Science.gov

Sample records for filled high-density polyethylene

  1. Kinetics of Moisture Absorption for Alkali Extracted Steam-Exploded Fiber Filled High-Density Polyethylene Composites

    SciTech Connect

    Taib, R. M.; Ramarad, S.; Ishak, Z. A. M.; Rozman, H. D.

    2010-03-11

    Acacia mangium wood fiber derived from steam-explosion and fiber fractionation treatment was used as fillers for high-density polyethylene (HDPE). The alkali extracted steam-exploded fibers (AEF) obtained were acetylated to produce acetylated fibers (AAEF) having three different weight percent gain (WPG). Composites of AEF or AAEF and HDPE were prepared via 2-roll mill, compression molded and cut into dumbbell specimens. All samples were immersed in water at room temperature for 30 days. The process of absorption of water by all composites followed the kinetics and mechanisms described by the Fick's theory. Diffusion coefficient (D) values increased with filler loading but decreased with increasing WPG of the AAEF fiber. Further decrease was observed when maleated polyethylene (MAPE) was added to the composite system. This was due to improved fiber-matrix adhesion that restricts movement of water molecules from further penetrate inside the composite structures.

  2. A Comparative Study on AC Conductivity and Dielectric Behavior of Multiwalled Carbon Nanotubes and Polyaniline Coated Multiwalled Carbon Nanotubes Filled High Density Polyethylene-Carbon Black Nanocomposites

    SciTech Connect

    Dinesh, P.; Renukappa, N. M.; Siddaramaiah; Lee, J. H.; Jeevananda, T.

    2010-10-04

    This paper presents an experimental investigation on AC conductivity and dielectric behavior of carbon black reinforced high density polyethylene (HDPE-CB) and HDPE-CB filled with multiwalled carbon nanotubes (MWNTs-CB-HDPE) and Polyaniline (PAni) coated MWNTs-CB-HDPE nanocomposites. The electrical properties such as dielectric constant ({epsilon}'), dissipation factor (tan {delta}) and AC conductivity ({sigma}{sub ac}) of nanocomposites have been measured with reference to the weight fraction (0.5 and 1 wt% MWNTs), frequency (75 KHz-30 MHz), temperature (25-90 deg. C) and sea water ageing. The experimental results showed that the increased AC conductivity and dielectric constant of the nanocomposites were influenced by PAni coated MWNTs in HDPE-CB nanocomposites. The value of dielectric constant and tan {delta} decreased with increasing frequency. Further more, above 5 MHz the AC conductivity increases drastically whereas significant effect on tan {delta} was observed in less than 1 MHz.

  3. Vacuum Outgassing of High Density Polyethylene

    SciTech Connect

    Dinh, L N; Sze, J; Schildbach, M A; Chinn, S C; Maxwell, R S; Raboin, P; McLean II, W

    2008-08-11

    A combination of thermogravimetric analysis (TGA) and temperature programmed decomposition (TPD) was employed to identify the outgassing species, the total amount of outgassing, and the outgassing kinetics of high density polyethylene (HDPE) in a vacuum environment. The isoconversional kinetic analysis was then used to analyze the outgassing kinetics and to predict the long-term outgassing of HDPE in vacuum applications at ambient temperature. H{sub 2}O and C{sub n}H{sub x} with n as high as 9 and x centering around 2n are the major outgassing species from solid HDPE, but the quantities evolved can be significantly reduced by vacuum baking at 368 K for a few hours prior to device assembly.

  4. Recycling of irradiated high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Navratil, J.; Manas, M.; Mizera, A.; Bednarik, M.; Stanek, M.; Danek, M.

    2015-01-01

    Radiation crosslinking of high-density polyethylene (HDPE) is a well-recognized modification of improving basic material characteristics. This research paper deals with the utilization of electron beam irradiated HDPE (HDPEx) after the end of its lifetime. Powder of recycled HDPEx (irradiation dose 165 kGy) was used as a filler into powder of virgin low-density polyethylene (LDPE) in concentrations ranging from 10% to 60%. The effect of the filler on processability and mechanical behavior of the resulting mixtures was investigated. The results indicate that the processability, as well as mechanical behavior, highly depends on the amount of the filler. Melt flow index dropped from 13.7 to 0.8 g/10 min comparing the lowest and the highest concentration; however, the higher shear rate the lower difference between each concentration. Toughness and hardness, on the other hand, grew with increasing addition of the recycled HDPEx. Elastic modulus increased from 254 to 450 MPa and material hardness increased from 53 to 59 ShD. These results indicate resolving the problem of further recycling of irradiated polymer materials while taking advantage of the improved mechanical properties.

  5. Scoping study. High density polyethylene (HDPE) in salstone service

    SciTech Connect

    Phifer, Mark A.

    2005-02-18

    An evaluation of the use of high density polyethylene (HDPE) geomembranes in Saltstone service has been conducted due to the potential benefits that could be derived from such usage. HDPE is one of the simplest hydrocarbon polymers and one of the most common polymers utilized in the production of geomembranes, which means that its costs are relatively low. Additionally, HDPE geomembranes have an extremely low permeability and an extremely low water vapor diffusional flux, which means that it is a good barrier to contaminant transport. The primary consideration in association with HDPE geomembranes in Saltstone service is the potential impact of Saltstone on the degradation of the HDPE geomembranes. Therefore, the evaluation documented herein has primarily focused upon the potential HDPE degradation in Saltstone service.

  6. Tibial high-density polyethylene wear in conforming tibiofemoral prostheses.

    PubMed

    Plante-Bordeneuve, P; Freeman, M A

    1993-07-01

    We have studied 27 tibial prostheses retrieved from knee replacements after 1 to 9 years. In 22 the femoral components were of cobalt-chrome, in five polyacetal. The design of the components gave a nominal contact area of 320 mm2 on each condyle. The tibial component was of high-density polyethylene (HDP) at least 6 mm thick, and not heat-treated. In the metal/HDP prostheses the average wear rate was 0.025 mm/year. The relative wear on the medial and lateral sides was related to the leg axis. None of the retrieved prostheses showed any severe disruption of their surface. The polyacetal/HDP prostheses showed similar wear with a statistically insignificant trend towards slower penetration. We conclude that the rate of wear of HDP in a conforming tibiofemoral bearing with a fixed tibial component at least 6 mm thick and not heat-treated is slow enough to be safe in clinical practice.

  7. Analyzing and improving viscoelastic properties of high density polyethylene

    NASA Astrophysics Data System (ADS)

    Ahmed, Reaj Uddin

    2011-12-01

    High Density Polyethylene (HDPE) is closely packed, less branched polyethylene having higher mechanical properties, chemical resistance, and heat resistance than Low Density Polyentylene (LDPE). Better properties and cost effectiveness make it an important raw material over LDPE in packaging industries. Stacked containers made of HDPE experience static loading and deformation strain during their storage period in a warehouse. As HDPE is a viscoelastic material, dimensional stability of stacked HDPE containers depends on time dependent properties such as creep and stress relaxation. Now, light weighting is a driving force in packaging industries, which results in lower production costs but performance of the product becomes a challenge. Proper understanding of the viscoelastic properties of HDPE, with relevant FE simulation can facilitate improved designs. This research involves understanding and improving viscoelastic properties, creep behavior, and stress relaxation of HDPE. Different approaches were carried out to meet the objectives. Organic filler CaCO3 was added to HDPE at increasing weight fractions and corresponding property changes were investigated. Annealing heat treatments were also carried out for potential property improvements. The effect of ageing was also investigated on both annealed and non annealed HDPE. The related performance of different water bottles against squeeze pressure was also characterized. Both approaches, incorporation of CaCO3 and annealing, showed improvements in the properties of HDPE over neat HDPE. This research aids finding the optimum solution for improving viscoelastic properties, stress relaxation, and creep behavior of HDPE in manufacturing.

  8. Utility of high density porous polyethylene implants in maxillofacial surgery.

    PubMed

    Rai, Anshul; Datarkar, Abhay; Arora, Aakash; Adwani, D G

    2014-03-01

    The aim of this paper was to determine the utility of high density porous polyethylene implants (HDPE) in a variety of facial skeletal deformities. Sixteen patients (age range 14-28 years) with facial deformities requiring skeletal defect reconstruction or augmentation, treated between January 2008 and December 2010. The follow-up of the patients ranged from 6 months to 2 years.The types of deformities and defects treated include: one patient each with hemifacial microsomia and nasal tip correction, two patients each with malar deformities and orbital floor reconstruction, three patients with paranasal deformities and mandibular hypoplasia and four patients with chin augmentation. A total of 24 implants were placed. The complications included infection and wound dehiscence in one patient. The implants were palpable extraorally in two patients. It is concluded that HDPE is an excellent alternative to autogenous grafts for facial skeletal augmentation. Its porous nature, excellent soft tissue growth and coverage are the advantages and disadvantages include its rigidity and sometimes it is palpable extraorally. PMID:24644395

  9. Confined crystallization in compatibilized Polyamide 6/High Density Polyethylene blends

    NASA Astrophysics Data System (ADS)

    Ceccia, Simona; Argoud, Alexandra; Trouillet-Fonti, Lise; Long, Didier R.; Sotta, Paul

    2012-02-01

    Blending polymers can be considered the easiest way to obtain new materials with tuned properties thanks to the possibility to control blend morphologies. The blend characteristics depend on the properties of each component, on composition and on morphologies developed during polymers processing. In case of semi-crystalline blended polymers, mechanical performances are closely related to the crystalline morphology. Therefore, it is essential that crystallinity is maintained after blending in order to keep or enhance the properties. This may be a challenge when the blends exhibit multiphase morphologies with sub-micrometer domain sizes. In this work, we study the crystallization behavior of compatibilized Polyamide 6/High Density Polyethylene (PA6/PE) blends by means of the Differential Scanning Calorimetry technique. Blends with various morphologies (dispersed, stretched dispersed, fibrillar and co-continuous) are obtained by reactive extrusion and varying blend composition and processing parameters. Blend composition and morphology turn out to greatly affect the bulk crystallization temperatures of both PA6 and PE. When the polymer is confined in domains of a few micrometers the crystallization temperature peak shifts to lower temperatures. Thus, the smaller the domain size the lower the crystallization temperature in case of dispersed morphologies. Moreover, in multi-scale morphologies showing polymer droplets in the nanometer range, fractionated crystallization (multiple crystallization peaks) is observed.

  10. LLCE burial container high density polyethylene chemical compatibility

    SciTech Connect

    Veith, E.M., Westinghouse Hanford

    1996-08-20

    An independent chemical compatibility review of LLCE HDPE polyethylene burial containers was conducted to evaluate the container resistance to the chemicals and constituents thought to reside within the Tank Farms. The study concluded that the LLCE Burial Container fabricated from HDPE Polyethylene was a good choice for this application. The reviewer was unaware that the specification for these containers require 2 - 3 percent finely dispensed carbon black which allows long term storage outside.

  11. Measurements and predictions of outgassing from high density polyethylene (HDPE), PBX9502, and certain silicones by the isoconversional analysis

    SciTech Connect

    Dinh, L N; Glascoe, E A; Schildbach, M A; Chinn, S C; Maxwell, R S; McLean II, W

    2009-07-06

    The techniques of mass spectrometry and temperature programmed decomposition were used to measure outgassing kinetics from high density polyethylene, insensitive high explosive PBX 9502, and silica-filled polysiloxane TR55 and S5370. The isoconversional thermal analysis method was then employed to extract outgassing kinetics and to make kinetic predictions for long term outgassing at lower temperatures. The accuracy, advantages and disadvantages of the isoconversional analysis in terms of kinetic prediction for these materials and some others will be discussed.

  12. Properties of high density polyethylene – Paulownia wood flour composites via injection molding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paulownia wood (PW) flour is evaluated as a bio-based fiber reinforcement. Composites of high density polyethylene (HDPE), 25% by weight of PW, and either 0% or 5% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding followed by injection molding. Molded test composite...

  13. Mechanical and thermal properties of high density polyethylene – dried distillers grains with solubles composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dried Distillers Grain with Solubles (DDGS) is evaluated as a bio-based fiber reinforcement. Injection molded composites of high density polyethylene (HDPE), 25% by weight of DDGS, and either 5% of 0% by weight of maleated polyethylene (MAPE) were produced by twin screw compounding and injection mo...

  14. Crystallization and morphologies of linear low density polyethylene and its blends with high density polyethylene

    NASA Astrophysics Data System (ADS)

    Bischel, Marsha Stalker

    Knowledge of the kinetics of polymer crystallization is important in controlling polymer forming processes, while knowledge of the resulting microstructure is important in predicting the ultimate mechanical properties of the material. It is also known that processing parameters will affect the ultimate morphology and properties of the sample. The crystallization, morphology and mechanical properties of a specific linear low density polyethylene copolymer and its blends with two high density polyethylene homopolymers of differing molecular weight are investigated. Several new techniques are employed in an effort to examine the effect of crystallization kinetics on the development of morphology. These include the simultaneous processing of thin film and bulk samples, and the use of atomic force microscopy to generate images of the microstructure. Thermal properties, and melting and crystallization behaviors are examined with differential scanning calorimetry. The mechanical properties of the blends, as a function of crystallization temperature and blend content, are examined through the use of microhardness testing, and nanoindentation testing via the atomic force microscope. The former provides hardness values, which are related to both the elastic moduli and yield strengths of the samples; the latter technique provides a new method for deriving the relative elastic moduli of the component polymers, as well as for specific structures within the morphology. This provides a novel means of determining the distribution of the component polymers within the blend. The rates of crystallization for the blends and the component polymers are analyzed with respect to the Hoffman Kinetic Theory for the crystallization of polymers to determine whether the existing theory is adequate for describing the behaviors of the blends. It has been determined that the blend systems form a co-crystalline microstructure; however, significant amounts of linear low density polyethylene are

  15. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends.

    PubMed

    Ahmed, Khalil

    2015-11-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (M L) and maximum torque (M H) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917

  16. An investigation on chloroprene-compatibilized acrylonitrile butadiene rubber/high density polyethylene blends

    PubMed Central

    Ahmed, Khalil

    2014-01-01

    Blends of acrylonitrile butadiene rubber/high density polyethylene (NBR/HDPE) compatibilized by Chloroprene rubber (CR) were prepared. A fixed quantity of industrial waste such as marble waste (MW, 40 phr) was also included. The effect of the blend ratio and CR on cure characteristics, mechanical and swelling properties of MW-filled NBR/HDPE blends was investigated. The results showed that the MW-filled NBR/HDPE blends revealed an increase in tensile strength, tear, modulus, hardness and cross-link density for increasing weight ratio of HDPE. The minimum torque (ML) and maximum torque (MH) of blends increased with increasing weight ratio of HDPE while scorch time (ts2) cure time (tc90), compression set and abrasion loss of blends decreased with increasing weight ratio of HDPE. The blends also showed a continuous reduction in elongation at break as well as swelling coefficient with increasing HDPE amount in blends. MW filled blends based on CR provided the most encouraging balance values of overall properties. PMID:26644917

  17. High-density polyethylene (HDPE) faces slower growth

    SciTech Connect

    Savage, R.

    1980-05-19

    According to R. Savage of American Hoechst Corp., the 1979 U.S. HDPE capacity, production, plant operating rate, domestic shipments, and total shipments are (in millions of lb) 5400, 5010, 93%, 4284, and 4893, respectively. For 1984, the corresponding figures are 8800, 7300, 83%, 6500, and 7150. HDPE is entering the 'mature' phase of its cycle, and will not, in the future, be able to match the 13.3%/yr avg growth rate for the last five years, but the increase in capacity this year to 6 billion lb and the predicted 7.9%/yr avg increase through 1984, indicate that HDPE will outperform much of its competition. Plant operating rates were high last year because some HDPE capacity was converted to low-density polyethylene capacity. The HDPE export market will remain flat through 1984 because other countries are increasing capacity and the U.S. price advantage will disappear. HDPE capacity additions planned by U.S. companies, and HDPE uses, particularly blow-molding and injecting molding applications (the major uses of HDPE), are discussed.

  18. Mechanical properties of high density polyethylene--pennycress press cake composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pennycress press cake (PPC) is evaluated as a bio-based fiber reinforcement. PPC is a by-product of crop seed oil extraction. Composites with a high density polyethylene (HDPE) matrix are created by twin screw compounding of 25% by weight of PPC and either 0% or 5% by weight of maleated polyethyle...

  19. Catalytic and thermal depolymerization of low value post-consumer high density polyethylene plastic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The feasibility of catalytic and non-catalytic pyrolytic conversion of low value post-consumer high density polyethylene (HDPE) plastic into crude oil and subsequent distillation was explored. Translation of optimized conditions for catalytic and non-catalytic pyrolysis from TGA to a bench-scale sys...

  20. The yield and post-yield behavior of high-density polyethylene

    NASA Technical Reports Server (NTRS)

    Semeliss, M. A.; Wong, R.; Tuttle, M. E.

    1990-01-01

    An experimental and analytical evaluation was made of the yield and post-yield behavior of high-density polyethylene, a semi-crystalline thermoplastic. Polyethylene was selected for study because it is very inexpensive and readily available in the form of thin-walled tubes. Thin-walled tubular specimens were subjected to axial loads and internal pressures, such that the specimens were subjected to a known biaxial loading. A constant octahederal shear stress rate was imposed during all tests. The measured yield and post-yield behavior was compared with predictions based on both isotropic and anisotropic models. Of particular interest was whether inelastic behavior was sensitive to the hydrostatic stress level. The major achievements and conclusions reached are discussed.

  1. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    PubMed

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour.

  2. Statistical modeling of crack growth and reliability assessment of high-density polyethylene

    SciTech Connect

    Qureshi, F.S.; Sheikh, A.K.; Khan, Z.; Ahmad, M.

    1999-06-01

    In this work, a statistical evaluation of the crack-growth process in high-density polyethylene (HDPE) was carried out. The specimens were compression molded from virgin, molding-grade HDPE. Edge-notched specimens for replicate fatigue testing were prepared from compression-molded sheets. Fatigue test results were then analyzed, and it is shown that if the crack-growth process can be characterized as a random process following a power-law-type behavior, then the time to reach a critical crack length will be distributed according to an inverted lognormal model.

  3. Solving a product safety problem using a recycled high density polyethylene container

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, T. L.

    1993-01-01

    The objectives are to introduce basic problem-solving techniques for product safety including problem identification, definition, solution criteria, test process and design, and data analysis. The students are given a recycled milk jug made of high density polyethylene (HDPE) by blow molding. The objectives are to design and perform proper material test(s) so they can evaluate the product safety if the milk jug is used in a certain way which is specified in the description of the procedure for this investigation.

  4. High-density polyethylene pipe: A new material for pass-by passive integrated transponder antennas

    USGS Publications Warehouse

    Kazyak, David C.; Zydlewski, Joseph

    2012-01-01

    Pass-by passive integrated transponder (PIT) antennas are widely used to study the movements of fish in streams. At many sites, stream conditions make it difficult to maintain antennas and obtain a continuous record of movement. We constructed pass-by PIT antennas by using high-density polyethylene (HDPE) and found them to be robust to high flows and winter ice flows. Costs for HDPE antennas were similar to those of traditional polyvinyl chloride (PVC) antennas, although construction was somewhat more complicated. At sites where PVC antennas are frequently damaged, HDPE is a durable and economical alternative for PIT antenna construction.

  5. Dielectric response of Sr2Ce2Ti5O15 ceramics reinforced high density polyethylene

    NASA Astrophysics Data System (ADS)

    Subodh, G.; Deepu, V.; Mohanan, P.; Sebastian, M. T.

    2009-11-01

    Sr2Ce2Ti5O15 ceramics prepared by solid-state route were employed to fabricate high density polyethylene composites using the melt mixing and hot moulding methods. The microstructural studies of the composites indicated agglomeration for more than 30 vol% loading of the ceramics. The dielectric properties of the composites were studied at radio and microwave frequencies. It is observed that relative permittivity and loss tangent increased with volume fraction of the ceramics. For 40 vol% loading of the ceramic, the composite had relative permittivity of 11 and dielectric loss of 0.006 at 8 GHz. The experimentally observed permittivity was compared with different theoretical models.

  6. Large area neutron detector based on Li6 ionization chamber with integrated body-moderator of high density polyethylene

    SciTech Connect

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Chung, Kiwhan; Makela, Mark F.

    2009-06-30

    A detector was developed and funded by DHS to be a lower cost alternative to 3He detectors. A 6Li foil-lined ionization chamber was prepared with fill gas at one atmosphere and pulse mode operation. The high-density polyethylene (HOPE) body serves also as a neutron moderator. All electrodes, including high voltage bias supply, are hermetically sealed within the plastic slabs.

  7. Effect of ultraviolet radiation in the photo-oxidation of High Density Polyethylene and Biodegradable Polyethylene films

    NASA Astrophysics Data System (ADS)

    Martínez-Romo, A.; González Mota, R.; Bernal, J. J. Soto; Frausto Reyes, C.; Rosales Candelas, I.

    2015-01-01

    One of the most widely used plastics in the world is the High density polyethylene (HDPE), it is a stable material due to its carbon-carbon bonds, causing their slow degradation; which is why we are looking for alternative ways to accelerate the degradation process of this polymer. An alternative is the addition of oxidized groups in its molecular structure, which results in the development of polymers susceptible to biodegradation (PE-BIO). In this paper, HDPE and PE-BIO films were exposed to UV-B radiation (320-280 nm) at different exposure times, 0-60 days. The effects of UV radiation in samples of HDPE and PE-BIO were characterized using infrared spectroscopy with attenuated total reflectance (ATR). The results show that the exposed materials undergo changes in their molecular structure, due to the infrared bands formed which corresponds to the photo-oxidation of HDPE and PE films when submitted to UV-B radiation.

  8. A multivariate analysis of the effects of multiple extrusion cycles on high density polyethylene bottle resin

    SciTech Connect

    Zahavich, A.

    1995-10-01

    The recycling of post consumer (PCR) high density polyethylene (HDPE) blow molding resins has increased dramatically over the past 5 years. The focus of research for this product has been on specific performance and processing properties such as tensile or melt strength. Little work has been done on studying the entire range of properties as a whole, particularly in the area of multiple extrusions. This paper describes a designed experiment study where multivariate statistical techniques were used to compare 2 HDPE and 2 HDPE PCR materials, in terms of changes in a number of properties with exposure to multiple extrusions. Virgin homopolymer and copolymer resins and PCR, mixed color bottle and natural, were passed through 4 extrusion cycles. Viscosity, swell, melt strength, crystallinity, polydispersity and ESCR properties were studied using principal component analysis.

  9. Load effect on an SMS fiber structure embedded in a high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Puspita, Ika; Rahmah, Fitri; Hatta, Agus M.; Koentjoro, Sekartedjo

    2015-01-01

    In this paper, a load effect on a singlemode-multimode-singlemode (SMS) fiber structure embedded in a high-density polyethylene (HDPE) was investigated numerically and experimentally. It was modelled that the applied load induces a longitudinal strain on the HDPE and accordingly affects the SMS fiber structure's parameters. It was calculated the output power of the SMS fiber structure using a graded index multimode fiber (MMF) due to the applied strain from 0 to 4000 N. The experimental result shows that for the MMF length of 105 mm, the output power has monotonically increasing for an applied load range from 1700 to 4000 N with a sensitivity of 1.18 x 10-3 dBm/N. This configuration of SMS fiber structure embedded in the HDPE is potential for a load sensor.

  10. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    PubMed

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12. PMID:24946709

  11. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.

    PubMed

    García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

    2008-09-01

    In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator. PMID:18083026

  12. Reaction between Steel-Making Slag and Carbonaceous Materials While Mixing with High Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Hong, Lan; Sahajwalla, Veena

    2016-01-01

    Since the beginning of the extensive applications in numerous high temperature processes such as iron- and steel-making, coke-making etc. partly in the place of coke, the investigation into the reaction mechanism of waste plastics has become increasingly necessary. In this paper a fundamental study on the behavior of a typical component of waste plastics, high density polyethylene (HDPE), in a mixture with coke at a 1:1 ratio in mass base was conducted during the reaction with iron oxide in steel-making slag at 1823 K and was compared with coke and graphite. The reaction mechanism of carbonaceous materials was analyzed based on the contents of CO and CO2 in the off-gas monitored by an infrared (IR) gas analyzer. It is clear from the results that the reaction of HDPE and coke mixture with steel-making slag approached equilibrium of the Boudouard reaction more quickly and closely than coke or graphite.

  13. Wet self-cleaning of superhydrophobic microfiber adhesives formed from high density polyethylene.

    PubMed

    Lee, Jongho; Fearing, Ronald S

    2012-10-30

    Biologically inspired adhesives developed for switchable and controllable adhesion often require repetitive uses in general, dirty, environments. Superhydrophobic microstructures on the lotus leaf lead to exceptional self-cleaning of dirt particles on nonadhesive surfaces with water droplets. This paper describes the self-cleaning properties of a hard-polymer-based adhesive formed with high-aspect-ratio microfibers from high-density polyethylene (HDPE). The microfiber adhesive shows almost complete wet self-cleaning of dirt particles with water droplets, recovering 98% of the adhesion of the pristine microfiber adhesives. The low contact angle hysteresis indicates that the surface of microfiber adhesives is superhydrophobic. Theoretical and experimental studies reveal a design parameter, length, which can control the adhesion without affecting the superhydrophobicity. The results suggest some properties of biologically inspired adhesives can be controlled independently by adjusting design parameters.

  14. Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire

    NASA Astrophysics Data System (ADS)

    Zheng, Kun; Zhu, Jie; Ma, Yong-Mei; Tang, Da-Wei; Wang, Fo-Song

    2014-10-01

    To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are ~ 2 × 10-7 m2·K·W-1. Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials.

  15. Improved SEC-FTIR method for the characterization of multimodal high-density polyethylenes.

    PubMed

    Piel, Christian; Albrecht, Andreas; Neubauer, Corinna; Klampfl, Christian W; Reussner, Jens

    2011-06-01

    A size-exclusion chromatography-Fourier transform infrared spectroscopy (SEC-FTIR) method for the analysis of high-density polyethylene copolymers was developed, providing superior resolution for the determination of short-chain branching as a function of time and improved repeatability by hardware adaptation and processing optimization. SEC-FTIR for characterization of polyolefins is a compromising technique. Best resolution in terms of molecular weight and molecular weight distribution requires a very low sample solution concentration in size-exclusion chromatography while best results from online infrared (IR) spectroscopy require as high concentrations as possible. The signal-to-noise ratio at the IR detector could be increased significantly after application of a bandpass filter instead of a steel mesh attenuator and furthermore influences of system instabilities could be decreased by changes in data processing. Reliable short-chain branching information in the high molecular weight section in respect to accuracy and repeatability with better chromatographic resolution could be achieved.

  16. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    PubMed

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.

  17. Strain-rate/temperature behavior of high density polyethylene in compression

    NASA Technical Reports Server (NTRS)

    Clements, L. L.; Sherby, O. D.

    1978-01-01

    The compressive strain rate/temperature behavior of highly linear, high density polyethylene was analyzed in terms of the predictive relations developed for metals and other crystalline materials. For strains of 5 percent and above, the relationship between applied strain rate, dotted epsilon, and resulting flow stress, sigma, was found to be: dotted epsilon exp times (Q sub f/RT) = k'(sigma/sigma sub c) to the nth power; the left-hand side is the activation-energy-compensated strain rate, where Q sub f is activation energy for flow, R is gas constant, and T is temperature; k is a constant, n is temperature-independent stress exponent, and sigma/sigma sub c is structure-compensated stress. A master curve resulted from a logarithmic plot of activation-energy-compensated strain rate versus structure-compensated stress.

  18. Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier.

    PubMed

    García-Bacaicoa, P; Mastral, J F; Ceamanos, J; Berrueco, C; Serrano, S

    2008-09-01

    In this work, an experimental study of the thermal decomposition of mixtures of wood particles and high density polyethylene in different atmospheres has been carried out in a downdraft gasifier with a nominal processing capacity of 50 kg/h. The main objective was to study the feasibility of the operation of the gasification plant using mixtures and to investigate the characteristics of the gas obtained. In order to do so, experiments with biomass only and with mixtures with up to 15% HDPE have been carried out. The main components of the gas generated are N(2) (50%), H(2) (14%), CO (9-22%) and CO(2) (7-17%) and its relatively high calorific value was adequate for using it in an internal combustion engine generator consisting of a modified diesel engine coupled with a 25 kV A alternator.

  19. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    SciTech Connect

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  20. In-situ Production of High Density Polyethylene and Other Useful Materials on Mars

    NASA Technical Reports Server (NTRS)

    Flynn, Michael

    2005-01-01

    This paper describes a revolutionary materials structure and power storage concept based on the in-situ production of abiotic carbon 4 compounds. One of the largest single mass penalties required to support the human exploration of Mars is the surface habitat. This proposal will use physical chemical technologies to produce high density polyethylene (HDPE) inflatable structures and construction materials from Mars atmospheric CO2. The formation of polyethylene from Mars CO2 is based on the use of the Sabatier and modified Fischer Tropsch reactions. The proposed system will fully integrate with existing in-situ propellant production concepts. The technology will also be capable of supplementing human caloric requirements, providing solid and liquid fuels for energy storage, and providing significant reduction in mission risk. The NASA Mars Reference Mission Definition Team estimated that a conventional Mars surface habitat structure would weigh 10 tonnes. It is estimated that this technology could reduce this mass by 80%. This reduction in mass will significantly contribute to the reduction in total mission cost need to make a Mars mission a reality. In addition the potential reduction of risk provided by the ability to produce C4 and potentially higher carbon based materials in-situ on Mars is significant. Food, fuel, and shelter are only three of many requirements that would be impacted by this research.

  1. Characterization of radiation-crosslinked, high-density polyethylene for thermal energy storage applications. [Electron beams

    SciTech Connect

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.

    1981-01-01

    This study is directed toward characterization of the crosslinked, form-stable high-density polyethylene (HDPE) pellets produced by electron beam radiation crosslinking, and the effects of crosslinking on crystallinity and heat of fusion. Methods used include differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and x-ray diffraction measurements. DSC measurements of the heats of fusion (..delta..H/sub f/) of the radiation-crosslinked HDPE showed that while a substantial decrease in ..delta..H/sub f/ occurred after the first melting cycle, slow cooling on recrystallization of the pellets could restore the ..delta..H/sub f/ value to greater than or equal to 95% of that of the uncrosslinked HDPE up to 9.0 Mrad dosage exposure. The form stability of the 9.0-Mrad HDPE was very good even after 500 melt-freeze cycles in ethylene glycol. However, some further decline in ..delta..H/sub f/ was noted and more extensive thermal cycling tests would be required to verify this. X-ray diffraction measurements showed little or no difference in crystallinity among the various radiation-crosslinked HDPE's and the uncrosslinked control HDPE. This indicates the crosslinking occurs primarily in the amorphous regions of the polyethylene. FTIR spectroscopy was used to estimate the relative amounts of crosslinking occurring with the varying radiation dosages, and the uniformity of crosslinking throughout the pellets. The relative amount of crosslinking was based on the ratio of the 965 cm/sup -1/ absorption band to the 909 cm/sup -1/ band. This ratio did increase with increasing radiation dosage: from 1.9 for the crosslinked HDPE dosed with 9.0 Mrad, to 5.3 for that dosed with 18.0 Mrad. Also, the amount of crosslinking from the outside to the center of the pellets was found to be uniform, which would assist in maintaining long-term form stability in the pellets.

  2. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    PubMed

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  3. [Attenuated Total Reflection Infrared Spectroscopy for Degradation Profile of High Density Polyethylene after Weathering Aging].

    PubMed

    Guo, Jun-jun; Yan, Hua; Bao, He-bin; Wang, Xue-mei; Hu, Zhi-de; Yang, Jian-jian

    2015-06-01

    High density polyethylene (HDPE) was widely used as rotational packaging case in the material reserve field. The chemical changes of HDPE, exposed to particular climatic conditions of tropic marine atmosphere for one year-long in Wanning Hainan, were elucidated by the attenuated total reflection infrared spectroscopy (ATR-FTIR). The structural changes were studied qualitatively, mainly from the polymeric chain breaking, branching and oxidation to distinguish the degradation profile. The variations of crystallinity & carbonyl index were also studied quantitatively according to the characteristic peaks intensity & area ratio. Finally, the relationships between structural changes and mechanical properties were investigated. The results showed that the polymeric chain breaking & branching play a leading role before 3 months in the aging progress. Then oxidation phenomena gradually takes place during 3-6 months. The chain branching & oxidation were predominant factors after 6 months. Nine months later, the oxidation was saturated gradually. Furthermore, the aging process is positively correlated to the temperature and irradiation. After 12 months aging, the carbonyl index increased by 112 times and crystallinity was 10% higher than before. The tensile/bending modulus deceased faster than tensile/bending strength of HDPE. The linear degree of tensile modulus and carbonyl index was 0.97. The degree of linearity of tensile strength and crystallinity calculated by feature bands (720-730 cm(-1)) was 0.96. It showed that the mechanical properties of HDPE can be speculated from the structural changes by ATR-FTIR. PMID:26601359

  4. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography.

    PubMed

    Prabhu, K N; Brüll, R; Macko, T; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2015-11-01

    High-temperature two-dimensional liquid chromatography (HT 2D-LC) using HT-HPLC as first dimension and HT-SEC as second dimension holds enormous potential to investigate the distribution according to molar mass and chemical composition of bimodal high density polyethylene (BiHDPE), as it avoids drawbacks of crystallization-based techniques. In this study, we have stepwise optimized the chromatographic parameters of 1D, comprising gradient slope and temperature, using model homo- and copolymers of ethylene with the aim to minimize the impact of molar mass on the compositional separation. Then the HT-HPLC was hyphenated to HT-SEC and optimum conditions for the volume of the sample transfer loop were probed with regard to the resolution of BiHDPE into the individual constituents HDPE and LLDPE. A particular important aspect was the use of infrared (IR) detection, and the demands it puts on the chromatographic aspects: We have shown that IR detection can be successfully applied in HT 2D-LC of BiHDPE, which is broadly distributed with regard to short chain branching and molar mass, only when the separation in 2D is optimized with regard to chromatographic resolution. As final result a bimodality is evident in the contour and the 3D surface plots as well as in both HPLC and SEC projections generated from HT 2D-LC. PMID:26435312

  5. Materials and QC issues for high density polyethylene thermoplastic tank, sump, and trench lining installations

    SciTech Connect

    Zarnitz, C.; Peggs, I.D.

    1999-11-01

    High Density Polyethylene (HDPE) is used as a chemical-resistant material of construction to line tanks, sumps, and trenches. Typical applications for mechanically attached HDPE linings would include trenches to convey wash-downs in chemical process areas, sumps to contain mixed hazardous wastes, storage of chemical process reagents, containment of landfill leachate, secondary containment, and lining of waste processing vessels. Special concerns exist as to material choice and use of HDPE that will resist the tendency to stress crack as well as methods to measure stress-cracking resistance. Assurances are needed in these critical applications that proper materials have been chosen and used by the installer. This paper reviews some of the more important concerns that relate to the use and installation of HDPE liners for chemically resistant applications and how these concerns are addressed. Special focus will be placed on methods used to predict stress-cracking resistance and on procedures to use to certify to the customer that qualified materials are used.

  6. Considerations for cold weather construction using high density polyethylene for corrosion control systems

    SciTech Connect

    Szklarz, K.E.; Baron, J.J.

    1995-12-01

    High Density Polyethylene (HDPE) is commonly used as material for corrosion-resistant piping in the petroleum industry. It is used as thick-walled self-supporting linepipes, as internal liners for steel linepipe, and as protective jackets for insulated linepipes. In Canada, it is not uncommon for operations, such as pipeline installation, to be performed during the winter season when temperatures are in the 0 C to {minus}20 C range. Brittle failures of HDPE materials have been experienced during such sub-zero operations, particularly when pipe handling and bending is involved. This study evaluated the changes in HDPE mechanical properties within the temperature range of 10 C to {minus}40 C to understand any embrittlement phenomena that may be occurring. HDPE undergoes substantial increases in modulus and strength at lower temperatures and increasing strain rate. The changes are gradual and over a wide range of temperature with no sharp cut-off temperature at which brittle behavior will occur. Flexural properties behave in a similar manner. A notch, causing a local increased strain rate, has a significant effect on the failure behavior of HDPE material with a gradual transition in behavior of ductility and load at below 0 C.

  7. Dielectric, thermal and mechanical properties of zirconium silicate reinforced high density polyethylene composites for antenna applications.

    PubMed

    Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas

    2015-06-14

    A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated. PMID:25981704

  8. Separation of bimodal high density polyethylene using multidimensional high temperature liquid chromatography.

    PubMed

    Prabhu, K N; Brüll, R; Macko, T; Remerie, K; Tacx, J; Garg, P; Ginzburg, A

    2015-11-01

    High-temperature two-dimensional liquid chromatography (HT 2D-LC) using HT-HPLC as first dimension and HT-SEC as second dimension holds enormous potential to investigate the distribution according to molar mass and chemical composition of bimodal high density polyethylene (BiHDPE), as it avoids drawbacks of crystallization-based techniques. In this study, we have stepwise optimized the chromatographic parameters of 1D, comprising gradient slope and temperature, using model homo- and copolymers of ethylene with the aim to minimize the impact of molar mass on the compositional separation. Then the HT-HPLC was hyphenated to HT-SEC and optimum conditions for the volume of the sample transfer loop were probed with regard to the resolution of BiHDPE into the individual constituents HDPE and LLDPE. A particular important aspect was the use of infrared (IR) detection, and the demands it puts on the chromatographic aspects: We have shown that IR detection can be successfully applied in HT 2D-LC of BiHDPE, which is broadly distributed with regard to short chain branching and molar mass, only when the separation in 2D is optimized with regard to chromatographic resolution. As final result a bimodality is evident in the contour and the 3D surface plots as well as in both HPLC and SEC projections generated from HT 2D-LC.

  9. Shape stabilised phase change materials (SSPCMs): High density polyethylene and hydrocarbon waxes

    SciTech Connect

    Mu, Mulan E-mail: m.basheer@qub.ac.uk; Basheer, P. A. M. E-mail: m.basheer@qub.ac.uk; Bai, Yun; McNally, Tony

    2014-05-15

    Shape stabilised phase change materials (SSPCMs) based on high density polyethylene (HDPE) with high (HPW, T{sub m}=56-58 °C) and low (L-PW, T{sub m}=18-23 °C) melting point waxes were prepared by melt-mixing in a twin-screw extruder and their potential in latent heat thermal energy storage (LHTES) applications for housing assessed. The structure and morphology of these blends were investigated by scanning electron microscopy (SEM). Both H-PW and L-PW were uniformly distributed throughout the HDPE matrix. The melting point and latent heat of the SSPCMs were determined by differential scanning calorimetry (DSC). The results demonstrated that both H-PW and L-PW have a plasticisation effect on the HDPE matrix. The tensile and flexural properties of the samples were measured at room temperature (RT, 20±2 °C) and 70 °C, respectively. All mechanical properties of HDPE/H-PW and HDPE/L-PW blends decreased from RT to 70 °C. In all instances at RT, modulus and stress, irrespective of the mode of deformation was greater for the HDPE/H-PW blends. However, at 70 °C, there was no significant difference in mechanical properties between the HDPE/H-PW and HDPE/L-PW blends.

  10. [Attenuated Total Reflection Infrared Spectroscopy for Degradation Profile of High Density Polyethylene after Weathering Aging].

    PubMed

    Guo, Jun-jun; Yan, Hua; Bao, He-bin; Wang, Xue-mei; Hu, Zhi-de; Yang, Jian-jian

    2015-06-01

    High density polyethylene (HDPE) was widely used as rotational packaging case in the material reserve field. The chemical changes of HDPE, exposed to particular climatic conditions of tropic marine atmosphere for one year-long in Wanning Hainan, were elucidated by the attenuated total reflection infrared spectroscopy (ATR-FTIR). The structural changes were studied qualitatively, mainly from the polymeric chain breaking, branching and oxidation to distinguish the degradation profile. The variations of crystallinity & carbonyl index were also studied quantitatively according to the characteristic peaks intensity & area ratio. Finally, the relationships between structural changes and mechanical properties were investigated. The results showed that the polymeric chain breaking & branching play a leading role before 3 months in the aging progress. Then oxidation phenomena gradually takes place during 3-6 months. The chain branching & oxidation were predominant factors after 6 months. Nine months later, the oxidation was saturated gradually. Furthermore, the aging process is positively correlated to the temperature and irradiation. After 12 months aging, the carbonyl index increased by 112 times and crystallinity was 10% higher than before. The tensile/bending modulus deceased faster than tensile/bending strength of HDPE. The linear degree of tensile modulus and carbonyl index was 0.97. The degree of linearity of tensile strength and crystallinity calculated by feature bands (720-730 cm(-1)) was 0.96. It showed that the mechanical properties of HDPE can be speculated from the structural changes by ATR-FTIR.

  11. Characterization of radiation-cross-linked, high-density polyethylene for thermal energy storage

    SciTech Connect

    Whitaker, R.B.; Craven, S.M.; Etter, D.E.; Jendrek, E.F.; Nease, A.B.

    1983-01-01

    Electron beam cross-linked high-density polyethylene (HDPE) pellets (DuPont Alathon, 0.93 MI) have been characterized for potential utility in thermal energy storage applications, before and after up to 500 melt-freeze cycles in ethylene glycol. Up to 95% of the HDPE's initial DSC differential scanning calorimetry ..delta.. H/sub f/ value (44.7 cal/g) (at 1.25/sup 0/C/min cooling rates) was retained up to 9.0 Mrad radiation dosage. Form-stability after 500 melt-freeze cycles was very good at this dosage level. X-ray diffraction measurements showed little difference between irradiated HDPE's and the unirradiated control, indicating that cross-linking occurred primarily in the amorphous regions. FTIR spectroscopy showed the pellets to be uniformly reacted. The ratios of the 965-cm/sup -1/ absorption band (trans RCH=CRH') to the 909-cm/sup -1/ band (RCH=CH/sub 2/) increased with increasing radiation dosage, up to 18 Mrad. Gel contents reached a maximum of 75% at the 13.5 Mrad dosage, indicating that other reactions, in addition to cross-linking, occurred at the highest (18 Mrad) dosage level. 15 references, 5 figures, 4 tables.

  12. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  13. Current Activities Assessing Butt Fusion Joint Integrity in High Density Polyethylene Piping

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Doctor, Steven R.; Denslow, Kayte M.

    2012-09-01

    The Pacific Northwest National Laboratory (PNNL) in Richland, Washington, conducted initial studies to evaluate the effectiveness of nondestructive examinations (NDE) coupled with mechanical testing for assessing butt fusion joint integrity in high density polyethylene (HDPE) pipe. The work provided insightful information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques for detecting lack of fusion (LOF) conditions in the fusion joints. HDPE has been installed on a limited basis in American Society of Mechanical Engineers (ASME) Class 3, buried piping systems at several operating U.S. nuclear power plants and has been proposed for use in new construction. A comparison was made between the results from ultrasonic and microwave nondestructive examinations and the results from mechanical destructive evaluations, specifically the high-speed tensile test and the side-bend test, for determining joint integrity. The data comparison revealed that none of the NDE techniques detected all of the lack-of-fusion conditions that were revealed by the destructive tests. Follow-on work has recently been initiated at PNNL to accurately characterize the NDE responses from machined flaws of varying size and location in PE 4710 materials as well as the LOF condition. This effort is directed at quantifying the ability of volumetric NDE techniques to detect flaws in relation to the critical flaw size associated with joint integrity. A status of these latest investigations is presented.

  14. PORTSMOUTH ON-SITE DISPOSAL CELL HIGH DENSITY POLYETHYLENE GEOMEMBRANE LONGEVITY

    SciTech Connect

    Phifer, M.

    2012-01-31

    It is anticipated that high density polyethylene (HDPE) geomembranes will be utilized within the liner and closure cap of the proposed On-Site Disposal Cell (OSDC) at the Portsmouth Gaseous Diffusion Plant. The likely longevity (i.e. service life) of HDPE geomembranes in OSDC service is evaluated within the following sections of this report: (1) Section 2.0 provides an overview of HDPE geomembranes, (2) Section 3.0 outlines potential HDPE geomembranes degradation mechanisms, (3) Section 4.0 evaluates the applicability of HDPE geomembrane degradation mechanisms to the Portsmouth OSDC, (4) Section 5.0 provides a discussion of the current state of knowledge relative to the longevity (service life) of HDPE geomembranes, including the relation of this knowledge to the Portsmouth OSDC, and (5) Section 6.0 provides summary and conclusions relative to the anticipated service life of HDPE geomembranes in OSDC service. Based upon this evaluation it is anticipated that the service life of HDPE geomembranes in OSDC service would be significantly greater than the 200 year service life assumed for the OSDC closure cap and liner HDPE geomembranes. That is, a 200 year OSDC HDPE geomembrane service life is considered a conservative assumption.

  15. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    PubMed

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes. PMID:26322761

  16. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-05-01

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1˜2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  17. Effect of cooling rate on the properties of high density polyethylene/multi-walled carbon nanotube composites

    SciTech Connect

    Xiang, Dong; Harkin-Jones, Eileen; Linton, David

    2015-05-22

    High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.

  18. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    NASA Astrophysics Data System (ADS)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate

  19. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    SciTech Connect

    Aras, Neny Rasnyanti M. Arcana, I Made

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  20. Degradation of lindane and hexachlorobenzene in supercritical carbon dioxide using palladium nanoparticles stabilized in microcellular high-density polyethylene.

    PubMed

    Wu, Bei-Zen; Chen, GuanYu; Yak, HwaKwang; Liao, Weisheng; Chiu, KongHwa; Peng, Shie-Ming

    2016-06-01

    Palladium nanoparticles stabilized in microcellular high-density polyethylene prepared through supercritical foaming, supercritical impregnation, and H2 reduction are used for the hydrodechlorination of lindane and hexachlorobenzene in supercritical carbon dioxide below 100 °C. Both lindane and hexachlorobenzene can be almost 100% transformed to cyclohexane in 1 h. Reaction intermediates, such as lower chlorinated products or benzene, are not observed or exist in trace amount indicating that most of them may undergo reactions without leaving the metal surface.

  1. Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches

    SciTech Connect

    Bai, Byong Chol; Kang, Seok Chang; Im, Ji Sun; Lee, Se Hyun; Lee, Young-Seak

    2011-09-15

    Graphical abstract: The electrical properties of MWCNT-filled HDPE polymeric switches and their effect on oxyfluorination. Highlights: {yields} Oxyfluorinated MWCNTs were used to reduce the PTC/NTC phenomenon in MWCNT-filled HDPE polymeric switches. {yields} Electron mobility is difficult in MWCNT particles when the number of oxygen functional groups (C-O, C=O) increases by oxyfluorination. {yields} A mechanism of improved electrical properties of oxyfluorinated MWCNT-filled HDPE polymeric switches was suggested. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) were embedded into high-density polyethylene (HDPE) to improve the electrical properties of HDPE polymeric switches. The MWCNT surfaces were modified by oxyfluorination to improve their positive temperature coefficient (PTC) and negative temperature coefficient (NTC) behaviors in HDPE polymeric switches. HDPE polymeric switches exhibit poor electron mobility between MWCNT particles when the number of oxygen functional groups is increased by oxyfluorination. Thus, the PTC intensity of HDPE polymeric switches was increased by the destruction of the electrical conductivity network. The oxyfluorination of MWCNTs also leads to weak NTC behavior in the MWCNT-filled HDPE polymeric switches. This result is attributed to the reduction of the mutual attraction between the MWCNT particles at the melting temperature of HDPE, which results from a decrease in the surface free energy of the C-F bond in MWCNT particles.

  2. Shear-horizontal surface acoustic wave phononic device with high density filling material for ultra-low power sensing applications

    SciTech Connect

    Richardson, M.; Bhethanabotla, V. R.; Sankaranarayanan, S. K. R. S.

    2014-06-23

    Finite element simulations of a phononic shear-horizontal surface acoustic wave (SAW) sensor based on ST 90°-X Quartz reveal a dramatic reduction in power consumption. The phononic sensor is realized by artificially structuring the delay path to form an acoustic meta-material comprised of a periodic microcavity array incorporating high-density materials such as tantalum or tungsten. Constructive interference of the scattered and secondary reflected waves at every microcavity interface leads to acoustic energy confinement in the high-density regions translating into reduced power loss. Tantalum filled cavities show the best performance while tungsten inclusions create a phononic bandgap. Based on our simulation results, SAW devices with tantalum filled microcavities were fabricated and shown to significantly decrease insertion loss. Our findings offer encouraging prospects for designing low power, highly sensitive portable biosensors.

  3. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    PubMed

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers. PMID:24283329

  4. Light-induced catalyst and solvent-free high pressure synthesis of high density polyethylene at ambient temperature.

    PubMed

    Ceppatelli, Matteo; Bini, Roberto

    2014-04-01

    The combined effect of high pressure and electronic photo-excitation has been proven to be very efficient in activating extremely selective polymerisations of small unsaturated hydrocarbons in diamond anvil cells (DAC). Here we report an ambient temperature, large volume synthesis of high density polyethylene based only on high pressure (0.4-0.5 GPa) and photo-excitation (~350 nm), without any solvent, catalyst or radical initiator. The reaction conditions are accessible to the current industrial technology and the laboratory scale pilot reactor can be scaled up to much larger dimensions for practical applications. FTIR and Raman spectroscopy, and X-ray diffraction, indicate that the synthesised material is of comparable quality with respect to the outstanding crystalline material obtained in the DAC. The polydispersity index is comparable to that of IV generation Ziegler-Natta catalysts. Moreover the crystalline quality of the synthesised material can be further enhanced by a thermal annealing at 373 K and ambient pressure.

  5. Solidification behavior of high-density polyethylene (HDPE) during injection molding: Correlation between crystallization kinetics and thermal gradient field

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Deng, Yan-Li; Li, Gui-Jing; Miao, Ji-Bin; Xia, Ru; Qian, Jia-Sheng; Chen, Peng; Liu, Jing-Wang

    2015-07-01

    This work mainly investigated the effect of thermal field on the crystallization kinetics of high-density polyethylene (HDPE) during injection molding (IM) process. The thickness X = 0.4 was found to be a crucial location heavily influenced by thermal conduction. The temperature decay tended to be stable, with limited variation of the crystallization rate when X > 0.4. It was observed that the crystallization rate was in good proportion to the cooling rate (ϕ). Our experimental finding showed that the consequence of relative crystallinity (χ) was in agreement with that of the secondary temperature difference (STD). This study is practically significant to the further investigation on the relationship among “processing-structure-property” of polymeric materials.

  6. Effect of substrate interferences from high-density polyethylene on association of simulated ignitable liquid residues with the corresponding liquid.

    PubMed

    Prather, Kaitlin R; Towner, Suzanne E; McGuffin, Victoria L; Smith, Ruth Waddell

    2014-01-01

    The effect of substrate interferences from high-density polyethylene (HDPE) on the ability to associate an ignitable liquid residue with the corresponding liquid standard, using statistical procedures, is demonstrated. Gasoline, kerosene, and lighter fluid, at three different evaporation levels, were spiked onto HDPE and subsequently burned to generate simulated ignitable liquid residues (ILRs). Samples were extracted using a passive headspace procedure and analyzed by gas chromatography-mass spectrometry. The total ion chromatograms were subjected to data pretreatment procedures prior to principal components analysis and Pearson product moment correlation. Using the combination of these statistical procedures, simulated ILRs were successfully associated with the corresponding liquid type, despite the presence of compounds inherent to the HDPE substrate, as well as those resulting from pyrolysis of the substrate.

  7. Atomic force microscopic study of the structure of high-density polyethylene deformed in liquid medium by crazing mechanism.

    PubMed

    Bagrov, D V; Yarysheva, A Y; Rukhlya, E G; Yarysheva, L M; Volynskii, A L; Bakeev, N F

    2014-02-01

    A procedure has been developed for the direct atomic force microscopic (AFM) examination of the native structure of high-density polyethylene (HDPE) deformed in an adsorption-active liquid medium (AALM) by the crazing mechanism. The AFM investigation has been carried out in the presence of a liquid medium under conditions preventing deformed films from shrinkage. Deformation of HDPE in AALM has been shown to proceed through the delocalized crazing mechanism and result in the development of a fibrillar-porous structure. The structural parameters of the crazed polymer have been determined. The obtained AFM images demonstrate a nanosized nonuniformity of the deformation and enable one to observe the structural rearrangements that take place in the deformed polymer after removal of the liquid medium and stress relaxation. A structural similarity has been revealed between HDPE deformed in the AALM and hard elastic polymers.

  8. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    SciTech Connect

    Ferreto, H. F. R. E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F. E-mail: ana-feitoza@yahoo.com.br; Parra, D. F. E-mail: ablugao@ipen.br; Lugão, A. B. E-mail: ablugao@ipen.br; Gaia, R.

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  9. Surface optimization of high density polyethylene and carbon nanofiber composites for the improvement of electromagnetic shielding effectiveness

    NASA Astrophysics Data System (ADS)

    Jarvis, Brandon C.

    Nanoreinforced composites of High Density Polyethylene (HDPE) and Carbon Nanofibers (CNF) of varying nanofiber concentration were fabricated via melt mixing. Following fabrication, various metal and metal-nitride thin films were sputter deposited upon the substrates. Volume resistivity measurements of the composite substrates, as well as four point probe analysis of the composites and the deposited films were performed and are reported. Electromagnetic Interference (EMI) Shielding Effectiveness (SE) measurements were performed upon all samples in order to gauge the effects of percolation and the presence of the deposited film(s) upon overall SE. Comparisons of experimental measurements with analytical models available in the literature will be made in order to gain insight in to the dominant shielding mechanisms in the composite(s).

  10. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells.

    PubMed

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Feldman, Kirill; Dora, Claudio; Stark, Wendelin J

    2012-10-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering. PMID:22972023

  11. Thermal and mechanical properties of e-beam irradiated butt-fusion joint in high-density polyethylene pipes

    NASA Astrophysics Data System (ADS)

    Vijayan, Vipin; Pokharel, Pashupati; Kang, Min Kwan; Choi, Sunwoong

    2016-05-01

    The effects of electron beam irradiation on the thermal and mechanical properties of a butt-fusion joint in high density polyethylene (HDPE) pipes were investigated. Differential scanning calorimetry, X-ray diffraction, and Fourier transform infra-red spectroscopy of welded samples revealed the changes of crystallinity due to the cross linking effect of electron beam irradiation. The suppression of the degree of crystallinity with increasing the irradiation dose from 0 kGy to 500 kGy indicated that the e-beam radiation induced cross-links among the polymer chains at the weld zone. The cross-link junction at the joint of HDPE pipe prevented chain folding and reorganization leading to the formation of imperfect crystallites with smaller size and also less in content. Tensile test of the welded samples with different dose of e-beam irradiation showed the increased values of the yield stress and Young's modulus as a function of irradiation dose. On the other hand, the elongation at break diminished clearly with increasing the irradiation doses.

  12. Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene.

    PubMed

    Abramyan, Tigran M; Snyder, James A; Yancey, Jeremy A; Thyparambil, Aby A; Wei, Yang; Stuart, Steven J; Latour, Robert A

    2015-01-01

    Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG-X-GTGT host-guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard-Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid-liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122

  13. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments. PMID:25532672

  14. Liquid-crystal alignment on polytetrafluoroethylene and high-density polyethylene thin films studied by optical second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Dennis, John R.; Vogel, Viola

    1998-05-01

    We have used optical second-harmonic generation to study surface molecular order in a liquid-crystal (4'-n-octyl-4-cyano-biphenyl, or 8CB) on shear-deposited polymer films. The films are highly oriented layers of polytetrafluoroethylene (PTFE) or high-density polyethylene (HDPE), with a surface topology of uniaxially aligned nanoscale ridges and grooves, which are used as versatile substrates for oriented growth and alignment of other materials. In nematic 8CB cells made with either polymer, the surface monolayers of 8CB were aligned along the polymer orientation axis, and showed C2ν symmetry. In the isotropic phase, the surface monolayer alignment in these cells was lost. Monolayers of 8CB evaporated onto either polymer showed little or no alignment. These data indicate that the PTFE and HDPE films do not produce the strong epitaxylike alignment seen on some cloth-rubbed polymer surfaces. Instead, alignment appears to be primarily caused by surface ridges through an elastic, bulk-mediated mechanism.

  15. Enhanced diesel fuel fraction from waste high-density polyethylene and heavy gas oil pyrolysis using factorial design methodology.

    PubMed

    Joppert, Ney; da Silva, Alexsandro Araujo; da Costa Marques, Mônica Regina

    2015-02-01

    Factorial Design Methodology (FDM) was developed to enhance diesel fuel fraction (C9-C23) from waste high-density polyethylene (HDPE) and Heavy Gas Oil (HGO) through co-pyrolysis. FDM was used for optimization of the following reaction parameters: temperature, catalyst and HDPE amounts. The HGO amount was constant (2.00 g) in all experiments. The model optimum conditions were determined to be temperature of 550 °C, HDPE = 0.20 g and no FCC catalyst. Under such conditions, 94% of pyrolytic oil was recovered, of which diesel fuel fraction was 93% (87% diesel fuel fraction yield), no residue was produced and 6% of noncondensable gaseous/volatile fraction was obtained. Seeking to reduce the cost due to high process temperatures, the impact of using higher catalyst content (25%) with a lower temperature (500 °C) was investigated. Under these conditions, 88% of pyrolytic oil was recovered (diesel fuel fraction yield was also 87%) as well as 12% of the noncondensable gaseous/volatile fraction. No waste was produced in these conditions, being an environmentally friendly approach for recycling the waste plastic. This paper demonstrated the usefulness of using FDM to predict and to optimize diesel fuel fraction yield with a great reduction in the number of experiments.

  16. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat.

    PubMed

    Weinstein, John E; Crocker, Brittany K; Gray, Austin D

    2016-07-01

    As part of the degradation process, it is believed that most plastic debris becomes brittle over time, fragmenting into progressively smaller particles. The smallest of these particles, known as microplastics, have been receiving increased attention because of the hazards they present to wildlife. To understand the process of plastic degradation in an intertidal salt marsh habitat, strips (15.2 cm × 2.5 cm) of high-density polyethylene, polypropylene, and extruded polystyrene were field-deployed in June 2014 and monitored for biological succession, weight, surface area, ultraviolet (UV) transmittance, and fragmentation. Subsets of strips were collected after 4 wk, 8 wk, 16 wk, and 32 wk. After 4 wk, biofilm had developed on all 3 polymers with evidence of grazing periwinkles (Littoraria irrorata). The accreting biofilm resulted in an increased weight of the polypropylene and polystyrene strips at 32 wk by 33.5% and 167.0%, respectively, with a concomitant decrease in UV transmittance by approximately 99%. Beginning at 8 wk, microplastic fragments and fibers were produced from strips of all 3 polymers, and scanning electron microscopy revealed surface erosion of the strips characterized by extensive cracking and pitting. The results suggest that the degradation of plastic debris proceeds relatively quickly in salt marshes and that surface delamination is the primary mechanism by which microplastic particles are produced in the early stages of degradation. Environ Toxicol Chem 2016;35:1632-1640. © 2016 SETAC.

  17. Parameterization of an interfacial force field for accurate representation of peptide adsorption free energy on high-density polyethylene

    PubMed Central

    Abramyan, Tigran M.; Snyder, James A.; Yancey, Jeremy A.; Thyparambil, Aby A.; Wei, Yang; Stuart, Steven J.; Latour, Robert A.

    2015-01-01

    Interfacial force field (IFF) parameters for use with the CHARMM force field have been developed for interactions between peptides and high-density polyethylene (HDPE). Parameterization of the IFF was performed to achieve agreement between experimental and calculated adsorption free energies of small TGTG–X–GTGT host–guest peptides (T = threonine, G = glycine, and X = variable amino-acid residue) on HDPE, with ±0.5 kcal/mol agreement. This IFF parameter set consists of tuned nonbonded parameters (i.e., partial charges and Lennard–Jones parameters) for use with an in-house-modified CHARMM molecular dynamic program that enables the use of an independent set of force field parameters to control molecular behavior at a solid–liquid interface. The R correlation coefficient between the simulated and experimental peptide adsorption free energies increased from 0.00 for the standard CHARMM force field parameters to 0.88 for the tuned IFF parameters. Subsequent studies are planned to apply the tuned IFF parameter set for the simulation of protein adsorption behavior on an HDPE surface for comparison with experimental values of adsorbed protein orientation and conformation. PMID:25818122

  18. Influence of γ-ray modified MWCNTs on the structural and thermal properties of high-density polyethylene

    NASA Astrophysics Data System (ADS)

    Ghafoor, Bilal; Mehmood, Malik Sajjad; Shahid, Umair; Baluch, Mansoor A.; Yasin, Tariq

    2016-08-01

    This study aims to investigate the influence of adding 100 kGy γ-irradiated multi wall carbon nano tubes (MWCNTs) on the structural and thermal properties of high-density polyethylene (HDPE). The effects of further γ-irradiation in the presence of γ-MWCNTs on aforementioned properties have also been investigated. FTIR spectroscopic measurements of HDPE and HDPE/γ-MWCNTs composites reveal that modification of MWCNTs with ≤100 kGy of γ-dose reduces its efficiency as free radical quencher. This behavior is found to increase further with the increase in the concentration of γ-MWCNTs. Wide angle X-ray diffraction (WAXD) data shows a decrease in percent crystallinity and shifting of crystalline peaks toward lower values of 2θ angles. This behavior is mainly attributed to the oxidation induced due to residual free radicals. Thermal analysis reveals that addition of γ-MWCNTs decreases the thermal stability as far as onset thermal degradation temperature, percent crystallinity, and melting temperature of UHMWPE/γ-MWCNTs. In addition to this, gel content measurements show that insoluble percentage of UHMWPE is higher with the incorporation γ-MWCNTs and further irradiation. The gel contents are found to improve up to 29% and 60%, respectively with the incorporation of γ-MWCNTs and further irradiation.

  19. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation.

    PubMed

    Kowalczyk, Anna; Chyc, Marek; Ryszka, Przemysław; Latowski, Dariusz

    2016-06-01

    This study presents results of research on isolation new bacteria strain Achromobacter xylosoxidans able to effect on the structure of high-density polyethylene (HDPE), polymer resistant to degradation in environment. New strain of A. xylosoxidans PE-1 was isolated from the soil and identified by analysis of the 16S ribosome subunit coding sequences. The substance to be degraded was HDPE in the form of thin foil films. The foil samples were analyzed with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) as well as scanning electron microscope (SEM), and the results revealed degradation of chemical structure of HDPE. About 9 % loss of weight was also detected as a result of A. xylosoxidans PE-1 effect on HDPE foil. On the basis of comparative spectral analysis of the raw material before the bacteria treatment and the spectrum from a spectra database, it was assumed that the HDPE was the only source of carbon and energy for the microorganisms. No fillers or other additives used in the plastic processing were observed in HDPE before experiments. This is the first communication showing that A. xylosoxidans is able to modify chemical structure of HDPE, what was observed both on FTIR, in mass reduction of HDPE and SEM analysis. We also observed quite good growth of the bacteria also when the HDPE was the sole carbon source in the medium. These results prove that A. xylosoxidans is an organism worth applying in future HDPE biodegradation studies.

  20. Achromobacter xylosoxidans as a new microorganism strain colonizing high-density polyethylene as a key step to its biodegradation.

    PubMed

    Kowalczyk, Anna; Chyc, Marek; Ryszka, Przemysław; Latowski, Dariusz

    2016-06-01

    This study presents results of research on isolation new bacteria strain Achromobacter xylosoxidans able to effect on the structure of high-density polyethylene (HDPE), polymer resistant to degradation in environment. New strain of A. xylosoxidans PE-1 was isolated from the soil and identified by analysis of the 16S ribosome subunit coding sequences. The substance to be degraded was HDPE in the form of thin foil films. The foil samples were analyzed with Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) as well as scanning electron microscope (SEM), and the results revealed degradation of chemical structure of HDPE. About 9 % loss of weight was also detected as a result of A. xylosoxidans PE-1 effect on HDPE foil. On the basis of comparative spectral analysis of the raw material before the bacteria treatment and the spectrum from a spectra database, it was assumed that the HDPE was the only source of carbon and energy for the microorganisms. No fillers or other additives used in the plastic processing were observed in HDPE before experiments. This is the first communication showing that A. xylosoxidans is able to modify chemical structure of HDPE, what was observed both on FTIR, in mass reduction of HDPE and SEM analysis. We also observed quite good growth of the bacteria also when the HDPE was the sole carbon source in the medium. These results prove that A. xylosoxidans is an organism worth applying in future HDPE biodegradation studies. PMID:27072033

  1. Methyl bromide emission from fields partially covered with a high-density polyethylene and a virtually impermeable film

    SciTech Connect

    Wang, D.; Yates, S.R.

    1998-09-01

    Recent field studies in the interior valley of southern California have indicated that 56--73% of methyl bromide (MeBr) used in soil fumigation is lost to atmospheric emission when the fields are covered completely with a high-density polyethylene (HDPE) film. The emission can be reduced to less than 5% when a virtually impermeable film or Hytibar is used to cover the fields. This study was conducted to determine MeBr emission from bedded field plots where only the beds were covered with a HDPE or a virtually impermeable plastic film. The results provide an assessment on MeBr emission from field beds partially covered with the HDPE film and the suitability of using a virtually impermeable film for emission reduction. Methyl bromide gas was applied to replicated field beds covered with either a HDPE or the Hytibar film. The films were removed 6 days after MeBr application. Replicated soil cores were taken from different locations of the field beds, 20 days after MeBr application, for the determination of soil bromide ion concentrations. The total amount of MeBr degraded from each plot was calculated from the measured bromide ion concentrations, and the potential emission was determined as the difference between the amount of applied and that of degraded. Results indicated that the potential emission from this bedded system was about 95% for the HDPE treatment and 90% for the Hytibar-covered plots. Regardless of the small improvement with the virtually impermeable film, the experiment clearly indicates that partially covering the field with either a HDPE or a virtually impermeable film would result in unacceptably high emission losses.

  2. Determination of the effect of exposure to gasoline components on a high density polyethylene geomembrane using the comprehensive test system.

    PubMed

    Barrett, W M; Stessel, R I

    1999-05-31

    The comprehensive testing system (CTS) for geomembranes was used to test the compatibility of high-density polyethylene (HDPE) geomembrane landfill liner material with chemicals typically found in motor vehicle fuel. The CTS is a testing apparatus specifically designed to test the effects of simultaneously applying mechanical load, fluid head, and chemical exposure on the geomembrane. A combination of these factors is present on the geomembrane material in service, and the CTS provides a laboratory reproduction of actual field conditions. The article provides a description of gasoline based upon the desirable qualities of gasoline and provides background on testing of rubbers used in gasoline-powered engine parts. The test's chemicals were gasoline, motor oil, benzene, ethylbenzene, toluene, xylenes, and iso-octane (2,2,4 trimethyl pentane). This work found that gasoline had an effect on the geomembrane greater than the effect of any of the pure chemicals except ethylbenzene. Benzene, and the other aromatic compounds (ethylbenzene, toluene, and xylenes) are typically the primary regulatory concerns at fuel contaminated sites. The fact that gasoline had a greater effect on the performance of the HDPE geomembrane indicated that chemicals are present in gasoline which can decrease the performance of the containment structures used to hold gasoline, while not having a significant health risk. The clear implication is that risk assessments conducted on facilities must not only include the health risks of chemicals placed in a facility, but must also consider the effect of the chemical on a containment structure. The fact that low-health-risk chemicals may have a great impact on the effectiveness of containment structures leads to a possible synergistic mechanism where the low-health-risk chemicals enable a pathway for greater-health-risk chemicals to enter the environment.

  3. From macroplastic to microplastic: Degradation of high-density polyethylene, polypropylene, and polystyrene in a salt marsh habitat.

    PubMed

    Weinstein, John E; Crocker, Brittany K; Gray, Austin D

    2016-07-01

    As part of the degradation process, it is believed that most plastic debris becomes brittle over time, fragmenting into progressively smaller particles. The smallest of these particles, known as microplastics, have been receiving increased attention because of the hazards they present to wildlife. To understand the process of plastic degradation in an intertidal salt marsh habitat, strips (15.2 cm × 2.5 cm) of high-density polyethylene, polypropylene, and extruded polystyrene were field-deployed in June 2014 and monitored for biological succession, weight, surface area, ultraviolet (UV) transmittance, and fragmentation. Subsets of strips were collected after 4 wk, 8 wk, 16 wk, and 32 wk. After 4 wk, biofilm had developed on all 3 polymers with evidence of grazing periwinkles (Littoraria irrorata). The accreting biofilm resulted in an increased weight of the polypropylene and polystyrene strips at 32 wk by 33.5% and 167.0%, respectively, with a concomitant decrease in UV transmittance by approximately 99%. Beginning at 8 wk, microplastic fragments and fibers were produced from strips of all 3 polymers, and scanning electron microscopy revealed surface erosion of the strips characterized by extensive cracking and pitting. The results suggest that the degradation of plastic debris proceeds relatively quickly in salt marshes and that surface delamination is the primary mechanism by which microplastic particles are produced in the early stages of degradation. Environ Toxicol Chem 2016;35:1632-1640. © 2016 SETAC. PMID:26992845

  4. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    PubMed

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p < 0.05. There was no difference between composites with RGST and untreated HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. PMID:12808590

  5. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    PubMed

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p < 0.05. There was no difference between composites with RGST and untreated HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus.

  6. Particle Filled Polyethylene Composites Used in the Technology of Rotational Moulding

    NASA Astrophysics Data System (ADS)

    Bútora, Peter; Náplava, Antonín; Ridzoň, Martin; Bílik, Jozef; Tittel, Viktor

    2011-01-01

    The submitted article discusses rotational moulding technology and filled plastics. For testing, linear low density polyethylene filled with talc was used. The materials tested varied way of mixing the filler into the polymer. For the prepared samples were evaluated by tensile, elongation, melt flow index, density, Shore hardness and Vicat softening temperature. Experiments showed that, in principle, it is possible to produce rotational moulding technology filled thermoplastics.

  7. Stress-induced crystal-to-crystal transformations in high-density polyethylene-layered silicate nano-composites: a spectroscopic study.

    PubMed

    Tzavalas, Spiros; Gregoriou, Vasilis G

    2005-09-01

    High-density polyethylene (HDPE)-clay nano-composites have been prepared using the melt intercalation technique. Organically modified montmorillonite at various loadings (0.5--7%) was used as a nano-additive. Fourier transform infrared spectroscopy (FT-IR) was utilized for the first time to monitor the stress-induced crystal-to-crystal transformations of the polyethylene matrix with respect to the clay loading as well as to the degree of mechanical strain. In addition, polarized infrared measurements revealed information on both the orientation and the stress-induced distortion of the crystals. It was concluded that the crystal-to-crystal transformations are hindered by the presence of the clay, which also prevented the crystals from orienting even at low clay loadings (1%). Finally, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements confirmed the presence of the stress-induced crystalline structures in agreement with the infrared measurements.

  8. The migration of Irganox 1010 antioxidant from high-density polyethylene and polypropylene into a series of potential fatty-food simulants.

    PubMed

    Lickly, T D; Bell, C D; Lehr, K M

    1990-01-01

    Alternatives to highly-volatile ethanol or analytically complex cooking oil were examined as potential fatty-food simulants which would undergo high-temperature exposures to food-packaging polymers in food-packaging evaluation studies. The alternatives consisted of alcohols containing four to eight carbons. As test cases, the migration of Irganox 1010 antioxidant from high-density polyethylene and polypropylene into the higher alcohols was compared to the migration of Irganox 1010 into aqueous ethanol solutions and cooking oil, the US Food and Drug Administration's currently recommended fatty-food simulants. The data obtained showed slightly greater migration of the antioxidant into 95% ethanol than into cooking oil, and slightly less migration into 50% ethanol than into cooking oil. The migration of the antioxidant into the alcohols consisting of four or more carbons was much greater than the migration observed in cooking oil. In many experiments the polymers became depleted of the antioxidant prior to the end of the short, high-temperature exposure period (i.e. 2 h at 250 degrees F) to the higher alcohols. Also, for all experiments run under the same time/temperature/simulant conditions, migration of the antioxidant was greater from polypropylene than from high-density polyethylene. Diffusion coefficients generated for 95% ethanol and corn oil from these data compare closely with data from the literature.

  9. Investigation of the catalytic pyrolysis of high-density polyethylene over a HZSM-5 catalyst in a laboratory fluidized-bed reactor

    SciTech Connect

    Sharratt, P.N.; Lin, Y.H.; Garforth, A.A.; Dwyer, J.

    1997-12-01

    High-density polyethylene (HDPE) was pyrolyzed over HZSM-5 catalyst using a specially developed laboratory fluidized-bed reactor operating isothermally at ambient pressure. The influence of reaction conditions including temperature, ratios of HDPE to catalyst feed, and flow rates of fluidizing gas was examined. The sodium form of siliceous ZSM-5, silicalite, containing very few or no catalytically active sites, gave very low conversions of polymer to volatile hydrocarbons compared with HZSM-5 gave good yields of volatile hydrocarbons with differing selectivities in the final products dependent on reaction conditions. Catalytic pyrolysis of HDPE performed in the fluidized-bed reactor was shown to produce valuable hydrocarbons in the range of C{sub 3}-C{sub 5} carbon number with a high olefinic content. The production of olefins with potential value as a chemical feedstock is potentially attractive and may offer greater profitability than production of saturated hydrocarbons and aromatics.

  10. Effect of Plasma Treatment and Cross-Linking on the Over Voltage Positive Temperature Coefficient of High Density Polyethylene/carbon Black/magnesium Hydroxide Nano Composites

    NASA Astrophysics Data System (ADS)

    Huang, C. Y.; Tsai, C. S.

    2008-08-01

    The Argon (Ar) plasma pretreated high-density polyethylene (PHDPE) was blended with the nano-degree conductive carbon black (CB) and magnesium hydroxide (Mg(OH)2) to formed the over-voltage positive temperature coefficient (PTC) composite. Effect of the CB content, plasma treatment time, power of plasma, initiator (dicumyl peroxide, DCP), and dosage of 60Co Y-ray irradiation on PTC behaviors of composites were studied. The results showed that the CB dispersion could be increased with increasing the amount free radicals of PHDPE and then not only the room-temperature volume resistivity of composite decreased, but also the PTC intensity of composite increased. The best plasma treatment condition was 20W, 1min. As the initiator was added into PHDPE composites and passed the 60Co Y-ray radiation, the negative temperature coefficient (NTC) effect of composites was eliminated, the PTC intensity of composite markedly increased and composite passes over-voltage resistance test.

  11. Diffusion Coefficients of n-Alkanes and Polyethylenes Filled with Zinc Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ozisik, Rahmi; Mattice, Wayne L.; von Meerwall, Ernst

    2003-03-01

    The diffusion coefficients of various n-alkane and polyethylene samples filled with zinc oxide nanoparticles were measured with pulsed-gradient spin-echo (PGSE) NMR technique. The n-alkanes used in this study had carbon numbers ranging between 12 and 60. The number average molecular weights of the two polyethylene samples were 6200 and 13900 g/mol. The different size of zinc oxide used with spherical geometry. The experiments were performed with three different zinc oxide nanoparticles that had differing sizes. This study investigates the effects of the nanoparticle size and the molecular weight on the diffusion coefficient of the polymer chains. The results account for the restriction to diffusion due to detour and tortuosity effects, which differ for n-alkanes and polyethylene. Because the effective diffusion distance in the PGSE NMR experiments is larger than the size of the nanoparticles, the observed diffusivities represent asymptotic averages over multiple encounters between the diffusing molecules and the nanoparticles.

  12. Effects of inoculation level, material hydration, and stainless steel surface roughness on the transfer of listeria monocytogenes from inoculated bologna to stainless steel and high-density polyethylene.

    PubMed

    Rodríguez, Andrés; Autio, Wesley R; McLandsborough, Lynne A

    2007-06-01

    The influence of inoculation level, material hydration, and stainless steel surface roughness on the transfer of Listeria monocytogenes from inoculated bologna to processing surfaces (stainless steel and polyethylene) was assessed. Slices of bologna (14 g) were inoculated with Listeria at different levels, from 10(5) to 10(9) CFU/cm2. Transfer experiments were done at a constant contact time (30 s) and pressure (45 kPa) with a universal testing machine. After transfer, cells that had been transferred to sterile stainless steel and polyethylene were removed and counted, and the efficiency of transfer (EOT) was calculated. As the inoculation level increased from 10(5) to 10(9) CFU/cm(2), the absolute level of transfer increased in a similar fashion. By calculating EOTs, the data were normalized, and the initial inoculation level had no effect on the transfer (P > 0.05). The influence of hydration level on stainless steel, high-density polyethylene, and material type was investigated, and the EOTs ranged from 0.1 to 1 under all the conditions tested. Our results show that transfers to wetted processing surfaces (mean EOT = 0.43) were no different from dried processing surfaces (mean EOT = 0.35) (P > 0.05). Material type was shown to be a significant factor, with greater numbers of Listeria transferring from bologna to stainless steel (mean EOT = 0.49) than from bologna to polyethylene (mean EOT = 0.28) (P < 0.01). Stainless steel with three different surface roughness (Ra) values of <0.8 microm (target Ra = 0.25, 0.50, and 0.75 Vmicrom) and two different finishes (mechanically polished versus mechanically polished and further electropolished) was used to evaluate its effect on the transfer. The surface roughness and finish on the stainless steel did not have any effect on the transfer of Listeria (P > 0.05). Our results showed that when evaluating the transfer of Listeria, the use of EOTs rather than the absolute transfer values is essential to allow comparisons of

  13. Long term performance of polyethylene pipe under high fill. Part 1. Technical report, June 1989-November 1992

    SciTech Connect

    Webb, N.H.; Selig, E.T.

    1994-12-01

    The aim of this study is to improve the knowledge base for the design of non-pressure high density polyethylene (HDPE) pipes under high earth loads. Laboratory tests were performed on HDPE pipe sections to obtain property information. The tests involved the diametrical compression (ring bending) of pipe sections both at various deformation rates to evaluate the effect on pipe stiffness, and also at fixed vertical deflection to evaluate the load relaxation with time. The performance of an HDPE pipe under high fill was monitored during fill construction and for three years after completion of construction. No wall crushing, structural buckling or excess deflection occurred. However, circumferential cracking of the unlined sections at the couplings, and buckling of the liner in the lined sections were observed. Laboratory studies of these two effects will be described in a subsequent technical report. Finite element analysis of the field installation was carried out. The analysis showed that the pipe can sustain circumferential stresses that are much higher than those proposed by current design (1992) procedures.

  14. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: a novel orthopedic composite.

    PubMed

    Homaeigohar, S S H; Shokrgozar, M A; Javadpour, J; Khavandi, A; Sadi, A Yari

    2006-07-01

    Beta-tricalcium phosphate-reinforced high-density polyethylene (beta-TCP/HDPE) is a new biomaterial, which was made to simulate bone composition and study its capacity to act like bony tissues. This material was produced by replacing mineral component and collagen soft tissue of bone with beta-TCP and HDPE, respectively. The biocompatibility of composite samples with different volume fractions of TCP (20, 30, and 40 vol %) and two different particle sizes (80-100 and 120-140 mesh size) was examined in vitro using the osteoblast cell line G-292 by proliferation, alkaline phosphatase (ALP) production, and cell adhesion assays. Cell-material interaction on the surface of the composites was observed by scanning electron microscopy (SEM). The effect of beta-TCP particle size on behavior of the osteoblast cell line was compared between two groups of the composite samples containing smaller and larger reinforcement particle sizes as well as with those of a negative control. In general, results showed that the composite samples containing larger particles supported a higher rate of proliferation and ALP production by osteoblast cells after 3, 7, and 14 days of incubation compared to the composite samples with smaller particle size and control. Furthermore, more cells were attached to the surface of composite samples containing larger particle size when compared to the smaller particle size composites (p<0.05). This number was nearly equal with numbers adhered on negative control [tissue culture polystyrene (TPS)] and significantly higher in comparison with composite control [polyethylene (PE)] (p<0.05). Adhered cells presented a normal morphology by SEM and many of the cells were seen to be undergoing cell division. These findings indicate that beta-TCP/HDPE composites are biocompatible, nontoxic, and in some cases, act to stimulate proliferation of the cells, ALP production, and cell adhesion when compared to the control counterparts. Furthermore, beta-TCP/HDPE samples

  15. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    PubMed

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample.

  16. Separating effective high density polyethylene segments from olefin block copolymers using high temperature liquid chromatography with a preloaded discrete adsorption promoting solvent barrier.

    PubMed

    Chatterjee, Tirtha; Rickard, Mark A; Pearce, Eric; Pangburn, Todd O; Li, Yongfu; Lyons, John W; Cong, Rongjuan; deGroot, A Willem; Meunier, David M

    2016-09-23

    Recent advances in catalyst technology have enabled the synthesis of olefin block copolymers (OBC). One type is a "hard-soft" OBC with a high density polyethylene (HDPE) block and a relatively low density polyethylene (VLDPE) block targeted as thermoplastic elastomers. Presently, one of the major challenges is to fractionate HDPE segments from the other components in an experimental OBC sample (block copolymers and VLDPE segments). Interactive high temperature liquid chromatography (HTLC) is ineffective for OBC separation as the HDPE segments and block copolymer chains experience nearly identical enthalpic interactions with the stationary phase and co-elute. In this work we have overcome this challenge by using liquid chromatography under the limiting conditions of desorption (LC LCD). A solvent plug (discrete barrier) is introduced in front of the sample which specifically promotes the adsorption of HDPE segments on the stationary phase (porous graphitic carbon). Under selected thermodynamic conditions, VLDPE segments and block copolymer chains crossed the barrier while HDPE segments followed the pore-included barrier solvent and thus enabled separation. The barrier solvent composition was optimized and the chemical composition of fractionated polymer chains was investigated as a function of barrier solvent strength using an online Fourier-transform infrared (FTIR) detector. Our study revealed that both the HDPE segments as well as asymmetric block copolymer chains (HDPE block length≫VLDPE block length) are retained in the separation and the barrier strength can be tailored to retain a particular composition. At the optimum barrier solvent composition, this method can be applied to separate effective HDPE segments from the other components, which has been demonstrated using an experimental OBC sample. PMID:27590085

  17. Field and in vitro insecticidal efficacy of alphacypermethrin-treated high density polyethylene mesh against Culicoides biting midges in South Africa.

    PubMed

    Page, P C; Labuschagne, K; Venter, G J; Schoeman, J P; Guthrie, A J

    2014-06-16

    The efficacy of untreated and alphacypermethrin-treated high density polyethylene (HDPE) mesh against Culicoides biting midges (Diptera: Ceratopogonidae) was determined using Onderstepoort downdraught black light traps and a contact bioassay. Three traps were operated overnight in four replicates of a 3×3 randomised Latin square design near horses under South African field conditions. Both the untreated and alphacypermethrin-treated HDPE mesh significantly (P<0.05) reduced the numbers of Culicoides midges, predominantly Culicoides (Avaritia) imicola Kieffer, collected in the light traps by 4.2 and 7.2 times, respectively. A repellent effect of the alphacypermethrin-treated mesh was not confirmed because the number of midges collected in the light traps with untreated and alphacypermethrin-treated HDPE mesh was not significantly different (P=0.656). Bioassay of the insecticidal contact efficacy indicated median C. imicola mortality of 100% from 30 and 10 min following exposure to the alphacypermethrin-treated HDPE mesh for 1 or 3 min, respectively. In the bioassay, mortality was significantly higher (P=0.016) at 5 min post exposure in the midges exposed to the alphacypermethrin-treated mesh for 3 min (74.8%) compared to the 1 min exposure group (59.5%). The HDPE mesh could be used to reduce exposure of housed animals to Culicoides midges, specifically C. imicola, and viruses transmitted by these midges. Mesh treated with alphacypermethrin had the additional benefit of a rapid insecticidal effect on C. imicola. PMID:24655725

  18. Efficacy of alphacypermethrin-treated high density polyethylene mesh applied to jet stalls housing horses against Culicoides biting midges in South Africa.

    PubMed

    Page, P C; Labuschagne, K; Venter, G J; Schoeman, J P; Guthrie, A J

    2015-05-30

    The efficacy of alphacypermethrin-treated high density polyethylene (HDPE) mesh applied to jet stalls against Culicoides biting midges (Diptera: Ceratopogonidae) was determined by mechanical aspiration of midges from horses and using Onderstepoort 220 V downdraught black light traps in four blocks of a 3 × 2 randomised design under South African field conditions. The alphacypermethrin-treated HDPE mesh applied to the stall significantly (P = 0.008) reduced the number of Culicoides midges, predominantly Culicoides (Avaritia) imicola Kieffer, mechanically aspirated from horses housed in the stall. The mesh reduced the Culicoides midge attack rate in the treated stall compared to the untreated stall and a sentinel horse by 6 times and 14 times, respectively. The number of Culicoides midges and C. imicola collected in light traps from the untreated and alphacypermethrin HDPE mesh-treated stalls did not differ significantly (P = 0.82). Alphacypermethrin-treated HDPE mesh could be used to reduce exposure of horses in jet stalls to Culicoides midges, specifically C. imicola, and the risk of midge-borne Orbivirus transmission. PMID:25794942

  19. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method.

    PubMed

    Gao, Yanshan; Wang, Qiang; Wang, Junya; Huang, Liang; Yan, Xingru; Zhang, Xi; He, Qingliang; Xing, Zipeng; Guo, Zhanhu

    2014-04-01

    High-density polyethylene (HDPE) polymer nanocomposites containing Zn2Al-X (X= CO3(2-), NO3(-), Cl(-), SO4(2-)) layered double hydroxide (LDH) nanoparticles with different loadings from 10 to 40 wt % were synthesized using a modified solvent mixing method. Synthesized LDH nanofillers and the corresponding nanocomposites were carefully characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, etc. The thermal stability and flame retardancy behavior were investigated using a thermo gravimetric analyzer and microscale combustion calorimeter. Comparing to neat HDPE, the thermal stability of nanocomposites was significantly enhanced. With the addition of 15 wt % Zn2Al-Cl LDH, the 50% weight loss temperature was increased by 67 °C. After adding LDHs, the flame retardant performance was significantly improved as well. With 40 wt % of LDH loading, the peak heat release rate was reduced by 24%, 41%, 48%, and 54% for HDPE/Zn2Al-Cl, HDPE/Zn2Al-CO3, HDPE/Zn2Al-NO3, and HDPE/Zn2Al-SO4, respectively. We also noticed that different interlayer anions could result in different rheological properties and the influence on storage and loss moduli follows the order of SO4(2-) > NO3(-) > CO3(2-) > Cl(-). Another important finding of this work is that the influence of anions on flame retardancy follows the exact same order on rheological properties. PMID:24597470

  20. Heat transfer performance of a phase-change thermal energy storage water heater using cross-linked high density polyethylene pellets

    SciTech Connect

    Jotshi, C.K.; Klausner, J.F.; Goswami, D.Y.; Hsieh, C.K.; Santhosh, M.K.; Colacino, F.

    1996-12-31

    The objective of this investigation was to develop an efficient water heater that stores thermal energy in a mixture of cross-linked high density polyethylene (HDPE) pellets and propylene glycol. Properties of cross-linked HDPE, such as melting and crystallization temperatures, heat of fusion and crystallization, and volume change were measured in the laboratory. The heat transfer coefficient for the mixture was also measured in a laboratory test. A prototype model of a storage water heater using a mixture of cross-linked HDPE pellets and propylene glycol was designed and fabricated. A copper finned heat transfer coil was used to extract the heat from the storage tank by passing water through it. The heat transfer efficiency (heat extracted by water/heat stored) was measured to be about 70%. To increase the efficiency, the storage unit was modified. In the modified unit, the length of the heat transfer coil was increased and coil spacing optimized. With the modification, the heat transfer efficiency was measured to be about 90%. In addition, a variable heat flux heating element, having high heat flux at the bottom and low heat flux at top, was used to reduce thermal stratification of the propylene glycol/HDPE pellet mixture.

  1. Heat shrinkable behavior, physico-mechanical and structure properties of electron beam cross-linked blends of high-density polyethylene with acrylonitrile-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Reinholds, Ingars; Kalkis, Valdis; Merijs-Meri, Remo; Zicans, Janis; Grigalovica, Agnese

    2016-03-01

    In this study, heat-shrinkable composites of electron beam irradiated high-density polyethylene (HDPE) composites with acrylonitrile-butadiene rubber (NBR) were investigated. HDPE/NBR blends at a ratio of components 100/0, 90/10, 80/20, 50/50 and 20/80 wt% were prepared using a two-roll mill. The compression molded films were irradiated high-energy (5 MeV) accelerated electrons up to irradiation absorbed doses of 100-300 kGy. The effect of electron beam induced cross-linking was evaluated by the changes of mechanical properties, gel content and by the differences of thermal properties, detected by differential scanning calorimetry. The thermo-shrinkage forces were determined as the kinetics of thermorelaxation and the residual shrinkage stresses of previously oriented (stretched up to 100% at above melting temperature of HDPE and followed by cooling to room temperature) specimens of irradiated HDPE/NBR blends under isometric heating-cooling mode. The compatibility between the both components was enhanced due to the formation of cross-linked sites at amorphous interphase. The results showed increase of mechanical stiffness of composites with increase of irradiation dose. The values of gel fraction compared to thermorelaxation stresses increased with the growth of irradiation dose level, as a result of formation cross-linked sites in amorphous PP/NBR interphase.

  2. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method.

    PubMed

    Gao, Yanshan; Wang, Qiang; Wang, Junya; Huang, Liang; Yan, Xingru; Zhang, Xi; He, Qingliang; Xing, Zipeng; Guo, Zhanhu

    2014-04-01

    High-density polyethylene (HDPE) polymer nanocomposites containing Zn2Al-X (X= CO3(2-), NO3(-), Cl(-), SO4(2-)) layered double hydroxide (LDH) nanoparticles with different loadings from 10 to 40 wt % were synthesized using a modified solvent mixing method. Synthesized LDH nanofillers and the corresponding nanocomposites were carefully characterized using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, etc. The thermal stability and flame retardancy behavior were investigated using a thermo gravimetric analyzer and microscale combustion calorimeter. Comparing to neat HDPE, the thermal stability of nanocomposites was significantly enhanced. With the addition of 15 wt % Zn2Al-Cl LDH, the 50% weight loss temperature was increased by 67 °C. After adding LDHs, the flame retardant performance was significantly improved as well. With 40 wt % of LDH loading, the peak heat release rate was reduced by 24%, 41%, 48%, and 54% for HDPE/Zn2Al-Cl, HDPE/Zn2Al-CO3, HDPE/Zn2Al-NO3, and HDPE/Zn2Al-SO4, respectively. We also noticed that different interlayer anions could result in different rheological properties and the influence on storage and loss moduli follows the order of SO4(2-) > NO3(-) > CO3(2-) > Cl(-). Another important finding of this work is that the influence of anions on flame retardancy follows the exact same order on rheological properties.

  3. Efficacy of alphacypermethrin-treated high density polyethylene mesh applied to jet stalls housing horses against Culicoides biting midges in South Africa.

    PubMed

    Page, P C; Labuschagne, K; Venter, G J; Schoeman, J P; Guthrie, A J

    2015-05-30

    The efficacy of alphacypermethrin-treated high density polyethylene (HDPE) mesh applied to jet stalls against Culicoides biting midges (Diptera: Ceratopogonidae) was determined by mechanical aspiration of midges from horses and using Onderstepoort 220 V downdraught black light traps in four blocks of a 3 × 2 randomised design under South African field conditions. The alphacypermethrin-treated HDPE mesh applied to the stall significantly (P = 0.008) reduced the number of Culicoides midges, predominantly Culicoides (Avaritia) imicola Kieffer, mechanically aspirated from horses housed in the stall. The mesh reduced the Culicoides midge attack rate in the treated stall compared to the untreated stall and a sentinel horse by 6 times and 14 times, respectively. The number of Culicoides midges and C. imicola collected in light traps from the untreated and alphacypermethrin HDPE mesh-treated stalls did not differ significantly (P = 0.82). Alphacypermethrin-treated HDPE mesh could be used to reduce exposure of horses in jet stalls to Culicoides midges, specifically C. imicola, and the risk of midge-borne Orbivirus transmission.

  4. Enhancement of mechanical strength of TiO{sub 2}/high-density polyethylene composites for bone repair with silane-coupling treatment

    SciTech Connect

    Hashimoto, Masami . E-mail: masami@jfcc.or.jp; Takadama, Hiroaki . E-mail: takadama@jfcc.or.jp; Mizuno, Mineo . E-mail: mizuno@jfcc.or.jp; Kokubo, Tadashi . E-mail: kokubo@isc.chubu.ac.jp

    2006-03-09

    Mechanical properties of composites made up of high-density polyethylene (HDPE) and silanated TiO{sub 2} particles for use as a bone-repairing material were investigated in comparison with those of the composites of HDPE with unsilanized TiO{sub 2} particles. The interfacial morphology and interaction between silanated TiO{sub 2} and HDPE were analyzed by means of Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The absorption in spectral bands related to the carboxyl bond in the silane-coupling agent, the vinyl group in the HDPE, and the formation of the ether bond was studied in order to assess the influence of the silane-coupling agent. The SEM micrograph showed that the 'bridging effect' between HDPE and TiO{sub 2} was brought about by the silane-coupling agent. The use of the silane-coupling agent and the increase of the hot-pressing pressure for shaping the composites facilitated the penetration of polymer into cavities between individual TiO{sub 2} particles, which increased the density of the composite. Therefore, mechanical properties such as bending yield strength and Young's modulus increased from 49 MPa and 7.5 GPa to 65 MPa and 10 GPa, respectively, after the silane-coupling treatment and increase in the hot-pressing pressure.

  5. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles.

    PubMed

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca3(PO4)2) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. PMID:24857506

  6. The Reconstruction of Nasal Septal Perforation with High Density Porous Polyethylene Covered with Fascia Lata: An Experimental Study on Rabbit Model

    PubMed Central

    Onar, Vedat; Sayin, Ibrahim; Onol, Suzan Deniz; Aydin, Tamer

    2011-01-01

    Objectives Evaluation of a new material, high-density porous polyethylene (HDPP), which is covered with fascia lata, for experimental nasal septal perforation closure. Methods Twenty New Zealand albino rabbits were included and divided into study and control groups. A lateral incision was made from the lateral aspect of the left nares to the incisura nasomaxillaris. After exposure of the cavum nasi, the nasal mucoperichondrium was elevated bilaterally. A full-thickness 0.5×0.5-cm perforation was created over the septum nasi with a No. 11 surgical blade. A fascia lata graft was used for the study group. The HDPP was covered with fascia lata and placed under the elevated mucosa. HDPP without a fascial covering was used in the control group. Four months after the procedure, magnetic resonance imaging was performed to evaluate resorption of the material. The animals were sacrificed, and the nasal septum was completely removed. Macroscopic and histopathological examinations were performed on the nasal septum. Results All rabbits had survived after the 4-month period. Macroscopically, nine of 10 (90%) perforations were closed in the fascia lata-covered HDPP group. Histopathological examination of these nine rabbits revealed that the continuity of cartilage was disturbed in the perforation areas. Granulation tissue was inverted in areas in which the cartilage continuity was disturbed. The HDPP had remained intact at the edge of the perforation. In the HDPP group, six of 10 implants were still perforated (60%) and four (40%) were closed. The fascia lata-covered HDPP implant had a significantly higher perforation closure rate than that of the HDPP implant alone (P<0.05). Conclusion In cases of septal perforation, it is better to cover the HDPP implant with fascia lata. This covered implant can be used for the repair of nasal septal perforations. HDPP implants are easy to work with and avoid the increased operative time and morbidity associated with harvesting autografts

  7. Criticality Evaluation of Plutonium-239 Moderated by High-Density Polyethylene in Stainless Steel and Aluminum Containers Suitable for Non-Exclusive Use Transport

    SciTech Connect

    Watson, T T

    2007-08-10

    Research is conducted at the Joint Actinide Shock Physics Experimental Facility (JASPER) on the effects of high pressure and temperature environments on plutonium-239, in support of the stockpile stewardship program. Once an experiment has been completed, it is necessary to transport the end products for interim storage or final disposition. Federal shipping regulations for nonexclusive use transportation require that no more than 180 grams of fissile material are present in at least 360 kilograms of contiguous non-fissile material. To evaluate the conservatism of these regulatory requirements, a worst-case scenario of 180g {sup 239}Pu and a more realistic scenario of 100g {sup 239}Pu were modeled using one of Lawrence Livermore National Laboratory's Monte Carlo transport codes known as COG 10. The geometry consisted of {sup 239}Pu spheres homogeneously mixed with high-density polyethylene surrounded by a cube of either stainless steel 304 or aluminum. An optimized geometry for both cube materials and hydrogen-to-fissile isotope (H/X) ratio were determined for a single unit. Infinite and finite 3D arrays of these optimized units were then simulated to determine if the systems would exceed criticality. Completion of these simulations showed that the optimal H/X ratio for the most reactive units ranged from 800 to 1600. A single unit of either cube type for either scenario would not reach criticality. An infinite array was determined to reach criticality only for the 180g case. The offsetting of spheres in their respective cubes was also considered and showed a considerable decrease in the number of close-packed units needed to reach criticality. These results call into question the current regulations for fissile material transport, which under certain circumstances may not be sufficient in preventing the development of a critical system. However, a conservative, theoretical approach was taken in all assumptions and such idealized configurations may not be likely to

  8. Development of optimum process for electron beam cross-linking of high density polyethylene thermal energy storage pellets, process scale-up and production of application qualities of material

    NASA Technical Reports Server (NTRS)

    Salyer, I. O.

    1980-01-01

    The electron irradiation conditions required to prepare thermally from stable high density polyethylene (HDPE) were defined. The conditions were defined by evaluating the heat of fusion and the melting temperature of several HDPE specimens. The performance tests conducted on the specimens, including the thermal cycling tests in the thermal energy storage unit are described. The electron beam irradiation tests performed on the specimens, in which the total radiation dose received by the pellets, the electron beam current, the accelerating potential, and the atmospheres were varied, are discussed.

  9. Electron beam irradiation of high density polyethylene pellets for thermal energy storage. Final report of Task 1 and Task 2, January 5, 1979-January 4, 1980

    SciTech Connect

    Davison, J.E.; Salyer, I.O.

    1980-05-01

    The objective of this project was to define the electron beam irradiation conditions required to prepare thermally form stable high crystallinity polyethylene (HDPE) pellets which are suitable for thermal energy storage (TES) applications in the temperature interval of 120/sup 0/ to 140/sup 0/C. The optimum material and conditions for electron beam x-linking via evaluation of thermal form stability and retained heat of fusion of HDPE pellets in a laboratory (5 lb) TES unit was defined. 250 pounds of crosslinked HDPE pellets under the optimum conditions defined in Task 1 were manufactured and evaluated for stability to extensive thermocycling in a pilot plant TES unit. Four different HDPE specimens were irradiated under different conditions of the total radiation dose received by the pellets, the electron beam accelerating potential, the electron beam current, the effect of inert atmospheres during irradiation processing, and the effect of stirring the HDPE pellets during the irradiation processing. The experimental values of the heat of fusion and the melting temperature of the irradiated HDPE pellets were measured and compared to the values of the as-received pellets to evaluate the effect of irradiation processing. The results showed that HDPE pellets irradiated to a dose of 8 megarads have sufficient thermal stability and retained heat of fusion to be used as TES material. The manufacture of 15,000 lb of cross linked HDPE pellets for large-scale evaluation TES material for home heating and cooling systems is recommended. (LCL)

  10. Ultradrawing novel ultra-high molecular weight polyethylene fibers filled with bacterial cellulose nanofibers.

    PubMed

    Yeh, Jen-Taut; Tsai, Chih-Chen; Wang, Chuen-Kai; Shao, Jhih-Wun; Xiao, Ming-Zheng; Chen, Su-Chen

    2014-01-30

    Novel ultrahigh molecular weight polyethylene (UHMWPE)/bacterial cellulose (BC) (F100BCy) and UHMWPE/modified bacterial cellulose (MBC) (F100MBCx-y) as-prepared fibers were prepared and ultra-drawn. The achievable draw ratio (Dra) values of each F100MBCx-y as-prepared fiber series specimens approached a maximum value as their MBC contents reached the optimal value at 0.0625phr. In which, the maximum Dra value obtained for F100MBCx-0.0625 as-prepared fiber specimen prepared at the optimal MBC content reached another maximum value at 347 as the weight ratio of maleic anhydride grafted polyethylene to BC approach an optimal value at 10. In contrast, no significant improvement in Dra values was found for F100BCy as-prepared fiber specimens. To understand these interesting ultradrawing properties described above, Fourier transform infra-red, specific surface areas, and transmission electron microcopic analyses of original and modified BC nanofibers together with the thermal, orientation and tensile properties of F100BCy and F100MBCx-y fiber specimens were performed.

  11. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets.

    PubMed

    Carotenuto, G; De Nicola, S; Palomba, M; Pullini, D; Horsewell, A; Hansen, T W; Nicolais, L

    2012-12-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been evaluated by testing nanocomposites made by different manufacturing techniques (compression moulding and blown extrusion). The comparison between the experimental data and the Halpin-Tsai model shows that the orientation of GNPs due to the extrusion process leads to values of tensile modulus higher than that obtained with the randomly oriented disposition resulting from the compression moulding technique. PMID:23128320

  12. Chitosan filled recycled low density polyethylene composite: Melt flow behaviour and thermal degradation properties

    NASA Astrophysics Data System (ADS)

    Lim, B. Y.; Voon, C. H.; Salmah, H.; Nordin, H.

    2016-07-01

    An environmentally friendly composite was fabricated from chitosan and recycled low density polyethylene (rLDPE) with the means of melt mixing at 180 °C. The composites were prepared in different loading (10, 20, 30 and 40 php) of chitosan. Due to the incompatibility between filler and matrix, a coupling agent, Ultraplus TP01, was added into the composites. The melt flow index (MFI) values of rLDPE/chitosan composites decreased with chitosan loading but increased with rise of temperature. With the presence of Ultraplus TP01, MFI values of composites were decreased. The thermal stability of rLDPE/chitosan was reduced with increase of chitosan loading but increased with addition of Ultraplus TP01. It was believed that Ultraplus TP01 had provided better interfacial bonding between chitosan and rLDPE, thus enhanced the thermal stability of rLDPE/chitosan composites.

  13. Spatially revolved high density electroencephalography

    NASA Astrophysics Data System (ADS)

    Wu, Jerry; Szu, Harold; Chen, Yuechen; Guo, Ran; Gu, Xixi

    2015-05-01

    Electroencephalography (EEG) measures voltage fluctuations resulting from ionic current flows within the neurons of the brain. In practice, EEG refers to the recording of the brain's spontaneous electrical activity over a short period of time, several tens of minutes, as recorded from multiple electrodes placed on the scalp. In order to improve the resolution and the distortion cause by the hair and scalp, large array magnetoencephalography (MEG) systems are introduced. The major challenge is to systematically compare the accuracy of epileptic source localization with high electrode density to that obtained with sparser electrode setups. In this report, we demonstrate a two dimension (2D) image Fast Fourier Transform (FFT) analysis along with utilization of Peano (space-filling) curve to further reduce the hardware requirement for high density EEG and improve the accuracy and performance of the high density EEG analysis. The brain-computer interfaces (BCIs) in this work is enhanced by A field-programmable gate array (FPGA) board with optimized two dimension (2D) image Fast Fourier Transform (FFT) analysis.

  14. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  15. High density pixel array

    NASA Technical Reports Server (NTRS)

    Wiener-Avnear, Eliezer (Inventor); McFall, James Earl (Inventor)

    2004-01-01

    A pixel array device is fabricated by a laser micro-milling method under strict process control conditions. The device has an array of pixels bonded together with an adhesive filling the grooves between adjacent pixels. The array is fabricated by moving a substrate relative to a laser beam of predetermined intensity at a controlled, constant velocity along a predetermined path defining a set of grooves between adjacent pixels so that a predetermined laser flux per unit area is applied to the material, and repeating the movement for a plurality of passes of the laser beam until the grooves are ablated to a desired depth. The substrate is of an ultrasonic transducer material in one example for fabrication of a 2D ultrasonic phase array transducer. A substrate of phosphor material is used to fabricate an X-ray focal plane array detector.

  16. Scale effects in tribological properties of solid-lubricating composites made of ultra-high molecular weight polyethylene filled with calcium stearate particles

    NASA Astrophysics Data System (ADS)

    Lurie, S. A.; Volkov-Bogorodskiy, D. B.; Knyzeva, A. G.; Panin, S. V.; Kornienko, L. A.

    2016-04-01

    Friction properties being influenced by scale effects are simulated in the paper by the example of polymer composite material made from Ultra High-Molecular Weight Polyethylenes (UHMWPE) filled by calcium stearate (C36H70CaO4). Of interest are the composites whose mechanical properties and tribotechnical characteristics do not depend monotonically on filler (inclusions) weight fraction. In order to describe the influence of scale effects onto frictional properties the model based on Reiss averaging (model of "weak phase") is employed. It is also suggested that when gradient elasticity theory is applicable the formal analogy between effective friction coefficient for surface heterogeneous structures and effective mechanical properties (compliances) for heterogeneous material can take place. Theoretical dependence to describe nonmonotonic change of effective friction coefficient versus filler concentration was obtained for the polymer composites under study. The suggested expressions might be useful for the sake of properties prognosis of antifriction polymeric materilas.

  17. Laminated thermoplastic composite material from recycled high density polyethylene

    NASA Technical Reports Server (NTRS)

    Liu, Ping; Waskom, Tommy L.

    1994-01-01

    The design of a materials-science, educational experiment is presented. The student should understand the fundamentals of polymer processing and mechanical property testing of materials. The ability to use American Society for Testing and Materials (ASTM) standards is also necessary for designing material test specimens and testing procedures. The objectives of the experiment are (1) to understand the concept of laminated composite materials, processing, testing, and quality assurance of thermoplastic composites and (2) to observe an application example of recycled plastics.

  18. Photoionization and High Density Gas

    NASA Technical Reports Server (NTRS)

    Kallman, T.; Bautista, M.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results of calculations using the XSTAR version 2 computer code. This code is loosely based on the XSTAR v.1 code which has been available for public use for some time. However it represents an improvement and update in several major respects, including atomic data, code structure, user interface, and improved physical description of ionization/excitation. In particular, it now is applicable to high density situations in which significant excited atomic level populations are likely to occur. We describe the computational techniques and assumptions, and present sample runs with particular emphasis on high density situations.

  19. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  20. High-density digital recording

    NASA Technical Reports Server (NTRS)

    Kalil, F. (Editor); Buschman, A. (Editor)

    1985-01-01

    The problems associated with high-density digital recording (HDDR) are discussed. Five independent users of HDDR systems and their problems, solutions, and insights are provided as guidance for other users of HDDR systems. Various pulse code modulation coding techniques are reviewed. An introduction to error detection and correction head optimization theory and perpendicular recording are provided. Competitive tape recorder manufacturers apply all of the above theories and techniques and present their offerings. The methodology used by the HDDR Users Subcommittee of THIC to evaluate parallel HDDR systems is presented.

  1. Preparation of hydroxylated polyethylene surfaces.

    PubMed

    Zand, A; Walter, N; Bahu, M; Ketterer, S; Sanders, M; Sikorski, Y; Cunningham, R; Beholz, L

    2008-01-01

    The surfaces of high-density or ultra-high-molecular-weight polyethylenes were hydroxylated using a two-step process. The wetting and wear properties of the untreated (virgin) and surface hydroxylated polyethylenes were compared. The introduction of hydroxyl groups provided an increase in surface hydrophilicity resulting in reduced wear. Hydrophilicity was analyzed by optical analysis of water contact angle. Wear was determined by weight loss under conditions of a reciprocating pin-on-plate apparatus with the panels immersed in water or calf serum. These results suggest that hydroxylation of polyethylene friction-bearing orthopedic surfaces may lead to a longer joint life. PMID:18318959

  2. High density harp for SSCL linac

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L.; Crist, C.E.

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  3. High density load bearing insulation peg

    DOEpatents

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A high density peg which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure.

  4. High density load bearing insulation peg

    DOEpatents

    Nowobilski, J.J.; Owens, W.J.

    1985-01-29

    A high density peg is disclosed which can support a large load and exhibits excellent thermal resistance produced by a method wherein the peg is made in compliance with specified conditions of time, temperature and pressure. 4 figs.

  5. High Density Fuel Development for Research Reactors

    SciTech Connect

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  6. Rheological properties of polyolefin composites highly filled with calcium carbonate

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Jakubowska, Paulina; Sterzynski, Tomasz

    2016-05-01

    In this paper the rheological properties of highly filled polyolefin composites (HFPCs) have been investigated. Calcium carbonate (CaCO3), with stearic acid modified surface, was used as filler. Ternary compounds have been obtained by the inclusion of a CaCO3/polypropylene master batch into the high density polyethylene matrix. The highly filled polyolefin composites with CaCO3 content in the range between 40 and 64 wt% have been prepared in the molten state using a single-screw extruder, the temperature of the extrusion die was set at 230°C. The melt rheological properties of the HFPCs have been extensively investigated both in oscillatory and steady shear flow.

  7. Profiles in garbage: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1997-11-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks -- along with salad dressing, fruit juices, peanut butter, and other household and consumer products -- use PET bottles. PET also is used for film, sheeting for cups and food trays, oven-safe trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early 1970s. Because it is an ``engineered`` resin, PET is more expensive than commodity resins such as high-density polyethylene (HDPE) and, for the same reason, it is usually the highest valued plastic recyclable.

  8. High Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D., II; Gray, David L.; Rowland, Wayne D.

    1991-01-01

    The High Density Digital Data Storage System was designed to provide a cost effective means for storing real-time data from the field-deployable digital acoustic measurement system. However, the high density data storage system is a standalone system that could provide a storage solution for many other real time data acquisition applications. The storage system has inputs for up to 20 channels of 16-bit digital data. The high density tape recorders presently being used in the storage system are capable of storing over 5 gigabytes of data at overall transfer rates of 500 kilobytes per second. However, through the use of data compression techniques the system storage capacity and transfer rate can be doubled. Two tape recorders have been incorporated into the storage system to produce a backup tape of data in real-time. An analog output is provided for each data channel as a means of monitoring the data as it is being recorded.

  9. Aerodynamic Focusing Of High-Density Aerosols

    SciTech Connect

    Ruiz, D. E.; Fisch, Nathaniel

    2014-02-24

    High-density micron-sized particle aerosols might form the basis for a number of applications in which a material target with a particular shape might be quickly ionized to form a cylindrical or sheet shaped plasma. A simple experimental device was built in order to study the properties of high-density aerosol focusing for 1 m silica spheres. Preliminary results recover previous findings on aerodynamic focusing at low densities. At higher densities, it is demonstrated that the focusing properties change in a way which is consistent with a density dependent Stokes number.

  10. TECHNICAL GUIDANCE DOCUMENT: THE FABRICATION OF POLYETHYLENE FML FIELD SEAMS

    EPA Science Inventory

    This technical guidance document is meant to augment the numerous construction quality control and construction assurance (CQC and CQA) guidelines that are presently available for high density polyethylene (HDPE) liner installation and inspection.

  11. The yield behavior of polyethylene tubes subjected to biaxial loadings

    NASA Technical Reports Server (NTRS)

    Semeliss, M.; Wong, R.; Tuttle, M.

    1990-01-01

    High-density polyethylene is subjected to biaxial states of stress to examine the yield behavior of the semicrystalline thermoplastic under constant octahedral shear-stress rates. Combinations of internal pressures and axial loads are applied to thin-walled tubes of polyethylene, and the strain response in the axial and hoop directions are measured. The polyethylene specimens are found to be anisotropic, and the experimental measurements are compared to yield criteria that are applicable to isotropic and anisotropic materials.

  12. Evaluation of Paulownia elongata wood polyethylene composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Paulownia wood flour (PWF), a byproduct of milling lumber, was employed as a bio-filler and blended with high density polyethylene (HDPE) via extrusion. Paulownia wood (PW) shavings were milled through a 1-mm screen then separated via shaking into various particle fractions using sieves (#30 - < #2...

  13. High density circuit technology, part 1

    NASA Technical Reports Server (NTRS)

    Wade, T. E.

    1982-01-01

    The metal (or dielectric) lift-off processes used in the semiconductor industry to fabricate high density very large scale integration (VLSI) systems were reviewed. The lift-off process consists of depositing the light-sensitive material onto the wafer and patterning first in such a manner as to form a stencil for the interconnection material. Then the interconnection layer is deposited and unwanted areas are lifted off by removing the underlying stencil. Several of these lift-off techniques were examined experimentally. The use of an auxiliary layer of polyimide to form a lift-off stencil offers considerable promise.

  14. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  15. High-Density Digital Data Storage System

    NASA Technical Reports Server (NTRS)

    Wright, Kenneth D.; Gray, David L.

    1995-01-01

    High-density digital data storage system designed for cost-effective storage of large amounts of information acquired during experiments. System accepts up to 20 channels of 16-bit digital data with overall transfer rates of 500 kilobytes per second. Data recorded on 8-millimeter magnetic tape in cartridges, each capable of holding up to five gigabytes of data. Each cartridge mounted on one of two tape drives. Operator chooses to use either or both of drives. One drive used for primary storage of data while other can be used to make a duplicate record of data. Alternatively, other drive serves as backup data-storage drive when primary one fails.

  16. Study On Temperature Distribution In T Fittings - Polyethylene Natural Gas Pipes Assemblies

    NASA Astrophysics Data System (ADS)

    Avrigean, Eugen

    2015-09-01

    The present paper intends to approach theoretically and experimentally an important topic concerning the operational safety of the polyethylene pipes used in natural gas distribution. We discuss the influence of temperature in the high density polyethylene elbows during welding to the polyethylene pipes.

  17. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  18. Manufacture of high-density ceramic sinters

    NASA Technical Reports Server (NTRS)

    Hibata, Y.

    1986-01-01

    High density ceramic sinters are manufactured by coating premolded or presintered porous ceramics with a sealing material of high SiO2 porous glass or nitride glass and then sintering by hot isostatic pressing. The ceramics have excellent abrasion and corrosion resistances. Thus LC-10 (Si3N2 powder) and Y2O3-Al2O3 type sintering were mixed and molded to give a premolded porous ceramic (porosity 37%, relative bulk density 63%). The ceramic was dipped in a slurry containing high SiO2 porous glass and an alcohol solution of cellulose acetate and dried. The coated ceramic was treated in a nitrogen atmosphere and then sintered by hot isostatic pressing to give a dense ceramic sinter.

  19. Structures of High Density Molecular Fluids

    SciTech Connect

    Baer, B; Cynn, H; Iota, V; Yoo, C-S

    2002-02-01

    The goal of this proposal is to develop an in-situ probe for high density molecular fluids. We will, therefore, use Coherent Anti-Stokes Raman Spectroscopy (CARS) applied to laser heated samples in a diamond-anvil cell (DAC) to investigate molecular fluids at simultaneous conditions of high temperatures (T > 2000K) and high pressures (P > 10 GPa.) Temperatures sufficient to populate vibrational levels above the ground state will allow the vibrational potential to be mapped by CARS. A system capable of heating and probing these samples will be constructed. Furthermore, the techniques that enable a sample to be sufficiently heated and probed while held at static high pressure in a diamond-anvil-cell will be developed. This will be an in-situ investigation of simple molecules under conditions relevant to the study of detonation chemistry and the Jovain planet interiors using state of the art non-linear spectroscopy, diamond-anvil-cells, and laser heating technology.

  20. Fluid hydrogen at high density - Pressure dissociation

    NASA Technical Reports Server (NTRS)

    Saumon, Didier; Chabrier, Gilles

    1991-01-01

    A model for the Helmholtz free energy of fluid hydrogen at high density and high temperature is developed. This model aims at describing both pressure and temperature dissociation and ionization and bears directly on equations of state of partially ionized plasmas, as encountered in astrophysical situations and high-pressure experiments. This paper focuses on a mixture of hydrogen atoms and molecules and is devoted to the study of the phenomenon of pressure dissociation at finite temperatures. In the present model, the strong interactions are described with realistic potentials and are computed with a modified Weeks-Chandler-Andersen fluid perturbation theory that reproduces Monte Carlo simulations to better than 3 percent. Theoretical Hugoniot curves derived from the model are in excellent agreement with experimental data.

  1. Ultra-high density diffraction grating

    DOEpatents

    Padmore, Howard A.; Voronov, Dmytro L.; Cambie, Rossana; Yashchuk, Valeriy V.; Gullikson, Eric M.

    2012-12-11

    A diffraction grating structure having ultra-high density of grooves comprises an echellette substrate having periodically repeating recessed features, and a multi-layer stack of materials disposed on the echellette substrate. The surface of the diffraction grating is planarized, such that layers of the multi-layer stack form a plurality of lines disposed on the planarized surface of the structure in a periodical fashion, wherein lines having a first property alternate with lines having a dissimilar property on the surface of the substrate. For example, in one embodiment, lines comprising high-Z and low-Z materials alternate on the planarized surface providing a structure that is suitable as a diffraction grating for EUV and soft X-rays. In some embodiments, line density of between about 10,000 lines/mm to about 100,000 lines/mm is provided.

  2. Waste product profile: Polyethylene terephthalate

    SciTech Connect

    Miller, C.

    1996-02-01

    Polyethylene terephthalate (PET) is a plastic resin used primarily to make bottles. Soft drinks are the primary product packaged in PET. Salad dressing, peanut butter, and other household and consumer products also use PET bottles. PET is also used for film, sheeting for cups and food trays, ovenable trays, and other uses. PET is a relatively new packaging resin, first commercialized in the early `70s. Because it is an ``engineered`` resin, it is more expensive than commodity resins such as high-density polyethylene (HDPE). The primary market for recycled PET is the fiber industry, which uses PET for carpet fiber, sweaters and other clothing, and for other uses. Recycled PET can also be used for food and beverage containers. Export markets, particularly Asian countries, are becoming increasingly important.

  3. Dark High Density Dipolar Liquid of Excitons

    NASA Astrophysics Data System (ADS)

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen

    2016-06-01

    The possible phases and the nano-scale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature $T_c \\approx 4.8K$, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar quantum liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting ground state.

  4. Abnormal high density lipoproteins in cerebrotendinous xanthomatosis

    SciTech Connect

    Shore, V.; Salen, G.; Cheng, F.W.; Forte, T.; Shefer, S.; Tint, G.S.

    1981-11-01

    The plasma lipoprotein profiles and high density lipoproteins (HDL) were characterized in patients with the genetic disease cerebrotendinous xanthomatosis (CTX). The mean HDL-cholesterol concentration in the CTX plasmas was 14.5 +/- 3.2 mg/dl, about one-third the normal value. The low HDL-cholesterol reflects a low concentration and an abnormal lipid composition of the plasma HDL. Relative to normal HDL, the cholesteryl esters are low, free cholesterol and phospholipids essentially normal, and triglycerides increased. The ratio of apoprotein (apo) to total cholesterol in the HDL of CTX was two to three times greater than normal. In the CTX HDL, the ratio of apoAI to apoAII was high, the proportion of apoC low, and a normally minor form of apoAI increased relative to other forms. The HDL in electron micrographs appeared normal morphologically and in particle size. The adnormalities in lipoprotein distribution profiles and composition of the plasma HDL result from metabolic defects that are not understood but may be linked to the genetic defect in bile acid synthesis in CTX. As a consequence, it is probable that the normal functions of the HDL, possibly including modulation of LDL-cholesterol uptake and the removal of excess cholesterol from peripheral tissues, are perturbed significantly in this disease.

  5. Double Superhelix Model of High Density Lipoprotein*

    PubMed Central

    Wu, Zhiping; Gogonea, Valentin; Lee, Xavier; Wagner, Matthew A.; Li, Xin-Min; Huang, Ying; Undurti, Arundhati; May, Roland P.; Haertlein, Michael; Moulin, Martine; Gutsche, Irina; Zaccai, Giuseppe; DiDonato, Joseph A.; Hazen, Stanley L.

    2009-01-01

    High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity. PMID:19812036

  6. Nanobiotechnology applications of reconstituted high density lipoprotein

    PubMed Central

    2010-01-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions. PMID:21122135

  7. Dark High Density Dipolar Liquid of Excitons.

    PubMed

    Cohen, Kobi; Shilo, Yehiel; West, Ken; Pfeiffer, Loren; Rapaport, Ronen

    2016-06-01

    The possible phases and the nanoscale particle correlations of two-dimensional interacting dipolar particles is a long-sought problem in many-body physics. Here we observe a spontaneous condensation of trapped two-dimensional dipolar excitons with internal spin degrees of freedom from an interacting gas into a high density, closely packed liquid state made mostly of dark dipoles. Another phase transition, into a bright, highly repulsive plasma, is observed at even higher excitation powers. The dark liquid state is formed below a critical temperature Tc ≈ 4.8 K, and it is manifested by a clear spontaneous spatial condensation to a smaller and denser cloud, suggesting an attractive part to the interaction which goes beyond the purely repulsive dipole-dipole forces. Contributions from quantum mechanical fluctuations are expected to be significant in this strongly correlated, long living dark liquid. This is a new example of a two-dimensional atomic-like interacting dipolar liquid, but where the coupling of light to its internal spin degrees of freedom plays a crucial role in the dynamical formation and the nature of resulting condensed dark ground state.

  8. High-Density Lipoproteins: Nature's Multifunctional Nanoparticles.

    PubMed

    Kuai, Rui; Li, Dan; Chen, Y Eugene; Moon, James J; Schwendeman, Anna

    2016-03-22

    High-density lipoproteins (HDL) are endogenous nanoparticles involved in the transport and metabolism of cholesterol, phospholipids, and triglycerides. HDL is well-known as the "good" cholesterol because it not only removes excess cholesterol from atherosclerotic plaques but also has anti-inflammatory and antioxidative properties, which protect the cardiovascular system. Circulating HDL also transports endogenous proteins, vitamins, hormones, and microRNA to various organs. Compared with other synthetic nanocarriers, such as liposomes, micelles, and inorganic and polymeric nanoparticles, HDL has unique features that allow them to deliver cargo to specific targets more efficiently. These attributes include their ultrasmall size (8-12 nm in diameter), high tolerability in humans (up to 8 g of protein per infusion), long circulating half-life (12-24 h), and intrinsic targeting properties to different recipient cells. Various recombinant ApoA proteins and ApoA mimetic peptides have been recently developed for the preparation of reconstituted HDL that exhibits properties similar to those of endogenous HDL and has a potential for industrial scale-up. In this review, we will summarize (a) clinical pharmacokinetics and safety of reconstituted HDL products, (b) comparison of HDL with inorganic and other organic nanoparticles, PMID:26889958

  9. Intrinsic enzymes of high-density lipoprotein.

    PubMed

    Le, Ngoc-Anh; Walter, Mary F

    2007-03-01

    Several lines of evidence are available to support the protective effects of high-density lipoproteins (HDL) on atherosclerosis. The exact mechanisms by which HDL protects against atherosclerotic disease development are not understood. In addition to its role in the reverse transport of cholesterol from the peripheral sites to the liver for excretion, HDL also carries a number of enzymes that contribute to the remodeling of plasma lipoproteins and to the protection of other lipoproteins against oxidative modification. Many of these enzymes can play a role in determining the composition of circulating HDL, while others appear to affect specific biologic activities associated with HDL. It is not clear whether the concentrations of HDL particles or the activities associated with this class of particles are more important. One of the problems is that HDL constitutes a heterogeneous population of particles, and analytical tools to characterize the various subpopulations are not widely available. In this article, we will review the enzymes that are associated with plasma HDL and possible mechanisms as to how these may contribute to the protective properties of HDL in humans. PMID:21291665

  10. High-density electroencephalography developmental neurophysiological trajectories.

    PubMed

    Dan, Bernard; Pelc, Karine; Cebolla, Ana M; Cheron, Guy

    2015-04-01

    Efforts to document early changes in the developing brain have resulted in the construction of increasingly accurate structural images based on magnetic resonance imaging (MRI) in newborn infants. Tractography diagrams obtained through diffusion tensor imaging have focused on white matter microstructure, with particular emphasis on neuronal connectivity at the level of fibre tract systems. Electroencephalography (EEG) provides a complementary approach with more direct access to brain electrical activity. Its temporal resolution is excellent, and its spatial resolution can be enhanced to physiologically relevant levels, through the combination of high-density recordings (e.g. by using 64 channels in newborn infants) and mathematical models (e.g. inverse modelling computation), to identify generators of different oscillation bands and synchrony patterns. The integration of functional and structural topography of the neonatal brain provides insights into typical brain organization, and the deviations seen in particular contexts, for example the effect of hypoxic-ischaemic insult in terms of damage, eventual reorganization, and functional changes. Endophenotypes can then be used for pathophysiological reasoning, management planning, and outcome measurements, and allow a longitudinal approach to individual developmental trajectories. PMID:25800492

  11. Nanobiotechnology applications of reconstituted high density lipoprotein.

    PubMed

    Ryan, Robert O

    2010-01-01

    High-density lipoprotein (HDL) plays a fundamental role in the Reverse Cholesterol Transport pathway. Prior to maturation, nascent HDL exist as disk-shaped phospholipid bilayers whose perimeter is stabilized by amphipathic apolipoproteins. Methods have been developed to generate reconstituted (rHDL) in vitro and these particles have been used in a variety of novel ways. To differentiate between physiological HDL particles and non-natural rHDL that have been engineered to possess additional components/functions, the term nanodisk (ND) is used. In this review, various applications of ND technology are described, such as their use as miniature membranes for solubilization and characterization of integral membrane proteins in a native like conformation. In other work, ND harboring hydrophobic biomolecules/drugs have been generated and used as transport/delivery vehicles. In vitro and in vivo studies show that drug loaded ND are stable and possess potent biological activity. A third application of ND is their use as a platform for incorporation of amphiphilic chelators of contrast agents, such as gadolinium, used in magnetic resonance imaging. Thus, it is demonstrated that the basic building block of plasma HDL can be repurposed for alternate functions.

  12. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  13. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  14. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  15. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  16. 14 CFR 93.123 - High density traffic airports.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false High density traffic airports. 93.123... (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES High Density Traffic Airports § 93.123 High density traffic airports. (a) Each of the following airports is designated as a...

  17. Polyethylene Glycol 3350

    MedlinePlus

    Polyethylene glycol 3350 is used to treat occasional constipation. Polyethylene glycol 3350 is in a class of medications ... Polyethylene glycol 3350 comes as a powder to be mixed with a liquid and taken by mouth. ...

  18. Extrudate characteristics and morphology of styrene butadiene rubber/high density polyethylene blends

    NASA Astrophysics Data System (ADS)

    Jayasree, T. K.; Manuvel, Jayan

    2013-06-01

    When HDPE is added to SBR, the melt elasticity of the system gets reduced. The morphology of the extrudates of the blends has been found to be dependent on the shear rate. Dynamic crosslinking with DCP has been improved the processability of SBR/HDPE blends by reducing the melt elasticity of the system considerably.

  19. High-density plasma deposition manufacturing productivity improvement

    NASA Astrophysics Data System (ADS)

    Olmer, Leonard J.; Hudson, Chris P.

    1999-09-01

    High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.

  20. High-Density Carbon (HDC) Ablator for Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Ho, D.; Haan, S.; Milovich, J.; Salmonson, J.; Zimmerman, G.; Benedict, L.; Biener, J.; Cerjan, C.; Clark, D.; Dewalds, E.; Edwards, J.; Berzak Hopkins, L.; MacKinnon, A.; Marinak, M.; McNaney, J.; Meezan, N.; Ross, S.; Tommasini, R.

    2013-10-01

    HDC ablators show high performance based on simulations and experiments. HDC capsules have good 1-D performance because HDC has high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation, and have good 2-D performance because the ablator surface is substantially smoother than plastic ablators. A 25 μm thick layer doped with 0.26 at.% of W is sufficient to block the M-band radiation. W can be doped very uniformly in HDC. Simulations using NLTE model for W shows that the capsule can tolerate close to 300 ng of W-doped ablator material in the hot spot. If W is replaced with Si, the entire ablator has to be uniformly doped with 3 at.% of Si. Surprisingly, the hot spot can tolerate about the same amount of ablator mass for the 3 at.% Si-doped HDC as it can for W-doped. The main reason is that Si radiates less and consequently raises the hot spot temperature which in term increases the electron heat conduction. 4, 3, and 2-shock designs and their stabilites will be presented. An undoped HDC Symcap with DT fill reached a record neutron yield of 1.7e15. W-doped HDC Symcap and DT-layered shots will be conducted in Fall. Comparison of simulations with measured data will be presented. Performed under US DOE Contract DE-AC52-07NA27344.

  1. Development of Infrared Welder for Sealing of Polyethylene TRU-Waste Containers

    SciTech Connect

    Milling, R.B.

    1999-06-08

    Engineers at the Savannah River Technology Center have successfully performed infrared welding of High Density Polyethylene test specimens to prove the feasibility of using the infrared welding process in the HANDSS-55-TRU-Waste Repackaging Module.

  2. The relation between high-density and very-high-density amorphous ice.

    PubMed

    Loerting, Thomas; Salzmann, Christoph G; Winkel, Katrin; Mayer, Erwin

    2006-06-28

    The exact nature of the relationship between high-density (HDA) and very-high-density (VHDA) amorphous ice is unknown at present. Here we review the relation between HDA and VHDA, concentrating on experimental aspects and discuss these with respect to the relation between low-density amorphous ice (LDA) and HDA. On compressing LDA at 125 K up to 1.5 GPa, two distinct density steps are observable in the pressure-density curves which correspond to the LDA --> HDA and HDA --> VHDA conversion. This stepwise formation process LDA --> HDA --> VHDA at 125 K is the first unambiguous observation of a stepwise amorphous-amorphous-amorphous transformation sequence. Density values of amorphous ice obtained in situ between 0.3 and 1.9 GPa on isobaric heating up to the temperatures of crystallization show a pronounced change of slope at ca. 0.8 GPa which could indicate formation of a distinct phase. We infer that the relation between HDA and VHDA is very similar to that between LDA and HDA except for a higher activation barrier between the former. We further discuss the two options of thermodynamic phase transition versus kinetic densification for the HDA --> VHDA conversion.

  3. The mechanical properties of density graded hemp/polyethylene composites

    NASA Astrophysics Data System (ADS)

    Dauvegis, Raphaël; Rodrigue, Denis

    2015-05-01

    In this work, the production and mechanical characterization of density graded biocomposites based on high density polyethylene and hemp fibres was performed. The effect of coupling agent addition (maleated polyethylene) and hemp content (0-30%) was studied to determine the effect of hemp distribution (graded content) inside the composite (uniform, linear, V and Λ). Tensile and flexural properties are reported to compare the structures, especially in terms of their stress-strain behaviors under tensile loading.

  4. Itinerary of high density lipoproteins in endothelial cells.

    PubMed

    Perisa, Damir; Rohrer, Lucia; Kaech, Andres; von Eckardstein, Arnold

    2016-02-01

    High density lipoprotein (HDL) and its main protein component apolipoprotein A-I (ApoA-I) have multiple anti-atherogenic functions. Some of them are exerted within the vessel wall, so that HDL needs to pass the endothelial barrier. To elucidate their itinerary through endothelial cells (ECs), we labelled ApoA-I and HDL either fluorescently or with 1.4 nm nanogold and investigated their cellular localization by using immunofluorescent microscopy (IFM) and electron microscopy (EM). HDL as well as ApoA-I is taken up by ECs into the same route of intracellular trafficking. Time kinetics and pulse chase experiments revealed that HDL is trafficked through different vesicles. HDL partially co-localized with LDL, albumin, and transferrin. HDL did not co-localize with clathrin and caveolin-1. Fluorescent HDL was recovered at small proportions in early endosomes and endosome to trans-golgi network vesicles but not at all in recycling endosomes, in late endosomes or lysosomes. EM identified HDL mainly in large filled vesicles which however upon IFM did not colocalize with markers of multivesicular bodies or autophagosomes. The uptake or cellular distribution of HDL was altered upon pharmacological interference with cytochalasine D, colchicine and dynasore. Blockage of fluid phase uptake with Amiloride or EIPA did not reduce the uptake of HDL. Neither did we observe any co-localization of HDL with dextran as the marker of fluid phase uptake. In conclusion, HDL and ApoA-I are internalized and trafficked by endothelial cells through a non-classical endocytic route. PMID:26577406

  5. Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water

    NASA Astrophysics Data System (ADS)

    Giovambattista, Nicolas; Stanley, H. Eugene; Sciortino, Francesco

    2005-03-01

    It has been suggested that high-density amorphous (HDA) ice is a structurally arrested form of high-density liquid (HDL) water, while low-density amorphous ice is a structurally arrested form of low-density liquid (LDL) water. Recent experiments and simulations have been interpreted to support the possibility of a second distinct high-density structural state, named very high-density amorphous (VHDA) ice, questioning the LDL-HDL hypothesis. We test this interpretation using extensive computer simulations and find that VHDA is a more stable form of HDA and that, in fact, VHDA should be considered as the amorphous ice of the quenched HDL.

  6. Small-Scale Production of High-Density Dry Ice: A Variant Combination of Two Classic Demonstrations

    ERIC Educational Resources Information Center

    Flowers, Paul A.

    2009-01-01

    Easily recoverable, thumb-sized pieces of high-density dry ice are conveniently produced by deposition of carbon dioxide within a test tube submerged in liquid nitrogen. A carbon dioxide-filled balloon sealed over the mouth of the test tube serves as a gas reservoir, and further permits a dramatic demonstration of both the gas-to-solid phase…

  7. Broadband infrared photoluminescence in silicon nanowires with high density stacking faults.

    PubMed

    Li, Yang; Liu, Zhihong; Lu, Xiaoxiang; Su, Zhihua; Wang, Yanan; Liu, Rui; Wang, Dunwei; Jian, Jie; Lee, Joon Hwan; Wang, Haiyan; Yu, Qingkai; Bao, Jiming

    2015-02-01

    Making silicon an efficient light-emitting material is an important goal of silicon photonics. Here we report the observation of broadband sub-bandgap photoluminescence in silicon nanowires with a high density of stacking faults. The photoluminescence becomes stronger and exhibits a blue shift under higher laser powers. The super-linear dependence on excitation intensity indicates a strong competition between radiative and defect-related non-radiative channels, and the spectral blue shift is ascribed to the band filling effect in the heterostructures of wurtzite silicon and cubic silicon created by stacking faults.

  8. Morphology of polyethylene ski base materials.

    PubMed

    Fischer, Jörg; Wallner, Gernot M; Pieber, Alois

    2010-03-01

    We used high-resolution Raman spectroscopy and differential scanning calorimetry for a comprehensive analysis of carbon black-filled polyethylene ski base grades at processing stages from the raw material to the structured ski base. Based on Raman mapping, we assessed the applicability of an advanced evaluation procedure for amorphous, disordered, and crystalline phase fractions of polyethylene for polyethylene extrusion and sinter grades. For sinter grades, a sufficient segregation between carbon black and polyethylene was confirmed, allowing for a comprehensive Raman spectroscopic morphological analysis. Significant morphological changes in polyethylene due to processing from the raw material to the semi-finished film and to the structured ski base were identified. Throughout the processing chain, we observed a decrease in crystallinity and an increase in the amorphous phase fraction. Although the raw material and the sintered semi-finished film exhibited a different but uniform polyethylene morphology, the morphological changes due to structuring of the ski base are limited to the top surface layer. The highest amorphous phase fractions were detected in the surface of the structured ski bases.

  9. High density semiconductor nanodots by direct laser fabrication

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    We report a direct method of fabricating high density nanodots on the GaAs(001) surfaces using laser irradiations on the surface. Surface images indicate that the large clumps are not accompanied with the formation of nanodots even though its density is higher than the critical density above which detrimental large clumps begin to show up in the conventional Stranski-Krastanov growth technique. Atomic force microscopy is used to image the GaAs(001) surfaces that are irradiated by high power laser pulses interferentially. The analysis suggests that high density quantum dots be fabricated directly on semiconductor surfaces.

  10. Cool, high-density regime for poloidal divertors

    SciTech Connect

    Petravic, M.; Post, D.; Heifetz, D.; Schmidt, J.

    1981-08-01

    Calculations have been performed which demonstrate the possibility of operating poloidal divertors at high densities and low temperatures. This operating regime is caused primarily by ionization of recycling neutral gas near the divertor neutralizer plate which amplifies the input particle flux thereby raising the plasma density and lowering the plasma temperature. Low temperature, high density operation of poloidal divertors would ease the design requirements for future large tokamaks such as INTOR or FED by reducing the erosion rate in the divertor and reducing the neutral density and the associated charge exchange erosion near the main plasma. This regime may have already been observed on several divertor and limiter experiments.

  11. High-density carbon ablator experiments on the National Ignition Facility

    SciTech Connect

    MacKinnon, A. J. Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; and others

    2014-05-15

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  12. High-density carbon ablator experiments on the National Ignition Facilitya)

    SciTech Connect

    MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.; Le Pape, S.; Berzak Hopkins, L.; Divol, L.; Ho, D.; Milovich, J.; Pak, A.; Ralph, J.; Döppner, T.; Patel, P. K.; Thomas, C.; Tommasini, R.; Haan, S.; MacPhee, A. G.; McNaney, J.; Caggiano, J.; Hatarik, R.; Bionta, R.; Ma, T.; Spears, B.; Rygg, J. R.; Benedetti, L. R.; Town, R. P. J.; Bradley, D. K.; Dewald, E. L.; Fittinghoff, D.; Jones, O. S.; Robey, H. R.; Moody, J. D.; Khan, S.; Callahan, D. A.; Hamza, A.; Biener, J.; Celliers, P. M.; Braun, D. G.; Erskine, D. J.; Prisbrey, S. T.; Wallace, R. J.; Kozioziemski, B.; Dylla-Spears, R.; Sater, J.; Collins, G.; Storm, E.; Hsing, W.; Landen, O.; Atherton, J. L.; Lindl, J. D.; Edwards, M. J.; Frenje, J. A.; Gatu-Johnson, M.; Li, C. K.; Petrasso, R.; Rinderknecht, H.; Rosenberg, M.; Séguin, F. H.; Zylstra, A.; Knauer, J. P.; Grim, G.; Guler, N.; Merrill, F.; Olson, R.; Kyrala, G. A.; Kilkenny, J. D.; Nikroo, A.; Moreno, K.; Hoover, D. E.; Wild, C.; Werner, E.

    2014-05-01

    High Density Carbon (HDC) is a leading candidate as an ablator material for Inertial Confinement Fusion (ICF) capsules in x-ray (indirect) drive implosions. HDC has a higher density (3.5 g/cc) than plastic (CH, 1 g/cc), which results in a thinner ablator with a larger inner radius for a given capsule scale. This leads to higher x-ray absorption and shorter laser pulses compared to equivalent CH designs. This paper will describe a series of experiments carried out to examine the feasibility of using HDC as an ablator using both gas filled hohlraums and lower density, near vacuum hohlraums. These experiments have shown that deuterium (DD) and deuterium-tritium gas filled HDC capsules driven by a hohlraum filled with 1.2 mg/cc He gas, produce neutron yields a factor of 2× higher than equivalent CH implosions, representing better than 50% Yield-over-Clean (YoC). In a near vacuum hohlraum (He = 0.03 mg/cc) with 98% laser-to-hohlraum coupling, such a DD gas-filled capsule performed near 1D expectations. A cryogenic layered implosion version was consistent with a fuel velocity = 410 ± 20 km/s with no observed ablator mixing into the hot spot.

  13. High Density Polymer-Based Integrated Electgrode Array

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter A.; Davidson, James Courtney; Hamilton, Julie K.

    2006-04-25

    A high density polymer-based integrated electrode apparatus that comprises a central electrode body and a multiplicity of arms extending from the electrode body. The central electrode body and the multiplicity of arms are comprised of a silicone material with metal features in said silicone material that comprise electronic circuits.

  14. A Novel Anti-Inflammatory Effect for High Density Lipoprotein

    PubMed Central

    Cameron, Scott J.; Morrell, Craig N.; Bao, Clare; Swaim, AnneMarie F.; Rodriguez, Annabelle; Lowenstein, Charles J.

    2015-01-01

    High density lipoprotein has anti-inflammatory effects in addition to mediating reverse cholesterol transport. While many of the chronic anti-inflammatory effects of high density lipoprotein (HDL) are attributed to changes in cell adhesion molecules, little is known about acute signal transduction events elicited by HDL in endothelial cells. We now show that high density lipoprotein decreases endothelial cell exocytosis, the first step in leukocyte trafficking. ApoA-I, a major apolipoprotein of HDL, mediates inhibition of endothelial cell exocytosis by interacting with endothelial scavenger receptor-BI which triggers an intracellular protective signaling cascade involving protein kinase C (PKC). Other apolipoproteins within the HDL particle have only modest effects upon endothelial exocytosis. Using a human primary culture of endothelial cells and murine apo-AI knockout mice, we show that apo-AI prevents endothelial cell exocytosis which limits leukocyte recruitment. These data suggest that high density lipoprotein may inhibit diseases associated with vascular inflammation in part by blocking endothelial exocytosis. PMID:26680360

  15. Probabilistic Fatigue Life Analysis of High Density Electronics Packaging

    NASA Technical Reports Server (NTRS)

    Moore, N. R.; Kolawa, E. A.; Sutharshana, S.; Newlin, L. E.; Creager, M.

    1996-01-01

    The fatigue of thin film metal interconnections in high density electronics packaging subjected to thermal cycling has been evaluated using a probabilistic fracture mechanics methodology. This probabilistic methodology includes characterization of thin film stress using an experimentally calibrated finite element model and simulation of flaw growth in the thin films using a stochastic crack growth model.

  16. High density packaging and interconnect of massively parallel image processors

    NASA Technical Reports Server (NTRS)

    Carson, John C.; Indin, Ronald J.

    1991-01-01

    This paper presents conceptual designs for high density packaging of parallel processing systems. The systems fall into two categories: global memory systems where many processors are packaged into a stack, and distributed memory systems where a single processor and many memory chips are packaged into a stack. Thermal behavior and performance are discussed.

  17. High-density turbidity currents: Are they sandy debris flows?

    SciTech Connect

    Shanmugam, G.

    1996-01-01

    Conventionally, turbidity currents are considered as fluidal flows in which sediment is supported by fluid turbulence, whereas debris flows are plastic flows in which sediment is supported by matrix strength, dispersive pressure, and buoyant lift. The concept of high-density turbidity current refers to high-concentration, commonly non-turbulent, flows of fluids in which sediment is supported mainly by matrix strength, dispersive pressure, and buoyant lift. The conventional wisdom that traction carpets with entrained turbulent clouds on top represent high-density turbidity currents is a misnomer because traction carpets are neither fluidal nor turbulent. Debris flows may also have entrained turbulent clouds on top. The traction carpet/debris flow and the overriding turbulent clouds are two separate entities in terms of flow rheology and sediment-support mechanism. In experimental and theoretical studies, which has linked massive sands and floating clasts to high-density turbidity currents, the term high-density turbidity current has actually been used for laminar flows. In alleviating this conceptual problem, sandy debris flow is suggested as a substitute for high-density turbidity current. Sandy debris flows represent a continuous spectrum of processes between cohesive and cohesionless debris flows. Commonly they are rheologically plastic. They may occur with or without entrained turbulent clouds on top. Their sediment-support mechanisms include matrix strength, dispersive pressure, and buoyant lift. They are characterized by laminar flow conditions, a moderate to high grain concentration, and a low to moderate mud content. Although flows evolve and transform during the course of transport in density-stratified flows, the preserved features in a deposit are useful to decipher only the final stages of deposition. At present, there are no established criteria to decipher transport mechanism from the depositional record.

  18. Immobilization of Proteins on a Glass Surface at High Density

    SciTech Connect

    Thomas, Marlon; Vullev, Valentine I.; Wan Jiandi

    2009-07-06

    We describe a rational molecular-level design of biocompatible surface coatings and immobilization of biological species onto them to produce biofunctional interfaces. Our method adapted a strategy for coating glass and other silica-type substrates with bioinert layers of polyethylene glycol (PEG). The introduction of {alpha}, {omega}-bifunctional polymers into the coatings allowed for covalent attachment of proteins to the PEGylated surfaces. Spectroscopic studies indicate that the surface-bound proteins had their biological activity preserved.

  19. Macrophage phagocytosis of polyethylene particulate in vitro.

    PubMed

    Voronov, I; Santerre, J P; Hinek, A; Callahan, J W; Sandhu, J; Boynton, E L

    1998-01-01

    In this study, an in vitro model has been developed to examine the interactions of macrophages with ultrahigh molecular-weight polyethylene (UHMWPE) and high-density polyethylene (HDPE) particles. Polyethylene particles are the major constituent of the material debris formed as a result of orthopedic implant wear. However, the study of polyethylene particle interactions with cells has been limited. UHMWPE (18-20 microns) and HDPE (4-10 microns) were suspended in soluble collagen type I and subsequently solidified on glass coverslips. The particle chemistry was characterized by Fourier transform infra-red spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). Mouse cell line macrophages (IC-21) were established on the collagen-particle substrata and maintained for up to 24 h. The response of the cells to the particles was examined by light and transmission electron microscopy (LM and TEM), as well as by scanning electron microscopy (SEM), and compared to cells on control collagen surfaces without particles. Histological analysis of the samples revealed that the macrophages surrounded larger particles (18-20 microns) and the cells appeared to be attached to the surface of the particles, and the smaller particles (4-10 microns) had been phagocytosed within 2 h. Inflammatory cytokines (TNF-alpha, IL-1 alpha, IL-1 beta, and IL-6), lysosomal enzymes (beta-galactosidase and hexosaminidase), and prostaglandin E2 were released into the medium, and IL-1 alpha, IL-1 beta, PGE2, beta-galactosidase, and hexosaminidase levels were significantly increased over collagen control values. The results demonstrate active phagochemotaxis by macrophages for wear particulates and validate this model as a means of studying the specific in vitro interactions of polyethylene with cells. PMID:9429095

  20. Noise reduction in muon tomography for detecting high density objects

    NASA Astrophysics Data System (ADS)

    Benettoni, M.; Bettella, G.; Bonomi, G.; Calvagno, G.; Calvini, P.; Checchia, P.; Cortelazzo, G.; Cossutta, L.; Donzella, A.; Furlan, M.; Gonella, F.; Pegoraro, M.; Rigoni Garola, A.; Ronchese, P.; Squarcia, S.; Subieta, M.; Vanini, S.; Viesti, G.; Zanuttigh, P.; Zenoni, A.; Zumerle, G.

    2013-12-01

    The muon tomography technique, based on multiple Coulomb scattering of cosmic ray muons, has been proposed as a tool to detect the presence of high density objects inside closed volumes. In this paper a new and innovative method is presented to handle the density fluctuations (noise) of reconstructed images, a well known problem of this technique. The effectiveness of our method is evaluated using experimental data obtained with a muon tomography prototype located at the Legnaro National Laboratories (LNL) of the Istituto Nazionale di Fisica Nucleare (INFN). The results reported in this paper, obtained with real cosmic ray data, show that with appropriate image filtering and muon momentum classification, the muon tomography technique can detect high density materials, such as lead, albeit surrounded by light or medium density material, in short times. A comparison with algorithms published in literature is also presented.

  1. PREPARATION OF HIGH-DENSITY THORIUM OXIDE SPHERES

    DOEpatents

    McNees, R.A. Jr.; Taylor, A.J.

    1963-12-31

    A method of preparing high-density thorium oxide spheres for use in pellet beds in nuclear reactors is presented. Sinterable thorium oxide is first converted to free-flowing granules by means such as compression into a compact and comminution of the compact. The granules are then compressed into cubes having a density of 5.0 to 5.3 grams per cubic centimeter. The cubes are tumbled to form spheres by attrition, and the spheres are then fired at 1250 to 1350 deg C. The fired spheres are then polished and fired at a temperature above 1650 deg C to obtain high density. Spherical pellets produced by this method are highly resistant to mechanical attrition hy water. (AEC)

  2. Advanced short haul aircraft for high density markets

    NASA Technical Reports Server (NTRS)

    Galloway, T. L.

    1977-01-01

    The short haul (less than 500 miles) passenger enplanements represent about 50% of the total domestic enplanements. These can be distinguished by the annual passenger flow for a given city pair and classified into low, medium and high densiy markets. NASA studies have investigated various advanced short haul aircraft concepts that have potential application in these three market areas. Although advanced operational techniques impact all market densities, advanced vehicle design concepts such as RTOL, STOL and VTOL have the largest impact in the high density markets. This paper summarizes the results of NASA sponsored high density short haul air transportation systems studies and briefly reviews NASA sponsored advanced VTOL conceptual aircraft design studies. Trends in vehicle characteristics and operational requirements will be indicated in addition to economic suitability and impact on the community.

  3. New pitfalls of high-density postmortem computed tomography.

    PubMed

    Kanazawa, Ayumi; Hyodoh, Hideki; Watanabe, Satoshi; Fukuda, Marika; Baba, Miho; Okazaki, Shunichiro; Mizuo, Keisuke; Hayashi, Etsuko; Inoue, Hiromasa

    2014-09-01

    An 80-year-old female was transferred to the hospital due to a traffic accident. Multiple cranial bone fractures with intracranial hemorrhage and intracranial air were detected. Despite treatment, the patient died after 6h. Twenty-one hours after the patient died, her whole body was scanned by postmortem CT, and a region of high density was detected within the left putamen. The autopsy revealed a cerebral contusion and multiple skull base fractures. Moreover, superabsorbent polymers (SAPs) were found within the left lateral ventricle and adjacent to the putamen, which appeared as a high-density lesion on postmortem CT at the left putamen, where the SAPs were compacted. Both ante- and postmortem conditions should be considered to prevent misdiagnoses based only on postmortem CT. PMID:24916862

  4. Magnetic confinement of a high-density cylindrical plasma

    SciTech Connect

    Ahedo, Eduardo

    2011-10-15

    The stationary structure of a weakly collisional plasma column, confined by an axial magnetic field and a cylindrical vessel, is studied for the high-density case, when the diamagnetic azimuthal current is large enough to demagnetize partially the plasma. The plasma response is characterized mainly by two dimensionless parameters: the ratios of the electron gyroradius and the electron skin-depth to the plasma radius, and each of them measures the independent influence of the applied magnetic field and the plasma density on the plasma response. The strong magnetic confinement regime, characterized by very small wall losses, is limited to the small gyroradius and large skin-depth ranges. In the high-density case, when the electron skin-depth is smaller than the electron gyroradius, the skin-depth turns out to be the magnetic screening length, so that the bulk of the plasma behaves as unmagnetized.

  5. Fluid hydrogen at high density - The plasma phase transition

    NASA Technical Reports Server (NTRS)

    Saumon, D.; Chabrier, G.

    1989-01-01

    A new model equation of state is applied, based on realistic interparticle potentials and a self-consistent treatment of the internal levels, to fluid hydrogen at high density. This model shows a strong connection between molecular dissociation and pressure ionization. The possibility of a first-order plasma phase transition is considered, and for which both the evolution in temperature and the critical point is given.

  6. High-Density Amorphous Ice, the Frost on Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Jenniskens, P.; Blake, D. F.; Wilson, M. A.; Pohorille, A.

    1995-01-01

    Most water ice in the universe is in a form which does not occur naturally on Earth and of which only minimal amounts have been made in the laboratory. We have encountered this 'high-density amorphous ice' in electron diffraction experiments of low-temperature (T less than 30 K) vapor-deposited water and have subsequently modeled its structure using molecular dynamics simulations. The characteristic feature of high-density amorphous ice is the presence of 'interstitial' oxygen pair distances between 3 and 4 A. However, we find that the structure is best described as a collapsed lattice of the more familiar low-density amorphous form. These distortions are frozen in at temperatures below 38 K because, we propose, it requires the breaking of one hydrogen bond, on average, per molecule to relieve the strain and to restructure the lattice to that of low-density amorphous ice. Several features of astrophysical ice analogs studied in laboratory experiments are readily explained by the structural transition from high-density amorphous ice into low-density amorphous ice. Changes in the shape of the 3.07 gm water band, trapping efficiency of CO, CO loss, changes in the CO band structure, and the recombination of radicals induced by low-temperature UV photolysis all covary with structural changes that occur in the ice during this amorphous to amorphous transition. While the 3.07 micrometers ice band in various astronomical environments can be modeled with spectra of simple mixtures of amorphous and crystalline forms, the contribution of the high-density amorphous form nearly always dominates.

  7. Near-vacuum hohlraums for driving fusion implosions with high density carbon ablatorsa)

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; Meezan, N. B.; Mackinnon, A. J.; Ho, D. D.; Jones, O. S.; Khan, S.; Milovich, J. L.; Ross, J. S.; Amendt, P.; Casey, D.; Celliers, P. M.; Pak, A.; Peterson, J. L.; Ralph, J.; Rygg, J. R.

    2015-05-01

    Recent experiments at the National Ignition Facility [M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013)] have explored driving high-density carbon ablators with near-vacuum hohlraums, which use a minimal amount of helium gas fill. These hohlraums show improved efficiency relative to conventional gas-filled hohlraums in terms of minimal backscatter, minimal generation of suprathermal electrons, and increased hohlraum-capsule coupling. Given these advantages, near-vacuum hohlraums are a promising choice for pursuing high neutron yield implosions. Long pulse symmetry control, though, remains a challenge, as the hohlraum volume fills with material. Two mitigation methodologies have been explored, dynamic beam phasing and increased case-to-capsule ratio (larger hohlraum size relative to capsule). Unexpectedly, experiments have demonstrated that the inner laser beam propagation is better than predicted by nominal simulations, and an enhanced beam propagation model is required to match measured hot spot symmetry. Ongoing work is focused on developing a physical model which captures this enhanced propagation and on utilizing the enhanced propagation to drive longer laser pulses than originally predicted in order to reach alpha-heating dominated neutron yields.

  8. Filling agents.

    PubMed

    Glavas, Ioannis P

    2005-06-01

    Injectable fillers have become an important component of minimally invasive facial rejuvenation modalities. Their ease of use, effectiveness, low morbidity, and fast results with minimal downtime are factors that have made them popular among patients. Soft tissue augmentation has evolved to a unique combination of medicine and art. A wide selection of available agents and new products, each one with unique properties, may be used alone or in combination. The physician acquires the tools to rebalance facial characteristics not only by filling wrinkles but also by having the ability to shape the face and restore bony contours and lines. Careful selection of candidates, realistic expectations, and an understanding of the limitations of fillers are crucial for a successful result.

  9. Density limits investigation and high density operation in EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zheng, Xingwei; Li, Jiangang; Hu, Jiansheng; Liu, Haiqing; Jie, Yinxian; Wang, Shouxin; Li, Jiahong; Duan, Yanming; Li, Miaohui; Li, Yongchun; Zhang, Ling; Ye, Yang; Yang, Qingquan; Zhang, Tao; Cheng, Yingjie; Xu, Jichan; Wang, Liang; Xu, Liqing; Zhao, Hailin; Wang, Fudi; Lin, Shiyao; Wu, Bin; Lyu, Bo; Xu, Guosheng; Gao, Xiang; Shi, Tonghui; He, Kaiyang; Lan, Heng; Chu, Nan; Cao, Bin; Sun, Zhen; Zuo, Guizhong; Ren, Jun; Zhuang, Huidong; Li, Changzheng; Yuan, Xiaolin; Yu, Yaowei; Wang, Houyin; Chen, Yue; Wu, Jinhua; EAST Team

    2016-05-01

    Increasing the density in a tokamak is limited by the so-called density limit, which is generally performed as an appearance of disruption causing loss of plasma confinement, or a degradation of high confinement mode which could further lead to a H  →  L transition. The L-mode and H-mode density limit has been investigated in EAST tokamak. Experimental results suggest that density limits could be triggered by either edge cooling or excessive central radiation. The L-mode density limit disruption is generally triggered by edge cooling, which leads to the current profile shrinkage and then destabilizes a 2/1 tearing mode, ultimately resulting in a disruption. The L-mode density limit scaling agrees well with the Greenwald limit in EAST. The observed H-mode density limit in EAST is an operational-space limit with a value of 0.8∼ 0.9{{n}\\text{GW}} . High density H-mode heated by neutral beam injection (NBI) and lower hybrid current drive (LHCD) are analyzed, respectively. The constancy of the edge density gradients in H-mode indicates a critical limit caused perhaps by e.g. ballooning induced transport. The maximum density is accessed at the H  →  L transition which is generally caused by the excessive core radiation due to high Z impurities (Fe, Cu). Operating at a high density (>2.8× {{10}19} {{\\text{m}}-3} ) is favorable for suppressing the beam shine through NBI. High density H-mode up to 5.3× {{10}19}{{\\text{m}}-3}~≤ft(∼ 0.8{{n}\\text{GW}}\\right) could be sustained by 2 MW 4.6 GHz LHCD alone, and its current drive efficiency is studied. Statistics show that good control of impurities and recycling facilitate high density operation. With careful control of these factors, high density up to 0.93{{n}\\text{GW}} stable H-mode operation was carried out heated by 1.7 MW LHCD and 1.9 MW ion cyclotron resonance heating with supersonic molecular beam injection fueling.

  10. Characterization of the high density plasma etching process of CCTO thin films for the fabrication of very high density capacitors

    NASA Astrophysics Data System (ADS)

    Altamore, C.; Tringali, C.; Sparta', N.; Di Marco, S.; Grasso, A.; Ravesi, S.

    2010-02-01

    In this work the feasibility of CCTO (Calcium Copper Titanate) patterning by etching process is demonstrated and fully characterized in a hard to etch materials etcher. CCTO sintered in powder shows a giant relative dielectric constant (105) measured at 1 MHz at room temperature. This feature is furthermore coupled with stability from 101 Hz to 106 Hz in a wide temperature range (100K - 600K). In principle, this property can allow to fabricate very high capacitance density condenser. Due to its perovskite multi-component structure, CCTO can be considered a hard to etch material. For high density capacitor fabrication, CCTO anisotropic etching is requested by using high density plasma. The behavior of etched CCTO was studied in a HRe- (High Density Reflected electron) plasma etcher using Cl2/Ar chemistry. The relationship between the etch rate and the Cl2/Ar ratio was also studied. The effects of RF MHz, KHz Power and pressure variation, the impact of HBr addiction to the Cl2/Ar chemistry on the CCTO etch rate and on its selectivity to Pt and photo resist was investigated.

  11. High-density carbon capsule experiments on the national ignition facility.

    PubMed

    Ross, J S; Ho, D; Milovich, J; Döppner, T; McNaney, J; MacPhee, A G; Hamza, A; Biener, J; Robey, H F; Dewald, E L; Tommasini, R; Divol, L; Le Pape, S; Berzak Hopkins, L; Celliers, P M; Landen, O; Meezan, N B; Mackinnon, A J

    2015-02-01

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. A series of five experiments were completed with 76-μm-thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (∼90%) and excellent nuclear performance. A deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6×10^{15}±3×10(13), a yield over simulated in one dimension of 70%. PMID:25768451

  12. Influence of Via Stacking for High Density of Consumer Electronics Products

    NASA Astrophysics Data System (ADS)

    Nakanishi, Tohru; Hase, Tomohiro

    The stacked via technology becomes to be one of key technologies for the achievement of high density packaging as of today, however, it could not be said that the influence of via stacking has been understood sufficiently. The influence of one to five stacked VIA technologies are studied with the parameter of stress and strain on the view point of reliability, comparing the condition that these vias are located directly on the RFP (Resin Filled PTH (Pin Through Hole)), and the other condition that these are located left and right with some distance from RFP. The maximum is happened at the smallest neck of via, and it is recommended that the via stacking is designed with some distance from RFP. The guideline as to the optimized design of the substrate that has the stacked via is provided.

  13. High-density carbon capsule experiments on the national ignition facility

    NASA Astrophysics Data System (ADS)

    Ross, J. S.; Ho, D.; Milovich, J.; Döppner, T.; McNaney, J.; MacPhee, A. G.; Hamza, A.; Biener, J.; Robey, H. F.; Dewald, E. L.; Tommasini, R.; Divol, L.; Le Pape, S.; Hopkins, L. Berzak; Celliers, P. M.; Landen, O.; Meezan, N. B.; Mackinnon, A. J.

    2015-02-01

    Indirect-drive implosions with a high-density carbon (HDC) capsule were conducted on the National Ignition Facility (NIF) to test HDC properties as an ablator material for inertial confinement fusion. A series of five experiments were completed with 76 -μ m -thick HDC capsules using a four-shock laser pulse optimized for HDC. The pulse delivered a total energy of 1.3 MJ with a peak power of 360 TW. The experiment demonstrated good laser to target coupling (˜90 % ) and excellent nuclear performance. A deuterium and tritium gas-filled HDC capsule implosion produced a neutron yield of 1.6 ×1015±3 ×1013 , a yield over simulated in one dimension of 70 % .

  14. Grafting functional antioxidants on highly crosslinked polyethylene

    NASA Astrophysics Data System (ADS)

    Al-Malaika, S.; Riasat, S.; Lewucha, C.

    2016-05-01

    The problem of interference of antioxidants, such as hindered phenols, with peroxide-initiated crosslinking of polyethylene was addressed through the use of functional (reactive) graftable antioxidants (g-AO). Reactive derivatives of hindered phenol and hindered amine antioxidants were synthesised, characterised and used to investigate their grafting reactions in high density polyethylene; both non-crosslinked (PE) and highly peroxide-crosslinked (PEXa). Assessment of the extent of in-situ grafting of the antioxidants, their retention after exhaustive solvent extraction in PE and PEXa, and the stabilising performance of the grafted antioxidants (g-AO) in the polymer were examined and benchmarked against conventionally stabilised crosslinked & non-crosslinked polyethylene. It was shown that the functional antioxidants graft to a high extent in PEXa, and that the level of interference of the g-AOs with the polymer crosslinking process was minimal compared to that of conventional antioxidants which bear the same antioxidant function. The much higher level of retention of the g-AOs in PEXa after exhaustive solvent extraction, compared to that of the corresponding conventional antioxidants, accounts for their superior long-term thermal stabilising performance under severe extractive conditions.

  15. High density electronic circuit and process for making

    DOEpatents

    Morgan, William P.

    1999-01-01

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing.

  16. High density electronic circuit and process for making

    DOEpatents

    Morgan, W.P.

    1999-06-29

    High density circuits with posts that protrude beyond one surface of a substrate to provide easy mounting of devices such as integrated circuits are disclosed. The posts also provide stress relief to accommodate differential thermal expansion. The process allows high interconnect density with fewer alignment restrictions and less wasted circuit area than previous processes. The resulting substrates can be test platforms for die testing and for multi-chip module substrate testing. The test platform can contain active components and emulate realistic operational conditions, replacing shorts/opens net testing. 8 figs.

  17. Nanocluster deposition for high density magnetic recording tape media

    SciTech Connect

    Qiu Jiaoming; Xu Yunhao; Judy, Jack H.; Wang Jianping

    2005-05-15

    A technique for the fabrication of ultra-high density magnetic recording tape media with no risk of heating polymer substrate is reported. In this approach magnetic nanoparticles were generated by combining gas-phase nanocluster deposition and on-line heating techniques and deposited onto polymer substrate. Magnetic properties of the nanoparticles were optimized during their flight in vacuum prior to deposition. This technique is materials independent and it can fabricate nanocomposite films with high coercivity and very small film thickness. The fabricated magnetic nanoparticles have a uniform size distribution [for CoPt, 8.4% (standard deviation)] and well-defined spherical shape.

  18. High Density Thermal Energy Storage with Supercritical Fluids

    NASA Technical Reports Server (NTRS)

    Ganapathi, Gani B.; Wirz, Richard

    2012-01-01

    A novel approach to storing thermal energy with supercritical fluids is being investigated, which if successful, promises to transform the way thermal energy is captured and utilized. The use of supercritical fluids allows cost-affordable high-density storage with a combination of latent heat and sensible heat in the two-phase as well as the supercritical state. This technology will enhance penetration of several thermal power generation applications and high temperature water for commercial use if the overall cost of the technology can be demonstrated to be lower than the current state-of-the-art molten salt using sodium nitrate and potassium nitrate eutectic mixtures.

  19. Biomimetic high density lipoprotein nanoparticles for nucleic acid delivery.

    PubMed

    McMahon, Kaylin M; Mutharasan, R Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K; Luthi, Andrea J; Helfand, Brian T; Ardehali, Hossein; Mirkin, Chad A; Volpert, Olga; Thaxton, C Shad

    2011-03-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy that combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy, and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, the chemical tailorability of the HDL AuNP platform, and the potential for cell-specific targeting afforded by HDL biomimicry make this platform appealing for nucleic acid delivery.

  20. Extended length microchannels for high density high throughput electrophoresis systems

    DOEpatents

    Davidson, James C.; Balch, Joseph W.

    2000-01-01

    High throughput electrophoresis systems which provide extended well-to-read distances on smaller substrates, thus compacting the overall systems. The electrophoresis systems utilize a high density array of microchannels for electrophoresis analysis with extended read lengths. The microchannel geometry can be used individually or in conjunction to increase the effective length of a separation channel while minimally impacting the packing density of channels. One embodiment uses sinusoidal microchannels, while another embodiment uses plural microchannels interconnected by a via. The extended channel systems can be applied to virtually any type of channel confined chromatography.

  1. Probing topological relations between high-density and low-density regions of 2MASS with hexagon cells

    SciTech Connect

    Wu, Yongfeng; Xiao, Weike

    2014-02-01

    We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5σ) topological shifts from both the binomial distribution and the random distribution.

  2. High-density waveguide superlattices with low crosstalk.

    PubMed

    Song, Weiwei; Gatdula, Robert; Abbaslou, Siamak; Lu, Ming; Stein, Aaron; Lai, Warren Y-C; Provine, J; Pease, R Fabian W; Christodoulides, Demetrios N; Jiang, Wei

    2015-05-11

    Silicon photonics holds great promise for low-cost large-scale photonic integration. In its future development, integration density will play an ever-increasing role in a way similar to that witnessed in integrated circuits. Waveguides are perhaps the most ubiquitous component in silicon photonics. As such, the density of waveguide elements is expected to have a crucial influence on the integration density of a silicon photonic chip. A solution to high-density waveguide integration with minimal impact on other performance metrics such as crosstalk remains a vital issue in many applications. Here, we propose a waveguide superlattice and demonstrate advanced superlattice design concepts such as interlacing-recombination that enable high-density waveguide integration at a half-wavelength pitch with low crosstalk. Such waveguide superlattices can potentially lead to significant reduction in on-chip estate for waveguide elements and salient enhancement of performance for important applications, opening up possibilities for half-wavelength-pitch optical-phased arrays and ultra-dense space-division multiplexing.

  3. Lower hybrid current drive in a high density diverted tokamak

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Hubbard, A. E.; Shiraiwa, S.; Bonoli, P. T.; Faust, I. C.; Harvey, R. W.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Meneghini, O.; Parker, R. R.; Reinke, M. L.; Schmidt, A. E.; Smirnov, A. P.; Terry, J. L.; Whyte, D. G.; Wilson, J. R.; Wright, J. C.; Wukitch, S. J.

    2011-12-01

    Experimental observations of LHCD at high density (n¯e>1020m˜3) on the Alcator C-Mod tokamak are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops sharply in single null discharges well below the density limit previously observed on limited tokamaks (ω/ωLH˜2). Modeling and experimental evidence suggest that the absence of LH driven fast electrons at high density may be due to collisional absorption in the scrape off layer. Experiments show that the expected current drive density dependence is recovered for inner wall limited discharges across the range of densities scanned (0.5×1020m-3

  4. Loop formation of microtubules during gliding at high density

    NASA Astrophysics Data System (ADS)

    Liu, Lynn; Tüzel, Erkan; Ross, Jennifer L.

    2011-09-01

    The microtubule cytoskeleton, including the associated proteins, forms a complex network essential to multiple cellular processes. Microtubule-associated motor proteins, such as kinesin-1, travel on microtubules to transport membrane bound vesicles across the crowded cell. Other motors, such as cytoplasmic dynein and kinesin-5, are used to organize the cytoskeleton during mitosis. In order to understand the self-organization processes of motors on microtubules, we performed filament-gliding assays with kinesin-1 motors bound to the cover glass with a high density of microtubules on the surface. To observe microtubule organization, 3% of the microtubules were fluorescently labeled to serve as tracers. We find that microtubules in these assays are not confined to two dimensions and can cross one other. This causes microtubules to align locally with a relatively short correlation length. At high density, this local alignment is enough to create 'intersections' of perpendicularly oriented groups of microtubules. These intersections create vortices that cause microtubules to form loops. We characterize the radius of curvature and time duration of the loops. These different behaviors give insight into how crowded conditions, such as those in the cell, might affect motor behavior and cytoskeleton organization.

  5. Operating condition limitations of high density QCW arrays

    NASA Astrophysics Data System (ADS)

    Junghans, Jeremy; Levy, Joseph; Feeler, Ryan

    2012-03-01

    Northrop Grumman Cutting Edge Optronics (NGCEO) has developed a laser diode array package with minimal bar-tobar spacing. These High Density Stack (HDS) packages allow for a power density increase on the order of ~ 2.5x when compared to industry-standard arrays. Power densities as high as 15 kW/cm2 can be achieved when operated at 200 W/bar. This work provides a detailed description of the duty factor, pulse width and power limitations of high density arrays. The absence of the interposing heatsinks requires that all of the heat generated by the interior bars must travel through the adjacent bars to the electrical contacts. This results in limitations to the allowable operating envelope of the HDS arrays. Thermal effects such as wavelength shifts across large HDS arrays are discussed. An overview of recent HDS design and manufacturing improvements is also presented. These improvements result in reliable operation at higher power densities and increased duty factors. A comparison of the effect of bar geometry on HDS performance is provided. Test data from arrays featuring these improvements based on both full 1 cm wide diode bars as well as 3 mm wide mini-bars is also presented.

  6. Effects of High-Density Impacts on Shielding Capability

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.; Lear, Dana M.

    2014-01-01

    Spacecraft are shielded from micrometeoroids and orbital debris (MMOD) impacts to meet requirements for crew safety and/or mission success. In the past, orbital debris particles have been considered to be composed entirely of aluminum (medium-density material) for the purposes of MMOD shielding design and verification. Meteoroids have been considered to be low-density porous materials, with an average density of 1 g/cu cm. Recently, NASA released a new orbital debris environment model, referred to as ORDEM 3.0, that indicates orbital debris contains a substantial fraction of high-density material for which steel is used in MMOD risk assessments [Ref.1]. Similarly, an update to the meteoroid environment model is also under consideration to include a high-density component of that environment. This paper provides results of hypervelocity impact tests and hydrocode simulations on typical spacecraft MMOD shields using steel projectiles. It was found that previous ballistic limit equations (BLEs) that define the protection capability of the MMOD shields did not predict the results from the steel impact tests and hydrocode simulations (typically, the predictions from these equations were too optimistic). The ballistic limit equations required updates to more accurately represent shield protection capability from the range of densities in the orbital debris environment. Ballistic limit equations were derived from the results of the work and are provided in the paper.

  7. 77 FR 13387 - Pipeline Safety: Notice to Operators of Driscopipe® 8000 High Density Polyethylene Pipe of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ...-like environments in the southwestern United States. However, since root causes of the degradation have... could be verified as a root cause. In 2007, the operator experienced a gas ignition incident on a one... cooperatively with the manufacturer and regulators to determine the root causes and necessary mitigative...

  8. Dosimetric effects of a high-density spinal implant

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Crowe, S. B.; Kenny, J.; Mitchell, J.; Burke, M.; Schlect, D.; Trapp, J. V.

    2013-06-01

    In this study, a treatment plan for a spinal lesion, with all beams transmitted though a titanium vertebral reconstruction implant, was used to investigate the potential effect of a high-density implant on a three-dimensional dose distribution for a radiotherapy treatment. The BEAMnrc/DOSXYZnrc and MCDTK Monte Carlo codes were used to simulate the treatment using both a simplified, recltilinear model and a detailed model incorporating the full complexity of the patient anatomy and treatment plan. The resulting Monte Carlo dose distributions showed that the commercial treatment planning system failed to accurately predict both the depletion of dose downstream of the implant and the increase in scattered dose adjacent to the implant. Overall, the dosimetric effect of the implant was underestimated by the commercial treatment planning system and overestimated by the simplified Monte Carlo model. The value of performing detailed Monte Carlo calculations, using the full patient and treatment geometry, was demonstrated.

  9. Ultracold molecular Rydberg physics in a high density environment

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew T.; Pérez-Ríos, Jesús; Robicheaux, F.; Greene, Chris H.

    2016-06-01

    Sufficiently high densities in Bose–Einstein condensates provide favorable conditions for the production of ultralong-range polyatomic molecules consisting of one Rydberg atom and a number of neutral ground state atoms. The chemical binding properties and electronic wave functions of these exotic molecules are investigated analytically via hybridized diatomic states. The effects of the molecular geometry on the system’s properties are studied through comparisons of the adiabatic potential curves and electronic structures for both symmetric and randomly configured molecular geometries. General properties of these molecules with increasing numbers of constituent atoms and in different geometries are presented. These polyatomic states have spectral signatures that lead to non-Lorentzian line-profiles.

  10. Methods and systems for rapid prototyping of high density circuits

    DOEpatents

    Palmer, Jeremy A.; Davis, Donald W.; Chavez, Bart D.; Gallegos, Phillip L.; Wicker, Ryan B.; Medina, Francisco R.

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  11. Scalable high-density peptide arrays for comprehensive health monitoring.

    PubMed

    Legutki, Joseph Barten; Zhao, Zhan-Gong; Greving, Matt; Woodbury, Neal; Johnston, Stephen Albert; Stafford, Phillip

    2014-01-01

    There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere. PMID:25183057

  12. High density propellant for single stage to orbit vehicles

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; Masters, P. A.

    1976-01-01

    Mixed mode propulsion concepts are studied for advanced, single stage earth orbital transportation systems (SSTO) for use in the post-1990 time period. These propulsion concepts are based on the sequential and/or parallel use of high density impulse and high specific impulse propellants in a single stage to increase vehicle performance and reduce dry weight. Specifically, the mixed mode concept utilizes two propulsion systems with two different fuels (mode 1 and mode 2) with liquid oxygen as a common oxidizer. Mode 1 engines would burn a high bulk density fuel for lift-off and early ascent to minimize performance penalties associated with carrying fuel tankage to orbit. Mode 2 engines will complete orbital injection utilizing liquid hydrogen as the fuel.

  13. Single-Readout High-Density Memristor Crossbar

    NASA Astrophysics Data System (ADS)

    Zidan, M. A.; Omran, H.; Naous, R.; Sultan, A.; Fahmy, H. A. H.; Lu, W. D.; Salama, K. N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  14. High-density percutaneous chronic connector for neural prosthetics

    SciTech Connect

    Shah, Kedar G.; Bennett, William J.; Pannu, Satinderpall S.

    2015-09-22

    A high density percutaneous chronic connector, having first and second connector structures each having an array of magnets surrounding a mounting cavity. A first electrical feedthrough array is seated in the mounting cavity of the first connector structure and a second electrical feedthrough array is seated in the mounting cavity of the second connector structure, with a feedthrough interconnect matrix positioned between a top side of the first electrical feedthrough array and a bottom side of the second electrical feedthrough array to electrically connect the first electrical feedthrough array to the second electrical feedthrough array. The two arrays of magnets are arranged to attract in a first angular position which connects the first and second connector structures together and electrically connects the percutaneously connected device to the external electronics, and to repel in a second angular position to facilitate removal of the second connector structure from the first connector structure.

  15. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  16. Single-Readout High-Density Memristor Crossbar

    PubMed Central

    Zidan, M. A.; Omran, H.; Naous, R.; Sultan, A.; Fahmy, H. A. H.; Lu, W. D.; Salama, K. N.

    2016-01-01

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques. PMID:26738564

  17. Single-Readout High-Density Memristor Crossbar.

    PubMed

    Zidan, M A; Omran, H; Naous, R; Sultan, A; Fahmy, H A H; Lu, W D; Salama, K N

    2016-01-07

    High-density memristor-crossbar architecture is a very promising technology for future computing systems. The simplicity of the gateless-crossbar structure is both its principal advantage and the source of undesired sneak-paths of current. This parasitic current could consume an enormous amount of energy and ruin the readout process. We introduce new adaptive-threshold readout techniques that utilize the locality and hierarchy properties of the computer-memory system to address the sneak-paths problem. The proposed methods require a single memory access per pixel for an array readout. Besides, the memristive crossbar consumes an order of magnitude less power than state-of-the-art readout techniques.

  18. Analysis of motor units with high-density surface electromyography.

    PubMed

    Merletti, Roberto; Holobar, Ales; Farina, Dario

    2008-12-01

    Although the behaviour of individual motor units is classically studied with intramuscular EMG, recently developed techniques allow its analysis also from EMG recorded in multiple locations over the skin surface (high-density surface EMG). The analysis of motor units from the surface EMG is useful when the insertion of needles is not desirable or not possible. Moreover, surface EMG allows the measure of motor unit properties which are difficult to assess with invasive technology (e.g., muscle fiber conduction velocity or location of innervation zones) and may increase the number of detectable motor units with respect to selective intramuscular recordings. Although some limitations remain, both the discharge pattern and muscle fiber properties of individual motor units can currently be analyzed non-invasively. This review presents the conditions and methodologies which allow the investigation of motor units with surface EMG.

  19. High-density Au nanorod optical field-emitter arrays

    NASA Astrophysics Data System (ADS)

    Hobbs, R. G.; Yang, Y.; Keathley, P. D.; Swanwick, M. E.; Velásquez-García, L. F.; Kärtner, F. X.; Graves, W. S.; Berggren, K. K.

    2014-11-01

    We demonstrate the design, fabrication, characterization, and operation of high-density arrays of Au nanorod electron emitters, fabricated by high-resolution electron beam lithography, and excited by ultrafast femtosecond near-infrared radiation. Electron emission characteristic of multiphoton absorption has been observed at low laser fluence, as indicated by the power-law scaling of emission current with applied optical power. The onset of space-charge-limited current and strong optical field emission has been investigated so as to determine the mechanism of electron emission at high incident laser fluence. Laser-induced structural damage has been observed at applied optical fields above 5 GV m-1, and energy spectra of emitted electrons have been measured using an electron time-of-flight spectrometer.

  20. High Density Memory Based on Quantum Device Technology

    NASA Technical Reports Server (NTRS)

    vanderWagt, Paul; Frazier, Gary; Tang, Hao

    1995-01-01

    We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.

  1. Ultra-high-density phase-change storage and memory.

    PubMed

    Hamann, Hendrik F; O'Boyle, Martin; Martin, Yves C; Rooks, Michael; Wickramasinghe, H Kumar

    2006-05-01

    Phase-change storage is widely used in optical information technologies (DVD, CD-ROM and so on), and recently it has also been considered for non-volatile memory applications. This work reports advances in thermal data recording of phase-change materials. Specifically, we show erasable thermal phase-change recording at a storage density of 3.3 Tb inch(-2), which is three orders of magnitude denser than that currently achievable with commercial optical storage technologies. We demonstrate the concept of a thin-film nanoheater to realize ultra-small heat spots with dimensions of less than 50 nm. Finally, we show in a proof-of-concept demonstration that an individual thin-film heater can write, erase and read the phase of these storage materials at competitive speeds. This work provides important stepping stones for a very-high-density storage or memory technology based on phase-change materials. PMID:16604077

  2. Ultra-high-density phase-change storage and memory

    NASA Astrophysics Data System (ADS)

    Hamann, Hendrik F.; O'Boyle, Martin; Martin, Yves C.; Rooks, Michael; Wickramasinghe, H. Kumar

    2006-05-01

    Phase-change storage is widely used in optical information technologies (DVD, CD-ROM and so on), and recently it has also been considered for non-volatile memory applications. This work reports advances in thermal data recording of phase-change materials. Specifically, we show erasable thermal phase-change recording at a storage density of 3.3 Tb inch-2, which is three orders of magnitude denser than that currently achievable with commercial optical storage technologies. We demonstrate the concept of a thin-film nanoheater to realize ultra-small heat spots with dimensions of less than 50 nm. Finally, we show in a proof-of-concept demonstration that an individual thin-film heater can write, erase and read the phase of these storage materials at competitive speeds. This work provides important stepping stones for a very-high-density storage or memory technology based on phase-change materials.

  3. Neural network based feed-forward high density associative memory

    NASA Technical Reports Server (NTRS)

    Daud, T.; Moopenn, A.; Lamb, J. L.; Ramesham, R.; Thakoor, A. P.

    1987-01-01

    A novel thin film approach to neural-network-based high-density associative memory is described. The information is stored locally in a memory matrix of passive, nonvolatile, binary connection elements with a potential to achieve a storage density of 10 to the 9th bits/sq cm. Microswitches based on memory switching in thin film hydrogenated amorphous silicon, and alternatively in manganese oxide, have been used as programmable read-only memory elements. Low-energy switching has been ascertained in both these materials. Fabrication and testing of memory matrix is described. High-speed associative recall approaching 10 to the 7th bits/sec and high storage capacity in such a connection matrix memory system is also described.

  4. Ultra-high-density phase-change storage and memory.

    PubMed

    Hamann, Hendrik F; O'Boyle, Martin; Martin, Yves C; Rooks, Michael; Wickramasinghe, H Kumar

    2006-05-01

    Phase-change storage is widely used in optical information technologies (DVD, CD-ROM and so on), and recently it has also been considered for non-volatile memory applications. This work reports advances in thermal data recording of phase-change materials. Specifically, we show erasable thermal phase-change recording at a storage density of 3.3 Tb inch(-2), which is three orders of magnitude denser than that currently achievable with commercial optical storage technologies. We demonstrate the concept of a thin-film nanoheater to realize ultra-small heat spots with dimensions of less than 50 nm. Finally, we show in a proof-of-concept demonstration that an individual thin-film heater can write, erase and read the phase of these storage materials at competitive speeds. This work provides important stepping stones for a very-high-density storage or memory technology based on phase-change materials.

  5. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  6. On the high-density expansion for Euclidean random matrices

    NASA Astrophysics Data System (ADS)

    Grigera, T. S.; Martin-Mayor, V.; Parisi, G.; Urbani, P.; Verrocchio, P.

    2011-02-01

    Diagrammatic techniques to compute perturbatively the spectral properties of Euclidean random matrices (ERM) in the high-density regime are introduced and discussed in detail. Such techniques are developed in two alternative and very different formulations of the mathematical problem and are shown to give identical results up to second order in the perturbative expansion. One method, based on writing the so-called resolvent function as a Taylor series, allows us to group the diagrams into a small number of topological classes, providing a simple way to determine the infrared (small momenta) behaviour of the theory up to third order, which is of interest for the comparison with experiments. The other method, which reformulates the problem as a field theory, can instead be used to study the infrared behaviour at any perturbative order.

  7. Scalable high-density peptide arrays for comprehensive health monitoring.

    PubMed

    Legutki, Joseph Barten; Zhao, Zhan-Gong; Greving, Matt; Woodbury, Neal; Johnston, Stephen Albert; Stafford, Phillip

    2014-09-03

    There is an increasing awareness that health care must move from post-symptomatic treatment to presymptomatic intervention. An ideal system would allow regular inexpensive monitoring of health status using circulating antibodies to report on health fluctuations. Recently, we demonstrated that peptide microarrays can do this through antibody signatures (immunosignatures). Unfortunately, printed microarrays are not scalable. Here we demonstrate a platform based on fabricating microarrays (~10 M peptides per slide, 330,000 peptides per assay) on silicon wafers using equipment common to semiconductor manufacturing. The potential of these microarrays for comprehensive health monitoring is verified through the simultaneous detection and classification of six different infectious diseases and six different cancers. Besides diagnostics, these high-density peptide chips have numerous other applications both in health care and elsewhere.

  8. Biominetic High Density Lipoproteins for the Delivery of Therapeutic Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Tripathy, Sushant

    Advances in nanotechnology have brought about novel inorganic and hybrid nanoparticles with unique physico-chemical properties that make them suitable for a broad range of applications---from nano-circuitry to drug delivery. A significant part of those advancements have led to ground-breaking discoveries that have changed the approaches to formulation of therapeutics against diseases, such as cancer. Now-a-days the focus does not lie solely on finding a candidate small-molecule therapeutic with minimal adverse effects, but researchers are looking up to nanoparticles to improve biodistribution and biocompatibility profile of clinically proven therapeutics. The plethora of conjugation chemistries offered by currently extant inorganic nanoparticles have, in recent years, led to great leaps in the field of biomimicry---a modality that promises high biocompatibility. Further, in the pursuit of highly specific therapeutic molecules, researchers have turned to silencing oligonucleotides and some have already brought together the strengths of nanoparticles and silencing oligonucleotides in search of an efficacious therapy for cancer with minimal adverse effects. This dissertation work focuses on such a biomimetic platform---a gold nanoparticle based high density lipoprotein biomimetic (HDL NP), for the delivery of therapeutic oligonucleotides. The first chapter of this body of work introduces the molecular target of the silencing oligonucleotides---VEGFR2, and its role in the progression of solid tumor cancers. The background information also covers important aspects of natural high density lipoproteins (HDL), especially their innate capacity to bind and deliver exogenous and endogenous silencing oligonucleotides to tissues that express their high affinity receptor SRB1. We subsequently describe the synthesis of the biomimetic HDL NP and its oligonucleotide conjugates, and establish their biocompatibility. Further on, experimental data demonstrate the efficacy of silencing

  9. The glass transition in high-density amorphous ice

    PubMed Central

    Loerting, Thomas; Fuentes-Landete, Violeta; Handle, Philip H.; Seidl, Markus; Amann-Winkel, Katrin; Gainaru, Catalin; Böhmer, Roland

    2015-01-01

    There has been a long controversy regarding the glass transition in low-density amorphous ice (LDA). The central question is whether or not it transforms to an ultraviscous liquid state above 136 K at ambient pressure prior to crystallization. Currently, the most widespread interpretation of the experimental findings is in terms of a transformation to a superstrong liquid above 136 K. In the last decade some work has also been devoted to the study of the glass transition in high-density amorphous ice (HDA) which is in the focus of the present review. At ambient pressure HDA is metastable against both ice I and LDA, whereas at > 0.2 GPa HDA is no longer metastable against LDA, but merely against high-pressure forms of crystalline ice. The first experimental observation interpreted as the glass transition of HDA was made using in situ methods by Mishima, who reported a glass transition temperature Tg of 160 K at 0.40 GPa. Soon thereafter Andersson and Inaba reported a much lower glass transition temperature of 122 K at 1.0 GPa. Based on the pressure dependence of HDA's Tg measured in Innsbruck, we suggest that they were in fact probing the distinct glass transition of very high-density amorphous ice (VHDA). Very recently the glass transition in HDA was also observed at ambient pressure at 116 K. That is, LDA and HDA show two distinct glass transitions, clearly separated by about 20 K at ambient pressure. In summary, this suggests that three glass transition lines can be defined in the p–T plane for LDA, HDA, and VHDA. PMID:25641986

  10. Method for casting polyethylene pipe

    NASA Technical Reports Server (NTRS)

    Elam, R. M., Jr.

    1973-01-01

    Short lengths of 7-cm ID polyethylene pipe are cast in a mold which has a core made of room-temperature-vulcanizable (RTV) silicone. Core expands during casting and shrinks on cooling to allow for contraction of the polyethylene.

  11. Sensory stability of ultra-high temperature milk in polyethylene bottle.

    PubMed

    Petrus, R R; Walter, E H M; Faria, J A F; Abreu, L F

    2009-01-01

    The objective of this study was to evaluate the sensory stability of ultra-high temperature (UHT) milk subjected to different heat treatments and stored at room temperature in white high density polyethylene bottles (HDPE) pigmented with titanium dioxide. Two lots of 300 units each were processed, respectively, at 135 and 141 degrees C/10 s using indirect heating and subsequently aseptically filled in an ISO class 7 clean room. These experimental lots were evaluated for appearance, aroma, flavor, and overall appreciation and compared to samples of commercial UHT milk purchased from local commercial stores. The time-temperature combinations investigated did not affect either the acceptability or the shelf life of the milk. Despite the limited light barrier properties of HDPE bottles, the product contained in the package tested exhibited good stability, with a shelf life ranging from 4 to 11 wk. Within this time period, the acceptability of the experimental lots was similar to that of the commercial products. The results achieved in this study contribute to turn the low-cost UHT system investigated into a technically viable option for small-size dairy processing plants. PMID:19200121

  12. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  13. Wake High-Density Electroencephalographic Spatiospectral Signatures of Insomnia

    PubMed Central

    Colombo, Michele A.; Ramautar, Jennifer R.; Wei, Yishul; Gomez-Herrero, Germán; Stoffers, Diederick; Wassing, Rick; Benjamins, Jeroen S.; Tagliazucchi, Enzo; van der Werf, Ysbrand D.; Cajochen, Christian; Van Someren, Eus J.W.

    2016-01-01

    Study Objectives: Although daytime complaints are a defining characteristic of insomnia, most EEG studies evaluated sleep only. We used high-density electroencephalography to investigate wake resting state oscillations characteristic of insomnia disorder (ID) at a fine-grained spatiospectral resolution. Methods: A case-control assessment during eyes open (EO) and eyes closed (EC) was performed in a laboratory for human physiology. Participants (n = 94, 74 female, 21–70 y) were recruited through www.sleepregistry.nl: 51 with ID, according to DSM-5 and 43 matched controls. Exclusion criteria were any somatic, neurological or psychiatric condition. Group differences in the spectral power topographies across multiple frequencies (1.5 to 40 Hz) were evaluated using permutation-based inference with Threshold-Free Cluster-Enhancement, to correct for multiple comparisons. Results: As compared to controls, participants with ID showed less power in a narrow upper alpha band (11–12.7 Hz, peak: 11.7 Hz) over bilateral frontal and left temporal regions during EO, and more power in a broad beta frequency range (16.3–40 Hz, peak: 19 Hz) globally during EC. Source estimates suggested global rather than cortically localized group differences. Conclusions: The widespread high power in a broad beta band reported previously during sleep in insomnia is present as well during eyes closed wakefulness, suggestive of a round-the-clock hyperarousal. Low power in the upper alpha band during eyes open is consistent with low cortical inhibition and attentional filtering. The fine-grained HD-EEG findings suggest that, while more feasible than PSG, wake EEG of short duration with a few well-chosen electrodes and frequency bands, can provide valuable features of insomnia. Citation: Colombo MA, Ramautar JR, Wei Y, Gomez-Herrero G, Stoffers D, Wassing R, Benjamins JS, Tagliazucchi E, van der Werf YD, Cajochen C, Van Someren EJW. Wake high-density electroencephalographic spatiospectral

  14. High Density And High Temperature Plasmas In Large Helical Device

    NASA Astrophysics Data System (ADS)

    Komori, A.

    2010-07-01

    For the realization of the fusion reactor, it is necessary to confine high density and high temperature plasma for a time, which is well known as the Lawson criterion. To improve the plasma or confinement performance, vigorous experiments have been performed in the Large Helical Device (LHD) in National Institute for Fusion Science, which is the largest superconducting heliotron device with R = 3.9 m r = 0.6 m, Bt = 3 T. Recently a promising confinement regime called Super Dense Core (SDC) mode was discovered. An extremely high density core region with more than ~ 1 × 10^20 m-3 is obtained with the formation of an Internal Diffusion Barrier (IDB). The density gradient at the IDB (? = 0.6) is very high and the particle confinement in the core region is ~ 0.2 s. It is expected, for the future reactor, that the IDB-SDC mode has a possibility to achieve the self-ignition condition with lower temperature than expected before. The IDB-SDC mode is also favorable from the engineering point of view since one can moderate demands for heating devices and plasma facing components. In order to achieve the IDB-SDC mode, the central fuelling with the pellet injection and the low recycling condition are essential. A repetitive pellet injector was newly developed to continuously feed the particle source to the central region. For the recycling control, the effective divertor system should be employed to control the edge plasma. Conventional approaches to increase the temperature have also been tried in LHD. For the ion heating, the perpendicular neutral beam injection effectively increased the ion temperature more than 10 keV with the formation of the internal transport barrier (ITB). In the core region, the heat conductivity is improved to the neoclassical level, while no clear ITB for electron was seen. Another interesting phenomenon called "impurity hole" was observed inside the ITB. During the high ion temperature discharge, the im- purity density in the core region becomes

  15. Benchmarking High Density Image Matching for Oblique Airborne Imagery

    NASA Astrophysics Data System (ADS)

    Cavegn, S.; Haala, N.; Nebiker, S.; Rothermel, M.; Tutzauer, P.

    2014-08-01

    Both, improvements in camera technology and new pixel-wise matching approaches triggered the further development of software tools for image based 3D reconstruction. Meanwhile research groups as well as commercial vendors provide photogrammetric software to generate dense, reliable and accurate 3D point clouds and Digital Surface Models (DSM) from highly overlapping aerial images. In order to evaluate the potential of these algorithms in view of the ongoing software developments, a suitable test bed is provided by the ISPRS/EuroSDR initiative Benchmark on High Density Image Matching for DSM Computation. This paper discusses the proposed test scenario to investigate the potential of dense matching approaches for 3D data capture from oblique airborne imagery. For this purpose, an oblique aerial image block captured at a GSD of 6 cm in the west of Zürich by a Leica RCD30 Oblique Penta camera is used. Within this paper, the potential test scenario is demonstrated using matching results from two software packages, Agisoft PhotoScan and SURE from University of Stuttgart. As oblique images are frequently used for data capture at building facades, 3D point clouds are mainly investigated at such areas. Reference data from terrestrial laser scanning is used to evaluate data quality from dense image matching for several facade patches with respect to accuracy, density and reliability.

  16. High-density lipoprotein functionality in coronary artery disease.

    PubMed

    Kosmas, Constantine E; Christodoulidis, Georgios; Cheng, Jeh-wei; Vittorio, Timothy J; Lerakis, Stamatios

    2014-06-01

    The role of high-density lipoprotein (HDL) in cardiovascular atheroprotection is well established. Epidemiological data have clearly demonstrated an inverse relationship between HDL levels and the risk for coronary artery disease, which is independent of the low-density lipoprotein levels. However, more recent data provide evidence that high HDL levels are not always protective and that under certain conditions may even confer an increased risk. Thus, a new concept has arisen, which stresses the importance of HDL functionality, rather than HDL concentration per se, in the assessment of cardiovascular risk. HDL functionality is genetically defined but can also be modified by several environmental and lifestyle factors, such as diet, smoking or certain pharmacologic interventions. Furthermore, HDL is consisted of a heterogeneous group of particles with major differences in their structural, biological and functional properties. Recently, the cholesterol efflux capacity from macrophages was proven to be an excellent metric of HDL functionality, because it was shown to have a strong inverse relationship with the risk of angiographically documented coronary artery disease, independent of the HDL and apolipoprotein A-1 levels, although it may not actually predict the prospective risk for cardiovascular events. Thus, improving the quality of HDL may represent a better therapeutic target than simply raising the HDL level, and assessment of HDL function may prove informative in refining our understanding of HDL-mediated atheroprotection.

  17. Characterizing Uncertainty in High-Density Maps from Multiparental Populations

    PubMed Central

    Ahfock, Daniel; Wood, Ian; Stephen, Stuart; Cavanagh, Colin R.

    2014-01-01

    Multiparental populations are of considerable interest in high-density genetic mapping due to their increased levels of polymorphism and recombination relative to biparental populations. However, errors in map construction can have significant impact on QTL discovery in later stages of analysis, and few methods have been developed to quantify the uncertainty attached to the reported order of markers or intermarker distances. Current methods are computationally intensive or limited to assessing uncertainty only for order or distance, but not both simultaneously. We derive the asymptotic joint distribution of maximum composite likelihood estimators for intermarker distances. This approach allows us to construct hypothesis tests and confidence intervals for simultaneously assessing marker-order instability and distance uncertainty. We investigate the effects of marker density, population size, and founder distribution patterns on map confidence in multiparental populations through simulations. Using these data, we provide guidelines on sample sizes necessary to map markers at sub-centimorgan densities with high certainty. We apply these approaches to data from a bread wheat Multiparent Advanced Generation Inter-Cross (MAGIC) population genotyped using the Illumina 9K SNP chip to assess regions of uncertainty and validate them against the recently released pseudomolecule for the wheat chromosome 3B. PMID:25236453

  18. High-Density Infrared Surface Treatments of Refractories

    SciTech Connect

    Tiegs, T.N.

    2005-03-31

    Refractory materials play a crucial role in all energy-intensive industries and are truly a crosscutting technology for the Industries of the Future (IOF). One of the major mechanisms for the degradation of refractories and a general decrease in their performance has been the penetration and corrosion by molten metals or glass. Methods and materials that would reduce the penetration, wetting, and corrosive chemistry would significantly improve refractory performance and also maintain the quality of the processed liquid, be it metal or glass. This report presents the results of an R&D project aimed at investigating the use of high-density infrared (HDI) heating to surface treat refractories to improve their performance. The project was a joint effort between Oak Ridge National Laboratory (ORNL) and the University of Missouri-Rolla (UMR). HDI is capable of heating the near-surface region of materials to very high temperatures where sintering, diffusion, and melting can occur. The intended benefits of HDI processing of refractories were to (1) reduce surface porosity (by essentially sealing the surface to prevent liquid penetration), (2) allow surface chemistry changes to be performed by bonding an adherent coating onto the underlying refractory (in order to inhibit wetting and/or improve corrosion resistance), and (3) produce noncontact refractories with high-emissivity surface coatings.

  19. Effects of diet on high-density lipoprotein cholesterol.

    PubMed

    Siri-Tarino, Patty W

    2011-12-01

    Multiple dietary factors have been shown to increase high-density lipoprotein cholesterol (HDL-C) concentrations, and HDL-C has been inversely associated with coronary heart disease (CHD) risk. Replacement of dietary carbohydrate with polyunsaturated, monounsaturated and saturated fat has been associated with progressively greater increases in HDL-C (7-12%) in addition to other lipid changes. Added sugars, but not high glycemic carbohydrates, have been associated with decreased HDL-C. Alcohol consumption has been associated with increased HDL-C (9.2%) independent of changes in other measured lipids. Modest effects on HDL-C (~4-5%) among other lipid and non-lipid CHD risk factors have also been observed with weight loss by dieting, omega-3 fatty acids, and a Mediterranean diet pattern. The CHD benefit of increasing HDL-C is unclear given the inconsistent evidence from HDL-raising pharmacologic trials. Furthermore, pleiotropic effects of diet preclude attribution of CHD benefit specifically to HDL-C. Investigation into functional or other properties of HDL may lend further insight. PMID:21901431

  20. Management of non-high-density lipoprotein abnormalities.

    PubMed

    Rosenson, Robert S

    2009-12-01

    Epidemiological evidence supports the use of non-high-density lipoprotein cholesterol (non-HDL-C), apolipoprotein B-100 (apoB), and low-density lipoprotein particles as markers of atherogenic risk. Treatment guidelines also identify these as additional targets of lipid-modifying intervention in patients with elevated triglycerides (TG). Even when TG are only moderately elevated, many patients on statin monotherapy who have achieved targets for low-density lipoprotein cholesterol (LDL-C) fail to reach non-HDL-C treatment goals, and even fewer reach apoB goals. Combination lipid-modifying therapy is therefore indicated for comprehensive lipid management, particularly in patients with type 2 diabetes and metabolic syndrome in whom LDL-C levels are often considered 'optimal'. Of the available options, adding either a niacin, fibrate or omega-3 fatty acids provides greater opportunity to achieve non-HDL-C and apoB targets, given complementary profiles of lipid-modifying activity and supported by evidence from clinical studies. Improvement in lipid control and reduction in atherogenic risk could be anticipated to translate to benefits in clinical outcomes. PMID:19545870

  1. Anti-Viral Antibody Profiling by High Density Protein Arrays

    PubMed Central

    Bian, Xiaofang; Wiktor, Peter; Kahn, Peter; Brunner, Al; Khela, Amritpal; Karthikeyan, Kailash; Barker, Kristi; Yu, Xiaobo; Magee, Mitch; Wasserfall, Clive H.; Gibson, David; Rooney, Madeleine E; Qiu, Ji; LaBaer, Joshua

    2015-01-01

    Viral infections elicit anti-viral antibodies and have been associated with various chronic diseases. Detection of these antibodies can facilitate diagnosis, treatment of infection and understanding of the mechanisms of virus associated diseases. In this work, we assayed anti-viral antibodies using a novel high density-nucleic acid programmable protein array (HD-NAPPA) platform. Individual viral proteins were expressed in situ directly from plasmids encoding proteins in an array of microscopic reaction chambers. Quality of protein display and serum response was assured by comparing intra- and inter- array correlation within or between printing batches with average correlation coefficients of 0.91 and 0.96, respectively. HD-NAPPA showed higher signal to background (S/B) ratio compared with standard NAPPA on planar glass slides and ELISA. Antibody responses to 761 antigens from 25 different viruses were profiled among patients with juvenile idiopathic arthritis (JIA) and type 1 diabetes (T1D). Common as well as unique antibody reactivity patterns were detected between patients and healthy controls. We believe HD-viral-NAPPA will enable the study of host-pathogen interactions at unprecedented dimensions and elucidate the role of pathogen infections in disease development. PMID:25758251

  2. High-Density Carbon (HDC) Ablator for NIC Ignition Capsules

    NASA Astrophysics Data System (ADS)

    Ho, D.; Haan, S.; Salmonson, J.; Milovich, J.; Callahan, D.

    2012-10-01

    HDC ablators show high performance based on simulations, despite the fact that the shorter pulses for HDC capsules result in higher M-band radiation compared to that for plastic capsules. HDC capsules have good 1-D performance because HDC has relatively high density (3.5 g/cc), which results in a thinner ablator that absorbs more radiation. HDC ablators have good 2-D performance because the ablator surface is more than an order-of-magnitude smoother than Be or plastic ablators. Refreeze of the ablator near the fuel region can be avoided by appropriate dopant placement. Here we present two HDC ignition designs doped with W and Si. For the design with maximum W concentration of 1.0 at% (and respectively with maximum Si concentration of 2.0 at%): peak velocity = 0.395 (0.397) mm/ns, mass weighted fuel entropy = 0.463 (0.469) kJ/mg/eV, peak core hydrodynamic stagnation pressure = 690 (780) Gbar, and yield = 17.3 (20.2) MJ. 2-D simulations show that yield is close to 80% YoC even with 2.5x of nominal surface roughness on all surfaces. The clean fuel fraction is about 75% at peak velocity. Doping HDC with the required concentration of W and Si is in progress. A first undoped HDC Symcap is scheduled to be fielded later this year.

  3. Gene expression profiling in peanut using high density oligonucleotide microarrays

    PubMed Central

    Payton, Paxton; Kottapalli, Kameswara Rao; Rowland, Diane; Faircloth, Wilson; Guo, Baozhu; Burow, Mark; Puppala, Naveen; Gallo, Maria

    2009-01-01

    Background Transcriptome expression analysis in peanut to date has been limited to a relatively small set of genes and only recently has a significant number of ESTs been released into the public domain. Utilization of these ESTs for oligonucleotide microarrays provides a means to investigate large-scale transcript responses to a variety of developmental and environmental signals, ultimately improving our understanding of plant biology. Results We have developed a high-density oligonucleotide microarray for peanut using 49,205 publicly available ESTs and tested the utility of this array for expression profiling in a variety of peanut tissues. To identify putatively tissue-specific genes and demonstrate the utility of this array for expression profiling in a variety of peanut tissues, we compared transcript levels in pod, peg, leaf, stem, and root tissues. Results from this experiment showed 108 putatively pod-specific/abundant genes, as well as transcripts whose expression was low or undetected in pod compared to peg, leaf, stem, or root. The transcripts significantly over-represented in pod include genes responsible for seed storage proteins and desiccation (e.g., late-embryogenesis abundant proteins, aquaporins, legumin B), oil production, and cellular defense. Additionally, almost half of the pod-abundant genes represent unknown genes allowing for the possibility of associating putative function to these previously uncharacterized genes. Conclusion The peanut oligonucleotide array represents the majority of publicly available peanut ESTs and can be used as a tool for expression profiling studies in diverse tissues. PMID:19523230

  4. Enhanced configurational entropy in high-density nanoconfined bilayer ice

    NASA Astrophysics Data System (ADS)

    Corsetti, Fabiano; Zubeltzu, Jon; Artacho, Emilio

    Understanding the structural tendencies of nanoconfined water is of great interest for nanoscience and biology, where nano/micro-sized objects may be separated by very few layers of water. We present a study of water confined to a 2D geometry by a featureless, chemically neutral potential, in order to characterize its intrinsic behaviour. We use molecular dynamics simulations with the TIP4P/2005 potential, combined with density-functional theory calculations with a non-local van der Waals density functional and an ab initio random structure search procedure. We propose a novel kind of crystal order in high-density nanoconfined bilayer ice. A first-order transition is observed between a low-temperature proton-ordered solid and a high-temperature proton-disordered solid. The latter is shown to possess crystalline order for the oxygen positions, arranged on a close-packed triangular lattice with AA stacking. Uniquely amongst the ice phases, the triangular bilayer is characterized by two levels of disorder (for the bonding network and for the protons) which results in a configurational entropy twice that of bulk ice.

  5. Mixed Nitrogen-Methane Solids at High Density

    NASA Astrophysics Data System (ADS)

    Desgreniers, Serge

    Mixing different molecular species may yield weakly bound compounds or van der Waals solids upon the application of high pressure. Van der Waals solids differ in physical properties from solids formed by pure molecular species at comparable thermodynamic conditions. In this contribution, we present results of the formation of binary methane-nitrogen compounds at high density. Methane and nitrogen, with similar potentials and molecular size, are expected to be partly miscible in the condensed state. Using single crystal and powder X-ray diffraction with synchrotron radiation and vibrational spectroscopy, the pressure-concentration phase diagram for this system has been explored from 1 to 16 GPa, at room temperature. The existence of van der Waals solid phases for samples with concentrations above 10% (methane per volume) is demonstrated. For example, at 7.6 GPa and at room temperature, whereas pure nitrogen and methane exist in cubic and in rhombohedral structures, respectively, our study indicates that a methane-nitrogen sample with 60% nitrogen by volume exhibits, under the same conditions, a novel phase with a tetragonal symmetry. Other novel structures in methane-nitrogen samples with different concentrations under varying pressure conditions have also been observed and will be discussed.

  6. Evaluation of High Density Algal Cultivation for Secondary Wastewater Polishing.

    PubMed

    Xu, Meng; Xu, Shengnan; Bernards, Matthew; Hu, Zhiqiang

    2016-01-01

    This study evaluated the performance of an algal membrane bioreactor (A-MBR) for secondary wastewater effluent polishing and determined the membrane fouling behavior and dominance of algae in the A-MBR. The continuous flow A-MBR (effective volume = 7.2 L) was operated with low biomass wastage for more than 180 days, resulting in an average algal mixed liquor suspended solid concentration of 4922 mg/L. At the influent concentrations of 43 mg/L COD, 1.6 mg/L total phosphorus (TP), and 11.8 mg/L total nitrogen (TN), the effluent COD, TP and TN concentrations were 26 ± 6 mg/L, 0.7 ± 0.3 mg/L, and 9.6 ± 1.2 mg/L, respectively. High-density algae cultivation facilitated P adsorption and chemical precipitation. However, the TN removal efficiency was only 14% because of low biomass wastage. Although bacteria represented less than 2% of the total biomass in the A-MBR, bacterial growth in the secondary wastewater effluent accelerated membrane fouling. PMID:26803026

  7. High-Density Peptide Arrays for Malaria Vaccine Development.

    PubMed

    Loeffler, Felix F; Pfeil, Johannes; Heiss, Kirsten

    2016-01-01

    The development of an efficacious and practicable vaccine conferring sterile immunity towards a Plasmodium infection represents a not yet achieved goal. A crucial factor for the impact of a given anti-plasmodial subunit vaccine is the identification of the most potent parasitic components required to induce protection from both infection and disease. Here, we present a method based on a novel high-density peptide array technology that allows for a flexible readout of malaria antibodies. Peptide arrays applied as a screening method can be used to identify novel immunogenic antibody epitopes under a large number of potential antigens/peptides. Ultimately, discovered antigen candidates and/or epitope sequences can be translated into vaccine prototype design. The technology can be further utilized to unravel antibody-mediated immune responses (e.g., involved in the establishment of semi-immunity) and moreover to confirm vaccine potency during the process of clinical development by verifying the induced antibody responses following vaccination. PMID:27076154

  8. Ignitor and the High Density Approach for Fusion*

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Coppi, B.

    2010-11-01

    The high plasma density regimes discovered by high magnetic field toroidal experiments have both outstanding confinement characteristics and degree of purity, and are at the basis of the Ignitor design. The main purpose of the Ignitor experiment is, in fact, that of establishing the reactor physics in regimes close to ignition, where the thermonuclear instability can set in with all its associated non linear effects. ``Extended limiter'' and double X-point configurations have been analyzed and relevant transport simulations show that similar burning plasma conditions can be attained with both, by Ohmic heating only or with modest amounts of ICRH auxiliary heating. The driving factor for the machine design (R01.32 m, a xb0.47x0.83 m^2, BT<=13 T, Ip<=11 MA) is the poloidal field pressure that can contain, under macroscopically stable conditions, the peak plasma pressures corresponding to ignition. Objectives other than ignition can be envisioned for the relatively near term, for example that of high flux neutron sources for material testing involving compact, high density fusion machines. This has been one of the incentives that have led the Ignitor Project to adopt magnesium diboride (MgB2) superconducting cables in the machine design, a first in fusion research. Accordingly, the largest coils (about 5 m diameter) of the machine will be made entirely of MgB2 cables. *Sponsored in part by ENEA of Italy and by the U.S. D.O.E.

  9. A Concept for Robust, High Density Terminal Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Isaacson, Douglas R.; Robinson, John E.; Swenson, Harry N.; Denery, Dallas G.

    2010-01-01

    This paper describes a concept for future high-density, terminal air traffic operations that has been developed by interpreting the Joint Planning and Development Office s vision for the Next Generation (NextGen) Air Transportation System and coupling it with emergent NASA and other technologies and procedures during the NextGen timeframe. The concept described in this paper includes five core capabilities: 1) Extended Terminal Area Routing, 2) Precision Scheduling Along Routes, 3) Merging and Spacing, 4) Tactical Separation, and 5) Off-Nominal Recovery. Gradual changes are introduced to the National Airspace System (NAS) by phased enhancements to the core capabilities in the form of increased levels of automation and decision support as well as targeted task delegation. NASA will be evaluating these conceptual technological enhancements in a series of human-in-the-loop simulations and will accelerate development of the most promising capabilities in cooperation with the FAA through the Efficient Flows Into Congested Airspace Research Transition Team.

  10. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    PubMed

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  11. High-density matter: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  12. Formation of FRCs on the Pulsed High Density Experiment

    NASA Astrophysics Data System (ADS)

    Andreason, Samuel; Slough, John

    2008-11-01

    The Pulsed High Density (PHD) experiment has been reassembled at a new facility with sufficient space to continue through the full acceleration and compression stages to reach breakeven. The intention here is to produce a large FRC, but remain in the kinetic regime where the FRC is stable and the transport sufficiently low that a Q > 1 plasma can be attained at moderate densities ˜ 10^23 m-3. During reassembly a more complete analysis of previous experimental results has been made. One of the issues in the early phase of the experiment was inefficient flux trapping during field reversal due to the large scale of the FRC source (0.4 m radius). The on-axis seed plasma was unable to diffuse out to the walls on a timescale commensurate with the introduction of bias fields. This resulted in more than half of the initial bias flux lost before sheath formation halted flux loss. An annular array of plasma sources has been constructed that solves this problem and greatly enhances the flux retention. Dynamic formation has been employed on PHD and analysis tools capable of interpreting the magnetic loop diagnostic array have been developed. Results with comparison to numerical models will be presented.

  13. High-density myoelectric pattern recognition toward improved stroke rehabilitation.

    PubMed

    Zhang, Xu; Zhou, Ping

    2012-06-01

    Myoelectric pattern-recognition techniques have been developed to infer user's intention of performing different functional movements. Thus electromyogram (EMG) can be used as control signals of assisted devices for people with disabilities. Pattern-recognition-based myoelectric control systems have rarely been designed for stroke survivors. Aiming at developing such a system for improved stroke rehabilitation, this study assessed detection of the affected limb's movement intention using high-density surface EMG recording and pattern-recognition techniques. Surface EMG signals comprised of 89 channels were recorded from 12 hemiparetic stroke subjects while they tried to perform 20 different arm, hand, and finger/thumb movements involving the affected limb. A series of pattern-recognition algorithms were implemented to identify the intended tasks of each stroke subject. High classification accuracies (96.1% ± 4.3%) were achieved, indicating that substantial motor control information can be extracted from paretic muscles of stroke survivors. Such information may potentially facilitate improved stroke rehabilitation.

  14. Atomistic Simulation of High-Density Uranium Fuels

    DOE PAGES

    Garcés, Jorge Eduardo; Bozzolo, Guillermo

    2011-01-01

    We apply an atomistic modeling approach to deal with interfacial phenomena in high-density uranium fuels. The effects of Si, as additive to Al or as U-Mo-particles coating, on the behavior of the Al/U-Mo interface is modeled by using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The basic experimental features characterizing the real system are identified, via simulations and atom-by-atom analysis. These include (1) the trend indicating formation of interfacial compounds, (2) much reduced diffusion of Al into U-Mo solid solution due to the high Si concentration, (3) Si depletion in the Al matrix, (4) an unexpected interaction between Mo and Simore » which inhibits Si diffusion to deeper layers in the U-Mo solid solution, and (5) the minimum amount of Si needed to perform as an effective diffusion barrier. Simulation results related to alternatives to Si dispersed in the Al matrix, such as the use of C coating of U-Mo particles or Zr instead of the Al matrix, are also shown. Recent experimental results confirmed early theoretical proposals, along the lines of the results reported in this work, showing that atomistic computational modeling could become a valuable tool to aid the experimental work in the development of nuclear fuels.« less

  15. Protein carbamylation renders high-density lipoprotein dysfunctional

    PubMed Central

    2012-01-01

    Aim Carbamylation of proteins through reactive cyanate has been demonstrated to predict an increased cardiovascular risk. Cyanate is formed in vivo by break-down of urea and at sites of inflammation by the phagocyte protein myeloperoxidase. Since myeloperoxidase (MPO) associates with high-density lipoprotein (HDL) in human atherosclerotic intima, we examined in the present study whether cyanate specifically targets HDL. Results Mass spectrometry analysis revealed that protein carbamylation is a major post-translational modification of HDL. The carbamyllysine content of lesion derived HDL was more than 20-fold higher in comparison to 3-chlorotyrosine levels, a specific oxidation product of MPO. Notable, the carbamyllysine content of lesion-derived HDL was 5 to 8-fold higher when compared to lesion derived low-density lipoprotein (LDL) or total lesion protein and increased with lesion severity. Importantly, the carbamyllysine content of HDL, but not of LDL, correlated with levels of 3-chlorotyrosine, suggesting MPO mediated carbamylation in the vessel wall. Remarkably, one carbamyllysine residue per HDL associated apolipoprotein A-I was sufficient to induce cholesterol accumulation and lipid droplet formation in macrophages through a pathway requiring the HDL receptor scavenger receptor class B, type I. Conclusion The present results raise the possibility that HDL carbamylation contributes to foam cell formation in atherosclerotic lesions. PMID:21235354

  16. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Calabresi, Laura

    2016-06-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  17. Targeting high-density lipoproteins: update on a promising therapy.

    PubMed

    Verdier, Céline; Martinez, Laurent O; Ferrières, Jean; Elbaz, Meyer; Genoux, Annelise; Perret, Bertrand

    2013-11-01

    Numerous epidemiological studies have demonstrated the atheroprotective roles of high density lipoproteins (HDL), so that HDL is established as an independent negative risk factor. The protective effect of HDL against atherosclerosis is mainly attributed to their capacity to bring peripheral excess cholesterol back to the liver for further elimination into the bile. In addition, HDL can exert other protective functions on the vascular wall, through their anti-inflammatory, antioxidant, antithrombotic and cytoprotective properties. HDL-targeted therapy is thus an innovative approach against cardiovascular risk and atherosclerosis. These pleiotropic atheroprotective properties of HDL have led experts to believe that "HDL-related therapies" represent the most promising next step in fighting against atherosclerosis. However, because of the heterogeneity of HDL functions, targeting HDL is not a simple task and HDL therapies that lower cardiovascular risk are NOT yet available. In this paper, an overview is presented about the therapeutic strategies currently under consideration to raise HDL levels and/or functions. Recently, clinical trials of drugs targeting HDL-C levels have disappointingly failed, suggesting that HDL functions through specific mechanisms should be targeted rather than increasing per se HDL levels. PMID:24074699

  18. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  19. High-Density Superconducting Cables for Advanced ACTPol

    NASA Astrophysics Data System (ADS)

    Pappas, C. G.; Austermann, J.; Beall, J. A.; Duff, S. M.; Gallardo, P. A.; Grace, E.; Henderson, S. W.; Ho, S. P.; Koopman, B. J.; Li, D.; McMahon, J.; Nati, F.; Niemack, M. D.; Niraula, P.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Simon, S. M.; Staggs, S. T.; Stevens, J. R.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-07-01

    Advanced ACTPol (AdvACT) is an upcoming Atacama Cosmology Telescope (ACT) receiver upgrade, scheduled to deploy in 2016, that will allow measurement of the cosmic microwave background polarization and temperature to the highest precision yet with ACT. The AdvACT increase in sensitivity is partly provided by an increase in the number of transition-edge sensors (TESes) per array by up to a factor of two over the current ACTPol receiver detector arrays. The high-density AdvACT TES arrays require 70 \\upmu m pitch superconducting flexible cables (flex) to connect the detector wafer to the first-stage readout electronics. Here, we present the flex fabrication process and test results. For the flex wiring layer, we use a 400-nm-thick sputtered aluminum film. In the center of the cable, the wiring is supported by a polyimide substrate, which smoothly transitions to a bare (uncoated with polyimide) silicon substrate at the ends of the cable for a robust wedge wire-bonding interface. Tests on the first batch of flex made for the first AdvACT array show that the flex will meet the requirements for AdvACT, with a superconducting critical current above 1 mA at 500 mK, resilience to mechanical and cryogenic stress, and a room temperature yield of 97 %.

  20. Irradiation testing of high density uranium alloy dispersion fuels

    SciTech Connect

    Hayes, S.L.; Trybus, C.L.; Meyer, M.K.

    1997-10-01

    Two irradiation test vehicles have been designed, fabricated, and inserted into the Advanced Test Reactor in Idaho. Irradiation of these experiments began in August 1997. These irradiation tests were designed to obtain irradiation performance information on a variety of potential new, high-density dispersion fuels. Each of the two irradiation vehicles contains 32 microplates. Each microplate is aluminum clad, having an aluminum matrix phase and containing one of the following compositions as the fuel phase: U-10Mo, U-8Mo, U-6Mo, U-4Mo, U-9Nb-3Zr, U-6Nb-4Zr, U-5Nb-3Zr, U-6Mo-1Pt, U-6Mo-0.6Ru, U-10Mo-0.05Sn, U{sub 2}Mo, or U{sub 3}Si{sub 2}. These experiments will be discharged at peak fuel burnups of 40% and 80%. Of particular interest is the fission gas retention/swelling characteristics of these new fuel alloys. This paper presents the design of the irradiation vehicles and the irradiation conditions.

  1. Ethanol enhances de novo synthesis of high density lipoprotein cholesterol

    SciTech Connect

    Cluette, J.E.; Mulligan, J.J.; Noring, R.; Doyle, K.; Hojnacki, J.

    1984-05-01

    Male squirrel monkeys fed ethanol at variable doses were used to assess whether alcohol enhances de novo synthesis of high density lipoprotein (HDL) cholesterol in vivo. Monkeys were divided into three groups: 1) controls fed isocaloric liquid diet; 2) low ethanol monkeys fed liquid diet with vodka substituted isocalorically for carbohydrate at 12% of calories; and 3) High Ethanol animals fed diet plus vodka at 24% of calories. High Ethanol primates had significantly higher levels of HDL nonesterified cholesterol than Control and Low Ethanol animals while serum glutamate oxaloacetate transaminase was similar for the three treatments. There were no significant differences between the groups in HDL cholesteryl ester mass or specific activity following intravenous injection of labeled mevalonolactone. By contrast, High Ethanol monkeys had significantly greater HDL nonesterified cholesterol specific activity with approximately 60% of the radioactivity distributed in the HDL/sub 3/ subfraction. This report provides the first experimental evidence that ethanol at 24% of calories induces elevations in HDL cholesterol in primates through enhanced de novo synthesis without adverse effects on liver function.

  2. Effect of seawater environmental exposure on fatigue properties of polyethylene pipe

    SciTech Connect

    Tipton, D G

    1980-10-01

    One laboratory study at NIT was reported to show an unexpected decrease in crystallinity for a polyethylene material exposed to fatigue loading in a synthetic seawater solution. High density polyethylene Sclairpipe, from the OTEC-1 cold water pipe, was evaluated for resistance to corrosion fatigue in natural seawater. Intermediate crystallinity measurements (via bulk density) showed no effect of corrosion fatigue exposure. Heat of fusion (a relative indicator of crystallinity) also showed no effect of the exposure. Seawater exposure produced no significant change in tensile strength. One failure was observed during the corrosion fatigue tests and was attributed to porosity observed by fractography. These data suggest that high density polyethylene is not significantly sensitive to degradation of fatigue strength in natural seawater.

  3. Phase diagram of amorphous solid water: low-density, high-density, and very-high-density amorphous ices.

    PubMed

    Giovambattista, Nicolas; Stanley, H Eugene; Sciortino, Francesco

    2005-09-01

    We calculate the phase diagram of amorphous solid water by performing molecular dynamics simulations using the extended simple point charge (SPC/E) model. Our simulations follow different paths in the phase diagram: isothermal compression/decompression, isochoric cooling/heating, and isobaric cooling/heating. We are able to identify low-density amorphous (LDA), high-density amorphous (HDA), and very-high density amorphous (VHDA) ices. The density rho of these glasses at different pressure P and temperature T agree well with experimental values. We also study the radial distribution functions of glassy water. In agreement with experiments, we find that LDA, HDA, and VHDA are characterized by a tetrahedral hydrogen-bonded network and that, as compared to LDA, HDA has an extra interstitial molecule between the first and second shell. VHDA appears to have two such extra molecules. We obtain VHDA, as in experiment, by isobaric heating of HDA. We also find that "other forms" of glassy water can be obtained upon isobaric heating of LDA, as well as amorphous ices formed during the transformation of LDA to HDA. We argue that these other forms of amorphous ices, as well as VHDA, are not altogether new glasses but rather are the result of aging induced by heating. Samples of HDA and VHDA with different densities are recovered at normal P, showing that there is a continuum of glasses. Furthermore, the two ranges of densities of recovered HDA and recovered VHDA overlap at ambient P. Our simulations reproduce the experimental findings of HDA --> LDA and VHDA --> LDA transformations. We do not observe a VHDA --> HDA transformation, and our final phase diagram of glassy water together with equilibrium liquid data suggests that for the SPC/E model the VHDA --> HDA transformation cannot be observed with the present heating rates accessible in simulations. Finally, we discuss the consequences of our findings for the understanding of the transformation between the different amorphous

  4. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    PubMed

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  5. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-01

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (˜35-60 at nm-3) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%.

  6. Experimental study of high density foods for the Space Operations Center

    NASA Technical Reports Server (NTRS)

    Ahmed, S. M.

    1981-01-01

    The experimental study of high density foods for the Space Operations Center is described. A sensory evaluation of the high density foods was conducted first to test the acceptability of the products. A shelf-life study of the high density foods was also conducted for three different time lengths at three different temperatures. The nutritional analysis of the high density foods is at present incomplete.

  7. High density lipoprotein metabolism in a rabbit model of hyperalphalipoproteinemia.

    PubMed

    Quig, D W; Zilversmit, D B

    1989-03-01

    The potential utility of an animal model of hyperalphalipoproteinemia for examining the role of high density lipoprotein (HDL) in atherogenesis prompted the current studies. Preliminary data indicated that in rabbits high-coconut oil feeding for 30 days doubled plasma HDL-cholesterol levels, but did not affect lower density lipoproteins (LDL) (d less than 1.063 g/ml). Experiments were performed to examine the composition of these HDL and to determine the mechanism for the diet-induced increase in plasma HDL. Rabbits were fed commercial chow or chow plus 14% (w/w) coconut oil and blood samples were collected 18 h after feeding. Compared to chow-fed rabbits, peak levels of HDL-cholesterol were attained within 2 weeks, and coconut oil feeding doubled the plasma levels of HDL-cholesterol, phospholipids and protein for up to 4 months without affecting HDL lipid and apoprotein composition. After 3 months the diet also increased VLDL- (107%) and LDL-cholesterol (40%) levels, but the absolute increases in each of these lipoprotein fractions was less than half of that of HDL. Isotope kinetic studies of 125I-HDL protein indicated a doubled rate of production of HDL and no change in the efficiency of removal of HDL from plasma. These studies demonstrate that in the rabbit high-coconut oil feeding doubles the rate of production and turnover of apparently normal HDL particles. It is proposed that such an animal model could be utilized to examine directly the role of HDL in atherogenesis. PMID:2920068

  8. High-density fluids and the growth of monocrystalline diamonds

    NASA Astrophysics Data System (ADS)

    Weiss, Y.; Kiflawi, I.; Davies, N.; Navon, O.

    2014-09-01

    The chemical nature and composition of the growth medium of monocrystalline (MC) diamonds is still a matter of debate, partially because carbonate-bearing high-density fluids (HDFs) that are common in fibrous diamonds have not been found in MC diamonds. Here we report the first finding of HDF microinclusions in a MC octahedral diamond from Finsch, South Africa and in the MC octahedral core of a coated diamond from Kankan, Guinea; both diamonds carry nitrogen in B-centers. Numerous microinclusions in diamond Finsch_2a_cap1 are restricted to two thin layers parallel to the (1 1 1) face, ∼20 and 200 μm from the diamond rim. Low-Mg carbonatitic HDFs are found along the inner layer while the outer layer trapped saline compositions. The major and trace element compositions of the inclusions and their infrared spectra are highly similar to those of microinclusions found in fibrous diamonds. A few isolated microinclusions of saline compositions are scattered around a sulfide inclusion in the center of the octahedral core of diamond ON-KAN-383. This evidence for the involvement of oxidized fluids in the formation of MC diamonds adds to previous reports on the antiquity of HDFs in fibrous diamonds, the presence of carbonate and halide phases in inclusions in MC diamonds and the similarity of trace element pattern of a MC diamond to those of low-Mg carbonatitic HDF in fibrous diamonds. In addition, we show that the interaction of HDFs with depleted garnets can produce sinusoidal REE patterns which are one of the primary features of lherzolitic and harzburgitic garnet inclusions in MC diamonds. Together, these observations suggest that HDFs are involved in the formation of many types of diamonds from the Archaean to the Phanerozoic. HDFs are trapped in large quantities during rapid, fibrous growth, but must also be present during the growth of many MC diamonds.

  9. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-01

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.

  10. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template

    NASA Astrophysics Data System (ADS)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  11. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  12. Task switching: a high-density electrical mapping study.

    PubMed

    Wylie, G R; Javitt, D C; Foxe, J J

    2003-12-01

    Flexibly switching between tasks is one of the paradigmatic functions of so-called "executive control" processes. Neuroimaging studies have implicated both prefrontal and parietal cortical regions in the processing necessary to effectively switch task. Beyond their general involvement in this critical function, however, little is known about the dynamics of processing across frontal and parietal regions. For instance, it remains to be determined to what extent these areas play a role in preparing to switch task before arrival of the stimulus to be acted upon and to what extent they play a role in any switching processes that occur after the stimulus is presented. Here, we used the excellent temporal resolution afforded by high-density mapping of brain potentials to explore the time course of the processes underlying (1) the performance of and (2) the preparation for a switch of task. We detail the contributions of both frontal and parietal processes to these two aspects of the task-switching process. Our data revealed a complex pattern of effects. Most striking was a period of sustained activity over bilateral parietal regions preceding the switch trial. Over frontal regions, activity actually decreased during this same period. Strongest sustained frontal activity was in fact seen for trials on which no switch was required. Further, we find that the first differential activity associated with switching task was over posterior parietal areas (220 ms), whereas over frontal scalp, the first differential activity is found more than 200 ms later. These and other effects are interpreted in terms of a "competition" model in which preparing to switch task is understood as the beginning of a competition between the potentially relevant tasks that is resolved during the switch trial. Our findings are difficult to account for with models that posit a strong role for frontal cortical regions in "reconfiguring" the system during switches of task.

  13. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    PubMed

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  14. Distribution of High-Density Lipoprotein Subfractions and Hypertensive Status

    PubMed Central

    Zhang, Yan; Li, Sha; Xu, Rui-Xia; Guo, Yuan-Lin; Wu, Na-Qiong; Zhu, Cheng-Gang; Gao, Ying; Dong, Qian; Liu, Geng; Sun, Jing; Li, Jian-Jun

    2015-01-01

    Abstract The exact mechanisms of hypertension contributing to atherosclerosis have not been fully elucidated. Although multiple studies have clarified the association with low-density lipoprotein (LDL) subfractions, uncertainty remains about its relationship with high-density lipoprotein (HDL) subfractions. Therefore, we aimed to comprehensively determine the relationship between distribution of HDL subfractions and hypertensive status. A total of 953 consecutive subjects without previous lipid-lowering drug treatment were enrolled and were categorized based on hypertension history (with hypertension [n = 550] or without hypertension [n = 403]). Baseline clinical and laboratory data were collected. HDL separation was performed using the Lipoprint System. Plasma large HDL-cholesterol (HDL-C) and large HDL percentage were dramatically lower whereas the small HDL-C and small HDL percentage were higher in patients with hypertension (all P < 0.05). The antihypertensive drug therapy was not associated with large or small HDL subfractions (on treatment vs not on treatment, P > 0.05; combination vs single drug therapy, P > 0.05). However, the blood pressure well-controlled patients have significantly lower small HDL subfraction (P < 0.05). Moreover, large HDL-C and percentage were inversely whereas small HDL percentage was positively associated with incident hypertension after adjusting potential confounders (all P < 0.05). In the multivariate model conducted in patients with and without hypertension separately, the cardio-protective value of large HDL-C was disappeared in patients with hypertension (OR 95%CI: 1.011 [0.974–1.049]). The distribution of HDL subfractions is closely associated with hypertensive status and hypertension may potentially impact the cardio-protective value of large HDL subfraction. PMID:26512616

  15. High temperature, high density opacity measurements using short pulse lasers

    NASA Astrophysics Data System (ADS)

    Hoarty, D. J.; James, S. F.; Brown, C. R. D.; Williams, B. M.; Guymer, T.; Hill, M.; Morton, J.; Chapman, D.; Shepherd, R.; Dunn, J.; Brown, G.; Schneider, M.; Beiersdorfer, P.; Chung, H. K.; Harris, J. W. O.; Upcraft, L.; Smith, C. C.; Lee, R. W.

    2010-08-01

    Heating of thin foil targets by a high power laser at intensities of 1017 -1019W/cm2 has been studied as a method for producing high temperature, high density samples to investigate X-ray opacity and equation of state. The targets were plastic (parylene N) foils with a buried microdot of a sample material, which was either aluminium, germanium or a mixture of germanium and titanium mixture of germanium and titanium. L-shell and K-shell spectra were taken using crystal spectrometers recording onto film and an ultrafast X-ray streak camera coupled to a conical focussing crystal with a time resolution of 1ps. The conditions in the microdot were inferred by comparing the measured spectra to synthetic spectra produced by the time-dependent collisional-radiative (CR) models FLY and FLYCHK. The data were also compared to simulated spectra from a number of opacity codes assuming local thermodynamic equilibrium (LTE). Temperature and density gradients were taken into account in the comparisons. The sample conditions, inferred from the CR modelling using FLYCHK, were 800±100eV and 1.5±0.5g/cc, in the germanium/titanium samples and 600+50/-150eV, 3-4g/cc in the pure germanium or aluminium samples. The higher densities were achieved by using a combination of long and short pulses to compress and heat the foils respectively. The experimental results and comparisons to predicted spectra are presented and discussed.

  16. High density 3D printed microfluidic valves, pumps, and multiplexers.

    PubMed

    Gong, Hua; Woolley, Adam T; Nordin, Gregory P

    2016-07-01

    In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day. PMID:27242064

  17. Proprotein convertases in high-density lipoprotein metabolism.

    PubMed

    Choi, Seungbum; Korstanje, Ron

    2013-01-01

    The proprotein convertase subtilisin/kexins (PCSKs) are a serine endopeptidase family. PCSK members cleave amino acid residues and modulate the activity of precursor proteins. Evidence from patients and animal models carrying genetic alterations in PCSK members show that PCSK members are involved in various metabolic processes. These studies further revealed the molecular mechanism by which genetic alteration of some PCSK members impairs normal molecular and physiological functions, which in turn lead to cardiovascular disease. High-density lipoprotein (HDL) is anti-atherogenic as it removes excessive amount of cholesterol from blood and peripheral tissues. Several PCSK members are involved in HDL metabolism. PCSK3, PCSK5, and PCSK6 process two triglyceride lipase family members, endothelial lipase and lipoprotein lipase, which are important for HDL remodeling. Recent studies in our lab found evidence that PCSK1 and PCSK9 are also involved in HDL metabolism. A mouse model carrying an amino acid substitution in PCSK1 showed an increase in serum apolipoprotein A1 (APOA1) level. Another mouse model lacking PCSK9 showed a decrease in APOE-containing HDL. In this review, we summarize the role of the five PCSK members in lipid, glucose, and bile acid (BA) metabolism, each of which can influence HDL metabolism. We propose an integrative model in which PCSK members regulate HDL metabolism through various molecular mechanisms and metabolic processes and genetic variation in some PCSK members may affect the efficiency of reverse cholesterol transport. PCSK members are considered as attractive therapeutic targets. A greater understanding of the molecular and physiological functions of PCSK members will improve therapeutic strategies and drug efficacy for cardiovascular disease where PCSK members play critical role, with fewer adverse effects. PMID:24252756

  18. Method of fabricating high-density hermetic electrical feedthroughs

    DOEpatents

    Shah, Kedar G.; Pannu, Satinderpall S.; Delima, Terri L.

    2015-06-02

    A method of fabricating electrical feedthroughs selectively removes substrate material from a first side of an electrically conductive substrate (e.g. a bio-compatible metal) to form an array of electrically conductive posts in a substrate cavity. An electrically insulating material (e.g. a bio-compatible sealing glass) is then flowed to fill the substrate cavity and surround each post, and solidified. The solidified insulating material is then exposed from an opposite second side of the substrate so that each post is electrically isolated from each other as well as the bulk substrate. In this manner a hermetic electrically conductive feedthrough construction is formed having an array of electrical feedthroughs extending between the first and second sides of the substrate from which it was formed.

  19. High-Density, High-Bandwidth, Multilevel Holographic Memory

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin

    2008-01-01

    A proposed holographic memory system would be capable of storing data at unprecedentedly high density, and its data transfer performance in both reading and writing would be characterized by exceptionally high bandwidth. The capabilities of the proposed system would greatly exceed even those of a state-of-the art memory system, based on binary holograms (in which each pixel value represents 0 or 1), that can hold .1 terabyte of data and can support a reading or writing rate as high as 1 Gb/s. The storage capacity of the state-of-theart system cannot be increased without also increasing the volume and mass of the system. However, in principle, the storage capacity could be increased greatly, without significantly increasing the volume and mass, if multilevel holograms were used instead of binary holograms. For example, a 3-bit (8-level) hologram could store 8 terabytes, or an 8-bit (256-level) hologram could store 256 terabytes, in a system having little or no more size and mass than does the state-of-the-art 1-terabyte binary holographic memory. The proposed system would utilize multilevel holograms. The system would include lasers, imaging lenses and other beam-forming optics, a block photorefractive crystal wherein the holograms would be formed, and two multilevel spatial light modulators in the form of commercially available deformable-mirror-device spatial light modulators (DMDSLMs) made for use in high speed input conversion of data up to 12 bits. For readout, the system would also include two arrays of complementary metal oxide/semiconductor (CMOS) photodetectors matching the spatial light modulators. The system would further include a reference-beam sterring device (equivalent of a scanning mirror), containing no sliding parts, that could be either a liquid-crystal phased-array device or a microscopic mirror actuated by a high-speed microelectromechanical system. Time-multiplexing and the multilevel nature of the DMDSLM would be exploited to enable writing

  20. Fuel-rich catalytic combustion of a high density fuel

    SciTech Connect

    Brabbs, T.A.; Merritt, S.A.

    1993-07-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot.

  1. Fuel-rich catalytic combustion of a high density fuel

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Merritt, Sylvia A.

    1993-01-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing

  2. High-Density Plasma Reactors: Simulations for Design

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The development of improved and more efficient plasma reactors is a costly process for the semiconductor industry. Until five years ago, the Industry made most of its advancements through a trial and error approach. More recently, the role of computational modeling in the design process has increased. Both conventional computational fluid dynamics (CFD) techniques like Navier-Stokes solvers as well as particle simulation methods are used to model plasma reactor flowfields. However, since high-density plasma reactors generally operate at low gas pressures on the order of 1 to 10 mTorr, a particle simulation may be necessary because of the failure of CFD techniques to model rarefaction effects. The direct simulation Monte Carlo method is the most widely accepted and employed particle simulation tool and has previously been used to investigate plasma reactor flowfields. A plasma DSMC code is currently under development at NASA Ames Research Center with its foundation as the object-oriented parallel Cornell DSMC code, MONACO. The present investigation is a follow up of a neutral flow investigation of the effects of process parameters as well as reactor design on etch rate and etch rate uniformity. The previous work concentrated on silicon etch of a chlorine flow in a configuration typical of electron cyclotron resonance (ECR) or helical resonator type reactors. The effects of the plasma on the dissociation chemistry were modeled by making assumptions about the electron temperature and number density. The electrons or ions themselves were not simulated.The present work extends these results by simulating the charged species.The electromagnetic fields are calculated such that power deposition is modeled self-consistently. Electron impact reactions are modeled along with mechanisms for charge exchange. An bipolar diffusion assumption is made whereby electrons remain tied to the ions. However, the velocities of tile electrons are allowed to be modified during collisions

  3. Human endothelial progenitor cells internalize high-density lipoprotein.

    PubMed

    Srisen, Kaemisa; Röhrl, Clemens; Meisslitzer-Ruppitsch, Claudia; Ranftler, Carmen; Ellinger, Adolf; Pavelka, Margit; Neumüller, Josef

    2013-01-01

    Endothelial progenitor cells (EPCs) originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL), and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate), cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal intraellular

  4. Executive Dysfunction and Reward Dysregulation: A High-Density Electrical Mapping Study in Cocaine Abusers

    PubMed Central

    Morie, Kristen P.; De Sanctis, Pierfilippo; Garavan, Hugh; Foxe, John J.

    2015-01-01

    Executive function deficits and reward dysregulation, which mainly manifests as anhedonia, are well documented in drug abusers. We investigated specific aspects of executive function (inhibitory control and cognitive control), as well as anhedonia, in a cohort of current cocaine abusers in order to ascertain to what extent these factors are associated with more severe drug dependence. Participants filled out questionnaires relating to anhedonia and their addiction history. Participants also performed a response inhibition task while high-density event-related potentials (ERPs) were recorded. Electrophysiological responses to successful inhibitions (N2/P3 components) and to commission errors (ERN/Pe components) were compared between 23 current users of cocaine and 27 non-using controls. A regression model was performed to determine the association of our measures of reward dysregulation and executive function with addiction severity. As expected, cocaine users performed more poorly than controls on the inhibitory control task and showed significant electrophysiological differences. They were also generally more anhedonic than controls. Higher levels of anhedonia were associated with more severe substance use, whereas the level of executive dysfunction was not associated with more severe substance use. However, N2 amplitude was associated with duration of drug use. Further, inhibitory control and anhedonia were correlated, but only in controls. These data suggest that while executive dysfunction characterizes drug abuse, it is anhedonia, independent of executive dysfunction, that is most strongly associated with more severe use. PMID:24911989

  5. Developing High-Density Diffuse Optical Tomography for Neuroimaging

    NASA Astrophysics Data System (ADS)

    White, Brian Richard

    Clinicians who care for brain-injured patients and premature infants desire a bedside monitor of brain function. A decade ago, there was hope that optical imaging would be able to fill this role, as it combined fMRI's ability to construct cortical maps with EEG's portable, cap-based systems. However, early optical systems had poor imaging performance, and the momentum for the technique slowed. In our lab, we develop diffuse optical tomography (DOT), which is a more advanced method of performing optical imaging. My research has been to pioneer the in vivo use of DOT for advanced neuroimaging by (1) quantifying the advantages of DOT through both in silico simulation and in vivo performance metrics, (2) restoring confidence in the technique with the first retinotopic mapping of the visual cortex (a benchmark for fMRI and PET), and (3) creating concepts and methods for the clinical translation of DOT. Hospitalized patients are unable to perform complicated neurological tasks, which has motivated us to develop the first DOT methods for resting-state brain mapping with functional connectivity. Finally, in collaboration with neonatologists, I have extended these methods with proof-of-principle imaging of brain-injured premature infants. This work establishes DOT's improvements in imaging performance and readies it for multiple clinical and research roles.

  6. Influence of Polyethylene Molecular Conformation on Taylor Impact Measurements: a Comparison of Hdpe, Uhmwpe, and Pex

    NASA Astrophysics Data System (ADS)

    Brown, E. N.; Trujillo, C. P.; Gray, G. T.

    2007-12-01

    The current work presents the comparison of the Taylor impact response of three different industrial forms of polyethylene. Specifically, high-density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), and cross-linked polyethylene (PEX) were tested. From quasi-static and intermediate strain-rate compression measurements as a function of temperature (-75 to 100 °C) and strain-rate (10-4 to 2600 s-1) the responses of UHMWPE and PEX are very similar, whereas HDPE exhibits some differences. The HDPE samples display a significantly higher yield stress followed by a flat flow behavior. Conversely UHMWPE and PEX both exhibit significant strain hardening after yield. Taylor impact experiments are presented as a function of velocity to probe the dynamic yield behavior and ductile-to-brittle response of these polymers.

  7. Influence of polyethylene molecular conformation on Taylor impact measurements: a comparison of HDPE, UHMWPE, and PEX

    NASA Astrophysics Data System (ADS)

    Trujillo, Carl P.; Brown, Eric N.; Gray, George T., III

    2007-06-01

    The current work presents the comparison of the Taylor impact response of three different industrial forms of polyethylene. Specifically, high-density polyethylene (HDPE), ultra high molecular weight polyethylene (UHMWPE), and cross-linked polyethylene (PEX) were tested. From quasi-static and intermediate strain-rate compression measurements as a function of temperature (75 to 100C) and strain-rate (10-4 to 2600 s-1) the responses of UHMWPE and PEX are very similar, whereas HDPE exhibits some differences. The HDPE samples display a significantly higher yield stress followed by a flat flow behavior. Conversely UHMWPE and PEX both exhibit significant strain hardening after yield. Taylor impact experiments are presented as a function of velocity and temperature to probe the dynamic yield behavior and ductile-to-brittle response of these polymers.

  8. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.

    PubMed

    Wang, Ping; Hu, Zhenqi; Wang, Peijun

    2013-01-01

    In the subsided areas backfilled with coal gangue, an issue of continuing environmental concern is the migration of hazardous metals to the subsurface soil and groundwater. As an effective isolation material, geosynthetics have been scarcely applied into mining areas reclamation of China. This paper describes research aimed at characterizing the behaviours of different geosynthetics in the leaching columns filled with coal gangues. Four types of geosynthetics were selected: fibres needle-punched nonwoven geotextiles, high-density polyethylene, needle-punched Na-bentonite geosynthetic clay liner (GCL-NP) and Na-bentonite geosynthetic-overbited film. Heavy metals were significantly attenuated and by monitoring aqueous solutions in the whole percolation period, negative correlation was found between pH value and concentration of heavy metals. Generally, GCL-NP showed comparatively better effects on attenuating the migration of heavy metals. According to the meta-analysis of heavy metals present in the leachates and retained in the columns, geosynthetics have good capabilities of sorption and retardation, which can delay the breakthrough time of heavy metals and retard the accumulation in the subsurface. Future research will use X-ray diffraction and micro-imaging (electron microprobe and scanning electron microscopy) to further explain retention mechanisms. PMID:24527654

  9. Effect of gamma irradiation on mechanical, thermal and rheological behavior of HDPE filled with seaweed residues

    NASA Astrophysics Data System (ADS)

    Cataño, L.; Albano, C.; Karam, A.; Domínguez, N.; Sánchez, Y.; González, J.

    2005-07-01

    The present work shows the results obtained during the investigation of the influence of gamma irradiation on mechanical, thermal and rheological properties of high-density polyethylene (HDPE) filled with seaweed residues (SR). The SR used was located on Venezuelan coastlines and they are composed mainly by CaCO3 in aragonite phase. The HDPE was extruded along with the filler at different compositions (20, 30 and 40 wt.%). The composites were exposed to a 60Co source irradiated at 25 and 100 kGy. From the obtained results, it was noticed that Young modulus remained constant with filler content. Moreover, the influence of filler content was found to be more prominent on properties like tensile stress and elongation at break. On the other hand, thermal analysis showed that filler content had no significant influence on thermal stability. Still, it is necessary to point out that low radiation doses improved thermal stability of the composites. From rheological studies it was observed a decreasing of melt flow index (MFI) by increasing the SR amount and radiation. Therefore, was determinate that high filler content composites are the best choice to be considered for biomedical and industrial applications.

  10. Attenuation of heavy metals by geosynthetics in the coal gangue-filled columns.

    PubMed

    Wang, Ping; Hu, Zhenqi; Wang, Peijun

    2013-01-01

    In the subsided areas backfilled with coal gangue, an issue of continuing environmental concern is the migration of hazardous metals to the subsurface soil and groundwater. As an effective isolation material, geosynthetics have been scarcely applied into mining areas reclamation of China. This paper describes research aimed at characterizing the behaviours of different geosynthetics in the leaching columns filled with coal gangues. Four types of geosynthetics were selected: fibres needle-punched nonwoven geotextiles, high-density polyethylene, needle-punched Na-bentonite geosynthetic clay liner (GCL-NP) and Na-bentonite geosynthetic-overbited film. Heavy metals were significantly attenuated and by monitoring aqueous solutions in the whole percolation period, negative correlation was found between pH value and concentration of heavy metals. Generally, GCL-NP showed comparatively better effects on attenuating the migration of heavy metals. According to the meta-analysis of heavy metals present in the leachates and retained in the columns, geosynthetics have good capabilities of sorption and retardation, which can delay the breakthrough time of heavy metals and retard the accumulation in the subsurface. Future research will use X-ray diffraction and micro-imaging (electron microprobe and scanning electron microscopy) to further explain retention mechanisms.

  11. Polyethylene Glycol Propionaldehydes

    NASA Technical Reports Server (NTRS)

    Harris, Joe M.; Sedaghat-Herati, Mohammad R.; Karr, Laurel J.

    1992-01-01

    New class of compounds derived from polyethylene glycol (PEG's) namely, PEG-propionaldehydes, offers two important advantages over other classes of PEG aldehyde derivatives: compounds exhibit selective chemical reactivity toward amino groups and are stable in aqueous environment. PEG's and derivatives used to couple variety of other molecules, such as, to tether protein molecules to surfaces. Biotechnical and biomedical applications include partitioning of two phases in aqueous media; immobilization of such proteins as enzymes, antibodies, and antigens; modification of drugs; and preparation of protein-rejecting surfaces. In addition, surfaces coated with PEG's and derivatives used to control wetting and electroosmosis. Another potential application, coupling to aminated surfaces.

  12. Radiation processing of polyethylene

    NASA Astrophysics Data System (ADS)

    Barlow, A.; Biggs, J. W.; Meeks, L. A.

    This paper covers two areas (a) the use of high energy radiation for the synthesis and improvement of polymer properties and (b) the formulation of radiation curable compounds for automotive/appliance wire applications and high voltage insulation. The first part discusses the use of gamma radiation for the bulk polymerization of ethylene and the properties of the polymer produced. The use of low dose radiation to increase polymer molecular weight and modify polydispersity is also described together with its projected operational cost. An update is provided of the cost savings that can be realized when using radiation crosslinked heavy duty film, which expands its applications, compared with noncrosslinked materials. The second section of the paper considers the advantages and disadvantages of radiation vs. peroxide curing of wire and cable compounds. The formulation of a radiation curable, automotive/appliance wire compound is discussed together with the interactions between the various ingredients; i.e., base resin, antioxidants, flame retardant filler, coupling agents, processing aids and radiation to achieve the desired product. In addition, the general property requirements of a radiation curable polyethylene for high voltage insulation are discussed; these include crosslinking efficiency, thermal stability, wet tree resistance and satisfactory dielectric properties. Preliminary data generated in the development of a 230KV radiation crosslinked polyethylene insulation are included.

  13. [Growth of microfungi on the external polyethylene anticorrosive coating of oil-gas pipes].

    PubMed

    Subbota, A G; Chuenko, A I; Ostapiuk, S N

    2014-01-01

    The authors have studied the resistance of external anticorrosive polyethylene coat of oil-gas pipes (based on the high-density polyethylene, HDPE) to the action of microfungi, natural contamination, fungistatic and fungicide activity. It was found that the intensity of growth of standard test cultures on the surface of polyethylene coat increases in terms which imitate mineral and organic contaminations, and this results in the decrease of the index of its resistance to the action of microfungi. The microfungi, found in the process of study of natural contamination of polyethylene coat and its components, are presented by six species, Alternaria sp. most frequently occurring among them. The presence of admixtures of nitrogenic and phosphoric organic substances in chemical composition of control standards of adhesive and HDPE, which were not exposed to the influence of microfungi, was established by the method of IR spectroscopy. Changes of the IR spectra were noticed in the surface layer of high density polyethylene pellets under the influence of Penicillium funiculosum 171703 that evidences for the process of its slow oxidation. It is assumed that the damaging of the coating components is due to the presence in their chemical composition of impurities of nitrogen- and phosphorus-containing compounds that are easily absorbed by microscopic fungi. PMID:24800514

  14. [Growth of microfungi on the external polyethylene anticorrosive coating of oil-gas pipes].

    PubMed

    Subbota, A G; Chuenko, A I; Ostapiuk, S N

    2014-01-01

    The authors have studied the resistance of external anticorrosive polyethylene coat of oil-gas pipes (based on the high-density polyethylene, HDPE) to the action of microfungi, natural contamination, fungistatic and fungicide activity. It was found that the intensity of growth of standard test cultures on the surface of polyethylene coat increases in terms which imitate mineral and organic contaminations, and this results in the decrease of the index of its resistance to the action of microfungi. The microfungi, found in the process of study of natural contamination of polyethylene coat and its components, are presented by six species, Alternaria sp. most frequently occurring among them. The presence of admixtures of nitrogenic and phosphoric organic substances in chemical composition of control standards of adhesive and HDPE, which were not exposed to the influence of microfungi, was established by the method of IR spectroscopy. Changes of the IR spectra were noticed in the surface layer of high density polyethylene pellets under the influence of Penicillium funiculosum 171703 that evidences for the process of its slow oxidation. It is assumed that the damaging of the coating components is due to the presence in their chemical composition of impurities of nitrogen- and phosphorus-containing compounds that are easily absorbed by microscopic fungi.

  15. Free volume change of elongated polyethylene films studied using a positron probe microanalyzer

    NASA Astrophysics Data System (ADS)

    Oka, Toshitaka; Oshima, Nagayasu; Suzuki, Ryoichi; Uedono, Akira; Fujinami, Masanori; Kobayashi, Yoshinori

    2012-11-01

    Free volume change of low density polyethylene (LDPE) and high density polyethylene (HDPE) films upon mechanical deformation was microscopically investigated by positron probe microanalysis (PPMA). The ortho-positronium (o-Ps) lifetimes were gradually shortened by uniaxial deformation, indicative of shrinkage of the free volume. The o-Ps intensity for HDPE increased by deformation, whereas that for LDPE varied little. It suggests that destruction of crystallites plays an important role in the deformation of HDPE. PPMA is demonstrated to be a promising, powerful probe investigating free volume changes, at different local points subjected to different degrees of deformation, in elongated polymers.

  16. On-chip high density droplet-on-template (DOT) array

    NASA Astrophysics Data System (ADS)

    Kim, Jitae; Song, Simon

    2015-01-01

    In this report, we present a new method for generating a high-density (2D) droplet array using double-layered polydimethylsiloxane (PDMS) templates containing honeycomb microwells. Without external flow control, a droplet-on-template (DOT) was created by utilizing capillary forces associated with the interfacial tension between the aqueous and oil phases. The DOT process involved three simple steps: (1) vacuum-assisted filling of microwells; (2) excess water removal; and (3) covering the droplet array with oil. To demonstrate the concept of the DOT, we generated spherical water droplets 147, 191, 238, 326 and 405 μm in diameter from corresponding microwells with lengths of 200, 300, 400, 600 and 800 μm, respectively and a height of 76 μm (up to ~10,000 droplets on a template 25  ×  25 mm). Two important factors, including the aspect ratio (height-to-length ratio) of the microwell and the interfacial tension of the two phases, were investigated to understand how those factors affect the shape of the droplets (‘sphere’ or ‘dome’). All the droplets were spherical up to an aspect ratio of 0.55. The droplets were dome-shaped for aspect ratios above 0.82. For a 1 mM sodium dodecyl sulfate (SDS) solution, the use of mineral oil (which had the highest interfacial tension studied) produced spherical droplets, but dome-shaped droplets were produced by corn oil and oleic acid.

  17. Fabrication, Micro-structural Analysis, and Mechanical Testing of High Density Polymeric Foam

    NASA Astrophysics Data System (ADS)

    Marks, Trevor Gustov

    Foams, or what are often called cellular solids, are some of the most widely used materials in the modern era. In general, foam is a porous substance formed by the introduction of gas filled pores into condensed matter; the result is typically a light weight substance with properties related to the base (non-porous) medium. Applications of foams include: vibration dampening, energy mitigation (such as packaging and bike helmets), insulation, filtration, and flotation. The focus of this work is on the properties of flexible elastomeric foam of high relative-density. The bulk of existing literature on elastomeric foam is concerned with foam of low relative-density (ratio of the foam density to the density of the material from which the foam is formed ≤ 0.1). The relationship between the micro-structure of high relative-density foam and its mechanical response has, in large part, not been subjected to systematic investigation heretofore. The present work examines how the micro-structural features of pore shape, size, and location affect the macro-structural response of relative high density foam to compressive loading. In order to carry out this study, methods were developed and employed to control a foam's micro-structure, and hence its mechanical response, with the use of temporary pore forming particles and micron scale inclusions. Advanced microscopy techniques were used to observe, in situ, the evolution of a foam's micro-structure under compressive loading, and the results were correlated with the evolution of the foam's stress - strain response. Additionally, quantitative methods were developed and employed to describe numerically the foam's micro-structural features, such as: (i), pore shape, (ii), pore size, and (iii), the arrangement of the pores with respect to each other. Numerous foams were produced, tested, and subjected to the

  18. High-density grids for efficient data collection from multiple crystals

    PubMed Central

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; Degrado, William F.; Fraser, James S.; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K.; Kruse, Andrew C.; Larsson, Karl M.; Lemke, Heinrik T.; Lyubimov, Artem Y.; Manglik, Aashish; McPhillips, Scott E.; Norgren, Erik; Pang, Siew S.; Soltis, S. M.; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I.; Woldeyes, Rahel A.; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E.

    2016-01-01

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures. PMID:26894529

  19. High-density grids for efficient data collection from multiple crystals

    DOE PAGES

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; et al

    2015-11-03

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassettemore » or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. As a result, crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.« less

  20. High-density grids for efficient data collection from multiple crystals.

    PubMed

    Baxter, Elizabeth L; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O; Bonagura, Christopher A; Brehmer, Winnie; Brunger, Axel T; Calero, Guillermo; Caradoc-Davies, Tom T; Chatterjee, Ruchira; Degrado, William F; Fraser, James S; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K; Kruse, Andrew C; Larsson, Karl M; Lemke, Heinrik T; Lyubimov, Artem Y; Manglik, Aashish; McPhillips, Scott E; Norgren, Erik; Pang, Siew S; Soltis, S M; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I; Woldeyes, Rahel A; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E

    2016-01-01

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into the Blu-Ice/DCSS experimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures. PMID:26894529

  1. High-density grids for efficient data collection from multiple crystals

    SciTech Connect

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; Degrado, William F.; Fraser, James S.; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K.; Kruse, Andrew C.; Larsson, Karl M.; Lemke, Heinrik T.; Lyubimov, Artem Y.; Manglik, Aashish; McPhillips, Scott E.; Norgren, Erik; Pang, Siew S.; Soltis, S. M.; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I.; Woldeyes, Rahel A.; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E.

    2015-11-03

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. As a result, crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.

  2. High-density grids for efficient data collection from multiple crystals

    SciTech Connect

    Baxter, Elizabeth L.; Aguila, Laura; Alonso-Mori, Roberto; Barnes, Christopher O.; Bonagura, Christopher A.; Brehmer, Winnie; Brunger, Axel T.; Calero, Guillermo; Caradoc-Davies, Tom T.; Chatterjee, Ruchira; Degrado, William F.; Fraser, James S.; Ibrahim, Mohamed; Kern, Jan; Kobilka, Brian K.; Kruse, Andrew C.; Larsson, Karl M.; Lemke, Heinrik T.; Lyubimov, Artem Y.; Manglik, Aashish; McPhillips, Scott E.; Norgren, Erik; Pang, Siew S.; Soltis, S. M.; Song, Jinhu; Thomaston, Jessica; Tsai, Yingssu; Weis, William I.; Woldeyes, Rahel A.; Yachandra, Vittal; Yano, Junko; Zouni, Athina; Cohen, Aina E.

    2016-01-01

    Higher throughput methods to mount and collect data from multiple small and radiation-sensitive crystals are important to support challenging structural investigations using microfocus synchrotron beamlines. Furthermore, efficient sample-delivery methods are essential to carry out productive femtosecond crystallography experiments at X-ray free-electron laser (XFEL) sources such as the Linac Coherent Light Source (LCLS). To address these needs, a high-density sample grid useful as a scaffold for both crystal growth and diffraction data collection has been developed and utilized for efficient goniometer-based sample delivery at synchrotron and XFEL sources. A single grid contains 75 mounting ports and fits inside an SSRL cassette or uni-puck storage container. The use of grids with an SSRL cassette expands the cassette capacity up to 7200 samples. Grids may also be covered with a polymer film or sleeve for efficient room-temperature data collection from multiple samples. New automated routines have been incorporated into theBlu-Ice/DCSSexperimental control system to support grids, including semi-automated grid alignment, fully automated positioning of grid ports, rastering and automated data collection. Specialized tools have been developed to support crystallization experiments on grids, including a universal adaptor, which allows grids to be filled by commercial liquid-handling robots, as well as incubation chambers, which support vapor-diffusion and lipidic cubic phase crystallization experiments. Experiments in which crystals were loaded into grids or grown on grids using liquid-handling robots and incubation chambers are described. Crystals were screened at LCLS-XPP and SSRL BL12-2 at room temperature and cryogenic temperatures.

  3. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  4. Fitness, Heart Disease, and High-Density Lipoproteins: A Look at the Relationships.

    ERIC Educational Resources Information Center

    McCunney, Robert J.

    1987-01-01

    The role of fitness in preventing coronary heart disease is explored. Research on high-density lipoprotein, which has been found to be one of the most critical determinants of risk, is reviewed. The relationship between fitness, high-density lipoprotein, and coronary heart disease is assessed, and clinical implications are spelled out. (MT)

  5. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    SciTech Connect

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-17

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  6. Nanostructure and thermal properties of melt compounded PE/clay nanocomposites filled with an organosilylated montmorillonite

    NASA Astrophysics Data System (ADS)

    Scarfato, Paola; Incarnato, Loredana; Di Maio, Luciano; Dittrich, Bettina; Niebergall, Ute; Böhning, Martin; Schartel, Bernhard

    2015-12-01

    In this work we report on the functionalization of a natural sodium montmorillonite (MMT) with (3-glycidyloxypropyl)trimethoxysilane by a silylation procedure and on its use as nanofiller in melt compounding of polyethylene nanocomposites. The obtained organosilylated clay showed higher interlayer spacing than the original MMT and higher thermal stability with respect to most of commercial organoclays modified with alkylammonium salts. Its addition (at 5wt%) to two different polyethylene matrices (a low density polyethylene, LDPE, and a high density polyethylene, HDPE), processed in a pilot-scale twin-screw extruder, allowed to produce hybrids with nanoscale dispersion of the filler, as demonstrated by X-ray diffraction. Thermogravimetric and differential scanning thermal analyses point out that the obtained nanocomposites do not show noticeable changes in the thermal behavior of both LDPE and HDPE, even if a slight reduction in the overall bulk crystallinity was observed in presence of the nanofillers.

  7. High-temperature compatibility between liquid metal as PWR fuel gap filler and stainless steel and high-density concrete

    NASA Astrophysics Data System (ADS)

    Wongsawaeng, Doonyapong; Jumpee, Chayanit; Jitpukdee, Manit

    2014-08-01

    In conventional nuclear fuel rods for light-water reactors, a helium-filled as-fabricated gap between the fuel and the cladding inner surface accommodates fuel swelling and cladding creep down. Because helium exhibits a very low thermal conductivity, it results in a large temperature rise in the gap. Liquid metal (LM; 1/3 weight portion each of lead, tin, and bismuth) has been proposed to be a gap filler because of its high thermal conductivity (∼100 times that of He), low melting point (∼100 °C), and lack of chemical reactivity with UO2 and water. With the presence of LM, the temperature drop across the gap is virtually eliminated and the fuel is operated at a lower temperature at the same power output, resulting in safer fuel, delayed fission gas release and prevention of massive secondary hydriding. During normal reactor operation, should an LM-bonded fuel rod failure occurs resulting in a discharge of liquid metal into the bottom of the reactor pressure vessel, it should not corrode stainless steel. An experiment was conducted to confirm that at 315 °C, LM in contact with 304 stainless steel in the PWR water chemistry environment for up to 30 days resulted in no observable corrosion. Moreover, during a hypothetical core-melt accident assuming that the liquid metal with elevated temperature between 1000 and 1600 °C is spread on a high-density concrete basement of the power plant, a small-scale experiment was performed to demonstrate that the LM-concrete interaction at 1000 °C for as long as 12 h resulted in no penetration. At 1200 °C for 5 h, the LM penetrated a distance of ∼1.3 cm, but the penetration appeared to stop. At 1400 °C the penetration rate was ∼0.7 cm/h. At 1600 °C, the penetration rate was ∼17 cm/h. No corrosion based on chemical reactions with high-density concrete occurred, and, hence, the only physical interaction between high-temperature LM and high-density concrete was from tiny cracks generated from thermal stress. Moreover

  8. High-density lipoprotein cholesterol on a roller coaster: where will the ride end?

    PubMed

    Kronenberg, Florian

    2016-04-01

    Bowe et al. report an association between low high-density lipoprotein cholesterol concentrations and various incident chronic kidney disease end points in a cohort of almost 2 million US veterans followed for 9 years. These impressive data should be a starting point for further investigations including genetic epidemiologic investigations as well as post hoc analyses of interventional trials that target high-density lipoprotein cholesterol and, finally, studies that focus on the functionality of high-density lipoprotein particles. PMID:26994572

  9. High density harp for SSCL linac. [Suerconducting Super Collider Laboratory (SSCL)

    SciTech Connect

    Fritsche, C.T.; Krogh, M.L. . Bendix Kansas City Div.); Crist, C.E. )

    1993-05-01

    AlliedSignal Inc., Kansas City Division, and the Superconducting Super Collider Laboratory (SSCL) are collaboratively developing a high density harp for the SSCL linac. This harp is designed using hybrid microcircuit (HMC) technology to obtain a higher wire density than previously available. The developed harp contains one hundred twenty-eight 33-micron-diameter carbon wires on 0.38-mm centers. The harp features an onboard broken wire detection circuit. Carbon wire preparation and attachment processes were developed. High density surface mount connectors were located. The status of high density harp development will be presented along with planned future activities.

  10. Mechanical, Rheological, and Bioactivity Properties of Ultra High-Molecular-Weight Polyethylene Bioactive Composites Containing Polyethylene Glycol and Hydroxyapatite

    PubMed Central

    Ahmad, Mazatusziha; Wahit, Mat Uzir; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis. PMID:22666129

  11. Mechanical, rheological, and bioactivity properties of ultra high-molecular-weight polyethylene bioactive composites containing polyethylene glycol and hydroxyapatite.

    PubMed

    Ahmad, Mazatusziha; Uzir Wahit, Mat; Abdul Kadir, Mohammed Rafiq; Mohd Dahlan, Khairul Zaman

    2012-01-01

    Ultrahigh-molecular-weight polyethylene/high-density polyethylene (UHMWPE/HDPE) blends prepared using polyethylene glycol PEG as the processing aid and hydroxyapatite (HA) as the reinforcing filler were found to be highly processable using conventional melt blending technique. It was demonstrated that PEG reduced the melt viscosity of UHMWPE/HDPE blend significantly, thus improving the extrudability. The mechanical and bioactive properties were improved with incorporation of HA. Inclusion of HA from 10 to 50 phr resulted in a progressive increase in flexural strength and modulus of the composites. The strength increment is due to the improvement on surface contact between the irregular shape of HA and polymer matrix by formation of mechanical interlock. The HA particles were homogenously distributed even at higher percentage showed improvement in wetting ability between the polymer matrix and HA. The inclusion of HA enhanced the bioactivity properties of the composite by the formation of calcium phosphate (Ca-P) precipitates on the composite surface as proven from SEM and XRD analysis.

  12. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  13. High-density interconnect substrates and device packaging using conductive composites

    NASA Astrophysics Data System (ADS)

    Gandhi, Pradeep; Gallagher, Catherine; Matijasevic, Goran

    1998-02-01

    High-end printed circuit board manufacturing technology is receiving increasing attention due to higher functionality in smaller form factors. This is evident from the industry efforts to produced reliable microvias and related trace features to pack as much circuit density as possible. Cost, density and performance requirements have prodded entry into a market that was mainly reserved for ceramic and molded packages for the last forty years. To successfully meet the demanding specifications of this market segment, a worldwide effort is underway for the development of new materials, processes and equipment. A novel base technology that is applicable to most of the major packaging and redistribution elements in an electronic module is presented.High density multilayer circuits with landless blind and buried vias can be fabricated by filling the conductor paste into photoimaged dielectrics and thermally processing it at a relatively lower temperature. Via layers are prepared directly on the inherently planarized circuit layer in an identical fashion. Because these composite materials are applied in an additive fabrication method, metal substrates can be employed for high thermal dissipation and excellent CTE control over a wide temperature range. The conductor material is based on interpenetrating polymer and metal networks that are formed in situ from metal particles and a thermosetting flux/binder. The metal network is formed when the alloy particles melt and react with adjacent high melting point metal particle. Interaction also occurs between the alloy particles and pad, lead or previous trace metallizations provided they are solderable by alloys of tin. The new alloy composition created by the interdiffusion process within the bulk material has a higher melting point than the original alloy and thus solidifies immediately upon formation. This metallurgical reaction, known as transient liquid phase sintering, is facilitated by the polymer mixture. INtegration of

  14. Breast Cancer Patients with High Density Mammograms Do Not Have Increased Risk of Death

    MedlinePlus

    ... News Releases News Release Thursday, September 6, 2012 Breast cancer patients with high density mammograms do not have ... is a marker of increased risk of developing breast cancer, does not seem to increase the risk of ...

  15. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, B.L.

    1998-10-27

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver > 4kW/cm{sup 2} of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources. 13 figs.

  16. High density, optically corrected, micro-channel cooled, v-groove monolithic laser diode array

    DOEpatents

    Freitas, Barry L.

    1998-01-01

    An optically corrected, micro-channel cooled, high density laser diode array achieves stacking pitches to 33 bars/cm by mounting laser diodes into V-shaped grooves. This design will deliver>4kW/cm2 of directional pulsed laser power. This optically corrected, micro-channel cooled, high density laser is usable in all solid state laser systems which require efficient, directional, narrow bandwidth, high optical power density pump sources.

  17. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    PubMed

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance.

  18. Post-irradiation effects in polyethylenes irradiated under various atmospheres

    NASA Astrophysics Data System (ADS)

    Suljovrujic, E.

    2013-08-01

    If a large amount of polymer free radicals remain trapped after irradiation of polymers, the post-irradiation effects may result in a significant alteration of physical properties during long-term shelf storage and use. In the case of polyethylenes (PEs) some failures are attributed to the post-irradiation oxidative degradation initiated by the reaction of residual free radicals (mainly trapped in crystal phase) with oxygen. Oxidation products such as carbonyl groups act as deep traps and introduce changes in carrier mobility and significant deterioration in the PEs electrical insulating properties. The post-irradiation behaviour of three different PEs, low density polyethylene (LDPE), linear low density polyethylene (LLDPE) and high density polyethylene (HDPE) was studied; previously, the post-irradiation behaviour of the PEs was investigated after the irradiation in air (Suljovrujic, 2010). In this paper, in order to investigate the influence of different irradiation media on the post-irradiation behaviour, the samples were irradiated in air and nitrogen gas, to an absorbed dose of 300 kGy. The annealing treatment of irradiated PEs, which can substantially reduce the concentration of free radicals, is used in this study, too. Dielectric relaxation behaviour is related to the difference in the initial structure of PEs (such as branching, crystallinity etc.), to the changes induced by irradiation in different media and to the post-irradiation changes induced by storage of the samples in air. Electron spin resonance (ESR), differential scanning calorimetry (DSC), infra-red (IR) spectroscopy and gel measurements were used to determine the changes in the free radical concentration, crystal fraction, oxidation and degree of network formation, respectively.

  19. Evaluating Performance and Stability of Polyethylene Terephthalate (PET) and Cellulose Polymer as Soilless Mix Components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S., concerns over the long-term sustainability of peat, perlite, and other media components have led to searches for alternative materials. FiberFill, a synthetic fiber made of recyclable polyethylene terephthalate, and Tencel, a cellulose fiber, are new materials with potential as substra...

  20. Getting a prescription filled

    MedlinePlus

    ... to get prescription filled; Pharmacy - mail order; Pharmacy - internet; Types of pharmacies ... stored at certain temperatures at a local pharmacy. INTERNET (ONLINE) PHARMACIES Internet pharmacies can be used for ...

  1. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  2. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... resin produced by the mild air oxidation of polyethylene conforming to the density, maximum n-hexane... table in § 177.1520(c). Such oxidized polyethylene has a minimum number average molecular weight of...

  3. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... oxidation of polyethylene conforming to the density, maximum n-hexane extractable fraction, and maximum... oxidized polyethylene has a minimum number average molecular weight of 1,200, as determined by...

  4. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... resin produced by the mild air oxidation of polyethylene conforming to the density, maximum n-hexane... table in § 177.1520(c). Such oxidized polyethylene has a minimum number average molecular weight of...

  5. Rhesus positivity and low high-density lipoprotein cholesterol: a new link?

    PubMed

    Kanbay, Mehmet; Yildirir, Aylin; Ulus, Taner; Bilgi, Muhammet; Kucuk, Alparslan; Muderrisoglu, Haldun

    2006-04-01

    The aim of the study was to investigate the relationship of ABO and Rh blood groups with lipid profile in patients with established multivessel coronary artery disease in a population with low levels of high-density lipoprotein cholesterol. The records of 978 patients with multivessel coronary artery disease, in whom coronary bypass surgery was performed, were investigated. Coronary risk factors including diabetes, hypertension, smoking, and obesity were noted for each patient. Serum lipid profiles: total cholesterol, low-density and high-density lipoprotein cholesterol, and triglyceride levels, were also recorded. The mean age of the patients was 59.3 +/- 9.7 years (range, 25-84 years) and 80% were male. The risk factors and lipid profiles of ABO blood types were similar. Rh-negative patients had higher levels of high-density lipoprotein cholesterol (46.9 +/- 9.9 vs. 41.6 +/- 10.4 mg.dL(-1), p = 0.001) and a lower total/high-density lipoprotein cholesterol ratio (4.8 +/- 1.3 vs. 5.2 +/- 1.6, p = 0.029) compared to Rh-positive patients. The other lipid levels and risk factors had no association with Rh typing. These results indicate a significant association between rhesus positivity and low levels of high-density lipoprotein cholesterol in patients with multivessel coronary artery disease.

  6. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley

    PubMed Central

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  7. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    PubMed

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley.

  8. SNP-based high density genetic map and mapping of btwd1 dwarfing gene in barley.

    PubMed

    Ren, Xifeng; Wang, Jibin; Liu, Lipan; Sun, Genlou; Li, Chengdao; Luo, Hong; Sun, Dongfa

    2016-01-01

    A high-density linkage map is a valuable tool for functional genomics and breeding. A newly developed sequence-based marker technology, restriction site associated DNA (RAD) sequencing, has been proven to be powerful for the rapid discovery and genotyping of genome-wide single nucleotide polymorphism (SNP) markers and for the high-density genetic map construction. The objective of this research was to construct a high-density genetic map of barley using RAD sequencing. 1894 high-quality SNP markers were developed and mapped onto all seven chromosomes together with 68 SSR markers. These 1962 markers constituted a total genetic length of 1375.8 cM and an average of 0.7 cM between adjacent loci. The number of markers within each linkage group ranged from 209 to 396. The new recessive dwarfing gene btwd1 in Huaai 11 was mapped onto the high density linkage maps. The result showed that the btwd1 is positioned between SNP marks 7HL_6335336 and 7_249275418 with a genetic distance of 0.9 cM and 0.7 cM on chromosome 7H, respectively. The SNP-based high-density genetic map developed and the dwarfing gene btwd1 mapped in this study provide critical information for position cloning of the btwd1 gene and molecular breeding of barley. PMID:27530597

  9. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. PMID:25953566

  10. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells.

  11. Reinforced polyethylene/clay nanocomposites: influence of different silane

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Zhang, Liying; Chen, Xuelong; Hu, Xiao

    2015-03-01

    Montmorillonite (MMT) was first cation exchanged by cetyltrimethyl ammonium bromide (CTAB) and then treated by short chain silane (methyltrimethoxylsilane) or different amount of long chain silane (dodecyltrimethoxylsilane). High density polyethylene (HDPE)/clay nanocomposites were prepared through twin screw extruder using these silane modified clays without any compatibilizer. Thermal gravimetric analysis (TGA) proved the successful grafting of silanes onto clay. The effects of the chain length and content of the silanes on the dispersion state of clay and properties of the composites were studied using X-ray diffraction (XRD), transmission electron microscope (TEM), mechanical tests, creep tests and so on. The results indicate that the grafting of long chain silanes at higher content could improve the compatibility between clay and PE, thus more efficiently enhancing mechanical and creep properties of the composites than other silane treated clays.

  12. Textural changes in metallurgical coke prepared with polyethylene

    NASA Astrophysics Data System (ADS)

    Gornostayev, Stanislav S.; Heino, Jyrki J.; Kokkonen, Tommi M. T.; Makkonen, Hannu T.; Huttunen, Satu M. M.; Fabritius, Timo M. J.

    2014-10-01

    The effect of high-density polyethylene (HDPE) on the textural features of experimental coke was investigated using polarized-light optical microscopy and wavelet-based image analysis. Metallurgical coke samples were prepared in a laboratory-scale furnace with 2.5%, 5.0%, 7.5%, 10.0%, and 12.5% HDPE by mass, and one sample was prepared by 100% coal. The amounts and distribution of textures (isotropic, mosaic and banded) and pores were obtained. The calculations reveal that the addition of HDPE results in a decrease of mosaic texture and an increase of isotropic texture. Ethylene formed from the decomposition of HDPE is considered as a probable reason for the texture modifications. The approach used in this study can be applied to indirect evaluation for the reactivity and strength of coke.

  13. Thermal conductivity of boron nitride reinforced polyethylene composites

    SciTech Connect

    Zhou Wenying Qi Shuhua; An Qunli; Zhao Hongzhen; Liu Nailiang

    2007-10-02

    The thermal conductivity of boron nitride (BN) particulates reinforced high density polyethylene (HDPE) composites was investigated under a special dispersion state of BN particles in HDPE, i.e., BN particles surrounding HDPE particles. The effects of BN content, particle size of HDPE and temperature on the thermal conductivity of the composites were discussed. The results indicate that the special dispersion of BN in matrix provides the composites with high thermal conductivity; moreover, the thermal conductivity of composites is higher for the larger size HDPE than for the smaller size one. The thermal conductivity increases with increasing filler content, and significantly deviates the predictions from the theoretic models. It is found also that the combined use of BN particles and alumina short fiber obtains higher thermal conductivity of composites compared to the BN particles used alone.

  14. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  15. 21 CFR 177.1615 - Polyethylene, fluorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, fluorinated. 177.1615 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1615 Polyethylene, fluorinated. Fluorinated polyethylene, identified in paragraph (a) of this section, may be safely used as food-contact articles...

  16. 21 CFR 177.1620 - Polyethylene, oxidized.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resin produced by the mild air oxidation of polyethylene conforming to the density, maximum n-hexane... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, oxidized. 177.1620 Section 177.1620... Components of Single and Repeated Use Food Contact Surfaces § 177.1620 Polyethylene, oxidized....

  17. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated... this section. (a) For the purpose of this section, chlorinated polyethylene consists of basic...

  18. 21 CFR 177.1610 - Polyethylene, chlorinated.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyethylene, chlorinated. 177.1610 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1610 Polyethylene, chlorinated. Chlorinated... this section. (a) For the purpose of this section, chlorinated polyethylene consists of basic...

  19. The final stage of gravitational collapse for high density fluid medium

    SciTech Connect

    Souza, R. G.; De Campos, M.

    2013-03-25

    The High density high density fluids can be represented by a stiff matter state equation P={rho} and also by the Hagedorn state equation. The first is constructed using a lagrangian that allows bare nucleons to interact attractively via scalar meson exchange, and repulsively by a more massive vector meson exchange; the second consider that for large mass the spectrum of hadrons grows exponentially, namely {rho}(m) {approx}exp(m/T{sub H}), where T{sub H} is the Hagedorn temperature, resulting the state equation P = P{sub 0}+{rho}{sub 0}ln({rho}/{rho}{sub 0}). We study the gravitational collapse for a high density fluid, considering a Hagedorn state equation in a presence of a vacuum component.

  20. Rapid method for detection of Coxiella burnetii antibodies using high-density particle agglutination.

    PubMed Central

    Nguyen, S V; Otsuka, H; Zhang, G Q; To, H; Yamaguchi, T; Fukushi, H; Noma, A; Hirai, K

    1996-01-01

    A high-density particle agglutination test, using erythrocyte-sensitizing substance from phase II Coxiella burnetii adsorbed to high-density composite particles, was developed for rapid serodiagnosis of Q fever. The test was compared with the microimmunofluorescence test for sensitivity and specificity by using 3,036 human serum samples collected in Gifu Prefecture, Japan. An excellent agreement was found between the two tests for the acute-phase group and paired serum samples, but some discordant results were observed in the single-sample group. The sensitivity and specificity of the high-density particle agglutination test were both 100% in the former group and 81.6 and 99.9%, respectively, in the latter group. The test is a very promising tool for routine serodiagnosis of Q fever because of its simplicity, sensitivity, and specificity. PMID:8940428

  1. Antimony mediated growth of high-density InAs quantum dots for photovoltaic cells

    SciTech Connect

    Tutu, F. K.; Wu, J.; Lam, P.; Tang, M.; Liu, H.; Miyashita, N.; Okada, Y.; Wilson, J.; Allison, R.

    2013-07-22

    We report enhanced solar cell performance using high-density InAs quantum dots. The high-density quantum dot was grown by antimony mediated molecular beam epitaxy. In-plane quantum dot density over 1 × 10{sup 11} cm{sup −2} was achieved by applying a few monolayers of antimony on the GaAs surface prior to quantum dot growth. The formation of defective large clusters was reduced by optimization of the growth temperature and InAs coverage. Comparing with a standard quantum dot solar cell without the incorporation of antimony, the high-density quantum dot solar cell demonstrates a distinct improvement in short-circuit current from 7.4 mA/cm{sup 2} to 8.3 mA/cm{sup 2}.

  2. Advanced organic dye for high-speed, high-density optical media

    NASA Astrophysics Data System (ADS)

    Kodaira, Takuo; Matsuda, Isao; Somei, Hidenori; Tsuzuki, Takeo; Yokoyama, Daizo; Endo, Akihisa; Takeguchi, Kazunobu; Kojo, Shinichi; Miyazawa, Fuyuki; Otsu, Takeshi; Murai, Wakaaki; Hattori, Masashi; Shimomai, Kenichi; Oshita, Junji; Asano, Sho; Shimizu, Atsuo; Fujii, Toru

    2015-09-01

    Advances in organic dye progress are indispensable for high-speed, high-density recording of recordable Blu-ray Disc™ (BD-R) low-to-high (LTH) discs without a low elastic modulus layer. The optimal physical properties of the organic dyes, i.e., a low decomposition calorific value, a low decomposition temperature, and a large n-value, were determined, and a dye with these properties was synthesized. A BD-R disc using the dye conformed to the BD-R LTH standard at 8× recording and ever higher speeds should be possible. Furthermore, the possibility of 33 GB/layer high-density recording was suggested.

  3. Development of a high-density energy-storage capacitor for Nova

    SciTech Connect

    Haskell, D.K.; Cooper, R.A.; Sevigny, J.A.; Merritt, B.T.; Carder, B.M.; Whitham, K.

    1981-10-22

    This paper covers Maxwell's approach to developing energy storage capacitors. Based on previous capacitor designs of 3 KJ, 5 KJ and 10 KJ, the final Nova 12.5 KJ capacitor evolved. At the outset of the Nova capacitor development program, a relatively new dielectric system, polypropylene-paper-DOP, seemed to show superiority in volumetric efficiency, life, and more importantly cost. However, as a result of studies performed at Maxwell, a high-density, energy-storage capacitor was developed utilizing new high-quality, high-density paper and caster oil as the dielectric. Test data have demonstrated that the Maxwell 12.5 KJ capacitor exceeds all LLNL's qualification requirements.

  4. Demonstration of resonant backward Raman amplification in high-density gas-jet plasma

    NASA Astrophysics Data System (ADS)

    Wu, Z. H.; Zhou, K. N.; Zheng, X. M.; Wei, X. F.; Zhu, Q. H.; Su, J. Q.; Xie, N.; Jiao, Z. H.; Peng, H.; Wang, X. D.; Sun, L.; Li, Q.; Huang, Z.; Zuo, Y. L.

    2016-10-01

    Backward Raman amplification was observed in a 0.7 mm-long high-density gas jet plasma. The 800 nm 30 fs seed pulse was amplified by a factor  ∼28, with an output energy of 2.8 mJ. The output spectra showed that the waveband around 800 nm was significantly amplified. The experimental result demonstrated that the resonant Raman amplification can be realized in high-density plasma against strong plasma instability.

  5. High-Density Fixed Point for Radially Compressed Single-Component Plasmas

    SciTech Connect

    Danielson, J. R.; Surko, C. M.; O'Neil, T. M.

    2007-09-28

    Rotating electric fields are used to compress electron plasmas confined in a Penning-Malmberg trap. Bifurcation and hysteresis are observed between low-density and high-density steady states as a function of the applied electric field amplitude and frequency. These observations are explained in terms of torque-balanced fixed points using a simple model of the torques on the plasma. Perturbation experiments near the high-density fixed point are used to determine the magnitude, frequency, and voltage dependence of the drive torque. The broader implications of these results are discussed.

  6. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  7. Loose-fill insulations

    SciTech Connect

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  8. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: In situ synchrotron small angle and wide angle X-ray scattering study

    SciTech Connect

    Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen

    2013-01-10

    A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.

  9. Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements.

    SciTech Connect

    Leem, Sun-Hee; Kouprina, Natalay; Grimwood, Jane; Kim, Jung-Hyun; Mullokandov, Michael; Yoon, Young-Ho; Chae, Ji-Youn; Morgan, Jenna; Lucas, Susan; Richardson, Paul; Detter, Chris; Glavina, Tijana; Rubin, Eddy; Barrett, J. Carl; Larionov, Vladimir

    2003-09-01

    The reported human genome sequence includes about 400 gaps of unknown sequence that were not found in the bacterial artificial chromosome (BAC) and cosmid libraries used for sequencing of the genome. These missing sequences correspond to {approx} 1 percent of euchromatic regions of the human genome. Gap filling is a laborious process because it relies on analysis of random clones of numerous genomic BAC or cosmid libraries. In this work we demonstrate that closing the gaps can be accelerated by a selective recombinational capture of missing chromosomal segments in yeast. The use of both methodologies allowed us to close the four remaining gaps on the human chromosome 19. Analysis of the gap sequences revealed that they contain several abnormalities that could result in instability of the sequences in microbe hosts, including large blocks of micro- and minisatellites and a high density of Alu repeats. Sequencing of the gap regions, in both BAC and YAC forms, allowed us to generate a complete sequence of four genes, including the neuronal cell signaling gene SCK1/SLI. The SCK1/SLI gene contains a record number of minisatellites, most of which are polymorphic and transmitted through meiosis following a Mendelian inheritance. In conclusion, the use of the alternative recombinational cloning system in yeast may greatly accelerate work on closing the remaining gaps in the human genome (as well as in other complex genomes) to achieve the goal of annotation of all human genes.

  10. High-density aerogels with ultralow sound velocity: Microstructure is a key parameter determining the sound velocity

    NASA Astrophysics Data System (ADS)

    Du, Ai; Zhou, Bin; Shen, Yang; Yu, Qiujie; Shen, Jun

    2014-03-01

    Aerogels are more and more regarded as a new state of matter nowadays because of its diverse chemical compositions and unique properties which could fill the gap between condensed matter and gas-state matter. Among the properties, the ultralow sound velocity in the aerogels (lower than that in the air) is of great interests. J. Fricke's group studied many kinds of aerogels with different compositions and found that the sound velocity was mainly influenced by the density. Thus they obtained the lowest sound velocity result (~ 100 m/s) in a low-density silica aerogel medium (~ 0.05 g.cm-3) . Here we studied the acoustical properties of the aerogels with the similar high density (about 1.3 g.cm-3) but different skeleton structure (nano-, micro- or nano-/micro- structured) by adjusting the phase separation mode. The sound velocities of all the aerogels are below 300 m.s-1, among which micro-/nano- structured aerogel exhibits lowest longitudinal wave velocity (below 80 m.s-1) . Further structural studies indicated that the hierarchical arrangement of microstructure is the key parameter determining the sound velocity besides the density. This work was supported by the National Natural Science Foundation of China (51102184, 51172163), National High-tech R&D Program of China (863 Program, 2013AA031801) and National Science and Technology Support Program (2013BAJ01B01).

  11. Variations in high-density lipoprotein subclasses during the menstrual cycle.

    PubMed

    Williams, P T; Austin, M A; Krauss, R M

    1994-11-01

    In a study of 41 healthy premenopausal women, plasma high-density lipoprotein-2a (HDL2a) levels (ie, HDL of diameter 8.8 to 9.7 nm) were significantly higher during the luteal phase than during the follicular phase of the cycle. There was no significant variation in HDL2b or any of the HDL3 subclasses.

  12. Radiation Tests of Highly scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories--Update 2011

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.

    2011-01-01

    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) 32Gb and multi-level cell (MLC) 64Gb NAND flash memories manufactured by Micron Technology.

  13. Radiation Tests of Highly Scaled, High-Density, Commercial, Nonvolatile NAND Flash Memories - Update 2010

    NASA Technical Reports Server (NTRS)

    Irom, Farokh; Nguyen, Duc N.

    2010-01-01

    High-density, commercial, nonvolatile flash memories with NAND architecture are now available from several manufacturers. This report examines SEE effects and TID response in single-level cell (SLC) and multi-level cell (MLC) NAND flash memories manufactured by Micron Technology.

  14. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  15. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Kang, Lixing; Zhao, Qiuchen; Zhong, Hua; Zhang, Shuchen; Yang, Liangwei; Wang, Zequn; Lin, Jingjing; Li, Qingwen; Zhang, Zhiyong; Peng, Lianmao; Liu, Zhongfan; Zhang, Jin

    2015-01-01

    Single-walled carbon nanotube (SWNT)-based electronics have been regarded as one of the most promising candidate technologies to replace or supplement silicon-based electronics in the future. These applications require high-density horizontally aligned SWNT arrays. During the past decade, significant efforts have been directed towards growth of high-density SWNT arrays. However, obtaining SWNT arrays with suitable density and quality still remains a big challenge. Herein, we develop a rational approach to grow SWNT arrays with ultra-high density using Trojan catalysts. The density can be as high as 130 SWNTs μm-1. Field-effect transistors fabricated with our SWNT arrays exhibit a record drive current density of -467.09 μA μm-1 and an on-conductance of 233.55 μS μm-1. Radio frequency transistors fabricated on these samples exhibit high intrinsic fT and fMAX of 6.94 and 14.01 GHz, respectively. These results confirm our high-density SWNT arrays are strong candidates for applications in electronics.

  16. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts.

    PubMed

    Hu, Yue; Kang, Lixing; Zhao, Qiuchen; Zhong, Hua; Zhang, Shuchen; Yang, Liangwei; Wang, Zequn; Lin, Jingjing; Li, Qingwen; Zhang, Zhiyong; Peng, Lianmao; Liu, Zhongfan; Zhang, Jin

    2015-01-20

    Single-walled carbon nanotube (SWNT)-based electronics have been regarded as one of the most promising candidate technologies to replace or supplement silicon-based electronics in the future. These applications require high-density horizontally aligned SWNT arrays. During the past decade, significant efforts have been directed towards growth of high-density SWNT arrays. However, obtaining SWNT arrays with suitable density and quality still remains a big challenge. Herein, we develop a rational approach to grow SWNT arrays with ultra-high density using Trojan catalysts. The density can be as high as 130 SWNTs μm(-1). Field-effect transistors fabricated with our SWNT arrays exhibit a record drive current density of -467.09 μA μm(-1) and an on-conductance of 233.55 μS μm(-1). Radio frequency transistors fabricated on these samples exhibit high intrinsic fT and fMAX of 6.94 and 14.01 GHz, respectively. These results confirm our high-density SWNT arrays are strong candidates for applications in electronics.

  17. Development of a 37K high-density oligo-nucleotide microarray for rainbow trout

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have constructed a rainbow trout high-density oligonucleotide microarray by using all the available tentative consensus (TC) sequences from the Rainbow Trout Gene Index database (The Computational Biology and Functional Genomics Lab., Dana Farber Cancer Institute and Harvard School of Public Heal...

  18. 3D high-density localization microscopy using hybrid astigmatic/ biplane imaging and sparse image reconstruction.

    PubMed

    Min, Junhong; Holden, Seamus J; Carlini, Lina; Unser, Michael; Manley, Suliana; Ye, Jong Chul

    2014-11-01

    Localization microscopy achieves nanoscale spatial resolution by iterative localization of sparsely activated molecules, which generally leads to a long acquisition time. By implementing advanced algorithms to treat overlapping point spread functions (PSFs), imaging of densely activated molecules can improve the limited temporal resolution, as has been well demonstrated in two-dimensional imaging. However, three-dimensional (3D) localization of high-density data remains challenging since PSFs are far more similar along the axial dimension than the lateral dimensions. Here, we present a new, high-density 3D imaging system and algorithm. The hybrid system is implemented by combining astigmatic and biplane imaging. The proposed 3D reconstruction algorithm is extended from our state-of-the art 2D high-density localization algorithm. Using mutual coherence analysis of model PSFs, we validated that the hybrid system is more suitable than astigmatic or biplane imaging alone for 3D localization of high-density data. The efficacy of the proposed method was confirmed via simulation and real data of microtubules. Furthermore, we also successfully demonstrated fluorescent-protein-based live cell 3D localization microscopy with a temporal resolution of just 3 seconds, capturing fast dynamics of the endoplasmic recticulum.

  19. Comparing high density LIDAR and medium resolution GPS generated elevation data for predicting yield stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High density light detection and ranging (LIDAR) imaging has been shown to be able to define yield stability areas of a field for multi-cropping. Since LIDAR imaging is expensive and not widely available, we hypothesized that medium resolution GPS elevation data which is commonly collected with var...

  20. Library Off-Site Shelving: Guide for High-Density Facilities.

    ERIC Educational Resources Information Center

    Nitecki, Danuta A., Ed.; Kendrick, Curtis L., Ed.

    This collection of essays addresses the planning, construction, and operating issues relating to high-density library shelving facilities. The volume covers essential topics that address issues relating to the building, its operations, and serving the collections. It begins with an introduction by the volume's editors, "The Paradox and Politics of…

  1. Los Alamos compact toroid, fast-liner, and high-density Z-pinch programs

    SciTech Connect

    Linford, R.K.; Sherwood, A.R.; Hammel, J.E.

    1981-03-01

    The Compact Toroid (CT) and High Density Z-Pinch (HDZP) are two of the plasma configurations presently being studied at Los Alamos. The purpose of these two programs, plus the recently terminated (May 1979) Fast Liner (FL) program, is summarized in this section along with a brief description of the experimental facilities. The remaining sections summarize the recent results and the experimental status.

  2. High density ash slurry pumping and disposal: An environmentally safe and economical alternative

    SciTech Connect

    Broek, B. van den

    1999-07-01

    The paper describes conventional ash disposal systems; high density slurry transportation and disposal systems, including the design, disposal site, technical features, sloped disposal site operating parameters, slurry quality and deposit management; typical operational questions; specific advantages of the proposed GEHO system; and GEHO piston diaphragm pumps.

  3. Total and High-Density Lipoprotein Cholesterol in Adults with Mental Retardation.

    ERIC Educational Resources Information Center

    Rimmer, James H.; Kelly, Luke E.

    1990-01-01

    The study evaluated the total cholesterol and high density lipoprotein cholesterol of 40 adults (mean age 37.5 years) with mental retardation residing at an intermediate care facility. Results indicated that 59 percent of the males and 68 percent of the females were at moderate to high risk for coronary heart disease. (DB)

  4. Improvement in mechanical and barrier properties of polyethylene blown films using atomic layer deposition

    SciTech Connect

    Lee, Gyeong Beom; Hak Song, Seung; Wook Moon, Sung; Woo Kim, Jun; Hyung Shim, Joon; Choi, Byoung-Ho; Moo Heo, Young

    2014-01-15

    Recently, thin films deposited on polymer substrates have been widely utilized as encapsulation barriers in electronic applications such as flexible displays, packaging films, and organic light-emitting diodes. The barrier and mechanical properties of these films are critical aspects when using them for protecting the inner modules of electronic devices from environmental factors such as moisture, oxygen, and sunlight. In particular, polymers can be degraded or decomposed more easily than other materials under such environmental conditions. Therefore, polymer films can be deposited using thin functional materials; however, suitable deposition methods for polymers are scarce owing to many limitations such as low melting/glass transition temperature, thermal degradation, and oxidation. In this study, a thin alumina oxide film was deposited on a high-density polyethylene blown film by using atomic layer deposition. The mechanical and barrier properties of the alumina oxide film deposited on the polyethylene film were characterized by a microtensile test and water vapor transmission rate test. Process conditions such as process temperature, plasma surface treatment, and number of cycles were varied to ascertain the reliability of the thin alumina oxide film deposited on the high-density polyethylene blown film. The results showed that the barrier property of the deposited film improved upon the application of plasma surface treatment, and that its mechanical properties varied under different process conditions.

  5. Radiolysis effects on polyethylene terephtalate

    NASA Astrophysics Data System (ADS)

    Zaharescu, Traian; Ciuprina, Florin

    2005-07-01

    The effects of high energy exposure of polyethylene terephtalate, the main electrical insulator for the conduction bars in alternative current generators, is presented. For comparison γ-irradiation was performed in distilled water and air at various doses, up to about 200 kGy. The dependencies of current on time for radiation processed PET sheets allow to depict the variation in the resistivity values as a measure of chemical changes in polyethylene terephtalate macromolecules. The comparison between the evolution of currents in irradiated specimens and spectral analysis bring about a light on the accumulation of radiolysis product in PET matrix. The high energy exposure of PET in air causes an increase of final value of current, while similar experiments in water produces a contrary effect. Some considerations of degradation mechanism are presented.

  6. Safety and Biocompatibility of a New High-Density Polyethylene-Based Spherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits.

    PubMed

    Fernandez-Bueno, Ivan; Di Lauro, Salvatore; Alvarez, Ivan; Lopez, Jose Carlos; Garcia-Gutierrez, Maria Teresa; Fernandez, Itziar; Larra, Eva; Pastor, Jose Carlos

    2015-01-01

    Purpose. To evaluate clinically and histologically the safety and biocompatibility of a new HDPE-based spherical porous orbital implants in rabbits. Methods. MEDPOR (Porex Surgical, Inc., Fairburn, GA, USA), OCULFIT I, and OCULFIT II (AJL Ophthalmic S.A., Vitoria, Spain) implants were implanted in eviscerated rabbis. Animals were randomly divided into 6 groups (n = 4 each) according to the 3 implant materials tested and 2 follow-up times of 90 or 180 days. Signs of regional pain and presence of eyelid swelling, conjunctival hyperemia, and amount of exudate were semiquantitatively evaluated. After animals sacrifice, the implants and surrounding ocular tissues were processed for histological staining and polarized light evaluation. Statistical study was performed by ANOVA and Kaplan-Meier analysis. Results. No statistically significant differences in regional pain, eyelid swelling, or conjunctival hyperemia were shown between implants and/or time points evaluated. However, amount of exudate differed, with OCULFIT I causing the smallest amount. No remarkable clinical complications were observed. Histological findings were similar in all three types of implants and agree with minor inflammatory response. Conclusions. OCULFIT ophthalmic tolerance and biocompatibility in rabbits were comparable to the clinically used MEDPOR. Clinical studies are needed to determine if OCULFIT is superior to the orbital implants commercially available. PMID:26689343

  7. Accumulation of MS2, GA, and Qβ phages on high density polyethylene (HDPE) and drinking water biofilms under flow/non-flow conditions.

    PubMed

    Pelleïeux, Sandra; Bertrand, Isabelle; Skali-Lami, Salaheddine; Mathieu, Laurence; Francius, Grégory; Gantzer, Christophe

    2012-12-01

    Accumulation of enteric viruses on surfaces within a drinking water distribution system was investigated in a reactor using three F-specific RNA bacteriophages (MS2, GA, and Qβ) as models of human pathogenic viruses. The influence of hydrodynamic versus hydrostatic conditions and the effect of the colonization of HDPE surfaces with two-month-old biofilms were assessed for virus accumulation on surfaces. In order to work under controlled laminar conditions and to study various wall shear stresses at the same time, a new rotating disc reactor was designed. Among the wall shear rates applied in the reactor (450 to 1640 s(-1)) no significant differences were observed concerning both the total number of bacteria, which was found to be around 1.7 × 10(7) cells/cm(2) and the virus concentrations on surfaces were about 3 × 10(4), 5 × 10(5) and 3 × 10(5) eq PFU/cm(2) for MS2, GA and Qβ phages, respectively. Comparison between static versus dynamic conditions revealed that both Brownian diffusion and convective diffusion were involved in the transport of these soft colloidal particles and an increase reaching about 1 log in virus concentrations measured on surfaces appeared when hydrodynamic conditions where applied. Our results also showed the influence of the colonization by two-month-old drinking water biofilms which led to a change in the level of virus adhesion. The implication of the physico-chemical properties was also underlined since different adhesion profiles were obtained for the three bacteriophages and MS2 phage was found to be the less adherent one whatever the conditions applied.

  8. Properties of dried distillers grains with solubles, Paulownia wood, and pine wood reinforced high density polyethylene composites: Effect of maleation, chemical modification, and the mixing of fillers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to identify usable lignocellulosic materials that can be blended with thermoplastic resins to produced commercial lignocellulosic plastic composites (LPC) at lower costs with improved performance. The core objectives of this study are to: 1) evaluate the use of dried distillers grai...

  9. Safety and Biocompatibility of a New High-Density Polyethylene-Based Spherical Integrated Porous Orbital Implant: An Experimental Study in Rabbits

    PubMed Central

    Fernandez-Bueno, Ivan; Di Lauro, Salvatore; Alvarez, Ivan; Lopez, Jose Carlos; Garcia-Gutierrez, Maria Teresa; Fernandez, Itziar; Larra, Eva; Pastor, Jose Carlos

    2015-01-01

    Purpose. To evaluate clinically and histologically the safety and biocompatibility of a new HDPE-based spherical porous orbital implants in rabbits. Methods. MEDPOR (Porex Surgical, Inc., Fairburn, GA, USA), OCULFIT I, and OCULFIT II (AJL Ophthalmic S.A., Vitoria, Spain) implants were implanted in eviscerated rabbis. Animals were randomly divided into 6 groups (n = 4 each) according to the 3 implant materials tested and 2 follow-up times of 90 or 180 days. Signs of regional pain and presence of eyelid swelling, conjunctival hyperemia, and amount of exudate were semiquantitatively evaluated. After animals sacrifice, the implants and surrounding ocular tissues were processed for histological staining and polarized light evaluation. Statistical study was performed by ANOVA and Kaplan-Meier analysis. Results. No statistically significant differences in regional pain, eyelid swelling, or conjunctival hyperemia were shown between implants and/or time points evaluated. However, amount of exudate differed, with OCULFIT I causing the smallest amount. No remarkable clinical complications were observed. Histological findings were similar in all three types of implants and agree with minor inflammatory response. Conclusions. OCULFIT ophthalmic tolerance and biocompatibility in rabbits were comparable to the clinically used MEDPOR. Clinical studies are needed to determine if OCULFIT is superior to the orbital implants commercially available. PMID:26689343

  10. Low levels of high density lipoproteins in Turks, a population with elevated hepatic lipase. High density lipoprotein characterization and gender-specific effects of apolipoprotein e genotype.

    PubMed

    Mahley, R W; Pépin, J; Palaoğlu, K E; Malloy, M J; Kane, J P; Bersot, T P

    2000-08-01

    Turks have strikingly low levels of high density lipoprotein cholesterol (HDL-C) (10-15 mg/dL lower than those of Americans or Western Europeans) associated with elevated hepatic lipase mass and activity. Here we report that Turks have low levels of high density lipoprotein subclass 2 (HDL(2)), apoA-I-containing lipoproteins (LpA-I), and pre-beta-1 HDL and increased levels of HDL(3) and LpA-I/A-II particles (potentially an atherogenic lipid profile). The frequency distributions of HDL-C and LpA-I levels were skewed toward bimodality in Turkish women but were unimodal in Turkish men. The apoE genotype affected HDL-C and LpA-I levels in women only. In women, but not men, the varepsilon2 allele was strikingly more prevalent in those with the highest levels of HDL-C and LpA-I than in those with the lowest levels. The higher prevalence of the epsilon2 allele in these subgroups of women was not explained by plasma triglyceride levels, total cholesterol levels, age, or body mass index. The modulating effects of apoE isoforms on lipolytic hydrolysis of HDL by hepatic lipase (apoE2 preventing efficient hydrolysis) or on lipoprotein receptor binding (apoE2 interacting poorly with the low density lipoprotein receptors) may account for differences in HDL-C levels in Turkish women (the epsilon2 allele being associated with higher HDL levels). In Turkish men, who have substantially higher levels of hepatic lipase activity than women, the modulating effect of apoE may be overwhelmed. The gender-specific impact of the apoE genotype on HDL-C and LpA-I levels in association with elevated levels of hepatic lipase provides new insights into the metabolism of HDL.

  11. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  12. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  13. Efficient production of propionic acid through high density culture with recycling cells of Propionibacterium acidipropionici.

    PubMed

    Liu, Zhen; Ge, Yongsheng; Xu, Jing; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2016-09-01

    The aim of this study was to explore propionic acid production via high density culture of Propionibacterium acidipropionici and recycling of cells. Results showed that final cells of P. acidipropionici from high density culture still had high metabolic activity for reuse. Using our process, 75.9gl(-1) propionic acid was produced, which was 1.84-fold of that in fed-batch fermentation with low cell density (41.2gl(-1)); the corresponding productivity was 100.0% higher than that in fed-batch fermentation with low cell density (0.16gl(-1)h(-1)). This bioprocess may have potential for the industrial production of propionic acid. PMID:27318164

  14. High-Density Reconstitution of Functional Water Channels into Vesicular and Planar Block Copolymer Membranes

    PubMed Central

    2012-01-01

    The exquisite selectivity and unique transport properties of membrane proteins can be harnessed for a variety of engineering and biomedical applications if suitable membranes can be produced. Amphiphilic block copolymers (BCPs), developed as stable lipid analogs, form membranes that functionally incorporate membrane proteins and are ideal for such applications. While high protein density and planar membrane morphology are most desirable, BCP–membrane protein aggregates have so far been limited to low protein densities in either vesicular or bilayer morphologies. Here, we used dialysis to reproducibly form planar and vesicular BCP membranes with a high density of reconstituted aquaporin-0 (AQP0) water channels. We show that AQP0 retains its biological activity when incorporated at high density in BCP membranes, and that the morphology of the BCP–protein aggregates can be controlled by adjusting the amount of incorporated AQP0. We also show that BCPs can be used to form two-dimensional crystals of AQP0. PMID:23082933

  15. High-density ferroelectric recording using a hard disk drive-type data storage system

    NASA Astrophysics Data System (ADS)

    Aoki, Tomonori; Hiranaga, Yoshiomi; Cho, Yasuo

    2016-05-01

    Ferroelectric probe data storage has been proposed as a novel data storage method in which bits are recorded based on the polarization directions of individual domains. These bits are subsequently read by scanning nonlinear dielectric microscopy. The domain walls of typical ferroelectric materials are quite thin: often only several times the lattice constant, which is advantageous for high-density data storage. In this work, high-density read/write (R/W) demonstrations were conducted using a hard disk drive-type test system, and the writing of bit arrays with a recording density of 3.4 Tbit/in.2 was achieved. Additionally, a series of writing and reading operations was successfully demonstrated at a density of 1 Tbit/in.2. Favorable characteristics of ferroelectric recording media for use with the proposed method are discussed in the latter part of this paper.

  16. Evidence for liquid water during the high-density to low-density amorphous ice transition

    PubMed Central

    Kim, Chae Un; Barstow, Buz; Tate, Mark W.; Gruner, Sol M.

    2009-01-01

    Polymorphism of water has been extensively studied, but controversy still exists over the phase transition between high-density amorphous (HDA) and low-density amorphous (LDA) ice. We report the phase behavior of HDA ice inside high-pressure cryocooled protein crystals. Using X-ray diffraction, we demonstrate that the intermediate states in the temperature range from 80 to 170 K can be reconstructed as a linear combination of HDA and LDA ice, suggesting a first-order transition. We found evidence for a liquid state of water during the ice transition based on the protein crystallographic data. These observations open the possibility that the HDA ice induced by high-pressure cryocooling is a genuine glassy form of high-density liquid. PMID:19258453

  17. High-density integration of carbon nanotubes via chemical self-assembly

    NASA Astrophysics Data System (ADS)

    Park, Hongsik; Afzali, Ali; Han, Shu-Jen; Tulevski, George S.; Franklin, Aaron D.; Tersoff, Jerry; Hannon, James B.; Haensch, Wilfried

    2012-12-01

    Carbon nanotubes have potential in the development of high-speed and power-efficient logic applications. However, for such technologies to be viable, a high density of semiconducting nanotubes must be placed at precise locations on a substrate. Here, we show that ion-exchange chemistry can be used to fabricate arrays of individually positioned carbon nanotubes with a density as high as 1 × 109 cm-2--two orders of magnitude higher than previous reports. With this approach, we assembled a high density of carbon-nanotube transistors in a conventional semiconductor fabrication line and then electrically tested more than 10,000 devices in a single chip. The ability to characterize such large distributions of nanotube devices is crucial for analysing transistor performance, yield and semiconducting nanotube purity.

  18. Equations of state for many-body systems at high densities

    NASA Astrophysics Data System (ADS)

    Khan, Imran; Gao, Bo

    2004-05-01

    For a many-body system at high densities, the equation of state depends not only on the scattering length, but also on further details of the inter-particle potential. For a many-atom system, in particular, its behavior at high densities will depend on the van der Waals interaction. We are exploring the behavior of a many-atom system in this density regime using the variational Monte Carlo method, in combination with the concept of effective potential introduced in a recent work(B. Gao, J. Phys. B 36), 2111 (2003).. As an initial test, we will compare our hard-sphere results with those of Gross-Pitevaskii equation and diffussion Monte Carlo method(D. Blume and C. H. Greene, Phys. Rev. A 63), 063601 (2001)..

  19. Advantages and Challenges of 10-Gbps Transmission on High-Density Interconnect Boards

    NASA Astrophysics Data System (ADS)

    Yee, Chang Fei; Jambek, Asral Bahari; Al-Hadi, Azremi Abdullah

    2016-06-01

    This paper provides a brief introduction to high-density interconnect (HDI) technology and its implementation on printed circuit boards (PCBs). The advantages and challenges of implementing 10-Gbps signal transmission on high-density interconnect boards are discussed in detail. The advantages (e.g., smaller via dimension and via stub removal) and challenges (e.g., crosstalk due to smaller interpair separation) of HDI are studied by analyzing the S-parameter, time-domain reflectometry (TDR), and transmission-line eye diagrams obtained by three-dimensional electromagnetic modeling (3DEM) and two-dimensional electromagnetic modeling (2DEM) using Mentor Graphics HyperLynx and Keysight Advanced Design System (ADS) electronic computer-aided design (ECAD) software. HDI outperforms conventional PCB technology in terms of signal integrity, but proper routing topology should be applied to overcome the challenge posed by crosstalk due to the tight spacing between traces.

  20. Subfractions of high-density lipoprotein (HDL) and dysfunctional HDL in chronic kidney disease patients

    PubMed Central

    Banach, Maciej

    2016-01-01

    A number of studies have shown that chronic kidney disease (CKD) is associated with increased risk for cardiovascular disease (CVD). Chronic kidney disease is characterized by significant disturbances in lipoprotein metabolism, including differences in quantitative and qualitative content of high-density lipoprotein (HDL) particles. Recent studies have revealed that serum HDL cholesterol levels do not predict CVD in CKD patients; thus CKD-induced modifications in high-density lipoprotein (HDL) may be responsible for the increase in CV risk in CKD patients. Various methods are available to separate several subclasses of HDL and confirm their atheroprotective properties. However, under pathological conditions associated with inflammation and oxidation, HDL can progressively lose normal biological activities and be converted into dysfunctional HDL. In this review, we highlight the current state of knowledge on subfractions of HDL and HDL dysfunction in CKD. PMID:27478466

  1. Structural investigation of reconstituted high density lipoproteins by scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Culot, C.; Durant, F.; Lazarescu, S.; Thiry, P. A.; Vanloo, B.; Rosseneu, M. Y.; Lins, L.; Brasseur, R.

    2004-05-01

    Being able to participate in the reverse cholesterol transport (RCT), high density lipoproteins (HDL) are known to be anti-atherogenic. In order to understand such a process, it is thus essential to have a detailed knowledge of the structure and molecular organisation of HDL. Reconstituted nascent high density lipoproteins (r-HDL), consisting of synthetic phospholipids together with different apolipoproteins (apo A-I, A-IV and E), were thus analysed by scanning tunnelling microscopy (STM). Both shape and dimensions of the discoidal HDL particles measured by this technique were found in good agreement with the data available from the literature. The accuracy of the STM pictures presented in this paper enables for the first time the visualisation of the molecular organisation of such macromolecules. The arrangement of the protein as antiparallel helical segments, is consistent with the general mode of organisation of apolipoprotein/phospholipid discoidal particles previously reported.

  2. Ultra-sensitive high-density Rb-87 radio-frequency magnetometer

    SciTech Connect

    Savukov, I.; Boshier, M. G.; Karaulanov, T.

    2014-01-13

    Radio-frequency (RF) atomic magnetometers (AMs) can be used in many applications, such as magnetic resonance imaging and nuclear quadrupole resonance. High-density AMs provide both superior sensitivity and large bandwidth. Previously, high-density potassium AMs were demonstrated, but these magnetometers have various disadvantages, such as high-temperature of operation and bulky design. We demonstrate a rubidium-87 RF AM with 5 fT/Hz{sup 1/2} sensitivity (3 fT Hz{sup 1/2} probe noise), which is comparable to that of the best potassium magnetometers. Our magnetometer also features a simple fiber-optic design, providing maximum flexibility for magnetic-field measurements.

  3. High-density implosion via suppression of Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Shiroto, Takashi; Ohnishi, Naofumi; Sunahara, Atsushi; Fujioka, Shinsuke; Sasaki, Akira

    2016-05-01

    Radiation hydrodynamic simulations of ICF capsules assuming a kJ-class laser facility were conducted to evaluate the hydrodynamic stability of a brominated plastic shell. An opacity table based on a detailed atomic model was employed so that more quantitative forecast of the implosion dynamics could be performed. A lightly doped shell could form a high-density core at the maximum compression by suppressing the hydrodynamic instability.

  4. Development of a technology for pressing high-density products using gas-draining methods

    SciTech Connect

    Mamedov, A.T.

    1994-11-01

    The factors that hinder the formation of high-density compacts by cold-pressing of powders are considered. The main factors are the gases present in the charge and the technological lubricant introduced to facilitate the work of the press mold. A procedure has been developed for calculating the efficiency of gas drainage from a mold and the pressure in gas pores in the compacts. Recommendations are made for increasing the density of compacts from iron powders by a single cold pressing.

  5. Growth and characterization of high-density mats of single-walled carbon nanotubes for interconnects

    SciTech Connect

    Robertson, J.; Zhong, G.; Telg, H.; Thomsen, C.; Warner, J. H.; Briggs, G. A. D.; Dettlaff-Weglikowska, U.; Roth, S.

    2008-10-20

    We grow high-density, aligned single wall carbon nanotube mats for use as interconnects in integrated circuits by remote plasma chemical vapor deposition from a Fe-Al{sub 2}O{sub 3} thin film catalyst. We carry out extensive Raman characterization of the resulting mats, and find that this catalyst system gives rise to a broad range of nanotube diameters, with no preferential selectivity of semiconducting tubes, but with at least 1/3 of metallic tubes.

  6. Tris(triazolo)benzene and its derivatives: high-density energetic materials.

    PubMed

    Thottempudi, Venugopal; Forohor, Farhad; Parrish, Damon A; Shreeve, Jean'ne M

    2012-09-24

    High-performance explosives: Tris(triazolo)benzene was synthesized and converted to its trinitro and trichloro derivatives (see scheme; R=NO(2), Cl). The heats of formation of this "high-nitrogen" compounds were calculated and combined with experimentally determined densities to determine detonation pressures and velocities. They exhibit high density, good thermal stability, high heats of formation, and moderate to good detonation properties.

  7. High-density implosion via suppression of Rayleigh–Taylor instability

    NASA Astrophysics Data System (ADS)

    Shiroto, Takashi; Ohnishi, Naofumi; Sunahara, Atsushi; Fujioka, Shinsuke; Sasaki, Akira

    2016-05-01

    Radiation hydrodynamic simulations of ICF capsules assuming a kJ-class laser facility were conducted to evaluate the hydrodynamic stability of a brominated plastic shell. An opacity table based on a detailed atomic model was employed so that more quantitative forecast of the implosion dynamics could be performed. A lightly doped shell could form a high-density core at the maximum compression by suppressing the hydrodynamic instability.

  8. Acoustical Detection of High-Density Krill Demersal Layers in the Submarine Canyons off Georges Bank.

    PubMed

    Greene, C H; Wiebe, P H; Burczynski, J; Youngbluth, M J

    1988-07-15

    High-density demersal layers of krill have been detected in the submarine canyons off Georges Bank by means of a high-frequency, dual-beam bioacoustical technique. Krill densities in these demersal layers were observed to be two to three orders of magnitude greater than the highest densities observed in water-column scattering layers. Such abundances may help explain the unusually high squid and demersal fish production estimates attributed to the Georges Bank ecosystem. PMID:17734865

  9. 250 degrees C SiC High Density Power Module Development

    SciTech Connect

    Ning, Puqi; Wang, Fei; Ngo, Khai

    2011-01-01

    Taking full advantage of SiC devices, a team from Oak Ridge National Laboratory, the University of Tennessee and Virginia Polytechnic Institute and State University have designed, developed, and tested a phase-leg power module based on a high temperature wirebond package. Details of the layout, gate drive, and cooling system designs are described. Continuous power tests confirmed that our design process produced a high density power module that operated successfully at high junction temperatures.

  10. Acoustical Detection of High-Density Krill Demersal Layers in the Submarine Canyons off Georges Bank.

    PubMed

    Greene, C H; Wiebe, P H; Burczynski, J; Youngbluth, M J

    1988-07-15

    High-density demersal layers of krill have been detected in the submarine canyons off Georges Bank by means of a high-frequency, dual-beam bioacoustical technique. Krill densities in these demersal layers were observed to be two to three orders of magnitude greater than the highest densities observed in water-column scattering layers. Such abundances may help explain the unusually high squid and demersal fish production estimates attributed to the Georges Bank ecosystem.

  11. Sintering maps for ceramic-filled-glass composites

    SciTech Connect

    Ewsuk, K.G.

    1990-01-01

    Ceramic-filled-glass (CFG) composites densify by viscous flow during final-stage, non-reactive, liquid-phase sintering (NLPS). The rate of densification is controlled by the viscosity of the CFG composite dispersion during sintering, which is determined by the concentration of ceramic filler in the composite, and the viscosity of the suspending glass medium. A mathematical expression has been developed that determines the critical filler concentration in a given viscosity glass at which high-density CFG composites will be produced in a given time during final-stage NLPS. This expression has been used to predict the effects of sintering time, pore size, and glass viscosity on critical filler concentration, and to construct final-stage sintering maps that provide guidelines for designing and processing high-density CFG composites. 12 refs., 2 figs.

  12. High density of ice krill (Euphausia crystallorophias) in the Amundsen sea coastal polynya, Antarctica

    NASA Astrophysics Data System (ADS)

    La, Hyoung Sul; Lee, Hyungbeen; Fielding, Sophie; Kang, Donhyug; Ha, Ho Kyung; Atkinson, Angus; Park, Jisoo; Siegel, Volker; Lee, SangHoon; Shin, Hyoung Chul

    2015-01-01

    High densities of ice krill Euphausia crystallorophias were observed along six acoustic transects within the Amundsen Sea Coastal Polynya, Antarctica. Two-frequency acoustic backscatter data was examined in the austral summers of January 2011 and February 2012. A dB identification window (Sv120-38) identified ice krill dominating the acoustic backscatter. The density of ice krill, calculated with the stochastic distorted-wave born approximation model, ranged between 4.5 and 30 g wet mass m-2 for each transect (a mean of 16 g wet mass m-2 for all transects), these high values are an order of magnitude higher than recorded previously in the Ross Sea Polynya. High densities were detected along the ice shelf and near the boundary between pack ice and coastal polynya, and we postulate that these could be important habitats for ice krill. The high densities observed along the transects make ice krill a potentially important, but poorly known contributor to these high-latitude shelf food webs.

  13. Construction and Analysis of High-Density Linkage Map Using High-Throughput Sequencing Data

    PubMed Central

    Liu, Min; Liu, Hui; Zeng, Huaping; Deng, Dejing; Xin, Huaigen; Song, Jun; Xu, Chunhua; Sun, Xiaowen; Hou, Xilin; Wang, Xiaowu; Zheng, Hongkun

    2014-01-01

    Linkage maps enable the study of important biological questions. The construction of high-density linkage maps appears more feasible since the advent of next-generation sequencing (NGS), which eases SNP discovery and high-throughput genotyping of large population. However, the marker number explosion and genotyping errors from NGS data challenge the computational efficiency and linkage map quality of linkage study methods. Here we report the HighMap method for constructing high-density linkage maps from NGS data. HighMap employs an iterative ordering and error correction strategy based on a k-nearest neighbor algorithm and a Monte Carlo multipoint maximum likelihood algorithm. Simulation study shows HighMap can create a linkage map with three times as many markers as ordering-only methods while offering more accurate marker orders and stable genetic distances. Using HighMap, we constructed a common carp linkage map with 10,004 markers. The singleton rate was less than one-ninth of that generated by JoinMap4.1. Its total map distance was 5,908 cM, consistent with reports on low-density maps. HighMap is an efficient method for constructing high-density, high-quality linkage maps from high-throughput population NGS data. It will facilitate genome assembling, comparative genomic analysis, and QTL studies. HighMap is available at http://highmap.biomarker.com.cn/. PMID:24905985

  14. Inhibition of social behavior in chimpanzees under high-density conditions.

    PubMed

    Aureli, F; de Waal, F B

    1997-01-01

    This is the first study to investigate the short-term effects of high population density on captive chimpanzees (Pan troglodytes). Subjects of the study were 45 chimpanzees living in five different groups at the Yerkes Regional Primate Research Center. The groups were observed under two conditions: 1) when they had access to both the indoor and outdoor sections of their enclosures; 2) during cold days when they were locked into the indoor runs, which reduced the available space by more than half. Under the high-density condition, allogrooming and submissive greetings decreased, but juvenile play increased. Remarkably, the rate of various forms of agonistic behavior, such as aggression, bluff charge, bluff display, and hooting, occurred less frequently under the high-density condition. This general decrease in adult social activity, including agonistic behavior, can be interpreted as an inhibition strategy to reduce opportunities for conflict when interindividual distances are reduced. This strategy is probably effective only in the short run, however. Behavioral indicators of anxiety, such as rough scratching and yawning, showed elevated rates, suggesting increased social tension under the high-density condition.

  15. Injectable, High Density Collagen Gels for Annulus Fibrosus Repair: An In Vitro Rat Tail Model

    PubMed Central

    Borde, Brandon; Grunert, Peter; Härtl, Roger; Bonassar, Lawrence J.

    2014-01-01

    A herniated intervertebral disc often causes back pain when disc tissue is displaced through a damaged annulus fibrosus. Currently the only methods available for annulus fibrosus repair involve mechanical closure of defect, which does little to address biological healing in the damaged tissue. Collagen hydrogels are injectable and have been used to repair annulus defects in vivo. In this study, high-density collagen hydrogels at 5, 10 and 15 mg/ml were used to repair defects made to intact rat caudal intervertebral discs in vitro. A group of gels at 15 mg/ml were also crosslinked with riboflavin at 0.03 mM, 0.07 mM or 0.10 mM . These crosslinked, high-density collagen gels maintained presence in the defect under loading and contributed positively to the mechanical response of damaged discs. Discs exhibited increases to 95% of undamaged effective equilibrium and instantaneous moduli as well as up to four fold decreases in effective hydraulic permeability from the damaged discs. These data suggest that high density collagen gels may be effective at restoring mechanical function of injured discs as well as potential vehicles for delivery of biological agents such as cells or growth factors that may aid in the repair of the annulus fibrosus. PMID:25504661

  16. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis)

    PubMed Central

    Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou

    2016-01-01

    Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp. PMID:27345016

  17. Dosimetric Verification around High-density Materials for External Beam Radiotherapy.

    PubMed

    Sasaki, Makoto; Nakata, Manabu; Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Fujimoto, Takahiro; Tsuruta, Yusuke; Yano, Shinsuke; Higashimura, Kyouji

    2016-09-01

    It is generally known that the dose distribution around the high-density materials is not accurate with commercially available radiation treatment planning systems (RTPS). Recently, Acuros XB (AXB) has been clinically available for dose calculation algorithm. The AXB is based on the linear Boltzmann transport equation - the governing equation - that describes the distribution of radiation particles resulting from their interactions with matter. The purpose of this study was to evaluate the dose calculation accuracy around high-density materials for AXB under three X-rays energy on the basis of measured values with EBT3 and compare AXB with various dose calculation algorithms (AAA, XVMC) in RTPS and Monte Carlo. First, two different metals, including titanium and stainless steel, were inserted at the center of a water-equivalent phantom, and the depth dose was measured with EBT3. Next, after a phantom which reproduced the geometry of measurement was virtually created in RTPS, dose distributions were calculated with three commercially available algorithms (AXB, AAA, and XVMC) and MC. The calculated doses were then compared with the measured ones. As a result, compared to other algorithms, it was found that the dose calculation accuracy of AXB at the exit side of high-density materials was comparable to that of MC and measured value with EBT3. However, note that AXB underestimated the dose up to approximately 30% at the plane of incidence because it cannot exactly estimate the impact of the backscatter. PMID:27647596

  18. Optimal Thermo-Structural Analysis for High Density Package Mounting on Build-up Board

    NASA Astrophysics Data System (ADS)

    Nakanishi, Tohru; Hase, Tomohiro

    The importance of the high density packaging technology and mounting technology on the printed wiring build-up board has been increased for the consumer electric products. On the other hand, the chance to use the build-up boards for mounting the high density packages has been increased. However, the understanding that the reliability of the solder connection depends on the structure of the package, the motherboard, and the material properties, is not very high. In this paper, the reliability for high density packaging, mounted on the build-up board, is assessed. The compact numerical analysis model for the reliability assessment is suggested and the most reliable packaging design with optimizing each of the parameters is reported. For introduction to the reliability assessment of the FCA attachment, ceramic and silicon are compared as the inter-poser with the parameter of the solder height. The verification of the numerical analysis results using tests on the actual hardware is also shown. And the established numerical analysis model is applied to the study of influence of the copper balance between the front side and the back side copper layers.

  19. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis).

    PubMed

    Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou

    2016-01-01

    Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp. PMID:27345016

  20. HIGH-DENSITY MOLECULAR GAS PROPERTIES OF THE STARBURST GALAXY NGC 1614 REVEALED WITH ALMA

    SciTech Connect

    Imanishi, Masatoshi; Nakanishi, Kouichiro

    2013-09-15

    We present the results of HCN/HCO{sup +}/HNC J = 4-3 transition line observations of the nearby starburst galaxy NGC 1614, obtained with ALMA Cycle 0. We find that high density molecular gas traced with these lines shows a velocity structure such that the northern (southern) side of the nucleus is redshifted (blueshifted) with respect to the nuclear velocity of this galaxy. The redshifted and blueshifted emission peaks are offset by {approx}0.''6 at the northern and southern sides of the nucleus, respectively. At these offset positions, observations at infrared >3 {mu}m indicate the presence of active dusty starbursts, supporting the picture that high-density molecular gas is the site of active starbursts. The enclosed dynamical mass within the central {approx}2'' in radius, derived from the dynamics of the high-density molecular gas, is {approx}10{sup 9} M{sub Sun }, which is similar to previous estimates. Finally, the HCN emission is weaker than HCO{sup +} but stronger than HNC for J = 4-3 for all starburst regions of NGC 1614, as seen for J = 1-0 transition lines in starburst-dominated galaxies.

  1. Novel LLM series high density energy materials: Synthesis, characterization, and thermal stability

    NASA Astrophysics Data System (ADS)

    Pagoria, Philip; Zhang, Maoxi; Tsyshevskiy, Roman; Kuklja, Maija

    Novel high density energy materials must satisfy specific requirements, such as an increased performance, reliably high stability to external stimuli, cost-efficiency and ease of synthesis, be environmentally benign, and be safe for handling and transportation. During the last decade, the attention of researchers has drifted from widely used nitroester-, nitramine-, and nitroaromatic-based explosives to nitrogen-rich heterocyclic compounds. Good thermal stability, the low melting point, high density, and moderate sensitivity make heterocycle materials attractive candidates for use as oxidizers in rocket propellants and fuels, secondary explosives, and possibly as melt-castable ingredients of high explosive formulations. In this report, the synthesis, characterization, and results of quantum-chemical DFT study of thermal stability of LLM-191, LLM-192 and LLM-200 high density energy materials are presented. Work performed under the auspices of the DOE by the LLNL (Contract DE-AC52-07NA27344). This research is supported in part by ONR (Grant N00014-12-1-0529) and NSF. We used NSF XSEDE (Grant DMR-130077) and DOE NERSC (Contract DE-AC02-05CH11231) resources.

  2. A high-density genetic map and growth related QTL mapping in bighead carp (Hypophthalmichthys nobilis).

    PubMed

    Fu, Beide; Liu, Haiyang; Yu, Xiaomu; Tong, Jingou

    2016-06-27

    Growth related traits in fish are controlled by quantitative trait loci (QTL), but no QTL for growth have been detected in bighead carp (Hypophthalmichthys nobilis) due to the lack of high-density genetic map. In this study, an ultra-high density genetic map was constructed with 3,121 SNP markers by sequencing 117 individuals in a F1 family using 2b-RAD technology. The total length of the map was 2341.27 cM, with an average marker interval of 0.75 cM. A high level of genomic synteny between our map and zebrafish was detected. Based on this genetic map, one genome-wide significant and 37 suggestive QTL for five growth-related traits were identified in 6 linkage groups (i.e. LG3, LG11, LG15, LG18, LG19, LG22). The phenotypic variance explained (PVE) by these QTL varied from 15.4% to 38.2%. Marker within the significant QTL region was surrounded by CRP1 and CRP2, which played an important role in muscle cell division. These high-density map and QTL information provided a solid base for QTL fine mapping and comparative genomics in bighead carp.

  3. Creation of Controllable High-Density Defects in Silver Nanowires for Enhanced Catalytic Property.

    PubMed

    Wang, Chaoqi; Zhang, Zhaorui; Yang, Guang; Chen, Qiang; Yin, Yadong; Jin, Mingshang

    2016-09-14

    Structural defects have been proven to determine many of the materials' properties. Here, we demonstrate a unique approach to the creation of Ag nanowires with high-density defects through controllable nanoparticles coalescence in one-dimensional pores of mesoporous silica. The density of defects can be easily adjusted by tuning the annealing temperature during synthetic process. The high-density defects promote the adsorption and activation of more reactants on the surface of Ag nanowires during catalytic reactions. As a result, the as-prepared Ag nanowires exhibit enhanced activities in catalyzing dehydrogenative coupling reaction of silane in terms of apparent activation energy and turnover frequency (TOF). We show further that the silane conversion rate can be enhanced by maximizing the defect density and thus the number of active sites on the Ag nanowires, reaching a remarkable TOF of 8288 h(-1), which represents the highest TOF that has been achieved by far on Ag catalysts. This work not only proves the important role of structural defects in catalysis but also provides a new and general strategy for constructing high-density defects in metal catalysts.

  4. Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.

    2010-03-01

    The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the scalp. Furthermore, controversy exists over the nature of normal vascular, responses in infants. To address these issues, we extend the use of novel high-density NIRS arrays with multiple source-detector distances and a superficial signal regression technique to infants. Evaluations of healthy term-born infants within the first three days of life are performed without sedation using a visual stimulus. We find that the regression technique significantly improves brain activation signal quality. Furthermore, in six out of eight infants, both oxy- and total hemoglobin increases while deoxyhemoglobin decreases, suggesting that, at term, the neurovascular coupling in the visual cortex is similar to that found in healthy adults. These results demonstrate the feasibility of using high-density NIRS arrays in infants to improve signal quality through superficial signal regression, and provide a foundation for further development of high-density NIRS as a clinical tool.

  5. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose.

    PubMed

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-01-01

    For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL(-1) and 0.91 g mL(-1)) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.

  6. Synthesis of high density aviation fuel with cyclopentanol derived from lignocellulose

    NASA Astrophysics Data System (ADS)

    Sheng, Xueru; Li, Ning; Li, Guangyi; Wang, Wentao; Yang, Jinfan; Cong, Yu; Wang, Aiqin; Wang, Xiaodong; Zhang, Tao

    2015-03-01

    For the first time, renewable high density aviation fuels were synthesized at high overall yield (95.6%) by the Guerbet reaction of cyclopentanol which can be derived from lignocellulose, followed by the hydrodeoxygenation (HDO). The solvent-free Guerbet reaction of cyclopentanol was carried out under the co-catalysis of solid bases and Raney metals. Among the investigated catalyst systems, the combinations of magnesium-aluminium hydrotalcite (MgAl-HT) and Raney Ni (or Raney Co) exhibited the best performances. Over them, high carbon yield (96.7%) of C10 and C15 oxygenates was achieved. The Guerbet reaction products were further hydrodeoxygenated to bi(cyclopentane) and tri(cyclopentane) over a series of Ni catalysts. These alkanes have high densities (0.86 g mL-1 and 0.91 g mL-1) and can be used as high density aviation fuels or additives to bio-jet fuel. Among the investigated HDO catalysts, the 35 wt.% Ni-SiO2-DP prepared by deposition-precipitation method exhibited the highest activity.

  7. Ion Beam Driven Shock Device Using Accelerated High Density Plasmoid by Phased Z-Pinch

    NASA Astrophysics Data System (ADS)

    Horioka, Kazuhiko; Aizawa, Tatsuhiko; Tsuchida, Minoru

    1997-07-01

    Different from three methods to generate high shock pressure by acceleration of high density plasma or particles (intense ion beams, plasma gun and rail gun) having their intrinsic deficiencies, new frontier is proposed to propel the shock physics and chemistry by using the high density plasma. In the present paper, new scheduled Z-pinch method is developed as a new device to generate high shock pressure. In the present method, plasma density can be compressed to the order of 10^18 to 10^19 cm-3, and high density plasma can be accelerated by zippering together with axial shock pressure, resulting in high-velocity launching of flyer. In the present paper, systematic experimental works are performed to demonstrate that high energy plasma flow can be electro-magnetically driven by the scheduled capillary Z-pinch, and to characterize the ion velocity and its current density. The estimated value of ion speed from the plasma-measurement reaches to 7 x 10^7 cm/s corresponding to 70 to 100 KeV for Ar. Copper flyer can be shot with the velocity range from 1km/s to 3km/s in the standard condition.

  8. The effect of partially stabilized zirconia on the mechanical properties of the hydroxyapatite-polyethylene composites.

    PubMed

    Sadi, A Yari; Homaeigohar, S Sh; Khavandi, A R; Javadpour, J

    2004-08-01

    The effect of partially stabilized zirconia (PSZ) on the mechanical properties of the hydroxyapatite-high density polyethylene composites was studied by investigating the effect of hydroxyapatite and the simultaneous effect of hydroxyapatite and PSZ volume fractions on fracture strength, modulus of elasticity, and absorbed energy in the composite samples. The results showed a decrease in fracture strength, and absorbed energy with an increase in the volume fraction of hydroxyapatite content in the hydroxyapatite-polyethylene samples. Partial replacement of hydroxyapatite with PSZ particles was beneficial in the improvement of both the fracture strength and failure energy values in the composite samples. A transition from ductile to brittle behavior was observed as the volume fraction of ceramic filler particles increased in the samples.

  9. Vacuum ultraviolet treatment of polyethylene to change surface properties and characteristics of protein adsorption.

    PubMed

    Vasilets, Viktor N; Kuznetsov, Artem V; Sevastianov, Viktor I

    2004-06-01

    The effects of vacuum ultraviolet (VUV) treatment on surface chemical composition morphology and albumin adsorption for low-density polyethylene (LDPE) and high-density polyethylene (HDPE) were investigated. The attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectra and contact angle measurements indicated the formation of oxygen-containing polar groups and double bonds under VUV photooxidation in the presence of air or under VUV irradiation in vacuum. Scanning electron microscopy revealed the development of regular structure with the period about 1 microm on the surface of LDPE and HDPE during VUV photooxidation. The correlation between amount of tightly adsorbed albumin and surface concentration of carboxyl groups generated by VUV irradiation was found. The aging effect for protein adsorption during long storage of VUV irradiated samples in air or phosphate-buffered saline (PBS) was studied. The obtained results prove the VUV irradiation provides a high potential to regulate protein adsorption on polymers for biomedical applications.

  10. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  11. The elastic and yield behavior of polyethylene tubes subjected to biaxial loadings

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Semeliss, M.; Wong, R.

    1992-01-01

    The elastic and yield response of extruded thin-walled high-density polyethylene tubes with a density in the range of 0.961 to 0.964 gm/cu cm was investigated. Material properties in the axial and hoop directions were measured, and the tubes were found to be mildly transversely isotropic. The yield response was pressure sensitive, and was well predicted using the pressure-modified Hill criterion using a compressive to tensile yield strength ratio of 1:12.

  12. Evaluation of an analytic linear Boltzmann transport equation solver for high-density inhomogeneities

    SciTech Connect

    Lloyd, S. A. M.; Ansbacher, W.

    2013-01-15

    Purpose: Acuros external beam (Acuros XB) is a novel dose calculation algorithm implemented through the ECLIPSE treatment planning system. The algorithm finds a deterministic solution to the linear Boltzmann transport equation, the same equation commonly solved stochastically by Monte Carlo methods. This work is an evaluation of Acuros XB, by comparison with Monte Carlo, for dose calculation applications involving high-density materials. Existing non-Monte Carlo clinical dose calculation algorithms, such as the analytic anisotropic algorithm (AAA), do not accurately model dose perturbations due to increased electron scatter within high-density volumes. Methods: Acuros XB, AAA, and EGSnrc based Monte Carlo are used to calculate dose distributions from 18 MV and 6 MV photon beams delivered to a cubic water phantom containing a rectangular high density (4.0-8.0 g/cm{sup 3}) volume at its center. The algorithms are also used to recalculate a clinical prostate treatment plan involving a unilateral hip prosthesis, originally evaluated using AAA. These results are compared graphically and numerically using gamma-index analysis. Radio-chromic film measurements are presented to augment Monte Carlo and Acuros XB dose perturbation data. Results: Using a 2% and 1 mm gamma-analysis, between 91.3% and 96.8% of Acuros XB dose voxels containing greater than 50% the normalized dose were in agreement with Monte Carlo data for virtual phantoms involving 18 MV and 6 MV photons, stainless steel and titanium alloy implants and for on-axis and oblique field delivery. A similar gamma-analysis of AAA against Monte Carlo data showed between 80.8% and 87.3% agreement. Comparing Acuros XB and AAA evaluations of a clinical prostate patient plan involving a unilateral hip prosthesis, Acuros XB showed good overall agreement with Monte Carlo while AAA underestimated dose on the upstream medial surface of the prosthesis due to electron scatter from the high-density material. Film measurements

  13. Poly(ethylene oxide) functionalization

    DOEpatents

    Pratt, Russell Clayton

    2014-04-08

    A simple procedure is provided by which the hydroxyl termini of poly(ethylene oxide) can be appended with functional groups to a useful extent by reaction and precipitation. The polymer is dissolved in warmed toluene, treated with an excess of organic base and somewhat less of an excess of a reactive acylating reagent, reacted for several hours, then precipitated in isopropanol so that the product can be isolated as a solid, and salt byproducts are washed away. This procedure enables functionalization of the polymer while not requiring laborious purification steps such as solvent-solvent extraction or dialysis to remove undesirable side products.

  14. Single electron states in polyethylene

    SciTech Connect

    Wang, Y.; MacKernan, D.; Cubero, D. E-mail: n.quirke@imperial.ac.uk; Coker, D. F.; Quirke, N. E-mail: n.quirke@imperial.ac.uk

    2014-04-21

    We report computer simulations of an excess electron in various structural motifs of polyethylene at room temperature, including lamellar and interfacial regions between amorphous and lamellae, as well as nanometre-sized voids. Electronic properties such as density of states, mobility edges, and mobilities are computed on the different phases using a block Lanczos algorithm. Our results suggest that the electronic density of states for a heterogeneous material can be approximated by summing the single phase density of states weighted by their corresponding volume fractions. Additionally, a quantitative connection between the localized states of the excess electron and the local atomic structure is presented.

  15. Fluid Dynamics of Bottle Filling

    NASA Astrophysics Data System (ADS)

    McGough, Patrick; Gao, Haijing; Appathurai, Santosh; Basaran, Osman

    2011-11-01

    Filling of bottles is a widely practiced operation in a large number of industries. Well known examples include filling of ``large'' bottles with shampoos and cleaners in the household products and beauty care industries and filling of ``small'' bottles in the pharmaceutical industry. Some bottle filling operations have recently drawn much attention from the fluid mechanics community because of the occurrence of a multitude of complex flow regimes, transitions, and instabilities such as mounding and coiling that occur as a bottle is filled with a fluid. In this talk, we present a primarily computational study of the fluid dynamical challenges that can arise during the rapid filling of bottles. Given the diversity of fluids used in filling applications, we consider four representative classes of fluids that exhibit Newtonian, shear-thinning, viscoelastic, and yield-stress rheologies. The equations governing the dynamics of bottle filling are solved either in their full 3D but axisymmetric form or using the slender-jet approximation.

  16. High-density lipoprotein cholesterol as an independent risk factor in cardiovascular disease: assessing the data from Framingham to the Veterans Affairs High--Density Lipoprotein Intervention Trial.

    PubMed

    Boden, W E

    2000-12-21

    The Framingham Heart Study found that high-density lipoprotein cholesterol (HDL-C) was the most potent lipid predictor of coronary artery disease risk in men and women >49 years of age. The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS), in which subjects were randomized to treatment with lovastatin or placebo, also reported a striking benefit of treatment, particularly in patients with HDL-C < or =35 mg/dL at baseline. Treatment with lovastatin was associated with a remarkable 45% reduction in events for this group. The Veterans Affairs HDL Intervention Trial (VA-HIT) randomized subjects to gemfibrozil or placebo. A high proportion of enrolled subjects with low HDL-C also had characteristics of the dysmetabolic syndrome. HDL-C likewise increased by 6% on treatment, total cholesterol was reduced by 4% and triglycerides by 31%. There was no change in low-density lipoprotein cholesterol (LDL-C) levels. These changes in lipid were associated with a cumulative 22% reduction in the trial primary endpoint of all-cause mortality and nonfatal myocardial infarction (MI). Additionally, significant reductions in secondary endpoints including death from coronary artery disease, nonfatal MI, stroke, transient ischemic attack, and carotid endarterectomy were associated with the increase in HDL-C. In VA-HIT, for every 1% increase in HDL-C, there was a 3% reduction in death or MI, a therapeutic benefit that eclipses the benefit associated with LDL-C reduction. PMID:11374850

  17. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  18. Defect reduction of high-density full-field patterns in jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Singh, Lovejeet; Luo, Kang; Ye, Zhengmao; Xu, Frank; Haase, Gaddi; Curran, David; LaBrake, Dwayne; Resnick, Douglas; Sreenivasan, S. V.

    2011-04-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned resist on the substrate. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high end memory devices. Typical defectivity targets are on the order of 0.10/cm2. This work summarizes the results of defect inspections focusing on two key defect types; random non-fill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. Non-fill defectivity must always be considered within the context of process throughput. The key limiting throughput step in an imprint process is resist filling time. As a result, it is critical to characterize the filling process by measuring non-fill defectivity as a function of fill time. Repeater defects typically have two main sources; mask defects and particle related defects. Previous studies have indicated that soft particles tend to cause non-repeating defects. Hard particles, on the other hand, can cause either resist plugging or mask damage. In this work, an Imprio 500 twenty wafer per hour (wph) development tool was used to study both defect types. By carefully controlling the volume of inkjetted resist, optimizing the drop pattern and controlling the resist fluid front during spreading, fill times of 1.5 seconds were achieved with non-fill defect levels of approximately 1.2/cm2. Longevity runs were used to study repeater defects and a nickel

  19. Single lamella nanoparticles of polyethylene.

    PubMed

    Weber, C H M; Chiche, A; Krausch, G; Rosenfeldt, S; Ballauff, M; Harnau, L; Göttker-Schnetmann, I; Tong, Q; Mecking, S

    2007-07-01

    We present a complete analysis of the structure of polyethylene (PE) nanoparticles synthesized and stabilized in water under very mild conditions (15 degrees C, 40 atm) by a nickel-catalyzed polymerization in aqueous solution. Combining cryogenic transmission electron microscopy (cryo-TEM) with X-ray scattering, we demonstrate that this new synthetic route leads to a stable dispersion of individual PE nanoparticles with a narrow size distribution. Most of the semicrystalline particles have a hexagonal shape (lateral size 25 nm, thickness 9 nm) and exhibit the habit of a truncated lozenge. The combination of cryo-TEM and small-angle X-ray scattering demonstrates that the particles consist of a single crystalline lamella sandwiched between two thin amorphous polymer layers ("nanohamburgers"). Hence, these nanocrystals that comprise only ca. 14 chains present the smallest single crystals of PE ever reported. The very small thickness of the crystalline lamella (6.3 nm) is related to the extreme undercooling (more than 100 degrees C) that is due to the low temperature at which the polymerization takes place. This strong undercooling cannot be achieved by any other method so far. Dispersions of polyethylene nanocrystals may have a high potential for a further understanding of polymer crystallization as well as for materials science as, e.g., for the fabrication of extremely thin crystalline layers.

  20. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe2/MoS2

    NASA Astrophysics Data System (ADS)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias

    2016-05-01

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe2 monolayers on MoS2 substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic "wagon wheel" pattern with only ˜2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe2 and thus determine the band-alignment in the MoTe2/MoS2 interface.

  1. Dst prediction for a period of high-density plasmas in magnetic clouds

    NASA Astrophysics Data System (ADS)

    Adachi, H.; Sakurai, T.

    We examine geomagnetic effects for high-density plasmas in magnetic clouds and their relationship to solar sources. It is well known that Bz component of interplanetary magnetic field plays an important role for estimation of Dst from solar wind parameters (Burton et al.1975). However, magnetic clouds frequently carry high-density plasmas, which are interpreted as the remnants of filament. In order to clarify their geomagnetic effects, we try to estimate Dst by adopting different methods introducing effects of solar wind parameters. In our estimation the most important point is laid on the sense of Dst variation rather than its magnitude. The most suitable estimation is obtained by setting up a threshold for plasma density, in which for a case of plasma density greater than 20 /cc the Fenrich and Luhmann (1998)'s formula should be used, while in the other cases the Burton's formula are adopted. In both estimations the O'Brien and McPherron (2000)'s ring current decay time is employed. Furthermore, we examine the solar origin corresponding to the magnetic clouds and then compared characteristic signatures of the magnetic cloud with those observed on the solar surface. As a result, we confirm that the magnetic structure of interplanetary flux rope is in good agreement with the structures of the magnetic neutral line near disappearing filaments and heliospheric current sheet (HCS). On the basis of these studies, we suggest that for the geomagnetic disturbance forecast, the effect of high-density plasmas carried with magnetic clouds should be taken into account of as well as that of interplanetary magnetic field.

  2. Nuclear matter at high density: Phase transitions, multiquark states, and supernova outbursts

    SciTech Connect

    Krivoruchenko, M. I.; Nadyozhin, D. K.; Rasinkova, T. L.; Simonov, Yu. A.; Trusov, M. A. Yudin, A. V.

    2011-03-15

    Phase transition from hadronic matter to quark-gluon matter is discussed for various regimes of temperature and baryon number density. For small and medium densities, the phase transition is accurately described in the framework of the Field Correlation Method, whereas at high density predictions are less certain and leave room for the phenomenological models. We study formation of multiquark states (MQS) at zero temperature and high density. Relevant MQS components of the nuclear matter can be described using a previously developed formalism of the quark compound bags (QCB). Partialwave analysis of nucleon-nucleon scattering indicates the existence of 6QS which manifest themselves as poles of P matrix. In the framework of the QCB model, we formulate a self-consistent system of coupled equations for the nucleon and 6QS propagators in nuclear matter and the G matrix. The approach provides a link between high-density nuclear matter with the MQS components and the cumulative effect observed in reactions on the nuclei, which requires the admixture of MQS in the wave functions of nuclei kinematically. 6QS determines the natural scale of the density for a possible phase transition into theMQS phase of nuclear matter. Such a phase transition can lead to dynamic instability of newly born protoneutron stars and dramatically affect the dynamics of supernovae. Numerical simulations show that the phase transition may be a good remedy for the triggering supernova explosions in the spherically symmetric supernovamodels. A specific signature of the phase transition is an additional neutrino peak in the neutrino light curve. For a Galactic core-collapse supernova, such a peak could be resolved by the present neutrino detectors. The possibility of extracting the parameters of the phase of transition from observation of the neutrino signal is discussed also.

  3. Impaired protection against diabetes and coronary heart disease by high-density lipoproteins in Turks.

    PubMed

    Onat, Altan; Can, Günay; Ayhan, Erkan; Kaya, Zekeriya; Hergenç, Gülay

    2009-10-01

    The issue of whether or not incident type 2 diabetes mellitus and coronary heart disease (CHD) can be predicted by high-density lipoprotein (HDL) cholesterol in both sexes needs investigation. A representative sample of 3035 middle-aged Turkish adults free of CHD at baseline was studied with this purpose prospectively over a mean of 7.8 years. High-density lipoprotein cholesterol levels were found to be correlated in women positively with plasma fibrinogen and weakly with waist girth and C-reactive protein, and to be not correlated with fasting insulin. High-density lipoprotein cholesterol protected men against future CHD risk (for a 12-mg/dL increment: relative risk = 0.80 [95% confidence interval, 0.69-0.95]) after multivariable adjustment in logistic regression analyses for age, smoking status, physical activity grade, hypertension, abdominal obesity, diabetes, and lipid-lowering drugs. However, men were not protected against risk of diabetes. In women, HDL cholesterol was not associated with risk for CHD, whereas intermediate (40-60 mg/dL) compared with lower HDL cholesterol levels proved protective against risk of diabetes (relative risk = 0.57 [95% confidence interval, 0.36-0.90]) after adjustments that included apolipoprotein A-I tertiles. Yet higher serum concentrations failed to yield protection against diabetes. It was concluded that HDL particles confer partially lacking protection against cardiometabolic risk among Turks, and this impairment is modulated by sex. This highly important observation may result from a setting of prevailing chronic subclinical inflammation.

  4. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    PubMed

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  5. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.

    PubMed

    Charvet, Guillaume; Rousseau, Lionel; Billoint, Olivier; Gharbi, Sadok; Rostaing, Jean-Pierre; Joucla, Sébastien; Trevisiol, Michel; Bourgerette, Alain; Chauvet, Philippe; Moulin, Céline; Goy, François; Mercier, Bruno; Colin, Mikael; Spirkovitch, Serge; Fanet, Hervé; Meyrand, Pierre; Guillemaud, Régis; Yvert, Blaise

    2010-04-15

    Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks.

  6. Lower hybrid current drive at high density in the multi-pass regimea)

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Harvey, R. W.; Schmidt, A. E.; Smirnov, A. P.; Wilson, J. R.

    2012-06-01

    Assessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation (η =2.0-2.5×1019 AW-1m-2 at n¯e=0.5×1020 m-3) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under conditions (ne, magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase n ¯e to 1.0-1.5×1020 m-3. However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL) ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL. Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing Te in high density LH discharges results in higher non-thermal electron emission, as predicted by the models.

  7. Lower hybrid current drive at high density in the multi-pass regime

    SciTech Connect

    Wallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Schmidt, A. E.; Harvey, R. W.; Smirnov, A. P.; and others

    2012-06-15

    Assessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation ({eta}=2.0-2.5 Multiplication-Sign 10{sup 19} AW{sup -1}m{sup -2} at n{sub e}=0.5 Multiplication-Sign 10{sup 20} m{sup -3}) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under conditions (n{sub e}, magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase n{sub e} to 1.0-1.5 Multiplication-Sign 10{sup 20} m{sup -3}. However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL) ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL. Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing T{sub e} in high density LH discharges results in higher non-thermal electron emission, as predicted by the models.

  8. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  9. Optimization towards high density quantum dots for intermediate band solar cells grown by molecular beam epitaxy

    SciTech Connect

    Zhou, D.; Sharma, G.; Fimland, B. O.; Thomassen, S. F.; Reenaas, T. W.

    2010-02-08

    We report high density quantum dots (QDs) formation with optimized growth temperature and V/III ratio. At lower growth temperature, QD density is increased, due to smaller surface migration length of In adatoms. With higher V/III, the QD density is higher but it results in large clusters formation and decreases the QD uniformity. The QD solar cell was fabricated and examined. An extended spectral response in contrast to the GaAs reference cell was presented but the external quantum efficiency at energies higher than GaAs band gap is reduced, resulting from the degradation for the emitter above the strained QD layers.

  10. Reliability of High I/O High Density CCGA Interconnect Electronic Packages under Extreme Thermal Environment

    NASA Technical Reports Server (NTRS)

    Ramesham, Rajeshuni

    2012-01-01

    This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non-destructive inspection tools were used to assess the reliability of high density CCGA packages for deep space extreme temperature missions. Ceramic column grid array (CCGA) packages have been increasing in use based on their advantages such as high interconnect density, very good thermal and electrical performances, compatibility with standard surface-mount packaging assembly processes, and so on. CCGA packages are used in space applications such as in logic and microprocessor functions, telecommunications, payload electronics, and flight avionics. As these packages tend to have less solder joint strain relief than leaded packages or more strain relief over lead-less chip carrier packages, the reliability of CCGA packages is very important for short-term and long-term deep space missions. We have employed high density CCGA 1152 and 1272 daisy chained electronic packages in this preliminary reliability study. Each package is divided into several daisy-chained sections. The physical dimensions of CCGA1152 package is 35 mm x 35 mm with a 34 x 34 array of columns with a 1 mm pitch. The dimension of the CCGA1272 package is 37.5 mm x 37.5 mm with a 36 x 36 array with a 1 mm pitch. The columns are made up of 80% Pb/20%Sn material. CCGA interconnect electronic package printed wiring polyimide boards have been assembled and inspected using non-destructive x-ray imaging techniques. The assembled CCGA boards were subjected to extreme temperature thermal atmospheric cycling to assess their reliability for future deep space missions. The resistance of daisy-chained interconnect sections were monitored continuously during thermal cycling. This paper provides the experimental test results of advanced CCGA packages tested in extreme temperature thermal environments. Standard optical inspection and x-ray non

  11. Laser drilling of vias in dielectric for high density multilayer LSHI thick film circuits

    NASA Technical Reports Server (NTRS)

    Cocca, T.; Dakesian, S.

    1977-01-01

    A design analysis of a high density multilevel thick film digital microcircuit used for large scale integration is presented. The circuit employs 4 mil lines, 4 mil spaces and requires 4 mil diameter vias. Present screened and fired thick film technology is limited on a production basis to 16 mil square vias. A process whereby 4 mil diameter vias can be fabricated in production using laser technology was described along with a process to produce 4 mil diameter vias for conductor patterns which have 4 mil lines and 4 mil spacings.

  12. Light scattering from metal sol labels on high-density DNA probe arrays

    NASA Astrophysics Data System (ADS)

    Trulson, Mark O.; Walton, Ian D.; Suseno, Audrey D.; Matsuzaki, Hajime; Stern, David

    1998-04-01

    We have been exploring the use of light scattering as a means to detect the binding of nucleic acids to high density DNA probe arrays. Initial work has concentrated on the use of 100 nanometer gold particles conjugated to monoclonal antibodies. A probe array scanner that utilizes an arc lamp source and a `photocopier grade' linear CCD detector has been developed. The optical configuration of the scanner maximizes dynamic range and minimizes optical backgrounds. Initial development of light scattering detection for the p53 cancer gene application shows that functional performance may be obtained that is essentially equivalent to existing fluorescence detection methodology.

  13. Synthetic high-density lipoprotein-like nanoparticles for cancer therapy

    PubMed Central

    Foit, Linda; Giles, Francis J.; Gordon, Leo I.; Thaxton, C. Shad

    2015-01-01

    Summary High-density lipoproteins (HDLs) are a diverse group of natural nanoparticles that are most well-known for their role in cholesterol transport. However, HDLs have diverse functions that provide significant opportunities for cancer therapy. Presented is a focused review of the ways that synthetic versions of HDL have been used as targeted therapies for cancer, and as vehicles for the delivery of diverse therapeutic cargo to cancer cells. As such, synthetic HDLs are likely to play a central role in the development of next generation cancer therapies. PMID:25487833

  14. Oxidation of cholesterol does not alter significantly its uptake into high-density lipoprotein particles.

    PubMed

    Karilainen, Topi; Timr, Štěpán; Vattulainen, Ilpo; Jungwirth, Pavel

    2015-04-01

    Using replica exchange umbrella sampling we calculated free energy profiles for uptake of cholesterol and one of its oxysterols (7-ketocholesterol) from an aqueous solution into a high-density lipoprotein particle. These atomistic molecular dynamics simulations show that both sterols are readily taken up from the aqueous solution with comparable free energy minima at the surface of the particle of -17 kcal/mol for cholesterol and -14 kcal/mol for 7-ketocholesterol. Moreover, given its preferred position at the particle surface, 7-ketocholesterol is expected to be able to participate directly in biological signaling processes.

  15. High-density plasma-arc heating studies of FePt thin films

    NASA Astrophysics Data System (ADS)

    Cole, Amanda; Thompson, Gregory B.; Harrell, J. W.; Weston, J.; Ott, Ronald

    2006-06-01

    The effect of pulsed-thermal-processing with high-density plasma arc heating is discussed for 20 nm thick nanocrystalline FePt thin films. The dependence of the A1→L10 phase transformation on pulsed time and radiant energy of the pulse is quantified through x-ray diffraction and alternating gradient magnetometry. For 100 ms and 250 ms pulse widths, the phase transformation was observed. Higher radiant energy densities resulted in a larger measured coercivity associated with the L10 phase.

  16. High-Density Livestock Production and Molecularly Characterized MRSA Infections in Pennsylvania

    PubMed Central

    Casey, Joan A.; Shopsin, Bo; Cosgrove, Sara E.; Nachman, Keeve E.; Curriero, Frank C.; Rose, Hannah R.

    2014-01-01

    Background: European studies suggest that living near high-density livestock production increases the risk of sequence type (ST) 398 methicillin-resistant Staphylococcus aureus (MRSA) colonization. To our knowledge, no studies have evaluated associations between livestock production and human infection by other strain types. Objectives: We evaluated associations between MRSA molecular subgroups and high-density livestock production. Methods: We conducted a yearlong 2012 prospective study on a stratified random sample of patients with culture-confirmed MRSA infection; we oversampled patients from the Geisinger Health System with exposure to high-density livestock production in Pennsylvania. Isolates were characterized using S. aureus protein A (spa) typing and detection of Panton-Valentine leukocidin (PVL) and scn genes. We compared patients with one of two specific MRSA strains with patients with all other strains of MRSA isolates, using logistic regression that accounted for the sampling design, for two different exposure models: one based on the location of the animals (livestock model) and the other on crop field application of manure (crop field model). Results: Of 196 MRSA isolates, we identified 30 spa types, 47 PVL-negative and 15 scn-negative isolates, and no ST398 MRSA. Compared with quartiles 1–3 combined, the highest quartiles of swine livestock and dairy/veal crop field exposures were positively associated with community-onset-PVL-negative MRSA (CO-PVL-negative MRSA vs. all other MRSA), with adjusted odds ratios of 4.24 (95% CI: 1.60, 11.25) and 4.88 (95% CI: 1.40, 17.00), respectively. The association with CO-PVL-negative MRSA infection increased across quartiles of dairy/veal livestock exposure (trend p = 0.05). Conclusions: Our findings suggest that other MRSA strains, beyond ST398, may be involved in livestock-associated MRSA infection in the United States. Citation: Casey JA, Shopsin B, Cosgrove SE, Nachman KE, Curriero FC, Rose HR, Schwartz BS

  17. The mantle of Mars - Some possible geological implications of its high density

    NASA Technical Reports Server (NTRS)

    Mcgetchin, T. R.; Smyth, J. R.

    1978-01-01

    The high density of the Martian mantle probably implies an iron-rich composition expressed by a higher concentration of FeO than that in the earth's mantle. Examination of high-pressure mineralogies suggests that the model Martian mantle has an oxide-garnet wehrlite phase assemblage. This mantle model would be likely to yield ultrabasic (ferrobasaltic) melts of very low viscosity. The prevalence of low-viscosity material is consistent with large eruption rate and copious lava flow on the planet. Furthermore, ferro-kimberlite volcanic ash may be an abundant constituent in the Martian soil, especially if there was much volatile material within the early accreting Mars.

  18. Matrix sublimation method for the formation of high-density amorphous ice

    NASA Astrophysics Data System (ADS)

    Kouchi, A.; Hama, T.; Kimura, Y.; Hidaka, H.; Escribano, R.; Watanabe, N.

    2016-08-01

    A novel method for the formation of amorphous ice involving matrix sublimation has been developed. A CO-rich CO:H2O mixed ice was deposited at 8-10 K under ultra-high vacuum condition, which was then allowed to warm. After the sublimation of matrix CO at 35 K, amorphous ice remained. The amorphous ice formed exhibits a highly porous microscale texture; however, it also rather exhibits a density similar to that of high-density amorphous ice formed under high pressure. Furthermore, unlike conventional vapor-deposited amorphous ice, the amorphous ice is stable up to 140 K, where it transforms directly to cubic ice Ic.

  19. Pesticide occurrence in groundwater in areas of high-density row crop production in Alabama, 2009

    USGS Publications Warehouse

    Moreland, Richard S.

    2011-01-01

    High-density row crop production occurs in three areas of Alabama that are underlain by productive aquifers, northern Alabama, southeastern Alabama, and Baldwin County in southwestern Alabama. The U.S. Geological Survey collected five groundwater samples from each of these three areas during 2009 for analysis of selected pesticides. Results of these analyses showed detections for 37 of 152 analytes. The three most frequently detected compounds were atrazine, 2-Chloro-4-isopropylamino-6-amino-triazine (CIAT), and metolachlor. The highest concentration for any analyte was 4.08 micrograms per liter for metolachlor.

  20. Feedforward, high density, programmable read only neural network based memory system

    NASA Technical Reports Server (NTRS)

    Daud, Taher; Moopenn, Alex; Lamb, James; Thakoor, Anil; Khanna, Satish

    1988-01-01

    Neural network-inspired, nonvolatile, programmable associative memory using thin-film technology is demonstrated. The details of the architecture, which uses programmable resistive connection matrices in synaptic arrays and current summing and thresholding amplifiers as neurons, are described. Several synapse configurations for a high-density array of a binary connection matrix are also described. Test circuits are evaluated for operational feasibility and to demonstrate the speed of the read operation. The results are discussed to highlight the potential for a read data rate exceeding 10 megabits/sec.

  1. Highly linear high-density vector quantiser and vector-matrix multiplier

    NASA Astrophysics Data System (ADS)

    Pedroni, V. A.

    1994-06-01

    Simplicity is a key factor in the development of high-density systems. The authors discuss a balanced, four-quadrant, fully-analogue vector-matrix multiplier (VMM) and a vector quantiser (VQ) which require very small silicon area for their implementations, while presenting high linearity, a totally flexible input dynamic range, a symmetric power consumption behaviour, and are inherently suitable for parallel operation. The circuits require only four transistors per synapse in the VMM and two in the VQ, plus two (small) refresh transistors.

  2. Health benefits of high-density lipoproteins in preventing cardiovascular diseases.

    PubMed

    Berrougui, Hicham; Momo, Claudia N; Khalil, Abdelouahed

    2012-01-01

    Plasma levels of high-density lipoprotein (HDL) are strongly and inversely correlated with atherosclerotic cardiovascular diseases. However, it is becoming clear that a functional HDL is a more desirable target than simply increasing HDL-cholesterol levels. The best known antiatherogenic function of HDL particles relates to their ability to promote reverse cholesterol transport from peripheral cells. However, HDL also possesses antioxidant, anti-inflammatory, and antithrombotic effects. This review focuses on the state of knowledge regarding assays of HDL heterogeneity and function and their relationship to cardiovascular diseases.

  3. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  4. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    SciTech Connect

    Iseki, Sachiko; Hori, Masaru; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro

    2010-04-12

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 10{sup 15} cm{sup -3}. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  5. Characterization of D.I. diesel sprays in high density conditions

    SciTech Connect

    Payri, F.; Desantes, J.M.; Arregle, J.

    1996-09-01

    The characteristic parameters and the evolution of continuous Diesel sprays injected against a high density gas have been investigated using high speed photography and phase Doppler anemometry. The injector used for these tests was a two-spring one providing different injection conditions. Three test sections were analyzed at 10, 20 and 30 mm from the injector with several radial measurements for each one. The obtained results provided qualitative and quantitative information about the macroscopic evolution of the spray, but also about the drop velocity distribution and drop size evolution.

  6. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion

    PubMed Central

    Totani, Masayasu; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Tanihara, Masao

    2014-01-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78–88% relative to noncoated PET surface) and Escherichia coli (94–97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria. PMID:25485105

  7. Utilization of star-shaped polymer architecture in the creation of high-density polymer brush coatings for the prevention of platelet and bacteria adhesion.

    PubMed

    Totani, Masayasu; Ando, Tsuyoshi; Terada, Kayo; Terashima, Takaya; Kim, Ill Yong; Ohtsuki, Chikara; Xi, Chuanwu; Kuroda, Kenichi; Tanihara, Masao

    2014-09-01

    We demonstrate utilization of star-shaped polymers as high-density polymer brush coatings and their effectiveness to inhibit the adhesion of platelets and bacteria. Star polymers consisting of poly(2-hydroxyethyl methacrylate) (PHEMA) and/or poly(methyl methacrylate) (PMMA), were synthesized using living radical polymerization with a ruthenium catalyst. The polymer coatings were prepared by simple drop casting of the polymer solution onto poly(ethylene terephthalate) (PET) surfaces and then dried. Among the star polymers prepared in this study, the PHEMA star polymer (star-PHEMA) and the PHEMA/PMMA (mol. ratio of 71/29) heteroarm star polymer (star-H71M29) coatings showed the highest percentage of inhibition against platelet adhesion (78-88% relative to noncoated PET surface) and Escherichia coli (94-97%). These coatings also showed anti-adhesion activity against platelets after incubation in Dulbecco's phosphate buffered saline or surfactant solution for 7 days. In addition, the PMMA component of the star polymers increased the scratch resistance of the coating. These results indicate that the star-polymer architecture provides high polymer chain density on PET surfaces to prevent adhesion of platelets and bacteria, as well as coating stability and physical durability to prevent exposure of bare PET surfaces. The star polymers provide a simple and effective approach to preparing anti-adhesion polymer coatings on biomedical materials against the adhesion of platelets and bacteria.

  8. Effects of high density on spacing behaviour and reproduction in Akodon azarae: A fencing experiment

    NASA Astrophysics Data System (ADS)

    Ávila, Belén; Bonatto, Florencia; Priotto, José; Steinmann, Andrea R.

    2016-01-01

    We studied the short term spacing behavioural responses of Pampean grassland mouse (Akodon azarae) with regard to population density in four 0.25 ha enclosures (two control and two experimental) in the 2011 breeding season. Based on the hypothesis that A. azarae breeding females exhibit spacing behaviour, and breeding males show a fusion spatial response, we tested the following predictions: (1) home range size and intrasexual overlap degree of females are independent of population density values; (2) at high population density, home range size of males decreases and the intrasexual home range overlap degree increases. To determine if female reproductive success decreases at high population density, we analyzed pregnancy rate, size and weight of litters, and period until fecundation in both low and high enclosure population density. We found that both males and females varied their home range size in relation to population density. Although male home ranges were always bigger than those of females in populations with high density, home range sizes of both sexes decreased. Females kept exclusive home ranges independent of density values meanwhile males decreased home range overlap in high breeding density populations. Although females produced litters of similar size in both treatments, weight of litter, pregnant rate and period until fecundation varied in relation to population density. Our results did not support the hypothesis that at high density females of A. azarae exhibit spacing behaviour neither that males exhibit a fusion spatial response.

  9. Anisotropic viscoelastic-viscoplastic continuum model for high-density cellulose-based materials

    NASA Astrophysics Data System (ADS)

    Tjahjanto, D. D.; Girlanda, O.; Östlund, S.

    2015-11-01

    A continuum material model is developed for simulating the mechanical response of high-density cellulose-based materials subjected to stationary and transient loading. The model is formulated in an infinitesimal strain framework, where the total strain is decomposed into elastic and plastic parts. The model adopts a standard linear viscoelastic solid model expressed in terms of Boltzmann hereditary integral form, which is coupled to a rate-dependent viscoplastic formulation to describe the irreversible plastic part of the overall strain. An anisotropic hardening law with a kinematic effect is particularly adopted in order to capture the complex stress-strain hysteresis typically observed in polymeric materials. In addition, the present model accounts for the effects of material densification associated with through-thickness compression, which are captured using an exponential law typically applied in the continuum description of elasticity in porous media. Material parameters used in the present model are calibrated to the experimental data for high-density (press)boards. The experimental characterization procedures as well as the calibration of the parameters are highlighted. The results of the model simulations are systematically analyzed and validated against the corresponding experimental data. The comparisons show that the predictions of the present model are in very good agreement with the experimental observations for both stationary and transient load cases.

  10. High-density single-particle tracking: quantifying molecule organization and dynamics at the nanoscale.

    PubMed

    Sibarita, Jean-Baptiste

    2014-06-01

    The organization and dynamics of proteins are fundamental parameters for cellular function. Their study, at the single-molecule level, provides precise information on molecular interactions. Over the last 30 years, the single-particle tracking imaging technique has proven its capability to efficiently quantify such parameters in many biological systems, with nanometric accuracy and millisecond temporal resolutions. Nevertheless, the low concentration of labeling required for single-molecule imaging usually prevents the extraction of large statistics. The advent of high-density single-molecule-based super-resolution techniques has revolutionized the field, allowing monitoring of thousands of biomolecules in the minute timescale and providing unprecedented insight into the molecular organization and dynamics of cellular compounds. In this issue, I will review the main principles of single-particle tracking, a highly interdisciplinary technique at the interface between microscopy, image analysis and labeling strategies. I will point out the advantages brought by high-density single-particle tracking which will be illustrated with a few recent biological results.

  11. Near-Field Optical Recording Using Solid Immersion Lens for High-Density Flexible Optical Disks

    NASA Astrophysics Data System (ADS)

    Koide, Daiichi; Kajiyama, Takeshi; Sato, Ryuji; Tokumaru, Haruki; Takano, Yoshimichi; Ohishi, Kiyoshi

    2013-09-01

    We propose a near-field optical recording flexible optical disk (NFR-FOD) for high-density recording at a high data transfer rate. We built a prototype high-density NFR-FOD that had a track pitch of 0.16 µm and we stacked some recording layers on a thin substrate that was 0.1 mm thick. We rotated the NFR-FOD closing the mechanical stabilizer on a drive system with less than 10 µmp-p axial run-out and achieved precise gap servo operation at a high rotational speed. We demonstrated near-field optical recording with a solid immersion lens with a numerical aperture (NA) of 1.84 on the NFR-FOD. The NFR-FOD has a fourfold higher recording density than the current Blu-ray disc, corresponding to a capacity of 100 Gbytes per layer, and a high data transfer rate of 250 Mbps, while rotating at half the speed.

  12. Towards neuronal organoids: a method for long-term culturing of high-density hippocampal neurons.

    PubMed

    Todd, George K; Boosalis, Casey A; Burzycki, Aaron A; Steinman, Michael Q; Hester, Lynda D; Shuster, Pete W; Patterson, Randen L

    2013-01-01

    One of the goals in neuroscience is to obtain tractable laboratory cultures that closely recapitulate in vivo systems while still providing ease of use in the lab. Because neurons can exist in the body over a lifetime, long-term culture systems are necessary so as to closely mimic the physiological conditions under laboratory culture conditions. Ideally, such a neuronal organoid culture would contain multiple cell types, be highly differentiated, and have a high density of interconnected cells. However, before these types of cultures can be created, certain problems associated with long-term neuronal culturing must be addressed. We sought to develop a new protocol which may further prolong the duration and integrity of E18 rat hippocampal cultures. We have developed a protocol that allows for culturing of E18 hippocampal neurons at high densities for more than 120 days. These cultured hippocampal neurons are (i) well differentiated with high numbers of synapses, (ii) anchored securely to their substrate, (iii) have high levels of functional connectivity, and (iv) form dense multi-layered cellular networks. We propose that our culture methodology is likely to be effective for multiple neuronal subtypes-particularly those that can be grown in Neurobasal/B27 media. This methodology presents new avenues for long-term functional studies in neurons.

  13. Online recursive independent component analysis for real-time source separation of high-density EEG.

    PubMed

    Hsu, Sheng-Hsiou; Mullen, Tim; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2014-01-01

    Online Independent Component Analysis (ICA) algorithms have recently seen increasing development and application across a range of fields, including communications, biosignal processing, and brain-computer interfaces. However, prior work in this domain has primarily focused on algorithmic proofs of convergence, with application limited to small `toy' examples or to relatively low channel density EEG datasets. Furthermore, there is limited availability of computationally efficient online ICA implementations, suitable for real-time application. This study describes an optimized online recursive ICA algorithm (ORICA), with online recursive least squares (RLS) whitening, for blind source separation of high-density EEG data. It is implemented as an online-capable plugin within the open-source BCILAB (EEGLAB) framework. We further derive and evaluate a block-update modification to the ORICA learning rule. We demonstrate the algorithm's suitability for accurate and efficient source identification in high density (64-channel) realistically-simulated EEG data, as well as real 61-channel EEG data recorded by a dry and wearable EEG system in a cognitive experiment. PMID:25570830

  14. High-density force myography: A possible alternative for upper-limb prosthetic control.

    PubMed

    Radmand, Ashkan; Scheme, Erik; Englehart, Kevin

    2016-01-01

    Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%. PMID:27532260

  15. Topological constraint in high-density cells' tracking of image sequences.

    PubMed

    Tang, Chunming; Ma, Ling; Xu, Dongbin

    2011-01-01

    The multi-target tracking in cell image sequences is the main difficulty in cells' locomotion study. Aim to study cells' complexity movement in high-density cells' image, this chapter has proposed a system of segmentation and tracking. The proposed tracking algorithm has combined overlapping and topological constraints with track inactive and active cells, respectively. In order to improve performance of algorithm, size factor has been introduced as a new restriction to quantification criterion of similarity based on Zhang's method. And the distance threshold for transforming segmented image into graph is adjusted on considering the local distribution of cells' district in one image. The improved algorithm has been tested in two different image sequences, which have high or low contrast ration separately. Experimental results show that our approach has improved tracking accuracy from 3% to 9% compared with Zhang's algorithm, especially when cells are in high density and cells' splitting occurred frequently. And the final tracking accuracy can reach 90.24% and 77.08%.

  16. An Ultra-High-Density, Transcript-Based, Genetic Map of Lettuce

    PubMed Central

    Truco, Maria José; Ashrafi, Hamid; Kozik, Alexander; van Leeuwen, Hans; Bowers, John; Wo, Sebastian Reyes Chin; Stoffel, Kevin; Xu, Huaqin; Hill, Theresa; Van Deynze, Allen; Michelmore, Richard W.

    2013-01-01

    We have generated an ultra-high-density genetic map for lettuce, an economically important member of the Compositae, consisting of 12,842 unigenes (13,943 markers) mapped in 3696 genetic bins distributed over nine chromosomal linkage groups. Genomic DNA was hybridized to a custom Affymetrix oligonucleotide array containing 6.4 million features representing 35,628 unigenes of Lactuca spp. Segregation of single-position polymorphisms was analyzed using 213 F7:8 recombinant inbred lines that had been generated by crossing cultivated Lactuca sativa cv. Salinas and L. serriola acc. US96UC23, the wild progenitor species of L. sativa. The high level of replication of each allele in the recombinant inbred lines was exploited to identify single-position polymorphisms that were assigned to parental haplotypes. Marker information has been made available using GBrowse to facilitate access to the map. This map has been anchored to the previously published integrated map of lettuce providing candidate genes for multiple phenotypes. The high density of markers achieved in this ultradense map allowed syntenic studies between lettuce and Vitis vinifera as well as other plant species. PMID:23550116

  17. Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals

    PubMed Central

    Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M

    2010-01-01

    Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants’ individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the ‘Tragedy of the Commons’, providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of ‘shade avoidance’, but a collective, offensive ‘shading’ strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision. PMID:25567940

  18. Evolutionary Agroecology: the potential for cooperative, high density, weed-suppressing cereals.

    PubMed

    Weiner, Jacob; Andersen, Sven B; Wille, Wibke K-M; Griepentrog, Hans W; Olsen, Jannie M

    2010-09-01

    Evolutionary theory can be applied to improve agricultural yields and/or sustainability, an approach we call Evolutionary Agroecology. The basic idea is that plant breeding is unlikely to improve attributes already favored by millions of years of natural selection, whereas there may be unutilized potential in selecting for attributes that increase total crop yield but reduce plants' individual fitness. In other words, plant breeding should be based on group selection. We explore this approach in relation to crop-weed competition, and argue that it should be possible to develop high density cereals that can utilize their initial size advantage over weeds to suppress them much better than under current practices, thus reducing or eliminating the need for chemical or mechanical weed control. We emphasize the role of density in applying group selection to crops: it is competition among individuals that generates the 'Tragedy of the Commons', providing opportunities to improve plant production by selecting for attributes that natural selection would not favor. When there is competition for light, natural selection of individuals favors a defensive strategy of 'shade avoidance', but a collective, offensive 'shading' strategy could increase weed suppression and yield in the high density, high uniformity cropping systems we envision. PMID:25567940

  19. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    SciTech Connect

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Ross, J. S.; Thomas, C. A.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Field, J. E.; Haan, S. W.; Izumi, N.; Kyrala, G. A.; Moody, J. D.; Patel, P. K.; Ralph, J. E.; Rygg, J. R.; Sepke, S. M.; Spears, B. K.; Tommasini, R.; Town, R. P. J.; Biener, J.; Bionta, R. M.; Bond, E. J.; Caggiano, J. A.; Eckart, M. J.; Gatu Johnson, M.; Grim, G. P.; Hamza, A. V.; Hartouni, E. P.; Hatarik, R.; Hoover, D. E.; Kilkenny, J. D.; Kozioziemski, B. J.; Kroll, J. J.; McNaney, J. M.; Nikroo, A.; Sayre, D. B.; Stadermann, M.; Wild, C.; Yoxall, B. E.; Landen, O. L.; Hsing, W. W.; Edwards, M. J.

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.

  20. Cryogenic THD and DT layer implosions with high density carbon ablators in near-vacuum hohlraums

    DOE PAGES

    Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.; Divol, L.; MacKinnon, A. J.; Döppner, T.; Ho, D. D.; Jones, O. S.; Khan, S. F.; Ma, T.; et al

    2015-06-02

    High Density Carbon (HDC or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a DT layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a THD layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightlymore » oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT implosion resulted in a higher temperature, prolate hot spot and a thermonuclear yield of 1.8 x 10¹⁵ neutrons, 40% of the 1D simulated yield.« less

  1. High density experiments in TCV ohmically heated and L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Kirneva, N. A.; Behn, R.; Canal, G. P.; Coda, S.; Duval, B. P.; Goodman, T. P.; Labit, B.; Mustafin, N. A.; Karpushov, A. N.; Pochelon, A.; Porte, L.; Sauter, O.; Silva, M.; Tal, B.; Vuille, V.

    2015-02-01

    Recent experiments have been performed on the Tokamak à configuration variable (TCV) to investigate the confinement properties of high density plasmas and the mechanism behind the density limit. In a limiter configuration with plasma elongation κ =1.3-1.4 and triangularity δ =0.2- 0.3 the operational density range has been extended up to 0.65 of the Greenwald density at {{I}\\text{p}}=200  kA ({{q}95}=3.7 ) and even to the Greenwald value at low plasma current {{I}\\text{p}}=110  kA ({{q}95}=7 ). A transition from the linear to the saturated ohmic confinement regime is observed at high density ˜ 0.4{{n}\\text{GW}} . A further density increase leads to sawtooth stabilization and is accompanied by a decrease of the energy and particle confinement times. The development of the disruption at the density limit was preceded by sawtooth stabilization. It is shown that electron cyclotron heating leads to the prevention of sawtooth stabilization and then to the increase of the density limit value.

  2. Spike Detection for Large Neural Populations Using High Density Multielectrode Arrays

    PubMed Central

    Muthmann, Jens-Oliver; Amin, Hayder; Sernagor, Evelyne; Maccione, Alessandro; Panas, Dagmara; Berdondini, Luca; Bhalla, Upinder S.; Hennig, Matthias H.

    2015-01-01

    An emerging generation of high-density microelectrode arrays (MEAs) is now capable of recording spiking activity simultaneously from thousands of neurons with closely spaced electrodes. Reliable spike detection and analysis in such recordings is challenging due to the large amount of raw data and the dense sampling of spikes with closely spaced electrodes. Here, we present a highly efficient, online capable spike detection algorithm, and an offline method with improved detection rates, which enables estimation of spatial event locations at a resolution higher than that provided by the array by combining information from multiple electrodes. Data acquired with a 4096 channel MEA from neuronal cultures and the neonatal retina, as well as synthetic data, was used to test and validate these methods. We demonstrate that these algorithms outperform conventional methods due to a better noise estimate and an improved signal-to-noise ratio (SNR) through combining information from multiple electrodes. Finally, we present a new approach for analyzing population activity based on the characterization of the spatio-temporal event profile, which does not require the isolation of single units. Overall, we show how the improved spatial resolution provided by high density, large scale MEAs can be reliably exploited to characterize activity from large neural populations and brain circuits. PMID:26733859

  3. On the road to obesity: Television viewing increases intake of high-density foods.

    PubMed

    Blass, Elliott M; Anderson, Daniel R; Kirkorian, Heather L; Pempek, Tiffany A; Price, Iris; Koleini, Melanie F

    2006-07-30

    Television viewing (TVV) has been linked with obesity, possibly through increased sedentary behavior and/or through increased ingestion during TVV. The proposition that TVV causes increased feeding, however, has not been subjected to experimental verification until recently. Our objective was to determine if the amount eaten of two familiar, palatable, high-density foods (pizza and macaroni and cheese) was increased during a 30-min meal when watching TV. In a within-subjects design, one group of undergraduates (n = 10) ate pizza while watching a TV show of their choice for one session and when listening to a symphony during the other session. A second group of undergraduates (n = 10) ate macaroni and cheese (M&C). TVV increased caloric intake by 36% (one slice on average) for pizza and by 71% for M&C. Eating patterns also differed between conditions. Although the length of time to eat a slice of pizza remained stable between viewing conditions, the amount of time before starting another slice was shorter during TVV. In contrast, M&C was eaten at a faster rate and for a longer period of time during TVV. Thus, watching television increases the amount eaten of high-density, palatable, familiar foods and may constitute one vector contributing to the current obesity crisis.

  4. Survey of urinary nickel in residents of areas with a high density of electroplating factories.

    PubMed

    Chang, Feng-Hsiang; Wang, Hsiu-Jen; Wang, Shu-Li; Wang, Yueh-Ching; Hsieh, Dennis P H; Chang, Louis W; Ko, Ying-Chin

    2006-12-01

    The soil metal contamination arising from the discharge of the high density of electroplating factories in the geographic center of Taiwan has prompted concern about human exposure to harmful metals. This study aimed to determine the levels of nickel (Ni) in urine of residents living in the high vs. low factory-density areas, and to examine how these levels relate to gender and age. A total of 660 subjects, resident in the area for the last five years, were sampled according to the stratified random sampling approach, at ages 35-44, 45-54, and 55-64years for both genders. Metals in urine samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The geometric mean (95% confidence interval (CI)) of urinary Ni was 6.30 (5.99-6.62)mug/l. The 0.95 parametric reference interval (90% CI) of urinary Ni was estimated to be 1.74 (1.62-1.88) to 22.73 (21.14-24.44)mug/l. Subjects in the areas with a high density of electroplating factories had significantly higher urinary Ni levels than those in the low-density areas, but both types of areas had obviously higher urinary Ni levels when compared to the non-occupationally exposed population from western countries. The health significance of elevated urinary Ni and its causative factors remain to be determined.

  5. Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics

    PubMed Central

    Kim, YongTae; Fay, Francois; Cormode, David P.; Sanchez-Gaytan, Brenda L.; Tang, Jun; Hennessy, Elizabeth J.; Ma, Mingming; Moore, Kathryn; Farokhzad, Omid C.; Fisher, Edward Allen; Mulder, Willem J. M.; Langer, Robert; Fayad, Zahi A.

    2014-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that transports peripheral cholesterol to the liver. Reconstituted high-density lipoprotein (rHDL) exhibits antiatherothrombotic properties and is being considered as a natural treatment for cardiovascular diseases. Furthermore, HDL nanoparticle platforms have been created for targeted delivery of therapeutic and diagnostic agents. The current methods for HDL reconstitution involve lengthy procedures that are challenging to scale up. A central need in the synthesis of rHDL, and multifunctional nanomaterials in general, is to establish large-scale production of reproducible and homogeneous batches in a simple and efficient fashion. Here, we present a large-scale microfluidics-based manufacturing method for single-step synthesis of HDL-mimicking nanomaterials (µHDL). µHDL is shown to have the same properties (e.g., size, morphology, bioactivity) as conventionally reconstituted HDL and native HDL. In addition, we were able to incorporate simvastatin (a hydrophobic drug) into µHDL, as well as gold, iron oxide, quantum dot nanocrystals or fluorophores to enable its detection by computed tomography (CT), magnetic resonance imaging (MRI), or fluorescence microscopy, respectively. Our approach may contribute to effective development and optimization of lipoprotein-based nanomaterials for medical imaging and drug delivery. PMID:24079940

  6. High-energy side-peak emission of exciton-polariton condensates in high density regime

    NASA Astrophysics Data System (ADS)

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-05-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics.

  7. High-energy side-peak emission of exciton-polariton condensates in high density regime.

    PubMed

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-01-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates-sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity-have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. PMID:27193700

  8. Retinotopic mapping of adult human visual cortex with high-density diffuse optical tomography

    PubMed Central

    Zeff, Benjamin W.; White, Brian R.; Dehghani, Hamid; Schlaggar, Bradley L.; Culver, Joseph P.

    2007-01-01

    Functional neuroimaging is a vital element of neuroscience and cognitive research and, increasingly, is an important clinical tool. Diffuse optical imaging is an emerging, noninvasive technique with unique portability and hemodynamic contrast capabilities for mapping brain function in young subjects and subjects in enriched or clinical environments. We have developed a high-performance, high-density diffuse optical tomography (DOT) system that overcomes previous limitations and enables superior image quality. We show herein the utility of the DOT system by presenting functional hemodynamic maps of the adult human visual cortex. The functional brain images have a high contrast-to-noise ratio, allowing visualization of individual activations and highly repeatable mapping within and across subjects. With the improved spatial resolution and localization, we were able to image functional responses of 1.7 cm in extent and shifts of <1 cm. Cortical maps of angle and eccentricity in the visual field are consistent with retinotopic studies using functional MRI and positron-emission tomography. These results demonstrate that high-density DOT is a practical and powerful tool for mapping function in the human cortex. PMID:17616584

  9. High-energy side-peak emission of exciton-polariton condensates in high density regime

    PubMed Central

    Horikiri, Tomoyuki; Yamaguchi, Makoto; Kamide, Kenji; Matsuo, Yasuhiro; Byrnes, Tim; Ishida, Natsuko; Löffler, Andreas; Höfling, Sven; Shikano, Yutaka; Ogawa, Tetsuo; Forchel, Alfred; Yamamoto, Yoshihisa

    2016-01-01

    In a standard semiconductor laser, electrons and holes recombine via stimulated emission to emit coherent light, in a process that is far from thermal equilibrium. Exciton-polariton condensates–sharing the same basic device structure as a semiconductor laser, consisting of quantum wells coupled to a microcavity–have been investigated primarily at densities far below the Mott density for signatures of Bose-Einstein condensation. At high densities approaching the Mott density, exciton-polariton condensates are generally thought to revert to a standard semiconductor laser, with the loss of strong coupling. Here, we report the observation of a photoluminescence sideband at high densities that cannot be accounted for by conventional semiconductor lasing. This also differs from an upper-polariton peak by the observation of the excitation power dependence in the peak-energy separation. Our interpretation as a persistent coherent electron-hole-photon coupling captures several features of this sideband, although a complete understanding of the experimental data is lacking. A full understanding of the observations should lead to a development in non-equilibrium many-body physics. PMID:27193700

  10. Exploration of high-density protein microarrays for antibody validation and autoimmunity profiling.

    PubMed

    Sjöberg, Ronald; Mattsson, Cecilia; Andersson, Eni; Hellström, Cecilia; Uhlen, Mathias; Schwenk, Jochen M; Ayoglu, Burcu; Nilsson, Peter

    2016-09-25

    High-density protein microarrays of recombinant human protein fragments, representing 12,412 unique Ensembl Gene IDs, have here been produced and explored. These protein microarrays were used to analyse antibody off-target interactions, as well as for profiling the human autoantibody repertoire in plasma against the antigens represented by the protein fragments. Affinity-purified polyclonal antibodies produced within the Human Protein Atlas (HPA) were analysed on microarrays of three different sizes, ranging from 384 antigens to 21,120 antigens, for evaluation of the antibody validation criteria in the HPA. Plasma samples from secondary progressive multiple sclerosis patients were also screened in order to explore the feasibility of these arrays for broad-scale profiling of autoantibody reactivity. Furthermore, analysis on these near proteome-wide microarrays was complemented with analysis on HuProt™ Human Proteome protein microarrays. The HPA recombinant protein microarray with 21,120 antigens and the HuProt™ Human Proteome protein microarray are currently the largest protein microarray platforms available to date. The results on these arrays show that the Human Protein Atlas antibodies have few off-target interactions if the antibody validation criteria are kept stringent and demonstrate that the HPA-produced high-density recombinant protein fragment microarrays allow for a high-throughput analysis of plasma for identification of possible autoantibody targets in the context of various autoimmune conditions. PMID:26417875

  11. High-density EEG coherence analysis using functional units applied to mental fatigue.

    PubMed

    Ten Caat, Michael; Lorist, Monicque M; Bezdan, Eniko; Roerdink, Jos B T M; Maurits, Natasha M

    2008-06-30

    Electroencephalography (EEG) coherence provides a quantitative measure of functional brain connectivity which is calculated between pairs of signals as a function of frequency. Without hypotheses, traditional coherence analysis would be cumbersome for high-density EEG which employs a large number of electrodes. One problem is to find the most relevant regions and coherences between those regions in individuals and groups. Therefore, we previously developed a data-driven approach for individual as well as group analyses of high-density EEG coherence. Its data-driven regions of interest (ROIs) are referred to as functional units (FUs) and are defined as spatially connected sets of electrodes that record pairwise significantly coherent signals. Here, we apply our data-driven approach to a case study of mental fatigue. We show that our approach overcomes the severe limitations of conventional hypothesis-driven methods which depend on previous investigations and leads to a selection of coherences of interest taking full advantage of the recordings under investigation. The presented visualization of (group) FU maps provides a very economical data summary of extensive experimental results, which otherwise would be very difficult and time-consuming to assess. Our approach leads to an FU selection which may serve as a basis for subsequent conventional quantitative analysis; thus it complements rather than replaces the hypothesis-driven approach.

  12. Residual gas entering high density hydrogen plasma: rarefaction due to rapid heating

    NASA Astrophysics Data System (ADS)

    Den Harder, N.; Schram, D. C.; Goedheer, W. J.; De Blank, H. J.; Van de Sanden, M. C. M.; Van Rooij, G. J.

    2015-04-01

    The interaction of background molecular hydrogen with magnetized (0.4 T) high density (1-5 × 1020 m-3) low temperature (˜3 eV) hydrogen plasma was inferred from the Fulcher band emission in the linear plasma generator Pilot-PSI. In the plasma center, vibrational temperatures reached 1 eV. Rotational temperatures obtained from the Q(v = 1) branch were systematically ˜0.1 eV lower than the Q(v = 0) branch temperatures, which were in the range of 0.4-0.8 eV, typically 60% of the translational temperature (determined from the width of the same spectral lines). The latter is attributed to preferential excitation of translational degrees of freedom in collisions with ions on the timescale of their in-plasma residence time. Doppler shifts revealed co-rotation of the molecules with the plasma at an angular velocity an order of magnitude lower, confirming that the Fulcher emission connects to background molecules. A simple model estimated a factor of 90 rarefaction of the molecular density at the center of the plasma column compared to the residual gas density. Temperature and density information was combined to conclude that ion-conversion molecular assisted recombination dominates plasma recombination at a rate of 1 × 10-15 m3 s-1. The observations illustrate the general significance of rapid molecule heating in high density hydrogen plasma for estimating molecular processes and how this affects Fulcher spectroscopy.

  13. Construction of High-Density Genetic Map in Barley through Restriction-Site Associated DNA Sequencing.

    PubMed

    Zhou, Gaofeng; Zhang, Qisen; Zhang, Xiao-Qi; Tan, Cong; Li, Chengdao

    2015-01-01

    Genetic maps in barley are usually constructed from a limited number of molecular markers such as SSR (simple sequence repeat) and DarT (diversity arrays technology). These markers must be first developed before being used for genotyping. Here, we introduce a new strategy based on sequencing progeny of a doubled haploid population from Baudin × AC Metcalfe to construct a genetic map in barley. About 13,547 polymorphic SNP tags with >93% calling rate were selected to construct the genetic map. A total of 12,998 SNP tags were anchored to seven linkage groups which spanned a cumulative 967.6 cM genetic distance. The high-density genetic map can be used for QTL mapping and the assembly of WGS and BAC contigs. The genetic map was evaluated for its effectiveness and efficiency in QTL mapping and candidate gene identification. A major QTL for plant height was mapped at 105.5 cM on chromosome 3H. This QTL with LOD value of 13.01 explained 44.5% of phenotypic variation. This strategy will enable rapid and efficient establishment of high-density genetic maps in other species. PMID:26182149

  14. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  15. High Density Molecular Linkage Maps of the Tomato and Potato Genomes

    PubMed Central

    Tanksley, S. D.; Ganal, M. W.; Prince, J. P.; de-Vicente, M. C.; Bonierbale, M. W.; Broun, P.; Fulton, T. M.; Giovannoni, J. J.; Grandillo, S.; Martin, G. B.; Messeguer, R.; Miller, J. C.; Miller, L.; Paterson, A. H.; Pineda, O.; Roder, M. S.; Wing, R. A.; Wu, W.; Young, N. D.

    1992-01-01

    High density molecular linkage maps, comprised of more than 1000 markers with an average spacing between markers of approximately 1.2 cM (ca. 900 kb), have been constructed for the tomato and potato genomes. As the two maps are based on a common set of probes, it was possible to determine, with a high degree of precision, the breakpoints corresponding to 5 chromosomal inversions that differentiate the tomato and potato genomes. All of the inversions appear to have resulted from single breakpoints at or near the centromeres of the affected chromosomes, the result being the inversion of entire chromosome arms. While the crossing over rate among chromosomes appears to be uniformly distributed with respect to chromosome size, there is tremendous heterogeneity of crossing over within chromosomes. Regions of the map corresponding to centromeres and centromeric heterochromatin, and in some instances telomeres, experience up to 10-fold less recombination than other areas of the genome. Overall, 28% of the mapped loci reside in areas of putatively suppressed recombination. This includes loci corresponding to both random, single copy genomic clones and transcribed genes (detected with cDNA probes). The extreme heterogeneity of crossing over within chromosomes has both practical and evolutionary implications. Currently tomato and potato are among the most thoroughly mapped eukaryotic species and the availability of high density molecular linkage maps should facilitate chromosome walking, quantitative trait mapping, marker-assisted breeding and evolutionary studies in these two important and well studied crop species. PMID:1360934

  16. High-density biosynthetic fuels: the intersection of heterogeneous catalysis and metabolic engineering.

    PubMed

    Harvey, Benjamin G; Meylemans, Heather A; Gough, Raina V; Quintana, Roxanne L; Garrison, Michael D; Bruno, Thomas J

    2014-05-28

    Biosynthetic valencene, premnaspirodiene, and natural caryophyllene were hydrogenated and evaluated as high performance fuels. The parent sesquiterpenes were then isomerized to complex mixtures of hydrocarbons with the heterogeneous acid catalyst Nafion SAC-13. High density fuels with net heats of combustion ranging from 133-141 000 Btu gal(-1), or up to 13% higher than commercial jet fuel could be generated by this approach. The products of caryophyllene isomerization were primarily tricyclic hydrocarbons which after hydrogenation increased the fuel density by 6%. The isomerization of valencene and premnaspirodiene also generated a variety of sesquiterpenes, but in both cases the dominant product was δ-selinene. Ab initio calculations were conducted to determine the total electronic energies for the reactants and products. In all cases the results were in excellent agreement with the experimental distribution of isomers. The cetane numbers for the sesquiterpane fuels ranged from 20-32 and were highly dependent on the isomer distribution. Specific distillation cuts may have the potential to act as high density diesel fuels, while use of these hydrocarbons as additives to jet fuel will increase the range and/or time of flight of aircraft. In addition to the ability to generate high performance renewable fuels, the powerful combination of metabolic engineering and heterogeneous catalysis will allow for the preparation of a variety of sesquiterpenes with potential for pharmaceutical, flavor, and fragrance applications. PMID:24724156

  17. High-density equation of state for helium and its application to bubbles in solids

    SciTech Connect

    Wolfer, W.G.

    1980-06-01

    Helium, produced by transmutations or injected, causes bubble formation in solids at elevated temperatures. For small bubbles, the gas pressure required to balance the surface tension reaches values which far exceed those obtainable in experiments to measure the equation of state for helium gas. Therefore, empirical gas laws cannot be considered applicable to the fluid-like densities existing in small bubbles. In order to remedy this situation, an equation of state for helium was developed from the theory of the liquid state. At very low densities, this theoretically derived equation of state agrees with experimental results. For high densities, however, gas pressures are predicted which are significantly higher than those derived from the ideal gas law, but also significantly lower than pressures obtained with the van der Waals law. When applied to equilibrium bubbles in solids, it is found that the high-density equation of state leads to less bubble swelling than the van der Waals law, but more than the ideal gas law. Furthermore, the number of helium atoms in equilibrium bubbles is nearly independent of temperature.

  18. Triglyceride to high density lipoprotein cholesterol ratio, total cholesterol to high density lipoprotein cholesterol ratio and low ankle brachial index in an elderly population.

    PubMed

    Zhan, Yiqiang; Yu, Jinming; Ding, Rongjing; Sun, Yihong; Hu, Dayi

    2014-05-01

    Hintergrund: Der Zusammenhang zwischen den Quotienten aus Triglycerid (TG) und High-density-lipoprotein-cholesterin (HDL‑C) sowie Gesamtcholesterin (TC) und HDL‑C und dem Knöchel-Arm-Index (ABI) wurde selten untersucht. Patienten und Methoden: Insgesamt 2.982 Teinehmer, die über 60 Jahre alt waren, wurden für die bevölkerungsbasierte Querschnittstudie rekrutiert. TG, TC, HDL‑C, und low-density Lipoprotein Cholesterol (LDL-C) wurden bei allen Teilnehmern getestet. Ein niedriger ABI wurde als ABI ≤ 0.9 definiert. Multiple Regressionsmodelle wurden für die Untersuchung der Assoziation zwischen TG/HDL‑C Ratio und TC/HDL‑C Ratio und niedrigem ABI angewendet. Ergebnisse: Die TG/HDL‑C Ratios für ABI > 0.9 und ABI ≤ 0.9 waren 1.28 ± 1.20 und 1.48 ± 1.13 (P < 0.0001), während die TC/HDL‑C Ratios 3.96 ± 1.09 bzw. 4.32 ± 1.15 (P < 0.0001) waren. Nach der Angleichung von Alter, Geschlecht, Body-Mass-Index, Fettleibigkeit, Alkoholkonsum, köperliche Aktivität, Hypertonie, Diabetes, Einnahme von lipidsenkenden Medikamenten, und Herz-Kreislauf-Erkrankungen waren die Odds Ratios (OR) mit 95 % Konfidenzintervall (KI) bei dem niedrigen ABI und TG/HDL‑C Quotient 1,10 (0,96 - 1,26) und 1,34 (1,14 - 1,59) für TC/HDL‑C in der Nichtrauchergruppe. Wenn das TC weiter angeglichen wurde, waren die ORs (95 % CIs) 1.40 (0.79, 2.52) und 1.53 (1.21, 1.93) für die TG/HDL‑C Ratio und TC/HDL‑C Ratio. Nichtlineare Zusammenhänge wurden zwischen der TG/HDL‑C Ratio und TC/HDL‑C Ratio und dem niedrigen ABI in der Raucher- und Nichtrauchergruppe entdeckt. Schlussfolgerungen: Die TC/HDL‑C Ratio war signifikant mit einem niedrigen ABI in der Nichtrauchergruppe verbunden und die Assoziation war unabhängig von TC, TG, HDL‑C und LDL-C. TC/HDL‑C könnte als potentieller Biomarker für die frühe periphere arterielle Verschlusskrankheit beim Screening berücksichtigt werden.

  19. Relation of Black Race between High Density Lipoprotein Cholesterol Content, High Density Lipoprotein Particles and Coronary Events (From the Dallas Heart Study)

    PubMed Central

    Chandra, Alvin; Neeland, Ian J.; Das, Sandeep R.; Khera, Amit; Turer, Aslan T.; Ayers, Colby R.; McGuire, Darren K.; Rohatgi, Anand

    2015-01-01

    Therapies targeting high density lipoprotein cholesterol content (HDL-C) have not improved coronary heart disease (CHD) outcomes. HDL particle concentration (HDL-P) may better predict CHD. However, the impact of race/ethnicity on the relations between HDL-P and subclinical atherosclerosis/ incident CHD events has not been described. Participants from the Dallas Heart Study, a multiethnic, probability-based, population cohort of Dallas County adults had the following baseline measurements: HDL-C, HDL-P by nuclear magnetic resonance imaging (NMR), and coronary artery calcium (CAC) by electron beam computed tomography. Participants were followed for a median of 9.3 years for incident CHD events (composite of first myocardial infarction, stroke, coronary revascularization, or cardiovascular death). The study comprised 1977 participants free from CHD (51% women, 46% Black). In adjusted models, HDL-C was not associated with prevalent CAC (p=0.13) or incident CHD overall (HR per 1SD: 0.89, 95% CI 0.76–1.05). However, HDL-C was inversely associated with incident CHD among non-Black (adjusted HR per 1SD 0.67, 95% CI 0.46–0.97) but not Black participants (HR 0.94, 95% CI 0.78–1.13, pinteraction = 0.05). Conversely, HDL-P, adjusted for risk factors and HDL-C, was inversely associated with prevalent CAC (p=0.009) and with incident CHD overall (adjusted HR per 1SD: 0.73, 95% CI 0.62–0.86) with no interaction by Black race/ethnicity (pinteraction = 0.57). In conclusion, in contrast to HDL-C, the inverse relationship between HDL-P and incident CHD events is consistent across ethnicities. These findings suggest that HDL-P is superior to HDL-C in predicting both prevalent atherosclerosis as well as incident CHD events across a diverse population and should be considered as a therapeutic target. PMID:25661572

  20. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    NASA Astrophysics Data System (ADS)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  1. High-density stretchable microelectrode arrays: An integrated technology platform for neural and muscular surface interfacing

    NASA Astrophysics Data System (ADS)

    Guo, Liang

    2011-12-01

    Numerous applications in neuroscience research and neural prosthetics, such as retinal prostheses, spinal-cord surface stimulation for prosthetics, electrocorticogram (ECoG) recording for epilepsy detection, etc., involve electrical interaction with soft excitable tissues using a surface stimulation and/or recording approach. These applications require an interface that is able to set up electrical communications with a high throughput between electronics and the excitable tissue and that can dynamically conform to the shape of the soft tissue. Being a compliant and biocompatible material with mechanical impedance close to that of soft tissues, polydimethylsiloxane (PDMS) offers excellent potential as the substrate material for such neural interfaces. However, fabrication of electrical functionalities on PDMS has long been very challenging. This thesis work has successfully overcome many challenges associated with PDMS-based microfabrication and achieved an integrated technology platform for PDMS-based stretchable microelectrode arrays (sMEAs). This platform features a set of technological advances: (1) we have fabricated uniform current density profile microelectrodes as small as 10 mum in diameter; (2) we have patterned high-resolution (feature as small as 10 mum), high-density (pitch as small as 20 mum) thin-film gold interconnects on PDMS substrate; (3) we have developed a multilayer wiring interconnect technology within the PDMS substrate to further boost the achievable integration density of such sMEA; and (4) we have invented a bonding technology---via-bonding---to facilitate high-resolution, high-density integration of the sMEA with integrated circuits (ICs) to form a compact implant. Taken together, this platform provides a high-resolution, high-density integrated system solution for neural and muscular surface interfacing. sMEAs of example designs are evaluated through in vitro and in vivo experimentations on their biocompatibility, surface conformability

  2. High density LHRF experiments in Alcator C-Mod and implications for reactor scale devices

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Parker, R. R.; Bonoli, P. T.; Shiraiwa, S.; Wallace, G. M.; LaBombard, B.; Faust, I. C.; Porkolab, M.; Whyte, D. G.

    2015-04-01

    Parametric decay instabilities (PDI) appear to be an ubiquitous feature of lower hybrid current drive (LHCD) experiments at high density. In density ramp experiments in Alcator C-Mod and other machines the onset of PDI activity has been well correlated with a decrease in current drive efficiency and production of fast electron bremsstrahlung. However whether PDI is the primary cause of the ‘density limit’, and if so by exactly what mechanism (beyond the obvious one of pump depletion) has not been clearly established. In order to further understand the connection, the frequency spectrum of PDI activity occurring during Alcator C-Mod LHCD experiments has been explored in detail by means of a number of RF probes distributed around the periphery of the C-Mod tokamak including a probe imbedded in the inner wall. The results show that (i) the excited spectra consists mainly of a few discrete ion cyclotron (IC) quasi-modes, which have higher growth than the ion sound branch; (ii) PDI activity can begin either at the inner or outer wall, depending on magnetic configuration; (iii) the frequencies of the IC quasi-modes correspond to the magnetic field strength close to the low-field side (LFS) or high-field side separatrix; and (iv) although PDI activity may initiate near the inner separatrix, the loss in fast electron bremsstrahlung is best correlated with the appearance of IC quasi-modes characteristic of the magnetic field strength near the LFS separatrix. These data, supported by growth rate calculations, point to the importance of the LFS scrape-off layer (SOL) density in determining PDI onset and degradation in current drive efficiency. By minimizing the SOL density it is possible to extend the core density regime over which PDI can be avoided, thus potentially maximizing the effectiveness of LHCD at high density. Increased current drive efficiency at high density has been achieved in FTU and EAST through lithium coating and special fuelling methods, and in recent

  3. Visual object processing as a function of stimulus energy, retinal eccentricity and Gestalt configuration: a high-density electrical mapping study.

    PubMed

    Snyder, A C; Shpaner, M; Molholm, S; Foxe, J J

    2012-09-27

    To reveal the fundamental processes underlying the different stages of visual object perception, most studies have manipulated relatively complex images, such as photographs, line drawings of natural objects, or perceptual illusions. Here, rather than starting from complex images and working backward to infer simpler processes, we investigated how the visual system parses and integrates information contained in stimuli of the most basic variety. Simple scatterings of a few points of light were manipulated in terms of their numerosity, spatial extent, and organization, and high-density electrophysiological recordings were made from healthy adults engaged in an unrelated task. We reasoned that this approach permitted an uncontaminated view of the spatio-temporal dynamics of the related neural processes. We were guided in our predictions by the "frame-and-fill" model for object perception, whereby fast inputs to the dorsal stream of the visual "where" system first frame the spatial extent of visual objects, which are subsequently "filled-in" by the slower activation of the ventral stream of the visual "what" system. Our findings were consistent with this view, showing a rapidly-onsetting effect of spatial extent in dorsal stream sources, and later-onsetting effects due to dot number and symmetry, which were deemed to be more closely tied to the details of object identity, from ventral stream sources. This collection of observations provides an important baseline from which to understand the spatio-temporal properties of basic visual object perception, and from which to test dysfunction of this system in clinical populations.

  4. Simulation of ionization effects for high-density positron drivers in future plasma wakefield experiments

    SciTech Connect

    Bruhwiler, D.L.; Dimitrov, D.A.; Cary, J.R.; Esarey, E.; Leemans, W.P.

    2003-05-12

    The plasma wakefield accelerator (PWFA) concept has been proposed as a potential energy doubler for present or future electron-positron colliders. Recent particle-in-cell (PIC) simulations have shown that the self-fields of the required electron beam driver can tunnel ionize neutral Li, leading to plasma wake dynamics differing significantly from that of a preionized plasma. It has also been shown, for the case of a preionized plasma, that the plasma wake of a positron driver differs strongly from that of an electron driver. We will present new PIC simulations, using the OOPIC code, showing the effects of tunneling ionization on the plasma wake generated by high-density positron drivers. The results will be compared to previous work on electron drivers with tunneling ionization and positron drivers without ionization. Parameters relevant to the energy doubler and the upcoming E-164x experiment at the Stanford Linear Accelerator Center will be considered.

  5. High-density limit of quasi-two-dimensional dipolar Bose gas

    NASA Astrophysics Data System (ADS)

    Pastukhov, Volodymyr

    2016-09-01

    We consider a simple model of the quasi-two-dimensional dipolar Bose gas confined in the one-dimensional square well potential. All dipoles are assumed to be oriented along the confining axis. By means of hydrodynamic approach it is shown that the general structure of the low-lying excitations can be analyzed exactly. We demonstrate that the problem significantly simplifies in the high-density limit for which the density profile in the confined direction as well as the leading-order contribution to the ground-state energy and spectrum of elementary excitations are calculated. The low-temperature result for the damping rate of the phonon mode is also presented.

  6. Non-Abelian strings in high-density QCD: Zero modes and interactions

    SciTech Connect

    Nakano, Eiji; Nitta, Muneto; Matsuura, Taeko

    2008-08-15

    The most fundamental strings in high-density color superconductivity are the non-Abelian semisuperfluid strings which have color-gauge flux tubes but behave as superfluid vortices in the energetic point of view. We show that in addition to the usual translational zero modes, these vortices have normalizable orientational zero modes in the internal space, associated with the color-flavor locking symmetry broken in the presence of the strings. The interaction among two parallel non-Abelian semisuperfluid strings is derived for general relative orientational zero modes to show the universal repulsion. This implies that the previously known superfluid vortices, formed by spontaneously broken U(1){sub B}, are unstable to decay. Moreover, our result proves the stability of color superconductors in the presence of external color-gauge fields.

  7. High-Density Lipoprotein - A Hero, a Mirage, or a Witness?

    PubMed

    Sviridov, Dmitri

    2014-01-01

    Negative relationship between plasma high-density lipoprotein (HDL) levels and risk of cardiovascular disease (CVD) is a firmly established medical fact, but attempts to reproduce protective properties of HDL by pharmacologically elevating HDL levels were mostly unsuccessful. This conundrum presents a fundamental question: were the approaches used to raise HDL flawed or the protective effects of HDL are an epiphenomenon? Recent attempts to elevate plasma HDL were universally based on reducing HDL catabolism by blocking reverse cholesterol transport (RCT). Here, we argue that this mode of HDL elevation may be mechanistically different to natural mechanisms and thus be counterproductive. We further argue that independently of whether HDL is a driving force or a surrogate measure of the rate of RCT, approaches aimed at increasing HDL supply, rather than reducing its catabolism, would be most beneficial for speeding up RCT and improving protection against CVD. PMID:26664860

  8. Electrodeposition of High Density Silver Nanosheets with Controllable Morphologies Served as Effective and Reproducible SERS Substrates.

    PubMed

    Xia, Yiqing; Wu, Yunwen; Hang, Tao; Chang, Jiaming; Li, Ming

    2016-04-12

    Silver nanosheets with a nanogap smaller than 10 nm and high reproducibility were constructed through simple and environmentally friendly electrodeposition method on copper plate. The sizes of the nanogaps can be varied from around 7 to 150 nm by adjusting the deposition time and current density. The nanosheets with different nanogaps exhibited varied surface-enhanced Raman scattering (SERS) properties due to electromagnetic mechanism (EM). The optimized high density silver nanosheets with a nanogap smaller than 10 nm showed effective SERS ability with an enhanced factor as high as 2.0 × 10(5). Furthermore, the formation mechanism of the nanosheets during the electrodeposition process has been investigated by discussing the influence of boric acid and current density. This method has proved to be applicable on different metal substrates, which exhibits the potential to be widely used in different fields. PMID:27003754

  9. Self-Digitization of Samples into a High-Density Microfluidic Bottom-Well Array

    PubMed Central

    Schneider, Thomas; Yen, Gloria S.; Thompson, Alison M.; Burnham, Daniel R.; Chiu, Daniel T.

    2013-01-01

    This paper describes a sample digitization method that generates tens of thousands of nanoliter-sized droplets in a high-density array in a matter of minutes. We show that the sample digitization depends on both the geometric design of the microfluidic device and the viscoelastic forces between the aqueous sample and a continuous oil phase. Our design avoids sample loss: Samples are split into tens of thousands of discreet volumes with close to 100% efficiency without the need for any expensive valving or pumping systems. We envision this technology will have broad applications that require simple sample digitization within minutes, such as digital polymerase chain reactions and single-cell studies. PMID:24099270

  10. Study of short haul high-density V/STOL transportation systems, volume 1

    NASA Technical Reports Server (NTRS)

    Solomon, H. L.

    1972-01-01

    The relative advantages of STOL aircraft concepts were examined by simulating the operations of a short haul high-density intercity STOL system set in two arenas, the California corridor and the Chicago-Detroit-Cleveland triangle, during the 1980 time period. The study was constrained to the use of three aircraft concepts designated as the deflected slipstream turboprop, externally blown flap, and augmentor wing turbofan configurations. The projected demographic, economic, travel demand, and travel characteristics of the representative arenas were identified. The STOL airline operating scenarios were then formulated and through the use of the aerospace modal split simulation program, the traveler modal choices involving alternative STOL concepts were estimated in the context of the total transportation environment for 1980. System combinations that presented the best potential for economic return and traveler acceptance were then identified for each STOL concept.

  11. Treating low high-density lipoprotein cholesterol: what is the evidence?

    PubMed Central

    Hage, Mirella P.

    2014-01-01

    Epidemiological studies have shown an inverse association between high-density lipoprotein cholesterol (HDL-C) and cardiovascular disease (CVD) risk. However, genetic and interventional studies have failed to consistently support this relationship. There is an increasing body of evidence that the function of HDL, including its antiatherogenic properties and its reverse cholesterol transport activity, has a greater impact on CVD risk compared with levels of HDL alone. Targeting HDL has become a growing interest. Nevertheless, raising HDL pharmacologically has failed to show a considerable, if any, impact on cardiovascular outcome. Efforts should focus on improving HDL quality in addition to raising HDL levels when developing new therapies. Ongoing and future research will help determine the most safe and effective approach to improve cardiovascular outcome and establish the safety, efficacy and impact on atherosclerosis of the emerging HDL-raising therapies. PMID:24696776

  12. High density lipoprotein cholesterol: an evolving target of therapy in the management of cardiovascular disease

    PubMed Central

    Kapur, Navin K; Ashen, Dominique; Blumenthal, Roger S

    2008-01-01

    Since the pioneering work of John Gofman in the 1950s, our understanding of high density lipoprotein cholesterol (HDL-C) and its relationship to coronary heart disease (CHD) has grown substantially. Numerous clinical trials since the Framingham Study in 1977 have demonstrated an inverse relationship between HDL-C and one’s risk of developing CHD. Over the past two decades, preclinical research has gained further insight into the nature of HDL-C metabolism, specifically regarding the ability of HDL-C to promote reverse cholesterol transport (RCT). Recent attempts to harness HDL’s ability to enhance RCT have revealed the complexity of HDL-C metabolism. This review provides a detailed update on HDL-C as an evolving therapeutic target in the management of cardiovascular disease. PMID:18629371

  13. High density wireless EEG prototype: Design and evaluation against reference equipment.

    PubMed

    Rossi, Stefano; Patki, Shrishail; Passoni, Marco; Perko, Hannes; Gritsch, Gerhard; Ossenblok, Pauly; Yazicioglu, Refet Firat

    2014-01-01

    A high density wireless electroencephalographic (EEG) platform has been designed. It is able to record up to 64 EEG channels with electrode to tissue impedance (ETI) monitoring. The analog front-end is based on two kinds of low power ASICs implementing the active electrodes and the amplifier. A power efficient compression algorithm enables the use of continuous wireless transmission of data through Bluetooth for real-time monitoring with an overall power consumption of about 350 mW. EEG acquisitions on five subjects (one healthy subject and four patients suffering from epilepsy) have been recorded in parallel with a reference system commonly used in clinical practice and data of the wireless prototype and reference system have been processed with an automatic tool for seizure detection and localization. The false alarm rates (0.1-0.5 events per hour) are comparable between the two system and wireless prototype also detected the seizure correctly and allowed its localization.

  14. Generation of neutral and high-density electron–positron pair plasmas in the laboratory

    PubMed Central

    Sarri, G.; Poder, K.; Cole, J. M.; Schumaker, W.; Di Piazza, A.; Reville, B.; Dzelzainis, T.; Doria, D.; Gizzi, L. A.; Grittani, G.; Kar, S.; Keitel, C. H.; Krushelnick, K.; Kuschel, S.; Mangles, S. P. D.; Najmudin, Z.; Shukla, N.; Silva, L. O.; Symes, D.; Thomas, A. G. R.; Vargas, M.; Vieira, J.; Zepf, M.

    2015-01-01

    Electron–positron pair plasmas represent a unique state of matter, whereby there exists an intrinsic and complete symmetry between negatively charged (matter) and positively charged (antimatter) particles. These plasmas play a fundamental role in the dynamics of ultra-massive astrophysical objects and are believed to be associated with the emission of ultra-bright gamma-ray bursts. Despite extensive theoretical modelling, our knowledge of this state of matter is still speculative, owing to the extreme difficulty in recreating neutral matter–antimatter plasmas in the laboratory. Here we show that, by using a compact laser-driven setup, ion-free electron–positron plasmas with unique characteristics can be produced. Their charge neutrality (same amount of matter and antimatter), high-density and small divergence finally open up the possibility of studying electron–positron plasmas in controlled laboratory experiments. PMID:25903920

  15. Quantification of protein interactions and solution transport using high-density GMR sensor arrays.

    PubMed

    Gaster, Richard S; Xu, Liang; Han, Shu-Jen; Wilson, Robert J; Hall, Drew A; Osterfeld, Sebastian J; Yu, Heng; Wang, Shan X

    2011-05-01

    Monitoring the kinetics of protein interactions on a high-density sensor array is vital to drug development and proteomic analysis. Label-free kinetic assays based on surface plasmon resonance are the current gold standard, but they have poor detection limits, suffer from non-specific binding, and are not amenable to high-throughput analyses. Here, we show that magnetically responsive nanosensors that have been scaled to over 100,000 sensors per cm² can be used to measure the binding kinetics of various proteins with high spatial and temporal resolution. We present an analytical model that describes the binding of magnetically labelled antibodies to proteins that are immobilized on the sensor surface. This model is able to quantify the kinetics of antibody-antigen binding at sensitivities as low as 20 zeptomoles of solute.

  16. Automated navigation of a glass micropipette on a high-density microelectrode array.

    PubMed

    Jing Lin; Obien, Marie Engelene J; Hierlemann, Andreas; Frey, Urs

    2015-08-01

    High-density microelectrode arrays (HDMEAs) provide the capability to monitor the extracellular electric potential of multiple neurons at subcellular resolution over extended periods of time. In contrast, patch clamp allows for intracellular, sub-threshold recordings from a single patched neuron for very limited time on the order of an hour. Therefore, it will be beneficial to combine HDMEA and patch clamp for simultaneous intra- and extracellular recording of neuronal activity. Previously, it has been shown that the HDMEA can be used to localize and steer a glass micropipette towards a target location without using an optical microscope [1]. Here, we present an automated system, implemented in LabVIEW, which automatically locates and moves the glass micropipette towards a user-defined target. The presented system constitutes a first step towards developing an automated system to navigate a pipette to patch a neuron in vitro. PMID:26736403

  17. Porous Au-Ag Nanospheres with High-Density and Highly Accessible Hotspots for SERS Analysis.

    PubMed

    Liu, Kai; Bai, Yaocai; Zhang, Lei; Yang, Zhongbo; Fan, Qikui; Zheng, Haoquan; Yin, Yadong; Gao, Chuanbo

    2016-06-01

    Colloidal plasmonic metal nanoparticles have enabled surface-enhanced Raman scattering (SERS) for a variety of analytical applications. While great efforts have been made to create hotspots for amplifying Raman signals, it remains a great challenge to ensure their high density and accessibility for improved sensitivity of the analysis. Here we report a dealloying process for the fabrication of porous Au-Ag alloy nanoparticles containing abundant inherent hotspots, which were encased in ultrathin hollow silica shells so that the need of conventional organic capping ligands for stabilization is eliminated, producing colloidal plasmonic nanoparticles with clean surface and thus high accessibility of the hotspots. As a result, these novel nanostructures show excellent SERS activity with an enhancement factor of ∼1.3 × 10(7) on a single particle basis (off-resonant condition), promising high applicability in many SERS-based analytical and biomedical applications. PMID:27192436

  18. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure.

    PubMed

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto

    2014-01-01

    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  19. High-Density Liquid-State Machine Circuitry for Time-Series Forecasting.

    PubMed

    Rosselló, Josep L; Alomar, Miquel L; Morro, Antoni; Oliver, Antoni; Canals, Vincent

    2016-08-01

    Spiking neural networks (SNN) are the last neural network generation that try to mimic the real behavior of biological neurons. Although most research in this area is done through software applications, it is in hardware implementations in which the intrinsic parallelism of these computing systems are more efficiently exploited. Liquid state machines (LSM) have arisen as a strategic technique to implement recurrent designs of SNN with a simple learning methodology. In this work, we show a new low-cost methodology to implement high-density LSM by using Boolean gates. The proposed method is based on the use of probabilistic computing concepts to reduce hardware requirements, thus considerably increasing the neuron count per chip. The result is a highly functional system that is applied to high-speed time series forecasting.

  20. chipD: a web tool to design oligonucleotide probes for high-density tiling arrays

    PubMed Central

    Dufour, Yann S.; Wesenberg, Gary E.; Tritt, Andrew J.; Glasner, Jeremy D.; Perna, Nicole T.; Mitchell, Julie C.; Donohue, Timothy J.

    2010-01-01

    chipD is a web server that facilitates design of DNA oligonucleotide probes for high-density tiling arrays, which can be used in a number of genomic applications such as ChIP-chip or gene-expression profiling. The server implements a probe selection algorithm that takes as an input, in addition to the target sequences, a set of parameters that allow probe design to be tailored to specific applications, protocols or the array manufacturer’s requirements. The algorithm optimizes probes to meet three objectives: (i) probes should be specific; (ii) probes should have similar thermodynamic properties; and (iii) the target sequence coverage should be homogeneous and avoid significant gaps. The output provides in a text format, the list of probe sequences with their genomic locations, targeted strands and hybridization characteristics. chipD has been used successfully to design tiling arrays for bacteria and yeast. chipD is available at http://chipd.uwbacter.org/. PMID:20529880