; Deroche, T; d'Arripe-Longueville, F

    2017-12-01

    This research investigated whether and how self-determined motivation predicts perceived susceptibility to injury during competition (marathon). Two correlational studies including 378 (Study 1) and 339 (Study 2) marathon runners were conducted. Participants filled out a questionnaire the day before the race measuring self-determined motivation, perceived susceptibilities to marathon-related injury and to keep running through pain, and control variables. Study 1 showed that self-determined motivation was negatively related to perceived susceptibility to marathon-related injury. Study 2 replicated this finding and showed that this relationship was partially mediated by perceived susceptibility to keep running through pain during the race. Moreover, results indicated that the predictive role of self-determination was mostly driven by controlled forms of motivation, and more particularly external regulation. These results suggest that self-determined motivation for sport is a protective factor of injury. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Optimisation of a two-liquid component pre-filled acrylic bone cement system: a design of experiments approach to optimise cement final properties.

    PubMed

    Clements, James; Walker, Gavin; Pentlavalli, Sreekanth; Dunne, Nicholas

    2014-10-01

    The initial composition of acrylic bone cement along with the mixing and delivery technique used can influence its final properties and therefore its clinical success in vivo. The polymerisation of acrylic bone cement is complex with a number of processes happening simultaneously. Acrylic bone cement mixing and delivery systems have undergone several design changes in their advancement, although the cement constituents themselves have remained unchanged since they were first used. This study was conducted to determine the factors that had the greatest effect on the final properties of acrylic bone cement using a pre-filled bone cement mixing and delivery system. A design of experiments (DoE) approach was used to determine the impact of the factors associated with this mixing and delivery method on the final properties of the cement produced. The DoE illustrated that all factors present within this study had a significant impact on the final properties of the cement. An optimum cement composition was hypothesised and tested. This optimum recipe produced cement with final mechanical and thermal properties within the clinical guidelines and stated by ISO 5833 (International Standard Organisation (ISO), International standard 5833: implants for surgery-acrylic resin cements, 2002), however the low setting times observed would not be clinically viable and could result in complications during the surgical technique. As a result further development would be required to improve the setting time of the cement in order for it to be deemed suitable for use in total joint replacement surgery.

  7. Highly reliable high-power AlGaAs/GaAs 808 nm diode laser bars

    NASA Astrophysics Data System (ADS)

    Hülsewede, R.; Schulze, H.; Sebastian, J.; Schröder, D.; Meusel, J.; Hennig, P.

    2007-02-01

    There are strong demands at the market to increase power and reliability for 808 nm diode laser bars. Responding to this JENOPTIK Diode Lab GmbH developed high performance 808 nm diode laser bars in the AlGaAs/GaAs material system with special emphasis to high power operation and long term stability. Optimization of the epitaxy structure and improvements in the diode laser bar design results in very high slope efficiency of >1.2 W/A, low threshold current and small beam divergence in slow axis direction. Including low serial resistance the overall wall plug efficiency is up to 65% for our 20%, 30% and 50% filling factor 10 mm diode laser bars. With the JENOPTIK Diode Lab cleaving and coating technique the maximum output power is 205 W in CW operation and 377 W in QCW operation (200 μs, 2% duty cycle) for bars with 50% filling factor. These bars mounted on micro channel cooled package are showing a very high reliability of >15.000 h. Mounted on conductive cooled package high power operation at 100 W is demonstrated for more than 5000h.

  8. Multijunction InGaAs thermophotovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1998-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the radiator for recuperation, thereby providing for high system efficiencies. MIMs were fabricated with an active area of 0.9 {times} 1 cm, and with 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were fabricated, with bandgaps of 0.74 and 0.55more » eV, respectively. The 0.74 eV MIMs demonstrated an open-circuit voltage (Voc) of 6.16 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 0.84 A/cm{sup 2}, under flashlamp testing. The 0.55 eV MIMs demonstrated a Voc of 4.85 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. Electrical performance results for these MIMs are presented.« less

  9. Understanding the Photovoltaic Performance of Perovskite-Spirobifluorene Solar Cells.

    PubMed

    Song, Zhen; Liu, Jiang; Wang, Gang; Zuo, Wentao; Liao, Cheng; Mei, Jun

    2017-11-03

    Lead halide perovskite solar cells with remarkable power conversion efficiency have attracted much attention in recent years. However, there still exist many problems with their use that are not completely understood, and further studies are needed. Herein, the hole-transport layer dependence of the photovoltaic performance of perovskite solar cells is investigated in detail. It is found that devices freshly prepared using pristine 2,2',7,7'-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) and Li-doped spiro-OMeTAD as hole-transport layers exhibit S-shaped current density-voltage curves with poor fill factors. The devices show progressively improved fill factors and efficiencies upon exposure to air, which is attributed to air-induced conductivity improvement in the spiro-OMeTAD layer. After introducing a cobalt salt dopant (FK209) into the spiro-OMeTAD layer, the corresponding devices show remarkable performance without the need of air exposure. These results confirm that the dopant not only increases the conductivity of spiro-OMeTAD layer, but also tunes the surface potential, which helps to improve charge transport and reduce the recombination loss. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Competing ν = 5/2 fractional quantum Hall states in confined geometry.

    PubMed

    Fu, Hailong; Wang, Pengjie; Shan, Pujia; Xiong, Lin; Pfeiffer, Loren N; West, Ken; Kastner, Marc A; Lin, Xi

    2016-11-01

    Some theories predict that the filling factor 5/2 fractional quantum Hall state can exhibit non-Abelian statistics, which makes it a candidate for fault-tolerant topological quantum computation. Although the non-Abelian Pfaffian state and its particle-hole conjugate, the anti-Pfaffian state, are the most plausible wave functions for the 5/2 state, there are a number of alternatives with either Abelian or non-Abelian statistics. Recent experiments suggest that the tunneling exponents are more consistent with an Abelian state rather than a non-Abelian state. Here, we present edge-current-tunneling experiments in geometrically confined quantum point contacts, which indicate that Abelian and non-Abelian states compete at filling factor 5/2. Our results are consistent with a transition from an Abelian state to a non-Abelian state in a single quantum point contact when the confinement is tuned. Our observation suggests that there is an intrinsic non-Abelian 5/2 ground state but that the appropriate confinement is necessary to maintain it. This observation is important not only for understanding the physics of the 5/2 state but also for the design of future topological quantum computation devices.

  11. Enhanced photovoltaic performance of dye-sensitized solar cells based on nickel oxide supported on nitrogen-doped graphene nanocomposite as a photoanode.

    PubMed

    Ranganathan, Palraj; Sasikumar, Ragu; Chen, Shen-Ming; Rwei, Syang-Peng; Sireesha, Pedaballi

    2017-10-15

    We applied the nitrogen-doped graphene@nickel oxide (NGE/NiO) nanocomposite doped TiO 2 as a photo-anode for dye-sensitized solar cells (DSSCs) on fluorine-doped tin oxide (FTO) substrates by screen printing method. Power conversion efficiency (PCE) of 9.75% was achieved for this DSSCs device, which is greater than that of DSSCs devices using GO/TiO 2 , and NiO/TiO 2 based photo-anodes (PCE=8.55, and 9.11%). Also, the fill factor (FF) of the DSSCs devices using the NGE/NiO/TiO 2 nanocomposite photo-anode was better than that of other photo-anodes. The NGE/NiO/TiO 2 short-circuit photocurrent density (J sc ) of 19.04mAcm -2 , open circuit voltage (V oc ) of 0.76V, fill factor (FF) of 0.67 and dye absorption rate 0.21×10 -6 molcm -2 . The obtained results suggest that as-prepared NGE/NiO/TiO 2 nanocomposite is suitable photo-anode for DSSCs application. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Optical bistability and optical response of an infrared quantum dot hybridized to VO2 nanoparticle

    NASA Astrophysics Data System (ADS)

    Zamani, Naser; Hatef, Ali; Nadgaran, Hamid; Keshavarz, Alireza

    2017-08-01

    In this work, we theoretically investigate optical bistability and optical response of a hybrid system consisting of semiconductor quantum dot (SQD) coupled with a vanadium dioxide nanoparticle (VO2NP) in the infrared (IR) regime. The VO2 material exists in semiconductor and metallic phases below and above the critical temperature, respectively where the particle optical properties dramatically change during this phase transition. In our calculations a filling fraction factor controls the VO2NP phase transition when the hybrid system interacts with a laser field. We demonstrate that the switch-up threshold for optical bistability is strongly controlled by filling fraction without changing the structure of the hybrid system. Also, it is shown that, the threshold of optical bistability increases when the VO2NP phases changes from semiconductor to metallic phase. The presented results have the potential to be applied in designing optical switching and optical storage.

  13. Physical Parameters of Components in Close Binary Systems. V

    NASA Astrophysics Data System (ADS)

    Zola, S.; Kreiner, J. M.; Zakrzewski, B.; Kjurkchieva, D. P.; Marchev, D. V.; Baran, A.; Rucinski, S. M.; Ogloza, W.; Siwak, M.; Koziel, D.; Drozdz, M.; Pokrzywka, B.

    2005-12-01

    The paper presents combined spectroscopic and photometric orbital solutions for ten close binary systems: CN And, V776 Cas, FU Dra, UV Lyn, BB Peg, V592 Per, OU Ser, EQ Tau, HN UMa and HT Vir. The photometric data consist of new multicolor light curves, while the spectroscopy has been recently obtained within the radial velocity program at the David Dunlap Observatory (DDO). Absolute parameters of the components for these binary systems are derived. Our results confirm that CN And is not a contact system. Its configuration is semi-detached with the secondary component filling its Roche lobe. The configuration of nine other systems is contact. Three systems (V776 Cas, V592 Per and OU Ser) have high (44-77%) and six (FU Dra, UV Lyn, BB Peg, EQ Tau, HN UMa and HT Vir) low or intermediate (8-32%) fill-out factors. The absolute physical parameters are derived.

  14. Mirror Lake: Past, present and future: Chapter 6

    USGS Publications Warehouse

    Likens, Gene E.; LaBaugh, James W.; Winter, Thomas C.; Likens, Gene E.

    2009-01-01

    This chapter discusses the hydrological and biogeochemical characteristics of Mirror Lake and the changes that resulted from air-land-water interactions and human activities. Since the formation of Mirror Lake, both the watershed and the lake have undergone many changes, such as vegetation development and basin filling. These changes are ongoing, and Mirror Lake is continuing along an aging pathway and ultimately, it will fill with sediment and no longer be a lake. The chapter also identifies major factors that affected the hydrology and biogeochemistry of Mirror Lake: acid rain, atmospheric deposition of lead and other heavy metals, increased human settlement around the lake, the construction of an interstate highway through the watershed of the Northeast Tributary, the construction of an access road through the West and Northeast watersheds to the lake, and climate change. The chapter also offers future recommendations for management and protection of Mirror Lake.

  15. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    NASA Astrophysics Data System (ADS)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  16. Psychopharmacologic Services for Homeless Veterans: Comparing Psychotropic Prescription Fills Among Homeless and Non-Homeless Veterans with Serious Mental Illness.

    PubMed

    Hermes, Eric; Rosenheck, Robert

    2016-02-01

    Using national Veterans Health Administration (VHA) administrative data, this study evaluated differences in psychotropic medication use between homeless and non-homeless adults with serious mental illness (SMI) who used VHA services in 2010. The adjusted mean number of psychotropic prescription fills associated with homeless individuals were identified using regression models adjusted for socio-demographics, diagnoses, and use of health services. Of the 876,989 individuals with SMI using VHA services, 7.2 % were homeless at some time during 2010. In bivariate analysis, homeless individuals filled more psychotropic medication prescriptions compared with non-homeless individuals. However, after adjusting for potentially confounding variables, homeless individuals were found to have filled 16.2 % fewer prescriptions than non-homeless individuals when all psychotropics were analyzed together (F = 6947.1, p < .001) and for most individual classes of psychotropics. Greater use of residential/inpatient mental health services by the homeless was the most important single factor associated with filling more psychotropic prescriptions than non-homeless individuals.

  17. Phonon conductivity metrics for compact, linked-cage, layered, and filled-cage crystals, using ab initio, molecular dynamics and Boltzmann transport treatments

    NASA Astrophysics Data System (ADS)

    Huang, Baoling

    Atomic-level thermal transport in compact, layered, linked-cage, and filled-cage crystals is investigated using a multiscale approach, combines the ab initio calculation, molecular dynamics (MD), Boltzman transport equations (BTE), and the kinetic theory. These materials are of great interests in energy storage, transport, and conversion. The structural metrics of phonon conductivity of these crystals are then explored. An atomic structure-based model is developed for the understanding the relationship between the atomic structure and phonon transport in compact crystals at high temperatures. The elemental electronegativity, element mass, and the arrangement of bonds are found to be the dominant factors to determine the phonon conductivity. As an example of linked-cage crystals, the phonon conductivity of MOF-5 is investigated over a wide temperature range using MD simulations and the Green-Kubo method. The temperature dependence of the thermal conductivity of MOF-5 is found to be weak at high temperatures, which results from the suppression of the long-range acoustic phonon transport by the special linked-cage structure. The mean free path of the majority of phonons in MOF-5 is limited by the cage size. The phonon and electron transport in layered Bi2Te3 structure are investigated using the first-principle calculations, MD, and BTE. Strong anisotropy has been found for both phonon and electron transport due to the special layered structure. The long-range acoustic phonons dominate the phonon transport with a strong temperature and direction dependence. Temperature dependence of the energy gap and appropriate modelling of relaxation times are found to be important for the prediction of the electrical transport in the intrinsic regime. The scattering by the acoustic, optical, and polar-optical phonons are found to dominate the electron transport. For filled skutterudite structure, strong coupling between the filler and the host is found, which contradicts the traditional "rattler" concept. The interatomic bonds of the host are significantly affected by the filler. It is shown that without changing the interatomic potentials for the host, the filler itself can not result in a lower phonon conductivity for the filled structure. It is also found that the behavior of partially-filled skutterudites can be better understood by treating the partially-filled structure as a solid solution of the empty structure and fully-filled structure. The combination of theoretical-analysis methods used in this work, provides for comparative insight into the role of atomic structure on the phonon transport in a variety of crystals used in energy storage, transport, and conversion.

  18. Resin Flow Behavior Simulation of Grooved Foam Sandwich Composites with the Vacuum Assisted Resin Infusion (VARI) Molding Process

    PubMed Central

    Zhao, Chenhui; Zhang, Guangcheng; Wu, Yibo

    2012-01-01

    The resin flow behavior in the vacuum assisted resin infusion molding process (VARI) of foam sandwich composites was studied by both visualization flow experiments and computer simulation. Both experimental and simulation results show that: the distribution medium (DM) leads to a shorter molding filling time in grooved foam sandwich composites via the VARI process, and the mold filling time is linearly reduced with the increase of the ratio of DM/Preform. Patterns of the resin sources have a significant influence on the resin filling time. The filling time of center source is shorter than that of edge pattern. Point pattern results in longer filling time than of linear source. Short edge/center patterns need a longer time to fill the mould compared with Long edge/center sources.

  19. Broadband perfect infrared absorption by tuning epsilon-near-zero and epsilon-near-pole resonances of multilayer ITO nanowires.

    PubMed

    Zhou, Kun; Cheng, Qiang; Song, Jinlin; Lu, Lu; Jia, Zhihao; Li, Junwei

    2018-01-01

    We numerically investigate the broadband perfect infrared absorption by tuning epsilon-near-zero (ENZ) and epsilon-near-pole (ENP) resonances of multilayer indium tin oxide nanowires (ITO NWs). The monolayer ITO NWs array shows intensive absorption at ENZ and ENP wavelengths for p polarization, while only at the ENP wavelength for s polarization. Moreover, the ENP resonances are almost omnidirectional and the ENZ resonances are angularly dependent. Therefore, the absorption bandwidth is broader for p polarization than that for s polarization when polarized waves are incident obliquely. The ENZ resonances can be tuned by altering the doping concentration and volume filling factor of ITO NWs. However, the ENP resonances only can be tuned by changing the doping concentration of ITO NWs, and volume filling factor impacts little on the ENP resonances. Based on the strong absorption properties of each layer at their own ENP and ENZ resonances, the tuned absorption of the bilayer ITO NWs with the different doping concentrations can be broader and stronger. Furthermore, multilayer ITO NWs can achieve broadband perfect absorption by controlling the doping concentration, volume filling factor, and length of the NWs in each layer. This study has the potential to apply to applications requiring efficient absorption and energy conversion.

  20. The dream in midlife women: its impact on mental health.

    PubMed

    Drebing, C E; Gooden, W E; Drebing, S M; Van de Kemp, H; Malony, H N

    1995-01-01

    The current study examines the Dream in midlife women and its impact on mental health functioning. Ninety midlife women filled out a questionnaire examining Dream Status, Dream Success, Dream Content, and Dream Support, as well as mental health factors of depression, anxiety, and purpose-in-life. Neither early nor current Dream Status was not found to be significantly related to mental health factors. Partial support was found for the hypothesis that Dream Success is related to mental health factors. Early Dream Content related to career and current Dream Content related to both marriage/intimacy and career are related to positive performance on mental health factors. Dream Support is positively related both to Dream Success and to mental health factors while resistance to the Dream is not. The results are discussed in light of gender differences in the developmental function and impact of the Dream.

  1. Virtual reality 3D headset based on DMD light modulators

    NASA Astrophysics Data System (ADS)

    Bernacki, Bruce E.; Evans, Allan; Tang, Edward

    2014-06-01

    We present the design of an immersion-type 3D headset suitable for virtual reality applications based upon digital micromirror devices (DMD). Current methods for presenting information for virtual reality are focused on either polarizationbased modulators such as liquid crystal on silicon (LCoS) devices, or miniature LCD or LED displays often using lenses to place the image at infinity. LCoS modulators are an area of active research and development, and reduce the amount of viewing light by 50% due to the use of polarization. Viewable LCD or LED screens may suffer low resolution, cause eye fatigue, and exhibit a "screen door" or pixelation effect due to the low pixel fill factor. Our approach leverages a mature technology based on silicon micro mirrors delivering 720p resolution displays in a small form-factor with high fill factor. Supporting chip sets allow rapid integration of these devices into wearable displays with high-definition resolution and low power consumption, and many of the design methods developed for DMD projector applications can be adapted to display use. Potential applications include night driving with natural depth perception, piloting of UAVs, fusion of multiple sensors for pilots, training, vision diagnostics and consumer gaming. Our design concept is described in which light from the DMD is imaged to infinity and the user's own eye lens forms a real image on the user's retina resulting in a virtual retinal display.

  2. Identifying and prioritizing industry-level competitiveness factors: evidence from pharmaceutical market

    PubMed Central

    2014-01-01

    Background Pharmaceutical industry is knowledge-intensive and highly globalized, in both developed and developing countries. On the other hand, if companies want to survive, they should be able to compete well in both domestic and international markets. The main purpose of this paper is therefore to develop and prioritize key factors affecting companies’ competitiveness in pharmaceutical industry. Based on an extensive literature review, a valid and reliable questionnaire was designed, which was later filled up by participants from the industry. To prioritize the key factors, we used the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). Results The results revealed that human capital and macro-level policies were two key factors placed at the highest rank in respect of their effects on the competitiveness considering the industry-level in pharmaceutical area. Conclusion This study provides fundamental evidence for policymakers and managers in pharma context to enable them formulating better polices to be proactively competitive and responsive to the markets’ needs. PMID:24708770

  3. Low irradiance losses of photovoltaic modules

    DOE PAGES

    Mavromatakis, F.; Vignola, F.; Marion, Bill

    2017-09-01

    Here, the efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjustedmore » for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.« less

  4. Bouncing behavior of microscopic dust aggregates

    NASA Astrophysics Data System (ADS)

    Seizinger, A.; Kley, W.

    2013-03-01

    Context. Bouncing collisions of dust aggregates within the protoplanetary disk may have a significant impact on the growth process of planetesimals. Yet, the conditions that result in bouncing are not very well understood. Existing simulations studying the bouncing behavior used aggregates with an artificial, very regular internal structure. Aims: Here, we study the bouncing behavior of sub-mm dust aggregates that are constructed applying different sample preparation methods. We analyze how the internal structure of the aggregate alters the collisional outcome and we determine the influence of aggregate size, porosity, collision velocity, and impact parameter. Methods: We use molecular dynamics simulations where the individual aggregates are treated as spheres that are made up of several hundred thousand individual monomers. The simulations are run on graphic cards (GPUs). Results: Statistical bulk properties and thus bouncing behavior of sub-mm dust aggregates depend heavily on the preparation method. In particular, there is no unique relation between the average volume filling factor and the coordination number of the aggregate. Realistic aggregates bounce only if their volume filling factor exceeds 0.5 and collision velocities are below 0.1 ms-1. Conclusions: For dust particles in the protoplanetary nebula we suggest that the bouncing barrier may not be such a strong handicap in the growth phase of dust agglomerates, at least in the size range of ≈100 μm.

  5. Low irradiance losses of photovoltaic modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavromatakis, F.; Vignola, F.; Marion, Bill

    Here, the efficiency of a photovoltaic cell/module changes, as the intensity of incident irradiance decreases, in a non linear way and these changes are referred to as low irradiance losses. In this study data from field experiments, developed and organized by the National Renewable Energy Laboratory, are used to evaluate the low irradiance losses for a variety of module technologies. The results demonstrate that the ratio of the normalized power divided by the normalized short circuit current provide a good measure of the module's low light efficiency losses after both the maximum power and the short circuit current are adjustedmore » for temperature effects. The normalized efficiencies determined through the field data, spanning for several months, are in good agreement with those determined under controlled conditions in a solar simulator. An analytical relation for the normalized efficiency is proposed based on existing formulation for the fill factor. Despite the approximate nature of the fill factor relation, this approach produces reliable results. It will be shown that a normalized efficiency curve can be used to extract information on the series and shunt resistances of the PV module and that the shunt resistance as a function of solar irradiance can be studied. Alternately, this formulation can be used to study the low irradiance losses of a module when the internal resistances are known.« less

  6. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momblona, C.; Malinkiewicz, O.; Soriano, A.

    2014-08-01

    Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less

  7. Investigation of Flash Fill{reg_sign} as a thermal backfill material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, P.H.; Charlton, C.B.; Frishette, C.W.

    1995-09-01

    Flash Fill{reg_sign} was created as a fast-setting, flowable backfill material made entirely from coal combustion by-products and water. Its quick-setting, self-leveling, self-compacting characteristics makes trench road repairs faster, easier, and more economical. Other uses include building foundations, fill around pipes, gas lines, and manholes, and replacement of weak subgrade beneath rooters. Flash Fill can be hand-excavated without the use of power assisted tools or machinery. To enhance thermal resistivity, the original Flash Fill mix was modified to include concrete sand. This resulted in a new Flash Fill, designated FSAND, with all of the aforementioned desirable characteristics of Flash Fill andmore » a thermal resistivity of approximately 50{degree} C-cm/watt. Thermal resistivity tests using conventional laboratory thermal probes, high-current thermal tests, and moisture migration tests have been performed to determine the properties of FSAND. As a result of these tests, FSAND has been approved for use as power cable thermal backfill on all AEP System distribution projects.« less

  8. Theory of g-factor enhancement in narrow-gap quantum well heterostructures.

    PubMed

    Krishtopenko, S S; Gavrilenko, V I; Goiran, M

    2011-09-28

    We report on the study of the exchange enhancement of the g-factor in the two-dimensional (2D) electron gas in n-type narrow-gap semiconductor heterostructures. Our approach is based on the eight-band k⋅p Hamiltonian and takes into account the band nonparabolicity, the lattice deformation, the spin-orbit coupling and the Landau level broadening in the δ-correlated random potential model. Using the 'screened' Hartree-Fock approximation we demonstrate that the exchange g-factor enhancement not only shows maxima at odd values of Landau level filling factors but, due to the conduction band nonparabolicity, persists at even filling factor values as well. The magnitude of the exchange enhancement, the amplitude and the shape of the g-factor oscillations are determined by both the screening of the electron-electron interaction and the Landau level width. The 'enhanced' g-factor values calculated for the 2D electron gas in InAs/AlSb quantum well heterostructures are compared with our earlier experimental data and with those obtained by Mendez et al (1993 Phys. Rev. B 47 13937) in magnetic fields up to 30 T.

  9. Benzothiadiazole-based polymer for single and double junction solar cells with high open circuit voltage.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan C; Chen, Qiliang; Dubey, Ashish; Mohammad, Lal; Adhikari, Nirmal; Mitul, Abu Farzan; Qiao, Qiquan

    2014-06-21

    Single and double junction solar cells with high open circuit voltage were fabricated using poly{thiophene-2,5-diyl-alt-[5,6-bis(dodecyloxy)benzo[c][1,2,5]thiadiazole]-4,7-diyl} (PBT-T1) blended with fullerene derivatives in different weight ratios. The role of fullerene loading on structural and morphological changes was investigated using atomic force microscopy (AFM) and X-ray diffraction (XRD). The XRD and AFM measurements showed that a higher fullerene mixing ratio led to breaking of inter-chain packing and hence resulted in smaller disordered polymer domains. When the PBT-T1:PC60BM weight ratio was 1 : 1, the polymer retained its structural order; however, large aggregated domains formed, leading to poor device performance due to low fill factor and short circuit current density. When the ratio was increased to 1 : 2 and then 1 : 3, smaller amorphous domains were observed, which improved photovoltaic performance. The 1 : 2 blending ratio was optimal due to adequate charge transport pathways giving rise to moderate short circuit current density and fill factor. Adding 1,8-diiodooctane (DIO) additive into the 1 : 2 blend films further improved both the short circuit current density and fill factor, leading to an increased efficiency to 4.5% with PC60BM and 5.65% with PC70BM. These single junction solar cells exhibited a high open circuit voltage at ∼ 0.9 V. Photo-charge extraction by linearly increasing voltage (Photo-CELIV) measurements showed the highest charge carrier mobility in the 1 : 2 film among the three ratios, which was further enhanced by introducing the DIO. The Photo-CELIV measurements with varying delay times showed significantly higher extracted charge carrier density for cells processed with DIO. Tandem devices using P3HT:IC60BA as bottom cell and PBT-T1:PC60BM as top cell exhibited a high open circuit voltage of 1.62 V with 5.2% power conversion efficiency.

  10. Measuring Magnetic Oscillations in the Solar Photosphere: Coordinated Observations with MDI, ASP and MWO

    NASA Astrophysics Data System (ADS)

    Norton, A. A.; Ulrich, R. K.

    2000-03-01

    A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.

  11. Nonpolar p-GaN/n-Si heterojunction diode characteristics: a comparison between ensemble and single nanowire devices

    NASA Astrophysics Data System (ADS)

    Patsha, Avinash; Pandian, Ramanathaswamy; Dhara, Sandip; Tyagi, A. K.

    2015-10-01

    The electrical and photodiode characteristics of ensemble and single p-GaN nanowire and n-Si heterojunction devices were studied. Ideality factor of the single nanowire p-GaN/n-Si device was found to be about three times lower compared to that of the ensemble nanowire device. Apart from the deep-level traps in p-GaN nanowires, defect states due to inhomogeneity in Mg dopants in the ensemble nanowire device are attributed to the origin of the high ideality factor. Photovoltaic mode of the ensemble nanowire device showed an improvement in the fill-factors up to 60% over the single nanowire device with fill-factors up to 30%. Responsivity of the single nanowire device in the photoconducting mode was found to be enhanced by five orders, at 470 nm. The enhanced photoresponse of the single nanowire device also confirms the photoconduction due to defect states in p-GaN nanowires.

  12. Left ventricular diastolic filling with an implantable ventricular assist device: beat to beat variability with overall improvement

    NASA Technical Reports Server (NTRS)

    Nakatani, S.; Thomas, J. D.; Vandervoort, P. M.; Zhou, J.; Greenberg, N. L.; Savage, R. M.; McCarthy, P. M.

    1997-01-01

    OBJECTIVES: We studied the effects of left ventricular (LV) unloading by an implantable ventricular assist device on LV diastolic filling. BACKGROUND: Although many investigators have reported reliable systemic and peripheral circulatory support with implantable LV assist devices, little is known about their effect on cardiac performance. METHODS: Peak velocities of early diastolic filling, late diastolic filling, late to early filling ratio, deceleration time of early filling, diastolic filling period and atrial filling fraction were measured by intraoperative transesophageal Doppler echocardiography before and after insertion of an LV assist device in eight patients. A numerical model was developed to simulate this situation. RESULTS: Before device insertion, all patients showed either a restrictive or a monophasic transmitral flow pattern. After device insertion, transmitral flow showed rapid beat to beat variation in each patient, from abnormal relaxation to restrictive patterns. However, when the average values obtained from 10 consecutive beats were considered, overall filling was significantly normalized from baseline, with early filling velocity falling from 87 +/- 31 to 64 +/- 26 cm/s (p < 0.01) and late filling velocity rising from 8 +/- 11 to 32 +/- 23 cm/s (p < 0.05), resulting in an increase in the late to early filling ratio from 0.13 +/- 0.18 to 0.59 +/- 0.38 (p < 0.01) and a rise in the atrial filling fraction from 8 +/- 10% to 26 +/- 17% (p < 0.01). The deceleration time (from 112 +/- 40 to 160 +/- 44 ms, p < 0.05) and the filling period corrected by the RR interval (from 39 +/- 8% to 54 +/- 10%, p < 0.005) were also significantly prolonged. In the computer model, asynchronous LV assistance produced significant beat to beat variation in filling indexes, but overall a normalization of deceleration time as well as other variables. CONCLUSIONS: With LV assistance, transmitral flow showed rapidly varying patterns beat by beat in each patient, but overall diastolic filling tended to normalize with an increase of atrial contribution to the filling. Because of the variable nature of the transmitral flow pattern with the assist device, the timing of the device cycle must be considered when inferring diastolic function from transmitral flow pattern.

  13. Changes in Rates of Shore Retreat, Lake Michigan, 1967-1976.

    DTIC Science & Technology

    1979-12-01

    D.C., Apr. 1946. BERG, D.W., "Factors Affecting Beach Nourishment at Presque Isle Peninsula, Erie , Pennsylvania ," Proceedings of the Ninth Conference on...concern the behavior of beach fill at Presque Isle Peninsula on Lake Erie . Guidelines for moni- toring the effect of shore protection works in the Great...NTIS AD 631 520). BERG, D.W., and DUANE, D.B., "Effects of Particle Size and Distribution on Stability of Artificially Filled Beach, Presque Isle

  14. [Therapeutic effect of double fill nine tastes soup in treating recurrent respiratory infection (RRI) and change of immune function in children].

    PubMed

    Wang, Youcheng; Zhang, Lijuan; Hu, Guohua; Wang, Menghe; Tang, Xiaoyuan; Guo, Hui; Shi, Yimei; Chen, Shufang; Shi, Changchun

    2012-04-01

    To investigate the therapeutic effect of double fill nine tastes soup in treating children recurrent respiratory infection (RRTI) and the change of immune function. 77 RRTI patients were randomly selected into observation and control groups. The observation group was treated with Chinese medicine- double fill nine tastes soup,water frying points 2 times oral. The control was treated with transfer factor oral liquid,every 10 mL,2 times daily oral. Treatment periods were both two months. IgA, IgG, IgM and IL-12, TNF-alpha, INF-gamma were detected before and after treatment to assess the clinical effects and the changes of immune factors, meanwhile, a health group was established. Before treatment, compared with the health group, the serum IgA, IgG, IgM, IgE, IL-12, TNF-alpha, IFN-gamma in both groups were significantly different (P < 0.01). After treatment, the ratio of IgA, IgG, Ig M, IL-12, TNF-alpha, IFN-gamma in two groups were significantly different (P < 0.01). Compared with the recurrence rate and clinical effects, the observation group was better than control, and the differences were significant (P < 0.01). Double fill nine tastes soup has significant effects in treating recurrent respiratory infection (RRI) and enhance the immune function in children.

  15. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.

  16. Liquid-filled simplified hollow-core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Liu, Shengnan; Gao, Wei; Li, Hongwei; Dong, Yongkang; Zhang, Hongying

    2014-12-01

    We report on a novel type of liquid-filled simplified hollow-core photonic crystal fibers (HC-PCFs), and investigate their transmission properties with various filling liquids, including water, ethanol and FC-40. The loss and dispersion characterizations are calculated for different fiber parameters including strut thickness and core diameter. The results show that there are still low-loss windows existing for liquid-filled simplified HC-PCFs, and the low-loss windows and dispersions can be easily tailored by filling different liquids. Such liquid-filled simplified HC-PCFs open up many possibilities for nonlinear fiber optics, optical, biochemical and medical sensing.

  17. Stent-Assisted Coil Embolization of Vertebrobasilar Dissecting Aneurysms: Procedural Outcomes and Factors for Recanalization.

    PubMed

    Jeon, Jin Pyeong; Cho, Young Dae; Rhim, Jong Kook; Park, Jeong Jin; Cho, Won-Sang; Kang, Hyun-Seung; Kim, Jeong Eun; Hwang, Gyojun; Kwon, O-Ki; Han, Moon Hee

    2016-01-01

    Outcomes of stent-assisted coil embolization (SACE) have not been well established in the setting of vertebrobasilar dissecting aneurysms (VBDAs) due to the low percentage of cases that need treatment and the array of available therapeutic options. Herein, we presented clinical and radiographic results of SACE in patients with VBDAs. A total of 47 patients (M:F, 30:17; mean age ± SD, 53.7 ± 12.6 years), with a VBDA who underwent SACE between 2008 and 2014 at two institutions were evaluated retrospectively. Medical records and radiologic data were analyzed to assess the outcome of SACE procedures. Cox proportional hazards regression analysis was conducted to determine the factors that were associated with aneurysmal recanalization after SACE. Stent-assisted coil embolization technically succeeded in all patients. Three cerebellar infarctions occurred on postembolization day 1, week 2, and month 2, but no other procedure-related complications developed. Immediately following SACE, 25 aneurysms (53.2%) showed no contrast filling into the aneurysmal sac. During a mean follow-up of 20.2 months, 37 lesions (78.7%) appeared completely occluded, whereas 10 lesions showed recanalization, 5 of which required additional embolization. Overall recanalization rate was 12.64% per lesion-year, and mean postoperative time to recanalization was 18 months (range, 3-36 months). In multivariable analysis, major branch involvement (hazard ratio [HR]: 7.28; p = 0.013) and the presence of residual sac filling (HR: 8.49, p = 0.044) were identified as statistically significant independent predictors of recanalization. No bleeding was encountered in follow-up monitoring. Stent-assisted coil embolization appears feasible and safe for treatment of VBDAs. Long-term results were acceptable in a majority of patients studied, despite a relatively high rate of incomplete occlusion immediately after SACE. Major branch involvement and coiled aneurysms with residual sac filling may predispose to recanalization.

  18. Factors affecting placement of a child with intellectual disability.

    PubMed

    Kandel, Isack; Merrick, Joav

    2005-05-06

    Parents of disabled children often face the question whether or not to keep the child at home or to place them. The choice between the two alternatives resides with the parents and various factors influence their decision. Several researchers have identified these factors, which include child-related parameters, family and parental attitudes, the influence of the social environment, and the external assistance provided to the family. In a pilot study, we attempted to isolate the main factors involved in the parental decision either to keep the child at home or place the child by examining a sample comprised of 50 parents of children suffering severe intellectual disability studying in a special education school and 48 parents of adults with intellectual disability working in sheltered workshops. Each parent filled out a questionnaire used in a study in the United States and results of the research indicated parental-related factors as the dominant factors that delayed the placement of their child in residential care; guilt feelings were the main factor.

  19. A compact tritium enrichment unit for large sample volumes with automated re-filling and higher enrichment factor.

    PubMed

    Kumar, B; Han, L-F; Wassenaar, L I; Klaus, P M; Kainz, G G; Hillegonds, D; Brummer, D; Ahmad, M; Belachew, D L; Araguás, L; Aggarwal, P

    2016-12-01

    Tritium ( 3 H) in natural waters is a powerful tracer of hydrological processes, but its low concentrations require electrolytic enrichment before precise measurements can be made with a liquid scintillation counter. Here, we describe a newly developed, compact tritium enrichment unit which can be used to enrich up to 2L of a water sample. This allows a high enrichment factor (>100) for measuring low 3 H contents of <0.05TU. The TEU uses a small cell (250mL) with automated re-filling and a CO 2 bubbling technique to neutralize the high alkalinity of enriched samples. The enriched residual sample is retrieved from the cell under vacuum by cryogenic distillation at -20°C and the tritium enrichment factor for each sample is accurately determined by measuring pre- and post- enrichment 2 H concentrations with laser spectrometry. Copyright © 2016. Published by Elsevier Ltd.

  20. Factors associated with ureteral burn injury from an electrified guidewire.

    PubMed

    Capello, Seth A; Gordetsky, Jennifer; Erturk, Erdal; Yao, Jorge; Joseph, Jean V

    2008-06-01

    During ureteroscopic procedures, electrocautery is often utilized in the presence of an intra-ureteral guidewire. Inadvertent electrification of the guidewire may occur if the active electrode comes into contact with the guidewire, potentially resulting in a ureteral burn injury. This study investigates under what conditions electrification of a ureteral guidewire would result in ureteral burn injury. Porcine kidney/ureter units were tested in a saline bath using a guidewire within the ureter. The collecting system was filled with either saline or water and the guidewire was electrified with varying power and mode settings. The contact area between the wire and ureter was adjusted to 1/2 or 1/4 of the total ureteral length. The ureters were then inspected for evidence of burn injury microscopically by a pathologist in a blinded fashion. Ten kidney/ureter units were tested. Four units were filled with saline and none of these demonstrated any burn injury. Six kidney/ureter units were filled with water prior to electrification of the wire. Small amounts of burned tissue were noted in those with the full length of the ureter exposed. Moderate to severe burning was present in those with 1/2 of the ureter exposed. Ureters exposed to 120-W cutting current had more injury than those exposed to 80-W coagulation current. Inadvertent electrification of a ureteral guidewire does not necessarily result in ureteral burn injury. The presence and extent of ureteral injury depends primarily on the irrigating fluid used, as well as the amount of ureter exposed to the electrified guidewire.

  1. A novel model for through-silicon via (TSV) filling process simulation considering three additives and current density effect

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian

    2017-12-01

    Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.

  2. Improvement of Die Corner Filling in Box-shape Stepped Tubes Hydroforming

    NASA Astrophysics Data System (ADS)

    Hosseini-Farrash, S. H.; Elyasi, M.; Bakhshi-Jooybari, M.; Gorji, A.

    2011-01-01

    A new die design to improve the die corner filling in the hydroforming of square-sectional stepped tubes is presented. The proposed die-set contains two additional bushes, compared to the common tube hydroforming dies. First, the tube is placed into the die, filled with liquid, and sealed with the punches. Then, by increasing the internal pressure, the tube is bulged and contacts the die walls (bulging stage). By maintaining the internal pressure, the two upper and lower bushes move until the die cavity is filled completely (calibration stage). The proposed die was simulated and the results show that sharp corners of the part and relatively complete filling of the die cavity can be obtained by using this die set. In order to verify the results, some experiments have been carried out. The experimental results verified the results obtained from the simulations. The thickness distribution of the part is also investigated and it is shown that fairly uniform thickness distribution can be obtained by using the proposed die set.

  3. Large quantum rings in the ν > 1 quantum Hall regime.

    PubMed

    Räsänen, E; Aichinger, M

    2009-01-14

    We study computationally the ground-state properties of large quantum rings in the filling-factor ν>1 quantum Hall regime. We show that the arrangement of electrons into different Landau levels leads to clear signatures in the total energies as a function of the magnetic field. In this context, we discuss possible approximations for the filling factor ν in the system. We are able to characterize integer-ν states in quantum rings in an analogy with conventional quantum Hall droplets. We also find a partially spin-polarized state between ν = 2 and 3. Despite the specific topology of a quantum ring, this state is strikingly reminiscent of the recently found ν = 5/2 state in a quantum dot.

  4. Simple fabrication of closed-packed IR microlens arrays on silicon by femtosecond laser wet etching

    NASA Astrophysics Data System (ADS)

    Meng, Xiangwei; Chen, Feng; Yang, Qing; Bian, Hao; Du, Guangqing; Hou, Xun

    2015-10-01

    We demonstrate a simple route to fabricate closed-packed infrared (IR) silicon microlens arrays (MLAs) based on femtosecond laser irradiation assisted by wet etching method. The fabricated MLAs show high fill factor, smooth surface and good uniformity. They can be used as optical devices for IR applications. The exposure and etching parameters are optimized to obtain reproducible microlens with hexagonal and rectangular arrangements. The surface roughness of the concave MLAs is only 56 nm. This presented method is a maskless process and can flexibly change the size, shape and the fill factor of the MLAs by controlling the experimental parameters. The concave MLAs on silicon can work in IR region and can be used for IR sensors and imaging applications.

  5. Symmetry breaking in the zero-energy Landau level in bilayer graphene.

    PubMed

    Zhao, Y; Cadden-Zimansky, P; Jiang, Z; Kim, P

    2010-02-12

    The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high-field regime, the eightfold degeneracy in the zero-energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding to filling factors nu=0, 1, 2, and 3. Measurements of the activation energy gaps for the nu=2 and 3 filling factors in tilted magnetic fields exhibit no appreciable dependence on the in-plane magnetic field, suggesting that these Landau level splittings are independent of spin. In addition, measurements taken at the nu=0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.

  6. High external quantum efficiency and fill-factor InGaN/GaN heterojunction solar cells grown by NH3-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lang, J. R.; Neufeld, C. J.; Hurni, C. A.; Cruz, S. C.; Matioli, E.; Mishra, U. K.; Speck, J. S.

    2011-03-01

    High external quantum efficiency (EQE) p-i-n heterojunction solar cells grown by NH3-based molecular beam epitaxy are presented. EQE values including optical losses are greater than 50% with fill-factors over 72% when illuminated with a 1 sun AM0 spectrum. Optical absorption measurements in conjunction with EQE measurements indicate an internal quantum efficiency greater than 90% for the InGaN absorbing layer. By adjusting the thickness of the top p-type GaN window contact layer, it is shown that the short-wavelength (<365 nm) quantum efficiency is limited by the minority carrier diffusion length in highly Mg-doped p-GaN.

  7. Development of highly efficient laser bars emitting at around 1060 nm for medical applications

    NASA Astrophysics Data System (ADS)

    Pietrzak, Agnieszka; Zorn, Martin; Meusel, Jens; Huelsewede, Ralf; Sebastian, Juergen

    2018-02-01

    An overview is presented on the recent progress in the development of high power laser bars at wavelengths around 1060nm. The development is focused on highly efficient and reliable laser performance under pulsed operation for medical applications. The epitaxial structure and lateral layout of the laser bars were tailored to meet the application requirements. Reliable operation peak powers of 350W and 500W are demonstrated from laser bars with fill-factor FF=75% and resonator lengths 1.5mm and 2.0mm, respectively. Moreover, 60W at current 65A with lifetime <10.000h are presented. The power scaling with fill-factor enables a cost reduction ($/W) up to 35%.

  8. Charge tuning of nonresonant magnetoexciton phonon interactions in graphene.

    PubMed

    Rémi, Sebastian; Goldberg, Bennett B; Swan, Anna K

    2014-02-07

    Far from resonance, the coupling of the G-band phonon to magnetoexcitons in single layer graphene displays kinks and splittings versus filling factor that are well described by Pauli blocking and unblocking of inter- and intra-Landau level transitions. We explore the nonresonant electron-phonon coupling by high-magnetic field Raman scattering while electrostatic tuning of the carrier density controls the filling factor. We show qualitative and quantitative agreement between spectra and a linearized model of electron-phonon interactions in magnetic fields. The splitting is caused by dichroism of left- and right-handed circular polarized light due to lifting of the G-band phonon degeneracy, and the piecewise linear slopes are caused by the linear occupancy of sequential Landau levels versus ν.

  9. Filling the voids in the SRTM elevation model — A TIN-based delta surface approach

    NASA Astrophysics Data System (ADS)

    Luedeling, Eike; Siebert, Stefan; Buerkert, Andreas

    The Digital Elevation Model (DEM) derived from NASA's Shuttle Radar Topography Mission is the most accurate near-global elevation model that is publicly available. However, it contains many data voids, mostly in mountainous terrain. This problem is particularly severe in the rugged Oman Mountains. This study presents a method to fill these voids using a fill surface derived from Russian military maps. For this we developed a new method, which is based on Triangular Irregular Networks (TINs). For each void, we extracted points around the edge of the void from the SRTM DEM and the fill surface. TINs were calculated from these points and converted to a base surface for each dataset. The fill base surface was subtracted from the fill surface, and the result added to the SRTM base surface. The fill surface could then seamlessly be merged with the SRTM DEM. For validation, we compared the resulting DEM to the original SRTM surface, to the fill DEM and to a surface calculated by the International Center for Tropical Agriculture (CIAT) from the SRTM data. We calculated the differences between measured GPS positions and the respective surfaces for 187,500 points throughout the mountain range (ΔGPS). Comparison of the means and standard deviations of these values showed that for the void areas, the fill surface was most accurate, with a standard deviation of the ΔGPS from the mean ΔGPS of 69 m, and only little accuracy was lost by merging it to the SRTM surface (standard deviation of 76 m). The CIAT model was much less accurate in these areas (standard deviation of 128 m). The results show that our method is capable of transferring the relative vertical accuracy of a fill surface to the void areas in the SRTM model, without introducing uncertainties about the absolute elevation of the fill surface. It is well suited for datasets with varying altitude biases, which is a common problem of older topographic information.

  10. Material limitations on the detection limit in refractometry.

    PubMed

    Skafte-Pedersen, Peder; Nunes, Pedro S; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly.

  11. Radiologic assessment of quality of root canal fillings and periapical status in an Austrian subpopulation – An observational study

    PubMed Central

    Frank, Wilhelm; Madaus, Theresa

    2017-01-01

    Background/Objective Progress in endodontic techniques and methodological advances have altered root canal therapy over the last decades. These techniques and methods need periodical documentation. This observational study determined the current prevalence of endodontic treatments, and investigated the relationship of various factors with the periapical status in a Lower Austrian subpopulation. Methodology One thousand orthopantomograms of first-time university adult patients radiographed at an outpatient clinic were evaluated. For each tooth, the presence of periradicular pathosis and/or endodontic treatment was recorded, as was the quality of (post-)endodontic treatment (homogeneity and length of root canal fillings; preparation failures; posts/screws; apicoectomies; coronal restorations). Two evaluators, blinded to each other, scored all teeth. In cases of disagreement, they joined for a consensus score. Results In all, 22,586 teeth were counted. Of these, 2,907 teeth (12.9%) had periapical pathosis, while 2,504 teeth had undergone root canal treatment. Of the endodontically treated teeth, 52% showed no radiographic signs of apical periodontitis, while 44.9% had overt apical lesions, and 3,1% revealed widened periodontal ligament space. The majority of the root canal fillings was inhomogeneous (70.4%); 75.4% were rated too short, and 3.8% too long. The presence of apical pathosis was significantly correlated (odds ratio (OR) 2.556 [confidence interval (CI) 2.076–3.146]; P<0.0001) with poor root canal fillings (length and homogeneity). Posts or screws positively affected periapical status (OR 1.853 [CI 1.219–2.819]; P = 0.004), but endodontically treated posterior teeth were infrequently restored (posts, 7.5%; screws, 2.7%). Best results were found for teeth with both appropriate endodontic treatment and adequate coronal restoration. Conclusion A high prevalence of periradicular radiolucencies was observed with root canal filled teeth, along with high numbers of unmet treatment needs. Periapical health was associated with adequate root canal obturation and high-grade postendodontic restorations, and quality regarding these latter aspects is considered mandatory to promote periapical health. PMID:28464019

  12. Kinetic Plasma and Turbulent Mix Studies using DT Plastic-shell Implosions with Shell-thickness and Pressure Variations

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Herrmann, H. W.; Hoffman, N. M.; Schmitt, M. J.; Bradley, P. A.; Kagan, G.; Gales, S.; Horsfield, C. J.; Rubery, M.; Leatherland, A.; Gatu Johnson, M.; Glebov, V.; Seka, W.; Marshall, F.; Stoeckl, C.; Church, J.

    2014-10-01

    Kinetic plasma and turbulent mix effects on inertial confinement fusion have been studied using a series of DT-filled plastic-shell implosions at the OMEGA laser facility. Plastic capsules of 4 different shell thicknesses (7.4, 15, 20, 29 micron) were shot at 2 different fill pressures in order to vary the ion mean free path compared to the size of fuel region (i.e., Knudsen number). We varied the empirical Knudsen number by a factor of 25. Measurements were obtained from the burn-averaged ion temperature and fuel areal density. Preliminary results indicate that as the empirical Knudsen number increases, fusion performances (e.g., neutron yield) increasingly deviate from hydrodynamic simulations unless turbulent mix and ion kinetic terms (e.g., enhanced ion diffusion, viscosity, thermal conduction, as well as Knudsen-layer fusion reactivity reduction) are considered. We are developing two separate simulations: one is a reduced-ion-kinetics model and the other is turbulent mix model. Two simulation results will be compared with the experimental observables.

  13. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice.

    PubMed

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight.

  14. Grain Filling Characteristics and Their Relations with Endogenous Hormones in Large- and Small-Grain Mutants of Rice

    PubMed Central

    Zhang, Weiyang; Cao, Zhuanqin; Zhou, Qun; Chen, Jing; Xu, Gengwen; Gu, Junfei; Liu, Lijun; Wang, Zhiqin; Yang, Jianchang; Zhang, Hao

    2016-01-01

    This study determined if the variation in grain filling parameters between two different spikelet types of rice (Oryza sativa L.) is regulated by the hormonal levels in the grains. Two rice mutants, namely, a large-grain mutant (AZU-M) and a small-grain mutant (ZF802-M), and their respective wild types (AZU-WT and ZF802-WT) were grown in the field. The endosperm cell division rate, filling rate, and hormonal levels: zeatin + zeatin riboside (Z+ZR), indo-3-acetic acid (IAA), polyamines (PAs), and abscisic acid (ABA) were determined. The results showed that there was no significant difference between the filling and endosperm cell division rates. These rates were synchronous between the superior and inferior spikelets for both mutants. However, the abovementioned parameters were significantly different between the two spikelet types for the two wild types. The superior spikelets filled faster and their filling rate was higher compared to the inferior ones. Changes in the concentrations of plant hormones were consistent with the observed endosperm cell division rate and the filling rate for both types of spikelets of mutant and wild type plants. Regression analysis showed a significant positive correlation between cell division and filling rates with the concentrations of the investigated hormones. Exogenous chemical application verified the role of ABA, IAA, and PAs in grain filling. The results indicate that poor filling of inferior spikelets in rice occurs primarily due to the reduced hormone concentrations therein, leading to lower division rate of endosperm cells, fewer endosperm cells, slower filling rate, and smaller grain weight. PMID:27780273

  15. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    PubMed

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abanin, D. A.; Department of Physics, Princeton University, Princeton, New Jersey 08544; Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106

    Quantum Hall states that result from interaction induced lifting of the eightfold degeneracy of the zeroth Landau level in bilayer graphene are considered. We show that at even filling factors electric charge is injected into the system in the form of charge 2e Skyrmions. This is a rare example of binding of charges in a system with purely repulsive interactions. We calculate the Skyrmion energy and size as a function of the effective Zeeman interaction and discuss the signatures of the charge 2e Skyrmions in the scanning probe experiments.

  17. Intercomparison of methods for coincidence summing corrections in gamma-ray spectrometry--part II (volume sources).

    PubMed

    Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J

    2012-09-01

    The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Fermi-Edge Singularity of Spin-Polarized Electrons

    NASA Astrophysics Data System (ADS)

    Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.

    2007-05-01

    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

  19. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  20. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  1. Opiates in poppy seed: effect on urinalysis results after consumption of poppy seed cake-filling.

    PubMed

    Pettitt, B C; Dyszel, S M; Hood, L V

    1987-07-01

    We report the analysis of poppy seed filling for morphine and codeine content. Concentrations in the range 17.4 to 18.6 micrograms/g (morphine) and 2.3 to 2.5 micrograms/g (codeine) were found in different lots of the filling, which is widely used in baking. The effect of consumption of poppy seed filling on opiate urinalysis results is discussed. Morphine concentrations as high as 4.5 mg/L are reported, with persistence of concentrations greater than 0.3 mg/L as long as 35 h after consumption.

  2. Improved Gas Filling and Sealing of an HC-PCF

    NASA Technical Reports Server (NTRS)

    Poberezhskiy, Ilya; Meras, Patrick; Chang, Daniel; Spiers, Gary

    2008-01-01

    An improved packaging approach has been devised for filling a hollow-core photonic-crystal fiber (HC-PCF) with a gas, sealing the HC-PCF to retain the gas, and providing for optical connections and, optionally, a plumbing fitting for changing or augmenting the gas filling. Gas-filled HC-PCFs can be many meters long and have been found to be attractive as relatively compact, lightweight, rugged alternatives to conventional gas-filled glass cells for use as molecular-resonance frequency references for stabilization of lasers in some optical-metrology, lidar, optical-communication, and other advanced applications. Prior approaches to gas filling and sealing of HC-PCFs have involved, variously, omission of any attempt to connectorize the PCF, connectorization inside a vacuum chamber (an awkward and expensive process), or temporary exposure of one end of an HC-PCF to the atmosphere, potentially resulting in contamination of the gas filling. Prior approaches have also involved, variously, fusion splicing of HC-PCFs with other optical fibers or other termination techniques that give rise to Fresnel reflections of about 4 percent, which results in output intensity noise.

  3. An in vitro study of coronal leakage after intraradicular preparation of cast-dowel space.

    PubMed

    Pappen, A F; Bravo, M; Gonzalez-Lopez, S; Gonzalez-Rodriguez, M P

    2005-09-01

    Coronal leakage can produce contamination of periapical tissues, resulting in endodontic failure. The purpose of this in vitro study was to evaluate the ability of 2 sealers to prevent coronal leakage in canals filled with gutta-percha and prepared for cast dowels but without coronal sealing. The crowns of 60 extracted single-rooted teeth were amputated. The root canals were prepared corono-apically and filled with gutta-percha cones and 1 of 2 different endodontic sealers: a resin-based sealer (AH Plus) and a calcium hydroxide-based sealer (Sealapex). Specimens were then stored in water for 7 days to allow the sealers to set. The specimens were prepared in 1 of 2 ways: no preparation for cast dowel or preparation of cast-dowel space (n=15). External surfaces of the roots were sealed with cyanoacrylate cement. The teeth were thermal cycled at 5 degrees and 55 degrees C in water baths (dwell time=30 seconds) for 500 cycles. Specimens were then submerged in 2% methylene blue colorant for 24 hours. Microleakage was measured according to the percentage of area stained with the colorant. Effects of each factor (cast-dowel preparation and type of sealant) on microleakage were analyzed by the Student t test (alpha=.05). The AH Plus and Sealapex sealers with cast-dowel preparation resulted in significantly (P<.001) more leakage compared to sealers with no dowel preparation. Cast dowel-space preparation had a negative influence on the sealing ability of the remnant root-canal filling material.

  4. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer

    PubMed Central

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-01-01

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/PEDOT:PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/PEDOT:PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/PEDOT:PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells. PMID:26610848

  5. High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer.

    PubMed

    Yu, Xuegong; Shen, Xinlei; Mu, Xinhui; Zhang, Jie; Sun, Baoquan; Zeng, Lingsheng; Yang, Lifei; Wu, Yichao; He, Hang; Yang, Deren

    2015-11-27

    Organic/silicon nanowires (SiNWs) hybrid solar cells have recently been recognized as one of potentially low-cost candidates for photovoltaic application. Here, we have controllably prepared a series of uniform silicon nanowires (SiNWs) with various diameters on silicon substrate by metal-assisted chemical etching followed by thermal oxidization, and then fabricated the organic/SiNWs hybrid solar cells with poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) ( PSS). It is found that the reflective index of SiNWs layer for sunlight depends on the filling ratio of SiNWs. Compared to the SiNWs with the lowest reflectivity (LR-SiNWs), the solar cell based on the SiNWs with low filling ratio (LF-SiNWs) has a higher open-circuit voltage and fill factor. The capacitance-voltage measurements have clarified that the built-in potential barrier at the LF-SiNWs/ PSS interface is much larger than that at the LR-SiNWs/PEDOT one, which yields a strong inversion layer generating near the silicon surface. The formation of inversion layer can effectively suppress the carrier recombination, reducing the leakage current of solar cell, and meanwhile transfer the LF-SiNWs/ PSS device into a p-n junction. As a result, a highest efficiency of 13.11% is achieved for the LF-SiNWs/ PSS solar cell. These results pave a way to the fabrication of high efficiency organic/SiNWs hybrid solar cells.

  6. POST ASYMPTOTIC GIANT BRANCH BIPOLAR REFLECTION NEBULAE: RESULT OF DYNAMICAL EJECTION OR SELECTIVE ILLUMINATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koning, N.; Kwok, Sun; Steffen, W., E-mail: nico.koning@ucalgary.ca, E-mail: sunkwok@hku.hk, E-mail: wsteffen@astrosen.unam.mx

    2013-03-10

    A model for post asymptotic giant branch bipolar reflection nebulae has been constructed based on a pair of evacuated cavities in a spherical dust envelope. Many of the observed features of bipolar nebulae, including filled bipolar lobes, an equatorial torus, searchlight beams, and a bright central light source, can be reproduced. The effects on orientation and dust densities are studied and comparisons with some observed examples are offered. We suggest that many observed properties of bipolar nebulae are the result of optical effects and any physical modeling of these nebulae has to take these factors into consideration.

  7. Nanometer-Scale Electrical Potential Profiling Across Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Jiang, Chun-Sheng; Ke, Weijun

    2016-11-21

    We used Kelvin probe force microscopy to study the potential distribution on cross-section of perovskite solar cells with different types of electron-transporting layers (ETLs). Our results explain the low open-circuit voltage and fill factor in ETL-free cells, and support the fact that intrinsic SnO2 as an alternative ETL material can make high-performance devices. Furthermore, the potential-profiling results indicate a reduction in junction-interface recombination by the optimized SnO2 layer and adding a fullerene layer, which is consistent with the improved device performance and current-voltage hysteresis.

  8. Propulsion and Power Rapid Response Research and Development (R&D) Support. Delivery Order 0011: Advanced Propulsion Fuels Research and Development-Subtask: Framework and Guidance for Estimating Greenhouse Gas Footprints of Aviation Fuels

    DTIC Science & Technology

    2009-04-01

    Uncertainties, Gaps , and Issues for the Use of GWP to Examine Emissions From Aviation That Impact Global Climate Change. (Wuebbles, Yang and Herman 2008...selecting time periods and spatial scales for data gathering, strategies for filling data gaps , and computational considerations for managing the...Fuels Assumptions, methodological choices, strategies for filling data gaps , and other factors throughout the life cycle substantially influence the

  9. Numerical simulation of transport processes in injection mold-filling during production of a cylindrical object under isothermal and non-isothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, A.; Ghoshdastidar, P.S.

    1999-07-01

    In this paper, numerical simulation of injection mold-filling during the production of a cylindrical object under isothermal and non-isothermal conditions is presented. The material of the object is low density polyethylene (LDPE) following power-law viscosity model for non-zero shear rate zone. However, where shear rate becomes zero, zero-shear viscosity value has been used. Three cases have been considered, namely (1) Isothermal filling at constant injection pressure, (2) Isothermal filling at constant flow rate, and (3) Non-isothermal filling at constant flow rate. For the case-(3), the viscosity of LDPE is also a function of temperature. The material of the mold ismore » steel. For the non-isothermal filling, the concept of melt-mold thermal contact resistance coefficient has been incorporated in the model. The length and diameter of the body in all three cases have been taken as 0.254 m and 0.00508 m respectively. The finite-difference method has been used to solve the governing differential equations for the processes. The results show excellent agreement with the corresponding equations for the processes. The results show excellent agreement with the corresponding analytical solutions for the first two cases showing the correctness of the numerical method. The simulation results for non-isothermal filling show physically realistic trends and lend insight into various important aspects of mold-filling including frozen skin layer.« less

  10. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks*

    PubMed Central

    Krumholz, Elias W.; Libourel, Igor G. L.

    2015-01-01

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. PMID:26041773

  11. Critical Success Factors of Internet Shopping: The Case of Japan

    NASA Astrophysics Data System (ADS)

    Atchariyachanvanich, Kanokwan; Okada, Hitoshi; Sonehara, Noboru

    This paper presents the results from a study conducted on the effect of differing factors on a customer's attitude towards using Internet shopping in Japan. The research model used was an extended version of the consumers' acceptance of virtual stores model with the addition of a new factor, need specificity, and a grouping of critical success factors based on their customer-centric and website-centric viewpoints sources. It examines how differences in the individual characteristics of customers affect the actual use of Internet shopping. According to an online questionnaire filled out by 1,215 online customers used to conduct a multiple regression analysis and a structural equation modeling analysis, the participant's gender, education level, innovativeness, net-orientation, and need specificity, which are the factors for the customer-centric viewpoints, have a positive impact on the actual use of Internet shopping. The implication also shows that Japanese online customers do not worry about the quality of service of Internet shopping, a factor in the website-centric viewpoint, as significantly as offline customers do.

  12. Endurance of Damping Properties of Foam-Filled Tubes

    PubMed Central

    Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe

    2015-01-01

    The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools. PMID:28793425

  13. Endurance of Damping Properties of Foam-Filled Tubes.

    PubMed

    Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe

    2015-07-07

    The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.

  14. CHARACTERISTICS OF FLORIDA FILL MATERIALS AND SOILS 1990

    EPA Science Inventory

    The report gives results of laboratory work by the University of Florida in support of the Foundation Fill Data Base project of the Foundation Fill Materials Specifications Task Area of the Florida Radon Research Program (FRRP). Work included determination of radon concentrations...

  15. Effect of Plastic Film Mulching on the Grain Filling and Hormonal Changes of Maize under Different Irrigation Conditions

    PubMed Central

    Liu, Didi; Gu, Dandan; Wang, Yongping; Liao, Yuncheng; Wen, Xiaoxia

    2015-01-01

    Plastic film mulching (PM) is widely utilized for maize production in China. However, the effect of PM on the grain yield of crops has not been established, and the biochemical mechanism underlying the increase or decrease in grain yield under PM is not yet understood. Grain filling markedly affects the grain yield. The objective of this study was to investigate the effects of PM on maize grain filling under different irrigation levels and the relationship of such effects with hormonal changes. In the present study, PM was compared with traditional nonmulching management (TN) under 220 mm, 270 mm and 320 mm irrigation amount, and the grain filling characters of the grains located in various parts of the ear and the hormonal changes in the grains were measured. The results indicated that at 220 mm irrigation, PM significantly increased the grain filling rate of the middle and basal grains and decreased the grain filling rate of the upper grains. At 270 mm irrigation, the PM significantly increased the grain filling rate of the all grains. At 320 mm irrigation, the PM only significantly increased the grain filling rate of the upper grains. The IAA, Z+ZR and ABA content in the grains was positively correlated with the grain weight and grain-filling rates; however, the ETH evolution rate of the grains was negatively correlated with the grain weight and grain-filling rates. These results show that the effect of PM on maize grain filling is related to the irrigation amount and that the grain position on the ear and the grain filling of the upper grains was more sensitive to PM and irrigation than were the other grains. In addition, the PM and irrigation regulated the balance of hormones rather than the content of individual hormones to affect the maize grain filling. PMID:25867028

  16. Extension and Density of Root Fillings and Post-operative Apical Radiolucencies in the Veterans Affairs Dental Longitudinal Study

    PubMed Central

    Zhong, Yan; Chasen, Joel; Yamanaka, Ryan; Garcia, Raul; Kaye, Elizabeth Krall; Kaufman, Jay S; Cai, Jianwen; Wilcosky, Tim; Trope, Martin; Caplan, Daniel J

    2008-01-01

    We evaluated the association between radiographically-assessed extension and density of root canal fillings and post-operative apical radiolucencies (AR) using data from 288 participants in the Veterans Affairs Dental Longitudinal Study. Study subjects were not VA patients; all received their medical and dental care in the private sector. Generalized Estimating Equations were used to account for multiple teeth within subjects and to control for covariates of interest. Defective root filling density was associated with increased odds of post-operative AR among teeth with no pre-operative AR (Odds Ratio=3.0, 95%CI=1.3–7.1), though pre-operative AR was the strongest risk factor for post-operative AR (Odds Ratio=29.2, 95%CI=13.6–63.0 among teeth with ideal density). Compared to well-extended root fillings, neither over- nor under-extended root fillings separately were related to post-operative AR, but when those two categories were collapsed into one “poorly-extended” category, poor extension was related to post-operative AR (Odds Ratio=1.8, 95%CI=1.1–3.2). PMID:18570982

  17. External root resorption during orthodontic treatment in root-filled teeth and contralateral teeth with vital pulp: A clinical study of contributing factors.

    PubMed

    Lee, Yun Ju; Lee, Tae Yeon

    2016-01-01

    There is a lack of research to support the belief that root canal treatment can be considered for stopping or decreasing external apical root resorption (EARR). There is conflicting evidence as to whether root-filled teeth are more or less likely to experience EARR after orthodontic treatment. The purpose of this study was to compare the degree of EARR of root-filled teeth with that of contralateral teeth with vital pulp after fixed orthodontic treatment. The study sample consisted of 35 patients aged 25.23 ± 4.92 years who had at least 1 root-filled tooth before orthodontic treatment. Digital panoramic radiographs of each patient taken before and after orthodontic treatment were used to measure the EARR. The Student t test for matched pairs and the Pearson correlation analysis were applied. The mean EARR values were 0.22 (0.14, 0.35) for root-filled teeth and 0.87 (0.59, 1.31) for contralateral teeth with vital pulp, indicating significantly less EARR for root-filled teeth compared with the contralateral teeth with vital pulp after orthodontic treatment. EARR was influenced by the patient's age, treatment duration, treatment type, and periapical pathosis, but not by tooth type and sex. Root-filled teeth appear to be associated with significantly less EARR than are contralateral teeth with vital pulp. This study suggests that the possible complication of EARR in root-filled teeth may not be an important consideration in orthodontic treatment planning, and root canal treatment can be considered for stopping or decreasing EARR when severe EARR occurs during orthodontic treatment. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  18. Predictive Coding: A Possible Explanation of Filling-In at the Blind Spot

    PubMed Central

    Raman, Rajani; Sarkar, Sandip

    2016-01-01

    Filling-in at the blind spot is a perceptual phenomenon in which the visual system fills the informational void, which arises due to the absence of retinal input corresponding to the optic disc, with surrounding visual attributes. It is known that during filling-in, nonlinear neural responses are observed in the early visual area that correlates with the perception, but the knowledge of underlying neural mechanism for filling-in at the blind spot is far from complete. In this work, we attempted to present a fresh perspective on the computational mechanism of filling-in process in the framework of hierarchical predictive coding, which provides a functional explanation for a range of neural responses in the cortex. We simulated a three-level hierarchical network and observe its response while stimulating the network with different bar stimulus across the blind spot. We find that the predictive-estimator neurons that represent blind spot in primary visual cortex exhibit elevated non-linear response when the bar stimulated both sides of the blind spot. Using generative model, we also show that these responses represent the filling-in completion. All these results are consistent with the finding of psychophysical and physiological studies. In this study, we also demonstrate that the tolerance in filling-in qualitatively matches with the experimental findings related to non-aligned bars. We discuss this phenomenon in the predictive coding paradigm and show that all our results could be explained by taking into account the efficient coding of natural images along with feedback and feed-forward connections that allow priors and predictions to co-evolve to arrive at the best prediction. These results suggest that the filling-in process could be a manifestation of the general computational principle of hierarchical predictive coding of natural images. PMID:26959812

  19. The effectiveness of manual and mechanical instrumentation for the retreatment of three different root canal filling materials.

    PubMed

    Somma, Francesco; Cammarota, Giuseppe; Plotino, Gianluca; Grande, Nicola M; Pameijer, Cornelis H

    2008-04-01

    The aim of this study was to compare the effectiveness of the Mtwo R (Sweden & Martina, Padova, Italy), ProTaper retreatment files (Dentsply-Maillefer, Ballaigues, Switzerland), and a Hedström manual technique in the removal of three different filling materials (gutta-percha, Resilon [Resilon Research LLC, Madison, CT], and EndoRez [Ultradent Products Inc, South Jordan, UT]) during retreatment. Ninety single-rooted straight premolars were instrumented and randomly divided into 9 groups of 10 teeth each (n = 10) with regards to filling material and instrument used. For all roots, the following data were recorded: procedural errors, time of retreatment, apically extruded material, canal wall cleanliness through optical stereomicroscopy (OSM), and scanning electron microscopy (SEM). A linear regression analysis and three logistic regression analyses were performed to assess the level of significance set at p = 0.05. The results indicated that the overall regression models were statistically significant. The Mtwo R, ProTaper retreatment files, and Resilon filling material had a positive impact in reducing the time for retreatment. Both ProTaper retreatment files and Mtwo R showed a greater extrusion of debris. For both OSM and SEM logistic regression models, the root canal apical third had the greatest impact on the score values. EndoRez filling material resulted in cleaner root canal walls using OSM analysis, whereas Resilon filling material and both engine-driven NiTi rotary techniques resulted in less clean root canal walls according to SEM analysis. In conclusion, all instruments left remnants of filling material and debris on the root canal walls irrespective of the root filling material used. Both the engine-driven NiTi rotary systems proved to be safe and fast devices for the removal of endodontic filling material.

  20. Prevalence of dental caries among 12–14 year old children in Qatar

    PubMed Central

    Al-Darwish, Mohammed; El Ansari, Walid; Bener, Abdulbari

    2014-01-01

    Background To ensure the oral health of a population, clinicians must deliver appropriate dental services, and local communities need to have access to dental care facilities. However, establishment of this infrastructure must be based on reliable information regarding disease prevalence and severity in the target population. Objectives The aims of this study were to measure the incidence of dental caries in school children aged 12–14 throughout Qatar, including the influence of socio-demographic factors. Materials and methods A cross-sectional study was conducted in Qatar from October 2011 to March 2012. A total of 2113 children aged 12–14 were randomly selected from 16 schools located in different geographic areas. Three calibrated examiners using World Health Organization (WHO) criteria to diagnose dental caries performed the clinical examinations. Data analyses were subsequently conducted. Results The mean decayed, missing, and filled teeth index values were respectively 4.62 (±3.2), 4.79 (±3.5), and 5.5 (±3.7), for 12, 13, and 14 year-old subjects. Caries prevalence was 85%. The mandibular incisors and canines were least affected by dental caries, while maxillary and mandibular molars exhibited the highest incidence of dental caries. Dental caries were affected by socio-demographic factors; significant differences were detected between female and male children, where more female children showed dental caries than male children. In addition, children residing in semi-urban areas showed more dental caries than in urban areas. Conclusion Results indicated that dental caries prevalence among school children in Qatar has reached critical levels, and is influenced by socio-demographic factors. The mean decayed, missing, and filled teeth values obtained in this study were the second highest detected in the Eastern Mediterranean region. PMID:25057232

  1. Computer analysis of microcrystalline silicon hetero-junction solar cell with lumerical FDTD/DEVICE

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad; Earles, S. K.; Kadhim, Ahmed; Azzahrani, Ahmad

    The computer analysis of tandem solar cell, c-Si/a-Si:H/μc-SiGe, is studied within Lumerical FDTD/Device 4.6. The optical characterization is performed in FDTD and then total generation rate is transported into DEVICE for electrical characterization. The electrical characterization of the solar cell is carried out in DEVICE. The design is implemented by staking three sub cells with band gap of 1.12eV, 1.50eV and 1.70eV, respectively. First, single junction solar cell with both a-Si and μc-SiGe absorbing layers are designed and compared. The thickness for both layers are kept the same. In a single junction, solar cell with a-Si absorbing layer, the fill factor and the efficiency are noticed as FF = 78.98%, and η = 6.03%. For μc-SiGe absorbing layer, the efficiency and fill factor are increased as η = 7.06% and FF = 84.27%, respectively. Second, for tandem thin film solar cell c-Si/a-Si:H/μc-SiGe, the fill factor FF = 81.91% and efficiency η = 9.84% have been noticed. The maximum efficiency for both single junction thin film solar cell c-Si/μc-SiGe and tandem solar cell c-Si/a-Si:H/μc-SiGe are improved with check board surface design for light trapping.

  2. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products.

    PubMed

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-12-23

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent.

  3. Concrete Cracking Prediction Including the Filling Proportion of Strand Corrosion Products

    PubMed Central

    Wang, Lei; Dai, Lizhao; Zhang, Xuhui; Zhang, Jianren

    2016-01-01

    The filling of strand corrosion products during concrete crack propagation is investigated experimentally in the present paper. The effects of stirrups on the filling of corrosion products and concrete cracking are clarified. A prediction model of crack width is developed incorporating the filling proportion of corrosion products and the twisting shape of the strand. Experimental data on cracking angle, crack width, and corrosion loss obtained from accelerated corrosion tests of concrete beams are presented. The proposed model is verified by experimental data. Results show that the filling extent of corrosion products varies with crack propagation. The rust filling extent increases with the propagating crack until a critical width. Beyond the critical width, the rust-filling extent remains stable. Using stirrups can decrease the critical crack width. Stirrups can restrict crack propagation and reduce the rust filling. The tangent of the cracking angle increases with increasing corrosion loss. The prediction of corrosion-induced crack is sensitive to the rust-filling extent. PMID:28772367

  4. How Wolf-Rayet winds are driven by starlight and spectral lines

    NASA Astrophysics Data System (ADS)

    Onifer, Andrew Joseph, III

    Finding the cause of the enormous increase in the mass- loss rate of a Wolf-Rayet (W-R) star, as compared to its O star progenitor, has remained a challenge for many years. This thesis explores the hypothesis that line driving causes the large observed W-R mass-loss rates. Frequency redistribution can cause the photons to filter into gaps in the line spectrum, reducing the efficiency of line driving. Therefore, the role that frequency redistribution plays in lowering the predicted mass-loss rate is explored, both via simple two-domain idealizations of the line list and via a real W-R line list. A simple analytic theory, called the Statistical Sobolev Rosseland (SSR) theory, is developed that calculates the local efficiency of line driving in a completely redistributing wind. In the process a conceptual language is developed to explain the key issues in W-R wind line driving. The results are that with no redistribution, the reduction in radius, and corresponding increase in temperature, of an O star as it evolves into a W-R star causes roughly a six-fold increase in the mass-loss rate. However, with large amounts of redistribution, the efficiency of the wind drops greatly in the presence of spectral gaps. In the most extreme case of SSR, the mass- loss rate drops by a factor of up to an order of magnitude relative to the gray value. To avoid this it is necessary to fill the gaps in the spectrum, and the effect that ionization stratification has in filling the gaps globally over the wind is explored. It is found that with the current line list ionization changes can only fill the gaps sufficiently to cause about a factor of two increase over the SSR value. The conclusion is that in order for line driving to explain the mass-loss rates of W-R winds, more opacity needs to be discovered to fill the gaps, either locally, or globally over a realistic range of ionization strata.

  5. Accuracy Considerations in Sterile Compounding.

    PubMed

    Akers, Michael J

    2017-01-01

    Published information about the accuracy of filling and closing operations of sterile products is limited and guidelines on the topic are very general. This article highlights the basic principles in sterile-product filling of syringes and vials. Also covered in this article are descriptions of some of the available devices for filling containers, a brief discussion of the advances in vial and syringe filling, a discussion on the advantages and disadvantages of sterile product filling methods, and a discussion on possible problems encountered during filling operations. Because of the extremely high costs of some new drugs, especially biopharmaceuticals, compounding pharmacies may prefer to fill small batches to reduce the risk of unacceptable monetary losses in the event of a manufacturing deviation that results in batch rejection. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  6. An evaluation of the applicability of the telluric-electric and audio-magnetotelluric methods to mineral assessment on the Arabian Shield, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Flanigan, Vincent J.; Zablocki, Charles J.

    1984-01-01

    Feasibility studies of two electromagnetic methods were made in selected areas of the Jabal Hibshi (1:250,000) quadrangle, 26F, in the Kingdom of Saudi Arabia in March of 1983. The methods tested were the natural source-field telluricelectric and audio-magnetotelluric methods developed and extensively used in recent years by the U.S. Geological Survey in some of its domestic programs related to geothermal and mineral resource assessment. Results from limited studies in the Meshaheed district, the Jabal as Silsilah ring complex, and across a portion of the Raha fault zone clearly demonstrate the appropriateness of these sub-regional scale, reconnaissance-type studies to mineral resource assessment. The favorable results obtained are largely attributed to distinctive and large contrasts in the electrical resistivity of the major rock types encountered. It appears that the predominant controlling factor governing the rock resistivities is the amount of contained clay minerals. Accordingly, unaltered (specifically, non-argillic) igneous and metamorphic rocks have very high resistivities; metasedimentary rocks of the Murdama group that contain several percent clay minerals have intermediate values of resistivity; and highly altered rocks, containing abundant clay minerals, have very low values of resistivity. Water-filled fracture porosity may be a secondary, but important, factor in some settings. However, influences from variations in interstitial or intercrystalline, water-filled porosity are probably small because these types of porosity are generally low. It is reasonable to expect similar results in other areas within the Arabian Shield.

  7. Energy dissipation on a 4(H):1(V) stepped spillway

    USDA-ARS?s Scientific Manuscript database

    Many small earthen embankments are faced with inadequate spillway capacity due to filled sediment pools filled with sediment and sediment now filling flood pools. Additionally, hydrologic conditions have changed as a result of urbanization; thereby causing changes in the hazard classification of th...

  8. Polarized radiative transfer through terrestrial atmosphere accounting for rotational Raman scattering

    NASA Astrophysics Data System (ADS)

    Lelli, Luca; Rozanov, Vladimir V.; Vountas, Marco; Burrows, John P.

    2017-10-01

    This paper is devoted to the phenomenological derivation of the vector radiative transfer equation (VRTE) accounting for first-order source terms of rotational Raman scattering (RRS), which is responsible for the in-filling of Fraunhofer and telluric lines by inelastic scattered photons. The implementation of the solution of the VRTE within the framework of the forward-adjoint method is given. For the Ca II and the oxygen A-band (O2 A) spectral windows, values of reflectance, degree of linear polarization (DOLP) and in-filling, in zenith and nadir geometry, are compared with results given in literature. Moreover, the dependence of these quantities on the columnar loading and vertical layering of non-spherical dust aerosols is investigated, together with their changes as function of two habits of ice crystals, modeled as regular icosahedra and severely rough aggregated columns. Bi-directional effects of an underlying polarizing surface are accounted for. The forward simulations are performed for one selected wavelength in the continuum and one in the strong absorption of the O2 A, as their combination can be exploited for the spaceborne retrieval of aerosol and cloud properties. For this reason, we also mimic seasonal maps of reflectance, DOLP and in-filling, that are prototypical measurements of the Ultraviolet-Visible-Near Infrared (UVN) sensor, at a nominal spectral resolution of 0.12 nm. UVN is the core payload of the upcoming European Sentinel-4 mission, that will observe Europe in geostationary orbit for air quality monitoring purposes. In general, in the core of O2 A, depending on the optical thickness and altitude of the scatterers, we find RRS-induced in-filling values ranging from 1.3% to 1.8%, while DOLP decreases by 1%. Conversely, while negligible differences of RRS in-filling are calculated with different ice crystal habits, the severely rough aggregated column model can reduce DOLP by a factor up to 10%. The UVN maps of in-filling show values varying between 1% and 8%. These changes are mainly driven by surface type and seasonal observational geometry. However, accounting for RRS, differences in DOLP do not exceed ± 0.2% within the full instrumental field-of-view.

  9. Associations between sociocultural home environmental factors and vegetable consumption among Norwegian 3-5-year olds: BRA-study.

    PubMed

    Kristiansen, Anne Lene; Bjelland, Mona; Himberg-Sundet, Anne; Lien, Nanna; Frost Andersen, Lene

    2017-10-01

    The home environment is the first environment to shape childhood dietary habits and food preferences, hence greater understanding of home environmental factors associated with vegetable consumption among young children is needed. The objective has been to examine questionnaire items developed to measure the sociocultural home environment of children focusing on vegetables and to assess the psychometric properties of the resulting factors. Further, to explore associations between the environmental factors and vegetable consumption among Norwegian 3-5 year olds. Parents (n 633) were invited to participate and filled in a questionnaire assessing the child's vegetable intake and factors potentially influencing this, along with a 24-h recall of their child's fruit and vegetable intake. Children's fruit and vegetable intakes at two meals in one day in the kindergarten were observed by researchers. Principal components analysis was used to examine items assessing the sociocultural home environment. Encouragement items resulted in factors labelled "reactive encouragement", "child involvement" and "reward". Modelling items resulted in the factors labelled "active role model" and "practical role model". Items assessing negative parental attitudes resulted in the factor labelled "negative parental attitudes" and items assessing family pressure/demand resulted in the factor labelled "family demand". The psychometric properties of the factors were for most satisfactory. Linear regression of the associations between vegetable intake and the factors showed, as expected, generally positive associations with "child involvement", "practical role model" and "family demand", and negative associations with "negative parental attitudes" and "reward". Unexpectedly, "reactive encouragement" was negatively associated with vegetable consumption. In conclusion, associations between sociocultural home environmental factors and children's vegetable consumption showed both expected and unexpected associations some of which differed by maternal education - pointing to a need for further comparable studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Quantum Hall signatures of dipolar Mahan excitons

    NASA Astrophysics Data System (ADS)

    Schinner, G. J.; Repp, J.; Kowalik-Seidl, K.; Schubert, E.; Stallhofer, M. P.; Rai, A. K.; Reuter, D.; Wieck, A. D.; Govorov, A. O.; Holleitner, A. W.; Kotthaus, J. P.

    2013-01-01

    We explore the photoluminescence of spatially indirect, dipolar Mahan excitons in a gated double quantum well diode containing a mesoscopic electrostatic trap for neutral dipolar excitons at low temperatures down to 250 mK and in quantizing magnetic fields. Mahan excitons in the surrounding of the trap, consisting of individual holes interacting with a degenerate two-dimensional electron system confined in one of the quantum wells, exhibit strong quantum Hall signatures at integer filling factors and related anomalies around filling factor ν=(2)/(3),(3)/(5), and (1)/(2), reflecting the formation of composite fermions. Interactions across the trap perimeter are found to influence the energy of the confined neutral dipolar excitons by the presence of the quantum Hall effects in the two-dimensional electron system surrounding the trap.

  11. Material Limitations on the Detection Limit in Refractometry

    PubMed Central

    Skafte-Pedersen, Peder; Nunes, Pedro S.; Xiao, Sanshui; Mortensen, Niels Asger

    2009-01-01

    We discuss the detection limit for refractometric sensors relying on high-Q optical cavities and show that the ultimate classical detection limit is given by min {Δn} ≳ η, with n + iη being the complex refractive index of the material under refractometric investigation. Taking finite Q factors and filling fractions into account, the detection limit declines. As an example we discuss the fundamental limits of silicon-based high-Q resonators, such as photonic crystal resonators, for sensing in a bio-liquid environment, such as a water buffer. In the transparency window (λ ≳ 1100 nm) of silicon the detection limit becomes almost independent on the filling fraction, while in the visible, the detection limit depends strongly on the filling fraction because the silicon absorbs strongly. PMID:22291513

  12. Effect of polymer additives on characteristics of direct-current motor with liquid dielectric filler

    NASA Astrophysics Data System (ADS)

    Ivanov, V. I.; Bashkatova, S. T.; Lubsanova, A. A.; Tokarev, S. B.; Zadaroshnaya, G. N.; Pastukhova, I. N.

    1984-11-01

    In d.c. motors filled with dielectric of the hydrocarbon kind hydrodynamic losses can constitute up to 40% of the total losses. Consequently, a study was made to determine the proper additive and amount to reduce the hydraulic drag without dehomogenizing the liquid filler over long operating periods. Two polymethacrylates, never before used for this application were selected. Two motors of different size, a 0.8 kW DPK and a 6 kW DPK, were tested in kerosene with 0.005-1.0 wt% of these additives. An evaluation of the data, including the hydraulic drag coefficient as a function of the Reynolds number and the temperature rise at critical motor components (armature winding in slots, armature endturns on drive side, armature teeth, liquid in interpolar space, field winding, pole pieces) with or without additive, has yielded the optimum range of additive concentration for each motor size. An evaluation of the heat transfer at critical surfaces, with the aid of dimensional analysis, has yielded the semiempirical relation Nu=CRe0.65Pr0.4Km (C- constant factor different for each surface, Km- constant factor with exponent different for each additive polymer materials). The results can be extended to transformer oil and diesel oil as liquid motor-filling medium.

  13. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    PubMed Central

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  14. Buried MoO x/Ag Electrode Enables High-Efficiency Organic/Silicon Heterojunction Solar Cells with a High Fill Factor.

    PubMed

    Xia, Zhouhui; Gao, Peng; Sun, Teng; Wu, Haihua; Tan, Yeshu; Song, Tao; Lee, Shuit-Tong; Sun, Baoquan

    2018-04-25

    Silicon (Si)/organic heterojunction solar cells based on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and n-type Si have attracted wide interests because they promise cost-effectiveness and high-efficiency. However, the limited conductivity of PEDOT:PSS leads to an inefficient hole transport efficiency for the heterojunction device. Therefore, a high dense top-contact metal grid electrode is required to assure the efficient charge collection efficiency. Unfortunately, the large metal grid coverage ratio electrode would lead to undesirable optical loss. Here, we develop a strategy to balance PEDOT:PSS conductivity and grid optical transmittance via a buried molybdenum oxide/silver grid electrode. In addition, the grid electrode coverage ratio is optimized to reduce its light shading effect. The buried electrode dramatically reduces the device series resistance, which leads to a higher fill factor (FF). With the optimized buried electrode, a record FF of 80% is achieved for flat Si/PEDOT:PSS heterojunction devices. With further enhancement adhesion between the PEDOT:PSS film and Si substrate by a chemical cross-linkable silance, a power conversion efficiency of 16.3% for organic/textured Si heterojunction devices is achieved. Our results provide a path to overcome the inferior organic semiconductor property to enhance the organic/Si heterojunction solar cell.

  15. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers.

    PubMed

    Inaba, Shusei; Vohra, Varun

    2017-05-09

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED-EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows.

  16. Preparation of AgInS2 nanoparticles by a facile microwave heating technique; study of effective parameters, optical and photovoltaic characteristics

    NASA Astrophysics Data System (ADS)

    Tadjarodi, Azadeh; Cheshmekhavar, Amir Hossein; Imani, Mina

    2012-12-01

    In this work, AgInS2 (AIS) semiconductor nanoparticles were synthesized by an efficient and facile microwave heating technique using several sulfur sources and solvents in the different reaction times. The SEM images presented the particle morphology for all of the obtained products in the arranged reaction conditions. The particle size of 70 nm was obtained using thioacetamide (TAA), ethylene glycol (EG) as the sulfur source and solvent, respectively at the reaction time of 5 min. It was found that the change of the mentioned parameters lead to alter on the particle size of the resulting products. The average particle size was estimated using a microstructure measurement program and Minitab statistical software. The optical band gap energy of 1.96 eV for the synthesized AIS nanoparticles was determined by the diffuse reflectance spectroscopy (DRS). AgInS2/CdS/CuInSe2 heterojunction solar cell was constructed and photovoltaic parameters, i.e., open-circuit voltage (Voc), short-circuit current (Jsc) and fill factor (FF) were estimated by photocurrent-voltage (I-V) curve. The calculated fill factor of 30% and energy conversion efficiency of 1.58% revealed the capability of AIS nanoparticles to use in the solar cell devices.

  17. Optical imaging of tumor cells in hollow fibers: evaluation of the antitumor activities of anticancer drugs and target validation.

    PubMed

    Zhang, Guo-Jun; Chen, Tsing-Bau; Bednar, Bohumil; Connolly, Brett M; Hargreaves, Richard; Sur, Cyrille; Williams, David L

    2007-08-01

    The in vivo hollow fiber assay, in which semipermeable hollow fibers filled with tumor cells, are implanted into animals, was originally developed to screen for anticancer compounds before assessment in more complex tumor models. To enhance screening and evaluation of anticancer drugs, we have applied optical imaging technology to this assay. To demonstrate that tumor cells inside hollow fibers can communicate with the host mice, we have used fluorescence imaging in vivo and CD31 immunostaining ex vivo to show that angiogenesis occurs around cell-filled hollow fibers by 2 weeks after subcutaneous implantation. Bioluminescence imaging has been used to follow the number of luciferase-expressing tumor cells within implanted hollow fibers; proliferation of those cells was found to be significantly inhibited by docetaxel or irinotecan. We also used bioluminescence imaging of hollow fibers to monitor the nuclear factor kappaB (NFkappaB) pathway in vivo; NFkappaB activation by lipopolysaccharide and tumor necrosis factor-alpha was evaluated in tumor cell lines genetically engineered to express luciferase controlled by an NFkappaB-responsive element. These results demonstrate that optical imaging of hollow fibers containing reporter tumor cells can be used for the rapid and accurate evaluation of antitumor activities of anticancer drugs and for measurement of molecular pathways.

  18. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  19. InGaAs monolithic interconnected modules (MIM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatemi, N.S.; Jenkins, P.P.; Weizer, V.G.

    1997-12-31

    A monolithic interconnected module (MIM) structure has been developed for thermophotovoltaic (TPV) applications. The MIM device consists of many individual InGaAs cells series-connected on a single semi-insulating (S.I.) InP substrate. An infrared (IR) back surface reflector (BSR), placed on the rear surface of the substrate, returns the unused portion of the TPV radiator output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Also, the use of a BSR obviates the need to use a separate filtering element. As a result, MIMs are exposed to the entire emitter output, thereby maximizing output power density. MIMs withmore » an active area of 1 x 1-cm were comprised of 15 cells monolithically connected in series. Both lattice-matched and lattice-mismatched InGaAs/InP devices were produced, with bandgaps of 0.74 and 0.55 eV, respectively. The 0.74-eV modules demonstrated an open-circuit voltage (Voc) of 6.158 V and a fill factor of 74.2% at a short-circuit current (Jsc) of 842 mA/cm{sup 2}, under flashlamp testing. The 0.55-eV modules demonstrated a Voc of 4.849 V and a fill factor of 57.8% at a Jsc of 3.87 A/cm{sup 2}. IR reflectance measurements (i.e., {lambda} > 2 {micro}m) of these devices indicated a reflectivity of {ge} 83%. Latest electrical and optical performance results for the MIMs will be presented.« less

  20. Arsenic in midwestern glacial deposits? Occurrence and relation to selected hydrogeologic and geochemical factors

    USGS Publications Warehouse

    Thomas, Mary Ann

    2003-01-01

    Ground-water-quality data collected as part of 12 U.S. Geological Survey National Water-Quality Assessment studies during 1996-2001 were analyzed to (1) document arsenic occurrence in four types of gla-cial deposits that occur in large areas of the Midwest, (2) identify hydrogeologic or geochemical factors asso-ciated with elevated arsenic concentrations, and (3) search for clues as to arsenic source(s) or mechanism(s) of mobilization that could be useful for designing future studies. Arsenic and other water-quality constituents were sampled in 342 monitor and domestic wells in parts of Illinois Indiana Ohio Michigan and Wisconsin. Arsenic was detected (at a concentration >1 ?g/L) in one-third of the samples. The maximum concentration was 84 ?g/L, and the median was less than 1 ?g/L. Eight percent of samples had arsenic concentrations that exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level (MCL) of 10?g/L. Samples were from four aquifer types?confined valley fill, unconfined valley fill, outwash plain, and till with sand lenses. Highest arsenic concentrations were found in reducing waters from valley-fill depos-its. In confined valley fill, all waters were reducing and old (recharged before 1953), and almost half of sam-ples had arsenic concentrations greater than the MCL. In unconfined valley fill, redox conditions and ages were varied, and elevated arsenic concentrations were sporadic. In both types of valley fill, elevated arsenic concentrations are linked to the underlying bedrock on the basis of spatial relations and geochemical correla-tions. In shallow (150 ft), all deep wells were from a distinctive aquifer type (confined valley fill). It is not known whether wells at similar depths in other aquifer types would produce waters with simi-larly high arsenic concentrations. Correlations of arsenic with fluoride, strontium, and barium suggest that arsenic might be related to epi-genetic (Mississippi Valley-type) sulfide deposits in Paleozoic bedrock. Arsenic is typically released from sulfides by oxidation, but in the current study, the highest arsenic concentrations in glacial deposits were detected in reducing waters. Therefore, a link between epigenetic sulfides and elevated arsenic concentrations in glacial deposits would probably require a multi-step process.

  1. Marginal adaptation of mineral trioxide aggregate (MTA) compared with amalgam as a root-end filling material: a low-vacuum (LV) versus high-vacuum (HV) SEM study.

    PubMed

    Shipper, G; Grossman, E S; Botha, A J; Cleaton-Jones, P E

    2004-05-01

    To compare the marginal adaptation of mineral trioxide aggregate (MTA) or amalgam root-end fillings in extracted teeth under low-vacuum (LV) versus high-vacuum (HV) scanning electron microscope (SEM) viewing conditions. Root-end fillings were placed in 20 extracted single-rooted maxillary teeth. Ten root ends were filled with MTA and the other 10 root ends were filled with amalgam. Two 1 mm thick transverse sections of each root-end filling were cut 0.50 mm (top) and 1.50 mm (bottom) from the apex. Gap size was recorded at eight fixed points along the dentine-filling material interface on each section when uncoated wet (LV wet (LVW)) and dry under LV (0.3 Torr) in a JEOL JSM-5800 SEM and backscatter emission (LV dry uncoated (LVDU)). The sections were then air-dried, gold-coated and gap size was recorded once again at the fixed points under HV (10(-6) Torr; HV dry coated (HVDC)). Specimen cracking, and the size and extent of the crack were noted. Gap sizes at fixed points were smallest under LVW and largest under HVDC SEM conditions. Gaps were smallest in MTA root-end fillings. A General Linear Models Analysis, with gap size as the dependent variable, showed significant effects for extent of crack in dentine, material and viewing condition (P = 0.0001). This study showed that MTA produced a superior marginal adaptation to amalgam, and that LVW conditions showed the lowest gap size. Gap size was influenced by the method of SEM viewing. If only HV SEM viewing conditions are used for MTA and amalgam root-end fillings, a correction factor of 3.5 and 2.2, respectively, may be used to enable relative comparisons of gap size to LVW conditions.

  2. Leadership Readiness for Flexibility and Mobility: The 4th Dimensions on Situational Leadership Styles in Educational Settings

    ERIC Educational Resources Information Center

    Rajbhandari, Mani Man Singh; Loock, Coert; Du Plessis, Pierre; Rajbhandari, Smriti

    2014-01-01

    In educational settings, leadership flexibility and mobility is essential factor for leadership readiness. This incorporates both factors concerning the situational needs and followership situational readiness. Leadership in education require multi facet dimensional approaches that enables the educational leaders to fill in the gaps and reduces…

  3. Law School Intentions of Undergraduate Business Students

    ERIC Educational Resources Information Center

    Edmonds, Thomas; Flanagan, David J.; Palmer, Timothy B.

    2013-01-01

    The purpose of this paper is to examine factors that influence business students' intentions to enroll in law school. Scant research has focused on factors that influence business students' decisions to enroll in law school. This paper attempts to fill that gap. Hypotheses about student intentions are based on Ajzen & Fishbein's (1977) Theory…

  4. Development of the Academic Performance Perception Scale

    ERIC Educational Resources Information Center

    Gur, Recep

    2017-01-01

    Purpose: While numerous studies about academic performance that focused on only one factor, studies aiming to measure academicians' perceptions across many factors have not been observed in the literature. The current study aims to fill this gap and become a resource for upcoming studies. The aim of this study is to develop a valid and reliable…

  5. Sequence-based Network Completion Reveals the Integrality of Missing Reactions in Metabolic Networks.

    PubMed

    Krumholz, Elias W; Libourel, Igor G L

    2015-07-31

    Genome-scale metabolic models are central in connecting genotypes to metabolic phenotypes. However, even for well studied organisms, such as Escherichia coli, draft networks do not contain a complete biochemical network. Missing reactions are referred to as gaps. These gaps need to be filled to enable functional analysis, and gap-filling choices influence model predictions. To investigate whether functional networks existed where all gap-filling reactions were supported by sequence similarity to annotated enzymes, four draft networks were supplemented with all reactions from the Model SEED database for which minimal sequence similarity was found in their genomes. Quadratic programming revealed that the number of reactions that could partake in a gap-filling solution was vast: 3,270 in the case of E. coli, where 72% of the metabolites in the draft network could connect a gap-filling solution. Nonetheless, no network could be completed without the inclusion of orphaned enzymes, suggesting that parts of the biochemistry integral to biomass precursor formation are uncharacterized. However, many gap-filling reactions were well determined, and the resulting networks showed improved prediction of gene essentiality compared with networks generated through canonical gap filling. In addition, gene essentiality predictions that were sensitive to poorly determined gap-filling reactions were of poor quality, suggesting that damage to the network structure resulting from the inclusion of erroneous gap-filling reactions may be predictable. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Trends in Use of High-Intensity Statin Therapy After Myocardial Infarction, 2011 to 2014.

    PubMed

    Rosenson, Robert S; Farkouh, Michael E; Mefford, Matthew; Bittner, Vera; Brown, Todd M; Taylor, Ben; Monda, Keri L; Zhao, Hong; Dai, Yuling; Muntner, Paul

    2017-06-06

    Data prior to 2011 suggest that a low percentage of patients hospitalized for acute coronary syndromes filled high-intensity statin prescriptions upon discharge. Black-box warnings, generic availability of atorvastatin, and updated guidelines may have resulted in a change in high-intensity statin use. The aim of this study was to examine trends and predictors of high-intensity statin use following hospital discharge for myocardial infarction (MI) between 2011 and 2014. Secular trends in high-intensity statin use following hospital discharge for MI were analyzed among patients 19 to 64 years of age with commercial health insurance in the MarketScan database (n = 42,893) and 66 to 75 years of age with U.S. government health insurance through Medicare (n = 75,096). Patients filling statin prescriptions within 30 days of discharge were included. High-intensity statins included atorvastatin 40 or 80 mg and rosuvastatin 20 or 40 mg. The percentage of beneficiaries whose first statin prescriptions filled following hospital discharge for MI were for high-intensity doses increased from 33.5% in January through March 2011 to 71.7% in October through November 2014 in MarketScan and from 24.8% to 57.5% in Medicare. Increases in high-intensity statin use following hospital discharge occurred over this period among patients initiating treatment (30.6% to 72.0% in MarketScan and 21.1% to 58.8% in Medicare) and those taking low- or moderate-intensity statins prior to hospitalization (from 27.8% to 62.3% in MarketScan and from 12.6% to 45.1% in Medicare). In 2014, factors associated with filling high-intensity statin prescriptions included male sex, filling beta-blocker and antiplatelet agent prescriptions, and attending cardiac rehabilitation within 30 days following discharge. The use of high-intensity statins following hospitalization for MI increased progressively from 2011 through 2014. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Neurological symptoms among dental assistants: a cross-sectional study

    PubMed Central

    Moen, BE; Hollund, BE; Riise, T

    2008-01-01

    Background Dental assistants help the dentist in preparing material for filling teeth. Amalgam was the filling material mostly commonly used in Norway before 1980, and declined to about 5% of all fillings in 2005. Amalgam is usually an alloy of silver, copper, tin and mercury. Copper amalgam, giving particularly high exposure to mercury was used in Norway until 1994. Metallic mercury is neurotoxic. Few studies of the health of dental assistants exist, despite their exposure to mercury. There are questions about the existence of possible chronic neurological symptoms today within this working group, due to this exposure. The aim of this study was to compare the occurrence of neurological symptoms among dental assistants likely to be exposed to mercury from work with dental filling material, compared to similar health personnel with no such exposure. Methods All dental assistants still at work and born before 1970 registered in the archives of a trade union in Hordaland county of Norway were invited to participate (response rate 68%, n = 41), as well as a similar number of randomly selected assistant nurses (response rate 87%, n = 64) in the same age group. The participants completed a self-administered, mailed questionnaire, with questions about demographic variables, life-style factors, musculoskeletal, neurological and psychosomatic symptoms (Euroquest). Results The dental assistants reported significant higher occurrence of neurological symptoms; psychosomatic symptoms, problems with memory, concentration, fatigue and sleep disturbance, but not for mood. This was found by analyses of variance, adjusting for age, education, alcohol consumption, smoking and personality traits. For each specific neurological symptom, adjusted logistic regression analyses were performed, showing that these symptoms were mainly from arms, hands, legs and balance organs. Conclusion There is a possibility that the higher occurrence of neurological symptoms among the dental assistants may be related to their previous work exposure to mercury amalgam fillings. This should be studied further to assess the clinical importance of the reported symptoms. PMID:18485237

  8. How accurate is automated gap filling of metabolic models?

    PubMed

    Karp, Peter D; Weaver, Daniel; Latendresse, Mario

    2018-06-19

    Reaction gap filling is a computational technique for proposing the addition of reactions to genome-scale metabolic models to permit those models to run correctly. Gap filling completes what are otherwise incomplete models that lack fully connected metabolic networks. The models are incomplete because they are derived from annotated genomes in which not all enzymes have been identified. Here we compare the results of applying an automated likelihood-based gap filler within the Pathway Tools software with the results of manually gap filling the same metabolic model. Both gap-filling exercises were applied to the same genome-derived qualitative metabolic reconstruction for Bifidobacterium longum subsp. longum JCM 1217, and to the same modeling conditions - anaerobic growth under four nutrients producing 53 biomass metabolites. The solution computed by the gap-filling program GenDev contained 12 reactions, but closer examination showed that solution was not minimal; two of the twelve reactions can be removed to yield a set of ten reactions that enable model growth. The manually curated solution contained 13 reactions, eight of which were shared with the 12-reaction computed solution. Thus, GenDev achieved recall of 61.5% and precision of 66.6%. These results suggest that although computational gap fillers are populating metabolic models with significant numbers of correct reactions, automatically gap-filled metabolic models also contain significant numbers of incorrect reactions. Our conclusion is that manual curation of gap-filler results is needed to obtain high-accuracy models. Many of the differences between the manual and automatic solutions resulted from using expert biological knowledge to direct the choice of reactions within the curated solution, such as reactions specific to the anaerobic lifestyle of B. longum.

  9. Study on Predicting Axial Load Capacity of CFST Columns

    NASA Astrophysics Data System (ADS)

    Ravi Kumar, H.; Muthu, K. U.; Kumar, N. S.

    2017-11-01

    This work presents an analytical study and experimental study on the behaviour and ultimate load carrying capacity of axially compressed self-compacting concrete-filled steel tubular columns. Results of tests conducted by various researchers on 213 samples concrete-filled steel tubular columns are reported and present authors experimental data are reported. Two theoretical equations were derived for the prediction of the ultimate axial load strength of concrete-filled steel tubular columns. The results from prediction were compared with the experimental data. Validation to the experimental results was made.

  10. Experimental Study on Comprehensive Performance of Full Tailings Paste Filling in Jiaojia Gold Mine.

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Zou, Q. B.; Wang, P. Z.

    2017-11-01

    Filling mining method is the main method of modern underground mining. High concentration cementation is carried out using coarse tailing of +37 μm, and the mine has maturely used classified tailings paste filling technology. The gold mine studied on the performance of full tailings paste filling in order to maximize the use of tailings, reduce -37 μm fine tailings discharged into the tailing pond, reduce mining cost and eliminate security risks. The results show that: comprehensive index of full tailings paste filling is higher than that of classified tailings high concentration cementation filling, and the full tailings paste filling of 76% mass concentration has the best comprehensive index of slump, expansibility, yield stress and viscosity to meet the mining method requirements, which can effectively reduce the mining loss rate and dilution rate.

  11. Polyaniline nanofiber sponge filled graphene foam as high gravimetric and volumetric capacitance electrode

    NASA Astrophysics Data System (ADS)

    Pedrós, J.; Boscá, A.; Martínez, J.; Ruiz-Gómez, S.; Pérez, L.; Barranco, V.; Calle, F.

    2016-06-01

    A 3D hierarchical porous composite structure is developed via the controlled electrodeposition of a polyaniline nanofiber sponge (PANI-NFS) that fills the pores of a chemical vapor deposited graphene foam (GF). The PANI-NFS/GF composite combines the efficient electronic transport in the GF scaffold (with 100-500 μm pore size) with the rapid diffusion of the electrolyte ions into the high-specific-surface-area and densely-packed PANI-NFS (with 100-500 nm pore size). The factor of 1000 in the pore hierarchy and the synergy between the materials, that form a supercapacitor composite electrode with an integrated extended current collector, lead to both very high gravimetric and volumetric capacitances. In particular, values of 1474 F g-1 and 86 F cm-3 for a GF filling factor of 11% (leading to an estimated value of 782 F cm-3 for 100%), respectively, are obtained at a current density of 0.47 A g-1. Moreover, the composite electrode presents a capacitance retention of 83% after 15000 cycles. This excellent behavior makes the PANI-NFS/GF composite electrodes very attractive for high-performance supercapacitors.

  12. Energy dissipation on flat-sloped stepped spillways: Part 2. Downstream of the inception point

    USDA-ARS?s Scientific Manuscript database

    Many small earthen embankments are faced with inadequate spillway capacity due to filled sediment pools filled with sediment and sediment now filling flood pools. Additionally, hydrologic conditions have changed as a result of urbanization; thereby causing changes in the hazard classification of th...

  13. A Science-Based Understanding of Cermet Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cesarano, III, Joseph; Roach, Robert Allen; Kilgo, Alice C.

    2006-04-01

    This report is a summary of the work completed in FY01 for science-based characterization of the processes used to fabricate 1) cermet vias in source feedthrus using slurry and paste-filling techniques and 2) cermet powder for dry pressing. Common defects found in cermet vias were characterized based on the ability of subsequent processing techniques (isopressing and firing) to remove the defects. Non-aqueous spray drying and mist granulation techniques were explored as alternative methods of creating CND50, the powder commonly used for dry pressed parts. Compaction and flow characteristics of these techniques were analyzed and compared to standard dry-ball-milled CND50. Duemore » to processing changes, changes in microstructure can occur. A microstructure characterization technique was developed to numerically describe cermet microstructure. Machining and electrical properties of dry pressed parts were also analyzed and related to microstructure using this analytical technique.3 Executive SummaryThis report outlines accomplishments in the science-based understanding of cermet processing up to fiscal year 2002 for Sandia National Laboratories. The three main areas of work are centered on 1) increasing production yields of slurry-filled cermets, 2) evaluating the viability of high-solids-loading pastes for the same cermet components, and 3) optimizing cermet powder used in pressing processes (CND50). An additional development that was created as a result of the effort to fully understand the impacts of alternative processing techniques is the use of analytical methods to relate microstructure to physical properties. Recommendations are suggested at the end of this report. Summaries of these four efforts are as follows:1.Increase Production Yields of Slurry-Filled Cermet Vias Finalized slurry filling criteria were determined based on three designs of experiments where the following factors were analyzed: vacuum time, solids loading, pressure drop across the filter paper, slurry injection rate, via prewetting, slurry injection angle, filter paper prewetting, and slurry mixing time. Many of these factors did not have an influence on defect formation. In order of decreasing importance, critical factors for defect formation by slurry filling are vacuum time (20 sec. optimal), slurry solids loading (20.0 g of cermet with 13.00 g of DGBEA solvent (21.2 vol%)), filling with the pipette in a vertical position, and faster injection rates (%7E765 l/s) as preferable to slower. No further recommendations for improvement to this process can be suggested. All findings of the slurry filling process have been transferred to CeramTec, the supplier. Paste filling methods appear to show more promise of increasing production yields. The types of flaws commonly found in slurry-filled vias were identified and followed throughout the entire source feedthru process. In general, all sizes of cracks healed during isopressing and firing steps. Additionally, small to medium sized voids (less than 1/3 the via diameter) can be healed. Porosity will usually lead to via necking, which may cause the part to be out of specification. Large voids (greater 4 than 1/3 of the diameter) and partial fills are not healed or produce significant necking. 2.Viability of High-Solids-Loading-Cermet Paste for Filling Source Feedthru ViaThe paste-filling process is easy to implement and easier to use. The high solids loading (>40 vol %) reduces the incidence of drying defects, which are seen in slurry filled (%7E23 vol %) vias. Additionally, the way in which the vias are filled (the paste is pushed from entrance to exit, displacing air as the paste front progresses), reduces the chance of entrapped voids, which are common in the slurry filling process. From the fair number of samples already filled, the likelihood of this process being a viable and reliable process is very good. Issues of concern for the paste process, as with any new process, are any problems that may arise in subsequent manufacturing stages of the neutron tube that may be affected by subtle changes in microstructure. Both MC4277 and MC4300-type source feedthrus were paste-filled by hand. X-ray analysis showed a much lower existence of voids in the green parts as compared to slurry-filled parts. The paste shows improvements in shelf life (weeks) as compared to slurry (minutes). This method of introducing the cermet to the via also lends itself very well to an automated filling process where a machine can either drill vias or, with the aid of a vision system, find pre-drilled vias and fill them with paste. The pastes used in this work prove the concept of this automated filling process as MC4277 sources have been filled using such a prototype machine, however, better performing pastes can be developed which are less hazardous (aqueous systems). The paste process was also used to successfully fill MC4300 "dogleg" type sources.3.Optimize CND50 Two methods of creating granulated cermet powder for comparison with dry-ball milled CND50 were explored. The first method, non-aqueous spray drying, was performed at Niro Inc. used a 40/60 (wt %) ethanol/toluene solvent and three binder systems; polyvinyl butyral (B79), ethylcellulose (Ethocel), and hydroxypropylcellulose (Klucel). Due to the nature of small spray-dry systems, an excess amount of fines was present in the granulated powder, which may have contributed to the low angles of repose (68 to 78). This is a moderate increase in 5 flowability as standard dry-ball milled powder possesses an angle of repose of 79-89. Mist granulated powders were produced with a tert-butanol solvent and polyvinyl butyral binder system. The angles of repose were more promising (28). More investigation into the mist granulation method is required. Also, aqueous spray drying may be possible with cermet and should be explored. Compaction of all granulated powders is much closer to a proven pressing powder (Sandi94 - angle of repose 29) which should allow cermet to be pressed to near net shape where die filling is difficult for non-flowing powders.4.Microstructure Characterization An analytical technique was developed to numerically characterize microstructures in terms of molybdenum dispersion, homogeneity, and percolation indices. This technique was applied to dry-ball-milled samples of various ball-milling times (0.5 to 20 hours). Significant change in the microstructure could be seen with milling time. Increased milling time caused agglomeration of molybdenum particles, increasing the percolation index, whereas short milling times promoted higher dispersion indices. This phenomenon is contrary to conventional understanding of mixing. However, conventional ball milling does not usually incorporate granules with binder and separate particles. This discrepancy may explain the odd mixing behavior. It is important to note that the high percolation index possessed by long ball mill times showed lower electrical resistance than low-percolation-index microstructures. However, machinability of high percolation, low-dispersion-index microstructures were poor as compared to microstructures with high dispersion indices and moderate percolation indices. This trade-off between dispersion and percolation (at constant molybdenum levels) suggests that microstructures can be achieved that posses good mechanical and electrical properties. Coincidentally, microstructures that satisfy this condition are produced by the standard dry-ball-milled CND50 (4 hour ball mill time). The performance and sensitivity of the microstructure characterization technique should be evaluated, specifically for electrical conductivity. Processing techniques to decrease the percolation index (lowering molybdenum content, excess ball milling, 6 larger molybdenum particles, etc.) should be employed to determine the point where cermet is not conductive or falls below electrical conduction specifications.7« less

  14. The resonant state at filling factor ν = 1/2 in chiral fermionic ladders

    NASA Astrophysics Data System (ADS)

    Haller, Andreas; Rizzi, Matteo; Burrello, Michele

    2018-05-01

    Helical liquids have been experimentally realized in both nanowires and ultracold atomic chains as the result of strong spin–orbit interactions. In both cases the inner degrees of freedom can be considered as an additional space dimension, providing an interpretation of these systems as chiral synthetic ladders, with artificial magnetic fluxes determined by the spin–orbit terms. In this work, we characterize the helical state which appears at filling ν = 1/2: this state is generated by a gap arising in the spin sector of the corresponding Luttinger liquid and it can be interpreted as the one-dimensional (1D) limit of a fractional quantum Hall state of bosonic pairs of fermions. We study its main features, focusing on entanglement properties and correlation functions. The techniques developed here provide a key example for the study of similar quasi-1D systems beyond the semiclassical approximation commonly adopted in the description of the Laughlin-like states.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmedzhanov, I M; Kibalov, D S; Smirnov, V K

    We report a detailed numerical simulation of the reflection of visible light from a sub-wavelength grating with a rectangular profile on the silicon surface. Simulation is carried out by the effective refractive index method and rigorous coupled-wave analysis. The dependences of the reflectance on the grating depth, fill factor and angle of incidence for TE and TM polarisations are obtained and analysed. Good agreement between the results obtained by the two methods for grating periods of ∼100 nm is found. The possibility of reducing the polarised light reflectance to about 1% by adjusting the depth and the grating fill factormore » is demonstrated. The characteristics of the Brewster effect manifestation (pseudo-Brewster angle) in the system under study are considered. The possibility of the pseudo-Brewster angle existence and its absence for both polarisations of the incident light is shown as a function of the parameters of a rectangular nanostructure on the surface. (laser applications and other topics in quantum electronics)« less

  16. Magnetorheological behavior of magnetoactive elastomers filled with bimodal iron and magnetite particles

    NASA Astrophysics Data System (ADS)

    Sorokin, Vladislav V.; Stepanov, Gennady V.; Shamonin, Mikhail; Monkman, Gareth J.; Kramarenko, Elena Yu

    2017-03-01

    Magnetoactive elastomers (MAE) based on soft silicone matrices, filled with various proportions of large diameter (approximately 50 μm) iron and small diameter (approximately 0.5 μm) magnetite particles are synthesized. Their rheological behavior in homogeneous magnetic fields up to 600 mT is studied in detail. The addition of small magnetite particles facilitates fabrication of uniformly distributed magnetic elastomer composites by preventing aggregation and sedimentation of large particles during curing. It is shown that using the proposed bimodal filler particles it is possible to tailor various magnetorheological (MR) properties which can be useful for different target applications. In particular, either absolute or relative magnetorheological effects can be tuned. The value of the damping factor as well as the range of deformation amplitudes for the linear viscoelastic regime can be chosen. The interdependencies between different MR properties of bimodal MAEs are considered. The results are discussed in the model framework of particle network formation under the simultaneous influence of external magnetic fields and mechanical deformation.

  17. Local Community Perceptions of Mine Site Restoration Using Phytoremediation in Abitibi-Temiscamingue (Quebec).

    PubMed

    Vodouhe, Fifanou G; Khasa, Damase P

    2015-01-01

    This work explores factors supporting people perception about mine site restoration and phytoremediation. Phytoremediation is one of the most eco-friendly restoration strategy emerged since the last two decades but studies on local people perception on this restoration strategy are scarce. To fill in this gap, data were collected from mining stakeholders using a structured questionnaire administered through snowball sampling method. We used Multiple Correspondence Analysis as implemented in the software XLSTAT to visualize relationship between participants' characteristics, their view on mine site restoration and phytoremediation. Results clearly show out that people perception on mine site restoration is influenced by mining activities effects on health and region attractiveness. Phytoremediation (65.21%) was rated positively with regard to its environment potential, aesthetic and consideration for future generation followed by fillings and excavating. Restoration strategy costs have no effect on people choice and participants prefer use of shrubs as vegetation component of phytoremediation to reach their restoration objective.

  18. An enhanced mangiferaindica for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Uno, U. E.; Emetere, M. E.; Fadipe, L. A.; Oluranti, Jonathan

    2016-02-01

    Titanium dioxide (T1O2) is preferred to Zinc oxide as mesoporous oxide layer because it raised the efficiency of DSSCs from 1% to 7%. The chemistry of the process however seem rigorous to allow the light induced electron injection from the adsorbed dye into the nanocrystallites i.e. which renders the TiO2 conductive. The DSSC fabricated consist of 2.25 cm2 active area of titanium dioxide coated on FTO glass (fluorine tin oxide) immersed in ethanol solution of natural dye extracted as an anode (electrode) and counter electrode. These two electrodes were coupled together and the space between them was filled with the Iodolyte AN-50 as solid electrolyte or redox mediator. The photo electrochemical parameters of the dye extracted (Mango fruit Peel) from the results obtained are short circuit current (Isc)= 1.22×10-2, current density (Jsc)=4.07×10-2, open circuit voltage (voc) =0.53V, fill factor (FF) of 0.16 and the overall conversion efficiency (Eff) =0.345%.

  19. Platelet rich fibrin in jaw defects

    NASA Astrophysics Data System (ADS)

    Nica, Diana; Ianes, Emilia; Pricop, Marius

    2016-03-01

    Platelet rich fibrin (PRF) is a tissue product of autologous origin abundant in growth factors, widely used in regenerative procedures. Aim of the study: Evaluation of the regenerative effect of PRF added in the bony defects (after tooth removal or after cystectomy) Material and methods: The comparative nonrandomized study included 22 patients divided into 2 groups. The first group (the test group) included 10 patients where the bony defects were treated without any harvesting material. The second group included 12 patients where the bony defects were filled with PRF. The bony defect design was not critical, with one to two walls missing. After the surgeries, a close clinically monitoring was carried out. The selected cases were investigated using both cone beam computer tomography (CBCT) and radiographic techniques after 10 weeks postoperatively. Results: Faster bone regeneration was observed in the bony defects filled with PRF comparing with the not grafted bony defects. Conclusions: PRF added in the bony defects accelerates the bone regeneration. This simplifies the surgical procedures and decreases the economic costs.

  20. Demographic and Predeparture Factors Associated With Drinking and Alcohol-Related Consequences for College Students Completing Study Abroad Experiences

    PubMed Central

    Pedersen, Eric R.; Skidmore, Jessica R.; Aresi, Giovanni

    2014-01-01

    Objective: Study abroad students are at-risk for increased and problematic drinking behavior. As few efforts have been made to examine this at-risk population, we predicted drinking and alcohol-related consequences abroad from predeparture and site-specific factors. Participants: The sample consisted of 339 students completing study abroad programs. Method: Participants filled out online measures at predeparture, abroad, and at post-return. Results: We found drinking and consequences abroad were predicted by a number of factors including demographics (e.g., younger age, male sex, Greek affiliation, White ethnicity), student factors (e.g. low GPA, major area of study), study abroad site factors (e.g., apartment living abroad, study in Europe), predeparture levels of drinking and consequences, sensation seeking, and goals related to social gathering. Conclusions: Findings can be used to inform campus policies for admission to study abroad programs as well as assist in the development of interventions targeted toward preventing risk for students during abroad experiences. PMID:24499190

  1. Endodontic decision making for asymptomatic root-filled teeth with apical periodontitis - A radiographic survey.

    PubMed

    Taha, Nessrin A; Albashaireh, Zakereyya S; Alfied, Rmdan G

    2018-03-23

    The aim of the study was to compare decision making for asymptomatic root-filled teeth among dentists with differing educational backgrounds. Case scenarios based on 14 radiographs were created and 150 participants were asked to choose from five alternative treatment decisions and to state the rationale. Demographic data of the participants were recorded. Frequency distribution and cross-tabulation were performed; chi square testing was used for comparisons and logistic regression was performed to detect significant differences. The overall response rate was 87.3%. The practitioners chose intervention predominantly with non-surgical retreatment a common choice. Poor technical quality was a driving factor, while the existing poor coronal restoration and the need for a crown were generally not taken into account by general dentists. Speciality and experience were significant factors. Practitioners were more inclined to retain rather than extract teeth. It is concluded that clear guidelines listing factors to consider for intervention are required. © 2018 Australian Society of Endodontology Inc.

  2. Fill factor in organic solar cells can exceed the Shockley-Queisser limit

    NASA Astrophysics Data System (ADS)

    Trukhanov, Vasily A.; Bruevich, Vladimir V.; Paraschuk, Dmitry Yu.

    2015-06-01

    The ultimate efficiency of organic solar cells (OSC) is under active debate. The solar cell efficiency is calculated from the current-voltage characteristic as a product of the open-circuit voltage (VOC), short-circuit current (JSC), and the fill factor (FF). While the factors limiting VOC and JSC for OSC were extensively studied, the ultimate FF for OSC is scarcely explored. Using numerical drift-diffusion modeling, we have found that the FF in OSC can exceed the Shockley-Queisser limit (SQL) established for inorganic p-n junction solar cells. Comparing charge generation and recombination in organic donor-acceptor bilayer heterojunction and inorganic p-n junction, we show that such distinctive properties of OSC as interface charge generation and heterojunction facilitate high FF, but the necessary condition for FF exceeding the SQL in OSC is field-dependence of charge recombination at the donor-acceptor interface. These findings can serve as a guideline for further improvement of OSC.

  3. Process Research On Polycrystalline Silicon Material (PROPSM). [flat plate solar array project

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance-limiting mechanisms in large-grain (greater than 1 to 2 mm in diameter) polycrystalline silicon solar cells were investigated by fabricating a matrix of 4 sq cm solar cells of various thickness from 10 cm x 10 cm polycrystalline silicon wafers of several bulk resistivities. Analysis of the illuminated I-V characteristics of these cells suggests that bulk recombination is the dominant factor limiting the short-circuit current. The average open-circuit voltage of the polycrystalline solar cells is 30 to 70 mV lower than that of co-processed single-crystal cells; the fill-factor is comparable. Both open-circuit voltage and fill-factor of the polycrystalline cells have substantial scatter that is not related to either thickness or resistivity. This implies that these characteristics are sensitive to an additional mechanism that is probably spatial in nature. A damage-gettering heat-treatment improved the minority-carrier diffusion length in low lifetime polycrystalline silicon, however, extended high temperature heat-treatment degraded the lifetime.

  4. Understanding the origins of uncertainty in landscape-scale variations of emissions of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Milne, Alice; Haskard, Kathy; Webster, Colin; Truan, Imogen; Goulding, Keith

    2014-05-01

    Nitrous oxide is a potent greenhouse gas which is over 300 times more radiatively effective than carbon dioxide. In the UK, the agricultural sector is estimated to be responsible for over 80% of nitrous oxide emissions, with these emissions resulting from livestock and farmers adding nitrogen fertilizer to soils. For the purposes of reporting emissions to the IPCC, the estimates are calculated using simple models whereby readily-available national or international statistics are combined with IPCC default emission factors. The IPCC emission factor for direct emissions of nitrous oxide from soils has a very large uncertainty. This is primarily because the variability of nitrous oxide emissions in space is large and this results in uncertainty that may be regarded as sample noise. To both reduce uncertainty through improved modelling, and to communicate an understanding of this uncertainty, we must understand the origins of the variation. We analysed data on nitrous oxide emission rate and some other soil properties collected from a 7.5-km transect across contrasting land uses and parent materials in eastern England. We investigated the scale-dependence and spatial uniformity of the correlations between soil properties and emission rates from farm to landscape scale using wavelet analysis. The analysis revealed a complex pattern of scale-dependence. Emission rates were strongly correlated with a process-specific function of the water-filled pore space at the coarsest scale and nitrate at intermediate and coarsest scales. We also found significant correlations between pH and emission rates at the intermediate scales. The wavelet analysis showed that these correlations were not spatially uniform and that at certain scales changes in parent material coincided with significant changes in correlation. Our results indicate that, at the landscape scale, nitrate content and water-filled pore space are key soil properties for predicting nitrous oxide emissions and should therefore be incorporated into process models and emission factors for inventory calculations.

  5. Prospective Analysis of Primary Breast Augmentation on Body Image Using the BREAST-Q: Results from a Nationwide Study

    PubMed Central

    Pusic, Andrea; Murphy, Diane K.

    2016-01-01

    Background: The Breast Implant Follow-up Study is a large, ongoing observational study of women who received Natrelle round silicone-filled or saline-filled breast implants. This analysis describes patient-reported outcomes in the cohort who underwent breast augmentation. Methods: Subjects prospectively completed two validated scales of the BREAST-Q (satisfaction with breasts and psychosocial well-being) preoperatively and at 1 and 4 years postoperatively. Effect size and z tests were used to compare differences between preoperative versus postoperative scores; multivariate mixed models were used to compare differences in scores between silicone-filled and saline-filled implants. Results: Of 17,899 subjects completing the BREAST-Q preoperatively, 14,514 (81.1 percent) completed the postoperative questionnaire (12,726 received silicone-filled implants and 1788 received saline-filled implants). Overall, satisfaction with breasts and psychosocial well-being increased significantly at postoperative year 1 (p < 0.0001 for both), and the improvement was sustained at year 4 (p < 0.0001 for both). Large effect sizes were observed for satisfaction with breasts (2.0 at year 1; 1.8 at year 4) and psychosocial well-being (1.2 at year 1; 1.0 at year 4). In the multivariate model, silicone-filled implants were associated with significantly greater improvement compared with saline-filled implants for satisfaction with breasts and psychosocial well-being at year 1 (p < 0.0001 for both) and year 4 (p < 0.0001 and p < 0.0019, respectively). Conclusions: Breast implants are effective in improving women’s quality of life. The authors found significant and sustained improvements in satisfaction and psychosocial well-being in women undergoing breast augmentation with Natrelle silicone-filled or saline-filled implants. CLINICAL QUESTION/LEVEL OF EVIDENCE: Therapeutic, IV. PMID:27219264

  6. Accuracy of expressions for the fill factor of a solar cell in terms of open-circuit voltage and ideality factor

    NASA Astrophysics Data System (ADS)

    Leilaeioun, Mehdi; Holman, Zachary C.

    2016-09-01

    An approximate expression proposed by Green predicts the maximum obtainable fill factor (FF) of a solar cell from its open-circuit voltage (Voc). The expression was originally suggested for silicon solar cells that behave according to a single-diode model and, in addition to Voc, it requires an ideality factor as input. It is now commonly applied to silicon cells by assuming a unity ideality factor—even when the cells are not in low injection—as well as to non-silicon cells. Here, we evaluate the accuracy of the expression in several cases. In particular, we calculate the recombination-limited FF and Voc of hypothetical silicon solar cells from simulated lifetime curves, and compare the exact FF to that obtained with the approximate expression using assumed ideality factors. Considering cells with a variety of recombination mechanisms, wafer doping densities, and photogenerated current densities reveals the range of conditions under which the approximate expression can safely be used. We find that the expression is unable to predict FF generally: For a typical silicon solar cell under one-sun illumination, the error is approximately 6% absolute with an assumed ideality factor of 1. Use of the expression should thus be restricted to cells under very low or very high injection.

  7. Comparative Analysis of Hexagonal Solid Silica and Nitro-benzene Filled Hollow Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Shahiruddin; Singh, Dharmendra K.; Hassan, M. A.

    2018-02-01

    A comparative study of five ring solid core and nitrobenzene filled hollow core liquid filled photonic crystal fiber (PCF) are presented. Considering the same structure, one is used as solid silica and another one is filled with nitrobenzene in the core. Here the paper elaborates the confinement loss, dispersion properties and birefringence of an index-guiding PCF with asymmetric cladding designed and analyzed by the finite-element method. The proposed structure shows the low confinement loss in case of solid silica, negative dispersion in nitrobenzene filled hollow core PCF and high birefringence in both the cases. The calculated values shows flat zero confinement loss in 0.7 µm to 1.54 µm range, flat zero dispersion is achieved in solid core and -2000 ps/km-nm in nitrobenzene filled hollow core PCF and high birefringence in the range of 10-3 in nitrobenzene filled hollow core PCF. Results show the relative analysis at different air fill fraction.

  8. Burrowing inhibition by fine textured beach fill: Implications for recovery of beach ecosystems

    NASA Astrophysics Data System (ADS)

    Viola, Sloane M.; Hubbard, David M.; Dugan, Jenifer E.; Schooler, Nicholas K.

    2014-10-01

    Beach nourishment is often considered the most environmentally sound method of maintaining eroding shorelines. However, the ecological consequences are poorly understood. Fill activities cause intense disturbance and high mortality and have the potential to alter the diversity, abundance, and distribution of intertidal macroinvertebrates for months to years. Ecological recovery following fill activities depends on successful recolonization and recruitment of the entire sandy intertidal community. The use of incompatible sediments as fill material can strongly affect ecosystem recovery. We hypothesized that burrowing inhibition of intertidal animals by incompatible fine fill sediments contributes to ecological impacts and limits recovery in beach ecosystems. We experimentally investigated the influence of intertidal zone and burrowing mode on responses of beach invertebrates to altered sediment texture (28-38% fines), and ultimately the potential for colonization and recovery of beaches disturbed by beach filling. Using experimental trials in fill material and natural beach sand, we found that the mismatched fine fill sediments significantly inhibited burrowing of characteristic species from all intertidal zones, including sand crabs, clams, polychaetes, isopods, and talitrid amphipods. Burrowing performance of all five species we tested was consistently reduced in the fill material and burrowing was completely inhibited for several species. The threshold for burrowing inhibition by fine sediment content in middle and lower beach macroinvertebrates varied by species, with highest sensitivity for the polychaete (4% fines, below the USA regulatory limit of 10% fines), followed by sand crabs and clams (20% fines). These results suggest broader investigation of thresholds for burrowing inhibition in fine fill material is needed for beach animals. Burrowing inhibition caused by mismatched fill sediments exposes beach macroinvertebrates to stresses, which could depress recruitment and survival at all intertidal zones. Our results suggest use of incompatible fine fill sediments from dredging projects creates unsuitable intertidal habitat that excludes burrowing macroinvertebrates and could delay beach ecosystem recovery. Through effects on beach invertebrates that are prey for shorebirds and fish, the ecological impacts of filling with mismatched fine sediments could influence higher trophic levels and extend beyond the beach itself.

  9. [Factor structure of symptoms in the Kraków Depression inventory (KID) IO "C1"].

    PubMed

    Modrzejewska, Renata; Bomba, Jacek; Beauvale, Andrzej

    2010-01-01

    The aim of this article is partial empirical verification of the depression image theoretical concept underlying the KID IO"C1" construction, and also, a check of the questionnaire's factor relevancy. KID results of a study of an untreated population sample of 17-year-olds were analysed statistically. Out of 1823 questionnaires, 1349 were included in the analysis (560 filled in by boys and 789 girls by girls). Of these, 499 respondents received a screening diagnosis of depression. 474 sheets were rejected at random to standardise the distribution of the overall scale results. In search of the presence of a general factor and to verify the legitimacy of the division of depressive symptoms according to the clinical criterion, factor analyses were conducted using the principal components method with oblimin, quatrimax and varimax rotations separately and jointly for both sexes. The following new factors were identified: I--pessimism, II--mood instability, III--difficulty in learning, IV--self-destruction, V--fear of the future, VI--eating problems. The analyses conducted only partially confirm the validity ofa clinical-picture based questionnaire. A non-compliance of a number of factors with the assumed questionnaire scales emerges. A non-uniform symptomatic depression image in late adolescence phase is confirmed. Two factors stand out decidedly: self-destructive behaviours and eating problems.

  10. The eudaimonic component of satisfaction with life and psychological well-being in Spanish cultures.

    PubMed

    Díaz, Darío; Stavraki, María; Blanco, Amalio; Gandarillas, Beatriz

    2015-01-01

    In the study of well-being there are two partially overlapping traditions that have been developed in parallel. Subjective well-being (SWB) has been associated with the hedonistic approach of well-being, and psychological well-being (PWB) with the eudaimonistic one. However, satisfaction with life, the most common SWB indicator, is not strictly a hedonic concept and contains many eudaimonic components. The objective of this research is to examine whether a Eudaimonic Well-being G-Factor of Satisfaction with Life (SWLS) and Psychological Well-being Scales (PWBS) emerges. 400 people from the general population of Colombia (Study 1) and 401 from Spain (Study 2), recruited via advertisement, voluntarily participated and filled in a booklet containing, in order of appearance, the PWBS and the SWLS. According to our hypothesis, parallel analysis, eigenvalues, scree plot graphs and exploratory factor analysis (Study 1) suggested the existence of a one-factor structure. Confirmatory factor analysis (Study 2) indicated that this one-factor model provided excellent data fit. Results of a multi-group confirmatory factor analysis confirmed cross-cultural factor invariance. These results question the view that the satisfaction with life indicator is uniquely hedonic and point to the need for a greater integration between hedonic and eudaimonic traditions.

  11. Synthetic Observations of 21 cm H I Line Profiles from Inhomogeneous Turbulent Interstellar H I Gas with Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Fukui, Yasuo; Hayakawa, Takahiro; Inoue, Tsuyoshi; Torii, Kazufumi; Okamoto, Ryuji; Tachihara, Kengo; Onishi, Toshikazu; Hayashi, Katsuhiro

    2018-06-01

    We carried out synthetic observations of interstellar atomic hydrogen at 21 cm wavelength by utilizing the magnetohydrodynamic numerical simulations of the inhomogeneous turbulent interstellar medium. The cold neutral medium (CNM) shows a significantly clumpy distribution with a small volume filling factor of 3.5%, whereas the warm neutral medium (WNM) has a distinctly different and smooth distribution with a large filling factor of 96.5%. In projection on the sky, the CNM exhibits a highly filamentary distribution with a subparsec width, whereas the WNM shows a smooth, extended distribution. In the H I optical depth, the CNM is dominant and the contribution of the WNM is negligibly small. The CNM has an area covering factor of 30% in projection, while the WNM has a covering factor of 70%. This means that the emission–absorption measurements toward radio continuum compact sources tend to sample the WNM with a probability of 70%, yielding a smaller H I optical depth and a smaller H I column density than those of the bulk H I gas. The emission–absorption measurements, which are significantly affected by the small-scale large fluctuations of the CNM properties, are not suitable for characterizing the bulk H I gas. Larger-beam emission measurements that are able to fully sample the H I gas will provide a better tool for that purpose, if a reliable proxy for hydrogen column density, possibly dust optical depth and gamma rays, is available. The present results provide a step toward precise measurements of the interstellar hydrogen with ∼10% accuracy. This will be crucial in interstellar physics, including identification of the proton–proton interaction in gamma-ray supernova remnants.

  12. A Questionnaire for the Assessment of Violent Behaviors in Young Couples: The Italian Version of Dating Violence Questionnaire (DVQ).

    PubMed

    Presaghi, Fabio; Manca, Maura; Rodriguez-Franco, Luis; Curcio, Giuseppe

    2015-01-01

    In the last years, intimate partner violence (IPV) became a relevant problem for community and for social life, particularly in young people. Its correct assessment and evaluation in the population is mandatory. Our objectives were: Confirm factor structure of Dating Violence Questionnaire (DVQ) and investigate its convergent and divergent validity. The DVQ along with other personality measures were filled by a sample of 418 university students (Females = 310) of average age of 23 y.o. (SD = 4.71). A subsample of participants (223 students) consented in being involved also in retest and filled also the Revised Eysenck Personality Questionnaire (short form) and a brief scale for describing the behavior of the (past) partner after the breaking of the relationship (BRS). The 8-factor structure, with respect to the two other competing models, reported better fit indexes and showed significant correlations with other personality measures. Personality traits, both Neuroticism and Psychoticism, correlated with Sexual Violence, while Detachment correlated only with Neuroticism and Coercion, Humiliation and Physical Violence correlated with only Psychoticism. Extraversion did not report significant relationships with any of the 8 DVQ factors. Also the predictive validity of DVQ was satisfactory with the partner violent reaction to the break of relationship predicted positively predicted by Coercion (b = 0.22) and by Humiliation (b = 0.20) and negatively by Emotional Punishment (b = -0.18). The present results indicate a good factor structure of the questionnaire, and interesting correlations with personality traits, allowing to identify psychological aspects with a predisposing role for anti-social aggressive behaviors. Further studies will be aimed at ascertaining other possible determinants of intimate partner violence and the weight of cultural aspects.

  13. A Questionnaire for the Assessment of Violent Behaviors in Young Couples: The Italian Version of Dating Violence Questionnaire (DVQ)

    PubMed Central

    Presaghi, Fabio; Manca, Maura; Rodriguez-Franco, Luis; Curcio, Giuseppe

    2015-01-01

    In the last years, intimate partner violence (IPV) became a relevant problem for community and for social life, particularly in young people. Its correct assessment and evaluation in the population is mandatory. Our objectives were: Confirm factor structure of Dating Violence Questionnaire (DVQ) and investigate its convergent and divergent validity. The DVQ along with other personality measures were filled by a sample of 418 university students (Females = 310) of average age of 23 y.o. (SD = 4.71). A subsample of participants (223 students) consented in being involved also in retest and filled also the Revised Eysenck Personality Questionnaire (short form) and a brief scale for describing the behavior of the (past) partner after the breaking of the relationship (BRS). The 8-factor structure, with respect to the two other competing models, reported better fit indexes and showed significant correlations with other personality measures. Personality traits, both Neuroticism and Psychoticism, correlated with Sexual Violence, while Detachment correlated only with Neuroticism and Coercion, Humiliation and Physical Violence correlated with only Psychoticism. Extraversion did not report significant relationships with any of the 8 DVQ factors. Also the predictive validity of DVQ was satisfactory with the partner violent reaction to the break of relationship predicted positively predicted by Coercion (b = 0.22) and by Humiliation (b = 0.20) and negatively by Emotional Punishment (b = -0.18). The present results indicate a good factor structure of the questionnaire, and interesting correlations with personality traits, allowing to identify psychological aspects with a predisposing role for anti-social aggressive behaviors. Further studies will be aimed at ascertaining other possible determinants of intimate partner violence and the weight of cultural aspects. PMID:25992602

  14. Using Web-Based and Paper-Based Questionnaires for Collecting Data on Fertility Issues Among Female Childhood Cancer Survivors: Differences in Response Characteristics

    PubMed Central

    Overbeek, Annelies; van der Pal, Helena J; Versluys, A. Birgitta; Bresters, Dorine; van Leeuwen, Flora E; Lambalk, Cornelis B; Kaspers, Gertjan J.L; van Dulmen-den Broeder, Eline

    2011-01-01

    Background Web-based questionnaires have become increasingly popular in health research. However, reported response rates vary and response bias may be introduced. Objective The aim of this study was to evaluate whether sending a mixed invitation (paper-based together with Web-based questionnaire) rather than a Web-only invitation (Web-based questionnaire only) results in higher response and participation rates for female childhood cancer survivors filling out a questionnaire on fertility issues. In addition, differences in type of response and characteristics of the responders and nonresponders were investigated. Moreover, factors influencing preferences for either the Web- or paper-based version of the questionnaire were examined. Methods This study is part of a nationwide study on reproductive function, ovarian reserve, and risk of premature menopause in female childhood cancer survivors. The Web-based version of the questionnaire was available for participants through the Internet by means of a personalized user name and password. Participants were randomly selected to receive either a mixed invitation (paper-based questionnaire together with log-in details for Web-based questionnaire, n = 137) or a Web-only invitation (log-in details only, n = 140). Furthermore, the latter group could request a paper-based version of the questionnaire by filling out a form. Results Overall response rates were comparable in both randomization groups (83% mixed invitation group vs 89% in Web-only invitation group, P = .20). In addition, participation rates appeared not to differ (66% or 90/137, mixed invitation group vs 59% or 83/140, Web-only invitation group, P =.27). However, in the mixed invitation group, significantly more respondents filled out the paper-based questionnaire compared with the Web-only invitation group (83% or 75/90 and 65% or 54/83, respectively, P = .01). The 44 women who filled out the Web-based version of the questionnaire had a higher educational level than the 129 women who filled out the paper-based version (P = .01). Furthermore, the probability of filling out the Web-based questionnaire appeared to be greater for women who were allocated to the Web-only invitation group (OR = 2.85, 95% CI 1.31 - 6.21), were older (OR = 1.08, 95% CI 1.02 - 1.15), had a higher educational level (OR high vs low = 0.06, 95% CI 0.01 - 0.52), or were students (OR employed vs student = 3.25, 95% CI 1.00 - 10.56). Conclusions Although overall response as well as participation rates to both types of invitations were similar, adding a paper version of a questionnaire to a Web-only invitation resulted in more respondents filling out the paper-based version. In addition, women who were older, had a higher level of education, or were students, were more likely to have filled out the Web-based version of the questionnaire. Given the many advantages of Web-based over paper-based questionnaires, researchers should strongly consider using Web-based questionnaires, although possible response bias when using these types of questionnaires should be taken into account. Trial Registration Nederlands Trial Register NTR2922; http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=2922 (Archived by WebCite at http://www.webcitation.org/5zRRdMrDv) PMID:21955527

  15. How sudden is a compelling desire to void? An observational cystometric study on the suddenness of this sensation.

    PubMed

    De Wachter, Stefan; Wyndaele, Jean-Jacques

    2008-04-01

    To evaluate whether a compelling desire to void (CDV) is always perceived suddenly, or whether it can result from the gradual build-up of bladder-filling sensations. The pattern of filling sensations was evaluated during standard cystometric bladder filling in 75 patients who complained of urgency and showed detrusor overactivity during cystometry. Cystometric filling ended when a CDV was reported. The 'warning volume' is defined as the difference in volume between the first perception of filling and the volume at CDV. Different patterns of bladder-filling sensations were reported. A CDV occurred suddenly, without a preceding sensation in 13% of the patients, whereas 66% reported at least two normal preceding filling sensations before a CDV. The bladder volume at the CDV was significantly smaller in patients that reported no or just one preceding sensation compared with those that reported the normal pattern of two or three sensations (P < 0.005). The bladder volume at which the first filling perception was reported was not different regardless of whether it was described as a first sensation of filling, a first desire or a CDV (P = 0.42). The warning volumes were not different between patients with one or no standardized filling sensations (P = 0.7), but they were significantly smaller than in patients with two or three filling sensations (P = 0.85). A CDV can occur suddenly if normal filling sensation is disturbed, but also gradually if normal filling sensation is preserved. In cases of disturbed filling sensation, the volume at CDV and the warning volume are significantly lower.

  16. Theory Of Dewetting In A Filled Elastomer Under Stress

    NASA Technical Reports Server (NTRS)

    Peng, Steven T. J.

    1993-01-01

    Report presents theoretical study of dewetting between elastomeric binder and filler particles of highly filled elastomer under multiaxial tension and resulting dilatation of elastomer. Study directed toward understanding and predicting nonlinear stress-vs.-strain behavior of filled elastomeric rocket propellant, also applicable to rubber in highly loaded tire or in damping pad.

  17. Ionic charge accumulation at microscopic interfaces in filled composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Yutao; Wang Xinheng; Xie Hengkun

    1996-12-31

    In this paper the charge accumulation process at microscopic interfaces in insulating materials filled with inorganic fillers is analyzed by using a unit model. Dynamic equations of interfacial ionic charge accumulation are proposed by the authors. The charge accumulation and its regulations are proved by TSC test results obtained on silica filled EPDM samples.

  18. Accuracy of micro powder dosing via a vibratory sieve-chute system.

    PubMed

    Besenhard, M O; Faulhammer, E; Fathollahi, S; Reif, G; Calzolari, V; Biserni, S; Ferrari, A; Lawrence, S M; Llusa, M; Khinast, J G

    2015-08-01

    This paper describes a powder dosing system with a vibratory sieve mounted on a chute that doses particles into a capsule. Vertical vibration occurred with a broad range of frequencies and amplitudes. During dosing events, the fill weight was accurately recorded via a capacitance sensor, covering the capsules and making it possible to analyze filling characteristics, that is, the fill rates and their robustness. The range of frequencies and amplitudes was screened for settings that facilitated reasonable (no blocking, no spilling) fill rates for three lactose powders. The filling characteristics were studied within this operating space. The results reveal similar operating spaces for all investigated powders. The fill rate robustness varied distinctly in the operating space, which is of prime importance for selecting the settings for continuous feeding applications. In addition, we present accurate dosing studies utilizing the knowledge about the filling characteristics of each powder. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Low-discrepancy sampling of parametric surface using adaptive space-filling curves (SFC)

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Szu, Harold

    2014-05-01

    Space-Filling Curves (SFCs) are encountered in different fields of engineering and computer science, especially where it is important to linearize multidimensional data for effective and robust interpretation of the information. Examples of multidimensional data are matrices, images, tables, computational grids, and Electroencephalography (EEG) sensor data resulting from the discretization of partial differential equations (PDEs). Data operations like matrix multiplications, load/store operations and updating and partitioning of data sets can be simplified when we choose an efficient way of going through the data. In many applications SFCs present just this optimal manner of mapping multidimensional data onto a one dimensional sequence. In this report, we begin with an example of a space-filling curve and demonstrate how it can be used to find the most similarity using Fast Fourier transform (FFT) through a set of points. Next we give a general introduction to space-filling curves and discuss properties of them. Finally, we consider a discrete version of space-filling curves and present experimental results on discrete space-filling curves optimized for special tasks.

  20. Two-dimensional designed fabrication of subwavelength grating HCG mirror on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Hong, Kuo-Bin; Lu, Tien-Chang; He, Sailing

    2016-03-01

    We designed and fabricated a two dimensional high contrast subwavelength grating (HCG) mirrors. The computer-aided software was employed to verify the structural parameters including grating periods and filling factors. From the optimized simulation results, the designed HCG structure has a wide reflection stopband (reflectivity (R) >90%) of over 200 nm, which centered at telecommunication wavelength. The optimized HCG mirrors were fabricated by electron beam lithography and inductively coupled plasma process technique. The experimental result was almost consistent with calculated data. This achievement should have an impact on numerous photonic devices helpful attribution to the integrated HCG VCSELs in the future.

  1. A Comparison of Techniques for Determining Mass Outflow Rates in the Type 2 Quasar Markarian 34

    NASA Astrophysics Data System (ADS)

    Revalski, Mitchell; Crenshaw, D. Michael; Fischer, Travis C.; Kraemer, Steven B.; Schmitt, Henrique R.; Dashtamirova, Dzhuliya; Pope, Crystal L.

    2018-06-01

    We present spatially resolved measurements of the mass outflow rates and energetics for the Narrow Line Region (NLR) outflows in the type 2 quasar Markarian 34. Using data from the Hubble Space Telescope and Apache point observatory, together with Cloudy photoionization models, we calculate the radial mass distribution of ionized gas and map its kinematics. We compare the results of this technique to global outflow rates that characterize NLR outflows with a single outflow rate and energetic measurement. We find that NLR mass estimates based on emission line luminosities produce more consistent results than techniques employing filling factors.

  2. Fission in the landscape of heaviest elements: Some recent examples

    NASA Astrophysics Data System (ADS)

    Khuyagbaatar, J.; Yakushev, A.; Düllmann, Ch. E.; Ackermann, D.; Andersson, L.-L.; Block, M.; Brand, H.; Even, J.; Forsberg, U.; Hartmann, W.; Herzberg, R.-D.; Heßberger, F. P.; Hoffmann, J.; Hübner, A.; Jäger, E.; Jeppsson, J.; Kindler, B.; Kratz, J. V.; Krier, J.; Kurz, N.; Lommel, B.; Maiti, M.; Minami, S.; Rudolph, D.; Runke, J.; Sarmiento, L. G.; Schädel, M.; Schausten, B.; Steiner, J.; Heidenreich, T. Torres De; Uusitalo, J.; Wiehl, N.; Yakusheva, V.

    2016-12-01

    The fission process still remains a main factor that determines the stability of the atomic nucleus of heaviest elements. Fission half-lives vary over a wide range, 10-19-1024 s. Present experimental techniques for the synthesis of the superheavy elements that usually measure α-decay chains are sensitive only in a limited range of half-lives, often 10-5-103 s. In the past years, measurement techniques for very short-lived and very long-lived nuclei were significantly improved at the gas-filled recoil separator TASCA at GSI Darmstadt. Recently, several experimental studies of fission-related phenomena have successfully been performed. In this paper, results on 254-256Rf and 266Lr are presented and corresponding factors for retarding the fission process are discussed.

  3. Homogenization theory for designing graded viscoelastic sonic crystals

    NASA Astrophysics Data System (ADS)

    Qu, Zhao-Liang; Ren, Chun-Yu; Pei, Yong-Mao; Fang, Dai-Ning

    2015-02-01

    In this paper, we propose a homogenization theory for designing graded viscoelastic sonic crystals (VSCs) which consist of periodic arrays of elastic scatterers embedded in a viscoelastic host material. We extend an elastic homogenization theory to VSC by using the elastic-viscoelastic correspondence principle and propose an analytical effective loss factor of VSC. The results of VSC and the equivalent structure calculated by using the finite element method are in good agreement. According to the relation of the effective loss factor to the filling fraction, a graded VSC plate is easily and quickly designed. Then, the graded VSC may have potential applications in the vibration absorption and noise reduction fields. Project supported by the National Basic Research Program of China (Grant No. 2011CB610301).

  4. Biopharmaceutical formulations for pre-filled delivery devices.

    PubMed

    Jezek, Jan; Darton, Nicholas J; Derham, Barry K; Royle, Nikki; Simpson, Iain

    2013-06-01

    Pre-filled syringes are becoming an increasingly popular format for delivering biotherapeutics conveniently and cost effectively. The device design and stable liquid formulations required to enable this pre-filled syringe format are technically challenging. In choosing the materials and process conditions to fabricate the syringe unit, their compatibility with the biotherapeutic needs to be carefully assessed. The biothereaputic stability demanded for the production of syringe-compatible low-viscosity liquid solutions requires critical excipient choices to be made. The purpose of this review is to discuss key issues related to the stability aspects of biotherapeutics in pre-filled devices. This includes effects on both physical and chemical stability due to a number of stress conditions the product is subjected to, as well as interactions with the packaging system. Particular attention is paid to the control of stability by formulation. We anticipate that there will be a significant move towards polymer primary packaging for most drugs in the longer term. The timescales for this will depend on a number of factors and hence will be hard to predict. Formulation will play a critical role in developing successful products in the pre-filled syringe format, particularly with the trend towards concentrated biotherapeutics. Development of novel, smart formulation technologies will, therefore, be increasingly important.

  5. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  6. Recycling of Pleistocene valley fills dominates 125 ka of sediment flux, upper Indus River

    NASA Astrophysics Data System (ADS)

    Munack, Henry; Blöthe, Jan Henrik; Fülöp, Réka-Hajnalka; Codilean, Alexandru T.; Fink, David; Korup, Oliver

    2016-04-01

    Rivers draining the semiarid Transhimalayan Ranges along the western Tibetan Plateau margin underwent alternating phases of massive valley infill and incision in Pleistocene times. The imprints of these cut-and-fill cycles on long-term sediment fluxes have remained largely elusive. We investigate the timing and geomorphic consequences of headward incision of the Zanskar River, which taps the vast More Plains valley fill that currently impedes drainage of the endorheic high-altitude basins of Tso Kar and Tso Moriri. In situ 10Be exposure dating and topographic analyses indicate that a phase of valley infill gave way to net dissection of the >250-m thick sedimentary stacks ˜125 ka ago, i.e. during the last interglacial (MIS 5e). Rivers eroded >14.7 km3 of sediment from the Zanskar headwaters since then, fashioning specific sediment yields that surpass 10Be-derived denudation rates from neighbouring catchments by factors of two to ten. We conclude that recycling of Pleistocene valley fills has provided Transhimalayan headwater rivers with more sediment than bedrock denudation, at least since the beginning of the last glacial cycle. This protracted liberation of sediment stored in thick valley fills could bias rate estimates of current sediment loads and long-term bedrock denudation.

  7. Theory of dispersive microlenses

    NASA Technical Reports Server (NTRS)

    Herman, B.; Gal, George

    1993-01-01

    A dispersive microlens is a miniature optical element which simultaneously focuses and disperses light. Arrays of dispersive mircolenses have potential applications in multicolor focal planes. They have a 100 percent optical fill factor and can focus light down to detectors of diffraction spot size, freeing up areas on the focal plane for on-chip analog signal processing. Use of dispersive microlenses allows inband color separation within a pixel and perfect scene registration. A dual-color separation has the potential for temperature discrimination. We discuss the design of dispersive microlenses and present sample results for efficient designs.

  8. E-Education Applications: Human Factors and Innovative Approaches

    ERIC Educational Resources Information Center

    Ghaoui, Claude, Ed.

    2004-01-01

    "E-Education Applications: Human Factors and Innovative Approaches" enforces the need to take multi-disciplinary and/or inter-disciplinary approaches, when solutions for e-education (or online-, e-learning) are introduced. By focusing on the issues that have impact on the usability of e-learning, the book specifically fills-in a gap in this area,…

  9. What Are the Social, Psychological, and Cognitive Factors That Drive Individuals to Entrepreneurship?

    ERIC Educational Resources Information Center

    LaMattina, Lina M.

    2013-01-01

    The purpose of this study was two-fold; first, to uncover the social, psychological, and cognitive factors core to the entrepreneurial individual; and secondly, to provide accurate data to be used in curriculum development to fill the existing educational gap that exists in the current literature regarding understanding the inner workings of the…

  10. Factors Related to White, Black, and Hispanic Women's Mathematics Attainments: A Descriptive Study.

    ERIC Educational Resources Information Center

    Rothschild, Susan J. S.; Lichtman, Marilyn

    Virtually no research conducted on women and mathematics is longitudinal in scope, generalizable in extent, and ethnic-race specific in nature. This descriptive study begins to fill the gap by examining the effects of background, school, and social-psychological factors on Hispanic, black, and white women's mathematics attainments. Data for the…

  11. Deformation profiles of elastic cylindrical tubes filled with granular media under an overload

    NASA Astrophysics Data System (ADS)

    Álvarez Salazar, V. Salomón; Medina, Abraham; Klapp, Jaime

    2017-06-01

    The deformation of a thin-walled vertical tube, filled with a liquid or a cohesionless granular material is investigated theoretically and experimentally. Experiments with an overload and without it were made with latex tubes filled with water or spherical glass beads and the results were compared with the theoretical profile derived from the Janssen model. The results suggest that the soft elastic tubes could provide a simple and convenient means to investigate the forces that arise in different materials.

  12. On the effectiveness of incorporating shear thickening fluid with fumed silica particles in hip protectors

    NASA Astrophysics Data System (ADS)

    Haris, A.; Goh, B. W. Y.; Tay, T. E.; Lee, H. P.; Rammohan, A. V.; Tan, V. B. C.

    2018-01-01

    The objective of this research is to develop a smart hip protector by incorporating shear thickening fluid (STF) into conventional foam hip protectors. The shear thickening properties of fumed silica particles dispersed in liquid polyethylene glycol (PEG) were determined from rheological tests. Dynamic drop tests, using a 4 kg drop platen at 0.5 m drop height, were conducted to study how STF improves energy absorption as compared to unfilled foam and PEG filled foam. The results show that PEG filled foam reduces the mean peak force transmitted by a further 55% and mean peak displacement by 32.5% as compared to the unfilled foam; the STF filled foam further reduces mean peak force and displacement by 15% and 41% respectively when compared to the PEG filled foam. At a displacement of 22 mm, the STF filled foam absorbs 7.4 times more energy than the PEG filled foam. The results of varying the drop mass and drop height show that the energy absorbed per unit displacement for STF filled foam is always higher than that of PEG filled foam. Finally, the effectiveness of a prototype of hip protector made from 15 mm thick STF filled foam in preventing hip fractures was studied under two different loading conditions: distributed load (plate drop test) and concentrated load (ball drop test). The results of the plate and ball drop tests show that among all hip protectors tested in this study, only the prototype can reduce the mean peak impact force to be lower than the force required to fracture a hip bone (3.1 kN) regardless of the type of loading. Moreover, the peak force of the prototype is about half of this value, suggesting thinner prototype could have been used instead. These findings show that STF is effective in improving the performance of hip protectors.

  13. In situ Stripline Electrochemical NMR for Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorte, Eric Glenn; Banek, Nathan A.; Wagner, Michael J.

    Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical devicemore » in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.« less

  14. A numerical model for explaining the role of the interface morphology in composite solar cells

    NASA Astrophysics Data System (ADS)

    Martin, C. M.; Burlakov, V. M.; Assender, H. E.; Barkhouse, D. A. R.

    2007-11-01

    We have developed a numerical model that simulates the operation of organic/inorganic photovoltaic devices. Using this model, we have investigated the effect of the interface morphology and have shown that for a given system, there is both a most efficient device thickness and the interfacial feature size for overall power conversion. The variation of current-voltage (I-V) curves with differing recombination rates, anode barrier height, and light intensity has been simulated with reducing the recombination rate and lowering the anode barrier height shown to lead to improved open circuit voltages and fill factors. Through this model, we show that the increase in fill factor observed when the lithium salt Li[CF3SO2]2N is added to devices can be explained by an increase in the polymer hole mobility.

  15. Gap Reversal at Filling Factors 3 +1 /3 and 3 +1 /5 : Towards Novel Topological Order in the Fractional Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Kleinbaum, Ethan; Kumar, Ashwani; Pfeiffer, L. N.; West, K. W.; Csáthy, G. A.

    2015-02-01

    In the region of the second Landau level several theories predict fractional quantum Hall states with novel topological order. We report the opening of an energy gap at the filling factor ν =3 +1 /3 , firmly establishing the ground state as a fractional quantum Hall state. This and other odd-denominator states unexpectedly break particle-hole symmetry. Specifically, we find that the relative magnitudes of the energy gaps of the ν =3 +1 /3 and 3 +1 /5 states from the upper spin branch are reversed when compared to the ν =2 +1 /3 and 2 +1 /5 counterpart states in the lower spin branch. Our findings raise the possibility that at least one of the former states is of an unusual topological order.

  16. In situ Stripline Electrochemical NMR for Batteries

    DOE PAGES

    Sorte, Eric Glenn; Banek, Nathan A.; Wagner, Michael J.; ...

    2018-06-11

    Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical devicemore » in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.« less

  17. Size-controllable nanopyramids photonic crystal selectively grown on p-GaN for enhanced light-extraction of light-emitting diodes.

    PubMed

    Du, Chengxiao; Wei, Tongbo; Zheng, Haiyang; Wang, Liancheng; Geng, Chong; Yan, Qingfeng; Wang, Junxi; Li, Jinmin

    2013-10-21

    Size-controllable p-GaN hexagonal nanopyramids (HnPs)-photonic crystal (PhC) structures were selectively grown on flat p-GaN layer for the elimination of total internal reflection of light-emitting diodes (LEDs). The LEDs with HnPs-PhC of 46.3% bottom fill factor (PhC lattice constant is 730 nm) showed an improved light output power by 99.9% at forward current of 350 mA compared to the reference LEDs with flat p-GaN layer. We confirmed the effect of HnPs-PhC with different bottom fill factors and the effect of nanopyramid-shaped and nanocolumn-shaped PhC on the light-extraction of LEDs was also investigated by using three-dimensional finite-difference time-domain simulations.

  18. Optically Induced Nuclear Spin Polarization in the Quantum Hall Regime: The Effect of Electron Spin Polarization through Exciton and Trion Excitations.

    PubMed

    Akiba, K; Kanasugi, S; Yuge, T; Nagase, K; Hirayama, Y

    2015-07-10

    We study nuclear spin polarization in the quantum Hall regime through the optically pumped electron spin polarization in the lowest Landau level. The nuclear spin polarization is measured as a nuclear magnetic field B(N) by means of the sensitive resistive detection. We find the dependence of B(N) on the filling factor nonmonotonic. The comprehensive measurements of B(N) with the help of the circularly polarized photoluminescence measurements indicate the participation of the photoexcited complexes, i.e., the exciton and trion (charged exciton), in nuclear spin polarization. On the basis of a novel estimation method of the equilibrium electron spin polarization, we analyze the experimental data and conclude that the filling factor dependence of B(N) is understood by the effect of electron spin polarization through excitons and trions.

  19. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method.

    PubMed

    Lee, Danny; Greer, Peter B; Pollock, Sean; Kim, Taeho; Keall, Paul

    2016-05-01

    The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale) respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.

  20. Interlinkages between bacterial populations dynamics and the operational parameters in a moving bed membrane bioreactor treating urban sewage.

    PubMed

    Reboleiro-Rivas, P; Martín-Pascual, J; Morillo, J A; Juárez-Jiménez, B; Poyatos, J M; Rodelas, B; González-López, J

    2016-01-01

    Bacteria are key players in biological wastewater treatments (WWTs), thus a firm knowledge of the bacterial population dynamics is crucial to understand environmental/operational factors affecting the efficiency and stability of the biological depuration process. Unfortunately, little is known about the microbial ecology of the advanced biological WWTs combining suspended biomass (SB) and attached biofilms (AB). This study explored in depth the bacterial community structure and population dynamics in each biomass fraction from a pilot-scale moving bed membrane bioreactor (MBMBR) treating municipal sewage, by means of temperature-gradient gel electrophoresis (TGGE) and 454-pyrosequencing. Eight experimental phases were conducted, combining different carrier filling ratios, hydraulic retention times and concentrations of mixed liquor total suspended solids. The bacterial community, dominated by Proteobacteria (20.9-53.8%) and Actinobacteria (20.6-57.6%), was very similar in both biomass fractions and able to maintain its functional stability under all the operating conditions, ensuring a successful and steady depuration process. Multivariate statistical analysis demonstrated that solids concentration, carrier filling ratio, temperature and organic matter concentration in the influent were the significant factors explaining population dynamics. Bacterial diversity increased as carrier filling ratio increased (from 20% to 35%, v/v), and solids concentration was the main factor triggering the shifts of the community structure. These findings provide new insights on the influence of operational parameters on the biology of the innovative MBMBRs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Correlation effects in nanoparticle composites: Percolation, packing and tunneling

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rupam

    Percolation is one of the most fundamental and far-reaching physical phenomena, with major implications in a vast variety of fields. The work described in this thesis aims to understand the role of percolation effects in various, seemingly unrelated phenomena, such as the dielectric permittivity of metal-insulator composites, tunneling percolation, and the relationship between percolation and filling factors. Specifically, we investigated 1) the very large enhancement of the dielectric permittivity of a composite metal -- insulator system, RuO2 - CaCu3Ti4O12 (CCTO) near the percolation threshold. For RuO2/CCTO composites, an increase in the real part of the dielectric permittivity (initially about 10 3-104 at 10 kHz) by approximately an order of magnitude is observed in the vicinity of the percolation threshold. 2) In the same system, apart from a classical percolation transition associated with the appearance of a continuous conductance path through RuO2 nanoparticles, at least two additional tunneling percolation transitions are detected. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. 3) The filling factors of the composites of nanoparticles with different shapes have been studied as a function of volume fraction. Interestingly, like percolation, filling factors also obey critical power law behavior as a function of size ratio of constituent particles.

  2. Two-leg ladder systems with dipole–dipole Fermion interactions

    NASA Astrophysics Data System (ADS)

    Mosadeq, Hamid; Asgari, Reza

    2018-05-01

    The ground-state phase diagram of a two-leg fermionic dipolar ladder with inter-site interactions is studied using density matrix renormalization group (DMRG) techniques. We use a state-of-the-art implementation of the DMRG algorithm and finite size scaling to simulate large system sizes with high accuracy. We also consider two different model systems and explore stable phases in half and quarter filling factors. We find that in the half filling, the charge and spin gaps emerge in a finite value of the dipole–dipole and on-site interactions. In the quarter filling case, s-wave superconducting state, charge density wave, homogenous insulating and phase separation phases occur depend on the interaction values. Moreover, in the dipole–dipole interaction, the D-Mott phase emerges when the hopping terms along the chain and rung are the same, whereas, this phase has been only proposed for the anisotropic Hubbard model. In the half filling case, on the other hand, there is either charge-density wave or charged Mott order phase depends on the orientation of the dipole moments of the particles with respect to the ladder geometry.

  3. Quantifying the accuracy of the tumor motion and area as a function of acceleration factor for the simulation of the dynamic keyhole magnetic resonance imaging method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Danny; Pollock, Sean; Keall, Paul, E-mail: paul.keall@sydney.edu.au

    2016-05-15

    Purpose: The dynamic keyhole is a new MR image reconstruction method for thoracic and abdominal MR imaging. To date, this method has not been investigated with cancer patient magnetic resonance imaging (MRI) data. The goal of this study was to assess the dynamic keyhole method for the task of lung tumor localization using cine-MR images reconstructed in the presence of respiratory motion. Methods: The dynamic keyhole method utilizes a previously acquired a library of peripheral k-space datasets at similar displacement and phase (where phase is simply used to determine whether the breathing is inhale to exhale or exhale to inhale)more » respiratory bins in conjunction with central k-space datasets (keyhole) acquired. External respiratory signals drive the process of sorting, matching, and combining the two k-space streams for each respiratory bin, thereby achieving faster image acquisition without substantial motion artifacts. This study was the first that investigates the impact of k-space undersampling on lung tumor motion and area assessment across clinically available techniques (zero-filling and conventional keyhole). In this study, the dynamic keyhole, conventional keyhole and zero-filling methods were compared to full k-space dataset acquisition by quantifying (1) the keyhole size required for central k-space datasets for constant image quality across sixty four cine-MRI datasets from nine lung cancer patients, (2) the intensity difference between the original and reconstructed images in a constant keyhole size, and (3) the accuracy of tumor motion and area directly measured by tumor autocontouring. Results: For constant image quality, the dynamic keyhole method, conventional keyhole, and zero-filling methods required 22%, 34%, and 49% of the keyhole size (P < 0.0001), respectively, compared to the full k-space image acquisition method. Compared to the conventional keyhole and zero-filling reconstructed images with the keyhole size utilized in the dynamic keyhole method, an average intensity difference of the dynamic keyhole reconstructed images (P < 0.0001) was minimal, and resulted in the accuracy of tumor motion within 99.6% (P < 0.0001) and the accuracy of tumor area within 98.0% (P < 0.0001) for lung tumor monitoring applications. Conclusions: This study demonstrates that the dynamic keyhole method is a promising technique for clinical applications such as image-guided radiation therapy requiring the MR monitoring of thoracic tumors. Based on the results from this study, the dynamic keyhole method could increase the imaging frequency by up to a factor of five compared with full k-space methods for real-time lung tumor MRI.« less

  4. Effects of management on aquatic tree-hole communities in temperate forests are mediated by detritus amount and water chemistry.

    PubMed

    Gossner, Martin M; Lade, Peggy; Rohland, Anja; Sichardt, Nora; Kahl, Tiemo; Bauhus, Jürgen; Weisser, Wolfgang W; Petermann, Jana S

    2016-01-01

    Arthropod communities in water-filled tree holes may be sensitive to impacts of forest management, for example via changes in environmental conditions such as resource input. We hypothesized that increasing forest management intensity (ForMI) negatively affects arthropod abundance and richness and shifts community composition and trophic structure of tree hole communities. We predicted that this shift is caused by reduced habitat and resource availability at the forest stand scale as well as reduced tree hole size, detritus amount and changed water chemistry at the tree holes scale. We mapped 910 water-filled tree holes in two regions in Germany and studied 199 tree hole inhabiting arthropod communities. We found that increasing ForMI indeed significantly reduced arthropod abundance and richness in water-filled tree holes. The most important indirect effects of management intensity on tree hole community structure were the reduced amounts of detritus for the tree hole inhabiting organisms and changed water chemistry at the tree hole scale, both of which seem to act as a habitat filter. Although habitat availability at the forest stand scale decreased with increasing management intensity, this unexpectedly increased local arthropod abundance in individual tree holes. However, regional species richness in tree holes significantly decreased with increasing management intensity, most likely due to decreased habitat diversity. We did not find that the management-driven increase in plant diversity at the forest stand scale affected communities of individual tree holes, for example via resource availability for adults. Our results suggest that management of temperate forests has to target a number of factors at different scales to conserve diverse arthropod communities in water-filled tree holes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensenius, J.; Munksgaard, N.C.

    Fracture filling calcite from the piercement fields of East Rosa, Skjold, Rolf, North Arne, Nils and Vagn and the dome field Dan have been studied by fluorescence and cathodoluminescence microscopy, fluid inclusion microthermometry and carbon and oxygen isotopes. The carbon and oxygen isotope compositions of the reservoir matrix chalk have also been measured. The temperature estimates obtained from fluid inclusion data suggest that the fracture filling calcite of the piercement fields precipitated during hot water flushing of the reservoirs. The flushing system only existed around the salt diapirs and was probably related to expulsion of overpressured fluid from the surroundingmore » sediments. The thermal anomaly and the faults associated with the diapirs probably were important factors in focusing the ascending water. Lower {delta}{sup 18}O values with shallower depth of burial suggest that the porosity of chalk in the shallower fields was more severely reduced by calcite cementation during the flushing event than in the deeper fields. In the case of North Arne, Nils, Vagn and Dan, {delta}{sup 13}C values of the fracture filling calcites are similar to those of normal chalk (0.5 to 3.5 {per thousand}). However, calcites from Rolf, Skjold and East Rosa are depleted by {minus}1.8, {minus}6.2 and {minus}16.7 {per thousand}, respectively. Only in East Rosa is the matrix chalk itself depleted in {sup 13}C. The low {delta}{sup 13}C values are interpreted as the result of biodegradation. Sulfate originating from the underlying diapirs was flushed into the reservoir and used by bacteria to degrade present hydrocarbons. This process produced {sup 13}c depleted bicarbonate which was incorporated into the fracture-filling calcites.« less

  6. Role of edge superconducting states in trapping of multi-quanta vortices by microholes. Application of the bitter decoration technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezryadin, A.; Pannetier, B.

    1996-01-01

    The Bitter decoration technique is used to study the trapping of single and multiple quanta vortices by a lattice of circular microholes. By keeping a thin superconducting layer (the bottom) inside each hole the authors are able to visualise the trapped vortices. From this they determine, for the first time, the filling factor FF, i.e. the number of vortices captured inside a hole. In all cases the sample is cooled at a constant field before making the decoration. Two qualitatively different states of the vortex crystal are observed: (1) In case when the interhole distance is much larger than themore » coherence length, the filling factor averaged over many identical holes () is a stepwise function of the magnetic flux (of the external field) through the hole, because each hole captures the same number of vortices. The density of fluxoids inside the openings is higher than in the uniform film, but much lower than it should be in the state of equilibrium. The authors claim that the number of trapped vortices is determined by the edge superconducting states which appear around each hole at the modified third critical field H{sub c3}* > H{sub c2}. Below H{sub c2} such states produce a surface barrier of a new type. This barrier for the vortex entrance and exit is due to the strong increase of the order parameter near the hole edge. It keeps constant the number of captured vortices during the cooling at a fixed field. (2) An increase of the hole density or of the hole radius initiates a sharp redistribution of fluxoids: all of them drop inside holes. This first order transition leads to a localization of all vortices and consequently to a qualitative change of the transport properties (TAFF in this case). In the resulting new state the filling factor is not any more the same for neighboring holes and its averaged value is equal to the frustration of the hole network.« less

  7. The Physics of Protoplanetesimal Dust Agglomerates. V. Multiple Impacts of Dusty Agglomerates at Velocities Above the Fragmentation Threshold

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Güttler, Carsten; Blum, Jürgen

    2010-12-01

    In recent years, a number of new experiments have advanced our knowledge on the early growth phases of protoplanetary dust aggregates. Some of these experiments have shown that collisions between porous and compacted agglomerates at velocities above the fragmentation threshold velocity can lead to growth of the compact body, when the porous collision partner fragments upon impact and transfers mass to the compact agglomerate. To obtain a deeper understanding of this potentially important growth process, we performed laboratory and drop tower experiments to study multiple impacts of small, highly porous dust-aggregate projectiles onto sintered dust targets. The projectile and target consisted of 1.5 μm monodisperse, spherical SiO2 monomers with volume filling factors of 0.15 ± 0.01 and 0.45 ± 0.05, respectively. The fragile projectiles were accelerated by a solenoid magnet and combined with a projectile magazine with which 25 impacts onto the same spot on the target could be performed in vacuum. We measured the mass-accretion efficiency and the volume filling factor for different impact velocities between 1.5 and 6.0 m s^{-1}. The experiments at the lowest impact speeds were performed in the Bremen drop tower under microgravity conditions to allow partial mass transfer also for the lowest adhesion case. Within this velocity range, we found a linear increase of the accretion efficiency with increasing velocity. In the laboratory experiments, the accretion efficiency increases from 0.12 to 0.21 in units of the projectile mass. The recorded images of the impacts showed that the mass transfer from the projectile to the target leads to the growth of a conical structure on the target after less than 100 impacts. From the images, we also measured the volume filling factors of the grown structures, which ranged from 0.15 (uncompacted) to 0.40 (significantly compacted) with increasing impact speed. The velocity dependency of the mass-transfer efficiency and the packing density of the resulting aggregates augment our knowledge of the aggregate growth in protoplanetary disks and should be taken into account for future models of protoplanetary dust growth.

  8. A machine-learning apprentice for the completion of repetitive forms

    NASA Technical Reports Server (NTRS)

    Hermens, Leonard A.; Schlimmer, Jeffrey C.

    1994-01-01

    Forms of all types are used in businesses and government agencies, and most of them are filled in by hand. Yet much time and effort has been expended to automate form-filling by programming specific systems or computers. The high cost of programmers and other resources prohibits many organizations from benefiting from efficient office automation. A learning apprentice can be used for such repetitious form-filling tasks. In this paper, we establish the need for learning apprentices, describe a framework for such a system, explain the difficulties of form-filling, and present empirical results of a form-filling system used in our department from September 1991 to April 1992. The form-filling apprentice saves up to 87 percent in keystroke effort and correctly predicts nearly 90 percent of the values on the form.

  9. Methods used by accredited dental specialty programs to advertise faculty positions: results of a national survey.

    PubMed

    Ballard, Richard W; Hagan, Joseph L; Armbruster, Paul C; Gallo, John R

    2011-01-01

    The various reasons for the current and projected shortages of dental faculty members in the United States have received much attention. Dental school deans have reported that the top three factors impacting their ability to fill faculty positions are meeting the requirements of the position, lack of response to position announcement, and salary/budget limitations. An electronic survey sent to program directors of specialty programs at all accredited U.S. dental schools inquired about the number of vacant positions, advertised vacant positions, reasons for not advertising, selection of advertising medium, results of advertising, and assistance from professional dental organizations. A total of seventy-three permanently funded full-time faculty positions were reported vacant, with 89.0 percent of these positions having been advertised in nationally recognized professional journals and newsletters. Networking or word-of-mouth was reported as the most successful method for advertising. The majority of those responding reported that professional dental organizations did not help with filling vacant faculty positions, but that they would utilize the American Dental Association's website or their specialty organization's website to post faculty positions if they were easy to use and update.

  10. Clinical Evaluation of Insulin like Growth Factor-I and Vascular Endothelial Growth Factor with Alloplastic Bone Graft Material in the Management of Human Two Wall Intra-Osseous Defects

    PubMed Central

    Dixit, Jaya

    2016-01-01

    Introduction In recent years, emphasis on the use of growth factors for periodontal healing is gaining great momentum. Several growth factors showed promising results in periodontal regeneration. Aim This study was designed to compare the clinical outcomes of 0.8μg recombinant human Vascular Endothelial Growth Factor (rh-VEGF) and 10μg recombinant human Insulin Like Growth Factor-I (rh-IGF-I) with β-Tricalcium Phosphate (β-TCP) and Polylactide-Polyglycolide Acid (PLGA) membrane in two wall intra-osseous defects. Materials and Methods A total of 29 intra-osseous defects in 27 subjects were randomly divided into 3 test and 1 control group. Test group I (n=8) received rh-VEGF+ rh-IGF-I, Test group II (n=7) rh-VEGF, Test group III (n=7) rh-IGF-I and control group (n=7) with no growth factor, β-TCP and PLGA membrane was used in all the groups. Baseline soft tissue parameters including Probing Pocket Depth (PPD), Clinical Attachment Level (CAL), and Gingival Recession (GR) at selected sites were recorded at baseline and at 6 months. Intrasurgically, intra-osseous component was calculated as a) Cemento-Enamel Junction to Bone Crest (CEJ to BC), b) Bone Crest to Base of the Defect (BC to BD) at baseline and at re-entry. The mean changes at baseline and after 6 months within each group were compared using Wilcoxon Signed Rank Test. The mean changes for each parameter between groups were compared using Mann-Whitney U test. Results After 6 months, maximum mean PPD reduction occurred in test group I followed by test group II, III and control group. Similar trend was observed in CAL gain. Non-significant GR was present in test group I and control group whereas in test group II and III GR was absent. The use of rh-VEGF+ rhIGF-I exhibited 95.8% osseous fill as compared to 54.8% in test group II, 52.7% in test group III and 41.1 % in the control group. Conclusion Within the limitations of this study, it can be concluded that, rh-IGF-I+rh-VEGF treated sites resulted in greater improvement in PPD reduction, CAL gain as well as in osseous fill after 6 months when compared with rh-VEGF, rh-IGF-I and control sites. PMID:27790578

  11. Reliance on social security benefits by Swedish patients with ill-health attributed to dental fillings: a register-based cohort study.

    PubMed

    Naimi-Akbar, Aron; Svedberg, Pia; Alexanderson, Kristina; Ekstrand, Jan; Sandborgh-Englund, Gunilla

    2012-08-30

    Some people attribute their ill health to dental filling materials, experiencing a variety of symptoms. Yet, it is not known if they continue to financially support themselves by work or become reliant on different types of social security benefits. The aim of this study was to analyse reliance on different forms of social security benefits by patients who attribute their poor health to dental filling materials. A longitudinal cohort study with a 13-year follow up. The subjects included were 505 patients attributing their ill health to dental restorative materials, who applied for subsidised filling replacement. They were compared to a cohort of matched controls representing the general population (three controls per patient). Annual individual data on disability pension, sick leave, unemployment benefits, and socio-demographic factors was obtained from Statistics Sweden. Generalized estimating equations were used to test for differences between cohorts in number of days on different types of social security benefits. The cohort of dental filling patients had a significantly higher number of days on sick leave and disability pension than the general population. The test of an overall interaction effect between time and cohort showed a significant difference between the two cohorts regarding both sick leave and disability pension. In the replacement cohort, the highest number of sick-leave days was recorded in the year they applied for subsidised replacement of fillings. While sick leave decreased following the year of application, the number of days on disability pension increased and peaked at the end of follow-up. Ill health related to dental materials is likely to be associated with dependence on social security benefits. Dental filling replacement does not seem to improve workforce participation.

  12. Thermal–moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Zhi; Zhang, Mingli; Ma, Wei

    Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layermore » is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.« less

  13. Correlation of Hall and Shubnikov-de Haas Oscillations and Impurity States in Sn- and I- Doped Single Crystals p-Bi 2 Te 3

    NASA Astrophysics Data System (ADS)

    Tahar, M. Z.; Popov, D. I.; Nemov, S. A.

    2018-03-01

    Oscillations of the Hall coefficient and Shubnikov-de Haas (SdH) were observed in p-Bi2Te3 crystals doped with Sn (acceptor) and with I (donor) in magnetic fields up to 9 T parallel to the C3 trigonal axis at low temperatures (2 K < T < 20K), which is an evidence of the spatial homogeneity of carriers in complex solid solutions. This supports the existence of a narrow band of Sn states (partially filled) against the background of the valence band acting as a reservoir with high density of states partially filled with electrons. Previously, in these systems in which the Fermi level was in the light-hole valence band, both large Hall and SdH oscillations were observed, with ∼π phase shift between them, whereas when the Fermi level was in the heavy-hole valence band (larger acceptor content), no quantum oscillations were observed. It was concluded that the observed low amplitude quantum oscillations may be attributed to the shifting of the reservoir from the light-hole band to the heavy-hole, and the observed phase shift in the range 0 - π/2 between Hall and SdH oscillations may be attributed to filling factor of the reservoir with electrons, which varies with I content. Experimental results along with theoretical explanation of these correlations are presented.

  14. Non-Digital Game Playing by Older Adults.

    PubMed

    Mortenson, W Ben; Sixsmith, Andrew; Kaufman, David

    2017-09-01

    Research on video games' effect on cognition and behaviour has been extensive, yet little research has explored non-digital forms of game playing, especially among older adults. As part of a larger survey on game playing, 886 respondents (≥ age 55) filled out questionnaires about non-digital game play. The study aims were to determine perceived benefits of non-digital game play and to determine socio-demographic factors that might predict perceived benefits. Survey results indicate that non-digital game playing is social in nature and common (73% of respondents) among older adults. Older adults play for fun, but also to help maintain their cognition. Regression analyses indicated various socio-demographic factors - age, education, gender, and race - were independently associated with perceived benefits from game playing. The results thus emphasize the importance of non-digital game playing in this population and suggest that efforts to facilitate game playing may improve social interactions and quality of life.

  15. Self-Stigma in Substance Abuse: Development of a New Measure

    PubMed Central

    Luoma, Jason B.; Nobles, Richard H.; Drake, Chad E.; Hayes, Steven C.; O’Hair, Alyssa; Fletcher, Lindsay; Kohlenberg, Barbara S.

    2012-01-01

    Little attention has been paid to the examination and measurement of self-stigma in substance misuse. This paper aims to fill this gap by reporting on the development of a new scale to measure self-stigma experienced by people who are misusing substances, the Substance Abuse Self-Stigma Scale. Content validity and item refinement occurred through an iterative process involving a literature search, focus groups, and expert judges. Psychometric properties were examined in a cross-sectional study of individuals (n = 352) receiving treatment for substance misuse. Factor analyses resulted in a 40-item measure with self devaluation, fear of enacted stigma, stigma avoidance, and values disengagement subscales. The measure showed a strong factor structure and good reliability and validity overall, though the values disengagement subscale showed a mixed pattern. Results are discussed in terms of their implications for studies of stigma impact and intervention. PMID:23772099

  16. Fitness in Young Adulthood and Long-Term Cardiac Structure and Function: The CARDIA Study.

    PubMed

    Pandey, Ambarish; Allen, Norrina B; Ayers, Colby; Reis, Jared P; Moreira, Henrique T; Sidney, Stephen; Rana, Jamal S; Jacobs, David R; Chow, Lisa S; de Lemos, James A; Carnethon, Mercedes; Berry, Jarett D

    2017-05-01

    This study sought to evaluate the association between early-life cardiorespiratory fitness (CRF) and measures of left ventricular (LV) structure and function in midlife. Low CRF in midlife is associated with a higher risk of heart failure. However, the unique contributions of early-life CRF toward measures of LV structure and function in middle age are not known. CARDIA (Coronary Artery Risk Development in Young Adults) study participants with a baseline maximal treadmill test and an echocardiogram at year 25 were included. Associations among baseline CRF, CRF change, and echocardiographic LV parameters (global longitudinal strain [GLS] and global circumferential strain, E/e') were assessed using multivariable linear regression. The study included 3,433 participants. After adjustment for baseline demographic and clinical characteristics, lower baseline CRF was significantly associated with higher LV strain (standardized parameter estimate [Std β] = -0.06; p = 0.03 for GLS) and ratio of early transmitral flow velocity to early peak diastolic mitral annular velocity (E/e') (Std β = -0.10; p = 0.0001 for lateral E/e'), findings suggesting impaired contractility and elevated diastolic filling pressure in midlife. After additional adjustment for cumulative cardiovascular risk factor burden observed over the follow-up period, the association of CRF with LV strain attenuated substantially (p = 0.36), whereas the association with diastolic filling pressure remained significant (Std β = -0.05; p = 0.02 for lateral E/e'). In a subgroup of participants with repeat CRF tests at year 20, greater decline in CRF was significantly associated with increased abnormalities in GLS (Std β = -0.05; p = 0.02) and higher diastolic filling pressure (Std β = -0.06; p = 0.006 for lateral E/e') in middle age. CRF in young adulthood and CRF change were associated with measures of LV systolic function and diastolic filling pressure in middle age. Low CRF-associated abnormalities in systolic function were related to the associated higher cardiovascular risk factor burden. In contrast, the inverse association between CRF and LV diastolic filling pressure was independent of cardiovascular risk factor burden. Copyright © 2017. Published by Elsevier Inc.

  17. Evidence that the X-Ray Plasma in Microflares is in a Sequence of Subresolution Magnetic Tubes

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, D. A.; Porter, Jason G.

    1998-01-01

    We analyze the cooling of the X-ray emitting thermal plasma in microflares observed in active regions by the Yohkoh Soft X-ray Telescope. A typical microflare appears to be a transient brightening of an entire small magnetic loop, often having a diameter near the limit of resolution (approximately 2 x 10(exp 8) cm) (Shimizu 1995, PASJ, 47, 251). The X-ray plasma in the loop cools by emission of XUV radiation and by heat conduction to the cooler plasma at the feet of the loop. The cooling rate is determined by the plasma temperature and density and the loop length. The plasma density is determined from the observed X-ray brightness of the loop in combination with the temperature, the loop diameter, and the filling factor. The filling factor is the volume fraction of the loop occupied by the subset of magnetic tubes that is filled by the X-ray plasma and that contains practically all of the X-ray plasma present in the microflare loop. Taking typical values from the hundreds of microflares measured by Shimizu (1995) (X-ray brightness through the thin aluminum filter approximately 4 x 10(exp 3) DN/s/pixel, lifetime approximately 5 min, temperature approximately 6 x 10(exp 6) K, loop length approximately 10(exp 9) cm, loop diameter approximately 3 x 10(exp 8) cm), we find that for filling factors greater than approximately 1% (1) the cooling time is much shorter than the duration of the microflare, and (2) conductive cooling strongly dominates over radiative cooling. Because the cooling time is so short and because the conductive heat flux goes mainly into increasing the plasma density via chromospheric evaporation, we are compelled to conclude that (1) heating to X-ray temperatures continues through nearly the entire life of a microflare, (2) the heating keeps changing to different field lines, so that any one magnetic tube in the sequence of heated tubes emits X-rays only briefly in the life of the microflare, and (3) at any instant during the microflare the tubes filled with X-ray plasma occupy only a small fraction (less than approximately 10%) of the microflare loop. Hence, we expect that coronal X-ray images with spatial resolution 2-3 times better than from Yohkoh will show plenty of rapidly changing filamentary substructure in microflares.

  18. Properties of soil in the San Fernando hydraulic fill dams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, K.L.

    1975-08-01

    Results are presented of extensive field and laboratory tests on soils from two old hydraulic fill dams that were damaged during the Feb. 9, 1971, San Fernando earthquake. The data include standard penetration, absolute and relative compaction, relative density, static strength, and cyclic triaxial test results for both the hydraulic fill silty sand and the natural silty and gravelly sand alluvium. The relative densities of the hydraulic fills ranged from about 51 to 58 percent and the relative compaction ranged from about 85 to 92 percent of Modified AASHO maximum density. The relative density of the alluvium was about 65more » to 70 percent. Other properties were consistent with previously published data from other similar soils at similar densities.« less

  19. 27 CFR 19.600 - Alcohol content and fill test record.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Alcohol content and fill test record. 19.600 Section 19.600 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... Records § 19.600 Alcohol content and fill test record. A proprietor must maintain a record of the results...

  20. Correlation between Resistivity and Ground Penetrating Radar (GPR) Methods in Understanding the Signatures in Detecting Cavities

    NASA Astrophysics Data System (ADS)

    Afiq Saharudin, Muhamad; Maslinda, Umi; Hisham, Hazrul; Taqiuddin, Z. M.; Nur Amalina, M. K. A.; Nawawi, Nordiana Ahmad; Sulaiman, Nabila; Nordiana, M. M.; Azwin, I. N.

    2017-04-01

    The research was conducted using Resistivity and Ground Penetrating Radar (GPR) methods in detecting in-filled cavities and air-filled cavities. The importance of this study is to see the difference in conductivity value of the in-filled and air-filled cavity. The first study location in which the known target is air-cavity located at School of Language, Literacies, and Translation (SoLLAT). The next study location is at Desasiswa Bakti Permai, which the known target is a bunker with both were located at Universiti Sains Malaysia, Penang and the last location is at Gua Musang, Kelantan with suspected in-filled cavity. The result from Gua Musang is compared with both of the results that have been done at Universiti Sains Malaysia. The resistivity value of the first location that indicates the possible tunnel is about 500 Ωm to 800 Ωm and the conductivity value is about 0.0017 S/m. The resistivity value for the second location located at Desasiswa Bakti Permai that indicates the bunker is about 50 Ωm to 250 Ωm and the conductivity value is about 0.1104 S/m. The resistivity value from Gua Musang is about 50 Ωm to 100 Ωm and the conductivity value is about 0.0101 S/m. The velocity of the in-filled cavities is much lower compared with the velocity of the air-filled cavities. Based on the characteristics, Gua Musang area was dominated with in-filled cavities.

  1. Fabrication of CuInS2-sensitized solar cells via an improved SILAR process and its interface electron recombination.

    PubMed

    Xu, Xueqing; Wan, Qingcui; Luan, Chunyan; Mei, Fengjiao; Zhao, Qian; An, Ping; Liang, Zhurong; Xu, Gang; Zapien, Juan Antonio

    2013-11-13

    Tetragonal CuInS2 (CIS) has been successfully deposited onto mesoporous TiO2 films by in-sequence growth of InxS and CuyS via a successive ionic layer absorption and reaction (SILAR) process and postdeposition annealing in sulfur ambiance. X-ray diffraction and Raman measurements showed that the obtained tetragonal CIS consisted of a chalcopyrite phase and Cu-Au ordering, which related with the antisite defect states. For a fixed Cu-S deposition cycle, an interface layer of β-In2S3 formed at the TiO2/CIS interface with suitable excess deposition of In-S. In the meantime, the content of the Cu-Au ordering phase decreased to a reasonable level. These facts resulted in the retardance of electron recombination in the cells, which is proposed to be dominated by electron transfer from the conduction band of TiO2 to the unoccupied defect states in CIS via exponentially distributed surface states. As a result, a relatively high efficiency of ~0.92% (V(oc) = 0.35 V, J(sc) = 8.49 mA cm(-2), and FF = 0.31) has been obtained. Last, but not least, with an overloading of the sensitizers, a decrease in the interface area between the sensitized TiO2 and electrolytes resulted in deceleration of hole extraction from CIS to the electrolytes, leading to a decrease in the fill factor of the solar cells. It is indicated that the unoccupied states in CIS with energy levels below EF0 of the TiO2 films play an important role in the interface electron recombination at low potentials and has a great influence on the fill factor of the solar cells.

  2. Radiographic Evaluation of Root Canal Fillings Accomplished by Undergraduate Dental Students

    PubMed Central

    Yavari, Hamidreza; Samiei, Mohammad; Shahi, Shahriar; Borna, Zahra; Abdollahi, Amir Ardalan; Ghiasvand, Negar; Shariati, Gholamreza

    2015-01-01

    Introduction: The purpose of this study was to evaluate the radiographic quality of root canal fillings by fourth-, fifth-, and sixth-year undergraduate students at Tabriz Faculty of Dentistry between 2006 and 2012. Methods and Materials: A total of 1183 root canal fillings in 620 teeth were evaluated by two investigators (and in case of disagreement by a third investigator) regarding the presence or absence of under-fillings, over-fillings and perforations. For each tooth, preoperative, working and postoperative radiographs were checked. The Pearson’s chi-square test was used for statistical evaluation of the data. Inter-examiner agreement was measured by Cohen’s kappa (k) values. The level of significance was set at 0.05. Results: Total frequencies of over-filling, under-filling and perforation were 5.6%, 20.4% and 1.9%, respectively. There were significant differences between frequencies of over- and under-fillings (P<0.05). Unacceptable quality, under- and over-fillings were detected in 27.9% of 1183 evaluated canals. Conclusion: The technical quality of root canal therapies performed by undergraduate dental students using step-back preparation and lateral compaction techniques was unacceptable in almost one-fourth of the cases. PMID:25834598

  3. Filling the blanks in temporal intervals: the type of filling influences perceived duration and discrimination performance

    PubMed Central

    Horr, Ninja K.; Di Luca, Massimiliano

    2015-01-01

    In this work we investigate how judgments of perceived duration are influenced by the properties of the signals that define the intervals. Participants compared two auditory intervals that could be any combination of the following four types: intervals filled with continuous tones (filled intervals), intervals filled with regularly-timed short tones (isochronous intervals), intervals filled with irregularly-timed short tones (anisochronous intervals), and intervals demarcated by two short tones (empty intervals). Results indicate that the type of intervals to be compared affects discrimination performance and induces distortions in perceived duration. In particular, we find that duration judgments are most precise when comparing two isochronous and two continuous intervals, while the comparison of two anisochronous intervals leads to the worst performance. Moreover, we determined that the magnitude of the distortions in perceived duration (an effect akin to the filled duration illusion) is higher for tone sequences (no matter whether isochronous or anisochronous) than for continuous tones. Further analysis of how duration distortions depend on the type of filling suggests that distortions are not only due to the perceived duration of the two individual intervals, but they may also be due to the comparison of two different filling types. PMID:25717310

  4. The Fate of DDH Hips Showing Cartilaginous or Fibrous Tissue-filled Joint Spaces Following Primary Reduction.

    PubMed

    Kim, Hui Taek; Lee, Tae Hoon; Ahn, Tae Young; Jang, Jae Hoon

    Because the use of magnetic resonance imaging is still not universal for the patients with developmental dysplasia of the hip patients, orthopaedists do not generally distinguish widened joint spaces which are "empty" after primary treatment (and therefore still reducible), from those which are filled and much more difficult to treat. To date no studies have focused on the latter hips. We treated and observed the outcomes for 19 hips which showed filled joint spaces after primary treatment. We retrospectively reviewed 19 cases of developmental dysplasia of the hip: (1) who showed a widened joint space on radiographs after primary treatment; and (2) whose magnetic resonance imaging showed that the widened joint space was accompanied by acetabular cartilage hypertrophy and/or was filled with fibrous tissues. All patients were over 1 year old at the time of primary reduction (reduction was closed in 4 patients, open in 6, and open with pelvic osteotomy in 9). Thirteen patients received at least 1 secondary treatment. Final results were classified using a modified Severin classification. Final outcomes were satisfactory in 10 (52.6%) and unsatisfactory in 9 (47.4%). The widened joint spaces gradually filled with bone, resulting in a shallow acetabulum in the patients with unsatisfactory results. Of 9 patients who underwent combined pelvic osteotomy at the time of primary reduction, results were satisfactory in 6 (66.7%), whereas all patients who had only closed or open primary reduction had unsatisfactory results. Combined pelvic osteotomy at the time of primary reduction is advisable in hips with widened joint spaces. However, hips with filled joint spaces after primary treatment often have unsatisfactory results even after additional pelvic and/or femoral osteotomy. Level IV-prognostic study.

  5. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-07-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  6. Optimizing the parameters of heat transmission in a small heat exchanger with spiral tapes cut as triangles and Aluminum oxide nanofluid using central composite design method

    NASA Astrophysics Data System (ADS)

    Ghasemi, Nahid; Aghayari, Reza; Maddah, Heydar

    2018-02-01

    The present study aims at optimizing the heat transmission parameters such as Nusselt number and friction factor in a small double pipe heat exchanger equipped with rotating spiral tapes cut as triangles and filled with aluminum oxide nanofluid. The effects of Reynolds number, twist ratio (y/w), rotating twisted tape and concentration (w%) on the Nusselt number and friction factor are also investigated. The central composite design and the response surface methodology are used for evaluating the responses necessary for optimization. According to the optimal curves, the most optimized value obtained for Nusselt number and friction factor was 146.6675 and 0.06020, respectively. Finally, an appropriate correlation is also provided to achieve the optimal model of the minimum cost. Optimization results showed that the cost has decreased in the best case.

  7. X-ray imaging performance of scintillator-filled silicon pore arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd

    2008-03-15

    The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depthsmore » of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure. In addition, some x-ray images of technical and anatomical phantoms are shown. This work shows that scintillator-filled pore arrays can provide x-ray imaging with high spatial resolution, but are not suitable in their current state for most of the applications in medical imaging, where increasing the x-ray doses cannot be tolerated.« less

  8. PubMed Central

    GUZZO, A.S.; MEGGIOLARO, A.; MANNOCCI, A.; TECCA, M.; SALOMONE, I.

    2015-01-01

    Summary Introduction. "Umberto I" Teaching Hospital adopted 'Conley scale' as internal procedure for fall risk assessment, with the aim of strengthening surveillance and improving prevention and management of impatient falls. Materials and methods. Case-control study was performed. Fall events from 1st March 2012 to 30th September 2013 were considered. Cases have been matched for gender, department and period of hospitalization with two or three controls when it is possible. A table including intrinsic and extrinsic 'fall risk' factors, not foreseen by Conley Scale, and setted up after a literature overview was built. Univariate analysis and conditional logistic regression model have been performed. Results. 50 cases and 102 controls were included. Adverse event 'fall' were associated with filled Conley scale at the admission to care unit (OR = 4.92, 95%CI = 2.34-10.37). Univariate analysis identified intrinsic factors increasing risk of falls: dizziness (OR = 3.22; 95%CI = 1.34-7.75), psychomotor agitation (OR = 2.61; 95%CI = 1.06-6.43); and use of means of restraint (OR = 5.05 95%CI = 1.77-14.43). Conditional logistic regression model revealed a significant association with the following variables: use of instruments of restraint (HR = 5.54, 95%CI = 1.2- 23.80), dizziness (OR = 3.97, 95%CI = 1.22-12.89). Discussion. Conley Scale must be filled at the access of patient to care unit. There were no significant differences between cases and controls with regard to risk factors provided by Conley, except for the use of means of restraint. Empowerment strategies for Conley compilation are needed. PMID:26789993

  9. 40 CFR 230.20 - Substrate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... result in changes in water circulation, depth, current pattern, water fluctuation and water temperature... organic and inorganic solid materials and includes water and other liquids or gases that fill the spaces... dredged or fill material can result in varying degrees of change in the complex physical, chemical, and...

  10. 40 CFR 230.20 - Substrate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... result in changes in water circulation, depth, current pattern, water fluctuation and water temperature... organic and inorganic solid materials and includes water and other liquids or gases that fill the spaces... dredged or fill material can result in varying degrees of change in the complex physical, chemical, and...

  11. Critical Perspective on Situational Leadership Theory. Leadership Readiness for Flexibility and Mobility. The 4th Dimensions on Situational Leadership Styles in Educational Settings

    ERIC Educational Resources Information Center

    Rajbhandari, Mani Man Singh

    2015-01-01

    In educational settings, leadership flexibility and mobility is essential factor for leadership readiness. This incorporates both factors concerning the situational needs and followership situational readiness. Leadership in education require multi facet dimensional approaches that enables the educational leaders to fill in the gaps and reduces…

  12. Team Factors that Predict to Sustainability Indicators for Community-Based Prevention Teams

    ERIC Educational Resources Information Center

    Perkins, Daniel F.; Feinberg, Mark E.; Greenberg, Mark T.; Johnson, Lesley E.; Chilenski, Sarah Meyer; Mincemoyer, Claudia C.; Spoth, Richard L.

    2011-01-01

    Because they often set out with a guarantee of only short-term funding, many community partnerships will face a threat to their sustainability almost as soon as the first money runs out. Research into the factors that enable some coalitions and partnerships to meet the challenge when others fail is limited. This study begins to fill this gap in…

  13. Interpersonal Tension: A Two-Factor Approach to the POX Situation.

    ERIC Educational Resources Information Center

    Gupta, Mahesh

    1985-01-01

    A theoretical explanation, in terms of a two-factor approach to a Person-Other-Issue (POX) Situation is offered, in an attempt to fill the void that exists in the face of the Heider-Newcomb controversy about POX balance. Validity and parsimony is demonstrated by applying it to some of the POX data reported in earlier studies. (Author/BL)

  14. Variation in saltgrass growth and time of fall dormancy related to geographical and climatic factors.

    Treesearch

    Hrvoje Rukavina; Harrison Hughes

    2008-01-01

    Development of a new turfgrass cultivar requires an evaluation of numerous traits as well as an understanding of environmental factors influencing those traits. Growth or ability to fill in gaps and time of fall dormancy (fall color retention) that indicates cold hardiness are important traits for turfgrasses. This study was initiated to characterize variation in...

  15. Personal and Social Support Factors Involved in Students' Decision to Participate in Formal Academic Mentoring

    ERIC Educational Resources Information Center

    Larose, Simon; Cyrenne, Diane; Garceau, Odette; Harvey, Marylou; Guay, Frederic; Deschenes, Claire

    2009-01-01

    In this study, we examined the role of personal and social support factors involved in students' decision to participate in formal academic mentoring. Three hundred and eighteen students completing Grade 11 and planning to study sciences in college filled out a questionnaire and were then asked to participate in an academic mentoring program…

  16. Multiple-Event, Single-Photon Counting Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  17. Diamond family of colloidal supercrystals as phononic metamaterials

    NASA Astrophysics Data System (ADS)

    Aryana, Kiumars; Zanjani, Mehdi B.

    2018-05-01

    Colloidal crystals provide a versatile platform for designing phononic metamaterials with exciting applications for sound and heat management. New advances in the synthesis and self-assembly of anisotropic building blocks such as colloidal clusters have expanded the library of available micro- and nano-scale ordered multicomponent structures. Diamond-like supercrystals formed by such clusters and spherical particles are notable examples that include a rich family of crystal symmetries such as diamond, double diamond, zinc-blende, and MgCu2. This work investigates the design of phononic supercrystals by predicting and analyzing phonon transport properties. In addition to size variation and structural diversity, these supercrystals encapsulate different sub-lattice types within one structure. Computational models are used to calculate the effect of various parameters on the phononic spectrum of diamond-like supercrystals. The results show that structures with relatively small or large filling factors (f > 0.65 or f < 0.45) include smaller bandgaps compared to those with medium filling factors (0.65 > f > 0.45). The double diamond and zinc-blende structures render the largest bandgap size compared to the other supercrystals studied in this paper. Additionally, this article discusses the effect of incorporating various configurations of sub-lattices by selecting different material compositions for the building blocks. The results suggest that, for the same structure, there exist multiple phononic variants with drastically different band structures. This study provides a valuable insight for evaluating novel colloidal supercrystals for phononic applications and guides the future experimental work for the synthesis of colloidal structures with desired phononic behavior.

  18. Evaluation of physicochemical properties of root-end filling materials using conventional and Micro-CT tests

    PubMed Central

    TORRES, Fernanda Ferrari Esteves; BOSSO-MARTELO, Roberta; ESPIR, Camila Galletti; CIRELLI, Joni Augusto; GUERREIRO-TANOMARU, Juliane Maria; TANOMARU-FILHO, Mario

    2017-01-01

    Abstract Objective To evaluate solubility, dimensional stability, filling ability and volumetric change of root-end filling materials using conventional tests and new Micro-CT-based methods. Material and Methods 7 Results The results suggested correlated or complementary data between the proposed tests. At 7 days, BIO showed higher solubility and at 30 days, showed higher volumetric change in comparison with MTA (p<0.05). With regard to volumetric change, the tested materials were similar (p>0.05) at 7 days. At 30 days, they presented similar solubility. BIO and MTA showed higher dimensional stability than ZOE (p<0.05). ZOE and BIO showed higher filling ability (p<0.05). Conclusions ZOE presented a higher dimensional change, and BIO had greater solubility after 7 days. BIO presented filling ability and dimensional stability, but greater volumetric change than MTA after 30 days. Micro-CT can provide important data on the physicochemical properties of materials complementing conventional tests. PMID:28877275

  19. Identifying and prioritizing industry-level competitiveness factors: evidence from pharmaceutical market.

    PubMed

    Shabaninejad, Hosein; Mehralian, Gholamhossein; Rashidian, Arash; Baratimarnani, Ahmad; Rasekh, Hamid Reza

    2014-04-03

    Pharmaceutical industry is knowledge-intensive and highly globalized, in both developed and developing countries. On the other hand, if companies want to survive, they should be able to compete well in both domestic and international markets. The main purpose of this paper is therefore to develop and prioritize key factors affecting companies' competitiveness in pharmaceutical industry. Based on an extensive literature review, a valid and reliable questionnaire was designed, which was later filled up by participants from the industry. To prioritize the key factors, we used the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The results revealed that human capital and macro-level policies were two key factors placed at the highest rank in respect of their effects on the competitiveness considering the industry-level in pharmaceutical area. This study provides fundamental evidence for policymakers and managers in pharma context to enable them formulating better polices to be proactively competitive and responsive to the markets' needs.

  20. FACTOR ANALYSIS OF A SOCIAL SKILLS SCALE FOR HIGH SCHOOL STUDENTS.

    PubMed

    Wang, H-Y; Lin, C-K

    2015-10-01

    The objective of this study was to develop a social skills scale for high school students in Taiwan. This study adopted stratified random sampling. A total of 1,729 high school students were included. The students ranged in age from 16 to 18 years. A Social Skills Scale was developed for this study and was designed for classroom teachers to fill out. The test-retest reliability of this scale was tested by Pearson's correlation coefficient. Exploratory factor analysis was used to determine construct validity. The Social Skills Scale had good overall test-retest reliability of .92, and the internal consistency of the five subscales was above .90. The results of the factor analysis showed that the Social Skills Scale covered the five domains of classroom learning skills, communication skills, individual initiative skills, interaction skills, and job-related social skills, and the five factors explained 68.34% of the variance. Thus, the Social Skills Scale had good reliability and validity and would be applicable to and could be promoted for use in schools.

  1. Pregnancy, sex and hormonal factors in multiple sclerosis

    PubMed Central

    Miller, David H; Fazekas, Franz; Montalban, Xavier; Reingold, Stephen C; Trojano, Maria

    2014-01-01

    Background: Multiple sclerosis (MS) is influenced by pregnancy, sex and hormonal factors. Objectives: A comprehensive understanding of the role of pregnancy, sex and hormonal factors can provide insights into disease mechanisms, and new therapeutic developments and can provide improved patient care and treatment. Methods: Based on an international conference of experts and a comprehensive PubMed search for publications on these areas in MS, we provide a review of what is known about the impact of these factors on disease demographics, etiology, pathophysiology and clinical course and outcomes. Results and conclusions: Recommendations are provided for counseling and management of people with MS before conception, during pregnancy and after delivery. The use of disease-modifying and symptomatic therapies in pregnancy is problematic and such treatments are normally discontinued. Available knowledge about the impact of treatment on the mother, fetus and newborn is discussed. Recommendations for future research to fill knowledge gaps and clarify inconsistencies in available data are made. PMID:24446387

  2. Self-pressurization of a flightweight liquid hydrogen tank: Effects of fill level at low wall heat flux

    NASA Technical Reports Server (NTRS)

    Vandresar, N. T.; Hasan, M. M.; Lin, C.-S.

    1991-01-01

    Experimental results are presented for the self pressurization and thermal stratification of a 4.89 cu m liquid hydrogen storage tank subjected to low heat flux (2.0 and 3.5 W/sq m) in normal gravity. The test tank was representative of future spacecraft tankage, having a low mass to volume ratio and high performance multilayer thermal insulation. Tests were performed at fill levels of 29 and 49 pcts. (by volume) and complement previous tests at 83 pct. fill. As the heat flux increases, the pressure rise rate at each fill level exceeds the homogeneous rate by an increasing ratio. Herein, this ratio did not exceed a value of 2. The slowest pressure rise rate was observed for the 49 pct. fill level at both heat fluxes. This result is attributed to the oblate spheroidal tank geometry which introduces the variables of wetted wall area, liquid-vapor interfacial area, and ratio of side wall to bottom heating as a function of fill level or liquid depth. Initial tank thermal conditions were found to affect the initial pressure rise rate. Quasi steady pressure rise rates are independent of starting conditions.

  3. Generation of digitized microfluidic filling flow by vent control.

    PubMed

    Yoon, Junghyo; Lee, Eundoo; Kim, Jaehoon; Han, Sewoon; Chung, Seok

    2017-06-15

    Quantitative microfluidic point-of-care testing has been translated into clinical applications to support a prompt decision on patient treatment. A nanointerstice-driven filling technique has been developed to realize the fast and robust filling of microfluidic channels with liquid samples, but it has failed to provide a consistent filling time owing to the wide variation in liquid viscosity, resulting in an increase in quantification errors. There is a strong demand for simple and quick flow control to ensure accurate quantification, without a serious increase in system complexity. A new control mechanism employing two-beam refraction and one solenoid valve was developed and found to successfully generate digitized filling flow, completely free from errors due to changes in viscosity. The validity of digitized filling flow was evaluated by the immunoassay, using liquids with a wide range of viscosity. This digitized microfluidic filling flow is a novel approach that could be applied in conventional microfluidic point-of-care testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Reduction of Non-uniform Beam Filling Effects by Vertical Decorrelation: Theory and Simulations

    NASA Technical Reports Server (NTRS)

    Short, David; Nakagawa, Katsuhiro; Iguchi, Toshio

    2013-01-01

    Algorithms for estimating precipitation rates from spaceborne radar observations of apparent radar reflectivity depend on attenuation correction procedures. The algorithm suite for the Ku-band precipitation radar aboard the Tropical Rainfall Measuring Mission satellite is one such example. The well-known problem of nonuniform beam filling is a source of error in the estimates, especially in regions where intense deep convection occurs. The error is caused by unresolved horizontal variability in precipitation characteristics such as specific attenuation, rain rate, and effective reflectivity factor. This paper proposes the use of vertical decorrelation for correcting the nonuniform beam filling error developed under the assumption of a perfect vertical correlation. Empirical tests conducted using ground-based radar observations in the current simulation study show that decorrelation effects are evident in tilted convective cells. However, the problem of obtaining reasonable estimates of a governing parameter from the satellite data remains unresolved.

  5. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  6. The role of high work-function metallic nanodots on the performance of a-Si:H solar cells: offering ohmic contact to light trapping.

    PubMed

    Kim, Jeehwan; Abou-Kandil, Ahmed; Fogel, Keith; Hovel, Harold; Sadana, Devendra K

    2010-12-28

    Addition of carbon into p-type "window" layers in hydrogenated amorphous silicon (a-Si:H) solar cells enhances short circuit currents and open circuit voltages by a great deal. However, a-Si:H solar cells with high carbon-doped "window" layers exhibit poor fill factors due to a Schottky barrier-like impedance at the interface between a-SiC:H windows and transparent conducting oxides (TCO), although they show maximized short circuit currents and open circuit voltages. The impedance is caused by an increasing mismatch between the work function of TCO and that of p-type a-SiC:H. Applying ultrathin high-work-function metals at the interface between the two materials results in an effective lowering of the work function mismatch and a consequent ohmic behavior. If the metal layer is sufficiently thin, then it forms nanodots rather than a continuous layer which provides light-scattering effect. We demonstrate 31% efficiency enhancement by using high-work-function materials for engineering the work function at the key interfaces to raise fill factors as well as photocurrents. The use of metallic interface layers in this work is a clear contrast to previous work where attempts were made to enhance the photocurrent using plasmonic metal nanodots on the solar cell surface.

  7. Non-pumping reactive wells filled with mixing nano and micro zero-valent iron for nitrate removal from groundwater: Vertical, horizontal, and slanted wells

    NASA Astrophysics Data System (ADS)

    Hosseini, Seiyed Mossa; Tosco, Tiziana; Ataie-Ashtiani, Behzad; Simmons, Craig T.

    2018-03-01

    Non-pumping reactive wells (NPRWs) filled by zero-valent iron (ZVI) can be utilized for the remediation of groundwater contamination of deep aquifers. The efficiency of NPRWs mainly depends on the hydraulic contact time (HCT) of the pollutant with the reactive materials, the extent of the well capture zone (Wcz), and the relative hydraulic conductivity of aquifer and reactive material (Kr). We investigated nitrate removal from groundwater using NPRWs filled by ZVI (in nano and micro scales) and examined the effect of NPRWs orientations (i.e. vertical, slanted, and horizontal) on HCT and Wcz. The dependence of HCT on Wcz for different Kr values was derived theoretically for a homogeneous and isotropic aquifer, and verified using particle tracking simulations performed using the semi-analytical particle tracking and pathlines model (PMPATH). Nine batch experiments were then performed to investigate the impact of mixed nano-ZVI, NZVI (0 to 2 g l-1) and micro-ZVI, MZVI (0 to 4 g l-1) on the nitrate removal rate (with initial NO3-=132 mg l-1). The NPRWs system was tested in a bench-scale sand medium (60 cm length × 40 cm width × 25 cm height) for three orientations of NPRWs (vertical, horizontal, and slanted with inclination angle of 45°). A mixture of nano/micro ZVI, was used, applying constant conditions of pore water velocity (0.024 mm s-1) and initial nitrate concentration (128 mg l-1) for five pore volumes. The results of the batch tests showed that mixing nano and micro Fe0 outperforms these individual materials in nitrate removal rates. The final products of nitrate degradation in both batch and bench-scale experiments were NO2-, NH4+, and N2(gas). The results of sand-box experiments indicated that the slanted NPRWs have a higher nitrate reduction rate (57%) in comparison with vertical (38%) and horizontal (41%) configurations. The results also demonstrated that three factors have pivotal roles in expected HCT and Wcz, namely the contrast between the hydraulic conductivity of aquifer and reactive materials within the wells, the mass of Fe0 in the NPRWs, and the orientation of NPRWs adopted. A trade-off between these factors should be considered to increase the efficiency of remediation using the NPRWs system.

  8. Effective factors in expansion of medical tourism in Iran

    PubMed Central

    Rezaee, Reza; Mohammadzadeh, Mehdi

    2016-01-01

    Background: Medical tourism (MT) refers to circumstances in which people travel for medical treatments. The present study focuses on determining factors affecting MT in Iran. Methods: The study uses a mixed method approach. Initially, through a qualitative study, 12 experts were interviewed deeply; then, 22 participants in three equal focus groups expressed their ideas about growth and development of MT in Iran. Based on the expressed ideas, 120 factors were identified and accordingly a structured questionnaire was developed. Some members from the focus groups confirmed the questionnaire’s face and content validity. The reliability of pertinent items was confirmed using Cronbach’s alpha=0.8. Afterwards, 61 eligible subjects filled out this questionnaire. Results: The findings showed that "healthcare quality" and "high level of expertise" are two most attractive factors in MT. However, other factors such as "healthcare costs", and "visa facilities" are among key factors as well. Also, the role of "the healthcare providers" was found to be more prominent than the roles of "the government" and "the general tourist services". Conclusion: Although some attractive MT factors are present currently, MT expansion to a desirable level in Iran requires a comprehensive plan of which its factors were discussed in this paper. PMID:27683650

  9. Non-invasive characterization of real-time bladder sensation using accelerated hydration and a novel sensation meter: An initial experience

    PubMed Central

    Nagle, Anna S.; Speich, John E.; De Wachter, Stefan G.; Ghamarian, Peter P.; Le, David M.; Colhoun, Andrew F.; Ratz, Paul H.; Barbee, Robert W.; Klausner, Adam P.

    2016-01-01

    AIMS The purpose of this investigation was to develop a non-invasive, objective, and unprompted method to characterize real-time bladder sensation. METHODS Volunteers with and without overactive bladder (OAB) were prospectively enrolled in a preliminary accelerated hydration study. Participants drank 2L Gatorade-G2® and recorded real-time sensation (0–100% scale) and standardized verbal sensory thresholds using a novel, touch-screen “sensation meter.” 3D bladder ultrasound images were recorded throughout fillings for a subset of participants. Sensation data were recorded for two consecutive complete fill-void cycles. RESULTS Data from 14 normal and 12 OAB participants were obtained (ICIq-OAB-5a = 0 vs. ≥3). Filling duration decreased in fill2 compared to fill1, but volume did not significantly change. In normals, adjacent verbal sensory thresholds (within fill) showed no overlap, and identical thresholds (between fill) were similar, demonstrating effective differentiation between degrees of %bladder capacity. In OAB, within-fill overlaps and between-fill differences were identified. Real-time %capacity-sensation curves left shifted from fill1 to fill2 in normals, consistent with expected viscoelastic behavior, but unexpectedly right shifted in OAB. 3D ultrasound volume data showed that fill rates started slowly and ramped up with variable end points. CONCLUSIONS This study establishes a non-invasive means to evaluate real-time bladder sensation using a two-fill accelerated hydration protocol and a sensation meter. Verbal thresholds were inconsistent in OAB, and the right shift in OAB %capacity–sensation curve suggests potential biomechanical and/or sensitization changes. This methodology could be used to gain valuable information on different forms of OAB in a completely non-invasive way. PMID:27654469

  10. Validation of the minimal citrate tube fill volume for routine coagulation tests on ACL TOP 500 CTS®.

    PubMed

    Ver Elst, K; Vermeiren, S; Schouwers, S; Callebaut, V; Thomson, W; Weekx, S

    2013-12-01

    CLSI recommends a minimal citrate tube fill volume of 90%. A validation protocol with clinical and analytical components was set up to determine the tube fill threshold for international normalized ratio of prothrombin time (PT-INR), activated partial thromboplastin time (aPTT) and fibrinogen. Citrated coagulation samples from 16 healthy donors and eight patients receiving vitamin K antagonists (VKA) were evaluated. Eighty-nine tubes were filled to varying volumes of >50%. Coagulation tests were performed on ACL TOP 500 CTS(®) . Receiver Operating Characteristic (ROC) plot, with Total error (TE) and critical difference (CD) as possible acceptance criteria, was used to determine the fill threshold. Receiving Operating Characteristic was the most accurate with CD for PT-INR and TE for aPTT resulting in thresholds of 63% for PT and 80% for aPTT. By adapted ROC, based on threshold setting at a point of 100% sensitivity at a maximum specificity, CD was best for PT and TE for aPTT resulting in thresholds of 73% for PT and 90% for aPTT. For fibrinogen, the method was only valid with the TE criterion at a 63% fill volume. In our study, we validated the minimal citrate tube fill volumes of 73%, 90% and 63% for PT-INR, aPTT and fibrinogen, respectively. © 2013 John Wiley & Sons Ltd.

  11. Effects of Favorable Alleles for Water-Soluble Carbohydrates at Grain Filling on Grain Weight under Drought and Heat Stresses in Wheat

    PubMed Central

    Chang, Xiaoping; Li, Runzhi; Jing, Ruilian

    2014-01-01

    Drought, heat and other abiotic stresses during grain filling can result in reductions in grain weight. Conserved water-soluble carbohydrates (WSC) at early grain filling play an important role in partial compensation of reduced carbon supply. A diverse population of 262 historical winter wheat accessions was used in the present study. There were significant correlations between 1000-grain weight (TGW) and four types of WSC, viz. (1) total WSC at the mid-grain filling stage (14 days after flowering) produced by leaves and non-leaf organs; (2) WSC contributed by current leaf assimilation during the mid-grain filling; (3) WSC in non-leaf organs at the mid-grain filling, excluding the current leaf assimilation; and (4) WSC used for respiration and remobilization during the mid-grain filling. Association and favorable allele analyses of 209 genome-wide SSR markers and the four types of WSC were conducted using a mixed linear model. Seven novel favorable WSC alleles exhibited positive individual contributions to TGW, which were verified under 16 environments. Dosage effects of pyramided favorable WSC alleles and significantly linear correlations between the number of favorable WSC alleles and TGW were observed. Our results suggested that pyramiding more favorable WSC alleles was effective for improving both WSC and grain weight in future wheat breeding programs. PMID:25036550

  12. Gap Fill Materials Using Cyclodextrin Derivatives in ArF Lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Shinjo, Tetsuya; Sakaida, Yasushi; Hashimoto, Keisuke

    2007-11-01

    High planarizing gap fill materials based on β-cyclodextrin in ArF photoresist under-layer materials have been developed for fast etching in CF4 gas. Gap fill materials used in the via-first dual damascene process need to have high etch rates to prevent crowning or fencing on top of the trench after etching and a small thickness bias between the dense and blanket areas to minimize issues observed during trench lithography by narrowing the process latitude. Cyclodextrin is a circular oligomer with a nanoscale porous structure that has a high number of oxygen atoms, as calculated using the Ohnishi parameter, providing high etch rates. Additionally, since gap fill materials using cyclodextrin derivatives have low viscosities and molecular weights, they are expected to exhibit excellent flow properties and minimal thermal shrinkage during baking. In this paper, we describe the composition and basic film properties of gap fill materials; planarization in the via-first dual damascene process and etch rates in CF4 gas compared with dextrin with α-glycoside bonds in polysaccharide, poly(2-hydroxypropyl methacrylate) and poly(4-hydroxystyrene). The β-cyclodextrin used in this study was obtained by esterifying the hydroxyl groups of dextrin resulting in improved wettability on via substrates and solubility in photoresist solvents such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate and ethyl lactate. Gap fill materials using cyclodextrin derivatives showed good planarization and via filling performance without observing voids in via holes. In addition to superior via filling performance, the etch rate of gap fill materials using β-cyclodextrin derivatives was 2.8-2.9 times higher than that of an ArF photoresist, evaluated under CF4 gas conditions by reactive ion etching. These results were attributed to the combination of both nanoscale porous structures and a high density of oxygen atoms in our gap fill materials using cyclodextrin derivatives. The cyclodextrin derivatives may be applicable as a new type of sacrificial material under the photoresist in ArF lithography.

  13. Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene

    NASA Astrophysics Data System (ADS)

    Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Borah, Abhinandan; Agarwal, Hitesh; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar

    There is an increasing interest in the electronic properties of few layer graphene as it offers a platform to study electronic interactions because the dispersion of bands can be tuned with number and stacking of layers in combination with electric field. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism (QHF) seen in a dual gated ABA trilayer graphene sample. Due to high mobility (500,000 cm2V-1s-1) in our device compared to previous studies, we find all symmetry broken states including ν = 0 filling factor at relatively low magnetic field (6T). Activation measurements show that Landau Level (LL) gaps are enhanced by interactions. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of QHF states at low magnetic field.

  14. Equilibration of quantum hall edge states and its conductance fluctuations in graphene p-n junctions

    NASA Astrophysics Data System (ADS)

    Kumar, Chandan; Kuiri, Manabendra; Das, Anindya

    2018-02-01

    We report an observation of conductance fluctuations (CFs) in the bipolar regime of quantum hall (QH) plateaus in graphene (p-n-p/n-p-n) devices. The CFs in the bipolar regime are shown to decrease with increasing bias and temperature. At high temperature (above 7 K) the CFs vanishes completely and the flat quantized plateaus are recovered in the bipolar regime. The values of QH plateaus are in theoretical agreement based on full equilibration of chiral channels at the p-n junction. The amplitude of CFs for different filling factors follows a trend predicted by the random matrix theory. Although, there are mismatch in the values of CFs between the experiment and theory but at higher filling factors the experimental values become closer to the theoretical prediction. The suppression of CFs and its dependence has been understood in terms of time dependent disorders present at the p-n junctions.

  15. Photo-degradation of high efficiency fullerene-free polymer solar cells.

    PubMed

    Upama, Mushfika Baishakhi; Wright, Matthew; Mahmud, Md Arafat; Elumalai, Naveen Kumar; Mahboubi Soufiani, Arman; Wang, Dian; Xu, Cheng; Uddin, Ashraf

    2017-12-07

    Polymer solar cells are a promising technology for the commercialization of low cost, large scale organic solar cells. With the evolution of high efficiency (>13%) non-fullerene polymer solar cells, the stability of the cells has become a crucial parameter to be considered. Among the several degradation mechanisms of polymer solar cells, burn-in photo-degradation is relatively less studied. Herein, we present the first systematic study of photo-degradation of novel PBDB-T:ITIC fullerene-free polymer solar cells. The thermally treated and as-prepared PBDB-T:ITIC solar cells were exposed to continuous 1 sun illumination for 5 hours. The aged devices exhibited rapid losses in the short-circuit current density and fill factor. The severe short-circuit current and fill factor burn in losses were attributed to trap mediated charge recombination, as evidenced by an increase in Urbach energy for aged devices.

  16. Inverted polymer solar cells with enhanced fill factor by inserting the potassium stearate interfacial modification layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiangsheng; Faculty of Materials Science and Chemical Engineering, Ningbo University, No. 818 Fenghua Road, Ningbo 315211; Jiu, Tonggang, E-mail: jiutonggang@nimte.ac.cn, E-mail: fangjf@nimte.ac.cn

    2016-05-02

    A thin potassium stearate (KSt) film combined with an optimized ZnO film was introduced to improve the fill factor (FF) of highly efficient inverted polymer solar cells (PSCs). Atomic force microscopy and contact angle measurements were used to show that the introduction of KSt did not change the morphology of interlayer. On the contrary, it is beneficial for the spread of the active layer on the interlayer. The origin of enhanced FF was systematically studied by the ideal current-voltage model for a single heterojunction solar cell and electrochemical impedance spectroscopy. On the basis of the data analysis, the reduced chargemore » recombination loss was responsible for this improved FF. At last, when KSt was replaced by sodium stearate (NaSt), the similar experiment phenomenon was observed. This indicates that inserting a metallic stearate modified layer is a promising strategy to enhance inverted PSCs performance.« less

  17. Circuit filling factor (CFF) for multiply tuned probes, revisited

    NASA Astrophysics Data System (ADS)

    Conradi, Mark S.; Zens, Albert P.

    2018-07-01

    The concept of circuit filling factor (CFF) is re-examined for multi-tuned, multi-inductor probe circuits. The CFF is the fraction of magnetic stored energy residing in the NMR coil. The CFF theorem states that the CFF sums to unity across all the resonant normal modes. It dictates that improved performance from a large CFF in one mode comes at the expense of CFF (and performance) at the other mode(s). Simple analytical calculations of two-mode circuits are used to demonstrate and confirm the CFF theorem. A triple-resonance circuit is calculated to show the large trade-offs involved there. The theorem can provide guidance for choosing the best circuit and relative inductances in multi-nuclear probes. The CFF is directly accessible from ball frequency-shift measurements. We give experimental measures of the CFF from ball shifts and compare to calculated values of the CFF, with good agreement.

  18. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  19. Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera

    PubMed Central

    Israel, Yonatan; Tenne, Ron; Oron, Dan; Silberberg, Yaron

    2017-01-01

    Despite advances in low-light-level detection, single-photon methods such as photon correlation have rarely been used in the context of imaging. The few demonstrations, for example of subdiffraction-limited imaging utilizing quantum statistics of photons, have remained in the realm of proof-of-principle demonstrations. This is primarily due to a combination of low values of fill factors, quantum efficiencies, frame rates and signal-to-noise characteristic of most available single-photon sensitive imaging detectors. Here we describe an imaging device based on a fibre bundle coupled to single-photon avalanche detectors that combines a large fill factor, a high quantum efficiency, a low noise and scalable architecture. Our device enables localization-based super-resolution microscopy in a non-sparse non-stationary scene, utilizing information on the number of active emitters, as gathered from non-classical photon statistics. PMID:28287167

  20. Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams.

    PubMed

    Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar; Izewska, Joanna; Hopfgartner, Johannes; Lechner, Wolfgang; Andersen, Claus E; Beierholm, Anders R; Helt-Hansen, Jakob; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Meghzifene, Ahmed; Palmans, Hugo

    2014-07-01

    The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.

  1. Metabolic and transcriptional transitions in barley glumes reveal a role as transitory resource buffers during endosperm filling.

    PubMed

    Kohl, Stefan; Hollmann, Julien; Erban, Alexander; Kopka, Joachim; Riewe, David; Weschke, Winfriede; Weber, Hans

    2015-03-01

    During grain filling in barley (Hordeum vulgare L. cv. Barke) reserves are remobilized from vegetative organs. Glumes represent the vegetative tissues closest to grains, senesce late, and are involved in the conversion of assimilates. To analyse glume development and metabolism related to grain filling, parallel transcript and metabolite profiling in glumes and endosperm were performed, showing that glume metabolism and development adjusts to changing grain demands, reflected by specific signatures of metabolite and transcript abundances. Before high endosperm sink strength is established by storage product accumulation, glumes form early, intermediary sink organs, shifting then to remobilizing and exporting source organs. Metabolic and transcriptional transitions occur at two phases: first, at the onset of endosperm filling, as a consequence of endosperm sink activity and assimilate depletion in endosperm and vascular tissues; second, at late grain filling, by developmental ageing and senescence. Regulation of and transition between phases are probably governed by specific NAC and WRKY transcription factors, and both abscisic and jasmonic acid, and are accompanied by changed expression of specific nitrogen transporters. Expression and metabolite profiling suggest glume-specific mechanisms of assimilate conversion and translocation. In summary, grain filling and endosperm sink strength coordinate phase changes in glumes via metabolic, hormonal, and transcriptional control. This study provides a comprehensive view of barley glume development and metabolism, and identifies candidate genes and associated pathways, potentially important for breeding improved grain traits. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Ultimate strength capacity of a square hollow section filled with fibrous foamed concrete

    NASA Astrophysics Data System (ADS)

    Amirah Azra Khairuddin, Siti; Rahman, Norashidah Abd; Jamaluddin, Norwati; Jaini, Zainorizuan Mohd; Ali, Noorwirdawati

    2017-11-01

    Concrete-filled sections used as building columns have become popular due to their architectural and structural elements. In recent years, there has been a renewed call for the improvement of materials used as concrete to fill the composite columns. Among these materials, foamed concrete has received great attention due to its structural characteristics and its potential as a construction material used in hollow sections. However, its behaviors as infill material in a hollow section, such as its strength and failure mode, should be investigated. In this study, experimental research was conducted to compare the experimental and theoretical values of its ultimate strength capacity. Eight specimens of hollow steel sections with two different thicknesses were filled with fibrous foamed concrete and then subjected to compression load. The obtained results were compared with those obtained from a hollow section with the same thicknesses, but were filled with normal foamed concrete. Results show that the ultimate strength capacity of the experimental value is the same as that of the theoretical value based on Eurocode 4. The largest percentage values between theoretical and experimental results for thicknesses of 2 and 4 mm are 58% and 55%, respectively.

  3. Further understanding on the mechanism of alkyl ketene dimer sizing on the causticized calcium carbonate filled paper and its improvements.

    PubMed

    Wang, Jian; Dang, Miao; Duan, Chao; Qian, Li

    2017-02-01

    Causticized calcium carbonate (CCC), a solid waste derived from kraft black recovery process, can be used as an alternative for the conventional precipitated calcium carbonate (PCC). However, the application of the CCC has been limited due to its low sizing efficiency in its filled paper. In this study, the characteristics of the CCC were studied aiming to improve the alkyl ketene dimer (AKD) sizing performances of the CCC filled papers, and the results were compared with those from PCC filled papers. The results showed that the CCC had higher pore structure, higher specific surface area, and more negative charge density than the PCC, thus leading to a higher cationic AKD adsorption onto the CCC filler. The lower AKD sizing efficiency in the CCC filled paper can be explained by the combination of higher AKD adsorption and migration, both of which resulted in preferred AKD adsorption onto/into the CCC fillers, rather than the cellulose fibers. Based on the above, the prior addition of polyamide-polyamine epichlorhydrin (PAE) resin to the CCC filler system was proposed to remedy the related issues, thus improving the sizing efficiency.

  4. The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling

    PubMed Central

    Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng

    2013-01-01

    The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154

  5. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pak, A.; Dewald, E. L.; Landen, O. L.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are usedmore » to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.« less

  6. Relationship between symmetry and laser pulse shape in low-fill hohlraums at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    MacLaren, Steve; Zylstra, A. B.; Yi, A.; Kline, J. L.; Kyrala, G. A.; Kot, L. B.; Loomis, E. N.; Perry, T. S.; Shah, R. C.; Masse, L. P.; Ralph, J. E.; Khan, S. F.

    2017-10-01

    Typically in indirect-drive inertial confinement fusion (ICF) hohlraums cryogenic helium gas fill is used to impede the motion of the hohlraum wall plasma as it is driven by the laser pulse. A fill of 1 mg/cc He has been used to significantly suppress wall motion in ICF hohlraums at the National Ignition Facility (NIF); however, this level of fill also causes laser-plasma instabilities (LPI) which result in hot electrons, time-dependent symmetry swings and reduction in drive due to increased backscatter. There are currently no adequate models for these phenomena in codes used to simulate integrated ICF experiments. A better compromise is a fill in the range of 0.3 0.6 mg/cc, which has been shown to provide some reduction in wall motion without incurring significant LPI effects. The wall motion in these low-fill hohlraums and the resulting effect on symmetry due to absorption of the inner cone beams by the outer cone plasma can be simulated with some degree of accuracy with the hydrodynamics and inverse Bremsstrahlung models in ICF codes. We describe a series of beryllium capsule implosions in 0.3 mg/cc He fill hohlraums that illustrate the effect of pulse shape on implosion symmetry in the ``low-fill'' regime. In particular, we find the shape of the beginning or ``foot'' of the pulse has significant leverage over the final symmetry of the stagnated implosion. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344.

  7. An effective approach for gap-filling continental scale remotely sensed time-series

    PubMed Central

    Weiss, Daniel J.; Atkinson, Peter M.; Bhatt, Samir; Mappin, Bonnie; Hay, Simon I.; Gething, Peter W.

    2014-01-01

    The archives of imagery and modeled data products derived from remote sensing programs with high temporal resolution provide powerful resources for characterizing inter- and intra-annual environmental dynamics. The impressive depth of available time-series from such missions (e.g., MODIS and AVHRR) affords new opportunities for improving data usability by leveraging spatial and temporal information inherent to longitudinal geospatial datasets. In this research we develop an approach for filling gaps in imagery time-series that result primarily from cloud cover, which is particularly problematic in forested equatorial regions. Our approach consists of two, complementary gap-filling algorithms and a variety of run-time options that allow users to balance competing demands of model accuracy and processing time. We applied the gap-filling methodology to MODIS Enhanced Vegetation Index (EVI) and daytime and nighttime Land Surface Temperature (LST) datasets for the African continent for 2000–2012, with a 1 km spatial resolution, and an 8-day temporal resolution. We validated the method by introducing and filling artificial gaps, and then comparing the original data with model predictions. Our approach achieved R2 values above 0.87 even for pixels within 500 km wide introduced gaps. Furthermore, the structure of our approach allows estimation of the error associated with each gap-filled pixel based on the distance to the non-gap pixels used to model its fill value, thus providing a mechanism for including uncertainty associated with the gap-filling process in downstream applications of the resulting datasets. PMID:25642100

  8. Structural properties of fracture haematoma: current status and future clinical implications.

    PubMed

    Wang, Xin; Friis, Thor; Glatt, Vaida; Crawford, Ross; Xiao, Yin

    2017-10-01

    Blood clots (haematomas) that form immediately following a bone fracture have been shown to be vital for the subsequent healing process. During the clotting process, a number of factors can influence the fibrin clot structure, such as fibrin polymerization, growth factor binding, cellular infiltration (including platelet retraction), protein concentrations and cytokines. The modulation of the fibrin clot structure within the fracture site has important clinical implications and could result in the development of multifunctional scaffolds that mimic the natural structure of a haematoma. Artificial haematoma structures such as these can be created from the patient's own blood and can therefore act as an ideal bone defect filling material for potential clinical application to accelerate bone regeneration. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Cell Division and Evolution of Biological Tissues

    NASA Astrophysics Data System (ADS)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  10. Magneto-transport study of quantum phases in wide GaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    In this thesis we study several quantum phases in very high quality two-dimensional electron systems (2DESs) confined to GaAs single wide quantum wells (QWs). In these systems typically two electric subbands are occupied. By controlling the electron density as well as the QW symmetry, we can fine tune the cyclotron and subband separation energies, so that Landau levels (LLs) belonging to different subbands cross at the Fermi energy EF. The additional subband degree of freedom enables us to study different quantum phases. Magneto-transport measurements at fixed electron density n and various QW symmetries reveal a remarkable pattern for the appearance and disappearance of fractional quantum Hall (FQH) states at LL filling factors nu = 10/3, 11/3, 13/3, 14/3, 16/3, and 17/3. These q/3 states are stable and strong as long as EF lies in a ground-state (N = 0) LL, regardless of whether that level belongs to the symmetric or the anti-symmetric subband. We also observe subtle and distinct evolutions near filling factors nu = 5/2 and 7/2, as we change the density n, or the symmetry of the charge distribution. The even-denominator FQH states are observed at nu = 5/2, 7/2, 9/2 and 11/2 when EF lies in the N= 1 LLs of the symmetric subband (the S1 levels). As we increase n, the nu = 5/2 FQH state suddenly disappears and turns into a compressible state once EF moves to the spin-up, N = 0, anti-symmetric LL (the A0 ↑ level). The sharpness of this disappearance suggests a first-order transition from a FQH to a compressible state. Moreover, thanks to the renormalization of the susbband energy separation in a well with asymmetric change distribution, two LLs can get pinned to each other when they are crossing at E F. We observe a remarkable consequence of such pinning: There is a developing FQH state when the LL filling factor of the symmetric subband nuS equals 5/2 while the antisymmetric subband has filling 1 < nuA <2. Next, we study the evolution of the nu=5/2 and 7/2 FQH states as we add a parallel magnetic field, B||, in the plane of the sample. The first-order transitions at nu = 5/2 and 7/2 are softened when B|| is applied, thanks to the mixing of the LLs from different subbands. Meanwhile, a small B|| also introduces a severe transport anisotropy at nu = 5/2 while the FQH state still remains reasonably strong. Several other novel phenomena are also observed in wide QWs. In high (N ≥ 2) LLs, our study reveals an unexpected rotation of the orientation of the stripe phase observed at a half-filled LL. This rotation is sensitive to the spin of the LL and the symmetry of the charge distribution in the QW. In the lowest LL, we observe a close competition between electron liquid and solid phases near filling factor nu = 1. In perticular, we observe a reentrant nu = 1 integer quantum Hall effect which signals the formation of a Wigner crystal state.

  11. Open wedge high tibial osteotomies: Calcium-phosphate ceramic spacer versus autologous bonegraft.

    PubMed

    Gouin, F; Yaouanc, F; Waast, D; Melchior, B; Delecrin, J; Passuti, N

    2010-10-01

    Valgus tibial osteotomy (VTO) is a well-known procedure for the treatment of medial compartment femoro-tibial osteoarthritis. Good and very good results have been reported with calcium phosphate wedges, which avoid the inconveniences of autologous grafts use. The hypothesis of this study is that with equivalent results in the treatment of osteoarthritis of the knee, the use of calcium phosphate wedges (BMCaPh) to fill the bone defect created by osteotomy would result in fewer specific complications and less pain associated with autologous grafts (AUTO) harvesting. This prospective, controlled, randomised study included one arm that received a macroporous, biphasic calcium phosphate wedge (BMCaPh group) and one arm that received an autologous tricortical graft (AUTO group) for filling. The same plate with locked screws was used for fixation in all cases. All patients underwent at least two years of clinical and radiographic post-operative follow-up. Forty patients were included. Loss of correction occurred in six of the twenty-two patients in the BMCaPh group (27%), resulting in three early surgical revisions, compared to one loss of correction in the AUTO group. Lateral cortical hinge tears were a risk factor for loss of correction for the entire cohort and in the BMCaPh group. (relative risk 13.3 [1.9-92]. Moreover, union took significantly longer and pain lasted significantly longer in the BMCaPh group, although results were comparable at 6 months. A significant number of undesirable events (loss of correction) occurred in this study, limiting the number of included patients. Nevertheless, the results show that although there was no difference in the two groups for overall complications, number of revisions all causes combined, or clinical results, filling with BMCaPh was less tolerated and increased the risk of loss of correction when local mechanical conditions of the knee were unfavourable (lateral cortical hinge tears). Moreover, although it is not possible to draw a conclusion because of methodology bias in this study, early weight-bearing resumption on the knee also seemed to favour these complications. Level II. Prospective randomized study. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  12. Utopia and Hellas basins, Mars: Twins separated at birth

    NASA Astrophysics Data System (ADS)

    Searls, Mindi L.; Banerdt, W. Bruce; Phillips, Roger J.

    2006-08-01

    Using topography and gravity data as constraints, we formulate spherical harmonic thin elastic-shell models to determine the subsurface structure of the Hellas and Utopia basins. For Hellas, we show that our model is consistent with the elastic thickness results of McGovern et al. (2002, 2004). The thin elastic lithosphere at the time of formation implies that Hellas is close to isostatic. Since Utopia formed earlier, we argue that an isostatic assumption is justified for the Utopia basin before it was filled. From this supposition, we derive a system of equations that allows us to solve for the amount of fill, the prefill topography, and the amount of flexure due to the fill within the Utopia basin. An analysis of the parameter space shows that the fill density and the amount of fill is strongly dependent on the elastic thickness at the time of infilling. A thinner elastic lithosphere favors a denser fill, while a thicker lithosphere will allow for less dense material. Likewise, larger crustal thickness values lead to smaller fill density values. The presence of quasi-circular depressions, interpreted as impact craters, within the Utopia basin indicates that the majority of the material within Utopia was deposited prior to 4.04-4.11 Ga. The early timing for the deposition combined with the heat imparted by the basin forming event argues for a thinner lithosphere which could, in turn, suggest fill densities that are more consistent with a volcanic load than with pure sediment or ice-rich material. These results are supported using an alternative method of determining the amount of fill and flexure within Utopia. This model assumes that Hellas and Utopia were initially identical and that the only difference in their subsequent evolution was the addition of material in the Utopia basin. The volume of material needed to fill Utopia is immense (on the order of 50 million km3 or more). The high density obtained for the fill requires that it contain a large igneous component, the source of which is problematic. Relaxing the isostatic assumption to a reasonable degree perturbs the density bound only slightly.

  13. The healing of disturbed hillslopes by gully gravure

    USGS Publications Warehouse

    Osterkamp, W.R.; Toy, T.J.

    1994-01-01

    Results of accelerated erosion on certain constructed surfaces in southeastern Arizona appear similar to those described by Bryan as gully gravure. Twenty cross-section excavations in eight rills inclised into silt-rich lacustrine and fluvial deposits reveal partial filling of the rills by debris derived from overyling fluvial sand, gravel, and cobbles. Interstices of the coarse material gradually fill with fine-grained erosion products, decreasing permeability of the fill and deflecting subsequent runoff to the margins of the fill. Rills and rill fillings thus increase in width with time, and complete veneering of the surface by coarse debris ultimately may occur. Through incision, filling, lateral planation, and armoring, channels of the dissected surface heal and the new hillslope approaches an equilibrium condition. Natural hillslopes in the area with similar geologic conditions have inclinations of 16??-22??, have generally unbroken veneers of coarse debris, and appear subject to the same erosional processes identified at constructed hillslopes. -from Authors

  14. The prognostic significance of cardiac structure and function in atrial fibrillation: the ENGAGE AF-TIMI 48 Echocardiographic Substudy

    PubMed Central

    Gupta, Deepak K; Giugliano, Robert P; Ruff, Christian T; Claggett, Brian; Murphy, Sabina; Antman, Elliott; Mercuri, Michele F.; Braunwald, Eugene; Solomon, Scott D

    2016-01-01

    Background Atrial fibrillation (AF) is associated with increased risk for thromboembolism and death; however, the relationships between cardiac structure and function and adverse outcomes among individuals with AF are incompletely understood. Methods The ENGAGE AF –TIMI 48 study tested the once-daily oral factor Xa inhibitor edoxaban in comparison to warfarin for the prevention of stroke (ischemic or hemorrhagic) or systemic embolism in 21,105 subjects with nonvalvular AF and increased risk for thromboembolic events (CHADS2 ≥ 2). In a prospective substudy of 971 subjects who underwent transthoracic echocardiography at baseline, we used Cox proportional hazards models to evaluate the associations between cardiac structure and function and the risks for death and thromboembolism (ischemic stroke, TIA, or systemic embolism). Results Over a median follow up of 2.5 years, 89 (9.2%) deaths and 48 (4.9%) incident thromboembolic events occurred in 971 subjects. In models adjusted for CHADS2 score, aspirin use, and randomized treatment, larger LV end diastolic volume index (HR: 1.49 [95%CI: 1.16,1.91] per 1 SD [12.9 ml/m2]) and higher LV filling pressures measured by E/′e (HR: 1.32 [95%CI: 1.08,1.61] per 1 SD [4.6]) were independently associated with increased risks for death. E/e′ > 13 significantly improved prediction of death beyond clinical factors alone. No features of cardiac structure and function were independently associated with thromboembolism in this population. Findings were similar when adjusted for CHA2DS2-VASc in place of CHADS2. Conclusions In a contemporary population of patients with atrial fibrillation at increased risk for thromboembolic events, larger LV size and higher filling pressures were significantly associated with increased risk for death, but neither left atrial nor left ventricular measures were associated with thromboembolic risk. LV size and filling pressures may help identify AF patients at increased risk of death. PMID:27106009

  15. SU-F-T-576: Characterization of Two Dimensional Liquid Filled Detector Array(SRS 1000) in High Precision Cyberknife Robotic Radiosurgery System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muthukumaran, M; Manigandan, D; Murali, V

    Purpose: The aim of the study is to characterize a two dimensional liquid filled detector array SRS 1000 for routine QA in Cyberknife Robotic Radiosurgery system. Methods: SRS 1000 consists of 977 liquid filled ionization chambers and is designed to be used in small field SRS/SBRT techniques. The detector array has got two different spacial resolutions. Till field size of 5.5×5.5 cm the spacial resolution is 2.5mm (center to center) and after that till field size of 11 × 11 cm the spacial resolution is 5mm. The size of the detector is 2.3 × 2.3 0.5 mm with a volumemore » of .003 cc. The CyberKnife Robotic Radiosurgery System is a frameless stereotactic radiosurgery system in which a LINAC is mounted on a robotic manipulator to deliver beams with a high sub millimeter accuracy. The SRS 1000’s MU linearity, stability, reproducibility in Cyberknife Robotic Radiosurgery system was measured and investigated. The output factors for fixed and IRIS collimators for all available collimators (5mm till 60 mm) was measured and compared with the measurement done with PTW pin-point ionization chamber. Results: The MU linearity was measured from 2 MU till 1000 MU for doserates in the range of 700cGy/min – 780 cGy/min and compared with the measurement done with pin point chamber The MU linearity was with in 3%. The detector arrays stability and reproducibility was excellent and was withinin 0.5% The measured output factors showed an agreement of better than 2% when compared with the measurements with pinpoint chamber for both fixed and IRIS collimators with all available field sizes. Conclusion: We have characterised PTW 1000 SRS as a precise and accurate measurement tool for routine QA of Cyberknife Robotic radiosurgery system.« less

  16. Remotely detected high-field MRI of porous samples

    NASA Astrophysics Data System (ADS)

    Seeley, Juliette A.; Han, Song-I.; Pines, Alexander

    2004-04-01

    Remote detection of NMR is a novel technique in which an NMR-active sensor surveys an environment of interest and retains memory of that environment to be recovered at a later time in a different location. The NMR or MRI information about the sensor nucleus is encoded and stored as spin polarization at the first location and subsequently moved to a different physical location for optimized detection. A dedicated probe incorporating two separate radio frequency (RF)—circuits was built for this purpose. The encoding solenoid coil was large enough to fit around the bulky sample matrix, while the smaller detection solenoid coil had not only a higher quality factor, but also an enhanced filling factor since the coil volume comprised purely the sensor nuclei. We obtained two-dimensional (2D) void space images of two model porous samples with resolution less than 1.4 mm 2. The remotely reconstructed images demonstrate the ability to determine fine structure with image quality superior to their directly detected counterparts and show the great potential of NMR remote detection for imaging applications that suffer from low sensitivity due to low concentrations and filling factor.

  17. Two years of on-orbit gallium arsenide performance from the LIPS solar cell panel experiment

    NASA Technical Reports Server (NTRS)

    Francis, R. W.; Betz, F. E.

    1985-01-01

    The LIPS on-orbit performance of the gallium arsenide panel experiment was analyzed from flight operation telemetry data. Algorithms were developed to calculate the daily maximum power and associated solar array parameters by two independent methods. The first technique utilizes a least mean square polynomial fit to the power curve obtained with intensity and temperature corrected currents and voltages; whereas, the second incorporates an empirical expression for fill factor based on an open circuit voltage and the calculated series resistance. Maximum power, fill factor, open circuit voltage, short circuit current and series resistance of the solar cell array are examined as a function of flight time. Trends are analyzed with respect to possible mechanisms which may affect successive periods of output power during 2 years of flight operation. Degradation factors responsible for the on-orbit performance characteristics of gallium arsenide are discussed in relation to the calculated solar cell parameters. Performance trends and the potential degradation mechanisms are correlated with existing laboratory and flight data on both gallium arsenide and silicon solar cells for similar environments.

  18. Perceived mental stress in relation to oral health over time in middle-aged Swedish women.

    PubMed

    Wennström, A; Boman, U Wide; Ahlqwist, M; Björkelund, C; Hakeberg, M

    2015-12-01

    To study perceived mental stress in relation to oral health among Swedish middle-aged women over a 36-year period, including considerations concerning smoking and socioeconomic status (SES). This combined medical and dental study includes three cross-sectional (1968/9 N = 746, 1980/1 N = 432, 2004/5 N = 500) surveys of 38- and 50-year-old women included in the Prospective Population Study of Women in Gothenburg, Sweden. Panoramic radiography was used to register the number of teeth, filled teeth and decayed teeth and the level of periodontal bone loss. The information concerning perceived mental stress, smoking and education (chosen to represent SES) was questionnaire-based. Perceived mental stress increased over the 36-year period, but was not related to oral health. The time of examination year had a protective effect on oral health, with a larger number of remaining teeth, fewer decayed teeth and less periodontal bone loss in the later examination year, 2004/5, compared with 1968/9. Risk factors for poor oral health were smoking, greater age (50 vs. 38 years) and low educational level. Smokers had fewer filled teeth than non-smokers except in 2004/5, and there was a shift over time towards fewer filled teeth among highly educated women. A remarkable increase in perceived mental stress was seen among the women over time, but was not associated with oral health. Smoking, greater age and low educational were risk factors for poor oral health, whereas a later examination year was a protective factor.

  19. Advances in Multi-Pixel Photon Counter technology: First characterization results

    NASA Astrophysics Data System (ADS)

    Bonanno, G.; Marano, D.; Romeo, G.; Garozzo, S.; Grillo, A.; Timpanaro, M. C.; Catalano, O.; Giarrusso, S.; Impiombato, D.; La Rosa, G.; Sottile, G.

    2016-01-01

    Due to the recent advances in silicon photomultiplier technology, new types of Silicon Photomultiplier (SiPM), also named Multi-Pixel Photon Counter (MPPC) detectors have become recently available, demonstrating superior performance in terms of their most important electrical and optical parameters. This paper presents the latest characterization results of the novel Low Cross-Talk (LCT) MPPC families from Hamamatsu, where a noticeable fill-factor enhancement and cross-talk reduction is achieved. In addition, the newly adopted resin coating has been proven to yield improved photon detection capabilities in the 280-320 nm spectral range, making the new LCT MPPCs particularly suitable for emerging applications like Cherenkov Telescope Array, and Astroparticle Physics.

  20. What Matters in Recruiting Public Health Employees: Considerations for Filling Workforce Gaps.

    PubMed

    Yeager, Valerie A; Wisniewski, Janna M; Amos, Kathleen; Bialek, Ron

    2015-12-01

    We examined factors that influence the decision to join the public health workforce. In this cross-sectional study, we used 2010 secondary data representing 6939 public health workers. Factors influencing the decision to take jobs in public health were significantly associated with specific previous employment settings. Respondents generally rated organizational factors as more influential than personal factors in terms of their decision to work in governmental public health. Leaders should consider tailoring recruitment efforts to maximize job uptake and enhance the potential for long-term retention.

Top