Science.gov

Sample records for film hydrogels produced

  1. Ultrathin hydrogel films for rapid optical biosensing.

    PubMed

    Zhang, Xi; Guan, Ying; Zhang, Yongjun

    2012-01-09

    Novel biosensors have been designed by reporting an analyte-induced (de)swelling of a stimuli-responsive hydrogel (usually in a form of thin film) with a suitable optical transducer. These simple, inexpensive hydrogel biosensors are highly desirable, however, their practical applications have been hindered, largely because of their slow response. Here we show that quick response hydrogel sensors can be designed from ultrathin hydrogel films. By the adoption of layer-by-layer assembly, a simple but versatile approach, glucose-sensitive hydrogel films with thickness on submicrometer or micrometer scale, which is 2 orders of magnitude thinner than films used in ordinary hydrogel sensors, can be facilely fabricated. The hydrogel films can not only respond to the variation in glucose concentration, but also report the event via the shift of Fabry-Perot fringes using the thin film itself as Fabry-Perot cavity. The response is linear and reversible. More importantly, the response is quite fast, making it possible to be used for continuous glucose monitoring.

  2. Hydrogel films and coatings by swelling-induced gelation.

    PubMed

    Moreau, David; Chauvet, Caroline; Etienne, François; Rannou, François P; Corté, Laurent

    2016-11-22

    Hydrogel films used as membranes or coatings are essential components of devices interfaced with biological systems. Their design is greatly challenged by the need to find mild synthesis and processing conditions that preserve their biocompatibility and the integrity of encapsulated compounds. Here, we report an approach to produce hydrogel films spontaneously in aqueous polymer solutions. This method uses the solvent depletion created at the surface of swelling polymer substrates to induce the gelation of a thin layer of polymer solution. Using a biocompatible polymer that self-assembles at high concentration [poly(vinyl alcohol)], hydrogel films were produced within minutes to hours with thicknesses ranging from tens to hundreds of micrometers. A simple model and numerical simulations of mass transport during swelling capture the experiments and predict how film growth depends on the solution composition, substrate geometry, and swelling properties. The versatility of the approach was verified with a variety of swelling substrates and hydrogel-forming solutions. We also demonstrate the potential of this technique by incorporating other solutes such as inorganic particles to fabricate ceramic-hydrogel coatings for bone anchoring and cells to fabricate cell-laden membranes for cell culture or tissue engineering.

  3. Hydrogel films and coatings by swelling-induced gelation

    PubMed Central

    Moreau, David; Chauvet, Caroline; Etienne, François; Rannou, François P.

    2016-01-01

    Hydrogel films used as membranes or coatings are essential components of devices interfaced with biological systems. Their design is greatly challenged by the need to find mild synthesis and processing conditions that preserve their biocompatibility and the integrity of encapsulated compounds. Here, we report an approach to produce hydrogel films spontaneously in aqueous polymer solutions. This method uses the solvent depletion created at the surface of swelling polymer substrates to induce the gelation of a thin layer of polymer solution. Using a biocompatible polymer that self-assembles at high concentration [poly(vinyl alcohol)], hydrogel films were produced within minutes to hours with thicknesses ranging from tens to hundreds of micrometers. A simple model and numerical simulations of mass transport during swelling capture the experiments and predict how film growth depends on the solution composition, substrate geometry, and swelling properties. The versatility of the approach was verified with a variety of swelling substrates and hydrogel-forming solutions. We also demonstrate the potential of this technique by incorporating other solutes such as inorganic particles to fabricate ceramic-hydrogel coatings for bone anchoring and cells to fabricate cell-laden membranes for cell culture or tissue engineering. PMID:27821765

  4. Thin Hydrogel Films for Optical Biosensor Applications

    PubMed Central

    Mateescu, Anca; Wang, Yi; Dostalek, Jakub; Jonas, Ulrich

    2012-01-01

    Hydrogel materials consisting of water-swollen polymer networks exhibit a large number of specific properties highly attractive for a variety of optical biosensor applications. This properties profile embraces the aqueous swelling medium as the basis of biocompatibility, non-fouling behavior, and being not cell toxic, while providing high optical quality and transparency. The present review focuses on some of the most interesting aspects of surface-attached hydrogel films as active binding matrices in optical biosensors based on surface plasmon resonance and optical waveguide mode spectroscopy. In particular, the chemical nature, specific properties, and applications of such hydrogel surface architectures for highly sensitive affinity biosensors based on evanescent wave optics are discussed. The specific class of responsive hydrogel systems, which can change their physical state in response to externally applied stimuli, have found large interest as sophisticated materials that provide a complex behavior to hydrogel-based sensing devices. PMID:24957962

  5. Gelatin-Pectin Composite Films from Polyion Complex Hydrogels

    USDA-ARS?s Scientific Manuscript database

    Composite films from gelatin and low-methoxyl pectin were prepared by either ionic complexation or covalent cross-linking. The ionic interactions between positively charged gelatin and negatively charged pectin produced physically reversible hydrogels. The resultant homogeneous gels had improved mec...

  6. Physically crosslinked-sacran hydrogel films for wound dressing application.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2016-08-01

    The thin hydrogel films consisting of water-swollen polymer networks can potentially be applied for biomedical fields. Recently, natural polysaccharides have great attentions to be developed as wound healing and protection. In the present study, we newly prepared and characterized a physically crosslinked-hydrogel film composed of a novel megamolecular polysaccharide sacran for wound dressing application. We successfully fabricated a physically crosslinked-sacran hydrogel film by a solvent-casting method. The thickness of a sacran hydrogel film was lower than that of a sodium alginate (Na-alginate) film. Importantly, the swollen ratio of a sacran hydrogel film in water at 24h was 19-fold, compared to initial weight. Meanwhile, a Na-alginate hydrogel film was completely broken apart after rehydration. Moreover, a sacran hydrogel film did not show any cytotoxicity on NIH3T3 cells, a murine fibroblast cell line. The in vivo skin hydration study revealed that a sacran hydrogel film significantly increased the moisture content on hairless mice skin and considerably improved wound healing ability, compared to control (non-treated), probably due to not only the moisturing effect but also the anti-inflammatory effect of sacran. These results suggest that sacran has the potential properties as a basic biomaterial in a hydrogel film for wound dressing application.

  7. Xanthan hydrogel films: molecular conformation, charge density and protein carriers.

    PubMed

    Bueno, Vânia Blasques; Petri, Denise Freitas Siqueira

    2014-01-30

    In this article the molecular conformation of xanthan chains in hydrogel films was investigated by means of circular dichroism, showing substantial differences between xanthan hydrogel prepared in the absence (XNT) and in the presence of citric acid (XCA). The xanthan chains in XNT hydrogels films presented ordered conformation (helixes), while in XCA they were in the disordered conformation (coils), exposing a larger number of carboxylate groups than XNT. The large charge density in XCA hydrogels was evidenced by their behavior under variable ionic strength. Studies about the application of XNT and XCA for loading and delivering of bovine serum albumin (BSA) and lysozyme (LYZ) showed that both events are controlled by hydrogels and proteins net charge, which can be triggered by pH. The preservation of LYZ native conformation after hydrogel loading explained the substantial bactericidal activity of LYZ loaded hydrogels and enables their use as active wound dressings.

  8. Multiscale Surface-Attached Hydrogel Thin Films with Tailored Architecture.

    PubMed

    Chollet, Benjamin; Li, Mengxing; Martwong, Ekkachai; Bresson, Bruno; Fretigny, Christian; Tabeling, Patrick; Tran, Yvette

    2016-05-11

    A facile route for the fabrication of surface-attached hydrogel thin films with well-controlled chemistry and tailored architecture on wide range of thickness from nanometers to micrometers is reported. The synthesis, which consists in cross-linking and grafting the preformed and ene-reactive polymer chains through thiol-ene click chemistry, has the main advantage of being well-controlled without the addition of initiators. As thiol-ene click reaction can be selectively activated by UV-irradiation (in addition to thermal heating), micropatterned hydrogel films are easily synthesized. The versatility of our approach is illustrated by the possibility to fabricate various chemical polymer networks, like stimuli-responsive hydrogels, on various solid substrates, such as silicon wafers, glass, and gold surfaces. Another attractive feature is the development of new complex hydrogel films with targeted architecture. The fabrication of various architectures for polymer films is demonstrated: multilayer hydrogel films in which single-networks are stacked one onto the other, interpenetrating networks films with mixture of two networks in the same layer, and nanocomposite hydrogel films where nanoparticles are stably trapped inside the mesh of the network. Thanks to its simplicity and its versatility this novel approach to surface-attached hydrogel films should have a strong impact in the area of polymer coatings.

  9. Hybrid hydrogels produced by ionizing radiation technique

    NASA Astrophysics Data System (ADS)

    Oliveira, M. J. A.; Amato, V. S.; Lugão, A. B.; Parra, D. F.

    2012-09-01

    The interest in biocompatible hydrogels with particular properties has increased considerably in recent years due to their versatile applications in biomedicine, biotechnology, pharmacy, agriculture and controlled release of drugs. The use of hydrogels matrices for particular drug-release applications has been investigated with the synthesis of modified polymeric hydrogel of PVAl and 0.5, 1.0, 1.5% nano-clay. They were processed using gamma radiation from Cobalt-60 source at 25 kGy dose. The characterization of the hydrogels was conducted and toxicity was evaluated. The dried hydrogel was analyzed for thermogravimetry analysis (TGA), infrared spectroscopy (FTIR) and swelling in solutions of different pH. The membranes have no toxicity. The nano-clay influences directly the equilibrium swelling.

  10. Thermosensitive multilayer hydrogels of poly(N-vinylcaprolactam) as nanothin films and shaped capsules

    PubMed Central

    Liang, Xing; Kozlovskaya, Veronika; Chen, Yi; Zavgorodnya, Oleksandra; Kharlampieva, Eugenia

    2012-01-01

    We report on nanothin multilayer hydrogels of cross-linked poly(N-vinylcaprolactam) (PVCL) that exhibit distinctive and reversible thermoresponsive behavior. The single-component PVCL hydrogels were produced by selective cross-linking of PVCL in layer-by-layer films of PVCL-NH2 copolymers assembled with poly(methacrylic acid) (PMAA) via hydrogen bonding. The degree of the PVCL hydrogel film shrinkage, defined as the ratio of wet thicknesses at 25°C to 50°C, was demonstrated to be 1.9±0.1 and 1.3±0.1 for the films made from PVCL-NH2-7 and PVCL-NH2-14 copolymers, respectively. No temperature-responsive behavior was observed for non-cross-linked two-component films due to the presence of PMAA. We also demonstrated that temperature-sensitive PVCL capsules of cubical and spherical shapes could be fabricated as hollow hydrogel replicas of inorganic templates. The cubical (PVCL)7 capsules retained their cubical shape when temperature was elevated from 25°C to 50°C exhibiting 21±1% decrease in the capsule size. Spherical hydrogel capsules demonstrated similar shrinkage of 23±1%. The temperature-triggered capsule size changes were completely reversible. Our work opens new prospects for developing biocompatible and nanothin hydrogel-based coatings and containers for temperate-regulating drug delivery, cellular uptake, sensing, and transport behavior in microfluidic devices. PMID:23087543

  11. Methods for producing complex films, and films produced thereby

    DOEpatents

    Duty, Chad E.; Bennett, Charlee J. C.; Moon, Ji -Won; Phelps, Tommy J.; Blue, Craig A.; Dai, Quanqin; Hu, Michael Z.; Ivanov, Ilia N.; Jellison, Jr., Gerald E.; Love, Lonnie J.; Ott, Ronald D.; Parish, Chad M.; Walker, Steven

    2015-11-24

    A method for producing a film, the method comprising melting a layer of precursor particles on a substrate until at least a portion of the melted particles are planarized and merged to produce the film. The invention is also directed to a method for producing a photovoltaic film, the method comprising depositing particles having a photovoltaic or other property onto a substrate, and affixing the particles to the substrate, wherein the particles may or may not be subsequently melted. Also described herein are films produced by these methods, methods for producing a patterned film on a substrate, and methods for producing a multilayer structure.

  12. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Zhang, Di; Zhou, Wei; Wei, Bing; Wang, Xin; Tang, Rupei; Nie, Jiemin; Wang, Jun

    2015-07-10

    The objective of this study was to develop a novel carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. To prepare the crosslinked hydrogels, poly(vinyl alcohol) (PVA) was grafted with succinate acid to yield carboxyl-modified poly(vinyl alcohol) (PVA-COOH). Hydrogel films based on PVA-COOH and chitosan (CS) at different concentrations were crosslinked through the formation of amide linkages. The mechanical properties of these crosslinked hydrogel films in dry and swollen state were greatly improved with high swelling ratio. Water vapor and oxygen permeability evaluations indicated that crosslinked hydrogel films could maintain a moist environment over wound bed. Biocompatibility test showed the crosslinked hydrogels had no cytotoxicity and hemolytic potential. Gentamicin sulfate-loaded crosslinked hydrogel films showed sustained drug release profile, and could effectively suppress bacterial proliferation and protect wound from infection.

  13. Hydrogel, aerogel and film of cellulose nanofibrils functionalized with silver nanoparticles.

    PubMed

    Dong, Hong; Snyder, James F; Tran, Dat T; Leadore, Julia L

    2013-06-20

    In this work, we describe hydrogels, aerogels and films of nanofibrillated cellulose (NFC) functionalized with metal nanoparticles using silver as an example. The TEMPO process used to produce NFC generates negatively charged surface carboxylate groups that provide high binding capability to transition metal species such as Ag(+). The gelation of NFC triggered by transition monovalent metal ions was revealed for the first time. The interaction was utilized to bind Ag(+) on the NFC surface and simultaneously induce formation of NFC-Ag(+) hydrogels, where Ag(+) was slowly reduced to Ag nanoparticles by hydroxyl groups on NFC without additional reducing agent. The NFC-Ag(+) hydrogel was initiated by strong association of carboxylate groups on NFC with Ag(+) and sufficient NFC surface charge reduction. The stiff hydrogel has a storage modulus leveled off at a plateau value of ~6800Pa. Porous aerogels and flat thin films comprising a continuous matrix of NFC were decorated with Ag nanoparticles through freeze-drying or solution-casting of NFC-Ag(+) dispersions with low contents of Ag(+), respectively, followed by UV reduction. The presence of Ag species on NFC reduced coalescence of nanofibrils in the film formation as revealed from AFM phase images. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Biodegradation of PVP-CMC hydrogel film: a useful food packaging material.

    PubMed

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2012-06-20

    Hydrogels can offer new opportunities for the design of efficient packaging materials with desirable properties (i.e. durability, biodegradability and mechanical strength). It is a promising and emerging concept, as most of the biopolymer based hydrogels are supposed to be biodegradable, they can be considered as alternative eco-friendly packaging materials. This article reports about synthetic (polyvinylpyrrolidone (PVP)) and biopolymer (carboxymethyl cellulose (CMC)) based a novel hydrogel film and its nature of biodegradability under controlled environmental condition. The dry hydrogel films were prepared by solution casting method and designated as 'PVP-CMC hydrogel films'. The hydrogel film containing PVP and CMC in a ratio of 20:80 shows best mechanical properties among all the test samples (i.e. 10:90, 20:80, 50:50, 80:20 and 90:10). Thus, PVP-CMC hydrogel film of 20:80 was considered as a useful food packaging material and further experiments were carried out with this particular hydrogel film. Biodegradation of the PVP-CMC hydrogel films were studied in liquid state (Czapec-Dox liquid medium+soil extracts) until 8 weeks. Variation in mechanical, viscoelastic properties and weight loss of the hydrogel films with time provide the direct evidence of biodegradation of the hydrogels. About 38% weight loss was observed within 8 weeks. FTIR spectra of the hydrogel films (before and after biodegradation) show shifts of the peaks and also change in the peak intensities, which refer to the physico-chemical change in the hydrogel structure and SEM views of the hydrogels show how internal structure of the PVP-CMC film changes in the course of biodegradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Methods of Producing Thin Films,

    DTIC Science & Technology

    The report describes various methods of producing thin films , especially for microelectronics. In addition to the classical methods of forming thin ... films by vacuum vapor deposition, it also describes processes of diode sputtering and modern methods of cathode sputtering by means of a third

  16. VISCOELASTIC PROPERTIES OF A BIOLOGICAL HYDROGEL PRODUCED FROM SOYBEAN OIL

    USDA-ARS?s Scientific Manuscript database

    Hydrogels formed from biopolymers or natural sources have special advantages because of their biodegradable and biocompatible properties. The viscoelastic properties of a newly developed biological hydrogel made from modified vegetable oil, epoxidized soybean oil (ESO) were investigated. The mater...

  17. Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility.

    PubMed

    He, Min; Cui, Xiaofei; Jiang, Huiyi; Huang, Xuelian; Zhao, Weifeng; Zhao, Changsheng

    2017-02-01

    In this study, heparin-mimicking hydrogel thin films are covalently attached onto poly(ether sulfone) membrane surfaces to improve anticoagulant property. The hydrogel films display honeycomb-like porous structure with well controlled thickness and show long-term stability. After immobilizing the hydrogel films, the membranes show excellent anticoagulant property confirmed by the activated partial thromboplastin time values exceeding 600 s. Meanwhile, the thrombin time values increase from 20 to 61 s as the sodium allysulfonate proportions increase from 0 to 80 mol%. In vitro investigations of protein adsorption and blood-related complement activation also confirm that the membranes exhibit super-anticoagulant property. Furthermore, gentamycin sulfate is loaded into the hydrogel films, and the released drug shows significant inhibition toward E. coli bacteria. It is believed that the surface attached heparin-mimicking hydrogel thin films may show high potential for the applications in various biological fields, such as blood contacting materials and drug loading materials.

  18. Thin and ordered hydrogel films deposited through electrospinning technique; a simple and efficient support for organic bilayers.

    PubMed

    González-Henríquez, Carmen M; del C Pizarro, Guadalupe; Sarabia-Vallejos, Mauricio A; Terraza, Claudio A

    2015-10-01

    Thermal behavior of Dipalmitoylphosphatidylcholine (DPPC) bilayers deposited over hydrogel fibers was examined. Thus, membrane stability, water absorption-release, phase transitions and phase transition temperatures were studied through different methods during heating cycles. Hydrogel films were realized using an oligomer mixture (HEMA-PEGDA575/photo-initiator) with adequate viscosity. Then, the fibers were deposited over silicon wafers (hydrophilic substrate) through electrospinning technique using four different voltages: 15, 20, 25 and 30 kV. The films were then exposed to UV light, favoring polymer chain crosslinking and interactions between hydrogel and substrate. For samples deposited at 20 and 25 kV, hierarchical wrinkle folds were observed at surface level, their arrangement distribution depends directly on thickness and associated point defects. DPPC bilayers were then placed over hydrogel scaffold using Langmuir-Blodgett technique. Field emission scanning electron microscopy (FE-SEM) analysis were used to investigate sample surface, micrographies show homogeneous layer formation with chain polymer order/disorder related to applied voltage during hydrogel deposition process, among other parameters. According to the results obtained, it is possible to conclude that the oligomer deposited at 20 kV produce thin homogenous films (~40 nm) with enhanced ability to absorb water and release it in a controlled way during heating cycles. These scaffold properties confer to DPPC membrane thermal stability, which allow an easy detection of phase(s) and phase transitions. Thermal behavior was also studied via Atomic Force Microscopy (roughness analysis). Contact angle measurements corroborate system wettability, supporting the theory that hydrogel thin films act as DPPC membrane enhancers for thermal stability against external stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Viscoelastic properties of a bio-hydrogel produced from soybean oil

    USDA-ARS?s Scientific Manuscript database

    Hydrogels are a class of viscoelastic materials that have many biomedical utilization potentials, such as drug delivery, wound care product, breast implant materials, and tissue engineering, etc. Hydrogels produced from biopolymers and/or natural sources have particular advantages in vivo applicati...

  20. Growth of magnetite films by a hydrogel method

    NASA Astrophysics Data System (ADS)

    Velásquez, A. A.; Marín, C. C.; Urquijo, J. P.

    2017-06-01

    Magnetite (Fe3O4) films were grown on glass substrates by formation and condensation of complex of iron oxides in an agarose hydrogel. The obtained films were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Room Temperature Mössbauer Spectroscopy (TMS), Vibrating Sample Magnetometry (VSM), Atomic Force Microscopy (AFM) and Voltage vs. Current measurements by the four-point method. FTIR and TGA measurements showed that some polymer chains of agarose remain linked to the surface of the magnetic particles of the films after heat treatment. SEM measurements showed that the films are composed by quasi spherical particles with sizes around 55 nm. Mössbauer spectroscopy measurements showed two sextets with broaden lines, which were assigned to magnetite with a distributed particle size, and two doublets, which were assigned to superparamagnetic phases of magnetite. For the specific dimensions of the films prepared, measurements of Voltage vs. Current showed an ohmic behavior for currents between 0 and 200 nA, with a resistance of 355 kΩ.

  1. Hypromellose succinate-crosslinked chitosan hydrogel films for potential wound dressing.

    PubMed

    Jiang, Qiong; Zhou, Wei; Wang, Jun; Tang, Rupei; Zhang, Di; Wang, Xin

    2016-10-01

    The objective of this study was to develop novel hydrogel films based on carboxyl-modified hypromellose-crosslinked chitosan for potential wound dressing. Hypromellose (HPMC) was grafted with succinic acid to yield hypromellose succinate (HPMCS), and then the reinforced hydrogel films of HPMCS-crosslinked chitosan (HPMCS-CS) were prepared through amide bond formation using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N- hydroxysuccinimide (NHS) as a catalyst. Compared to that of blend film, mechanical properties of HPMCS-CS hydrogel films were significantly enhanced both in dry and swollen state. To assess the applicability of HPMCS-CS hydrogel films as wound dressing, the swelling behavior, water vapor transmission rate (WVTR), oxygen permeability, biocompatibility (cytotoxicity and hemolysis), in vitro drug release and bactericidal properties were analyzed. The results indicated that HPMCS-CS hydrogel films with good biocompatibility possess high swelling ratio, proper WVTR, and oxygen permeability, which might accelerate tissue regeneration. Meanwhile, gentamycin sulfate release from drug-loaded HPMCS-CS hydrogel films were sustained, which would help to protect wound from infection.

  2. Green chitosan-carbon dots nanocomposite hydrogel film with superior properties.

    PubMed

    Konwar, Achyut; Gogoi, Neelam; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-01-22

    In this work we report novel chitosan-carbon dots nanocomposite hydrogel films. A new green source "tea" was used as precursor for carbon dots (CDs). The electrostatic interaction of positive charge on chitosan and negative charge on CDs prepared from tea was used for the successful preparation of a stable and robust chitosan-carbon dots nanocomposite hydrogel film. The hydrogel films were characterized by UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transformed infra-red spectroscopy (FTIR), scanning electron microscope (SEM), fluorescent microscopy, thermogravimetric analysis (TGA) and contact angle analysis. It was observed that chitosan-carbon dots hydrogel films are soft but tough with superior UV-visible blocking, swelling, thermal and mechanical properties in comparison to chitosan hydrogel film. Moreover chitosan-carbon dots films are more water repellent (hydrophobic) as indicated by their high contact angle values. Thus, fabrication of such green soft but tough biocompatible chitosan-carbon dots nanocomposite hydrogel films offers tremendous bio-medical and industrial applications.

  3. Dynamic Gradient Directed Molecular Transport and Concentration in Hydrogel Films.

    PubMed

    Tsai, Tsung-Han; Ali, Mohammad A; Jiang, Zhelong; Braun, Paul V

    2017-04-24

    Materials which selectively transport molecules along defined paths offer new opportunities for concentrating, processing and sensing chemical and biological agents. Here, we present the use of traveling ionic waves to drive molecular transport and concentration of hydrophilic molecules entrained within a hydrogel. The traveling ionic wave is triggered by the spatially localized introduction of ions, which through a dissipative ion exchange process, converts quaternary ammonium groups in the hydrogel from hydrophilic to hydrophobic. Through a reaction-diffusion process, the hydrophobic region expands with a sharp transition at the leading edge; it is this sharp gradient in hydrophilicity that drives the transport of hydrophilic molecules dispersed within the film. The traveling wave moved up to 450 μm within 30 min, while the gradient length remained 20 μm over this time. As an example of the potential of molecular concentration using this approach, a 70-fold concentration of a hydrophilic dye was demonstrated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fabrication of patterned calcium cross-linked alginate hydrogel films and coatings through reductive cation exchange.

    PubMed

    Bruchet, Marion; Melman, Artem

    2015-10-20

    Calcium cross-linked alginate hydrogels are widely used in targeted drug delivery, tissue engineering, wound treatment, and other biomedical applications. We developed a method for preparing homogeneous alginate hydrogels cross-linked with Ca(2+) cations using reductive cation exchange in homogeneous iron(III) cross-linked alginate hydrogels. Treatment of iron(III) cross-linked alginate hydrogels with calcium salts and sodium ascorbate results in reduction of iron(III) cations to iron(II) that are instantaneously replaced with Ca(2+) cations, producing homogeneous ionically cross-linking hydrogels. Alternatively, the cation exchange can be performed by photochemical reduction in the presence of calcium chloride using a sacrificial photoreductant. This approach allows fabrication of patterned calcium alginate hydrogels through photochemical patterning of iron(III) cross-linked alginate hydrogel followed by the photochemical reductive exchange of iron cations to calcium.

  5. Measuring tear protein mobility in thin hydrogel films with fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Stevens, Andrew P.; Wright, Bryon E.; Hlady, Vladimir

    2004-06-01

    Fouling of contact lenses is often due to tear protein diffusion into and aggregation within the contact lens material. These processes can diminish water and oxygen diffusion and create optical cloudiness of the lens. In order to understand the interactions between proteins and hydrogel contact lens materials a study was designed to measure the diffusivity of two model proteins within hydrogel films of varying composition using fluorescence correlation spectroscopy (FCS). Diffusion of human serum albumin (HSA) and apoferritin (aFER) was examined in a range of ~20 μm thick poly(acrylamide) (pAA) and poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels. Protein diffusivity was measured as a function of depth position within each hydrogel film. The characteristic diffusion time for two proteins in pHEMA hydrogels increased relative to both their diffusivity in solution and in pAA hydrogels, indicating that the protein-pHEMA interaction rather than the degree of hydrogel crosslinking is responsible for the observed effects. The resulting spatial representation of the molecular diffusion of proteins into and interaction with hydrogel materials builds a basis on which to conduct similar studies using commercial contact lens samples.

  6. Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles

    NASA Astrophysics Data System (ADS)

    Xu, Zhi Ping; Gu, Zi; Cheng, Xiaoxi; Rasoul, Firas; Whittaker, Andrew K.; Lu, Gao Qing Max

    2011-03-01

    A novel nanocomposite film for sustained release of anionic ophthalmic drugs through a double-control process has been examined in this study. The film, made as a drug-loaded contact lens, consists principally of a polymer hydrogel of 2-hydroxyethyl methacrylate (HEMA), in whose matrix MgAl-layered double hydroxide (MgAl-LDH) nanoparticles intercalated with the anionic drug are well dispersed. Such nanocomposite films (hydrogel-LDH-drug) contained 0.6-0.8 mg of MgAl-LDH and 0.08-0.09 mg of the ophthalmic drug (ketorolac) in 1.0 g of hydrogel. MgAl-drug-LDH nanoparticles were prepared with the hydrodynamic particle size of 40-200 nm. TEM images show that these nanoparticles are evenly dispersed in the hydrogel matrix. In vitro release tests of hydrogel-LDH-drug in pH 7.4 PBS solution at 32 °C indicate a sustained release profile of the loaded drug for 1 week. The drug release undergoes a rapid initial burst and then a monotonically decreasing rate up to 168 h. The initial burst release is determined by the film thickness and the polymerization conditions, but the following release rate is very similar, with the effective diffusion coefficient being nearly constant (3.0 × 10-12 m2/s). The drug release from the films is mechanistically attributed to anionic exchange and the subsequent diffusion in the hydrogel matrix.

  7. Producing Student Films: Shakespeare on Screen.

    ERIC Educational Resources Information Center

    Franek, Mark

    1996-01-01

    Makes a case for asking students to produce their own film version of Shakespeare's "A Midsummer Night's Dream." Explains how to manage student filming projects logistically; how to teach students about filming techniques through the study of modern movies; and how filming becomes a lesson in the interpretation of Shakespeare. (TB)

  8. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Liu, Zheng; Huang, Tieqi; Zheng, Bingna; Tian, Zhanyuan; Deng, Zengshe; Gao, Chao

    2015-02-01

    Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene sheets. Furthermore, three reduction methods including hydrothermal treatment, hydrazine and hydroiodic acid reduction are used to evaluate the specific capacitances of the graphene hydrogel film. Hydrazine-reduced graphene hydrogel film shows the highest capacitance of 203 F g-1 at 1 A g-1 and maintains 67.1% specific capacitance (140 F g-1) at 50 A g-1. The combination of scalable wet-spinning technology and orientational structure makes graphene hydrogel films an ideal electrode material for supercapacitors.Supercapacitors with porous electrodes of graphene macroscopic assembly are supposed to have high energy storage capacity. However, a great number of ``close pores'' in porous graphene electrodes are invalid because electrolyte ions cannot infiltrate. A quick method to prepare porous graphene electrodes with reduced ``close pores'' is essential for higher energy storage. Here we propose a wet-spinning assembly approach based on the liquid crystal behavior of graphene oxide to continuously spin orientational graphene hydrogel films with ``open pores'', which are used directly as binder-free supercapacitor electrodes. The resulting supercapacitor electrodes show better electrochemical performance than those with disordered graphene

  9. Development of novel alginate based hydrogel films for wound healing applications.

    PubMed

    Pereira, Rúben; Carvalho, Anabela; Vaz, Daniela C; Gil, M H; Mendes, Ausenda; Bártolo, Paulo

    2013-01-01

    Alginate and Aloe vera are natural materials widely investigated and used in the biomedical field. In this research work, thin hydrogel films composed by alginate and Aloe vera gel in different proportions (95:5, 85:15 and 75:25, v/v) were prepared and characterized. The films were evaluated regarding the light transmission behavior, contact angle measurements, and chemical, thermal and mechanical properties. These thin hydrogel films, prepared by crosslinking reaction using 5% calcium chloride solution, were also investigated relatively to their water solubility and swelling behavior. Results showed that Aloe vera improved the transparency of the films, as well their thermal stability. The developed films present adequate mechanical properties for skin applications, while the solubility studies demonstrated the insolubility of the films after 24h of immersion in distilled water. The water absorption and swelling behavior of these films were greatly improved by the increase in Aloe vera proportion.

  10. Conductive thin-film composite hydrogels: Trapping an anionic polyelectrolyte in a polyaziridine host matrix

    SciTech Connect

    Wexler, A.; Suen, C.; Hill, S.

    1995-08-01

    Acid-catalyzed polymerization of sufficiently concentrated aqueous solutions of a trifunctional aziridine monomer affords hydrogels. Dynamic mechanical analysis has been used to demonstrate that composite hydrogels, obtained when the polymerization is effected in the presence of poly(sodium styrenesulfonate), have a composition dependent modulus. A region rich in the polyelectrolyte has a modulus which exceeds that of the {open_quotes}host{close_quotes} homogeneous polyaziridine hydrogel. This is consistent with ionic bonds between protonated sites on the polyaziridine matrix and sulfonate groups on the included polyelectrolyte augmenting the structural stability of the hydrogel. Thin films were prepared from coatings of the incipient hydrogel solutions. When the coatings are dried to a water content of 20%, water-insoluble thin films are obtained provided a critical weight fraction of the monomer is exceeded. Conductive thin films can be obtained, provided a critical weight fraction of polyelectrolyte is exceeded. FTIR analysis of the coatings in the attenuated total reflectance mode shows that conductivity increases as tight ion pairing decreases between the polyelectrolyte and its counter ions in the matrix. The S-shaped dependence of the normalized conductivity on the composition of the thin films is independent of the state of hydration of the film. Effective medium percolation theory, (EMPT), generally fits the S-shaped compositional dependence of the conductivity but overestimates the rate of growth of the conductivity beyond the critical point. 20 refs., 7 figs.

  11. Poly(AAc-co-MBA) hydrogel films: adhesive and mechanical properties in aqueous medium.

    PubMed

    Arunbabu, Dhamodaran; Shahsavan, Hamed; Zhang, Wei; Zhao, Boxin

    2013-01-10

    Poly(acrylic acid-co-N,N'-methylenebisacrylamide) hydrogel films were synthesized by copolymerizing acrylic acid (AAc) with N,N'-methylenebisacrylamide (MBA) as a cross-linker via photo polymerization in the spacing confined between two glass plates. NMR spectroscopy was utilized to determine the cross-linking density. We found that the cross-linking density determined by NMR is higher than that expected from the feed concentrations of cross-linkers, suggesting that MBA is more reactive than AAc and the heterogeneous nature of the cross-linking. In addition to the swelling tests, indentation tests were performed on the hydrogel films under water to investigate effects of the cross-linking density on the adhesion and mechanical properties of the hydrogel films in terms of adhesive pull-off force and Hertz-type elastic modulus. As the cross-linker concentration increased, the effective elastic modulus of the hydrogel films increased dramatically at low cross-linking densities and reached a high steady-state value at higher cross-linking densities. The pull-off force decreased with increasing cross-linker concentration and reached a lower force plateau at high cross-linking densities. An optimal "trade-off" cross-linking density was determined to be 0.02 mol fraction of MBA in the hydrogel, where balanced elastic modulus and adhesive pull-off force can be obtained.

  12. Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature.

    PubMed

    Bilanovic, Dragoljub; Starosvetsky, Jeanna; Armon, Robert H

    2016-09-05

    Polymers, hence hydrogels, pollute waters and soils accelerating environmental degradation. Environmentally benign hydrogels were made in water from biodegradable xanthan (X) and glycerol (G) at 22.5±2.5°C. Molar ratio [G]/[X]<3.0 was used to maximize crosslinking by mono-glycerol instead by poly-glycerol. XG-hydrogels were transformed into: XG-foams, XG-films, and XG-aerogel. Anionic character of XG-materials changes with changing [G]/[X] ratio. XG-films made from XG-hydrogels absorb up to 40 times more water than XG-films made from XG-foams. The films made from XG-foams and HCl do not dissolve in water during 48h. Making XG-materials is a no-waste process which decreases pollution, eliminates waste disposal costs, and minimizes energy expenses. XG-materials are suitable for both industrial and environmental applications including slow release and concentration of cations. XG-materials, made of xanthan, microbial polysaccharide, could also be used in applications targeting populations that do not consume meat or meat based products.

  13. Microparticles Produced by the Hydrogel Template Method for Sustained Drug Delivery

    PubMed Central

    Lu, Ying; Sturek, Michael; Park, Kinam

    2014-01-01

    Polymeric microparticles have been used widely for sustained drug delivery. Current methods of microparticle production can be improved by making homogeneous particles in size and shape, increasing the drug loading, and controlling the initial burst release. In the current study, the hydrogel template method was used to produce homogeneous poly(lactide-co-glycolide) (PLGA) microparticles and to examine formulation and process-related parameters. Poly(vinyl alcohol) (PVA) was used to make hydrogel templates. The parameters examined include PVA molecular weight, type of PLGA (as characterized by lactide content, inherent viscosity), polymer concentration, drug concentration and composition of solvent system. Three model compounds studied were risperidone, methylprednisolone acetate and paclitaxel. The ability of the hydrogel template method to produce microparticles with good conformity to template was dependent on molecular weight of PVA and viscosity of the PLGA solution. Drug loading and encapsulation efficiency were found to be influenced by PLGA lactide content, polymer concentration and composition of the solvent system. The drug loading and encapsulation efficiency were 28.7% and 82% for risperidone, 31.5% and 90% for methylprednisolone acetate, and 32.2 % and 92 % for paclitaxel, respectively. For all three drugs, release was sustained for weeks, and the in vitro release profile of risperidone was comparable to that of microparticles prepared using the conventional emulsion method. The hydrogel template method provides a new approach of manipulating microparticles. PMID:24333903

  14. Method for producing thin film electrodes

    DOEpatents

    Narayanan, Manoj; Ma, Beihai; Balachandran, Uthamalingam; Dorris, Stephen

    2016-06-07

    The invention provides for A method for producing pure phase strontium ruthenium oxide films, the method comprising solubilizing ruthenium-containing and strontium-containing compounds to create a mixture; subjecting the mixture to a first temperature above that necessary for forming RuO.sub.2 while simultaneously preventing formation of RuO.sub.2; maintaining the first temperature for a time to remove organic compounds from the mixture, thereby forming a substantially dry film; and subjecting the film to a second temperature for time sufficient to crystallize the film. Also provided is pure phase material comprising strontium ruthenium oxide wherein the material contains no RuO.sub.2.

  15. Mucoadhesive Hydrogel Films of Econazole Nitrate: Formulation and Optimization Using Factorial Design

    PubMed Central

    Gajra, Balaram; Pandya, Saurabh S.; Singh, Sanjay; Rabari, Haribhai A.

    2014-01-01

    The mucoadhesive hydrogel film was prepared and optimized for the purpose of local drug delivery to oral cavity for the treatment of oral Candidiasis. The mucoadhesive hydrogel film was prepared with the poly(vinyl alcohol) by freeze/thaw crosslinking technique. 32 full factorial design was employed to optimize the formulation. Number of freeze/thaw cycles (4, 6, and 8 cycles) and the concentration of the poly(vinyl alcohol) (10, 15, and 20%) were used as the independent variables whereas time required for 50% drug release, cumulative percent of drug release at 8th hour, and “k” of zero order equation were used as the dependent variables. The films were evaluated for mucoadhesive strength, in vitro residence time, swelling study, in vitro drug release, and effectiveness against Candida albicans. The concentration of poly(vinyl alcohol) and the number of freeze/thaw cycles both decrease the drug release rate. Mucoadhesive hydrogel film with 15% poly(vinyl alcohol) and 7 freeze/thaw cycles was optimized. The optimized batch exhibited the sustained release of drug and the antifungal studies revealed that the drug released from the film could inhibit the growth of Candida albicans for 12 hours. PMID:25006462

  16. Tailoring the LCST of thermosensitive hydrogel thin films deposited by iCVD.

    PubMed

    Pena-Francesch, Abdon; Montero, Laura; Borrós, Salvador

    2014-06-24

    Using the iCVD (initiated chemical vapor deposition) polymerization technique, we generated a library of thermosensitive thin film hydrogels in the physiological temperature range. The library shows how a specific hydrogel with a desired temperature response can be synthesized via the copolymerization of three main components: (a) the main thermosensitive monomer, which determines the temperature range of the LCST; (b) the comonomer, which modulates the temperature according to its hydrophilic/hydrophobic behavior; and (c) the cross-linker, which determines the swelling degree and the polymer chain mobility of the resulting hydrogel. The thermosensitive thin films included in the library have been characterized by the water contact angle (WCA), revealing a switchable hydrophobic/hydrophilic behavior depending on the temperature and a decrease in the WCA with the incorporation of hydrophilic moieties. Moreover, a more accurate characterization by quartz crystal microbalance (QCM) is performed. With temperature and flow control, the switchable swelling properties of the thermosensitive thin films (due to the polymer mixture transition) can be recorded and analyzed in order to study the effects of the comonomer moieties on the lower critical solution temperature (LCST). Thus, the LCST tailoring method has been successfully used in this paper, and thermoresponsive thin films (50 nm in thickness) have been deposited by iCVD, exhibiting LCSTs in the 32-49 °C range. Due to the presented method's ability to tailor the LCST in the physiological temperature range, the developed thermoresponsive films present potential biosensing and drug delivery applications in the biomedical field.

  17. Poly(N-isopropylacrylamide) hydrogel-based shape-adjustable polyimide films triggered by near-human-body temperature.

    PubMed

    Huanqing Cui; Xuemin Du; Juan Wang; Tianhong Tang; Tianzhun Wu

    2016-08-01

    Hydrogel-based shape-adjustable films were successfully fabricated via grafting poly(N-isopropylacrylamide) (PNIPAM) onto one side of polyimide (PI) films. The prepared PI-g-PNIPAM films exhibited rapid, reversible, and repeatable bending/unbending property by heating to near-human-body temperature (37 °C) or cooling to 25 °C. The excellent property of PI-g-PNIPAM films resulted from a lower critical solution temperature (LCST) of PNIPAM at about 32 °C. Varying the thickness of PNIPAM hydrogel layer regulated the thermo-responsive shape bending degree and response speed of PI-g-PNIPAM films. The thermo-induced shrinkage of hydrogel layers can tune the curvature of PI films, which have potential applications in the field of wearable and implantable devices.

  18. Producing 3D neuronal networks in hydrogels for living bionic device interfaces.

    PubMed

    Aregueta-Robles, Ulises A; Lim, Khoon S; Martens, Penny J; Lovell, Nigel H; Poole-Warren, Laura A; Green, Rylie

    2015-01-01

    Hydrogels hold significant promise for supporting cell based therapies in the field of bioelectrodes. It has been proposed that tissue engineering principles can be used to improve the integration of neural interfacing electrodes. Degradable hydrogels based on poly (vinyl alcohol) functionalised with tyramine (PVA-Tyr) have been shown to support covalent incorporation of non-modified tyrosine rich proteins within synthetic hydrogels. PVA-Tyr crosslinked with such proteins, were explored as a scaffold for supporting development of neural tissue in a three dimensional (3D) environment. In this study a model neural cell line (PC12) and glial accessory cell line, Schwann cell (SC) were encapsulated in PVA-Tyr crosslinked with gelatin and sericin. Specifically, this study aimed to examine the growth and function of SC and PC12 co-cultures when translated from a two dimensional (2D) environment to a 3D environment. PC12 differentiation was successfully promoted in both 2D and 3D at 25 days post-culture. SC encapsulated as a single cell line and in co-culture were able to produce both laminin and collagen-IV which are required to support neuronal development. Neurite outgrowth in the 3D environment was confirmed by immunocytochemical staining. PVA-Tyr/sericin/gelatin hydrogel showed mechanical properties similar to nerve tissue elastic modulus. It is suggested that the mechanical properties of the PVA-Tyr hydrogels with native protein components are providing with a compliant substrate that can be used to support the survival and differentiation of neural networks.

  19. Combined nitric oxide-releasing poly(vinyl alcohol) film/F127 hydrogel for accelerating wound healing.

    PubMed

    Schanuel, Fernanda Seabra; Raggio Santos, Karen Slis; Monte-Alto-Costa, Andréa; de Oliveira, Marcelo G

    2015-06-01

    Nitric oxide (NO) releasing biomaterials represent a potential strategy for use as active wound dressings capable of accelerating wound healing. Topical NO-releasing poly(vinyl alcohol) (PVA) films and Pluronic F127 hydrogels (F127) have already exhibited effective skin vasodilation and wound healing actions. In this study, we functionalized PVA films with SNO groups via esterification with a mixture of mercaptosucinic acid (MSA) and thiolactic acid (TLA) followed by S-nitrosation of the SH moieties. These films were combined with an underlying layer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), i.e., PEO-PPO-PEO (Pluronic F127) hydrogel and used for the topical treatment of skin lesions in an animal model. The mixed esterification of PVA with MSA and TLA led to chemically crosslinked PVA-SNO films with a high swelling capacity capable of spontaneously releasing NO. Real time NO-release measurements revealed that the hydrogel layer reduces the initial NO burst from the PVA-SNO films. We demonstrate that the combination of PVA-SNO films with F127 hydrogel accelerates wound contraction, decreases wound gap and cellular density and accelerates the inflammatory phase of the lesion. These results were reflected in an increase in myofibroblastic differentiation and collagen type III expression in the cicatricial tissue. Therefore, PVA-SNO films combined with F127 hydrogel may represent a new approach for active wound dressings capable of accelerating wound healing.

  20. Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates.

    PubMed

    Bhamla, M Saad; Balemans, Caroline; Fuller, Gerald G

    2015-07-01

    We investigate the stabilizing effect of insoluble surfactant monolayers on thin aqueous films. We first describe an experimental platform that enables the formation of aqueous films laden with dipalmitoylphosphatidylcholine (DPPC) monolayers on curved silicone hydrogel (SiHy) substrates. We show that these surfactant layers extend the lifetime of the aqueous films. The films eventually "dewet" by the nucleation and growth of dry areas and the onset of this dewetting can be controlled by the surface rheology of the DPPC layer. We thus demonstrate that increasing the interfacial rheology of the DPPC layer leads to stable films that delay dewetting. We also show that dewetting can be exploited to controllably pattern the underlying curved SiHy substrates with DPPC layers.

  1. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  2. Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties.

    PubMed

    Moreira, Helena R; Munarin, Fabiola; Gentilini, Roberta; Visai, Livia; Granja, Pedro L; Tanzi, Maria Cristina; Petrini, Paola

    2014-03-15

    The production of injectable pectin hydrogels by internal gelation with calcium carbonate is proposed. The pH of pectin was increased with NaOH or NaHCO3 to reach physiological values. The determination of the equivalence point provided evidence that the pH can be more precisely modulated with NaHCO3 than with NaOH. Degradation and inability to gel was observed for pectin solutions with pH 5.35 or higher. Therefore, pectin solutions with pH values varying from 3.2 (native pH) to 3.8 were chosen to produce the gels. The increase of the pH for the crosslinked hydrogels, as well as the reduction of the gelling time and their thickening, was dependent upon the amount of calcium carbonate, as confirmed by rheology. Hydrogel extracts were not cytotoxic for L-929 fibroblasts. On the overall, the investigated formulations represent interesting injectable systems providing an adequate microenvironment for cell, drug or bioactive molecules delivery.

  3. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels.

    PubMed

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-05-07

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 ± 16 MPa and a failure strain of 1.8 ± 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 ± 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.

  4. Influence of Aloe vera on water absorption and enzymatic in vitro degradation of alginate hydrogel films.

    PubMed

    Pereira, Rúben F; Carvalho, Anabela; Gil, M H; Mendes, Ausenda; Bártolo, Paulo J

    2013-10-15

    This study investigates the influence of Aloe vera on water absorption and the in vitro degradation rate of Aloe vera-Ca-alginate hydrogel films, for wound healing and drug delivery applications. The influence of A. vera content (5%, 15% and 25%, v/v) on water absorption was evaluated by the incubation of the films into a 0.1 M HCl solution (pH 1.0), acetate buffer (pH 5.5) and simulated body fluid solution (pH 7.4) during 24h. Results show that the water absorption is significantly higher for films containing high A. vera contents (15% and 25%), while no significant differences are observed between the alginate neat film and the film with 5% of A. vera. The in vitro enzymatic degradation tests indicate that an increase in the A. vera content significantly enhances the degradation rate of the films. Control films, incubated in a simulated body fluid solution without enzymes, are resistant to the hydrolytic degradation, exhibiting reduced weight loss and maintaining its structural integrity. Results also show that the water absorption and the in vitro degradation rate of the films can be tailored by changing the A. vera content.

  5. Physicochemical and biological characteristics of the nanostructured polysaccharide-iron hydrogel produced by microorganism Klebsiella oxytoca.

    PubMed

    Kianpour, Sedigheh; Ebrahiminezhad, Alireza; Mohkam, Milad; Tamaddon, Ali Mohammad; Dehshahri, Ali; Heidari, Reza; Ghasemi, Younes

    2017-02-01

    There is an increasing interest in the nanostructured polysaccharide-iron hydrogel produced by Klebsiella oxytoca. Critical physicochemical and biological characteristics of these nanostructures should be revealed for biomedical applications. Accordingly, an iron reducing strain K. oxytoca, which synthesizes biogenic polysaccharide-iron hydrogel nanoparticles, known as Fe (III)-exopolysaccharide (Fe-EPS) was isolated from a mineral spring. For microbiological identification purpose 16S rRNA sequence analysis and different morphological, physiological, and biochemical characteristics of the isolate were studied. Critical physicochemical and biological characteristics of the produced Fe-EPS were evaluated using transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray crystallography (XRD), vibrating sample magnetometer (VSM). In addition, for the first time, Fe-EPS which synthesized by K. oxytoca was evaluated by dynamic light scattering (DLS), thermo gravimetric analysis (TGA), and cytotoxicity assay. TEM micrographs showed that the biogenic Fe-EPS is composed of ultra-small (about 1.8 nm) iron oxide nanoparticles (IONs) which are trapped in a polysaccharide matrix. The matrix was about 17% (w/w) of Fe-EPS total weight and provided a large negative charge of -71 mV. Interestingly, Fe-EPS showed a growth promotion effect on hepatocarcinoma cell line (Hep-G2) and 36% increase in the percentage of viability was observed by 24 h exposure to 500 μg ml(-1) Fe-EPS.

  6. PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization.

    PubMed

    Ahmed, Afnan Sh; Mandal, Uttam Kumar; Taher, Muhammad; Susanti, Deny; Jaffri, Juliana Md

    2017-04-05

    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.

  7. Guidelines for producing training films and videos.

    PubMed

    Harper, P B

    1991-01-01

    Drawing from experience in producing a film on the surgical procedure of female sterilization, 4 guidelines to technical film production for training purposes are presented and discussed in this paper. In order of presentation in the text, the paper 1st encourages identifying and securing a technical expert, then clearly identifying steps of the technical procedure, involving trainees and trainers in the production process, and working with experienced producers, scriptwriters, and crew members. Returning to the 1st guideline, the technical advisor will have a central presence during all photography and editing, and ideally should not have any personal investment in the procedure being shown. Prior to script finalization and sorting, research is urged to ensure concrete procedural steps. Printed materials, slides, interviews of experienced clinicians, procedure observation, and test videotape shooting may be called upon and employed as parts of the research phase. Trainees should participate during preliminary research, script development, and pretesting of early film versions, their suggestions for change incorporated where appropriate in the final version. On the final point of securing experienced workers, country nationals sensitive to relevant cultural and background dynamics should be included in the team. The special concerns of airport security regulation and customs requirements knowledge are essential, as well as their attention to assuring adequate on-site electricity for camera equipment.

  8. Magnetic Composite Thin Films of Fe xO y Nanoparticles and Photocrosslinked Dextran Hydrogels

    NASA Astrophysics Data System (ADS)

    Brunsen, Annette; Utech, Stefanie; Maskos, Michael; Knoll, Wolfgang; Jonas, Ulrich

    2012-04-01

    Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP-HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By utilizing a surface layer of a photoreactive adhesion promoter on the substrates, the MNP-HG films were covalently immobilized during photocrosslinking. The high stability of the composite was documented by rinsing experiments with UV-Vis spectroscopy, while surface plasmon resonance and optical waveguide mode spectroscopy was employed to investigate the swelling behavior in dependence of the nanoparticle concentration, the particle type, and salt concentration.

  9. Phase shift on reflection from polystyrene colloidal photonic crystal film on hydrogel surface

    NASA Astrophysics Data System (ADS)

    Rutirawut, T.; Sinsarp, A.; Tivakornsasithorn, K.; Srikhirin, T.; Osotchan, T.

    2015-07-01

    The phase shift on reflection from the colloidal photonic crystal film was measured by the Fabry-Pérot resonant cavity along the cross-section of the photonic crystal film without additional optical parts. The wet colloidal photonic crystal film was fabricated by dip-coating an agarose-gel-coated glass substrate into a suspension containing monodisperse polystyrene nanospheres with the diameter about 188 nm. The ordered structure of monodisperse spheres in the wet film on hydrogel contributed the reflection stopband of photonic crystals together with Fabry-Pérot interference fringes of this uniform wet film over the entire visible region. The spectrum of reflectance was observed under the reflected microscope with the optical fiber spectrometer. The analyzed experimental results show the thickness of film about 20 μm and the photonic stopband peak at ~470 nm. The variation of phase shift values between both edges of the peak varies from 0.07π to 0.88π which is in range of 0 to π as reported by other works. Moreover, these extracted optical properties are slightly changed due to the gradual water evaporation of the wet film. This stopband peak of photonic crystal is shifted to a shorter wavelength due to the more packing of nanospheres after drying.

  10. Chemical modification and structural analysis of protein isolates to produce hydrogel using Whitemouth croaker (Micropogonias furnieri) wastes.

    PubMed

    Martins, Vilásia Guimarães; Costa, Jorge Alberto Vieira; Damodaran, Srinivasan; Prentice, Carlos

    2011-09-01

    Recovery and alteration of fish protein from wastes and its use has been regarded as a promising alternative to develop useful products once polymer gels have a high capacity of water uptake. This study aims to produce hydrogel, a super absorbent biopolymer from modified fish protein, in order to evaluate the protein structure. In the modified proteins, analyses of the extent of modification of the lysine residues, electrophoresis, and electrometric titration were performed. In the hydrogels were realized assays of swelling water. The proteins with more modifications were shown as 63.5% and 75.9% of lysine residues, from fish protein isolate obtained with alkaline and acid solubilization, respectively. The modified protein in that same rate presented 332.0 and 311.4 carboxyl groups. Accordingly, the hydrogel produced from alkaline and acid isolates reached a maximum water uptake in 24 h of 79.42 and 103.25 g(water)/g(dry gel), respectively.

  11. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing.

    PubMed

    Kim, Dong Wuk; Kim, Kyung Soo; Seo, Youn Gee; Lee, Beom-Jin; Park, Young Joon; Youn, Yu Seok; Kim, Jong Oh; Yong, Chul Soon; Jin, Sung Giu; Choi, Han-Gon

    2015-11-10

    To develop a novel sodium fusidate-loaded film-forming hydrogel (FFH) for easy application and excellent wound healing, various FFH formulations and corresponding FFH dried films were prepared with drug, polyvinylalcohol (PVA), polyvinylpyrrolidone (PVP), propylene glycol, ethanol and water, and their film forming times, mechanical properties, drug release, in vivo wound healing in rat and histopathology were assessed. The sodium fusidate-loaded FFH composed of sodium fusidate/PVP/PVA/propylene glycol/ethanol/water at the weight ratio of 1/2/12/3/8/74 could form a corresponding dried film in the wound sites promptly due to fast film-forming time of about 4 min. This FFH showed an appropriate hardness and adhesiveness. Furthermore, this corresponding dried film provided an excellent flexibility and elasticity, and gave relatively high drug release. As compared with the sodium fusidate-loaded commercial product, it significantly improved excision and infection wound healing in rats. This FFH was stable at 45°C for at least 6 months. Therefore, this novel sodium fusidate-loaded FFH would be an effective pharmaceutical product with easy application for the treatment of wounds.

  12. A highly sensitive and stable glucose biosensor using thymine-based polycations into laponite hydrogel films.

    PubMed

    Paz Zanini, Veronica I; Gavilán, Maximiliano; López de Mishima, Beatriz A; Martino, Débora M; Borsarelli, Claudio D

    2016-04-01

    A series of glucose bioelectrodes were prepared by glucose oxidase (GOx) immobilization into laponite hydrogel films containing DNA bioinspired polycations made of vinylbenzyl thymine (VBT) and vinylbenzyl triethylammonium chloride (VBA) with general formulae (VBT)m(VBA)n](n+)≈25 with m=0, 1 and n=2, 4, 8, deposited onto glassy carbon electrode. The bioelectrodes were characterized by chronoamperometry, cyclic voltammetry and electrochemical impedance spectroscopy. Results indicated that the electrochemical properties of the laponite hydrogel films were largely improved by the incorporation of thymine-based polycations, being proportional to the positive charge density of the polycation molecule. After incorporation of glucose oxidase, the sensitivity of the bioelectrode to glucose increased with the positive charge density of the polycation. Additionally, the presence of the vinylbenzyl thymine moiety played a role in the long-term stability and reproducibility of the bioelectrode signal. As a consequence, the [(VBT)(VBA)8](8+)≈25 was the most appropriate polycation for bioelectrode preparation and glucose sensing, with a specific sensitivity of se=176 mA mmol(-1)Lcm(-2)U(-1), almost two-order of magnitude larger than other laponite immobilized GOx bioelectrodes reported elsewhere. These features were confirmed by testing the bioelectrode for a selective determination of glucose in powder milk and blood serum samples without interference of either ascorbic or uric acids under the experimental conditions. The present study demonstrates the suitability of DNA bioinspired water-soluble polycations [(VBT)m(VBA)n](n+)≈25 for enzyme immobilization like GOx into laponite hydrogels, and the preparation of highly sensitive and stable bioelectrodes on glassy carbon surface. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Mechanical Characterization of Photo-crosslinked, Thermoresponsive Hydrogel Thin Films via AFM Nanoindentation

    NASA Astrophysics Data System (ADS)

    Le, Thao; Aidala, Katherine; Hayward, Ryan

    2014-03-01

    Thin hydrogel films with patterned swelling are known to buckle into programmed three-dimensional shapes, offering approaches to fabricate reversibly self-folding micro-devices for actuators and drug delivery devices. To precisely control the shapes adopted, it is important to quantitatively understand the relationship between swelling and mechanical properties. Furthermore, to understand the buckling pathways and the mechanical responses of the swelled materials, it is also important to identify how the gels undergo stress relaxation. However, the low moduli, high water contents, and micrometer-scale thicknesses of these materials have so far made mechanical characterization difficult. In this study, we use an AFM nanoindentation technique to characterize the mechanical properties of photo-crosslinked, thermoresponsive poly(N-isopropylacrylamide) hydrogel thin films. Simultaneously, we conduct stress relaxation experiments at microscopic indentation lengths to differentiate between the effects of viscoelastic and poroelastic response mechanisms. This research was funded by the Army Research Office through W911NF-11-1-0080 and the NSF Materials Research Science and Engineering Center at the University of Massachusetts through DMR-0820506.

  14. Effects of sodium hypochlorite on Agave tequilana Weber bagasse fibers used to elaborate cyto and biocompatible hydrogel films.

    PubMed

    Tovar-Carrillo, Karla Lizette; Nakasone, Kazuki; Sugita, Satoshi; Tagaya, Motohiro; Kobayashi, Takaomi

    2014-09-01

    Waste bagasse of Agave tequilana-Weber fibers treated with sodium hydroxide was used to elaborate hydrogel films. The bagasse was offered in an alternative use for the preparation of hydrogel films by phase inversion method without crosslinking and further purification of cellulose. The effect on the properties of the obtained films was studied when the chemical treatment of the agave fibers was changed. It was found that the resultant hydrogels showed increment in tensile from 40 N/mm(2) to 56 N/mm(2) with the increase of sodium hypochlorite concentration from 1 to 10 vol.%, respectively. With regard to biocompatibility properties of the hydrogel films, platelet adhesion, clotting time and protein adsorption were investigated. Analysis of the morphology of adherent NIH3T3 fibroblast indicated that the projected cell area, aspect ratio and long axis gradually increased with the increment of sodium hypochlorite content in the agave treatment. It was presented that the chemical treatment affects cell adhesion and morphology and lignin content remains in the brown fibers.

  15. Enhancing effect of γ-cyclodextrin on wound dressing properties of sacran hydrogel film.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2017-01-01

    A wound dressing is one of the essential approaches for preventing further harm to cutaneous wounds as well as promoting wound healing. Therefore, to achieve ideal wound healing, the development of advanced dressing materials is necessary. Recently, we revealed that a novel megamolecular polysaccharide, sacran, has potential properties as a biomaterial in a physically cross-linked hydrogel film (HGF) for wound dressing application. In this study, to enhance the wound-healing properties of sacran hydrogel film (Sac-HGF) further, we fabricated and characterized novel Sac-HGFs containing cyclodextrins (CyDs). The sacran/α-CyD film (Sac/α-CyD-HGF) and sacran/γ-CyD HGF (Sac/γ-CyD-HGF), but not sacran/β-CyD HGF (Sac/β-CyD-HGF), were well prepared without surface roughness. Powder X-ray diffraction (XRD) patterns of the Sac/γ-CyD-HGFs showed a totally amorphous state compared to that shown by Sac/α-CyD-HGFs. Furthermore, the addition of γ-CyD to Sac-HGFs significantly increased the swelling ratio, porosity, and moisture content of the HGFs, compared to those of the Sac-HGF without CyDs. The Sac/γ-CyD-HGFs were not cytotoxic against NIH3T3 cells, a murine fibroblast cell line. Notably, the Sac/γ-CyD-HGFs significantly improved wound healing in mice, compared to that achieved with the Sac-HGF without γ-CyD. These results suggest that γ-CyD has the potential to promote the wound healing ability of Sac-HGF.

  16. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  17. Mussel-Inspired Dopamine and Carbon Nanotube Leading to a Biocompatible Self-Rolling Conductive Hydrogel Film

    PubMed Central

    Jiang, Junzi; Huang, Yong; Wang, Yitian; Xu, Hui; Xing, Malcolm; Zhong, Wen

    2017-01-01

    We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor. PMID:28820472

  18. Mussel-Inspired Dopamine and Carbon Nanotube Leading to a Biocompatible Self-Rolling Conductive Hydrogel Film.

    PubMed

    Jiang, Junzi; Huang, Yong; Wang, Yitian; Xu, Hui; Xing, Malcolm; Zhong, Wen

    2017-08-18

    We report a novel self-rolling, conductive, and biocompatible multiwall carbon nanotube (MWCNT)-dopamine-polyethylene glycol (PEG) hydrogel film. The gel can self-fold into a thin tube when it is transferred from a glass slide to an aqueous environment, regardless of the concentrations of the MWCNT. The film presents a highly organized pattern, which results from the self-assembly of hydrophilic dopamine and hydrophobic carbon nanotubes. By exploring the biomedical potential, we found that MWCNT-included rolled film is nontoxic and can promote cell growth. For further functional verification by qPCR (quantitative polymerase chain reaction), bone marrow derived mesenchymal cells present higher levels of osteogenic differentiations in response to a higher concentration of CNTs. The results suggest that the self-rolling, conductive CNT-dopamine-PEG hydrogel could have multiple potentials, including biomedical usage and as a conductive biosensor.

  19. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  20. Superhydrophobic composite films produced on various substrates.

    PubMed

    Manoudis, Panagiotis N; Karapanagiotis, Ioannis; Tsakalof, Andreas; Zuburtikudis, Ioannis; Panayiotou, Costas

    2008-10-07

    Hydrophilic silica (SiO2) nanoparticles were dispersed in solutions of poly(methyl methacrylate) (PMMA) and in solutions of a commercial poly(alkyl siloxane) (Rhodorsil 224), and the suspensions were sprayed on glass surfaces. The effect of the particle concentration on the hydrophobic character of PMMA-SiO2 and Rhodorsil-SiO2 films was investigated and showed the following: (i) Static contact angles (theta s), measured on surfaces that were prepared from dilute dispersions (particle concentration <1% w/v), increase rapidly with particle concentration and reach maximum values (154 and 164 degrees for PMMA-SiO2 and siloxane-SiO2, respectively). Further increases in particle concentration do not have any effect on theta s. (ii) The effect of particle concentration on the contact angle hysteresis (thetaAlpha - thetaR) is more complicated: as the particle concentration increases, we first notice an increase in hysteresis, which then decreases and finally becomes constant at elevated particle concentrations. The lowest thetaAlpha - thetaR values were 5 degrees for PMMA-SiO2 and 3 degrees for siloxane-SiO2, respectively. (iii) SEM and AFM images show that a two-length-scale hierarchical structure is formed on the surface of the superhydrophobic films. It is demonstrated that superhydrophobicity can be achieved using various hydrophilic nanoparticles (alumina and tin oxide nanoparticles were successfully tested) and that the substrate has almost no effect on the hydrophobic character of the applied coatings, which were produced on silicon, concrete, aluminum, silk, wood, marble, and of course glass. The results are discussed in light of Wenzel and Cassie-Baxter models.

  1. Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.

    PubMed

    Yao, Huiqin; Hu, Naifei

    2011-05-26

    In this work, triply responsive films with a specific binary architecture combining layer-by-layer assembly (LbL) and hydrogel polymerization were successfully prepared. First, concanavalin A (Con A) and dextran (Dex) were assembled into {Con A/Dex}(5) LbL layers on electrode surface by the lectin-sugar biospecific interaction between them. The poly(N,N-diethylacrylamide) (PDEA) hydrogels with entrapped horseradish peroxidase (HRP) were then synthesized by polymerization on the surface of LbL inner layers, forming {Con A/Dex}(5)-(PDEA-HRP) films. The films demonstrated reversible pH-, thermo-, and salt-responsive on-off behavior toward electroactive probe Fe(CN)(6)(3-) in its cyclic voltammetric responses. This multiple stimuli-responsive films could be further used to realize triply switchable electrochemical reduction of H(2)O(2) catalyzed by HRP immobilized in the films and mediated by Fe(CN)(6)(3-) in solution. The responsive mechanism of the films was explored and discussed. The pH-sensitive property of the system was attributed to the electrostatic interaction between the {Con A/Dex}(5) inner layers and the probe at different pH, and the thermo- and salt-responsive behaviors should be ascribed to the structure change of PDEA hydrogels for the PDEA-HRP outermost layers under different conditions. The concept of binary architecture was also used to fabricate {Con A/Dex}(5)-(PDEA-GOD) films on electrodes, where GOD = glucose oxidase, which was applied to realize the triply switchable bioelectrocatalysis of glucose by GOD in the films with ferrocenedicarboxylic acid as the mediator in solution. This film system with the unique binary architecture may establish a foundation for fabricating a novel type of multicontrollable biosensors based on bioelectrocatalysis with immobilized enzymes.

  2. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  3. Low stress polysilicon film and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor)

    2001-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin film may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films.

  4. Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition

    PubMed Central

    Elkins, Claire M.; Qi, Qin M.; Fuller, Gerald G.

    2014-01-01

    Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS), borate buffered saline (BBS), or Sensitive Eyes Plus Saline Solution (Sensitive Eyes), either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes) exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo. PMID:25144576

  5. Corneal cell adhesion to contact lens hydrogel materials enhanced via tear film protein deposition.

    PubMed

    Elkins, Claire M; Qi, Qin M; Fuller, Gerald G

    2014-01-01

    Tear film protein deposition on contact lens hydrogels has been well characterized from the perspective of bacterial adhesion and viability. However, the effect of protein deposition on lens interactions with the corneal epithelium remains largely unexplored. The current study employs a live cell rheometer to quantify human corneal epithelial cell adhesion to soft contact lenses fouled with the tear film protein lysozyme. PureVision balafilcon A and AirOptix lotrafilcon B lenses were soaked for five days in either phosphate buffered saline (PBS), borate buffered saline (BBS), or Sensitive Eyes Plus Saline Solution (Sensitive Eyes), either pure or in the presence of lysozyme. Treated contact lenses were then contacted to a live monolayer of corneal epithelial cells for two hours, after which the contact lens was sheared laterally. The apparent cell monolayer relaxation modulus was then used to quantify the extent of cell adhesion to the contact lens surface. For both lens types, lysozyme increased corneal cell adhesion to the contact lens, with the apparent cell monolayer relaxation modulus increasing up to an order of magnitude in the presence of protein. The magnitude of this increase depended on the identity of the soaking solution: lenses soaked in borate-buffered solutions (BBS, Sensitive Eyes) exhibited a much greater increase in cell attachment upon protein addition than those soaked in PBS. Significantly, all measurements were conducted while subjecting the cells to moderate surface pressures and shear rates, similar to those experienced by corneal cells in vivo.

  6. Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices.

    PubMed

    Shahzad, Sohail; Yar, Muhammad; Siddiqi, Saadat Anwar; Mahmood, Nasir; Rauf, Abdul; Qureshi, Zafar-ul-Ahsan; Anwar, Muhammad Sabieh; Afzaal, Shahida

    2015-03-01

    The development of highly efficient anti-bacterial wound dressings was carried out. For this purpose nanofibrous mats, hydrogels and films were synthesized from chitosan, poly(vinyl alcohol) and hydroxyapatite. The physical/chemical interactions of the synthesized materials were evaluated by FTIR. The morphology, structure; average diameter and pore size of the materials were investigated by scanning electron microscopy. The hydrogels showed a greater degree of swelling as compared to nanofibrous mats and films in phosphate buffer saline solution of pH 7.4. The in vitro drug release studies showed a burst release during the initial period of 4 h and then a sustained release profile was observed in the next upcoming 20 h. The lyophilized hydrogels showed a more slow release as compared to nanofibrous mats and films. Antibacterial potential of drug released solutions collected after 24 h of time interval was determined and all composite matrices showed good to moderate activity against Gram-positive and Gram-negative bacterial strains respectively. To determine the cytotoxicity, cell culture was performed for various cefixime loaded substrates by using neutral red dye uptake assay and all the matrices were found to be non-toxic.

  7. Methods for producing films using supercritical fluid

    DOEpatents

    Yonker, Clement R.; Fulton, John L.

    2004-06-15

    A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The T.sub.g of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.

  8. Cutaneous burns treated with hydrogel (Burnshield) and a semipermeable adhesive film.

    PubMed

    Osti, Enzo

    2006-01-01

    A transparent adhesive film possessing selective permeability combined with a hydrogel (Burnshield) may be effective in burn patients to reduce skin maceration, improve medication, control pain more effectively, and reduce the incidence of late complications (hypertrophic scars). This is a prospective study; the mean follow-up in all patients was 28.4 months (range, 14-35 months). The external part of the film is impermeable to fluid and microorganisms, but allows transpiration of water vapor from the cutis. The permeability to water vapor of a semipermeable film in contact with liquids is measured in grams per meters squared every 24 hours at 37 degrees C, and is defined as the moisture vapor transmission rate. In this study, a film with a moisture vapor transmission rate of 1600 g/m(2) every 24 hours at 37 degrees C was used. For about 2 years, this type of therapy was used in the first aid treatment of 48 burn patients, 4 of whom were lost during therapy and 4 of whom were unavailable for follow-up. The patients were treated with hydrogel and a semipermeable film at first medication, and some were treated in this way during subsequent medications. The mean reepithelialization time of all patients was 17 days (range, 4-60 days); 8 (20%) of 40 patients with complications were treated with a gel (Same Plast Gel). Late complications were observed: hypertrophic scars in 2 patients (5%) and dyschromic lesions in 6 (15%). The most frequent complication, which occurred at various stages during medication, was skin maceration (15 [34%] of 44 patients). Other complications recorded during therapy were infections in 2 patients (5%), vertigo in 1 patient (2%), and abundant fibrin production in 1 patient (2%). In some of the patients, associated diseases and/or conditions were found: hepatic cirrhosis, diabetes mellitus, epilepsy, and pregnancy (33rd week) (each found in 1 patient each). Four patients were sent to the burn unit, 3 with second-degree burns of the hand and 1

  9. Electroless plating of PVC plastic through new surface modification method applying a semi-IPN hydrogel film

    NASA Astrophysics Data System (ADS)

    Wang, Ming-Qiu; Yan, Jun; Du, Shi-Guo; Li, Hong-Guang

    2013-07-01

    A novel palladium-free surface activation process for electroless nickel plating was developed. This method applied a semi-Interpenetrating Polymer Network (semi-IPN) hydrogel film to modify the poly(vinyl chloride) (PVC) surface by chemical bonds. The activation process involved the formation of semi-IPN hydrogel film on the PVC surface and the immobilization of catalyst for electroless plating linking to the pretreated substrate via Nsbnd Ni chemical bond. The hydrogel layer was used as the chemisorption sites for nickel ions, and the catalyst could initiate the subsequent electroless nickel plating onto the PVC surface. Finally, a Ni-P layer was deposited on the nickel-activated PVC substrate by electroless plating technique. The composition and morphology of nickel-plated PVC foils were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results of SEM and XRD show that a compact and continuous Ni-P layer with amorphous nickel phase is formed on the PVC surface. EDS shows that the content of the nickel and the phosphorus in the deposits is 89.4 wt.% and 10.6 wt.%, respectively.

  10. Multilayer thin film thermoelectrics produced by sputtering

    SciTech Connect

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-06-19

    In this work we explore the possibility of achieving bulk electrical properties in single layer sputter deposited films grown epitaxially on (111) oriented BaF{sub 2} substrates. There are a number of sputter deposition parameters that can be varied in order to optimize the film quality. It is important to understand the effect of varying the deposition temperature, Ar sputtering gas pressure, and the substrate bias. We will consider only Bi and Bi{sub 0.86}Sb{sub 0.14} films in this paper. These materials were chosen since they have the same simple structure, two different band gaps and do not change significantly either in physical or electrical properties with small amounts of cross contamination. We will also present our work on multilayer thermoelectrics made of Bi and Bi{sub 0.86}Sb{sub 0.14} layers. There has been considerable interest in this multilayer structure in the literature. Theoretical calculations of the band structure and interface states of these multilayer structures have been made by Mustafaev and Agassi et al. respectively [6,7]. Experimentally Yoshida et al. have examined similar multilayer structures grown by MBE as well as Bi/Sb multilayer samples in which report an anomalous thermoelectric power [8].

  11. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG is a thermo-responsive gel, and it exhibited viscoelastic behavior above 2% (wt.%) at roo...

  12. Rheological properties of a biological thermo-responsive hydrogel produced from soybean oil polymers

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-VI is a hydrolytic product of polymerized soybean oil (PSO). HPSO-VI exhibited viscoelastic behavior above 2% (wt. %) at room temperature and viscous fluid ...

  13. Rheological Properties of a Biological Thermo-Hydrogel Produced from Soybean Oil Polymers

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of a newly developed biological thermo-hydrogel made from vegetable oil were investigated. The material named HPSO-HG is a hydrolytic product of polymerized soybean oil (PSO). HPSO-HG exhibited viscoelastic behavior above 2% (wt.%) at room temperature and viscous fluid b...

  14. Pr Doped YBCO Films Produced by Pulsed Laser Deposition (Postprint)

    DTIC Science & Technology

    2012-02-01

    found that the substituent was dispersed throughout the film and led to an increase in nanoparticles. EXPERIMENT Thin films of (Y1-x, Prx )Ba2Cu3O7-d...were produced by PLD using conditions previously optimized for pure YBCO. PLD targets were prepared with the composition (Y1-x, Prx )Ba2Cu3O7- d

  15. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    PubMed

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-02

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and

  16. Xylitol production from rice straw hemicellulose hydrolyzate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79.

    PubMed

    Liaw, Wen-Chang; Chen, Chee-Shan; Chang, Wen-Shion; Chen, Kuan-Pin

    2008-02-01

    Xylose from rice straw hemicellulose hydrolysate was fermented for xylitol production using Candida subtropicalis WF79 cells immobilized in polyacrylic hydrogel thin films of 200 mum thickness. Cell immobilization was conducted by first suspending the yeast cells in a mixture of 2-hydroxyethyl methacrylate (HEMA, hydrophilic monomer), polyethylene glycol diacrylate (PEG-DA, crosslinking agent), and benzoin isopropyl ether (photoinitiator). The mixture was then allowed to form polyacrylic hydrogel thin films, between two pieces of glass sheets, by UV-initiated photopolymerization. The hemicellulose of rice straw was hydrolyzed using dilute sulfuric acid at 126 degrees C. The hydrolysate was neutralized with calcium hydroxide. After separating the solid residues and calcium sulfate precipitates by filtration, the hydrolysate was treated with charcoal to partially remove potential inhibitory substances, followed by vacuum concentration to obtain solutions of desired xylose concentrations for yeast fermentation. The thin films with immobilized yeast cells were submerged in the xylose solution from rice straw hydrolysate for fermentation in an Erlenmeyer flask. The maximum yield was 0.73 g of xylitol per gram of xylose consumed. In the 52.5-day long durability test, after 40 d of repeated batchwise operation, the fermentation activities of the cell immobilized in thin films began to decline to a yield of 0.57 g/g at the end.

  17. Nanoporous titania films produced by pulsed interference lithography

    SciTech Connect

    Verevkin, Yu K; Petryakov, V N; Burenina, V N; Filatov, D O; Vorontsov, D A

    2010-12-09

    We describe a simple, inexpensive technique for producing deep nanopores on the surface of titania films using laser exposure in a four-beam interference configuration. In addition to producing nanopores, laser pulses convert amorphous titania films to a polycrystalline state. The effect of laser exposure on the TiO{sub 2} surface can be used to improve its biophotocatalytic properties, optimise solar cells, etc. (nanostructures)

  18. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, Myron; Ruckman, Mark; Strongin, Daniel

    1994-01-01

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate.

  19. Method for producing high quality thin layer films on substrates

    DOEpatents

    Strongin, M.; Ruckman, M.; Strongin, D.

    1994-04-26

    A method for producing high quality, thin layer films of inorganic compounds upon the surface of a substrate is disclosed. The method involves condensing a mixture of preselected molecular precursors on the surface of a substrate and subsequently inducing the formation of reactive species using high energy photon or charged particle irradiation. The reactive species react with one another to produce a film of the desired compound upon the surface of the substrate. 4 figures.

  20. Responsive hydrogels produced via organic sol-gel chemistry for cell culture applications.

    PubMed

    Patil, Smruti; Chaudhury, Pulkit; Clarizia, Lisa; McDonald, Melisenda; Reynaud, Emmanuelle; Gaines, Peter; Schmidt, Daniel F

    2012-08-01

    In this study, we report the synthesis of novel environmentally responsive polyurea hydrogel networks prepared via organic sol-gel chemistry and demonstrate that the networks can stabilize pH while releasing glucose both in simple aqueous media and in mammalian cell culture settings. Hydrogel formulations have been developed based on the combination of an aliphatic triisocyanate with pH-insensitive amine functional polyether and pH-sensitive poly(ethyleneimine) segments in a minimally toxic solvent suitable for the sol-gel reaction. The polyether component of the polyurea network is sufficiently hydrophilic to give rise to some level of swelling independent of environmental pH, while the poly(ethyleneimine) component contains tertiary amine groups providing pH sensitivity to the network in the form of enhanced swelling and release under acidic conditions. The reaction of these materials to form a network is rapid and requires no catalyst. The resultant material exhibits the desired pH-responsive swelling behavior and demonstrates its ability to simultaneously neutralize lactic acid and release glucose in both cell-free culture media and mammalian cell culture, with no detectable evidence of cytotoxicity or changes in cell behavior, in the case of either SA-13 human hybridomas or mouse embryonic stem cells. Furthermore, pH is observed to have a clear effect on the rate at which glucose is released from the hydrogel network. Such characteristics promise to maintain a favorable cell culture environment in the absence of human intervention.

  1. Method for producing fluorinated diamond-like carbon films

    DOEpatents

    Hakovirta, Marko J.; Nastasi, Michael A.; Lee, Deok-Hyung; He, Xiao-Ming

    2003-06-03

    Fluorinated, diamond-like carbon (F-DLC) films are produced by a pulsed, glow-discharge plasma immersion ion processing procedure. The pulsed, glow-discharge plasma was generated at a pressure of 1 Pa from an acetylene (C.sub.2 H.sub.2) and hexafluoroethane (C.sub.2 F.sub.6) gas mixture, and the fluorinated, diamond-like carbon films were deposited on silicon <100>substrates. The film hardness and wear resistance were found to be strongly dependent on the fluorine content incorporated into the coatings. The hardness of the F-DLC films was found to decrease considerably when the fluorine content in the coatings reached about 20%. The contact angle of water on the F-DLC coatings was found to increase with increasing film fluorine content and to saturate at a level characteristic of polytetrafluoroethylene.

  2. Method for producing graphite and alumina thin films

    NASA Astrophysics Data System (ADS)

    Makhanov, K. M.; Ermaganbetov, K. T.; Chirkova, L. V.; Maukebaeva, M. A.

    2017-07-01

    A simple comprehensible method for producing graphite and alumina films has been suggested. The optical properties of a graphite suspension in toluene and a suspension of natural clay with a high content of alumina particles in water have been studied. It has been found that the optical density of the suspensions varies from layer to layer, and the lowest optical density has been observed in upper layers. Graphite and aluminum films have been prepared by taking samples from different depths. The microstructure of the films has been examined. It has turned out that alumina particles coalesce into regularly shaped objects in the form of snowflakes. In addition, alumina films obtained from samples taken from different depths of the suspension have different thicknesses. In thin and thick films, the particle size is 0.29 and 2.81 μm or more, respectively.

  3. A sulphonated carbon dot-chitosan hybrid hydrogel nanocomposite as an efficient ion-exchange film for Ca2+ and Mg2+ removal

    NASA Astrophysics Data System (ADS)

    Baruah, Upama; Konwar, Achyut; Chowdhury, Devasish

    2016-04-01

    We have developed a hybrid hydrogel nanocomposite film via conjugation of oxidised carbon dots synthesized from 11-mercaptoundecanoic acid with chitosan. The potential applicability of the film was then successfully tested for the removal of Ca2+ and Mg2+ ions from solution.We have developed a hybrid hydrogel nanocomposite film via conjugation of oxidised carbon dots synthesized from 11-mercaptoundecanoic acid with chitosan. The potential applicability of the film was then successfully tested for the removal of Ca2+ and Mg2+ ions from solution. Electronic supplementary information (ESI) available: The ESI includes the detailed synthesis and characterization of carbon dots both before and after oxidation and of the carbon dot-chitosan nanocomposite films viz. DLS, SEM, UV-visible, FTIR, PL spectroscopy and TGA. See DOI: 10.1039/c6nr01129b

  4. In vitro and in vivo biocompatibility of dextran dialdehyde cross-linked gelatin hydrogel films.

    PubMed

    Draye, J P; Delaey, B; Van de Voorde, A; Van Den Bulcke, A; De Reu, B; Schacht, E

    1998-09-01

    The biosafety of a new hydrogel wound dressing material consisting of dextran dialdehyde cross-linked gelatin was evaluated (i) in vitro in cultures of dermal fibroblasts, epidermal keratinocytes, and endothelial cells, three cell types which play a major role in the process of cutaneous wound healing, and (ii) in vivo by subcutaneous implantation studies in mice. The cytotoxicities of this hydrogel, two semi-occlusive polyurethane dressings (Tegaderm and OpSite), and a hydrocolloid dressing (DuoDERM) were compared by measuring cell survival with the tetrazolium salt reduction (MTT) assay after incubations of the wound dressing samples for up to 6 d, in the presence of--but not in direct contact with--the cells. In vitro, the degree of cytotoxicity of the new hydrogel was greater in keratinocyte cultures than in fibroblast and endothelial cell cultures, and increased upon longer incubation time. In keratinocyte cultures, the semi-occlusive polyurethane dressings, the hydrocolloid, and the hydrogel dressings induced low, high and acceptable degrees of cytotoxicity, respectively. The toxicity of the isolated hydrogel components was assessed in Balb MK keratinocyte cultures. In these cells, epidermal growth-factor-stimulated thymidine incorporation into DNA was higher in the presence of gelatin. By contrast, concentrations of dextran dialdehyde as low as 0.002% were found to significantly decrease thymidine incorporation (P < 0.01). Subcutaneous implantation studies in mice showed that in vivo the hydrogel was biocompatible since the foreign body reaction seen around the implanted hydrogel samples was moderate and became minimal upon increasing implantation time. These results indicate that dextran dialdehyde cross-linked gelatin hydrogels have an appropriate biocompatibility.

  5. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    PubMed

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  6. Comparison of the effects of first and second generation silicone hydrogel contact lens wear on tear film osmolarity

    PubMed Central

    Iskeleli, Guzin; Karakoc, Yunus; Ozkok, Ahmet; Arici, Ceyhun; Ozcan, Omer; Ipcioglu, Osman

    2013-01-01

    AIM To compare the effects of first and second generation silicone hydrogel (SiH) contact lens wear on tear film osmolarity. METHODS The healthy subjects who have never used contact lenses before were enrolled in the study. Tear film osmolarity values of 16 eyes (group 1) who wore first generation SiH contact lenses were compared with those of 18 eyes (group 2) who wore second generation SiH contact lenses after three months follow-up. RESULTS Before contact lens wear, tear film osmolarity of groups 1 and 2 were 305.02±49.08 milliosmole (mOsm) and 284.66±30.18mOsm, respectively. After three months of contact lens wear, osmolarity values were found 317.74±60.23mOsm in group 1 and 298.40±37.77mOsm in group 2. Although osmolarity values for both groups of SiH contact lens wear after three months periods were slightly higher than before the contact lens wear, the difference was not statistically significant. CONCLUSION Contact lens wear may cause evaporation from the tear film and can increase tear film osmolarity leading to symptoms of dry eye disease. In the current study, there is a tendency to increase tear film osmolarity for both groups of SiH contact lens wear, but the difference is not statistically significant. PMID:24195046

  7. Ethyl acetate Salix alba leaves extract-loaded chitosan-based hydrogel film for wound dressing applications.

    PubMed

    Qureshi, Mohammad A; Khatoon, Fehmeeda; Rizvi, Moshahid A; Zafaryab, Md

    2015-01-01

    High toxicity and multidrug resistance associated with various standard antimicrobial drugs have necessitated search for safer alternatives in plant-derived materials. In this study, we performed biological examination of chitosan-based hydrogel film loaded with ethyl acetate Salix alba leaves extract against 11 standard laboratory strains. FTIR showed regeneration of saccharide peak in CP1A at 1047 cm(-1) and increased in height of other peaks. DSC exothermic decomposition peaks at 112 °C, 175 °C and 251 °C reveal the effect of extract on hydrogel film. From FESEM images, three-dimensional cross-linking and extract easily seen in the globular form from the surface. MTT assay on HEK 293 cells showed that CP1A was non-toxic. Minimum inhibitory concentration ranges from 4000 μg/ml to 125 μg/ml. Enterococcus faecium, Candida glabrata and Candida tropicalis were the most resistant, while Salmonella typhi and Candida guilliermondii were the most susceptible micro-organisms.

  8. Long-laser-pulse method of producing thin films

    DOEpatents

    Balooch, Mehdi; Olander, Donald K.; Russo, Richard E.

    1991-01-01

    A method of depositing thin films by means of laser vaporization employs a long-pulse laser (Nd-glass of about one millisecond duration) with a peak power density typically in the range 10.sup.5 -10.sup.6 W/cm.sup.2. The method may be used to produce high T.sub.c superconducting films of perovskite material. In one embodiment, a few hundred nanometers thick film of YBa.sub.2 Cu.sub.3 O.sub.7-x is produced on a SrTiO.sub.3 crystal substrate in one or two pulses. In situ-recrystallization and post-annealing, both at elevated temperature and in the presence of an oxidizing agen The invention described herein arose in the course of, or under, Contract No. DE-C03-76SF0098 between the United States Department of Energy and the University of California.

  9. Evaluation of dextran(ethylene glycol) hydrogel films for giant unilamellar lipid vesicle production and their application for the encapsulation of polymersomes.

    PubMed

    Mora, Nestor Lopez; Gao, Yue; Gutierrez, M Gertrude; Peruzzi, Justin; Bakker, Ivan; Peters, Ruud J R W; Siewert, Bianka; Bonnet, Sylvestre; Kieltyka, Roxanne E; van Hest, Jan C M; Malmstadt, Noah; Kros, Alexander

    2017-08-23

    Giant Unilamellar Vesicles (GUVs) prepared from phospholipids are becoming popular membrane model systems for use in biophysical studies. The quality, size and yield of GUVs depend on the preparation method used to obtain them. In this study, hydrogels consisting of dextran polymers crosslinked by poly(ethylene glycol) (DexPEG) were used as hydrophilic frameworks for the preparation of vesicle suspensions under physiological ionic strength conditions. A comparative study was conducted using hydrogels with varied physicochemical properties to evaluate their performance for GUV production. The prepared GUVs were quantified by flow cytometry using the Coulter Principle to determine the yield and size distribution. We find that hydrogels of lower mechanical strength, increased swellability and decreased lipid interaction favour GUV production, while their resulting size is determined by the surface roughness of the hydrogel film. Moreover, we embedded polymersomes into the crosslinked hydrogel network, creating a DexPEG - polymersome hybrid film. The re-hydration of lipids on those hybrid substrates led to the production of GUVs and the efficient encapsulation of polymersomes in the lumen of GUVs.

  10. Carbon films produced from ionic liquid carbon precursors

    DOEpatents

    Dai, Sheng; Luo, Huimin; Lee, Je Seung

    2013-11-05

    The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ionic liquid has the general formula (X.sup.+a).sub.x(Y.sup.-b).sub.y, wherein the variables a and b are, independently, non-zero integers, and the subscript variables x and y are, independently, non-zero integers, such that ax=by, and at least one of X.sup.+ and Y.sup.- possesses at least one carbon-nitrogen unsaturated bond. The invention is also directed to a composition comprising a porous carbon film possessing a nitrogen content of at least 10 atom %.

  11. Physical properties of gamma irradiated poly(vinyl alcohol) hydrogel preparations

    NASA Astrophysics Data System (ADS)

    Mondino, A. V.; González, M. E.; Romero, G. R.; Smolko, E. E.

    1999-08-01

    Poly(vinyl alcohol) films from 15% w/w aqueous solutions and a thickness of 0.2 mm were selected for this study. The films were first humidified and then acetalized and/or gamma irradiated. Then, their physical properties were tested. Tensile strength of the hydrogel films reached its maximum value in samples irradiated with a 80 kGy dose, in the case of acetalized films the dose necessary for maximum tensile strength was only 40 kGy. The combination of acetalization with formaldehyde and gamma radiation produced an elastic hydrogel with good tackiness and excellent mechanical and thermal strength.

  12. Interaction of Human Plasma Proteins with Thin Gelatin-Based Hydrogel Films: A QCM-D and ToF-SIMS Study

    PubMed Central

    2015-01-01

    In the fields of surgery and regenerative medicine, it is crucial to understand the interactions of proteins with the biomaterials used as implants. Protein adsorption directly influences cell-material interactions in vivo and, as a result, regulates, for example, cell adhesion on the surface of the implant. Therefore, the development of suitable analytical techniques together with well-defined model systems allowing for the detection, characterization, and quantification of protein adsorbates is essential. In this study, a protocol for the deposition of highly stable, thin gelatin-based films on various substrates has been developed. The hydrogel films were characterized morphologically and chemically. Due to the obtained low thickness of the hydrogel layer, this setup allowed for a quantitative study on the interaction of human proteins (albumin and fibrinogen) with the hydrogel by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D). This technique enables the determination of adsorbant mass and changes in the shear modulus of the hydrogel layer upon adsorption of human proteins. Furthermore, Secondary Ion Mass Spectrometry and principal component analysis was applied to monitor the changed composition of the topmost adsorbate layer. This approach opens interesting perspectives for a sensitive screening of viscoelastic biomaterials that could be used for regenerative medicine. PMID:24956040

  13. SHG in DASMS single-crystal film producing ultraviolet

    NASA Astrophysics Data System (ADS)

    Ahyi, Ayayi; Khatavkar, Sanchit; Thakur, Mrinal

    2002-03-01

    Single-crystal film of the molecular salt, DASMS (noncentrosymmetric phase), has been grown using the modified shear method.^1 The DASMS film is orange in color, showing strong birefringence. The absorption spectrum of DASMS has a maximum at 590 nm, with the onset at about 600 nm and continuing to UV but with a dip around 400 nm. Such a spectrum allows efficient SHG at short wavelengths (400 nm). A Ti:Sapphire laser producing 200 fs pulses at 82 MHz with an average power of 50mW was used for the SHG experiment. The fundamental wavelength was 760nm giving SHG at 380 nm corresponding to the dip in the absorption spectrum. The beam was focused on the film using a 4" focal length lens. From the power measurements, an efficiency of 0.1% in SHG has been observed in a 1μm thick film indicating that the magnitude of d-coefficient is larger than 2000 pm/V. 1. M. Thakur and S. Meyler, Macromolecules, 18 2341 (1985); M. Thakur, Y. Shani, G.C. Chi and K. O'Brien, Synth. Met., 28 D595 (1989).

  14. Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation.

    PubMed

    Jo, Hyerim; Sim, Myeongbu; Kim, Semin; Yang, Sumi; Yoo, Youngjae; Park, Jin-Ho; Yoon, Tae Ho; Kim, Min-Gon; Lee, Jae Young

    2017-01-15

    Graphene and graphene derivatives, such as graphene oxide (GO) and reduced GO (rGO), have been extensively employed as novel components of biomaterials because of their unique electrical and mechanical properties. These materials have also been used to fabricate electrically conductive biomaterials that can effectively deliver electrical signals to biological systems. Recently, increasing attention has been paid to electrically conductive hydrogels that have both electrical activity and a tissue-like softness. In this study, we synthesized conductive graphene hydrogels by mild chemical reduction of graphene oxide/polyacrylamide (GO/PAAm) composite hydrogels to obtain conductive hydrogels. The reduced hydrogel, r(GO/PAAm), exhibited muscle tissue-like stiffness with a Young's modulus of approximately 50kPa. The electrochemical impedance of r(GO/PAAm) could be decreased by more than ten times compared to that of PAAm and unreduced GO/PAAm. In vitro studies with C2C12 myoblasts revealed that r(GO/PAAm) significantly enhanced proliferation and myogenic differentiation compared with unreduced GO/PAAm and PAAm. Moreover, electrical stimulation of myoblasts growing on r(GO/PAAm) graphene hydrogels for 7days significantly enhanced the myogenic gene expression compared to unstimulated controls. As results, our graphene-based conductive and soft hydrogels will be useful as skeletal muscle tissue scaffolds and can serve as a multifunctional platform that can simultaneously deliver electrical and mechanical cues to biological systems. Graphene-based conductive hydrogels presenting electrical conductance and a soft tissue-like modulus were successfully fabricated via mild reduction of graphene oxide/polyacrylamide composite hydrogels to study their potential to skeletal tissue scaffold applications. Significantly promoted myoblast proliferation and differentiation were obtained on our hydrogels. Additionally, electrical stimulation of myoblasts via the graphene hydrogels could

  15. Petroleum films exposed to sunlight produce hydroxyl radical.

    PubMed

    Ray, Phoebe Z; Tarr, Matthew A

    2014-05-01

    Sunlight exposed oil films on seawater or pure water produced substantial amounts of hydroxyl radical as a result of irradiation. Oil was collected from the surface of the Gulf of Mexico following the Deepwater Horizon spill and exposed to simulated sunlight in thin films over water. Photochemical production of hydroxyl radical was measured with benzoic acid as a selective chemical probe in the aqueous layer. Total hydroxyl radical formation was studied using high benzoic acid concentrations and varying exposure time. The total amount of hydroxyl radical produced in 24 h irradiations of thin oil films over Gulf of Mexico water and pure water were 3.7×10(-7) and 4.2×10(-7) moles respectively. Steady state concentrations of hydroxyl radical were measured using a competition kinetics approach. Hydroxyl radical concentrations of 1.2×10(-16) to 2.4×10(-16) M were observed for seawater and pure water under oil films. Titanium dioxide (TiO2) nanomaterials were added to the system in an effort to determine if the photocatalyst would enhance oil photodegradation. The addition of TiO2 nanoparticles dramatically changed the observed formation rate of hydroxyl radical in the systems with NP water at pH 3, showing increased formation rate in many cases. With photocatalyst, the steady state concentration of radical decreased, predominantly due to an increase in the hydroxyl radical scavenging rate with oxide present. This study illustrates that oil is a strong and important source of hydroxyl radical when exposed to sunlight. The fate of oil and other dissolved species following oil spills will be heavily dependent on the formation and fate of hydroxyl radical. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy

    PubMed Central

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-01-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes. PMID:27698690

  17. Effect of glycerol on sustained insulin release from PVA hydrogels and its application in diabetes therapy.

    PubMed

    Cai, Yunpeng; Che, Junyi; Yuan, Minglu; Shi, Xiaohong; Chen, Wei; Yuan, Wei-En

    2016-10-01

    The present study aimed to investigate the effects of glycerol on the physical properties and release of an insulin-loaded polyvinyl alcohol (PVA) hydrogel film. The insulin-loaded hydrogel composite film was produced using the freeze-thawing method, after which the in vitro swelling ratio, transmittance and insulin release, and the in vivo pharmacodynamics, of hydrogels containing various volumes of glycerol were investigated. The results demonstrated that the addition of glycerol reduced the swelling ratio and increased the softness of the PVA hydrogel film. An analysis of insulin release in vitro and of the hypoglycemic effects in rats demonstrated that the PVA hydrogel film had a sustained release of insulin and long-acting effect over 10 days. The results of the present study suggested that, as a hydrophilic plasticizer, glycerol was able to enhance the release of insulin in the early stage of release profile by enhancing the formation of water channels, although the total swelling ratio was decreased. Therefore, the insulin-loaded glycerol/PVA hydrogel film may be a promising sustained-release preparation for the treatment of diabetes.

  18. Cytocompatible cellulose hydrogels containing trace lignin.

    PubMed

    Nakasone, Kazuki; Kobayashi, Takaomi

    2016-07-01

    Sugarcane bagasse was used as a cellulose resource to prepare transparent and flexible cellulose hydrogel films. On the purification process from bagasse to cellulose, the effect of lignin residues in the cellulose was examined for the properties and cytocompatibility of the resultant hydrogel films. The cellulose was dissolved in lithium chloride/N,N-dimethylacetamide solution and converted to hydrogel films by phase inversion. In the purification process, sodium hydroxide (NaOH) treatment time was changed from 1 to 12h. This resulted in cellulose hydrogel films having small amounts of lignin from 1.62 to 0.68%. The remaining lignin greatly affected hydrogel properties. Water content of the hydrogel films was increased from 1153 to 1525% with a decrease of lignin content. Moreover, lower lignin content caused weakening of tensile strength from 0.80 to 0.43N/mm(2) and elongation from 45.2 to 26.5%. Also, similar tendency was observed in viscoelastic behavior of the cellulose hydrogel films. Evidence was shown that the lignin residue was effective for the high strength of the hydrogel films. In addition, scanning probe microscopy in the morphological observation was suggested that the trace lignin in the cellulose hydrogel affected the cellulose fiber aggregation in the hydrogel network. The trace of lignin in the hydrogels also influenced fibroblast cell culture on the hydrogel films. The hydrogel film containing 1.68% lignin showed better fibroblast compatibility as compared to cell culture polystyrene dish used as reference. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    PubMed Central

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865

  20. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    NASA Astrophysics Data System (ADS)

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending.

  1. Artificial biomembranes stabilized over spin coated hydrogel scaffolds. Crosslinking agent nature induces wrinkled or flat surfaces on the hydrogel.

    PubMed

    González-Henríquez, C M; Pizarro-Guerra, G C; Córdova-Alarcón, E N; Sarabia-Vallejos, M A; Terraza-Inostroza, C A

    2016-03-01

    Hydrogel films possess the ability of retain water and deliver it to a phospholipid bilayer mainly composed by DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine); moisture of the medium favors the stability of an artificial biomembrane when it is subjected to repetitive heating cycles. This hypothesis is valid when the hydrogel film, used as scaffold, present a flat surface morphology and a high ability for water releasing. On the other hand, when the sample presents a wrinkle topography (periodic undulations), free lateral molecular movement of the bilayer becomes lower, disfavoring the occurrence of clear phases/phase transitions according to applied temperature. Hydrogel films were prepared using HEMA (hydroxyethylmetacrylate), different crosslinking agents and initiators. This reaction mixture was spread over hydrophilic silicon wafers using spin coating technique. Resultant films were then exposed to UV light favoring polymeric chain crosslinking and interactions between hydrogel and substrate; this process is also known to generate tensile stress mismatch between different hydrogel strata, producing out-of-plane net force that generate ordered undulations or collapsed crystals at surface level. DPPC bilayers were then placed over hydrogel using Langmuir-Blodgett technique. Surface morphology was detected in order to clarify the behavior of these films. Obtained data corroborate DPPC membrane stability making possible to detect phases/phase transitions by ellipsometric methods and Atomic Force Microscopy due to their high hydration level. This system is intended to be used as biosensor through the insertion of transmembrane proteins or peptides that detect minimal variations of some analyte in the environment; artificial biomembrane stability and behavior is fundamental for this purpose. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The preparation, characterization and evaluation of regenerated cellulose/collagen composite hydrogel films.

    PubMed

    Cheng, Yongmei; Lu, Jinting; Liu, Shilin; Zhao, Peng; Lu, Guozhong; Chen, Jinghua

    2014-07-17

    Porous structured regenerated cellulose films were oxidized by periodate oxidation to obtain 2,3-dialdehyde cellulose (DARC) films, which were then reacted with collagen to obtain DARC/Col composite films. The subsequent FT-IR spectra indicated that collagen was immobilized on the DARC matrix via the Schiff base reaction between NH2 in collagen and CHO in DARC backbone. Scanning electron microscopy revealed that DARC/Col exhibited a refined 3D network structure and its porosity and pore size decreased with increasing of collagen concentration. The composite films demonstrated a good equilibrium-swelling ratio, air permeability and water retention properties. The composite films also showed excellent mechanical properties, which was vital for practical application. Finally, the cytotoxicity of the composite film was evaluated using NIH3T3 mice fibroblast cells, the results revealed that DARC/Col composite films have good biocompatibility for use as scaffold material in tissue engineering. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. TEACHER-PRODUCED INSTRUCTIONAL FILMS IN CHEMISTRY, 8MM AND SUPER 8.

    ERIC Educational Resources Information Center

    O'CONNOR, ROD; SLABAUGH, WENDELL

    TECHNIQUES FOR PRODUCING 8MM INSTRUCTIONAL FILMS IN CHEMISTRY ARE PRESENTED. IN PART I A PHILOSOPHY OF TEACHER-PRODUCED FILMS IS DEVELOPED, EMPHASIZING THE VALUE OF THE LOCAL SETTING, AND CUSTOM-MADE CONTENTS. APPLICATIONS SUGGESTED ARE (1) TECHNIQUE INSTRUCTION, (2) FILMED EXPERIMENTS, (3) INSTRUMENT FAMILIARIZATION, (4) LECTURE AIDS, AND (5)…

  4. Induction of Osteogenic Differentiation of Human Adipose-Derived Stem Cells by a Novel Self-Supporting Graphene Hydrogel Film and the Possible Underlying Mechanism.

    PubMed

    Lyu, Cheng-Qi; Lu, Jia-Yu; Cao, Chun-Hua; Luo, Deng; Fu, Yin-Xin; He, Yu-Shi; Zou, De-Rong

    2015-09-16

    Graphene and its derivatives have received increasing attention from scientists in the field of biomedical sciences because of their unique physical properties, which are responsible for their interesting biological functions. With a range of extraordinary properties such as high surface area, high mechanical strength, and ease of functionalization, graphene is considered highly promising for application in bone tissue engineering. Here, we examined the effect of using a self-supporting graphene hydrogel (SGH) film to induce the osteogenic differentiation of human adipose-derived stem cells (hADSCs). In comparison to conventional graphene and carbon fiber films, the SGH film had higher mechanical strength and flexibility. Moreover, we found that the SGH film was nontoxic and biocompatible. Of particular interest is the fact that the film alone could stimulate the osteogenic differentiation of hADSCs, independent of additional chemical inducers. Such effects are stronger for the SGH film than for graphene or carbon fiber films, although the induction capacity of the SGH film is not as high as that of the osteogenic-induced medium. The excellent osteoinductivity of the SGH film is closely related to its remarkable physical properties that include specific nanostructures, surface morphology, strong cell adherence, reasonable surface hydrophilicity, and high protein absorption.

  5. Enhancement of curcumin wound healing ability by complexation with 2-hydroxypropyl-γ-cyclodextrin in sacran hydrogel film.

    PubMed

    Wathoni, Nasrul; Motoyama, Keiichi; Higashi, Taishi; Okajima, Maiko; Kaneko, Tatsuo; Arima, Hidetoshi

    2017-05-01

    Curcumin is one of promising agents to accelerate the wound-healing process. However, the efficacy of curcumin is limited due to its poor water solubility and stability. To enhance the properties of curcumin, 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CyD) can be used through complexation. Recently, we revealed that sacran has the potential to form a hydrogel film (HGF) as a wound dressing material. Therefore, in the present study, we investigated the wound healing ability of curcumin/HP-γ-CyD (Cur/HP-γ-CyD) complex in sacran-based HGF (Sac-HGF). We prepared the Cur/HP-γ-CyD complex in Sac-HGF without surface roughness. Additionally, the amorphous form in the Cur/HP-γ-CyD complex in Sac-HGF were observed. In contrast, the curcumin in Sac-HGF and curcumin/HP-γ-CyD physical mixture in Sac-HGF formed inhomogeneous films due to crystallization of curcumin. Furthermore, HP-γ-CyD played an important role to increase the elastic modulus of the Sac-HGF with high re-swelling ability. The Cur/HP-γ-CyD complex in Sac-HGF maintained antioxidant properties of curcumin. Curcumin was gradually released from the HP-γ-CyD complex in Sac-HGF. Notably, the Cur/HP-γ-CyD complex in Sac-HGF provided the highest wound healing ability in hairless mice. These results suggest that the Cur/HP-γ-CyD complex in Sac-HGF has the potential for use as a new transdermal therapeutic system to promote the wound-healing process. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. The Use of a Pressure-Indicating Sensor Film to Provide Feedback upon Hydrogel-Forming Microneedle Array Self-Application In Vivo.

    PubMed

    Vicente-Pérez, Eva M; Quinn, Helen L; McAlister, Emma; O'Neill, Shannon; Hanna, Lezley-Anne; Barry, Johanne G; Donnelly, Ryan F

    2016-12-01

    To evaluate the combination of a pressure-indicating sensor film with hydrogel-forming microneedle arrays, as a method of feedback to confirm MN insertion in vivo. Pilot in vitro insertion studies were conducted using a Texture Analyser to insert MN arrays, coupled with a pressure-indicating sensor film, at varying forces into excised neonatal porcine skin. In vivo studies involved twenty human volunteers, who self-applied two hydrogel-forming MN arrays, one with a pressure-indicating sensor film incorporated and one without. Optical coherence tomography was employed to measure the resulting penetration depth and colorimetric analysis to investigate the associated colour change of the pressure-indicating sensor film. Microneedle insertion was achieved in vitro at three different forces, demonstrating the colour change of the pressure-indicating sensor film upon application of increasing pressure. When self-applied in vivo, there was no significant difference in the microneedle penetration depth resulting from each type of array, with a mean depth of 237 μm recorded. When the pressure-indicating sensor film was present, a colour change occurred upon each application, providing evidence of insertion. For the first time, this study shows how the incorporation of a simple, low-cost pressure-indicating sensor film can indicate microneedle insertion in vitro and in vivo, providing visual feedback to assure the user of correct application. Such a strategy may enhance usability of a microneedle device and, hence, assist in the future translation of the technology to widespread clinical use.

  7. An experimental study of lithium ion battery thermal management using flexible hydrogel films

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Zhang, Sijie; Gu, Junjie; Liu, Jie; Carkner, Steve; Lanoue, Eric

    2014-06-01

    Many portable devices such as soldier carrying devices are powered by low-weight but high-capacity lithium ion (Li-ion) batteries. An effective battery thermal management (BTM) system is required to keep the batteries operating within a desirable temperature range with minimal variations, and thus to guarantee their high efficiency, long lifetime and great safety. However, the rigorous constraints imposed by the budgets in weight and volume for this specific application eliminate the possible consideration of many existing classical cooling approaches and make the development of BTM system very challenging in this field. In this paper, a flexible hydrogel-based BTM system is developed to address this challenge. The proposed BTM system is based on cost-effective sodium polyacrylate and can be arbitrarily shaped and conveniently packed to accommodate any Li-ion stacks. This BTM system is tested through a series of high-intensity discharge and abnormal heat release processes, and its performance is compared with three classical BTM systems. The test results demonstrate that the proposed low-cost, space-saving, and contour-adaptable BTM system is a very economic and efficient approach in handling the thermal surge of Li-ion batteries.

  8. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    SciTech Connect

    Genfa Wu; Anne-Marie Valente; H. Phillips; Haipeng Wang; Andy Wu; T. J. Renk; P Provencio

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV. The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.

  9. Ophthalmic Uses of a Thiol-Modified Hyaluronan-Based Hydrogel

    PubMed Central

    Wirostko, Barbara; Mann, Brenda K.; Williams, David L.; Prestwich, Glenn D.

    2014-01-01

    Significance: Hyaluronic acid (HA, or hyaluronan) is a ubiquitous naturally occurring polysaccharide that plays a role in virtually all tissues in vertebrate organisms. HA-based hydrogels have wound-healing properties, support cell delivery, and can deliver drugs locally. Recent Advances: A few HA hydrogels can be customized for composition, physical form, and biomechanical properties. No clinically approved HA hydrogel allows for in vivo crosslinking on administration, has a tunable gelation time to meet wound-healing needs, or enables drug delivery. Recently, a thiolated carboxymethyl HA (CMHA-S) was developed to produce crosslinked hydrogels, sponges, and thin films. CMHA-S can be crosslinked with a thiol-reactive crosslinker or by oxidative disulfide bond formation to form hydrogels. By controlled crosslinking, the shape and form of this material can be manipulated. These hydrogels can be subsequently lyophilized to form sponges or air-dried to form thin films. CMHA-S films, liquids, and gels have been shown to be effective in vivo for treating various injuries and wounds in the eye in veterinary use, and are in clinical development for human use. Critical Issues: Better clinical therapies are needed to treat ophthalmic injuries. Corneal wounds can be treated using this HA-based crosslinked hydrogel. CMHA-S biomaterials can help heal ocular surface defects, can be formed into a film to deliver drugs for local ocular drug delivery, and could deliver autologous limbal stem cells to treat extreme ocular surface damage associated with limbal stem cell deficiencies. Future Directions: This CMHA-S hydrogel increases the options that could be available for improved ocular wound care, healing, and regenerative medicine. PMID:25371853

  10. [The study of quality characteristics of the hydrogel ointments and films based on copolymers divinyl esters of diethylene glycol].

    PubMed

    Bakirova, R E; Tazhbaeva, E M; Muravleva, L E; Fazylov, S D; Akhmetova, S B

    2014-12-01

    The possibility of using a hydrogel based on divinyl ether co- and terpolymer of diethylene glycol as the backbone polymer for incorporating water-soluble medicinal substances was examined. The character of the influence of emulsifiers, plasticizers, high-boiling liquids and bioactive substances is defined within the changes of physical-chemical properties of obtained hydrogels. The obtained polyelectrolyte hydrogels by their homogeneity, dehydration and rheological characteristics may be of concern in function of matrices to create external prolonged-action dosage forms.

  11. Method of producing solution-derived metal oxide thin films

    SciTech Connect

    Boyle, T.J.; Ingersoll, D.

    2000-07-11

    A method is described for preparing metal oxide thin films by a solution method. A {beta}-metal {beta}-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  12. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  13. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  14. Method to synthesize and produce thin films by spray pyrolysis

    DOEpatents

    Squillante, Michael R.

    1982-06-22

    Forming a film by spraying onto a heated substrate an atomized solution containing the appropriate salt of a constituent element of the film and a highly soluble (i.e., greater than 1 M) organic acid in sufficient amount to reduce the oxidation state of at least one solute element of the spray solution after contacting the heated substrate.

  15. Method to synthesize and produce thin films by spray pyrolysis

    DOEpatents

    Turcotte, Richard L.

    1982-07-06

    Forming a film by spraying onto a heated substrate an atomized solution containing the appropriate salt of a constituent element of the film and a reducing agent at a concentration greater than 1 M and greater than 10 times the stoichiometric amount of reducing agent.

  16. 26 CFR 1.992-4 - Coordination with personal holding company provisions in case of certain produced film rents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... provisions in case of certain produced film rents. 1.992-4 Section 1.992-4 Internal Revenue INTERNAL REVENUE... certain produced film rents. (a) In general. Section 992(d)(2) provides that a personal holding company is..., the term “produced film rents” means payments received with respect to an interest in a film for...

  17. A Study of Bremsstrahlung Produced From Solid Gold Films

    NASA Astrophysics Data System (ADS)

    Williams, Scott; Quarles, C. A.

    2007-06-01

    We report the results of our on-going study of the thickness-dependence of bremsstrahlung from solid gold film targets. The incident electrons' energy is approximately 53 keV, and we have collected data from angles of 90 and 135 degrees. Target thicknesses ranging from 66 μg/cm^2 (where single interaction conditions apply) to more than twice the electron range (where a multiple interaction model applies) were studied. With this data, we can observe the transition from thin to thick film spectra, and compare it to data obtained using the Monte Carlo simulation, PENELOPE. This comparison could reveal whether there is any polarizational bremsstrahlung contribution for solid film targets. We also present results for the absolute doubly-differential cross section for the thin-film targets and compare the results with predictions of both ordinary bremsstrahlung and total bremsstrahlung including a polarizational contribution calculated in the stripping approximation.

  18. High Mesenchymal Stem Cell Seeding Densities in Hyaluronic Acid Hydrogels Produce Engineered Cartilage with Native Tissue Properties

    PubMed Central

    Erickson, Isaac E.; Kestle, Sydney R.; Zellars, Kilief H.; Farrell, Megan J.; Kim, Minwook; Burdick, Jason A.; Mauck, Robert L.

    2012-01-01

    Engineered cartilage based on adult mesenchymal stem cells (MSCs) is an alluring goal for the repair of articular defects. However, efforts to date have failed to generate constructs with sufficient mechanical properties to function in the demanding environment of the joint. Our findings with a novel photocrosslinked hyaluronic acid (HA) hydrogel suggest that stiff gels (high HA concentration, 5% w/vol) foster chondrogenic differentiation and matrix production, but limit overall functional maturation due to the inability of formed matrix to diffuse away from the point of production and form a contiguous network. In the current study, we hypothesized that increasing the MSC seeding density would decrease the required diffusional distance, and so expedite the development of functional properties. To test this hypothesis, bovine MSCs were encapsulated at seeding densities of either 20 or 60 million cells per mL in 1%, 3%, and 5% (w/vol) hyaluronic acid (HA) hydrogels. Counter our hypothesis, higher concentration HA gels (3% and 5%) did not develop more rapidly with increased MSC seeding density. However, the biomechanical properties of low concentration (1%) HA constructs increased markedly (nearly 3-fold with a 3-fold increase in seeding density). To ensure that optimal nutrient access was delivered, we next cultured these constructs under dynamic culture conditions (orbital shaking) for 9 weeks. Under these conditions, 1% HA seeded at 60 million MSCs per mL reached a compressive modulus in excess of 1 MPa (compared to 0.3-0.4MPa for free swelling constructs). This is the highest level we have reported to date in this HA hydrogel system, and represents a significant advance towards functional stem cell-based tissue engineered cartilage. PMID:22546516

  19. Controllable Electrochromic Polyamide Film and Device Produced by Facile Ultrasonic Spray-coating.

    PubMed

    Liu, Huan-Shen; Chang, Wei-Chieh; Chou, Chin-Yen; Pan, Bo-Cheng; Chou, Yi-Shan; Liou, Guey-Sheng; Liu, Cheng-Liang

    2017-09-20

    Thermally stable TPA-OMe polyamide films with high transmittance modulation in response to applied potential are formed by facile ultrasonic spray-coating. Four processing conditions (Film A, Film B, Film C and Film D) through tuning both solution concentrations and deposition temperatures can be utilized for the formation of wet and dry deposited films with two film thickness intervals. The electrochromic results show that the dry deposited rough films at higher deposition temperature generally reveal a faster electrochromic response, lower charge requirements (Q) and less conspicuous color changes (smaller optical density change (ΔOD) and lightness change (ΔL*)) during the oxidation process as compared to the wet deposited smooth films at lower deposition temperature. Moreover, thicker electrochromic films from increased solution concentration exhibit more obvious changes between coloration and bleaching transition. All these four polyamide films display colorless-to-turquoise electrochromic switching with good redox stability. The large scale patterned electrochromic film and its application for assembled device (10 × 10 cm(2) in size) are also produced and reversibly operated for color changes. These represent a major solution-processing technique produced by ultrasonic spray-coating method towards scalable and cost-effective production, allowing more freedoms to facilitate the designed electrochromic devices as required.

  20. α-Amylase sensor based on the degradation of oligosaccharide hydrogel films monitored with a quartz crystal sensor.

    PubMed

    Gibbs, Martin John; Biela, Anna; Krause, Steffi

    2015-05-15

    α-Amylase hydrolyses starch molecules to produce smaller oligosaccharides and sugars. Amylases are of great importance in biotechnology and find application in fermentation, detergents, food and the paper industry. The measurement of α-amylase activity in serum and urine has been used in the diagnosis of acute pancreatitis. Salivary amylase has also been shown to be a stress indicator. Sensor coatings suitable for the detection of α-amylase activity have been developed. Oligosaccharides such as glycogen and amylopectin were spin-coated onto gold coated quartz crystals with a base frequency of 10 MHz. The films were subsequently cross-linked with hexamethylene diisocyanate. Film degradation was monitored with a quartz crystal microbalance (QCM) and electrochemical impedance measurements. The films were shown to be stable in phosphate buffered saline (PBS). Addition of α-amylase to the solution resulted in the rapid degradation of the films. The maximum rate of degradation was found to be strongly dependent on the amylase activity in the range typically found in serum when diagnosing pancreatitis (0.08-8 U/ml). Sensor responses in serum were found to be very similar to those obtained in buffer indicating the absence of non-specific binding. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Producing Radical-Free Hyperpolarized Perfusion Agents for In Vivo Magnetic Resonance Using Spin-Labeled Thermoresponsive Hydrogel.

    PubMed

    Cheng, Tian; Mishkovsky, Mor; Junk, Matthias J N; Münnemann, Kerstin; Comment, Arnaud

    2016-07-01

    Dissolution dynamic nuclear polarization (DNP) provides a way to tremendously improve the sensitivity of nuclear magnetic resonance experiments. Once the spins are hyperpolarized by dissolution DNP, the radicals used as polarizing agents become undesirable since their presence is an additional source of nuclear spin relaxation and their toxicity might be an issue. This study demonstrates the feasibility of preparing a hyperpolarized [1-(13) C]2-methylpropan-2-ol (tert-butanol) solution free of persistent radicals by using spin-labeled thermoresponsive hydrophilic polymer networks as polarizing agents. The hyperpolarized (13) C signal can be detected for up to 5 min before the spins fully relax to their thermal equilibrium. This approach extends the applicability of spin-labeled thermoresponsive hydrogel to the dissolution DNP field and highlights its potential as polarizing agent for preparing neat slowly relaxing contrast agents. The hydrogels are especially suited to hyperpolarize deuterated alcohols which can be used for in vivo perfusion imaging. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Producing CCD imaging sensor with flashed backside metal film

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1988-01-01

    A backside illuminated CCD imaging sensor for reading out image charges from wells of the array of pixels is significantly improved for blue, UV, far UV and low energy x-ray wavelengths (1-5000.ANG.) by so overthinning the backside as to place the depletion edge at the surface and depositing a thin transparent metal film of about 10.ANG. on a native-quality oxide film of less than about 30.ANG. grown on the thinned backside. The metal is selected to have a higher work function than that of the semiconductor to so bend the energy bands (at the interface of the semiconductor material and the oxide film) as to eliminate wells that would otherwise trap minority carriers. A bias voltage may be applied to extend the frontside depletion edge to the interface of the semiconductor material with the oxide film in the event there is not sufficient thinning. This metal film (flash gate), which improves and stabilizes the quantum efficiency of a CCD imaging sensor, will also improve the QE of any p-n junction photodetector.

  3. Method of producing high T(subc) superconducting NBN films

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Lamb, James L. (Inventor); Thakoor, Anilkumar P. (Inventor); Khanna, Satish K. (Inventor)

    1988-01-01

    Thin films of niobium nitride with high superconducting temperature (T sub c) of 15.7 K are deposited on substrates held at room temperature (approx 90 C) by heat sink throughout the sputtering process. Films deposited at P sub Ar 12.9 + or - 0.2 mTorr exhibit higher T sub c with increasing P sub N2,I with the highest T sub c achieved at P sub n2,I= 3.7 + or - 0.2 mTorr and total sputtering pressure P sub tot = 16.6 + or - 0.4. Further increase of N2 injection starts decreasing T sub c.

  4. Voice, Empowerment and Youth-Produced Films about "Gangs"

    ERIC Educational Resources Information Center

    Blum-Ross, Alicia

    2017-01-01

    This article explores the dissonance between the expansive discourses imagined by the advocates for youth media as helping foster "empowerment" and "voice", versus the more circumscribed realities of participatory media production. I focus on a two-part case study--considering both a film-making project for "at risk"…

  5. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes.

    PubMed

    MacAodha, Domhnall; Ó Conghaile, Peter; Egan, Brenda; Kavanagh, Paul; Leech, Dónal

    2013-07-22

    Co-immobilisation of three separate multiple blue copper oxygenases, a Myceliophthora thermophila laccase, a Streptomyces coelicolor laccase and a Myrothecium verrucaria bilirubin oxidase, with an [Os(2,2'-bipyridine)2 (polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of multi-walled carbon nanotubes (MWCNTs) on graphite electrodes results in enzyme electrodes that produce current densities above 0.5 mA cm(-2) for oxygen reduction at an applied potential of 0 V versus Ag/AgCl. Fully enzymatic membraneless fuel cells are assembled with the oxygen-reducing enzyme electrodes connected to glucose-oxidising anodes based on co-immobilisation of glucose oxidase or a flavin adenine dinucleotide-dependent glucose dehydrogenase with an [Os(4,4'-dimethyl-2,2'-bipyridine)2(polyvinylimidazole)10Cl](+/2+) redox polymer in the presence of MWCNTs on graphite electrodes. These fuel cells can produce power densities of up to 145 μW cm(-2) on operation in pH 7.4 phosphate buffer solution at 37 °C containing 150 mM NaCl, 5 mM glucose and 0.12 mM O2. The fuel cells based on Myceliophthora thermophila laccase enzyme electrodes produce the highest power density if combined with glucose oxidase-based anodes. Although the maximum power density of a fuel cell of glucose dehydrogenase and Myceliophthora thermophila laccase enzyme electrodes decreases from 110 μW cm(-2) in buffer to 60 μW cm(-2) on testing in artificial plasma, it provides the highest power output reported to date for a fully enzymatic glucose-oxidising, oxygen-reducing fuel cell in artificial plasma. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Characterization of low-temperature silicon nitride films produced by inductively coupled plasma chemical vapor deposition

    SciTech Connect

    Xu, Q.; Ra, Y.; Bachman, M.; Li, G. P.

    2009-01-15

    Silicon nitride films were synthesized at 170 deg. C by using inductively coupled plasma chemical vapor deposition under three microwave power conditions of 500, 800, and 1000 W. The chemical, physical and electrical properties of the deposited silicon nitride films were characterized by Fourier transform infrared, wet etching, atomic force microscopy, ellipsometry, J-V, and C-V measurements of metal-insulator-semiconductor. The microwave power for film deposition is found to play an important role at the films' properties. A high microwave power reduces the retention of hydrogen in a form of Si-H and N-H atomic bonds. The microwave power significantly affects the density of pin holes; the 800 W film has the lowest density of pin holes. In general, the low-temperature silicon nitride films possess better surface roughness than the conventional silicon nitride films produced at higher temperatures. The low-temperature silicon nitride films exhibit an abrupt breakdown, a characteristic of avalanche breakdown. The variation in breakdown strength is correlated with the change in pin-hole density, and the 800 W silicon nitride film possesses the highest breakdown strength. The microwave power has limited influences on leakage current and resistivity of the films. All the low-temperature silicon nitride films are characterized by high-density fixed charges and interface charge traps, of which both densities vary slightly with the microwave power for film deposition.

  7. Experimental study of the polymer powder film thickness uniformity produced by the corona discharge

    NASA Astrophysics Data System (ADS)

    Fazlyyyakhmatov, Marsel

    2017-01-01

    The results of an experimental study of the polymer powder film thickness uniformity are presented. Polymer powder films are produced by the electrostatic field of corona discharge. Epoxy and epoxy-polyester powder films with thickness in the range of 30-120 microns are studied. Experimentally confirmed possibility of using these coatings as protective matching layer of piezoceramic transducers at frequencies of 0.5-15 MHz.

  8. The Application of Pulsed Laser Deposition in Producing Bioactive Ceramic Films

    NASA Astrophysics Data System (ADS)

    Zhao, Yafan; Chen, Chuanzhong; Wang, Diangang

    Pulsed laser deposition (PLD) is a relatively new technique for producing thin films. It presents unique advantages for the deposition of bioactive ceramics. The mechanism and characteristics of the technique PLD are introduced. Its applications and current research status in hydroxyapatite and bioglass thin films are reviewed. The effect of processing parameters of PLD, including atmosphere, substrate temperature, laser wavelength and target properties, on the structures and the properties of the hydroxyapatite film, is analyzed in detail. Future application trends are also analyzed.

  9. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, M.W.; Strongin, M.; Gao, Y.L.

    1993-11-23

    A method is described for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material. 4 figures.

  10. Method for producing high quality oxide films on substrates

    DOEpatents

    Ruckman, Mark W.; Strongin, Myron; Gao, Yong L.

    1993-01-01

    A method for providing an oxide film of a material on the surface of a substrate using a reactive deposition of the material onto the substrate surface in the presence of a solid or liquid layer of an oxidizing gas. The oxidizing gas is provided on the substrate surface in an amount sufficient to dissipate the latent heat of condensation occurring during deposition as well as creating a favorable oxidizing environment for the material.

  11. Adhesion in hydrogels and model glassy polymers

    NASA Astrophysics Data System (ADS)

    Guvendiren, Murat

    Two main topics are addressed in this dissertation: (1) adhesion in hydrogels; (2) interfacial interactions between model glassy polymers. A self-assembly technique for the formation of hydrogels from acrylic triblock copolymer solutions was developed, based on vapor phase solvent exchange. Structure formation in the gels was characterized by small angle X-ray scattering, and swelling was measured in controlled pH buffer solutions. Strong gels are formed with polymer weight fractions between 0.01 and 0.15, and with shear moduli between 0.6 kPa and 3.5 kPa. Adhesive functionality, based on 3,4-dihydroxy-L-phenylalanine (DOPA) was also incorporated into the triblock copolymers. The effect of DOPA concentration on gel formation and swelling was investigated in detail. The adhesive properties of DOPA-functionalized hydrogels on TiO2 were investigated with an axisymmetric adhesion method. It was shown that the presence of DOPA enhances the adhesive properties of the hydrogels, but that the effect is minimized at pH values below 10, where the DOPA groups are hydrophobic. Thin film membranes were produced in order to study the specific interactions between DOPA and TiO2 and DOPA and tissue, using a membrane inflation method. The presence of DOPA in the membranes enhances the adhesion on TiO 2 and tissue, although adhesion to tissue requires that the DOPA groups be oxidized while in contact with the tissue of interest. Porous hydrogel scaffolds for tissue engineering applications were formed by adding salt crystals to the triblock copolymer solution prior to solvent exchange. Salt was then leached out by immersing the gel into water. Structures of the porous hydrogels were characterized by confocal laser scanning microscopy. These hydrogels were shown to be suitable for tissue regeneration and drug delivery applications. Diffusion-mediated adhesion between two component miscible polymer systems having very different glassy temperatures was also investigated. Axisymmetric

  12. Boundary singularities produced by the motion of soap films.

    PubMed

    Goldstein, Raymond E; McTavish, James; Moffatt, H Keith; Pesci, Adriana I

    2014-06-10

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.

  13. Wet chemical methods for producing mixing crystalline phase ZrO2 thin film

    NASA Astrophysics Data System (ADS)

    Pakma, Osman; Özdemir, Cengiz; Kariper, İ. Afşin; Özaydın, Cihat; Güllü, Ömer

    2016-07-01

    The aim of the study is to develop a more economical and easier method for obtaining ZrO2 thin films at lower temperature, unlike the ones mentioned in the literature. For this purpose, wet chemical synthesis methods have been tested and XRD, UV-VIS and SEM analysis of ZrO2 thin films have been performed. At the end of the analysis, we identified the best method and it has been found that the features of the films produced with this method were better than the films produced by using different reagents, as well as the films reported in the literature. Especially it has been observed that the transmittance of the film produced with this method were higher and better than the films in the literature and the others. In addition, refractive index of the film produced with this method was observed to be lower. Moreover, by using the same method Al/ZrO2/p-Si structure has been obtained and it has been compared with Al/p-Si reference structure in terms of electrical parameters.

  14. Laboratory Produces YBa2Cu3O7-x Superconductive Films

    NASA Technical Reports Server (NTRS)

    Allen, Christine A.; Viens, Michael J.

    1992-01-01

    Vacuum deposition system modified at low cost to produce superconducting thin films in quantities for development of new detector devices. Modification included installation of two additional electrical-resistance-heated sources. Films processed to make sensing elements of infrared-transition-edge bolometers and superconducting-quantum-interference-device (SQUID) junctions for SQUID magnetometer sensors.

  15. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce

    USDA-ARS?s Scientific Manuscript database

    A feasibility study was conducted to develop chlorine dioxide releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amount of PLA (100 & 300 mg), percentage of reactant (5-60...

  16. Thin-film transistors based on p-type Cu{sub 2}O thin films produced at room temperature

    SciTech Connect

    Fortunato, Elvira; Figueiredo, Vitor; Barquinha, Pedro; Elamurugu, Elangovan; Goncalves, Goncalo; Martins, Rodrigo; Park, Sang-Hee Ko; Hwang, Chi-Sun

    2010-05-10

    Copper oxide (Cu{sub 2}O) thin films were used to produce bottom gate p-type transparent thin-film transistors (TFTs). Cu{sub 2}O was deposited by reactive rf magnetron sputtering at room temperature and the films exhibit a polycrystalline structure with a strongest orientation along (111) plane. The TFTs exhibit improved electrical performance such as a field-effect mobility of 3.9 cm{sup 2}/V s and an on/off ratio of 2x10{sup 2}.

  17. Boundary singularities produced by the motion of soap films

    PubMed Central

    Goldstein, Raymond E.; McTavish, James; Moffatt, H. Keith; Pesci, Adriana I.

    2014-01-01

    Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a “neck-pinching” boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck’s geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures. PMID:24843162

  18. Anodic oxidation as a means to produce memristive films.

    PubMed

    Diamanti, Maria Vittoria; Pisoni, Riccardo; Cologni, Andrea; Brenna, Andrea; Corinto, Fernando; Pedeferri, MariaPia

    2016-07-26

    In the past few years there has been growing interest in memristive devices. These devices rely on thin metal oxide films with a peculiar structure and composition, making precise control of oxide features vital. To this end, anodic oxidation allows a very large range of oxides to be formed on the surface of valve metals, whose thickness, structure and functional properties depend on the process parameters introduced. This work reports how memristive anodic oxides were obtained on titanium and other valve metals, such as niobium and tantalum. Anodic oxidation was performed on valve metals by immersion in H2SO4 or H3PO4 electrolytes and application of voltages ranging from 10 to 90 V. The memristive behavior was evaluated by cyclic voltammetry. The behavior of differently grown oxides was compared to identify the best conditions to achieve good memristive performances. High voltages were identified as not suitable due to the excessive oxide thickness, while below 20 V the film was not thick and uniform enough to give a good response. Surface preparation also played a major role in the observation of memristive properties. Optimal surface preparation and anodizing conditions were seen to give high memristive perfomances on both titanium and niobium oxides, while on tantalum oxides no reproducibility was achieved.

  19. A method of producing high quality oxide and related films on surfaces

    NASA Technical Reports Server (NTRS)

    Ruckman, Mark W.; Strongin, Myron; Gao, Yongli

    1991-01-01

    Aluminum oxide or aluminum nitride films were deposited on molecular beam epitaxy (MBE) grown GaAS(100) using a novel cryogenic-based reactive thin film deposition technique. The process involves the condensation of molecular oxygen, ammonia, or other gases normally used for reactive thin film deposition on the substrate before the metal is deposited. The metal vapor is deposited into this layer and reacts with the molecular solid to form the desired compound or a precursor that can be thermally decomposed to generate the desired compound. The films produced by this method are free of impurities, and the low temperatures can be used to control the film and interfacial structure. The process can be easily integrated with existing MBE systems. Ongoing research using the same apparatus suggests that photon or electron irradiation could be used to promote the reactions needed to produce the intended material.

  20. Cluster-assembled Tb-Fe nanostructured films produced by low energy cluster beam deposition.

    PubMed

    Zhao, Shifeng; Bi, Feng; Wan, Jian-Guo; Han, Min; Song, Fengqi; Liu, Jun-Ming; Wang, Guanghou

    2007-07-04

    Cluster-assembled Tb-Fe nanostructured films were prepared by the low energy cluster beam deposition method. The microstructure, magnetization and magnetostriction were investigated for the films. It is shown that the film is assembled by monodisperse spherical nanoparticles with average diameter of ∼30 nm which are distributed uniformly. The cluster-assembled Tb-Fe nanostructured films exhibit good magnetization and possess giant magnetostriction with saturation value of ∼1060 × 10(-6), much higher than that of the common Tb-Fe films. The origin of good magnetization and giant magnetostriction for the cluster-assembled Tb-Fe nanostructured film was discussed. The present work opens a new avenue to produce the nanostructured magnetostrictive alloy in application of a nano-electro-mechanical system.

  1. Large area polysilicon films with predetermined stress characteristics and method for producing same

    NASA Technical Reports Server (NTRS)

    Heuer, Arthur H. (Inventor); Kahn, Harold (Inventor); Yang, Jie (Inventor); Phillips, Stephen M. (Inventor)

    2002-01-01

    Multi-layer assemblies of polysilicon thin films having predetermined stress characteristics and techniques for forming such assemblies are disclosed. In particular, a multi-layer assembly of polysilicon thin films may be produced that has a stress level of zero, or substantially so. The multi-layer assemblies comprise at least one constituent thin film having a tensile stress and at least one constituent thin film having a compressive stress. The thin films forming the multi-layer assemblies may be disposed immediately adjacent to one another without the use of intermediate layers between the thin films. Multi-layer assemblies exhibiting selectively determinable overall bending moments are also disclosed. Selective production of overall bending moments in microstructures enables manufacture of such structures with a wide array of geometrical configurations.

  2. Method of produce ultra-low friction carbon films

    DOEpatents

    Erdemir, Ali; Fenske, George R.; Eryilmaz, Osman Levent; Lee, Richard H.

    2003-04-15

    A method and article of manufacture of amorphous diamond-like carbon. The method involves providing a substrate in a chamber, providing a mixture of a carbon containing gas and hydrogen gas with the mixture adjusted such that the atomic molar ratio of carbon to hydrogen is less than 0.3, including all carbon atoms and all hydrogen atoms in the mixture. A plasma is formed of the mixture and the amorphous diamond-like carbon film is deposited on the substrate. To achieve optimum bonding an intervening bonding layer, such as Si or SiO.sub.2, can be formed from SiH.sub.4 with or without oxidation of the layer formed.

  3. Swelling kinetics of microgels embedded in a polyacrylamide hydrogel matrix.

    PubMed

    Huang, Na; Guan, Ying; Zhu, X X; Zhang, Yongjun

    2014-06-23

    Composite hydrogels--macroscopic hydrogels with embedded microgel particles--are expected to respond to external stimuli quickly because microgels swell much faster than bulky gels. In this work, the kinetics of the pH-induced swelling of a composite hydrogel are studied using turbidity measurements. The embedded microgel is a pH- and thermosensitive poly(N-isopropylacrylamide-co-acrylic acid) microgel and the hydrogel matrix is polyacrylamide. A rapid pH-induced swelling of the embedded microgel particles is observed, confirming that composite hydrogels respond faster than ordinary hydrogels. However, compared with the free microgels, the swelling of the embedded microgel is much slower. Diffusion of OH(-) into the composite hydrogel film is identified as the main reason for the slow swelling of the embedded microgel particles, as the time of the pH-induced swelling of this film is comparable to that of OH(-) diffusion into the film. The composition of the hydrogel matrix does not significantly change the characteristic swelling time of the composite hydrogel film. However, the swelling pattern of the film changes with composition of the hydrogel matrix.

  4. Synthesis and characterization of CrSe thin film produced via chemical bath deposition

    NASA Astrophysics Data System (ADS)

    kariper, Ishak afsin

    2017-02-01

    Chromium selenide (CrSe) crystalline thin film has been produced via chemical bath deposition on substrates (commercial glass). Transmittance, absorption, optical band gap and refractive index of the films have been examined by UV/VIS. Spectrum. Structural properties have been examined and XRD hexagonal form has been observed. The structural and optical properties of CrSe thin films, produced at different pH levels were analyzed; SEM and EDX analysis have been performed for surface analysis and elemental ratio of the films. It has been found that some properties of the films have been changed with pH and the changes of these properties with respect to pH have been investigated. Tested pH values were between 8 and 11. The optical band gap has been varied between 3.80 and 3.92 eV and film thickness has been changed from 76 nm to 126 nm for tested pH levels. Absorbance values were found to be 0.053, 0.018, 0.012 and 0.069 for pH values of 11, 10, 9 and 8, respectively (550 nm wavelength). The refractive index of CrSe thin films have been changed with film thickness, found as 2.27, 2.24, 2.25 and 2.26.

  5. Hydrophobic corn starch thermoplastic films produced by plasma treatment.

    PubMed

    Bastos, Daniele C; Santos, Anastácia E F; da Silva, Monica L V J; Simão, Renata A

    2009-07-01

    Polymer coating technology is currently an important field in science as it can lead to final products with enhanced characteristics characterized by desired bulk and surface properties. Low power plasmas can induce the polymerization of a precursor gas on the substrate surface as well as introduce functional groups under specific plasma conditions. In the present work, we studied the possibility of reducing water sensitivity of corn starch films by sulfur hexafluoride (SF(6)) plasma treatment. Confocal laser microscopy as well as atomic force microscopy was used to observe the main surface modifications and results indicated starch cross-linking. Fluoride was incorporated to the surface and the relationship between fluoride and sulfur incorporation to the surface was very much dependent on plasma power. Results indicate that fluoride could be preferentially incorporated on polymeric surfaces at -100V self-bias and the overall surface morphology determined the measured contact angle. The dynamic behavior of surface contact angle was observed to be very much dependent on the treatment time and force-distance curves were used to further characterize the chemical surface modifications locally. Optimized treatment conditions led to water contact angles up to 130 degrees . Even after being in contact with water for 10min, surfaces remained hydrophobic, presenting contact angles over 100 degrees .

  6. What Makes a Youth-Produced Film Good? The Youth Audience Perspective

    ERIC Educational Resources Information Center

    Halverson, Erica Rosenfeld; Gibbons, Damiana; Copeland, Shelby; Andrews, Alon; Llorens, Belen Hernando; Bass, Michelle B.

    2014-01-01

    In this article, we explore how youth audiences evaluate the quality of youth-produced films. Our interest stems from a dearth of ways to measure the quality of what youth produce in artistic production processes. As a result, making art in formal learning settings devolves into either romanticized creativity or instrumental work to improve skills…

  7. What Makes a Youth-Produced Film Good? The Youth Audience Perspective

    ERIC Educational Resources Information Center

    Halverson, Erica Rosenfeld; Gibbons, Damiana; Copeland, Shelby; Andrews, Alon; Llorens, Belen Hernando; Bass, Michelle B.

    2014-01-01

    In this article, we explore how youth audiences evaluate the quality of youth-produced films. Our interest stems from a dearth of ways to measure the quality of what youth produce in artistic production processes. As a result, making art in formal learning settings devolves into either romanticized creativity or instrumental work to improve skills…

  8. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    DOE PAGES

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; ...

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces butmore » roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.« less

  9. Controlling Internal Organization of Multilayer Poly(methacrylic acid) Hydrogels with Polymer Molecular Weight

    SciTech Connect

    Kozlovskaya, Veronika; Zavgorodnya, Oleksandra; Ankner, John F.; Kharlampieva, Eugenia

    2015-11-16

    Here, we report on tailoring the internal architecture of multilayer-derived poly(methacrylic acid) (PMAA) hydrogels by controlling the molecular weight of poly(N-vinylpyrrolidone) (PVPON) in hydrogen-bonded (PMAA/PVPON) layer-by-layer precursor films. The hydrogels are produced by cross-linking PMAA in the spin-assisted multilayers followed by PVPON release. We found that the thickness, morphology, and architecture of hydrogen-bonded films and the corresponding hydrogels are significantly affected by PVPON chain length. For all systems, an increase in PVPON molecular weight from Mw = 2.5 to 1300 kDa resulted in increased total film thickness. We also show that increasing polymer Mw smooths the hydrogen-bonded film surfaces but roughens those of the hydrogels. Using deuterated dPMAA marker layers in neutron reflectometry measurements, we found that hydrogen-bonded films reveal a high degree of stratification which is preserved in the cross-linked films. We observed dPMAA to be distributed more widely in the hydrogen-bonded films prepared with small Mw PVPON due to the greater mobility of short-chain PVPON. Furthermore, these variations in the distribution of PMAA are erased after cross-linking, resulting in a distribution of dPMAA over about two bilayers for all Mw but being somewhat more widely distributed in the films templated with higher Mw PVPON. Finally, our results yield new insights into controlling the organization of nanostructured polymer networks using polymer molecular weight and open opportunities for fabrication of thin films with well-organized architecture and controllable function.

  10. Nanoemulsion Thermoreversible Pluronic F127-Based Hydrogel Containing Hyptis pectinata (Lamiaceae) Leaf Essential Oil Produced a Lasting Anti-hyperalgesic Effect in Chronic Noninflammatory Widespread Pain in Mice.

    PubMed

    Quintans-Júnior, Lucindo J; Brito, Renan G; Quintans, Jullyana S S; Santos, Priscila L; Camargo, Zaine T; Barreto, Péricles A; Arrigoni-Blank, Maria F; Lucca-Júnior, Waldecy; Scotti, Luciana; Scotti, Marcus T; Kolker, Sandra J; Sluka, Kathleen A

    2017-02-13

    We evaluated if a nanostructured thermoreversible Pluronic F127-based hydrogel incorporated with Hyptis pectinata leaf essential oil (NE-EOH) produces a long-lasting anti-hyperalgesic effect on chronic muscle pain in an animal model. We induced chronic muscle pain by injecting the gastrocnemius with saline injections. Paw and muscle withdrawal thresholds and motor performance were evaluated after treatment and compared with morphine, diazepam, or vehicle. Naloxone and methysergide administration tested the involvement of opioid and serotonin receptors, respectively. Sites of action in the central nervous system for the NE-EOH were examined by measuring substance P (SP) levels in the spinal cord and Fos protein in the brainstem. NE-EOH increased paw and muscle withdrawal thresholds when compared with vehicle but had no effect on motor function. This analgesic effect was reversed by both naloxone and methysergide. NE-EOH decreased elevated substance P levels and reduced Fos-labeled neurons in the spinal cord and increased the number of Fos-labeled neurons in the periaqueductal gray (PAG), nucleus raphe magnus (NRM), and locus coeruleus (LC). NE-EOH was shown to produce a lasting anti-hyperalgesic effect. It uses opioid and serotonin receptors, activates brainstem inhibitory pathways, and reduces the release of excitatory neurotransmitters in the spinal cord and is a substance with potential to be used in the treatment of noninflammatory pain conditions. Graphical Abstract.

  11. Films.

    ERIC Educational Resources Information Center

    Philadelphia Board of Education, PA. Div. of Instructional Materials.

    The Affective Curriculum Research Project produced five films and two records during a series of experimental summer programs. The films and records form part of a curriculum designed to teach to the concerns of students. The films were an effort to describe the Philadelphia Cooperative Schools Program, to explain its importance, and to…

  12. High Curie temperature Mn5Ge3 thin films produced by non-diffusive reaction

    NASA Astrophysics Data System (ADS)

    Assaf, E.; Portavoce, A.; Hoummada, K.; Bertoglio, M.; Bertaina, S.

    2017-02-01

    Polycrystalline Mn5Ge3 thin films were produced on SiO2 using magnetron sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ X-ray diffraction and atomic force microscopy were used to determine the layer structures, and magnetic force microscopy, superconducting quantum interference device, and ferromagnetic resonance were used to determine their magnetic properties. RD-mediated layers exhibit similar magnetic properties as molecular beam epitaxy-grown monocrystalline Mn5Ge3 thin films, while NDR-mediated layers show magnetic properties similar to monocrystalline C-doped Mn5Ge3Cx thin films with 0.1 ≤ x ≤ 0.2. NDR appears as a complementary metal oxide semi-conductor-compatible efficient method to produce good magnetic quality high-Curie temperature Mn5Ge3 thin films.

  13. Fabrication of keratin-silica hydrogel for biomedical applications.

    PubMed

    Kakkar, Prachi; Madhan, Balaraman

    2016-09-01

    In the recent past, keratin has been fabricated into different forms of biomaterials like scaffold, gel, sponge, film etc. In lieu of the myriad advantages of the hydrogels for biomedical applications, a keratin-silica hydrogel was fabricated using tetraethyl orthosilicate (TEOS). Textural analysis shed light on the physical properties of the fabricated hydrogel, inturn enabling the optimization of the hydrogel. The optimized keratin-silica hydrogel was found to exhibit instant springiness, optimum hardness, with ease of spreadability. Moreover, the hydrogel showed excellent swelling with highly porous microarchitecture. MTT assay and DAPI staining revealed that keratin-silica hydrogel was biocompatible with fibroblast cells. Collectively, these properties make the fabricated keratin-silica hydrogel, a suitable dressing material for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Optical and structural properties of PbI2 thin film produced via chemical dipping method

    NASA Astrophysics Data System (ADS)

    Kariper, İ. A.

    2016-06-01

    PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV-VIS; optical spectrum of the thin films was measured at the range of 200-1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4-5. It has been observed that transmission and optical band gap ( E g) increased with the pH of the bath, which varied between 66-95 and 2.24-2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.

  15. Microstructure of metastable metallic alloy films produced by laser breakdown chemical vapor deposition and ion implantation

    SciTech Connect

    Menon, S.K.; Jervis, T.R.; Nastasi, M.

    1986-01-01

    Thin films produced by laser breakdown chemical vapor deposition from nickel and iron carbonyls and by implanting Ni foils with varying levels of C have been characterized by transmission electron microscopy. Decomposition of Ni(CO)/sub 4/ produces polycrystalline films of fcc Ni and metastable ordered hexagonal Ni/sub 3/C. This metastable phase is identical to that produced by gas carburization, rapid solidification of Ni-C melts, and ion implantation of C into Ni at low concentrations. Increasing the H/sub 2/ content in the gas mixture during laser deposition reduces the grain size of the films significantly with grain sizes smaller than 10 nanometers produced. Laser decomposition of Fe(CO)/sub 5/ produces films with islands of fcc gamma-Fe and finely dispersed metastable Fe/sub 3/C (Cementite). In addition, the ferrous oxides Fe/sub 2/O/sub 3/ and Fe/sub 3/O/sub 4/ were found in these samples. Implants of C into pure Ni foils at 77/sup 0/K and at a concentration of 35 at. % produced amorphous layers. Implants at the same dose at room temperature did not produce amorphous layers.

  16. Use of aluminum oxide as a permeation barrier for producing thin films on aluminum substrates

    SciTech Connect

    Provo, James L.

    2016-07-15

    Aluminum has desirable characteristics of good thermal properties, good electrical characteristics, good optical properties, and the characteristic of being nonmagnetic and having a low atomic weight (26.98 g atoms), but because of its low melting point (660 °C) and ability as a reactive metal to alloy with most common metals in use, it has been ignored as a substrate material for use in processing thin films. The author developed a simple solution to this problem, by putting a permeation barrier of alumina (Al{sub 2}O{sub 3}) onto the surface of pure Al substrates by using a standard chemical oxidation process of the surface (i.e., anodization), before additional film deposition of reactive metals at temperatures up to 500 °C for 1-h, without the formation of alloys or intermetallic compounds to affect the good properties of Al substrates. The chromic acid anodization process used (MIL-A-8625) produced a film barrier of ∼(500–1000) nm of alumina. The fact that refractory Al{sub 2}O{sub 3} can inhibit the reaction of metals with Al at temperatures below 500 °C suggests that Al is a satisfactory substrate if properly oxidized prior to film deposition. To prove this concept, thin film samples of Cr, Mo, Er, Sc, Ti, and Zr were prepared on anodized Al substrates and studied by x-ray diffraction, Rutherford ion back scattering, and Auger/argon sputter surface profile analysis to determine any film substrate interactions. In addition, a major purpose of our study was to determine if ErD{sub 2} thin films could be produced on Al substrates with fully hydrided Er films. Thus, a thin film of ErD{sub 2} on an anodized Al substrate was prepared and studied, with and without the alumina permeation barrier. Films for study were prepared on 1.27 cm diameter Al substrates with ∼500 nm of the metals studied after anodization. Substrates were weighed, cleaned, and vacuum fired at 500 °C prior to use. The Al substrates were deposited using standard electron

  17. Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension.

    PubMed

    Stevens, Bart; Guin, Tyler; Sarwar, Owais; John, Alyssa; Paton, Keith R; Coleman, Jonathan N; Grunlan, Jaime C

    2016-09-27

    Rapid, large-scale exfoliation of graphene in water has expanded its potential for use outside niche applications. This work focuses on utilizing aqueous graphene dispersions to form thin films using layer-by-layer processing, which is an effective method to produce large-area coatings from water-based solutions of polyelectrolytes. When layered with polyethyleneimine, graphene flakes stabilized with cholate are shown to be capable of producing films thinner than 100 nm. High surface coverage of graphene flakes results in electrical conductivity up to 5500 S m(-1) . With the relative ease of processing, the safe, cost effective nature of the ingredients, and the scalability of the deposition method, this system should be industrially attractive for producing thin conductive films for a variety of electronic and antistatic applications.

  18. Enzyme-sensing chitosan hydrogels.

    PubMed

    Sadat Ebrahimi, Mir Morteza; Schönherr, Holger

    2014-07-08

    We report on a chitosan hydrogel-based platform for the detection of enzymes, which is compatible with the implementation in infection-sensing wound dressings. Thin films of the established wound dressing biopolymer chitosan were functionalized with a fluorogenic substrate, which is released upon enzymatic degradation, resulting in a pronounced increase in fluorescence emission intensity. In this first model study, the fluorogenic substrate alanyl-alanyl-phenylalanine-7-amido-4-methylcoumarin (AAP-AMC) was covalently conjugated via amide bond formation to chitosan and was shown to facilitate the detection of the serine protease α-chymotrypsin. Systematic investigations established the dependence of hydrogel thickness and substrate loading on the hydrogel preparation conditions, as well as the dependence of the rate of the reaction on the initial enzyme concentration and the loading of AAP-AMC in the hydrogel. The initial release rate of the fluorophore 7-AMC was found to be linear with enzyme concentration and substrate loading and was independent of hydrogel thickness. Under optimized conditions the hydrogel reports the presence of α-chymotrypsin in <5 min with a limit of detection of ≤10 nM. This generic approach, which can be adapted to detect different kinds of enzymes by using appropriate fluorogenic or chromogenic substrates, is highly interesting for targeting the detection of specific pathogenic bacteria, e.g., in wound dressings.

  19. Edible films based on cassava starch and fructooligosaccharides produced by Bacillus subtilis natto CCT 7712.

    PubMed

    Bersaneti, Gabrielly Terassi; Mantovan, Janaina; Magri, Agnes; Mali, Suzana; Celligoi, Maria Antonia Pedrine Colabone

    2016-10-20

    The objectives of this work were to produce fructooligosaccharides (FOSs) by using the microorganism Bacillus subtilis natto CCT 7712 and to employ these FOSs as a functional ingredient in cassava starch edible films, which were characterized according to their microstructure, mechanical and barrier properties. The produced FOSs could be easily dissolved, resulting in homogeneous filmogenic solutions, which were easily manipulated to obtain films by casting. FOSs were added in different concentrations (0, 1, 5 and 10g/100g solids), and glycerol was used as a plasticizer (20g/100g solids). All formulations resulted in films that had a good appearance and were easily removable from the plates without bubbles or cracks. The FOSs exerted a plasticizing effect on the starch films and decreased their glass transition temperature. The addition of FOSs resulted in higher solubility and elongation and a decreased water vapor permeability of the films. FOSs were shown to be a promising ingredient for use in edible starch films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Study on calcination of bi-layered films produced by anodizing iron in dimethyl sulfoxide electrolyte

    NASA Astrophysics Data System (ADS)

    Jagminas, Arūnas; Klimas, Vaclovas; Mažeika, Kęstutis; Mickevičius, Sigitas; Balakauskas, Saulius

    2012-01-01

    Research on well adherent, thick and nanoporous oxide film formation onto the metal substrates underwent a major burst throughout the last decade. In the current study, thick bi-layered films produced onto a pure iron surface by anodizing way in dimethyl sulfoxide (DMSO) electrolyte containing silica hexafluoride acid have been investigated upon the annealing in air. Compositional, phase and structural transformations of the film material to hematite, α-Fe2O3, were studied using Mössbauer spectroscopy at room to cryogenic temperatures, thermogravimetry (TG), differential thermal analysis (DTA), photoemission spectroscopy, scanning electron microscopy (SEM), and wave dispersive X-ray spectroscopy (WDX). Experimental findings indicated that much longer heating in air is required for these films to be fully transformed to hematite. This effect is linked here with the complex nature of DMSO films. Based on the combined WDX, photoemission and Mössbauer spectroscopy results, the transformations taken place during calcination of such amorphous films by heat-treatment in air to crystalline hematite have been determined. Investigations on the calcination effects of thick iron anodic films reported here offer opportunities for both fundamental research and practical applications.

  1. Effects of artificially produced defects on film thickness distribution in sliding EHD point contacts

    NASA Technical Reports Server (NTRS)

    Cusano, C.; Wedeven, L. D.

    1981-01-01

    The effects of artificially produced dents and grooves on the elastohydrodynamic (EHD) film thickness profile in a sliding point contact were investigated by means of optical interferometry. The defects, formed on the surface of a highly polished ball, were held stationary at various locations within and in the vicinity of the contact region while the disk was rotating. It is shown that the defects, having a geometry similar to what can be expected in practice, can dramatically change the film thickness which exists when no defects are present in or near the contact. This change in film thickness is mainly a function of the position of the defects in the inlet region, the geometry of the defects, the orientation of the defects in the case of grooves, and the depth of the defect relative to the central film thickness.

  2. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    PubMed Central

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-01-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles. PMID:25228324

  3. Research of niobium thin films with a predetermined thickness produced by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Polonyankin, D. A.; Blesman, A. I.; Postnikov, D. V.; Logacheva, A. I.; Logachev, I. A.; Teplouhov, A. A.; Fedorov, A. A.

    2017-01-01

    Niobium and niobium thin films are widely used in various fields of modern science and technology: in the electronics industry, in a nuclear medical imaging technique, in the information technology, in superconducting cavities technology etc. The grain size of thin niobium films depends on its thickness and the film’s stoichiometry can be varied as a function of thickness. Thus the problem of thickness control has a great practical importance in all fields of niobium films application. The focus of this study was to perform an experimental calibration of STC–2000A deposition controller for niobium target on ADVAVAC VSM–200 setup and to conduct a grain size, roughness and stoichiometry research by scanning electron microscopy, X–ray diffraction and laser interference microscopy of niobium films produced by RF magnetron sputtering with the thickness range from 200 nm to 400 nm and 50 nm step.

  4. Nickel oxide nanoparticles film produced by dead biomass of filamentous fungus

    NASA Astrophysics Data System (ADS)

    Salvadori, Marcia Regina; Nascimento, Cláudio Augusto Oller; Corrêa, Benedito

    2014-09-01

    The synthesis of nickel oxide nanoparticles in film form using dead biomass of the filamentous fungus Aspergillus aculeatus as reducing agent represents an environmentally friendly nanotechnological innovation. The optimal conditions and the capacity of dead biomass to uptake and produce nanoparticles were evaluated by analyzing the biosorption of nickel by the fungus. The structural characteristics of the film-forming nickel oxide nanoparticles were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and atomic force microscopy (AFM). These techniques showed that the nickel oxide nanoparticles had a size of about 5.89 nm and were involved in a protein matrix which probably permitted their organization in film form. The production and uptake of nickel oxide nanoparticles organized in film form by dead fungal biomass bring us closer to sustainable strategies for the biosynthesis of metal oxide nanoparticles.

  5. Lysozyme adsorption in pH-responsive hydrogel thin-films: the non-trivial role of acid-base equilibrium.

    PubMed

    Narambuena, Claudio F; Longo, Gabriel S; Szleifer, Igal

    2015-09-07

    We develop and apply a molecular theory to study the adsorption of lysozyme on weak polyacid hydrogel films. The theory explicitly accounts for the conformation of the network, the structure of the proteins, the size and shape of all the molecular species, their interactions as well as the chemical equilibrium of each titratable unit of both the protein and the polymer network. The driving forces for adsorption are the electrostatic attractions between the negatively charged network and the positively charged protein. The adsorption is a non-monotonic function of the solution pH, with a maximum in the region between pH 8 and 9 depending on the salt concentration of the solution. The non-monotonic adsorption is the result of increasing negative charge of the network with pH, while the positive charge of the protein decreases. At low pH the network is roughly electroneutral, while at sufficiently high pH the protein is negatively charged. Upon adsorption, the acid-base equilibrium of the different amino acids of the protein shifts in a nontrivial fashion that depends critically on the particular kind of residue and solution composition. Thus, the proteins regulate their charge and enhance adsorption under a wide range of conditions. In particular, adsorption is predicted above the protein isoelectric point where both the solution lysozyme and the polymer network are negatively charged. This behavior occurs because the pH in the interior of the gel is significantly lower than that in the bulk solution and it is also regulated by the adsorption of the protein in order to optimize protein-gel interactions. Under high pH conditions we predict that the protein changes its charge from negative in the solution to positive within the gel. The change occurs within a few nanometers at the interface of the hydrogel film. Our predictions show the non-trivial interplay between acid-base equilibrium, physical interactions and molecular organization under nanoconfined conditions

  6. Electrospun fiber and cast films produced using zein blends with nylon-6

    USDA-ARS?s Scientific Manuscript database

    Blends of zein and nylon-6 (55k) were used to produce electrospun fibers and solution cast films. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measureme...

  7. Electrospun fiber and cast films produced using zein blends with nylon-6

    USDA-ARS?s Scientific Manuscript database

    Blends of zein and nylon-6 (55k) were used to produce electrospun fibers and solution cast films. Zein was blended with nylon-6 in formic acid solution. When the amount of nylon-6 was 8% or less a compatible blend formed. The blend was determined to be compatible based on physical property measureme...

  8. METHOD FOR PRODUCING WETTABLE SURFACES ON CONTACT LENSES BY CHEMICAL FORMATION OF INORGANIC FILMS

    DTIC Science & Technology

    Wettable surfaces of a permanent nature can be produced on contact lenses by means of the technic of chemical deposition of an inorganic film on the...immersion resistance. Stepwise instructions are given for the preparation of hydrophilic surfaces on contact lenses . The equipment developed for this work is relatively simple and inexpensive. (Author)...lens surface. The process is simpler, both in apparatus and procedure, than the vacuum deposition technic designed earlier for producing wettable

  9. Distribution of Films. Guide For Student Film Makers; Information On Financing, Producing and Distributing Films Independently. Number Three.

    ERIC Educational Resources Information Center

    Prokosch, Mike

    Six major topics relating to film distribution are discussed in this last of a series of three articles. The first topic deals with contracts, including matters such as the possession of the original material, the production of prints, granting of rights, advance payments and income percentages, legal advice, breach of contract and liability.…

  10. Intermediate crystalline states produced by isothermal annealing of sputter-deposited a-Si films

    NASA Astrophysics Data System (ADS)

    Akazawa, Housei

    2005-02-01

    The crystalline states produced by isothermally annealing sputter-deposited hydrogen-free amorphous-Si (a-Si) films greatly differ from those of a-Si :H films. Strained network and numerous vacancies in the a-Si film are indicated by the ⟨ɛ2⟩ spectrum. Annealing the sample at temperatures between 300 and 550°C relaxes the strained network due to local exchanges of Si-Si bond while maintaining the amorphous state. Self-assembly of hemispherical grains of microcrystalline Si on the film surface occurs during the onset of crystallization (600°C ). At a slightly elevated temperature of 690°C, the cohesion of Si atoms in the film creates nanocrystalline Si (2-nm diameter), which directly corresponds to the emergence of the absorption peak feature below 3eV in the ⟨ɛ2⟩ spectrum. Dense voids at the interfacial region severely limit the range of solid phase epitaxy, thus facilitating preferential nucleation in the film.

  11. Smoothness improvement of micrometer- and submicrometer-thick nanocrystalline diamond films produced by MWPECVD

    NASA Astrophysics Data System (ADS)

    Cicala, G.; Magaletti, V.; Senesi, G. S.; Tamborra, M.

    2013-04-01

    Thick (around 3 μm) and thin (48-310 nm) nanocrystalline diamond (NCD) films have been produced from Ar-rich CH4/Ar/H2 (1/89/10 %) and H2-rich CH4/H2 (1/99 %) microwave plasmas, respectively. The deposition rate and the nucleation enhancement have been monitored in situ and in real time by pyrometric and laser reflectance interferometry for micrometer- and nanometer-thick films. For thick films, an improvement of the NCD films' smoothness has been obtained by a buffer layer between the films and the treated Si substrate. For thin films, a combinatorial approach, i.e., a treatment of the Si substrate in a suspension of mixed diamond powders of 250 nm and 40-60 μm, has been utilized. The present experimental results show that the buffer layer procedure allows good preservation of the surface of the treated Si substrate and the combinatorial approach promotes effectively the seeding of the Si surface.

  12. Change in planar hall effect ratio of Ni-Co films produced by electrodeposition

    NASA Astrophysics Data System (ADS)

    Karpuz, Ali; Kockar, Hakan; Alper, Mursel

    2015-01-01

    Ni-Co films were produced by the electrodeposition technique and their magnetotransport properties were studied. The anisotropic magnetoresistance (AMR) and the planar Hall effect (PHE) ratios were found using the van der Pauw setup at room temperature. It was observed that the PHE ratios were larger than the obtained AMR ratios. While the maximum changes in longitudinal and transversal magnetoresistance ratios were 6.8% and 11.0%, respectively, the change in PHE values was up to 500%. In the PHE measurements, the magnetoresistance orientation depends on the electrical resistance values which occur in branches of the films.

  13. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  14. Comparison of tobacco and alcohol use in films produced in Europe, Latin America, and the United States.

    PubMed

    Barrientos-Gutierrez, Inti; Kollath-Cattano, Christy; Mejía, Raul; Arillo-Santillán, Edna; Hanewinkel, Reiner; Morgenstern, Matthis; Sargent, James D; Thrasher, James F

    2015-11-03

    Studies that have evaluated tobacco and alcohol portrayals in films have mainly focused on US films. Our aim is to describe tobacco and alcohol portrayals in nationally produced films from six European and two Latin American countries, and compare them with US produced films. A sample of 337 nationally produced and 502 US produced films, consisting of top grossing films from 2004 to 2009 in each country, was content coded for presence of tobacco or alcohol and seconds of tobacco or alcohol use. Logistic and linear regression models were estimated for all films and youth-rated films (Ages 0-14) to assess cross country differences in tobacco and alcohol content, with US films as the reference category. Domestically produced films from several countries were more likely than US films to contain any tobacco use both overall (Iceland (OR = 9.29, CI: 1.22-70.89), Italy (OR = 3.58, CI: 1.72-7.43), Argentina (OR = 5.06, CI: 2.13-12.03), Mexico (OR = 4.87, CI: 2.17-10.90)) and for youth-rated films (Germany (OR = 2.24, CI: 1.21-4.16), Iceland (OR = 13.79, CI: 1.80-105.5), Italy (OR = 5.31, CI: 2.54-11.1), and Argentina (OR = 6.9, CI: 0.88-1.34)). Models for alcohol showed few differences compared to US, regardless of rating. Linear regression models for seconds of use in films with tobacco indicated that only Argentine films had more seconds of smoking than US films, regardless of the rating category. For films with alcohol use, Mexican films had higher seconds of alcohol use than US films. Smoking was more commonly depicted in films produced outside the US, however there were few differences in the means for smoking screen time in films that contained smoking. This may be partly explained by the prohibition of tobacco product placement in the US. Countries should consider banning paid placement of both products and eliminating subsidies for films with content that promotes tobacco and alcohol use.

  15. Portrayals of character smoking and drinking in Argentine-, Mexican- and US-produced films.

    PubMed

    Kollath-Cattano, Christy; Abad-Vivero, Erika N; Mejia, Raul; Perez-Hernandez, Rosaura; Sargent, James D; Thrasher, James F

    2016-09-01

    The aim of this study was to assess film character portrayals of tobacco and alcohol use in US and nationally-produced films that were popular in Argentina and Mexico from 2004-2012. We performed a content analysis of these films (n=82 Argentine, 91 Mexican, and 908 US films, respectively). Chi-squares and t-tests were used to compare characteristics of characters who smoked or drank by country of movie production. Then data from all countries were pooled, and generalized estimating equation (GEE) models were used to determine independent correlates of character smoking or drinking. There were 480 major characters for Argentine-, 364 for Mexican-, and 4962 for US-produced films. Smoking prevalence among movie characters was similar to population smoking prevalence in Mexico (21%) and Argentina (26%), but about half in the US (11%), where movie product placements are restricted. Movie smoking declined over the period in all three countries. Movie alcohol prevalence was 40-50% across all countries and did not change with time. Demographic predictors of character smoking included: being male, 18 and older, having negative character valence. Movie smoking was not associated with lower SES. Predictors of character drinking included: being age 18 and older and positive character valence. Smoking and drinking predicted each other, illicit drug use, and higher scores for other risk behaviors. This suggests that policy development in Mexico and Argentina may be necessary to reduce the amount of character tobacco and alcohol use in films. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. The feasibility of producing MWCNT paper and strong MWCNT film from VACNT array

    NASA Astrophysics Data System (ADS)

    Xu, Guanghui; Zhang, Qiang; Zhou, Weiping; Huang, Jiaqi; Wei, Fei

    2008-08-01

    This study sought to produce carbon nanotube (CNT) pulp out of extremely long, vertically aligned CNT arrays as raw materials. After high-speed shearing and mixing nitric acid and sulfuric acid, which served as the treatment, the researchers produced the desired pulp, which was further transformed into CNT paper by a common filtration process. The paper’s tensile strength, Young’s modulus and electrical conductivity were 7.5 MPa, 785 MPa and 1.0×104 S/m, respectively, when the temperature of the acid treatment was at 110°C. Apart from this, the researchers also improved the mechanical property of CNT paper by polymers. The CNT paper was soaked in polyethylene oxide, polyvinyl pyrrolidone, and polyvinyl alcohol (PVA) solution, eventually making the CNT/PVA film show its mechanical properties, which increased, while its electrical conductivity decreased. To diffuse the polymer into the CNT paper thoroughly, the researchers used vacuum filtration to fabricate a CNT/PVA film by penetrating PVA into the CNT paper. After a ten-hour filtration, the tensile strength and Young’s modulus of CNT/PVA film were 96.1 MPa and 6.23 GPa, respectively, which show an increase by factors of 12 and 7, respectively, although the material’s electrical conductivity was lowered to 0.16×104 S/m.

  17. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C.E.; Benson, D.K.; Ruth, M.R.

    1985-08-16

    A method of synthesizing a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  18. DIRECTOR/PRODUCER ROBERT ZEMECKIS DURING FILMING OF 'CONTACT' AT LC39 PRESS SITE

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Robert Zemeckis, director/producer, and other Warner Bros. crew members oversee the filming of scenes for the movie 'Contact' at Kennedy Space Center's Launch Complex 39 Press Site on January 30. The screenplay for 'Contact' is based on the best-selling novel by the late astronomer Carl Sagan. The cast includes Jodie Foster, Matthew McConaughey, John Hurt, James Woods, Tom Skerritt, David Morse, William Fichtner, Rob Lowe and Angela Bassett. Described by Warner Bros. as a science fiction drama, 'Contact' will depict humankind's first encounter with evidence of extraterrestrial life.

  19. DIRECTOR/PRODUCER ROBERT ZEMECKIS DURING FILMING OF 'CONTACT' AT LC39 PRESS SITE

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Robert Zemeckis, director/producer, and other Warner Bros. crew members oversee the filming of scenes for the movie 'Contact' at Kennedy Space Center's Launch Complex 39 Press Site on January 30. The screenplay for 'Contact' is based on the best-selling novel by the late astronomer Carl Sagan. The cast includes Jodie Foster, Matthew McConaughey, John Hurt, James Woods, Tom Skerritt, David Morse, William Fichtner, Rob Lowe and Angela Bassett. Described by Warner Bros. as a science fiction drama, 'Contact' will depict humankind's first encounter with evidence of extraterrestrial life.

  20. Educational Films: Writing, Directing, and Producing for Classroom, Television, and Industry.

    ERIC Educational Resources Information Center

    Herman, Lewis

    Intended for beginning and nonprofessional film makers interested in making the educational film, this book explains the technical aspects of film making, the roles of the specialists responsible for it, the types of film treatments (expository, narrative, and dramatic), and the various types of educational films. Some of the technical aspects…

  1. Educational Films: Writing, Directing, and Producing for Classroom, Television, and Industry.

    ERIC Educational Resources Information Center

    Herman, Lewis

    Intended for beginning and nonprofessional film makers interested in making the educational film, this book explains the technical aspects of film making, the roles of the specialists responsible for it, the types of film treatments (expository, narrative, and dramatic), and the various types of educational films. Some of the technical aspects…

  2. Combinatorial plasma polymerization approach to produce thin films for testing cell proliferation.

    PubMed

    Antonini, V; Torrengo, S; Marocchi, L; Minati, L; Dalla Serra, M; Bao, G; Speranza, G

    2014-01-01

    Plasma enhanced physical vapor depositions are extensively used to fabricate substrates for cell culture applications. One peculiarity of the plasma processes is the possibility to deposit thin films with reproducible chemical and physical properties. In the present work, a combinatorial plasma polymerization process was used to deposit thin carbon based films to promote cell adhesion, in the interest of testing cell proliferation as a function of the substrate chemical properties. Peculiarity of the combinatorial approach is the possibility to produce in just one deposition experiment, a set of surfaces of varying chemical moieties by changing the precursor composition. A full characterization of the chemical, physical and thermodynamic properties was performed for each set of the synthesized surfaces. X-ray photoelectron spectroscopy was used to measure the concentration of carboxyl, hydroxyl and amine functional groups on the substrate surfaces. A perfect linear trend between polar groups' density and precursors' concentration was found. Further analyses reveled that also contact angles and the correspondent surface energies of all deposited thin films are linearly dependent on the precursor concentration. To test the influence of the surface composition on the cell adhesion and proliferation, two cancer cell lines were utilized. The cell viability was assessed after 24 h and 48 h of cell culture. Experiments show that we are able to control the cell adhesion and proliferation by properly changing the thin film deposition conditions i.e. the concentration and the kind of chemical moiety on the substrate surface. The results also highlight that physical and chemical factors of biomaterial surface, including surface hydrophobicity and free energy, chemical composition, and topography, can altered cell attachment.

  3. Structural properties of ZnO:Al films produced by the sol–gel technique

    SciTech Connect

    Zaretskaya, E. P. Gremenok, V. F.; Semchenko, A. V.; Sidsky, V. V.; Juskenas, R. L.

    2015-10-15

    ZnO:Al films are produced by sol–gel deposition at temperatures of 350–550°C, using different types of reagents. Atomic-force microscopy, X-ray diffraction analysis, Raman spectroscopy, and optical transmittance measurements are used to study the dependence of the structural, morphological, and optical properties of the ZnO:Al coatings on the conditions of deposition. The optical conditions for the production of ZnO:Al layers with preferred orientation in the [001] direction and distinguished by small surface roughness are established. The layers produced in the study possess optical transmittance at a level of up to 95% in a wide spectral range and can be used in optoelectronic devices.

  4. Dynamic mask for producing uniform or graded-thickness thin films

    DOEpatents

    Folta, James A.

    2006-06-13

    A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.

  5. [Hydrogels in medicine. Origin and clinical use].

    PubMed

    Pajewski, L A; Pantaleoni, G C; Rosiak, J

    1994-11-01

    Hydrogels are a new revolutionary method used to dress wounds without using gauzes and cotton wool. Our hydrogels were produced by irradiation and are perfectly sterile and biocompatible. The innovation of this topical treatment permits direct contact of hydrogels on wounds and results in complete repair of wounds and ulcers that do not heal easily. The fundamental advantage are: disappearance of local pain, very good protection of wounds, easy removal of necrotic tissue, total adhesion on wounds and simple removal without pain, faster tissue repair.

  6. Tribocorrosion behavior of biofunctional titanium oxide films produced by micro-arc oxidation: Synergism and mechanisms.

    PubMed

    Marques, Isabella da Silva Vieira; Alfaro, Maria Fernanda; Cruz, Nilson Cristino da; Mesquita, Marcelo Ferraz; Takoudis, Christos; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim Adelino Ricardo

    2016-07-01

    Dental implants, inserted into the oral cavity, are subjected to a synergistic interaction of wear and corrosion (tribocorrosion), which may lead to implant failures. The objective of this study was to investigate the tribocorrosion behavior of Ti oxide films produced by micro-arc oxidation (MAO) under oral environment simulation. MAO was conducted under different conditions as electrolyte composition: Ca/P (0.3M/0.02M or 0.1M/0.03M) incorporated with/without Ag (0.62g/L) or Si (0.04M); and treatment duration (5 and 10min). Non-coated and sandblasted samples were used as controls. The surfaces morphology, topography and chemical composition were assessed to understand surface properties. ANOVA and Tukey׳s HSD tests were used (α=0.05). Biofunctional porous oxide layers were obtained. Higher Ca/P produced larger porous and harder coatings when compared to non-coated group (p<0.001), due to the presence of rutile crystalline structure. The total mass loss (Kwc), which includes mass loss due to wear (Kw) and that due to corrosion (Kc) were determined. The dominant wear regime was found for higher Ca/P groups (Kc/Kw≈0.05) and a mechanism of wear-corrosion for controls and lower Ca/P groups (Kc/Kw≈0.11). The group treated for 10min and enriched with Ag presented the lowest Kwc (p<0.05). Overall, MAO process was able to produce biofunctional oxide films with improved surface features, working as tribocorrosion resistant surfaces. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating.

    PubMed

    Van Nieuwenhove, Ine; Salamon, Achim; Peters, Kirsten; Graulus, Geert-Jan; Martins, José C; Frankel, Daniel; Kersemans, Ken; De Vos, Filip; Van Vlierberghe, Sandra; Dubruel, Peter

    2016-11-05

    The present work aims at constructing the ideal scaffold matrix of which the physico-chemical properties can be altered according to the targeted tissue regeneration application. Ideally, this scaffold should resemble the natural extracellular matrix (ECM) as close as possible both in terms of chemical composition and mechanical properties. Therefore, hydrogel films were developed consisting of methacrylamide-modified gelatin and starch-pentenoate building blocks because the ECM can be considered as a crosslinked hydrogel network consisting of both polysaccharides and structural, signaling and cell-adhesive proteins. For the gelatin hydrogels, three different substitution degrees were evaluated including 31%, 72% and 95%. A substitution degree of 32% was applied for the starch-pentenoate building block. Pure gelatin hydrogels films as well as interpenetrating networks with gelatin and starch were developed. Subsequently, these films were characterized using gel fraction and swelling experiments, high resolution-magic angle spinning (1)H NMR spectroscopy, rheology, infrared mapping and atomic force microscopy. The results indicate that both the mechanical properties and the swelling extent of the developed hydrogel films can be controlled by varying the chemical composition and the degree of substitution of the methacrylamide-modified gelatin applied. The storage moduli of the developed materials ranged between 14 and 63kPa. Phase separation was observed for the IPNs for which separated starch domains could be distinguished located in the surrounding gelatin matrix. Furthermore, we evaluated the affinity of aggrecan for gelatin by atomic force microscopy and radiolabeling experiments. We found that aggrecan can be applied as a bioactive coating for gelatin hydrogels by a straightforward physisorption procedure. Thus, we achieved distinct fine-tuning of the physico-chemical properties of these hydrogels which render them promising candidates for tissue engineering

  8. [Use and evaluation of X-ray films produced by WZF Foton for occlusal radiograms].

    PubMed

    Mlosek, K; Bończyk, J; Winnicka-Szmielew, B; Gusiew, J

    1989-02-01

    Sensitimetric properties are described of X-ray films for taking occlusal radiograms: Dental DX, RF-42, Ultra-Speed, XR-11 KS (XM). The film Dental DX was estimated on the basis of examination of a skull specimen and clinical material. The sensitivity of the film Dental DX was 400% higher than that of the generally used RF-42 film.

  9. Surface wettability enhancement of silicone hydrogel lenses by processing with polar plastic molds.

    PubMed

    Lai, Y C; Friends, G D

    1997-06-05

    In the quest for hydrogel contact lenses with improved extended wear capability, the use of siloxane moieties in the lens materials was investigated. However, the introduction of hydrophobic siloxane groups gave rise to wettability and lipidlike deposit problems. It was found that when polysiloxane-based compositions for hydrogels were processed with polar plastic molds, such as those fabricated from an acrylonitrile-based polymer, the hydrogel lenses fabricated were wettable, with minimized lipidlike deposits. These findings were supported by the wettability of silicone hydrogel films, silicon, and nitrogen element contents near lens surfaces, as well as the results from clinical assessment of silicone hydrogel lenses.

  10. Superconducting Properties and Phase Analysis of Nb-Si Thin Films Produced by Sputtering

    NASA Astrophysics Data System (ADS)

    Ohshima, Shigetoshi; Shiba, Takashi; Kawanobe, Tadashi; Wakiyama, Tokuo

    1986-09-01

    Nb-Si films were deposited on Nb.84Si.16, Ti3Au and W3Re films with an A15 structure by sputtering. The films with double layers were analyzed using Auger electron spectroscopy. Phase analyses of the sputtered Nb-Si films were carried out by X-ray diffraction studies. The A15 Nb.78Si.22 and Nb.75Si.25 films were grown epitaxially on Nb.84Si.16 and W3Re substrate films. The superconducting transition temperatures of these epitaxial films were found to range between 5 and 9 K.

  11. A self-standing hydrogel neutral electrolyte for high voltage and safe flexible supercapacitors

    NASA Astrophysics Data System (ADS)

    Batisse, N.; Raymundo-Piñero, E.

    2017-04-01

    The development of safe flexible supercapacitors implies the use of new non-liquid electrolytes for avoiding device leakage which combine mechanical properties and electrochemical performance. In this sense, hydrogel electrolytes composed of a solid non-conductive matrix holding an aqueous electrolytic phase are a reliable solution. In this work, we propose a green physical route for producing self-standing hydrogel films from a PVA polymer based on the freezing/thawing method without using chemical cross-linking agents. Moreover, a neutral electrolytic phase as Na2SO4 is used for reaching higher cell voltages than in an acidic or basic electrolyte. Such new PVA-Na2SO4 hydrogel electrolyte, which also acts as separator, allows reaching voltages windows as high as 1.8 V in a symmetric carbon/carbon supercapacitor with optimal capacitance retention through thousands of cycles. Additionally, in reason of the fast mobility of the ions inside of the polymeric matrix, the hydrogel electrolyte based supercapacitor keeps the power density of the liquid electrolyte device.

  12. Method for producing microstructured templates and their use in providing pinning enhancements in superconducting films deposited thereon

    DOEpatents

    Aytug, Tolga; Paranthaman, Mariappan Parans; Polat, Ozgur

    2013-07-16

    The present invention relates to a method for producing a phase-separated layer useful as a flux pinning substrate for a superconducting film, wherein the method includes subjecting at least a first and a second target material to a sputtering deposition technique in order that a phase-separated layer is deposited epitaxially on a primary substrate containing an ordered surface layer. The invention is also directed to a method for producing a superconducting tape containing pinning defects therein by depositing a superconducting film on a phase-separated layer produced by the method described above.

  13. Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films.

    PubMed

    Hashemi, Seyed Mehdi; Hashemi-Malayeri, Bijan; Raisali, Gholamreza; Shokrani, Parvaneh; Sharafi, Ali Akbar; Torkzadeh, Falamarz

    2008-05-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high energy linacs are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. In addition, using conventional linacs necessitates applying wedge filters in some clinical conditions. However, there is not enough information on the effect of these filters on the photoneutrons produced. The aim of this study was to investigate the change of photoneutron dose equivalent due to the use of linac wedge filters. A high energy (18 MV) linear accelerator (Elekta SL 75/25) was studied. Polycarbonate films were used to measure the dose equivalent of photoneutrons. After electrochemical etching of the films, the neutron dose equivalent was calculated using Hp(10) factor, and its variation on the patient plane at 0, 5, 10, 50 and 100 cm from the center of the X-ray beam was determined. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the open and wedged fields. Increasing of the field size increased the photoneutron dose equivalent. The use of wedge filter increased the proportion of the neutron dose equivalent. The increase can be accounted for by the selective absorption of the high energy photons by the wedge filter.

  14. A Novel Hydrogel-Based Biosampling Approach

    DTIC Science & Technology

    2016-03-01

    sampling kits, and wipes), especially from porous surfaces, are generally ineffective. Hydrogel is a water -based gel, which is applied as a thick...viscous material on contaminated surfaces and allowed to dry into a thin film within a few hours, depending on ambient conditions. The dried film is then...peeled off the surface. During the drying process, the gel encapsulates the bioagent and other contaminants . In this study, biohydrogel was used to

  15. Active biodegradable films produced with blends of rice flour and poly(butylene adipate co-terephthalate): effect of potassium sorbate on film characteristics.

    PubMed

    Sousa, G M; Soares Júnior, M S; Yamashita, F

    2013-08-01

    The objective of work was to produce and characterize biodegradable films from rice flour, poly(butylene adipate co-terephthalate) (PBAT), glycerol and potassium sorbate, for application as active packaging for fresh lasagna pasta. The films were evaluated with respect to their optical, water vapor barrier, mechanical and microstructural properties. The mechanical properties and microstructure were evaluated after use as packaging material for fresh pasta for 45 days at 7°C. The blends of rice flour, PBAT, glycerol and potassium sorbate showed good processability and allowed for the pilot scale production of films by blow extrusion process. The addition of 1 to 5% potassium sorbate as plasticizer agent of films in place of glycerol did not alter the film mechanical properties and a sorbate concentration greater or equal than 3% reduced the opacity, although increasing the water vapor permeability. The films could be used as active packaging for fresh food pasta, since they remained integral and easy to handle after application. The rice flour was shown to be an excellent material for the formulation of biodegradable films, since it is a low-cost raw material from a renewable source. The addition of potassium sorbate did not affect the extrusion process, and could be used in the production of packaging for use with foods. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Use of /γ-irradiation to produce films from whey, casein and soya proteins: structure and functionals characteristics

    NASA Astrophysics Data System (ADS)

    Lacroix, M.; Le, T. C.; Ouattara, B.; Yu, H.; Letendre, M.; Sabato, S. F.; Mateescu, M. A.; Patterson, G.

    2002-03-01

    γ-irradiation and thermal treatments have been used to produce sterilized cross-linked films. Formulations containing variable concentrations of calcium caseinate and whey proteins (whey protein isolate (WPI) and commercial whey protein concentrate) or mixture of soya protein isolate (SPI) with WPI was investigated on the physico-chemical properties of these films. Results showed that the mechanical properties of cross-linked films improved significantly the puncture strength for all types of films. Size-exclusion chromatography showed for no cross-linked proteins, a molecular mass of around 40 kDa. The soluble fractions of the cross-linked proteins molecular distributions were between 600 and 3800 kDa. γ-irradiation seems to modify to a certain extent the conformation of proteins which will adopt structures more ordered and more stable, as suggested by X-ray diffraction analysis. Microstructure observations showed that the mechanical characteristics of these films are closely related to their microscopic structure. Water vapor permeability of films based on SPI was also significantly decreased when irradiated. Microbial resistance was also evaluated for cross-linked films. Results showed that the level of biodegradation of cross-linked films was 36% after 60 d of fermentation in the presence of Pseudomonas aeruginosa.

  17. The synthesis and study of telechelic polyelectrolytes for hydrogel formation

    NASA Astrophysics Data System (ADS)

    Hunt, Jasmine N.

    Polymeric hydrogels comprised of oppositely charged ABA triblock copolymer polyelectrolytes based upon poly(allyl glycidyl ether-b-ethylene glycol-ballyl glycidyl ether), P(AGE-b-EG-b-AGE), with functionalized ionic 'A'-endblocks and a neutral, hydrophilic 'B'-block were synthesized. Aqueous solutions of poly-cations and -anions were mixed at room temperature, producing hydrogels through co-assembly driven by electrostatic interactions between the endblocks. Due the ease and modular nature of the synthesis and hydrogel formation, polymeric libraries differing in relative block lengths and ionic functionalization were created and the affects of polymer composition on the hydrogel's mechanical and structural properties were examined.

  18. Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide.

    PubMed

    Sun, Jiaojiao; Yang, Ningxin; Sun, Zhe; Zeng, Mengqi; Fu, Lei; Hu, Chengguo; Hu, Shengshui

    2015-09-30

    Potassium permanganate (KMnO4) has been proved to be an efficient oxidant for converting graphite into graphite oxide, but its slow diffusion in the interlayer of graphite seriously restricts the production of graphene oxide (GO). Here, we demonstrate that the preoxidation of graphite by impure manganese dioxide (MnO2) in a mixture of concentrated sulfuric acid (H2SO4) and phosphorus pentoxide (P2O5) can efficiently improve the synthesis of GO when KMnO4 is employed as the oxidant. The prepared honey-like GO hydrogels possess a high yield of single-layer sheets, large sizes (average lateral size up to 20 μm), wide ranges of stable dispersion concentrations (from dilute solutions, viscous hydrogels, to dry films), and good conductivity after reduction (~2.9 × 10(4) S/m). The mechanism for the improved synthesis of GO by impure MnO2 was explored. The enhanced exfoliation and oxidation of graphite by oxidative Mn ions (mainly Mn(3+)), which are synergistically produced by the reaction of impure MnO2 with H2SO4 and P2O5, are found to be responsible for the improved synthesis of such GO hydrogels. Particularly, preoxidized graphite (POG) can be partially dispersed in water with sonication, which allows the facile construction of flexible and highly conductive graphene nanosheet film electrodes with excellent electrochemical sensing properties.

  19. Plasma produced by impacts of fast dust particles on a thin film

    NASA Technical Reports Server (NTRS)

    Auer, Siegfried

    1994-01-01

    The thin-film impact plasma detector was pioneered by Berg for detecting small cosmic dust particles and measuring their approximate velocities in a time-of-flight configuration. While Berg's device was highly successful in establishing the flux of interplanetary dust, the accuracy of measuring the velocities of individual particles was a moderate 18 percent in magnitude and 27 degrees in angle. A much greater accuracy of less than or equal to 1 percent in determining the velocity components appears desirable in order to associate a particle with its parent body. In order to meet that need, research was initiated to determine if a thin-film detector can be designed to provide such accurate velocity measurements. Previous laboratory investigations of the impact plasma uncovered two difficulties: (1) solid or liquid spray is ejected from a primary impact crater and strikes neighboring walls where it produces secondary impact craters and plasma clouds; as a result, both quantity and time of detection of the plasma can vary significantly with the experiment configuration. Particles from an accelerator rarely have speeds v greater than or equal to 10-15 km/s, while cosmic dust particles typically impact at v = 10-72 km/s. The purpose of the tests discussed in this paper was to resolve the two difficulties mentioned. That is, the experiment configuration was designed to reduce the contribution of plasma from secondary impacts. In addition, most particles with v less than or equal to 25 km/s and all particles with v less than or equal to 10 km/s were eliminated from the beam.

  20. Plasma produced by impacts of fast dust particles on a thin film

    NASA Astrophysics Data System (ADS)

    Auer, Siegfried

    The thin-film impact plasma detector was pioneered by Berg for detecting small cosmic dust particles and measuring their approximate velocities in a time-of-flight configuration. While Berg's device was highly successful in establishing the flux of interplanetary dust, the accuracy of measuring the velocities of individual particles was a moderate 18 percent in magnitude and 27 degrees in angle. A much greater accuracy of less than or equal to 1 percent in determining the velocity components appears desirable in order to associate a particle with its parent body. In order to meet that need, research was initiated to determine if a thin-film detector can be designed to provide such accurate velocity measurements. Previous laboratory investigations of the impact plasma uncovered two difficulties: (1) solid or liquid spray is ejected from a primary impact crater and strikes neighboring walls where it produces secondary impact craters and plasma clouds; as a result, both quantity and time of detection of the plasma can vary significantly with the experiment configuration. Particles from an accelerator rarely have speeds v greater than or equal to 10-15 km/s, while cosmic dust particles typically impact at v = 10-72 km/s. The purpose of the tests discussed in this paper was to resolve the two difficulties mentioned. That is, the experiment configuration was designed to reduce the contribution of plasma from secondary impacts. In addition, most particles with v less than or equal to 25 km/s and all particles with v less than or equal to 10 km/s were eliminated from the beam.

  1. Nucleation Behavior of Oxygen-Acetylene Torch-Produced Diamond Films

    NASA Technical Reports Server (NTRS)

    Roberts, F. E.

    2003-01-01

    A mechanism is presented for the nucleation of diamond in the combustion flame environment. A series of six experiments and two associated simulations provide results from which the mechanism was derived. A substantial portion of the prior literature was reviewed and the data and conclusions from the previous experimenters were found to support the proposed mechanism. The nucleation mechanism builds on the work of previous researchers but presents an approach to nucleation in a detail and direction not fully presented heretofore. This work identifies the gas phase as the controlling environment for the initial formation steps leading to nucleation. The developed mechanism explains some of the difficulty which has been found in producing single crystal epitaxial films. An experiment which modified the initial gas phase precursor using methane and carbon monoxide is presented. Addition of methane into the precursor gases was found to be responsible for pillaring of the films. Atomic force microscopy surface roughness data provides a reasonable look at suppression of nucleation by carbon monoxide. Surface finish data was taken on crystals which were open to the nucleation environment and generally parallel to the substrate surface. The test surfaces were measured as an independent measure of the instantaneous nucleation environent. A gas flow and substrate experiment changed the conditions on the surface of the sample by increasing the gas flow rate while remaining on a consistent point of the atomic constituent diagram, and by changing the carbide potential of the substrate. Two tip modification experiments looked at the behavior of gas phase nucleation by modifying the shape and behavior of the flame plasma in which the diamond nucleation is suspected to occur. Diamond nucleation and growth was additionally examined using a high-velocity oxygen fuel gun and C3H6 as the fuel gas phase precursor with addition of carbon monoxide gas 01 addition of liquid toluene.

  2. Process for producing Ti-Cr-Al-O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2001-01-01

    Thin films of Ti-Cr-Al-O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti-Cr-Al-O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti-Cr-Al-O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti-Cr-Al-O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  3. Structural and optical properties of thin In{sub 2}O{sub 3} films produced by autowave oxidation

    SciTech Connect

    Tambasov, I. A. Myagkov, V. G.; Ivanenko, A. A.; Nemtsev, I. V.; Bykova, L. E.; Bondarenko, G. N.; Mihlin, J. L.; Maksimov, I. A.; Ivanov, V. V.; Balashov, S. V.; Karpenko, D. S.

    2013-04-15

    Cubic-phase In{sub 2}O{sub 3} films are produced by the autowave oxidation reaction. Electron microscopy and photoelectron spectroscopy of the atomic profiles show that the samples are homogeneous over the entire area and throughout the thickness, with the typical grain size being 20-40 nm. The optical and electrical properties are studied for In{sub 2}O{sub 3} films fabricated at different pressures in the vacuum chamber. In the wave-length range from 400 to 1100 nm, the transparency of the films was higher than 85%; the resistivity of the films was 1.8 Multiplication-Sign 10{sup -2} {Omega} cm.

  4. Evaluation of Fibroblasts Adhesion and Proliferation on Alginate-Gelatin Crosslinked Hydrogel

    PubMed Central

    Silva, Raquel; Roether, Judith A.; Kaschta, Joachim; Detsch, Rainer; Schubert, Dirk W.; Cicha, Iwona; Boccaccini, Aldo R.

    2014-01-01

    Due to the relatively poor cell-material interaction of alginate hydrogel, alginate-gelatin crosslinked (ADA-GEL) hydrogel was synthesized through covalent crosslinking of alginate di-aldehyde (ADA) with gelatin that supported cell attachment, spreading and proliferation. This study highlights the evaluation of the physico-chemical properties of synthesized ADA-GEL hydrogels of different compositions compared to alginate in the form of films. Moreover, in vitro cell-material interaction on ADA-GEL hydrogels of different compositions compared to alginate was investigated by using normal human dermal fibroblasts. Viability, attachment, spreading and proliferation of fibroblasts were significantly increased on ADA-GEL hydrogels compared to alginate. Moreover, in vitro cytocompatibility of ADA-GEL hydrogels was found to be increased with increasing gelatin content. These findings indicate that ADA-GEL hydrogel is a promising material for the biomedical applications in tissue-engineering and regeneration. PMID:25268892

  5. Quantitative evaluation of mechanosensing of cells on dynamically tunable hydrogels.

    PubMed

    Yoshikawa, Hiroshi Y; Rossetti, Fernanda F; Kaufmann, Stefan; Kaindl, Thomas; Madsen, Jeppe; Engel, Ulrike; Lewis, Andrew L; Armes, Steven P; Tanaka, Motomu

    2011-02-09

    Thin hydrogel films based on an ABA triblock copolymer gelator [where A is pH-sensitive poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) and B is biocompatible poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC)] were used as a stimulus-responsive substrate that allows fine adjustment of the mechanical environment experienced by mouse myoblast cells. The hydrogel film elasticity could be reversibly modulated by a factor of 40 via careful pH adjustment without adversely affecting cell viability. Myoblast cells exhibited pronounced stress fiber formation and flattening on increasing the hydrogel elasticity. As a new tool to evaluate the strength of cell adhesion, we combined a picosecond laser with an inverted microscope and utilized the strong shock wave created by the laser pulse to determine the critical pressure required for cell detachment. Furthermore, we demonstrate that an abrupt jump in the hydrogel elasticity can be utilized to monitor how cells adapt their morphology to changes in their mechanical environment.

  6. A composite hydrogels-based photonic crystal multi-sensor

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhu, Zhigang; Zhu, Xiangrong; Yu, Wei; Liu, Mingju; Ge, Qiaoqiao; Shih, Wei-Heng

    2015-04-01

    A facile route to prepare stimuli-sensitive poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) gelated crystalline colloidal array photonic crystal material was developed. PVA was physically gelated by utilizing an ethanol-assisted method, the resulting hydrogel/crystal composite film was then functionalized with PAA to form an interpenetrating hydrogel film. This sensor film is able to efficiently diffract the visible light and rapidly respond to various environmental stimuli such as solvent, pH and strain, and the accompanying structural color shift can be repeatedly changed and easily distinguished by naked eye.

  7. Biphasic and boundary lubrication mechanisms in artificial hydrogel cartilage: A review.

    PubMed

    Murakami, Teruo; Yarimitsu, Seido; Nakashima, Kazuhiro; Sakai, Nobuo; Yamaguchi, Tetsuo; Sawae, Yoshinori; Suzuki, Atsushi

    2015-12-01

    Various studies on the application of artificial hydrogel cartilage to cartilage substitutes and artificial joints have been conducted. It is expected in clinical application of artificial hydrogel cartilage that not only soft-elastohydrodynamic lubrication but biphasic, hydration, gel-film and boundary lubrication mechanisms will be effective to sustain extremely low friction and minimal wear in daily activities similar to healthy natural synovial joints with adaptive multimode lubrication. In this review article, the effectiveness of biphasic lubrication and boundary lubrication in hydrogels in thin film condition is focused in relation to the structures and properties of hydrogels. As examples, the tribological behaviors in three kinds of poly(vinyl alcohol) hydrogels with high water content are compared, and the importance of lubrication mechanism in biomimetic artificial hydrogel cartilage is discussed to extend the durability of cartilage substitute.

  8. A fast method to produce strong NFC films as a platform for barrier and functional materials.

    PubMed

    Osterberg, Monika; Vartiainen, Jari; Lucenius, Jessica; Hippi, Ulla; Seppälä, Jukka; Serimaa, Ritva; Laine, Janne

    2013-06-12

    In this study, we present a rapid method to prepare robust, solvent-resistant, nanofibrillated cellulose (NFC) films that can be further surface-modified for functionality. The oxygen, water vapor, and grease barrier properties of the films were measured, and in addition, mechanical properties in the dry and wet state and solvent resistance were evaluated. The pure unmodified NFC films were good barriers for oxygen gas and grease. At a relative humidity below 65%, oxygen permeability of the pure and unmodified NFC films was below 0.6 cm(3) μm m(-2) d(-1) kPa(-1), and no grease penetrated the film. However, the largest advantage of these films was their resistance to various solvents, such as water, methanol, toluene, and dimethylacetamide. Although they absorbed a substantial amount of solvent, the films could still be handled after 24 h of solvent soaking. Hot-pressing was introduced as a convenient method to not only increase the drying speed of the films but also enhance the robustness of the films. The wet strength of the films increased due to the pressing. Thus, they can be chemically or physically modified through adsorption or direct chemical reaction in both aqueous and organic solvents. Through these modifications, the properties of the film can be enhanced, introducing, for example, functionality, hydrophobicity, or bioactivity. Herein, a simple method using surface coating with wax to improve hydrophobicity and oxygen barrier properties at very high humidity is described. Through this modification, the oxygen permeability decreased further and was below 17 cm(3) μm m(-2) d(-1) kPa(-1) even at 97.4% RH, and the water vapor transmission rate decreased from 600 to 40 g/m(2) day. The wax treatment did not deteriorate the dry strength of the film. Possible reasons for the unique properties are discussed. The developed robust NFC films can be used as a generic, environmentally sustainable platform for functional materials.

  9. Cytocompatibility of Wood-derived Cellulose Nanofibril Hydrogels with Different Surface Chemistry.

    PubMed

    Rashad, Ahmad; Mustafa, Kamal; Heggset, Ellinor Bœvre; Syverud, Kristin

    2017-03-06

    The current study aims to demonstrate the influence of the surface chemistry of wood-derived cellulose nanofibril (CNF) hydrogels on fibroblasts for tissue engineering applications. TEMPO-mediated oxidation or carboxymethylation pretreatments were employed to produce hydrogels with different surface chemistry. This study demonstrates, firstly, the gelation of CNF with cell culture medium and formation of stable hydrogels with improved rheological properties. Secondly, the response of mouse fibroblasts cultured on the surface of the hydrogels or sandwiched within the materials with respect to cytotoxicity, cell attachment, proliferation, morphology and migration. Indirect cytotoxicity tests showed no toxic effect of either hydrogel. The direct contact with the caroxymethylated hydrogel adversely influenced the morphology of the cells and limited their spreading, while typical morphology and spreading of cells was observed with the TEMPO-oxidized hydrogel. The porous fibrous structure may be a key to cell proliferation and migration in the hydrogels.

  10. Pilot scale-up and shelf stability of hydrogel wound dressings obtained by gamma radiation

    NASA Astrophysics Data System (ADS)

    Soler, Dulce María; Rodríguez, Yanet; Correa, Hector; Moreno, Ailed; Carrizales, Lila

    2012-08-01

    This study is aimed of producing pilot batches of hydrogel wound dressings by gamma radiation and evaluating their shelf stability. Six batches of 3L capacity were prepared based on poly(vinyl pyrrolidone), agar and polyethylene glycol and they were dispensed in polyester trays, covered with polyester films and sealed in two types of materials: polyethylene bags and vacuum polyethylene bags. Dressings were formed in a single step process for the hydrogel formation and sterilization at 25-30 kGy gamma radiation dose in a JS-9500 Gamma Irradiator (Nordion, Canada). The six batches were initially physicochemical characterized in terms of dimensions and appearance, gel fraction, morphology analysis, hydrogel strength, moisture retention capability and swelling capacity. They were kept under two storage conditions: room temperature (T: 30±2 °C/RH: 70± 5%) and refrigerated temperature (T: 5±3 °C) during 24 months and sterility test was performed. The appearance of membranes was transparent, clear, uncut and flexible; the gel fraction of batches was higher than 75% and the hydrogel surface showed a porous structure. There was a slow decrease of the compression rate 20% until 7 h and about 70% at 24 h. Moisture retention capability in 5 h was similar for all the batches, about 40% and 60% at 37 °C and at room temperature respectively. The swelling of hydrogels in acidic media was strong and in alkaline media the weight variation remains almost stable until 24 h and then there is a loss of weight. The six batches remained sterile during the stability study in the conditions tested. The pilot batches were consistent from batch to batch and remained stable during 24 months.

  11. Synthesis and patterning of hydrogel-nanoparticle composites.

    SciTech Connect

    Martin, L. A.; Mancini, D. C.; Rich, L. E.; Divan, R.; Center for Nanoscale Materials; Missouri Univ. of Science and Technology

    2008-01-01

    We have developed a novel method for patterning nanoscale composite hydrogel materials on silicon through electron beam lithography. Gold particles were introduced into poly N-isopropylacrylamide (PNIPAam) patterned by e-beam lithography. By including BAC, the polymer can covalently bond to the colloidal gold nanoparticles. Such composites can be stable for long periods of time. We describe the structure, quality, and properties of the resulting patterned hydrogel-nanoparticle composite films.

  12. Method of synthesizing a plurality of reactants and producing thin films of electro-optically active transition metal oxides

    DOEpatents

    Tracy, C. Edwin; Benson, David K.; Ruth, Marta R.

    1987-01-01

    A method of synthesizing electro-optically active reaction products from a plurality of reactants by inducing a reaction by plasma deposition among the reactants. The plasma reaction is effective for consolidating the reactants and producing thin films of electro-optically active transition metal oxides.

  13. 26 CFR 1.992-4 - Coordination with personal holding company provisions in case of certain produced film rents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... picture to a qualified subsidiary, the qualified subsidiary is considered as having acquired such interest prior to substantial completion of such motion picture for purposes of determining whether payments from the rental of such motion picture will be classified as produced film rents of such subsidiary. The...

  14. 26 CFR 1.992-4 - Coordination with personal holding company provisions in case of certain produced film rents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... picture to a qualified subsidiary, the qualified subsidiary is considered as having acquired such interest prior to substantial completion of such motion picture for purposes of determining whether payments from the rental of such motion picture will be classified as produced film rents of such subsidiary. The...

  15. 26 CFR 1.992-4 - Coordination with personal holding company provisions in case of certain produced film rents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... picture to a qualified subsidiary, the qualified subsidiary is considered as having acquired such interest prior to substantial completion of such motion picture for purposes of determining whether payments from the rental of such motion picture will be classified as produced film rents of such subsidiary. The...

  16. Growth and structure of fullerene-like CNx thin films produced by pulsed laser ablation of graphite in nitrogen

    NASA Astrophysics Data System (ADS)

    Voevodin, A. A.; Jones, J. G.; Zabinski, J. S.; Czigany, Zs.; Hultman, L.

    2002-11-01

    The growth and structure of fullerene-like CNx films produced by laser ablation of graphite in low pressure nitrogen were investigated. Deposition conditions were selected based on investigations of CN and C2 concentration at the condensation surface, vibrational temperature of CN radicals, and kinetic energies of atomic and molecular species. Films were characterized with x-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscopy, nanoindentation, and stress analyses. The nitrogen content in CNx films directly depended on the concentration of CN radicals at the condensation surface. Formation of fullerene-like structures required a high vibrational temperature of these radicals, which was maximized at about 4 eV for depositions at 10 mTorr N2 and laser fluences of approx7 J/cm2. The presence of C2 had only a minor effect on film composition and structure. Optimization of plasma characteristics and a substrate temperature of 300 degC helped to produce about 1-mum-thick solid films of CNx (N/C ratioapproximately0.2-0.3) and pure carbon consisting of fullerene-like fragments and packages. In contrast to carbon films, fullerene-like CNx films exhibited a high elastic recovery of about 80% in using a Berkovich tip at 5 mN load and indentation depths up to 150 nm. Their elastic modulus was about 160 GPa measured from the unloading portion of an indentation curve, and about 250 GPa measured with a 40 Hz tip oscillation during nanoindentation tests. The difference was related to time dependent processes of shape restoration of fullerene-like fragments, and an analogy was made to the behavior of elastomer polymers. However, unlike elastomers, CNx film hardness was as high as 30 GPa, which was twice that of fullerene-like carbon films. The unusual combination of high elasticity and hardness of CNx films was explained by crosslinking of fullerene fragments induced by the incorporated nitrogen and stored compressive stress. The

  17. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  18. Method for producing silicon thin-film transistors with enhanced forward current drive

    DOEpatents

    Weiner, K.H.

    1998-06-30

    A method is disclosed for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates. 1 fig.

  19. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2000-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  20. Producing thin film photovoltaic modules with high integrity interconnects and dual layer contacts

    DOEpatents

    Jansen, Kai W.; Maley, Nagi

    2001-01-01

    High performance photovoltaic modules are produced with improved interconnects by a special process. Advantageously, the photovoltaic modules have a dual layer back (rear) contact and a front contact with at least one layer. The front contact and the inner layer of the back contact can comprise a transparent conductive oxide. The outer layer of the back contact can comprise a metal or metal oxide. The front contact can also have a dielectric layer. In one form, the dual layer back contact comprises a zinc oxide inner layer and an aluminum outer layer and the front contact comprises a tin oxide inner layer and a silicon dioxide dielectric outer layer. One or more amorphous silicon-containing thin film semiconductors can be deposited between the front and back contacts. The contacts can be positioned between a substrate and an optional superstrate. During production, the transparent conductive oxide layer of the front contact is scribed by a laser, then the amorphous silicon-containing semiconductors and inner layer of the dual layer back contact are simultaneously scribed and trenched (drilled) by the laser and the trench is subsequently filled with the same metal as the outer layer of the dual layer back contact to provide a superb mechanical and electrical interconnect between the front contact and the outer layer of the dual layer back contact. The outer layer of the dual layer back contact can then be scribed by the laser. For enhanced environmental protection, the photovoltaic modules can be encapsulated.

  1. Coatings with Thermally Switchable Surface Energy Produced From Block Copolymer Films

    NASA Astrophysics Data System (ADS)

    Davis, Raleigh; Register, Richard

    2015-03-01

    Polymer-based coatings are employed across a wide array of sectors. One application of such coatings is to impart a prescribed surface energy, i . e . hydrophilic or hydrophobic character. The present work explores an approach to create surfaces with thermally switchable wetting behavior by employing coatings based on block copolymers which possess both hydrophilic and hydrophobic segments. The amphiphilic block copolymers were synthesized by coupling allyl-ended poly(ethylene oxide) (PEO) and hydride-ended poly(dimethylsiloxane) (PDMS) oligomers via a Pt catalyst. One PEO-PDMS diblock possessed an order-disorder-transition-temperature (TODT) of 64°C as characterized by small angle x-ray scattering. Above the TODT the polymer is a disordered melt, but below this temperature it self-assembles into alternating lamellae with a repeat spacing of 7.7 nm. When cooled through the TODT in vacuum or dry air, the PDMS-enriched domains wet the film's surface, producing a hydrophobic surface with a contact angle (CA) ~ 90° as measured from CA goniometry. However, when cooled under water or in humid air, a PEO-rich hydrophilic surface is produced, yielding CAs ranging from 20-40°. The coatings can then be reversibly switched between the two states by reheating above the TODT, exposing to the appropriate environment, and re-cooling, ideally ``locking in'' the structure until the next processing cycle. The TODT, and thus the switching temperature, can be continuously tuned by blending with PEO-PDMS diblocks of different molecular weights.

  2. Tribological synthesis method for producing low-friction surface film coating

    DOEpatents

    Ajayi, Oyelayo O.; Lorenzo-Martin, Maria De La; Fenske, George R.

    2016-10-25

    An article of method of manufacture of a low friction tribological film on a substrate. The article includes a substrate of a steel or ceramic which has been tribologically processed with a lubricant containing selected additives and the additives, temperature, load and time of processing can be selectively controlled to bias formation of a film on the substrate where the film is an amorphous structure exhibiting highly advantageous low friction properties.

  3. Biomimetic Hydrogel Materials

    DOEpatents

    Bertozzi, Carolyn , Mukkamala, Ravindranath , Chen, Oing , Hu, Hopin , Baude, Dominique

    2003-04-22

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  4. Biomimetic hydrogel materials

    SciTech Connect

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  5. Preparation and characterization of hydrogenated amorphous silicon thin films and thin film solar cells produced by ion plating techniques. Final report, 1 January 1979-31 May 1980

    SciTech Connect

    1980-05-01

    Ion plating techniques for the preparation of hydrogenated amorphous silicon thin films have been successfully developed. The technique involves essentially the evaporation of elemental silicon through a d.c. produced hydrogen plasma. In this way hydrogen has been successfully incorporated into amorphous silicon films in concentrations as high as 30 atomic percent. Infrared spectroscopy indicates the usual SiH/sub x/ stretching mode at approximately 2000 cm/sup -1/. Further evidence for the bonding of hydrogen was obtained from ESR measurement of hydrogenated and unhydrogenated samples. The measured unpaired spin density was a factor of 25 less in the hydrogenated sample. The optical absorption edges of the hydrogenated films fell in the usual range between 1.7 and 1.9 eV. Electrical conductivity measurements indicated a substantial reduction in the density of defect states in the gap as expected. It was also shown that hydrogenated amorphous silicon prepared by ion-plating could be doped by co-evaporation of the dopant element during film deposition. Both co-evaporated phosphorous and co-evaporated bismuth have been found to substantially increase the dark conductivity of a-Si:H while shifting the Fermi level towards the conduction band edge. An x-ray method for estimating the density and hydrogen content of a-Si:H has been developed. The measurement of strain in a-Si:H thin films is discussed. (WHK)

  6. Antifouling properties of hydrogels

    NASA Astrophysics Data System (ADS)

    Murosaki, Takayuki; Ahmed, Nafees; Gong, Jian Ping

    2011-12-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  7. Producing the 8mm Self-Instructional Film: A Demonstration Kit.

    ERIC Educational Resources Information Center

    Gerlach, Vernon S.

    How does one conduct a workshop in self-instructional film production? A demonstration kit was put together to enable a teacher to do this. It consists of five monographs' ("Programing the Instructional Film", "Stating Objectives", "Developing The Instructional Specification", "An Introduction to Programing", and "Lighting Fundamentals"), one 8mm…

  8. Adherent TiN films produced by ion beam enhanced deposition at room temperature

    NASA Astrophysics Data System (ADS)

    Kant, R. A.; Sartwell, B. D.; Singer, I. L.; Vardiman, R. G.

    1985-03-01

    This paper describes the preliminary results of an investigation of the influence of ion implantation on the structure and mechanical properties of vapor-deposited thin films which are implanted during nucleation and growth. For these studies, titanium was deposited at room temperature on M50 steel, AISI 52100 steel, and silicon substrates in a chamber backfilled with nitrogen gas to a pressure of 1 × 10 -5 Torr. The films were deposited in 125 or more increments of 0.8 nm each. Between each increment, the film was implanted with 30 keV N 2+. Auger electron spectroscopy revealed that significant reduction of carbon and oxygen occurred in the implanted films and electron microscopy showed the films to be entirely fcc with a lattice constant consistent with that of TiN. The mechanical properties of the films were investigated using scratch tests for adhesion as well as friction and wear analysis. While the unimplanted films failed to adhere, the implanted films remained adherent throughout the tests and exhibited both low friction and low wear.

  9. Studies of LiCoO x thin film cathodes produced by r.f. sputtering

    NASA Astrophysics Data System (ADS)

    Polo da Fonseca, C. N.; Davalos, J.; Kleinke, M.; Fantini, M. C. A.; Gorenstein, A.

    Thin films of LiCoO x were deposited by r.f. sputtering, from a LiCoO 2 target and in an O 2/Ar atmosphere. The structural properties were studied by XRD and IR, the morphology by AFM and the electrochemical properties by cyclic voltammetry and galvanostatic charge/discharge techniques in 1 M LiClO 4/PC+EC electrolyte. As-grown films were amorphous and presented compact grain morphology. Annealing promotes a melt of the film at 300°C, followed by crystallisation at higher temperatures. The IR and XRD spectrum of films annealed in air showed the same structural reordering above 300°C. The crystalline film has been identified as a mixed LiCoO 2+Li 1.47Co 3O 4 phase. The open circuit potential for both films is 3.45 V. The films can be cycled till ˜4.2 V, but the crystalline structure presents irreversible phase changes, which limits the cyclability of the material. The films are interesting potential materials to be used at cathodes in lithium batteries.

  10. Photocatalytic activity of nanostructured TiO2 films produced by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Della Foglia, Flavio; Losco, Tonia; Piseri, Paolo; Milani, Paolo; Selli, Elena

    2009-08-01

    The photocatalytic activity of thin, nanostructured films of titanium dioxide, synthesized by supersonic cluster beam deposition (SCBD) from the gas phase, has been investigated employing the photodegradation of salicylic acid as test reaction. Because of the low deposition energy, the so-deposited highly porous TiO2 films are composed of nanoparticles maintaining their original properties in the film, which can be fully controlled by tuning the deposition and post-deposition treatment conditions. A systematic investigation on the evolution of light absorption properties and photoactivity of the films in relation to their morphology, determined by AFM analysis, and phase composition, determined by Raman spectroscopy, has been performed. The absorption and photocatalytic activity of the nanostructured films in the visible region could be enhanced either through post-deposition annealing treatment in ammonia containing atmosphere or employing mild oxidation conditions, followed by annealing in N2 at 600 °C.

  11. Structural improvement of zinc oxide films produced by ion beam assisted reactive sputtering

    NASA Astrophysics Data System (ADS)

    Köhl, D.; Luysberg, M.; Wuttig, M.

    2010-05-01

    Reactively sputtered zinc oxide thin films exhibit low crystalline order when deposited on unheated substrates. To improve the structural order, films are usually deposited onto heated substrates at temperatures of about 200-300 °C. Nevertheless, techniques that enable room temperature deposition of ZnO films with high structural quality would be advantageous. In this work ion bombardment from an auxiliary ion gun during film growth is employed to improve the crystalline quality. Xe+ ion bombardment under appropriate conditions leads to the growth of films with high crystalline order. Based on our structural investigations employing x-ray diffraction, atomic force microscopy and transmission electron microscopy, a growth model is proposed which explains the impact of ion bombardment on the structural evolution. We prove that it is especially the nucleation stage of the growth process which is susceptible to this ion bombardment.

  12. Influence of chlorpheniramine maleate on topical hydroxypropylcellulose films produced by hot-melt extrusion.

    PubMed

    Repka, M A; McGinity, J W

    2001-08-01

    The objective of this investigation is to study the influence of chlorpheniramine maleate (CPM) on the chemical and physical-mechanical properties of hydroxypropylcellulose (HPC) hot-melt extruded films without the use of a traditional plasticizer HPC films containing CPM in concentrations of 1, 5, and 10 wt% were prepared by hot-melt extrusion utilizing a Randcastle Microtruder (Model #RCP-0750) with a 6-in. flex-film die. The physical-mechanical properties including tensile strength and percent elongation were determined on an Instron according to the ASTM standards. Glass transition temperatures and thermal analysis of the extruded films were determined utilizing a DSC 2920 Modulated DSC and Thermal Analyst 2000 software. The crystalline properties of the drug, polymer, and extruded films were studied via wide angle X-ray diffraction (XRD) using a Philips Vertical Scanning Diffractometer (Type 42273, Philips Electronic Instrument, Mount Vernon, NY). Gel permeation chromatography was used to study the stability of the polymer matrix as a function of different concentrations of CPM and processing conditions. CPM functioned as an effective plasticizer, increasing percent elongation and decreasing tensile strength in a concentration dependent manner All three concentrations of extruded films exhibited a 10- to 12-fold decrease in tensile strength in contrast to a fourfold increase in percent elongation when testing was performed perpendicular to flow vs. in the direction of flow. The drug was also shown by XRD and DSC data to be in solution in the HPC matrix within the films up to the 10% level. In addition, CPM functioned as a processing aid in the extrusion of hot-melt films, stabilizing the weight-average molecular weight of HPC and allowing for film processing at lower temperatures. CPM could potentially be a candidate antihistamine for transdermal or transmucosal applications in film devices prepared by hot-melt extrusion technology.

  13. Role of the gas flow parameters on the uniformity of films produced by PECVD technique

    SciTech Connect

    Martins, R.; Macarico, A.; Ferreira, I.; Fortunato, E.

    1997-07-01

    The aim of this work is to present an analytical model able to interpret the experimental data of the dependence of film's uniformity on the discharge pressure, gas flow and temperature used during the production of thin films by the plasma enhancement chemical vapor deposition technique, under optimized electrode's geometry and electric field distribution. To do so, the gas flow is considered to be quasi-incompressible and inviscous leading to the establishment of the electro-fluid-mechanics equations able to interpret the film's uniformity over the substrate area, when the discharge process takes place in the low power regime.

  14. Spider Silks-Biomimetics Beyond Silk Fibers: Hydrogels, films & Adhesives from Aqueous Recombinant Spider Silk dopes: A Synchrotron X-Ray Nano-Structural Study

    NASA Astrophysics Data System (ADS)

    Sampath, Sujatha; Jones, Justin; Harris, Thomas; Lewis, Randolph

    2015-03-01

    With a combination of high strength and extensibility, spider silk's (SS) mechanical properties surpass those of any man made fiber. The superior properties are due to the primary protein composition and the complex hierarchical structural organization from nanoscale to macroscopic length scales. Considerable progress has been made to synthetically mimic the production of fibers based on SS proteins. We present synchrotron x-ray micro diffraction (SyXRD) results on new fibers and gels (hydrogels, lyogels) from recombinant SS protein water-soluble dopes. Novelty in these materials is two-fold: water based rather than widely used HFIP acid synthesis, makes them safe in medical applications (replacement for tendons & ligaments). Secondly, hydrogels morphology render them as excellent carriers for targeted drug delivery biomedical applications. SyXRD results reveal semi-crystalline structure with ordered beta-sheets and relatively high degree of axial orientation in the fibers, making them the closest yet to natural spider silks. SyXRD on the gels elucidate the structural transformations during the self-recovery process through mechanical removal and addition of water. Studies correlating the observed structural changes to mechanical properties are underway.

  15. FUNCTIONALIZED, SWELLABLE HYDROGEL LAYERS AS A PLATFORM FOR CELL STUDIES

    PubMed Central

    Marí-Buyé, Núria; O'Shaughnessy, Shannan; Colominas, Carles; Semino, Carlos E.; Gleason, Karen K.; Borrós, Salvador

    2014-01-01

    This paper reports the design, synthesis and characterization of thin films as a platform for studying the separate influences of physical and chemical cues of a matrix on the adhesion, growth and final phenotype of cells. Independent control of the physical and chemical properties of functionalized, swellable hydrogel thin films was achieved using initiated Chemical Vapor Deposition (iCVD). The systematic variation in crosslink density is demonstrated to control the swelling ability of the iCVD hydrogel films based on 2-hydroxyethyl methacrylate (HEMA). At the same time, the incorporation of controllable concentrations of the active ester pentafluorophenyl methacrylate (PFM) allows easy immobilization of aminated bioactive motifs, such as bioactive peptides. Initial cell culture results with Human Umbilical Vein Endothelial Cells (HUVEC) indicated that the strategy of using PFM to immobilize a cell-adhesion peptide motif onto the hydrogel layers promotes proper HUVEC growth and enhances their phenotype. PMID:25414625

  16. Hydrogel microparticles for biosensing

    PubMed Central

    Le Goff, Gaelle C.; Srinivas, Rathi L.; Hill, W. Adam; Doyle, Patrick S.

    2015-01-01

    Due to their hydrophilic, biocompatible, and highly tunable nature, hydrogel materials have attracted strong interest in the recent years for numerous biotechnological applications. In particular, their solution-like environment and non-fouling nature in complex biological samples render hydrogels as ideal substrates for biosensing applications. Hydrogel coatings, and later, gel dot surface microarrays, were successfully used in sensitive nucleic acid assays and immunoassays. More recently, new microfabrication techniques for synthesizing encoded particles from hydrogel materials have enabled the development of hydrogel-based suspension arrays. Lithography processes and droplet-based microfluidic techniques enable generation of libraries of particles with unique spectral or graphical codes, for multiplexed sensing in biological samples. In this review, we discuss the key questions arising when designing hydrogel particles dedicated to biosensing. How can the hydrogel material be engineered in order to tune its properties and immobilize bioprobes inside? What are the strategies to fabricate and encode gel particles, and how can particles be processed and decoded after the assay? Finally, we review the bioassays reported so far in the literature that have used hydrogel particle arrays and give an outlook of further developments of the field. PMID:26594056

  17. 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films.

    PubMed

    Giselbrecht, S; Gietzelt, T; Gottwald, E; Trautmann, C; Truckenmüller, R; Weibezahn, K F; Welle, A

    2006-09-01

    We describe a new technology based on thermoforming as a microfabrication process. It significantly enhances the tailoring of polymers for three dimensional tissue engineering purposes since for the first time highly resolved surface and bulk modifications prior to a microstructuring process can be realised. In contrast to typical micro moulding techniques, the melting phase is avoided and thus allows the forming of pre-processed polymer films. The polymer is formed in a thermoelastic state without loss of material coherence. Therefore, previously generated modifications can be preserved. To prove the feasibility of our newly developed technique, so called SMART = Substrate Modification And Replication by Thermoforming, polymer films treated by various polymer modification methods, like UV-based patterned films, and films modified by the bombardment with energetic heavy ions, were post-processed by microthermoforming. The preservation of locally applied specific surface and bulk features was demonstrated e.g. by the selective adhesion of cells to patterned microcavity walls.

  18. A correlated study of laser produced plume expansion dynamics and thin film growth of manganates

    NASA Astrophysics Data System (ADS)

    Amoruso, S.; Angeloni, M.; Balestrino, G.; Boggio, N.; Bruzzese, R.; Medaglia, P. G.; Tebano, A.; Vitiello, M.; Wang, X.

    2005-07-01

    Thin films of La 0.67Ba 0.33MnO 3 were deposited on NdGaO 3 by pulsed laser deposition with in situ RHEED diagnostics. A strong dependence of structural and electrical transport properties of the films on the background oxygen pressure was observed. Electrical resistance versus temperature and X-ray diffraction measurements were used to characterise the deposited films. Deposition at low background oxygen pressure (≈10 -1 Pa) resulted in a good structural quality with an atomically flat surface, but poorer transport properties compared to films grown at higher pressure (≈50 Pa). These observations have been correlated with the characteristics of the plume expansion by studying pulsed laser ablation of manganate samples into oxygen background gas by optical emission spectroscopy and ion probe diagnostics. These studies have been carried out using the parent LaMnO 3 compound as target material in presence of an oxidizing atmosphere.

  19. Method of producing nanopatterned articles using surface-reconstructed block copolymer films

    DOEpatents

    Russell, Thomas P; Park, Soojin; Wang, Jia-Yu; Kim, Bokyung

    2013-08-27

    Nanopatterned surfaces are prepared by a method that includes forming a block copolymer film on a substrate, annealing and surface reconstructing the block copolymer film to create an array of cylindrical voids, depositing a metal on the surface-reconstructed block copolymer film, and heating the metal-coated block copolymer film to redistribute at least some of the metal into the cylindrical voids. When very thin metal layers and low heating temperatures are used, metal nanodots can be formed. When thicker metal layers and higher heating temperatures are used, the resulting metal structure includes nanoring-shaped voids. The nanopatterned surfaces can be transferred to the underlying substrates via etching, or used to prepare nanodot- or nanoring-decorated substrate surfaces.

  20. Nanostructured rhodium films produced by pulsed laser deposition for nuclear fusion applications

    NASA Astrophysics Data System (ADS)

    Passoni, M.; Dellasega, D.; Grosso, G.; Conti, C.; Ubaldi, M. C.; Bottani, C. E.

    2010-09-01

    In this paper the possibilities offered by pulsed laser deposition (PLD) for the production of nanostructured rhodium films with improved properties are explored. Thanks to its high reflectivity and low sputtering yield, rhodium is one of the best candidates for the development of thin films to be used in first mirrors, which are crucial components in many diagnostic systems of thermonuclear magnetic fusion machines, like tokamaks. Due to the features of PLD, by varying the process parameters it is possible to tailor both the structure, i.e. the nanocrystalline domain size of the deposited films, down to less than 5 nm and separately control the other relevant physical properties. This leads to modifications in growth regime and annealing dynamics, in such a way that both morphology and reflectivity achieve the properties demanded to use these films as mirrors for fusion applications, opening at the same time new possibilities for the future improvement of thermo-mechanical and adhesion properties.

  1. Rice stubble as a new biopolymer source to produce carboxymethyl cellulose-blended films.

    PubMed

    Rodsamran, Pattrathip; Sothornvit, Rungsinee

    2017-09-01

    Rice stubble is agricultural waste consisting of cellulose which can be converted to carboxymethyl cellulose from rice stubble (CMCr) as a potential biomaterial. Plasticizer types (glycerol and olive oil) and their contents were investigated to provide flexibility for use as food packaging material. Glycerol content enhanced extensibility, while olive oil content improved the moisture barrier of films. Additionally, CMCr showed potential as a replacement for up to 50% of commercial CMC without any changes in mechanical and permeability properties. A mixture of plasticizers (10% glycerol and 10% olive oil) provided blended film with good water barrier and mechanical properties comparable with 20% individual plasticizer. Principle component (PC) analysis with 2 PCs explained approximately 81% of the total variance, was a useful tool to select a suitable plasticizer ratio for blended film production. Therefore, CMCr can be used to form edible film and coating as a renewable environmentally friendly packaging material. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Oral transmucosal delivery of domperidone from immediate release films produced via hot-melt extrusion technology.

    PubMed

    Palem, Chinna Reddy; Kumar Battu, Sunil; Maddineni, Sindhuri; Gannu, Ramesh; Repka, Michael A; Yamsani, Madhusudan Rao

    2013-02-01

    The objective of the study was to prepare and characterize the domperidone (DOM) hot-melt extruded (HME) buccal films by both in vitro and in vivo techniques. The HME film formulations contained PEO N10 and/or its combination with HPMC E5 LV or Eudragit RL100 as polymeric carriers, and PEG3350 as a plasticizer. The blends were co-processed at a screw speed of 50 rpm with the barrel temperatures ranging from 120-160°C utilizing a bench top co-rotating twin-screw hot-melt extruder using a transverse-slit die. The HME films were evaluated for drug content, drug excipient interaction, in vitro drug release, mechanical properties, in vivo residence time, in vitro bioadhesion, swelling and erosion, ex vivo permeation from HME films and the selected optimal formulation was subjected for bioavailability studies in healthy human volunteers. The extruded films demonstrated no drug excipient interaction and excellent content uniformity. The selected HME film formulation (DOM2) exhibited a tensile strength (0.72 Kg/mm(2)), elongation at break (28.4% mm(2)), in vivo residence time (120 min), peak detachment force (1.55 N), work of adhesion (1.49 mJ), swelling index (210.2%), erosion (10.5%) and in vitro drug release of 84.8% in 2 h. Bioavailability from the optimized HME buccal films was 1.5 times higher than the oral dosage form and the results showed statistically significant (p < 0.05) difference. The ex vivo-in vivo correlation was found to have biphasic pattern and followed type A correlation. The results indicate that HME is a viable technique for the preparation of DOM buccal-adhesive films with improved bioavailability characteristics.

  3. Producing ZnFe2O4 thin films from ZnO/FeO multilayers

    NASA Astrophysics Data System (ADS)

    Salcedo Rodríguez, Karen L.; Hoffmann, Martin; Golmar, Federico; Pasquevich, Gustavo; Werner, Peter; Hergert, Wolfram; Rodríguez Torres, Claudia E.

    2017-01-01

    The present work investigates the structural and magnetic properties of ZnFe2O4 thin films obtained from ZnO/FeO multilayers deposited on MgO substrate by DC reactive sputtering. We show that this method is good to grow efficiently ordered ZnFe2O4 films. The quality of the thin films is ensured by TEM measurements, which showed a well ordered film of ZnFe2O4. The magnetic properties of these thin films present still minimal differences when compared to bulk ZnFe2O4 powders. They exhibit a ferromagnetic-like behavior at low temperatures, whereas ZnFe2O4 is expected to be antiferromagnetic. We found that the magnetic signal originated from the film surface, where cation inversion was visible from grazing incidence X-ray fluorescence measurements. The inversion of Fe ions with Zn ions caused a magnetic spin glass state, which created then the ferromagnetic-like behavior differently to bulk ZnFe2O4. These facts point to possible routes in order to improve the growing process of ZnFe2O4 via ZnO/FeO multilayers.

  4. Structure and magnetic properties of nanostructured Pd-Fe thin films produced by pulse electrodeposition.

    PubMed

    Strukova, G K; Strukov, G V; Bozhko, S I; Kabanov, Y P; Shmytko, I M; Mazilkin, A A; Sobolev, N A; Zhiteytsev, E R; Sukhanov, A A; Voronkova, V K; Tagirov, L R

    2011-10-01

    Nanostructured Pd-Fe thin films with varied Fe content were prepared by electrodeposition technique from organic electrolytes on Cu and brass substrates. The structure and the magnetic properties of the films were investigated prior to post-deposition annealing. The structure of the Pd1-xFe(x) thin film with x = 0.14, 0.24, and 0.52 was determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM) as a solid solution of iron in palladium face-centered cubic lattice with the (111) orientation of nanograins relatively to the substrate surface. The films with higher iron concentration, x = 0.74, 0.91, have structure of a solid solution based on the body-centered cubic lattice. The average grain size determined by the scanning electron microscopy (SEM) for the first two alloys is 7-10 nm, and for the latter ones it is about 120 nm. The saturation magnetization of the films has linear dependence on the iron content, but coercivity has non-monotonic dependence on x, i.e., the films with x = 0.68 show highest coercivity. The magnetic anisotropy of the samples is studied by ferromagnetic resonance (FMR) spectroscopy.

  5. Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

    PubMed Central

    Nabok, Alexei; Davis, Frank; Higson, Séamus P J

    2016-01-01

    Summary In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene–surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir–Blodgett (LB) or electrostatic layer-by-layer (LbL) deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(−)SDS alternated with polyethyleneimine (PEI). The optical study of graphene thin films deposited on different substrates was carried out using UV–vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE) which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers. PMID:26977378

  6. Hypoxia-Inducible Hydrogels

    PubMed Central

    Park, Kyung Min; Gerecht, Sharon

    2014-01-01

    Oxygen is vital for the existence of all multicellular organisms, acting as a signaling molecule regulating cellular activities. Specifically, hypoxia, which occurs when the partial pressure of oxygen falls below 5%, plays a pivotal role during development, regeneration, and cancer. Here we report a novel hypoxia-inducible (HI) hydrogel composed of gelatin and ferulic acid that can form hydrogel networks via oxygen consumption in a laccase-mediated reaction. Oxygen levels and gradients within the hydrogels can be accurately controlled and precisely predicted. We demonstrate that HI hydrogels guide vascular morphogenesis in vitro via hypoxia-inducible factors activation of matrix metalloproteinases and promote rapid neovascularization from the host tissue during subcutaneous wound healing. The HI hydrogel is a new class of biomaterials that may prove useful in many applications, ranging from fundamental studies of developmental, regenerative and disease processes through the engineering of healthy and diseased tissue models towards the treatment of hypoxia-regulated disorders. PMID:24909742

  7. Chitosan-Iron Oxide Coated Graphene Oxide Nanocomposite Hydrogel: A Robust and Soft Antimicrobial Biofilm.

    PubMed

    Konwar, Achyut; Kalita, Sanjeeb; Kotoky, Jibon; Chowdhury, Devasish

    2016-08-17

    We report a robust biofilm with antimicrobial properties fabricated from chitosan-iron oxide coated graphene oxide nanocomposite hydrogel. For the first time, the coprecipitation method was used for the successful synthesis of iron oxide coated graphene oxide (GIO) nanomaterial. After this, films were fabricated by the gel-casting technique aided by the self-healing ability of the chitosan hydrogel network system. Both the nanomaterial and the nanocomposite films were characterized by techniques such as scanning electron microscopy, FT-IR spectroscopy, X-ray diffraction, and vibrating sample magnetometry. Measurements of the thermodynamic stability and mechanical properties of the films indictaed a significant improvement in their thermal and mechanical properties. Moreover, the stress-strain profile indicated the tough nature of the nanocomposite hydrogel films. These improvements, therefore, indicated an effective interaction and good compatibility of the GIO nanomaterial with the chitosan hydrogel matrix. In addition, it was also possible to fabricate films with tunable surface properties such as hydrophobicity simply by varying the loading percentage of GIO nanomaterial in the hydrogel matrix. Fascinatingly, the chitosan-iron oxide coated graphene oxide nanocomposite hydrogel films displayed significant antimicrobial activities against both Gram-positive and Gram-negative bacterial strains, such as methicillin-resistant Staphylococcus aureus, Staphylococcus aureus, and Escherichia coli, and also against the opportunistic dermatophyte Candida albicans. The antimicrobial activities of the films were tested by agar diffusion assay and antimicrobial testing based on direct contact. A comparison of the antimicrobial activity of the chitosan-GIO nanocomposite hydrogel films with those of individual chitosan-graphene oxide and chitosan-iron oxide nanocomposite films demonstrated a higher antimicrobial activity for the former in both types of tests. In vitro hemolysis

  8. Conducting polymer-hydrogels for medical electrode applications

    PubMed Central

    Green, Rylie A; Baek, Sungchul; Poole-Warren, Laura A; Martens, Penny J

    2010-01-01

    Conducting polymers hold significant promise as electrode coatings; however, they are characterized by inherently poor mechanical properties. Blending or producing layered conducting polymers with other polymer forms, such as hydrogels, has been proposed as an approach to improving these properties. There are many challenges to producing hybrid polymers incorporating conducting polymers and hydrogels, including the fabrication of structures based on two such dissimilar materials and evaluation of the properties of the resulting structures. Although both fabrication and evaluation of structure–property relationships remain challenges, materials comprised of conducting polymers and hydrogels are promising for the next generation of bioactive electrode coatings. PMID:27877322

  9. Microfluidic mass production system for hydrogel microtubes for microbial culture

    NASA Astrophysics Data System (ADS)

    Fujimoto, Kazuma; Higashi, Kazuhiko; Onoe, Hiroaki; Miki, Norihisa

    2017-06-01

    In this study, we characterize the formation of hydrogel microtubes for microbial culture formed using a mass production system. We demonstrated microbial culture using hydrogel microtubes, which can protect the target microorganism inside from competitive microorganisms outside while they allow oxygen, nutrition, and byproducts to diffuse through. The hydrogel microtubes can be produced using a microfluidic device, but the scale-up of microtube production is crucial for practical applications. We propose and develop a fluidic system that can produce multiple microtubes in parallel. We experimentally characterized the microtube formation using the device and demonstrated microbial culture in the microtubes. Tube thickness was found to be a critical parameter for the culture.

  10. Reinforcement of hydrogels using three-dimensionally printed microfibres

    NASA Astrophysics Data System (ADS)

    Visser, Jetze; Melchels, Ferry P. W.; Jeon, June E.; van Bussel, Erik M.; Kimpton, Laura S.; Byrne, Helen M.; Dhert, Wouter J. A.; Dalton, Paul D.; Hutmacher, Dietmar W.; Malda, Jos

    2015-04-01

    Despite intensive research, hydrogels currently available for tissue repair in the musculoskeletal system are unable to meet the mechanical, as well as the biological, requirements for successful outcomes. Here we reinforce soft hydrogels with highly organized, high-porosity microfibre networks that are 3D-printed with a technique termed as melt electrospinning writing. We show that the stiffness of the gel/scaffold composites increases synergistically (up to 54-fold), compared with hydrogels or microfibre scaffolds alone. Modelling affirms that reinforcement with defined microscale structures is applicable to numerous hydrogels. The stiffness and elasticity of the composites approach that of articular cartilage tissue. Human chondrocytes embedded in the composites are viable, retain their round morphology and are responsive to an in vitro physiological loading regime in terms of gene expression and matrix production. The current approach of reinforcing hydrogels with 3D-printed microfibres offers a fundament for producing tissue constructs with biological and mechanical compatibility.

  11. Physical properties of a-C:N films produced by ion beam assisted deposition

    SciTech Connect

    Rossi, F. ); Andre, B. ); van Veen, A.; Mijnarends, P.E.; Schut, H.; Labohm, F. ); Dunlop, H. ); Delplancke, M.P. ); Hubbard, K. )

    1994-09-01

    Carbon films with up to 32 at. % of nitrogen have been prepared with ion beam assisted magnetron, using a N[sup +][sub 2]/N[sup +] beam at energies between 50 and 300 eV. The composition and density of the films vary strongly with the deposition parameters. EELS, SXS, XPS, and IR studies show that these a-C:N films are mostly graphitic and have up to 20% [ital sp][sup 3] bonding. Nitrogen is mostly combined with carbon in nitrile (C[equivalent to]N) and imine (C=N) groups. RBS and NDP show that density goes through a maximum as the average damage energy per incoming ion increases. Positron annihilation spectroscopy shows that the void concentration in the films goes through a minimum with average damage energy. These results are consistent with a densification induced by the collisions at low average damage energy values and induced graphitization at higher damage energy values. These results are similar to what is observed for Ar ion assisted deposition of a-C films. The mechanical properties of these films have been studied with a nanoindenter, and it was found that the hardness and Young's modulus go through a maximum as the average damage energy is increased. The maximum of mechanical properties corresponds to the minimum in the void concentration in the film. Tribological studies of the a-C:N show that the friction coefficient obtained against diamond under dynamic loading decreases strongly as the nitrogen composition increases, this effect being more pronounced at low loads.

  12. An alternative experimental approach to produce rare-earth-doped SiO{sub x} films

    SciTech Connect

    Zanatta, A. R.

    2016-04-14

    Rare-earth (RE) doped silicon-oxide (SiO{sub x}) films were prepared by sputtering a combined Si + RE{sub 2}O{sub 3} target with argon ions. The study comprised the neodymium (Nd) and samarium (Sm) rare-earth species and the Si + RE{sub 2}O{sub 3} targets were obtained by partially covering a solid disc of Si with area-defined thin layers of Nd{sub 2}O{sub 3} or Sm{sub 2}O{sub 3} powders. The films were investigated by energy-dispersive x-ray, Raman scattering, optical transmission, and photo-luminescence measurements. According to the experimental results, in the as-deposited form, the films were amorphous and presented RE and oxygen concentrations that scaled with the RE{sub 2}O{sub 3} target area. Additional compositional-structural changes were obtained by thermal annealing the films under a flow of oxygen. Within these changes, one can mention: increase of oxygen concentration, optical bandgap widening, partial Si crystallization, and the development of RE-related light emission. The main aspects associated to the production and structural-optical properties of the films, as determined either by the deposition conditions or by the annealing treatments, are presented and discussed in detail.

  13. Hydrodynamic instabilities in laser pulse-produced melts of metal films

    NASA Astrophysics Data System (ADS)

    Bostanjoglo, O.; Nink, T.

    1996-06-01

    The dynamics of melts, as induced by 7 ns laser pulses in Al and Au films, were investigated by in situ time-resolved transmission electron microscopy. Melting, motion of the liquid, and crystallization were observed by tracing the image intensity with a photomultiplier (space/time resolution 100 nm/3 ns) and by streak imaging (streak times 15 ns-4 μs). Films with native oxides/adsorbed atmospheric contaminations and films purified by pulse melting were found to show a completely different behavior of their melts. The melts of purified films either remained almost flat (Al) or revealed a gradual pileup of liquid in cold regions within 500 ns (Au), caused by thermocapillarity with the negative thermal coefficient of the surface tension of pure metals. In contrast, contaminated films showed three distinctly different types of perturbations: (1) a fast expulsion of the melt from the center of the laser spot within 20 ns after the laser pulse; (2) a gradual contraction of liquid at the center within 0.5-1 μs; (3) thickness oscillations with frequencies of 5-10 MHz and time constants of 500 ns. These effects are explained by recoil from evaporating contaminations, by thermocapillary flow with a positive thermal coefficient of the surface tension, caused by surface active impurity atoms, and by thermocapillary waves.

  14. An alternative experimental approach to produce rare-earth-doped SiOx films

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.

    2016-04-01

    Rare-earth (RE) doped silicon-oxide (SiOx) films were prepared by sputtering a combined Si + RE2O3 target with argon ions. The study comprised the neodymium (Nd) and samarium (Sm) rare-earth species and the Si + RE2O3 targets were obtained by partially covering a solid disc of Si with area-defined thin layers of Nd2O3 or Sm2O3 powders. The films were investigated by energy-dispersive x-ray, Raman scattering, optical transmission, and photo-luminescence measurements. According to the experimental results, in the as-deposited form, the films were amorphous and presented RE and oxygen concentrations that scaled with the RE2O3 target area. Additional compositional-structural changes were obtained by thermal annealing the films under a flow of oxygen. Within these changes, one can mention: increase of oxygen concentration, optical bandgap widening, partial Si crystallization, and the development of RE-related light emission. The main aspects associated to the production and structural-optical properties of the films, as determined either by the deposition conditions or by the annealing treatments, are presented and discussed in detail.

  15. Structure-property relationships in self-assembling peptide hydrogels, homopolypeptides and polysaccharides

    NASA Astrophysics Data System (ADS)

    Hule, Rohan A.

    The main objective of this dissertation is to investigate quantitative structure-property relationships in a variety of molecular systems including de novo designed peptides, peptide amphiphiles, polysaccharides and high molecular weight polypeptides. Peptide molecules consisting of 20 amino acids were designed to undergo thermally triggered intramolecular folding into asymmetric beta-hairpins and intermolecular self-assembly via a strand swapping mechanism into physically crosslinked fibrillar hydrogels. The self-assembly mechanism was confirmed by multiple characterization techniques such as circular dichroism and FITR spectroscopy, atomic force and transmission electron microscopy and small angle neutron scattering. Three distinct fibrillar nanostructures, i.e. non-twisted, twisted and laminated were produced, depending on the degree of strand asymmetry and peptide registry. Differences in the fibrillar morphology have a direct consequence on the mechanical properties of the hydrogels, with the laminated hydrogels exhibiting a significantly higher elastic modulus as compared to the twisted or non-twisted fibrillar hydrogels. SANS and cryo-TEM data reveal that the self-assembled fibrils form networks that are fractal in nature. Models employed to elucidate the fractal behavior can relate changes in the correlation lengths, low q (network), and high q (fibrillar) fractal exponents to the distinct fibrillar nanomorphology. The fractal dimension of the networks varies significantly, from a mass to a surface fractal and can be directly related to the local fibrillar morphology and changes in the peptide concentration. Transitions in the fractal behavior seen in the high q regime can be attributed to self-assembly kinetics. An identical model can be used to establish a direct correlation between the bulk properties and changes in both, the network density and underlying morphology, of a modified peptide-based hydrogel. As in the case of asymmetric peptides, changes in

  16. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties

    NASA Astrophysics Data System (ADS)

    Olsen, T.; Schröder, U.; Müller, S.; Krause, A.; Martin, D.; Singh, A.; Müller, J.; Geidel, M.; Mikolajick, T.

    2012-08-01

    Thin film capacitors were fabricated by sputtering TiN-Y doped HfO2-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO2 layers by simultaneously sputtering from Y2O3 and HfO2 sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.

  17. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties

    SciTech Connect

    Olsen, T.; Schroeder, U.; Mueller, S.; Krause, A.; Martin, D.; Singh, A.; Mueller, J.; Geidel, M.; Mikolajick, T.

    2012-08-20

    Thin film capacitors were fabricated by sputtering TiN-Y doped HfO{sub 2}-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO{sub 2} layers by simultaneously sputtering from Y{sub 2}O{sub 3} and HfO{sub 2} sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.

  18. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1994-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells.

  19. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1994-04-26

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the solar energy conversion efficiency of thin-film photovoltaic cells. 4 figures.

  20. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, Robert J.

    1996-01-01

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells.

  1. Method for producing textured substrates for thin-film photovoltaic cells

    DOEpatents

    Lauf, R.J.

    1996-04-02

    The invention pertains to the production of ceramic substrates used in the manufacture of thin-film photovoltaic cells used for directly converting solar energy to electrical energy. Elongated ribbon-like sheets of substrate precursor containing a mixture of ceramic particulates, a binder, and a plasticizer are formed and then while green provided with a mechanically textured surface region used for supporting the thin film semiconductor of the photovoltaic cell when the sheets of the substrate precursor are subsequently cut into substrate-sized shapes and then sintered. The textured surface pattern on the substrate provides enhanced light trapping and collection for substantially increasing the, solar energy conversion efficiency of thin-film photovoltaic cells. 4 figs.

  2. Nitrogen incorporation in carbon nitride films produced by direct and dual ion-beam sputtering

    SciTech Connect

    Abrasonis, G.; Gago, R.; Jimenez, I.; Kreissig, U.; Kolitsch, A.; Moeller, W.

    2005-10-01

    Carbon (C) and carbon nitride (CN{sub x}) films were grown on Si(100) substrates by direct ion-beam sputtering (IBS) of a carbon target at different substrate temperatures (room temperature-450 deg. C) and Ar/N{sub 2} sputtering gas mixtures. Additionally, the effect of concurrent nitrogen-ion assistance during the growth of CN{sub x} films by IBS was also investigated. The samples were analyzed by elastic recoil detection analysis (ERDA) and x-ray absorption near-edge spectroscopy (XANES). The ERDA results showed that significant nitrogen amount (up to 20 at. %) was incorporated in the films, without any other nitrogen source but the N{sub 2}-containing sputtering gas. The nitrogen concentration is proportional to the N{sub 2} content in the sputtering beam and no saturation limit is reached under the present working conditions. The film areal density derived from ERDA revealed a decrease in the amount of deposited material at increasing growth temperature, with a correlation between the C and N losses. The XANES results indicate that N atoms are efficiently incorporated into the carbon network and can be found in different bonding environments, such as pyridinelike, nitrilelike, graphitelike, and embedded N{sub 2} molecules. The contribution of molecular and pyridinelike nitrogen decreases when the temperature increases while the contribution of the nitrilelike nitrogen increases. The concurrent nitrogen ion assistance resulted in the significant increase of the nitrogen content in the film but it induced a further reduction of the deposited material. Additionally, the assisting ions inhibited the formation of the nitrilelike configurations while promoting nitrogen environments in graphitelike positions. The nitrogen incorporation and release mechanisms are discussed in terms of film growth precursors, ion bombardment effects, and chemical sputtering.

  3. Hydrogel Nanofilaments via Core-Shell Electrospinning

    PubMed Central

    Liwińska, Wioletta; Hejduk, Patryk; Zembrzycki, Krzysztof; Zabost, Ewelina; Kowalewski, Tomasz A.

    2015-01-01

    Recent biomedical hydrogels applications require the development of nanostructures with controlled diameter and adjustable mechanical properties. Here we present a technique for the production of flexible nanofilaments to be used as drug carriers or in microfluidics, with deformability and elasticity resembling those of long DNA chains. The fabrication method is based on the core-shell electrospinning technique with core solution polymerisation post electrospinning. Produced from the nanofibers highly deformable hydrogel nanofilaments are characterised by their Brownian motion and bending dynamics. The evaluated mechanical properties are compared with AFM nanoindentation tests. PMID:26091487

  4. Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby

    DOEpatents

    Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu

    2014-04-01

    A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.

  5. Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby

    DOEpatents

    Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu

    2014-04-01

    A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.

  6. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications

    PubMed Central

    Zhao, Fuli; Yao, Dan; Guo, Ruiwei; Deng, Liandong; Dong, Anjie; Zhang, Jianhua

    2015-01-01

    Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed. PMID:28347111

  7. Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method.

    PubMed

    Qi, Xiaoliang; Hu, Xinyu; Wei, Wei; Yu, Hao; Li, Junjian; Zhang, Jianfa; Dong, Wei

    2015-03-15

    Salecan is a novel water-soluble extracellular-glucan produced by a new kind of salt-tolerant strain Agrobacterium sp. ZX09 and can be applied in food and medicine industries. In this work, Salecan (Sal) was incorporated into poly(vinyl alcohol) (PVA) to prepare novel Sal/PVA hybrid hydrogels by repeated freeze-thaw processing. Physicochemical and biological characteristics of the hydrogels were investigated to evaluate their potential as cell adhesion materials. By increasing the Salecan content in the hybrid hydrogels, their swelling capacity increased notably, while the compressive modulus decreased. Observed by SEM, Sal/PVA hydrogels had a homogeneous porous structure. The degradation rate of the hydrogels can be controlled by tailoring the composition ratio of Sal/PVA. Furthermore, cells could adhere well on the surface of Sal/PVA hydrogels. In conclusion, these results make Sal/PVA hydrogels attractive materials for biomedical applications.

  8. Contemporary issues in hydrogels research

    SciTech Connect

    Peppas, N.A.

    1993-12-31

    The last ten years has seen an explosion in hydrogels research, the result of improved understanding of the structure and behavior of these water-swollen, crosslinked polymers. After the early developments of Flory And Katchalsky in the 1940s, the great Czechoslovakian researchers of the 1960s and Andrade, Hoffman, Ratner and Merrill of the early 1970s, hydrogels have again attracted significant research interest, especially through the imaginative research of Tanaka in the 1980s and others. Eight general areas of contemporary research in hydrogels are identified: (i) kinetic analysis of the copolymerization/crosslinking reactions used in hydrogel preparation; (ii) gelation and percolation theories; (iii) novel methods for tailor-made copolymers with desirable functional groups, or biodegradable chains; (iv) biomimetic hydrogels; (V) hydrogels of controlled porous structure; (vi) ultrapure hydrogels devoid of crosslinking agents, emulsifiers, etc.; (vii) critical phenomena in hydrogels; and (viii) behavior of anionic, cationic and amphiphilic hydrogels.

  9. Chemical Fabrication Used to Produce Thin-Film Materials for High Power-to- Weight-Ratio Space Photovoltaic Arrays

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Rybicki, George C.; Raffaelle, Ryne P.; Harris, Jerry D.; Hehemann, David G.; Junek, William; Gorse, Joseph; Thompson, Tracy L.; Hollingsworth, Jennifer A.; Buhro, William E.

    2000-01-01

    The key to achieving high specific power (watts per kilogram) space solar arrays is the development of a high-efficiency, thin-film solar cell that can be fabricated directly on a flexible, lightweight, space-qualified durable substrate such as Kapton (DuPont) or other polyimide or suitable polymer film. Cell efficiencies approaching 20 percent at AM0 (air mass zero) are required. Current thin-film cell fabrication approaches are limited by either (1) the ultimate efficiency that can be achieved with the device material and structure or (2) the requirement for high-temperature deposition processes that are incompatible with all presently known flexible polyimide or other polymer substrate materials. Cell fabrication processes must be developed that will produce high-efficiency cells at temperatures below 400 degrees Celsius, and preferably below 300 degress Celsius to minimize the problems associated with the difference between the coefficients of thermal expansion of the substrate and thin-film solar cell and/or the decomposition of the substrate.

  10. Investigation on the Electrical and Methane Gas-Sensing Properties of ZnO Thin Films Produced by Different Methods

    NASA Astrophysics Data System (ADS)

    Teimoori, F.; Khojier, K.; Dehnavi, N. Z.

    2016-10-01

    In this work, the influence of deposition method on the structural, electrical, and methane gas-sensing properties of ZnO thin films is investigated. Sol-gel spin coating, direct current (DC) magnetron sputtering, and e-beam evaporation techniques are employed for production of Zn thin films post-annealed at 500°C with a constant flow of oxygen. Detailed morphological, chemical, and structural investigations are carried out on all samples by field emission electron microscopy (FESEM) and x-ray diffraction (XRD) analyses. DC electrical resistivity of the samples was measured using a four-point probe instrument while a Hall effect instrument was used for the Hall effect measurements. The sensing performance was optimized with respect to the deposition method as well as the operating temperature. Detection limit, reproducibility, and stability of all samples produced using different methods are also identified. An optimum operating temperature of 350°C is obtained. The best sensitivity was attributed to the deposited film by the e-beam evaporation method due to its different surface morphology, which provided a larger ratio of surface-to-bulk area, and a lower carrier concentration, which caused higher electrical resistance. All ZnO thin films deposited by different methods also showed good reproducibility and stability.

  11. Method and system for producing sputtered thin films with sub-angstrom thickness uniformity or custom thickness gradients

    DOEpatents

    Folta, James A.; Montcalm, Claude; Walton, Christopher

    2003-01-01

    A method and system for producing a thin film with highly uniform (or highly accurate custom graded) thickness on a flat or graded substrate (such as concave or convex optics), by sweeping the substrate across a vapor deposition source with controlled (and generally, time-varying) velocity. In preferred embodiments, the method includes the steps of measuring the source flux distribution (using a test piece that is held stationary while exposed to the source), calculating a set of predicted film thickness profiles, each film thickness profile assuming the measured flux distribution and a different one of a set of sweep velocity modulation recipes, and determining from the predicted film thickness profiles a sweep velocity modulation recipe which is adequate to achieve a predetermined thickness profile. Aspects of the invention include a practical method of accurately measuring source flux distribution, and a computer-implemented method employing a graphical user interface to facilitate convenient selection of an optimal or nearly optimal sweep velocity modulation recipe to achieve a desired thickness profile on a substrate. Preferably, the computer implements an algorithm in which many sweep velocity function parameters (for example, the speed at which each substrate spins about its center as it sweeps across the source) can be varied or set to zero.

  12. Exciton dynamics of CdS thin films produced by chemical bath deposition and DC pulse sputtering.

    PubMed

    Cooper, Jason K; Cao, Jinbo; Zhang, Jin Z

    2013-08-14

    Exciton dynamics of CdS films have been investigated using ultrafast laser spectroscopy with an emphasis on understanding defect-related recombination. Two types of CdS films were deposited on glass substrates via direct current pulse sputtering (DCPS) and chemical bath deposition (CBD) techniques. The films displayed distinct morphological, optical, and structural properties. Their exciton and charge carrier dynamics within the first 1 ns following photoexcitation were characterized by femotosecond pump probe spectroscopy. A singular value decomposition (SVD) global fitting technique was employed to extract the lifetime and wavelength dependence of transient species. The excited electrons of the DCPS sample decays through 1.8, 8, 65, and 450 ps time constants which were attributed to donor level electron trapping, valence band (VB) → conduction band (CB) recombination, shallow donor recombination, and deep donor recombination, respectively. The CBD sample shows time constants of 6, 65, and 450 ps which were attributed to CB → VB recombination, sulfur vacancy (VS) recombination, and VS → oxygen interstitial (Oi) donor-acceptor pair (DAP) recombination, respectively. It was found that the DCPS deposition technique produces films with lower defect density and improved carrier dynamics, which are important for high performance solar cell applications.

  13. Anisotropic multicompartment micro- and nano-capsules produced via embedding into biocompatible PLL/HA films.

    PubMed

    Delcea, Mihaela; Madaboosi, Narayanan; Yashchenok, Alexey M; Subedi, Prabal; Volodkin, Dmitry V; De Geest, Bruno G; Möhwald, Helmuth; Skirtach, André G

    2011-02-21

    We present a novel strategy to fabricate anisotropic multicompartment Janus capsules by embedding larger containers into a soft poly-L-lysine/hyaluronic acid (PLL/HA) polymeric film, followed by adsorption of smaller containers on top of their unmasked surface. This research is also attractive for developing substrates for cell cultures.

  14. Physical properties of nitrogenated amorphous carbon films produced by ion-beam-assisted deposition

    NASA Astrophysics Data System (ADS)

    Rossi, Francois; Andre, Bernard; Veen, A. Van; Mijnarends, P. E.; Schut, H.; Labohm, F.; Delplancke, Marie Paule; Dunlop, Hugh; Anger, Eric

    1994-12-01

    Carbon films with up to 32 at.% N (a-C:N) have been prepared using an ion-beam-assisted magnetron, with an N2(+) beam at energies between 50 and 300 eV. The composition and density of the films vary strongly with the deposition parameters. Electron energy loss spectroscopy shows that these a-C:N films are mostly graphitic with up to 20% C Sp3 bonding. Rutherford backscattering spectroscopy and neutron depth profiling show that the density goes through a maximum as the average deposited energy per unit depth increases. X-ray photoelectron spectroscopy shows that nitrogen is mostly combined with carbon in triple (C(triple bond)N and double (C=N) bonds. Positron annihilation spectroscopy shows that the void concentration in the films goes through a minimum with deposited energy. These results are consistent with a densification induced by the collisions at low deposited energy, and damage-induced graphitization at high deposited energy values.

  15. Study on amorphous TiAlN films produced by radiofrequency reactive sputtering

    NASA Astrophysics Data System (ADS)

    Garcia-Gonzalez, L.; Morales-Hernandez, J.; Bartolo-Perez, J. P.; Ceh-Soberanis, O.; Munoz-Saldana, J.; Espinoza-Beltran, F. J.

    2004-06-01

    Using the reactive magnetron rf sputtering technique, we prepared TiAlN films with amorphous structure on Corning glass and steel substrates in a reactive atmosphere of nitrogen and argon using a target of Ti-Al (40/60 wt. %). The average temperature of the substrates was about 25degreesC, with the purpose of obtaining amorphous films. The ratio of partial pressure of nitrogen to argon, P-N/P-Ar, was varied according to these values: 0.14, 0.28, and 0.43; fixing these values during whole the evaporation. Further on, films were prepared introducing nitrogen in periodic pulses with maximum values of P-N/P-Ar approximate to 4.7 during 45 seconds, with fixed periods of 10, 15 and 20 minutes. In all cases amorphous films were obtained, according to X-ray Diffraction. The chemical composition of the samples was measured by electron dispersive spectroscopy, showing a clear dependence with the evaporation conditions. In spite of the amorphous structure of the material, atomic force microscopy measurements showed a surface morphology dependent on the nitrogen content. Additionally, measurements of electronic spectroscopy for chemical analysis and Raman scattering spectroscopy for identification of chemical bonds were carried out. Measurements of mechanical properties of the samples were carried out using nanoindentation and micro-hardness Vicker's tests.

  16. Antimicrobial volatile essential oils in edible films and pouches for produce safety

    USDA-ARS?s Scientific Manuscript database

    Plant-derived essential oils (EOs) and oil compounds, with relatively high vapor pressure, have been evaluated at their liquid and gas phases for their ability to protect food against pathogenic bacteria. The evaluation of antimicrobial effectiveness of EOs in edible films can be done by different m...

  17. Research of mechanical stresses in micromechanical structures based on silicon carbide films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mikhailova, O. N.; Korlyakov, A. V.; Lagosh, A. V.

    2017-07-01

    Investigations of the effect of residual atmosphere in the magnetron chamber on the mechanical stresses and the shape of micromechanical structure based on SiC film are discussed. Measurements of the curvature radius of SiC micromechanical structure deflection are presented.

  18. Using dairy ingredients to produce edible films and biodegradable packaging materials

    USDA-ARS?s Scientific Manuscript database

    Food packaging is comprised of multi-layers of films which are thin continuous sheets of synthetic polymers. Recently, major food retailers and consumers have become concerned about the waste that packaging generates and the scarce natural resources and energy used in its manufacture. They are deman...

  19. Antifouling properties of hydrogels

    PubMed Central

    Murosaki, Takayuki; Ahmed, Nafees; Ping Gong, Jian

    2011-01-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet ‘hydrogel’. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris. PMID:27877456

  20. Preparation and application of agar/alginate/collagen ternary blend functional food packaging films.

    PubMed

    Wang, Long-Feng; Rhim, Jong-Whan

    2015-09-01

    Ternary blend agar/alginate/collagen (A/A/C) hydrogel films with silver nanoparticles (AgNPs) and grapefruit seed extract (GSE) were prepared. Their performance properties, transparency, tensile strength (TS), water vapor permeability (WVP), water contact angle (CA), water swelling ratio (SR), water solubility (WS), and antimicrobial activity were determined. The A/A/C film was highly transparent, and both AgNPs and GSE incorporated blend films (A/A/C(AgNPs) and A/A/C(GSE)) exhibited UV-screening effect, especially, the A/A/C(GSE) film had high UV-screening effect without sacrificing the transmittance. In addition, the A/A/C blend films formed efficient hydrogel film with the water holding capacity of 23.6 times of their weight. Both A/A/C(AgNPs) and A/A/C(GSE) composite films exhibited strong antimicrobial activity against both Gram-positive (Listeria monocytogenes) and Gram-negative (Escherichia coli) food-borne pathogenic bacteria. The test results of fresh potatoes packaging revealed that all the A/A/C ternary blend films prevented forming of condensed water on the packaged film surface, both A/A/C(AgNPs) and A/A/C(GSE) composite films prevented greening of potatoes during storage. The results indicate that the ternary blend hydrogel films incorporated with AgNPs or GSE can be used not only as antifogging packaging films for highly respiring fresh agriculture produce, but also as an active food packaging system utilizing their strong antimicrobial activity.

  1. Investigation of structure and properties of novel multi-layer clay nanocomposite films produced controllably by continuous chaotic advection blending

    NASA Astrophysics Data System (ADS)

    Mahesha, Chaitra

    A unique processing technique based on chaotic advection developed at Clemson University and shown to controllably produce structured materials in the past was employed to produce structured nanocomposites with a high degree of clay orientation as well as localization of platelets within layers of nanoscale thicknesses. Continuous lengths of nanocomposites with different clay contents were extruded in the form of films by feeding separately melts of virgin polyamide-6 polymer and polyamide 6-clay masterbatch into a continuous chaotic advection blender. A variety of composite structures were producible at fixed clay compositions. The internal structure was characterized by transmission electron microscopy (TEM), x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Nanocomposites with novel in-situ multi-layered structures and a high degree of platelet orientation were formed by the recursive stretching and folding of the melt domains due to chaotic advection. Clay platelets were localized within discrete regions to form alternating virgin and platelet-rich layers leading to a hierarchical structure with multiple nano-scales. The thicknesses of the layers reduced with prolonged chaotic advection, eventually leading to nanocomposites in which the multi-layering was no longer discernible. The oriented platelets appeared to be homogenously dispersed through the bulk of the nanocomposite. Investigation of the morphology of the matrix by XRD showed that the homogeneity of the crystalline phase and the orientation of polymer chains parallel to the film surface increased with increased chaotic advection. Also, as the layer thickness reduced, the number of polymer chains restricted by clay platelets increased causing the gamma-crystalline fraction to increase. While XRD results suggested a change in total crystallinity with chaotic advection and clay content but without a specific trend, no change in crystallinity was measured by DSC. Such contradictions are

  2. Evaluation of a mPEG-polyester-based hydrogel as cell carrier for chondrocytes.

    PubMed

    Peng, Sydney; Yang, Shu-Rui; Ko, Chao-Yin; Peng, Yu-Shiang; Chu, I-Ming

    2013-11-01

    Temperature-sensitive hydrogels are attractive alternatives to porous cell-seeded scaffolds and is minimally invasive through simple injection and in situ gelling. In this study, we compared the performance of two types of temperature-sensitive hydrogels on chondrocytes encapsulation for the use of tissue engineering of cartilage. The two hydrogels are composed of methoxy poly(ethylene glycol)- poly(lactic-co-valerolactone) (mPEG-PVLA), and methoxy poly(ethylene glycol)-poly(lactic- co-glycolide) (mPEG-PLGA). Osmolarity and pH were optimized through the manipulation of polymer concentration and dispersion medium. Chondrocytes proliferation in mPEG-PVLA hydrogels was observed as well as accumulation of GAGs and collagen. On the other hand, chondrocytes encapsulated in mPEG-PLGA hydrogels showed low viability and chondrogenesis. Also, mPEG-PVLA hydrogel, which is more hydrophobic, retained physical integrity after 14 days while mPEG-PLGA hydrogel underwent full degradation due to faster hydrolysis rate and more pronounced acidic self-catalyzed degradation. The mPEG-PVLA hydrogel can be furthered tuned by manipulation of molecular weights to obtain hydrogels with different swelling and degradation characteristics, which may be useful as producing a selection of hydrogels compatible with different cell types. Taken together, these results demonstrate that mPEG-PVLA hydrogels are promising to serve as three-dimensional cell carriers for chondrocytes and potentially applicable in cartilage tissue engineering.

  3. Electrophoretic deposition as a new approach to produce optical sensing films adaptable to microdevices

    NASA Astrophysics Data System (ADS)

    Marín-Suárez, Marta; Medina-Rodríguez, Santiago; Ergeneman, Olgaç; Pané, Salvador; Fernández-Sánchez, Jorge F.; Nelson, Bradley J.; Fernández-Gutiérrez, Alberto

    2013-12-01

    We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed. The amount of deposited particles can be tuned by varying either the electrical potential or the deposition time. The sensing phases were characterized using a phase-modulation technique showing a Stern-Volmer constant (kSV1) between 45 and 52 bar-1 for gas and of 20.72 bar-1 in the aqueous phase without leaching of the particles from the surface. The small thickness of the layers lead to short response times (<0.4 s). This is the first time that polymeric optical sensing films have been obtained by EPD from dispersions of oxygen sensing nanoparticles.We report the fabrication of optical oxygen sensor films using electrophoretic deposition (EPD) of poly(styrene-co-maleic anhydride) nanoparticles containing the oxygen-sensitive dye platinum(ii) meso-tetra(pentafluorophenyl)porphine. Compared to other deposition methods, the EPD is simple and allows easy control over deposition, which is crucial for the implementation of optical sensing films in microdevices. By optimizing the synthesis of the functional nanoparticles, anodic EPD can be performed. The amount of deposited particles can be tuned by varying either the electrical potential or the deposition time. The sensing phases were characterized using a phase-modulation technique showing a Stern-Volmer constant (kSV1) between 45 and 52 bar-1 for gas and of 20.72 bar-1 in the aqueous phase without leaching of the particles from the surface. The small thickness of the layers lead to short response times (<0.4 s). This is

  4. Nanoscale compositional banding in binary thin films produced by ion-assisted deposition

    SciTech Connect

    Mark Bradley, R.

    2013-12-14

    During the ion-assisted deposition of a binary material, the ion beam can induce the formation of nanoscale ripples on the surface of the growing thin film and compositional banding within its bulk. We demonstrate that this remains true even if the curvature dependence of the sputter yields and ballistic mass redistribution are negligible, and the two atomic species are completely miscible. The concentration of the species with the lower of the two sputter yields is higher at the crests of the ripples than at their troughs. Depending on the angles of incidence of the two atomic species, the incident flux of atoms with the higher sputter yield can either stabilize or destabilize the initially flat surface of the thin film.

  5. Characterization of tungsten oxide films produced by reactive pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Soto, G.; Cruz, W. De La; Díaz, J. A.; Machorro, R.; Castillón, F. F.; Farías, M. H.

    2003-09-01

    Tungsten oxide thin films have been prepared by reactive pulsed laser deposition (PLD). Substrate heat treatment and oxygen partial pressure during growth are correlated with Auger electron (AES), X-ray photoelectron (XPS), electron energy loss (EELS) and transmittance spectroscopies. Electronic and mass densities, composition and chemical states are strongly dependent of the deposition conditions. No significant change in the oxygen content in films as a function of substrate or annealing temperature is detected. However, the colored state turns out to be associated to the degree of chemical disorder in the samples, as evidenced by the peak shape of the W 4f transition. Also, the strength of a characteristic energy loss at 6-7 eV appears to be related to the presence of the colored state.

  6. Polymer hydrogels: Chaperoning vaccines

    NASA Astrophysics Data System (ADS)

    Staats, Herman F.; Leong, Kam W.

    2010-07-01

    A cationic nanosized hydrogel (nanogel) shows controlled antigen delivery in vivo following intranasal administration and hence holds promise for a clinically effective adjuvant-free and needle-free vaccine system.

  7. NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2012-09-01

    Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

  8. Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm

    NASA Astrophysics Data System (ADS)

    Thestrup, B.; Schou, J.

    Thin films of aluminium-doped zinc oxide (AZO) and indium tin oxide (ITO) were deposited on glass substrates by laser ablation in an oxygen environment. The electrical and optical properties of films grown at various oxygen pressures were compared. With no substrate heating, highly transparent and conducting films were obtained with oxygen pressures between 15 and 23 mTorr for both materials. We obtained a specific resistivity of 1.8×10-3 Ωcm for AZO and 1.1×10-3 Ωcm for ITO. By heating the substrate to 160 °C or 200 °C, the resistivity was further reduced to 1.1×10-3 Ωcm for AZO and 3.9×10-4 Ωcm for ITO. The average transmission of visible light (450-750 nm) was between 82% and 98% in most cases. The results suggest that AZO is a promising alternative to ITO.

  9. Miniaturized acceleration sensors with in-plane polarized piezoelectric thin films produced by micromachining.

    PubMed

    Shanmugavel, Saravanan; Yao, Kui; Luong, Trung Dung; Oh, Sharon Roslyn; Chen, Yifan; Tan, Chin Yaw; Gaunekar, Ajit; Ng, Peter Hon Yu; Li, Marchy Hing Leung

    2011-11-01

    Miniaturized acceleration sensors employing piezoelectric thin films were fabricated through batch micromachining with silicon and silicon-on-insulator (SOI) wafers. The acceleration sensors comprised multiple suspension beams supporting a central seismic mass. Ferroelectric (Pb,La)(Zr,Ti) O(3) (PLZT) thin films were coated and in-plane polarized on the surfaces of the suspension beams for realizing electromechanical conversion through the piezoelectric effect. Interdigital electrodes were formed on the PLZT films and connected in parallel. Finite element analyses were conducted for the stress and strain distributions, providing guidance to the structural design, including optimizing electrode positioning for collecting the electrical output constructively. Uniformity of the beam thickness and sample consistency were significantly improved by using SOI wafers instead of silicon wafers. The measurement results showed that all the sensor samples had fundamental resonances of symmetric out-of-plane vibration mode at frequencies in the range of 8 to 35 kHz, depending on the sample dimensions. These sensors exhibited stable electrical outputs in response to acceleration input, achieving a high signal-to-noise ratio without any external amplifier or signal conditioning.

  10. Reversible Polymer Hydrogels

    DTIC Science & Technology

    2008-12-01

    glucosamine hydrochloride was dissolved in 100 mL of de- ionized water and placed in an ice bath at >5oC and purged with N2 gas for 20 minutes; 3.25...Temperature sensitive hydrogels based on N-isopropyl acrylamide (NIPA) and acryloyl glucosamine (AG) were synthesized using ammonium persulfate (APS) as...hydrogels by copolymerization of poly (N-isopropylacrylamide) (NIPA), and acryloyl glucosamine (AG) a derivative of chi- tosan, a biopolymer from

  11. Conductive hydrogels: mechanically robust hybrids for use as biomaterials.

    PubMed

    Green, Rylie A; Hassarati, Rachelle T; Goding, Josef A; Baek, Sungchul; Lovell, Nigel H; Martens, Penny J; Poole-Warren, Laura A

    2012-04-01

    A hybrid system for producing conducting polymers within a doping hydrogel mesh is presented. These conductive hydrogels demonstrate comparable electroactivity to conventional conducting polymers without requiring the need for mobile doping ions which are typically used in literature. These hybrids have superior mechanical stability and a modulus significantly closer to neural tissue than materials which are commonly used for medical electrodes. Additionally they are shown to support the attachment and differentiation of neural like cells, with improved interaction when compared to homogeneous hydrogels. The system provides flexibility such that biologic incorporation can be tailored for application.

  12. Optical characterization of porous silicon monolayers decorated with hydrogel microspheres

    PubMed Central

    2014-01-01

    The optical response of porous silicon (pSi) films, covered with a quasi-hexagonal array of hydrogel microspheres, to immersion in ethanol/water mixtures was investigated. For this study, pSi monolayers were fabricated by electrochemical etching, stabilized by thermal oxidation, and decorated with hydrogel microspheres using spin coating. Reflectance spectra of pSi samples with and without deposited hydrogel microspheres were taken at normal incidence. The employed hydrogel microspheres, composed of poly-N-isopropylacrylamide (polyNIPAM), are stimuli-responsive and change their size as well as their refractive index upon exposure to alcohol/water mixtures. Hence, distinct differences in the interference pattern of bare pSi films and pSi layers covered with polyNIPAM spheres could be observed upon their immersion in the respective solutions using reflective interferometric Fourier transform spectroscopy (RIFTS). Here, the amount of reflected light (fast Fourier transform (FFT) amplitude), which corresponds to the refractive index contrast and light scattering at the pSi film interfaces, showed distinct differences for the two fabricated samples. Whereas the FFT amplitude of the bare porous silicon film followed the changes in the refractive index of the surrounding medium, the FFT amplitude of the pSi/polyNIPAM structure depended on the swelling/shrinking of the attached hydrogel spheres and exhibited a minimum in ethanol-water mixtures with 20 wt% ethanol. At this value, the polyNIPAM microgel is collapsed to its minimum size. In contrast, the effective optical thickness, which reflects the effective refractive index of the porous layer, was not influenced by the attached hydrogel spheres. PACS 81.05.Rm; 81.16.Dn; 83.80Kn; 42.79.Pw PMID:25221456

  13. Lipid deposition on hydrogel contact lenses: how history can help us today.

    PubMed

    Lorentz, Holly; Jones, Lyndon

    2007-04-01

    The tear film is a complex fluid that is precisely maintained and which is essential to the health of the ocular surface. One of the major components of the tear film is lipid, which is produced by the meibomian glands and serves many important functions on the ocular surface. It is estimated that there are more than 45 individual lipids within the tear film, which vary greatly in their structure and properties. The composition of the lipid within the tear film has an enormous influence on the stability of the tear film, with a subsequent impact on the occurrence of dry eye and the ultimate success of contact lens wear. The purpose of this review article is to describe the composition of the tear film lipids and their interaction with contact lens materials, with a particular emphasis on how the chemistry of novel silicone hydrogel materials has resulted in clinicians needing to understand the deposition of lipids onto contact lenses and how they may best manage this complication.

  14. Properties of blends for profiles and semi-rigid films made of PVC nanocomposites produced in pilot scale

    NASA Astrophysics Data System (ADS)

    Obloj-Muzaj, Maria; Abramowicz, Agnieszka; Kumosinski, Marcin; Zielecka, Maria; Kozakiewicz, Janusz; Gorska, Agnieszka

    2016-05-01

    PVC nanocomposites containing 0.5 wt. %/VCM of either nanosilica or hybrid core/shell type nanofiller were produced in-situ in suspension polymerisation. Significant increase in impact strength of PVC composites obtained was observed (higher 25 - 60 % in comparison with PVC). The amount of impact modifier in selected rigid PVC blends (e.g. in window profiles) could be significantly reduced (≥ 50 %). Tensile and flexural properties of nanocomposites were similar to PVC, however, at smaller amount of impact modifier other mechanical properties improve. Tear resistance of rigid films was better.

  15. Nanocomposite hydrogels for biomedical applications

    PubMed Central

    Gaharwar, Akhilesh K.

    2014-01-01

    Hydrogels mimic native tissue microenvironment due to their porous and hydrated molecular structure. An emerging approach to reinforce polymeric hydrogels and to include multiple functionalities focuses on incorporating nanoparticles within the hydrogel network. A wide range of nanoparticles, such as carbon-based, polymeric, ceramic, and metallic nanomaterials can be integrated within the hydrogel networks to obtain nanocomposites with superior properties and tailored functionality. Nanocomposite hydrogels can be engineered to possess superior physical, chemical, electrical, and biological properties. This review focuses on the most recent developments in the field of nanocomposite hydrogels with emphasis on biomedical and pharmaceutical applications. In particular, we discuss synthesis and fabrication of nanocomposite hydrogels, examine their current limitations and conclude with future directions in designing more advanced nanocomposite hydrogels for biomedical and biotechnological applications. PMID:24264728

  16. Research on the printability of hydrogels in 3D bioprinting

    NASA Astrophysics Data System (ADS)

    He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong

    2016-07-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  17. Research on the printability of hydrogels in 3D bioprinting

    PubMed Central

    He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells. PMID:27436509

  18. Research on the printability of hydrogels in 3D bioprinting.

    PubMed

    He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong

    2016-07-20

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  19. Polycrystalline lead iodide films produced by solution evaporation and tested in the mammography X-ray energy range

    NASA Astrophysics Data System (ADS)

    Condeles, J. F.; Mulato, M.

    2016-02-01

    Lead iodide polycrystalline films have been deposited on corning glass substrates using solution evaporation in oven. Films 6 μm-thick were obtained with full coverage of the substrates as verified by scanning electron microscopy. Some pin-holes were observable. X-ray diffraction revealed a crystalline structure corresponding to the 4 H-PbI2 polytype formation. Polarized Raman scattering experiments indicated a lamellar structure. Anisotropy was also investigated using depolarization ratio calculations. The optical and electrical properties of the samples were investigated using photoluminescence and dark conductivity as a function of temperature, respectively. Activation energies of 0.10 up to 0.89 eV were related to two main electrical transport mechanisms. Films were also exposed to X-ray irradiation in the mammography X-ray energy range. The detector produced was also exposed to X-ray from 5 mR up to 1450 mR. A linear response was observed as a function of dose with a slope of 0.52 nA/mm2 per mR.

  20. Stretchable Hydrogel Electronics and Devices

    PubMed Central

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe

    2016-01-01

    Animal bodies are mainly composed of hydrogels — polymer networks infiltrated with water. Most biological hydrogels are mechanically flexible yet robust, and they accommodate transportations (e.g., convection and diffusion) and reactions of various essential substances for life – endowing living bodies with exquisite functions such as sensing and responding, self-healing, self-reinforcing and self-regulating et al. To harness hydrogels’ unique properties and functions, intensive efforts have been devoted to developing various biomimetic structures and devices based on hydrogels. Examples include hydrogel valves for flow control in microfluidics[1], adaptive micro lenses activated by stimuli-responsive hydrogels[2], color-tunable colloidal crystals from hydrogel particles[3, 4], complex micro patterns switched by hydrogel-actuated nanostructures[5], responsive buckled hydrogel surfaces[6], and griping and self-walking structures based on hydrogels[7–9]. Entering the era of mobile health or mHealth, as unprecedented amounts of electronic devices are being integrated with human body[10–14], hydrogels with similar physiological and mechanical properties as human tissues represent ideal matrix/coating materials for electronics and devices to achieve long-term effective bio-integrations[15–17]. However, owing to the weak and brittle nature of common synthetic hydrogels, existing hydrogel electronics and devices mostly suffer from the limitation of low mechanical robustness and low stretchability. On the other hand, while hydrogels with extraordinary mechanical properties, or so-called tough hydrogels, have been recently developed[18–22], it is still challenging to fabricate tough hydrogels into stretchable electronics and devices capable of novel functions. The design of robust, stretchable and biocompatible hydrogel electronics and devices represents a critical challenge in the emerging field of soft materials, electronics and devices. PMID:26639322

  1. Writing with Fluid: Structuring Hydrogels with Micrometer Precision by AFM in Combination with Nanofluidics.

    PubMed

    Helfricht, Nicolas; Mark, Andreas; Behr, Marina; Bernet, Andreas; Schmidt, Hans-Werner; Papastavrou, Georg

    2017-08-01

    Hydrogels have many applications in biomedical surface modification and tissue engineering. However, the structuring of hydrogels after their formation represents still a major challenge, in particular due to their softness. Here, a novel approach is presented that is based on the combination of atomic force microscopy (AFM) and nanofluidics, also referred to as FluidFM technology. Its applicability is demonstrated for supramolecular hydrogel films that are prepared from low-molecular weight hydrogelators, such as derivates of 1,3,5-benzene tricarboxamides (BTAs). BTA films can be dissolved selectively by ejecting alkaline solution through the aperture of a hollow AFM-cantilever connected to a nanofluidic controller. The AFM-based force control is essential in preventing mechanical destruction of the hydrogels. The resulting "chemical writing" process is studied in detail and the influence of various parameters, such as applied pressure and time, is validated. It is demonstrated that the achievable structuring precision is primarily limited by diffusion and the aperture dimensions. Recently, various additive techniques have been presented to pattern hydrogels. The here-presented subtractive approach can not only be applied to structure hydrogels from the large class of reversibly formed gels with superior resolution but would also allow for the selective loading of the hydrogels with active substances or nanoparticles. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability

    PubMed Central

    Lo, Victor C.; Ren, Qin; Pham, Chi L. L.; Morris, Vanessa K.; Kwan, Ann H.; Sunde, Margaret

    2014-01-01

    Hydrophobins are small proteins secreted by fungi and which spontaneously assemble into amphipathic layers at hydrophilic-hydrophobic interfaces. We have examined the self-assembly of the Class I hydrophobins EAS∆15 and DewA, the Class II hydrophobin NC2 and an engineered chimeric hydrophobin. These Class I hydrophobins form layers composed of laterally associated fibrils with an underlying amyloid structure. These two Class I hydrophobins, despite showing significant conformational differences in solution, self-assemble to form fibrillar layers with very similar structures and require a hydrophilic-hydrophobic interface to trigger self-assembly. Addition of additives that influence surface tension can be used to manipulate the fine structure of the protein films. The Class II hydrophobin NC2 forms a mesh-like protein network and the engineered chimeric hydrophobin displays two multimeric forms, depending on assembly conditions. When formed on a graphite surface, the fibrillar EAS∆15 layers are resistant to alcohol, acid and basic washes. In contrast, the NC2 Class II monolayers are dissociated by alcohol treatment but are relatively stable towards acid and base washes. The engineered chimeric Class I/II hydrophobin shows increased stability towards alcohol and acid and base washes. Self-assembled hydrophobin films may have extensive applications in biotechnology where biocompatible; amphipathic coatings facilitate the functionalization of nanomaterials.

  3. Grating couplers for dual-channel thin-film waveguide sensors produced by transmission photolithography

    NASA Astrophysics Data System (ADS)

    Plowman, Thomas E.; Peters, Charles R.; Reichert, W. M.

    1997-10-01

    Grating-coupled, thin-film integrated optical waveguide (IOW) structures were fabricated using standard transmission photolithography and employed in a fluoro-affinity assay for the trace detection of analyte. Using a ruled chrome-on- quartz mask with a 0.7 (mu) repeat, gratings of three etch depths--0.6, 0.8, and 1.0 micrometers --were ion milled into 0.5- mm-thick quartz substrates. Silicon oxynitride (SiON) guiding films (1.5 micrometers ) were deposited on the etched substrates by plasma-enhanced chemical vapor deposition. Coupling efficiencies for the first diffracted grating orders into the zero-order IOW-guided modes were evaluated at 632.8 nm. The deepest gratings coupled the most light; however, their efficiency was less than half that of prisms. Binding isotherms for fluorescently labeled avidin (Cy5-Av) binding to a biotinylated bovine serum albumin adlayer were generated from both prism- and grating-coupled SiON sensor data. Both techniques discriminated the binding of avidin from a 10-15 M solution; however run-to-run (intraassay) and between-sensor (interassay) variability reduced reliability of the measurements.

  4. Morphological evaluation of bioartificial hydrogels as potential tissue engineering scaffolds.

    PubMed

    Cascone, Maria Grazia; Lazzeri, Luigi; Sparvoli, Enzo; Scatena, Manuele; Serino, Lorenzo Pio; Danti, Serena

    2004-12-01

    Poly(vinyl alcohol) hydrogels prepared by freeze-thawing procedure represent synthetic systems widely investigated as non-biodegradable scaffolds for tissue regeneration. In order to improve the biocompatibility properties of pure poly(vinyl alcohol) (PVA) hydrogels, blends of PVA with different biological macromolecules, such hyaluronic acid, dextran, and gelatin were prepared and used to produce "bioartificial hydrogels". The porosity characteristics of these hydrogels were investigated by scanning electron microscopy and mercury intrusion porosimetry. The morphology of bioartificial hydrogels was evaluated and compared with that of pure PVA hydrogels. In particular the effect exerted by each biological component on pore size and distribution was investigated. The obtained results indicate that when a natural macromolecule is added to PVA the internal structure of the material changes. A small amount of biopolymer induces the structural elements of PVA matrix to take on a well evident lamellar appearance and an apparent preferential orientation. Comparing the results of SEM and mercury intrusion porosimetry it was concluded that hydrogels containing 20% of biological component have the most regular structure and at the same time the lowest total porosity. On the contrary samples with the highest content of natural polymer (40%) show the less regular structure and the highest total porosity.

  5. Sea cucumber (Stichopus hermanii) based hydrogel to treat burn wounds in rats.

    PubMed

    Zohdi, Rozaini Mohd; Zakaria, Zuki Abu Bakar; Yusof, Norimah; Mustapha, Noordin Mohamed; Abdullah, Muhammad Nazrul Hakim

    2011-07-01

    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber. Copyright © 2011 Wiley Periodicals, Inc.

  6. Injectable in situ forming xylitol-PEG-based hydrogels for cell encapsulation and delivery.

    PubMed

    Selvam, Shivaram; Pithapuram, Madhav V; Victor, Sunita P; Muthu, Jayabalan

    2015-02-01

    Injectable in situ crosslinking hydrogels offer unique advantages over conventional prefabricated hydrogel methodologies. Herein, we synthesize poly(xylitol-co-maleate-co-PEG) (pXMP) macromers and evaluate their performance as injectable cell carriers for tissue engineering applications. The designed pXMP elastomers were non-toxic and water-soluble with viscosity values permissible for subcutaneous injectable systems. pXMP-based hydrogels prepared via free radical polymerization with acrylic acid as crosslinker possessed high crosslink density and exhibited a broad range of compressive moduli that could match the natural mechanical environment of various native tissues. The hydrogels displayed controlled degradability and exhibited gradual increase in matrix porosity upon degradation. The hydrophobic hydrogel surfaces preferentially adsorbed albumin and promoted cell adhesion and growth in vitro. Actin staining on cells cultured on thin hydrogel films revealed subconfluent cell monolayers composed of strong, adherent cells. Furthermore, fabricated 3D pXMP cell-hydrogel constructs promoted cell survival and proliferation in vitro. Cumulatively, our results demonstrate that injectable xylitol-PEG-based hydrogels possess excellent physical characteristics and exhibit exceptional cytocompatibility in vitro. Consequently, they show great promise as injectable hydrogel systems for in situ tissue repair and regeneration.

  7. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents.

    PubMed

    Choi, Sung Chul; Yoo, Mi Ae; Lee, Su Yeon; Lee, Hyun Ji; Son, Dong Hoon; Jung, Jessica; Noh, Insup; Kim, Chan-Wha

    2015-09-01

    Modulation of both mechanical properties and biocompatibilities of hyaluronic acid (HA) hydrogels is very importance for their applications in biomaterials. Pure HA solution was converted into a hydrogel by using butanediol diglycidyl ether (BDDE) as a crosslinking agent. Mechanical properties of the HA hydrogels have been evaluated by adding up different amount of BDDEs. While the mechanical properties of the obtained HA hydrogels were evaluated by measuring their crosslinking degrees, elastic modulus and viscosity, their in vitro biocompatibilities were done by measuring the degrees of anti-inflammatory reactions, cell viabilities and cytotoxicity. The degrees of anti-inflammatory reactions were determined by measuring the amount of nitric oxides (NOs) released from lipopolysaccharide(LPS)(+)-induced macrophages; cell viability was evaluated by observing differences in the behaviors of fibroblasts covered with the HA hydrogels, compared with those covered with the films of Teflon and Latex. Cytotoxicity of the HA hydrogels was also evaluated by measuring the degrees of viability of the cells exposed on the extracts of the HA hydrogels over those of Teflon, Latex and pure HA solutions by the assays of thiazoly blue tetrazolium bromide (MTT), neutral reds, and bromodeoxyuridine (BrdU). The results showed that employment of BDDEs beyond critical amounts showed lower biocompatibility of the crosslinked HA hydrogels but higher crosslinking degrees and mechanical properties, indicating the importance of controlling the HA concentrations, BDDE amounts and their reaction times for the synthesis of the crosslinked HA hydrogels for their clinical applications as biomaterials. © 2015 Wiley Periodicals, Inc.

  8. Semi-Interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: Effect of crosslinking sequence on hydrogel properties

    Treesearch

    Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela. Buschle-Diller

    2012-01-01

    Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...

  9. Plasma Spray-CVD: A New Thermal Spray Process to Produce Thin Films from Liquid or Gaseous Precursors

    NASA Astrophysics Data System (ADS)

    Gindrat, M.; Höhle, H.-M.; von Niessen, K.; Guittienne, Ph.; Grange, D.; Hollenstein, Ch.

    2011-06-01

    New dedicated coating processes which are based on the well-known LPPS™ technology but operating at lower work pressure (100 Pa) are being actively developed. These hybrid technologies contribute to improve the efficiencies in the turbine industry such as aero-engines and land-based gas turbines. They also have a great potential in the domain of new energy concepts in applications like Solid Oxide Fuel Cells, membranes, and photovoltaic with the adoption of new ways of producing coatings by thermal spray. Such processes include Plasma Spray-Thin Film (PS-TF) which gives the possibility to coat thin and dense layers from splats through a classical thermal spray approach but at high velocities (400-800 m/s) and enthalpy (8000-15000 kJ/kg). Plasma Spray-PVD (PS-PVD) which allows producing thick columnar-structured Thermal Barrier Coatings (100-300 μm) from the vapor phase with the employment of the high enthalpy gun and specific powder feedstock material. On the other hand, the Plasma Spray-CVD (PS-CVD) process uses modified conventional thermal spray components operated below 100 Pa which allows producing CVD-like coatings (<1-10 μm) at higher deposition rates using liquid or gaseous precursors as feedstock material. The advantages of such thermal spray-enhanced CVD processes are the high ionization degree and high throughput for the deposition of thin layers. In this article, we present an overview of the possibilities and limitations encountered while producing thin film coatings using liquid and gaseous precursors with this new type of low pressure plasma spray equipment and point out the challenges faced to obtain efficient injection and mixing of the precursors in the plasma jet. In particular, SiO x thin films from Hexamethyldisiloxane (HMDSO or C6H18OSi2) can be deposited on wafers at deposition rates of up to 35 nm/s at an efficiency of about 50%. The process was also used for producing metal oxide coatings (Al2O3, ZnO, and SnO2) by evaporating different

  10. Producing smart sensing films by means of organic field effect transistors.

    PubMed

    Manunza, Ileana; Orgiu, Emanuele; Caboni, Alessandra; Barbaro, Massimo; Bonfiglio, Annalisa

    2006-01-01

    We have fabricated the first example of totally flexible field effect device for chemical detection based on an organic field effect transistor (OFET) made by pentacene films grown on flexible plastic structures. The ion sensitivity is achieved by employing a thin Mylar foil as gate dielectric. A sensitivity of the device to the pH of the electrolyte solution has been observed A similar structure can be used also for detecting mechanical deformations on flexible surfaces. Thanks to the flexibility of the substrate and the low cost of the employed technology, these devices open the way for the production of flexible chemical and strain gauge sensors that can be employed in a variety of innovative applications such as wearable electronics, e-textiles, new man-machine interfaces.

  11. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    DOEpatents

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  12. Multi-membrane hydrogels.

    PubMed

    Ladet, Sébastien; David, Laurent; Domard, Alain

    2008-03-06

    Polysaccharide-based hydrogels are useful for numerous applications, from food and cosmetic processing to drug delivery and tissue engineering. The formation of hydrogels from polyelectrolyte solutions is complex, involving a variety of molecular interactions. The physical gelation of polysaccharides can be achieved by balancing solvophobic and solvophilic interactions. Polymer chain reorganization can be obtained by solvent exchange, one of the processing routes forming a simple hydrogel assembly. Nevertheless, many studies on hydrogel formation are empirical with a limited understanding of the mechanisms involved, delaying the processing of more complex structures. Here we use a multi-step interrupted gelation process in controlled physico-chemical conditions to generate complex hydrogels with multi-membrane 'onion-like' architectures. Our approach greatly simplifies the processing of gels with complex shapes and a multi-membrane organization. In contrast with existing assemblies described in the literature, our method allows the formation of free 'inter-membrane' spaces well suited for cell or drug introduction. These architectures, potentially useful in biomedical applications, open interesting perspectives by taking advantage of tailor-made three-dimensional multi-membrane tubular or spherical structures.

  13. Fibril orientation redistribution induced by stretching of cellulose nanofibril hydrogels

    SciTech Connect

    Josefsson, Gabriella; Gamstedt, E. Kristofer; Ahvenainen, Patrik; Mushi, Ngesa Ezekiel

    2015-06-07

    The mechanical performance of materials reinforced by cellulose nanofibrils is highly affected by the orientation of these fibrils. This paper investigates the nanofibril orientation distribution of films of partly oriented cellulose nanofibrils. Stripes of hydrogel films were subjected to different amount of strain and, after drying, examined with X-ray diffraction to obtain the orientation of the nanofibrils in the films, caused by the stretching. The cellulose nanofibrils had initially a random in-plane orientation in the hydrogel films and the strain was applied to the films before the nanofibrils bond tightly together, which occurs during drying. The stretching resulted in a reorientation of the nanofibrils in the films, with monotonically increasing orientation towards the load direction with increasing strain. Estimation of nanofibril reorientation by X-ray diffraction enables quantitative comparison of the stretch-induced orientation ability of different cellulose nanofibril systems. The reorientation of nanofibrils as a consequence of an applied strain is also predicted by a geometrical model of deformation of nanofibril hydrogels. Conversely, in high-strain cold-drawing of wet cellulose nanofibril materials, the enhanced orientation is promoted by slipping of the effectively stiff fibrils.

  14. An improved cryosection method for polyethylene glycol hydrogels used in tissue engineering.

    PubMed

    Ruan, Jia-Ling; Tulloch, Nathaniel L; Muskheli, Veronica; Genova, E Erin; Mariner, Peter D; Anseth, Kristi S; Murry, Charles E

    2013-10-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications.

  15. An Improved Cryosection Method for Polyethylene Glycol Hydrogels Used in Tissue Engineering

    PubMed Central

    Ruan, Jia-Ling; Tulloch, Nathaniel L.; Muskheli, Veronica; Genova, E. Erin; Mariner, Peter D.; Anseth, Kristi S.

    2013-01-01

    The high water content of hydrogels allows these materials to closely mimic the native biological extracellular conditions, but it also makes difficult the histological preparation of hydrogel-based bioengineered tissue. Paraffin-embedding techniques require dehydration of hydrogels, resulting in substantial collapse and deformation, whereas cryosectioning is hampered by the formation of ice crystals within the hydrogel material. Here, we sought to develop a method to obtain good-quality cryosections for the microscopic evaluation of hydrogel-based tissue-engineered constructs, using polyethylene glycol (PEG) as a test hydrogel. Conventional sucrose solutions, which dehydrate cells while leaving extracellular water in place, produce a hydrogel block that is brittle and difficult to section. We therefore replaced sucrose with multiple protein-based and nonprotein-based solutions as cryoprotectants. Our analysis demonstrated that overnight incubation in bovine serum albumin (BSA), fetal bovine serum (FBS), polyvinyl alcohol (PVA), optimum cutting temperature (OCT®) compound, and Fisher HistoPrep frozen tissue-embedding media work well to improve the cryosectioning of hydrogels. The protein-based solutions give background staining with routine hematoxylin and eosin, but the use of nonprotein-based solutions PVA and OCT reduces this background by 50%. These methods preserve the tissue architecture and cellular details with both in vitro PEG constructs and in constructs that have been implanted in vivo. This simple hydrogel cryosectioning technique improves the methodology for creation of good-quality histological sections from hydrogels in multiple applications. PMID:23448137

  16. Rheological Characterization of Bioinspired Mineralization in Hydrogels

    NASA Astrophysics Data System (ADS)

    Regitsky, Abigail; Holten-Andersen, Niels

    With increasing amounts of CO2 in the atmosphere linked to potentially catastrophic climate change, it is critical that we find methods to permanently sequester and store CO2. Inspired by the natural biomineralization of calcium carbonate (CaCO3), one future goal of this project is to understand the mechanisms of CaCO3 mineralization in order to ultimately optimize a bioinspired hydrogel system, which produces high value industrial powders that consume CO2 as a feedstock. Along the way, we are developing a rheological technique to study mineral nucleation and growth events by measuring the modulations in mechanical properties of a hydrogel system during mineralization. Our initial system consists of a gelatin hydrogel matrix, which is preloaded with calcium ions, and an aqueous solution of carbonate ions, which are allowed to diffuse through the gel to initiate the mineralization process. In order to monitor how the growth of minerals affects the mechanical properties of the gel network, we measure the storage (G') and loss (G'') moduli of the system in situ. Future work will focus on modifying the properties of the minerals formed by changing the polymer used in the hydrogel network and adding other organic molecules into the system.

  17. Hydrogels Constructed from Engineered Proteins.

    PubMed

    Li, Hongbin; Kong, Na; Laver, Bryce; Liu, Junqiu

    2016-02-24

    Due to their various potential biomedical applications, hydrogels based on engineered proteins have attracted considerable interest. Benefitting from significant progress in recombinant DNA technology and protein engineering/design techniques, the field of protein hydrogels has made amazing progress. The latest progress of hydrogels constructed from engineered recombinant proteins are presented, mainly focused on biorecognition-driven physical hydrogels as well as chemically crosslinked hydrogels. The various bio-recognition based physical crosslinking strategies are discussed, as well as chemical crosslinking chemistries used to engineer protein hydrogels, and protein hydrogels' various biomedical applications. The future perspectives of this fast evolving field of biomaterials are also discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microfluidic hydrogels for tissue engineering.

    PubMed

    Huang, Guo You; Zhou, Li Hong; Zhang, Qian Cheng; Chen, Yong Mei; Sun, Wei; Xu, Feng; Lu, Tian Jian

    2011-03-01

    With advanced properties similar to the native extracellular matrix, hydrogels have found widespread applications in tissue engineering. Hydrogel-based cellular constructs have been successfully developed to engineer different tissues such as skin, cartilage and bladder. Whilst significant advances have been made, it is still challenging to fabricate large and complex functional tissues due mainly to the limited diffusion capability of hydrogels. The integration of microfluidic networks and hydrogels can greatly enhance mass transport in hydrogels and spatiotemporally control the chemical microenvironment of cells, mimicking the function of native microvessels. In this review, we present and discuss recent advances in the fabrication of microfluidic hydrogels from the viewpoint of tissue engineering. Further development of new hydrogels and microengineering technologies will have a great impact on tissue engineering.

  19. Strong fiber-reinforced hydrogel.

    PubMed

    Agrawal, Animesh; Rahbar, Nima; Calvert, Paul D

    2013-02-01

    In biological hydrogels, the gel matrix is usually reinforced with micro- or nanofibers, and the resulting composite is tough and strong. In contrast, synthetic hydrogels are weak and brittle, although they are highly elastic. The are many potential applications for strong synthetic hydrogels in medical devices, including as scaffolds for tissue growth. This work describes a new class of hydrogel composites reinforced with elastic fibers, giving them a cartilage-like structure. A three-dimensional rapid prototyping technique was used to form crossed "log-piles" of elastic fibers that are then impregnated with an epoxy-based hydrogel in order to form the fiber-reinforced gel. The fibrous construct improves the strength, modulus and toughness of the hydrogel, and also constrains the swelling. By altering the construct geometry and studying the effect on mechanical properties, we will develop the understanding needed to design strong hydrogels for biomedical devices and soft machines. Copyright © 2012. Published by Elsevier Ltd.

  20. Hydrogels in Regenerative Medicine

    PubMed Central

    Slaughter, Brandon V.; Khurshid, Shahana S.; Fisher, Omar Z.; Khademhosseini, Ali

    2015-01-01

    Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field. PMID:20882499

  1. Critical review of radiation processing of hydrogel and polysaccharide

    NASA Astrophysics Data System (ADS)

    Makuuchi, K.

    2010-03-01

    Radiation processing of an aqueous solution of polymer initiated by rad OH radicals formed by radiolysis of water is applied for preparation of hydrogel wound dressing and plant growth promoter. Recently, Fenton reagent that generates rad OH radicals was successfully applied to synthesize PVP hydrogel. The Fenton reaction also can be applied to the depolymerization of chitosan. These progresses in the syntheses of hydrogel and oligo-chitosan by radiation and non-radiation methods such as hydrolysis, oxidative degradation, photolysis, sonolysis and degradation by microwave are reviewed to survey a possibility to reduce the costs of production. Radiation synthesized hydrogel should target value-added medical products because only radiation can crosslink and sterilize simultaneously. Oligo-chitosan can be produced economically by irradiation of solid chitin by Fenton reagent, if necessary.

  2. Multifunctional Enzymatically Generated Hydrogels for Chronic Wound Application.

    PubMed

    Stefanov, Ivaylo; Pérez-Rafael, Sílvia; Hoyo, Javier; Cailloux, Jonathan; Santana Pérez, Orlando O; Hinojosa-Caballero, Dolores; Tzanov, Tzanko

    2017-05-08

    The healing of chronic wounds requires intensive medical intervention at huge healthcare costs. Dressing materials should consider the multifactorial nature of these wounds comprising deleterious proteolytic and oxidative enzymes and high bacterial load. In this work, multifunctional hydrogels for chronic wound application were produced by enzymatic cross-linking of thiolated chitosan and gallic acid. The hydrogels combine several beneficial to wound healing properties, controlling the matrix metalloproteinases (MMPs) and myeloperoxidase (MPO) activities, oxidative stress, and bacterial contamination. In vitro studies revealed above 90% antioxidant activity, and MPO and collagenase inhibition by up to 98 and 23%, respectively. Ex vivo studies with venous leg ulcer exudates confirmed the inhibitory capacity of the dressings against MPO and MMPs. Additionally, the hydrogels reduced the population of the most frequently encountered in nonhealing wounds bacterial strains. The stable at physiological conditions and resistant to lysozyme degradation hydrogels showed high biocompatibility with human skin fibroblasts.

  3. Mechanical enhancement through phase separation in a bicontinuous hydrogel network

    NASA Astrophysics Data System (ADS)

    Nixon, Ryan; Angelini, Thomas

    2015-03-01

    Bicontinous networks of phase separated polymers are often used in biomedical materials to control the spatial distribution of multiple surface functionalities. Here we describe a different use of phase separation, which leverages a balance of aggregating and swelling tendencies of the two separated components, producing a hydrogel that is highly stretchable and resilient after large extensions. In contrast to the typical one-component hydrogel, which is brittle and weak, the two-component micro-phase separated hydrogel recovers within just a few minutes after being stretched by several hundred percent, and fails at about 1000% strain. Our preliminary 3D reconstructions of the bi-continuous phases suggest that the gel's material properties arise from a system-spanning network of non-specific hydrophobic bonds that can be broken and re-formed under cycles of large strain, while elasticity is provided by the highly-solvated hydrogel that makes up the complementary phase.

  4. Intelligent, Biodegradable, and Self-Healing Hydrogels Utilizing DNA Quadruplexes.

    PubMed

    Tanaka, Shizuma; Wakabayashi, Kenta; Fukushima, Kazuki; Yukami, Shinsuke; Maezawa, Ryuki; Takeda, Yuhei; Tatsumi, Kohei; Ohya, Yuichi; Kuzuya, Akinori

    2017-09-19

    A new class of hydrogels utilizing DNA (DNA quadruplex gel) has been constructed by directly and symmetrically coupling deoxynucleotide phosphoramidite monomers to the ends of polyethylene glycols (PEGs) in liquid phase, and using the resulting DNA-PEG-DNA triblock copolymers as macromonomers. Elongation of merely four deoxyguanosine residues on PEG, which produces typically ≈10 grams of desired DNA-PEG conjugates in one synthesis, resulted in intelligent and biodegradable hydrogels utilizing DNA quadruplex formation, which are responsive to various input signals such as Na(+) , K(+) , and complementary DNA strand. Gelation of DNA quadruplex gels takes place within a few seconds upon the addition of a trigger, enabling free formation just like Ca(+) -alginate hydrogels or possible application as an injectable polymer (IP) gel. The obtained hydrogels show good thermal stability and rheological properties, and even display self-healing ability. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  5. Electrochemical properties of LiMn 2O 4 films produced by combustion reaction

    NASA Astrophysics Data System (ADS)

    Fonseca, Carla Polo; Pallone, Eliria M. J. A.; Neves, Silmara

    2004-12-01

    Lithium manganese oxide powders were prepared via combustion reaction. Structural characterization of the powder using X-ray diffraction and scanning electron microscopy confirmed the formation of a LiMn 2O 4 nanosized powder. LiMn 2O 4 films were prepared by spin coating using 80 wt% of oxide, 15 wt% of polyaniline (PAni) as an electronic conductor and 5 wt% of polyvinylidene (PVDF) as a binder in N.N.-dimethyl acetamide. A Coulombic efficiency of 96% confirmed the electrochemical stability of the composite. The variation in impedance as a function of the lithium intercalation/deintercalation process reflected the interaction between the oxide and/or polyaniline particles at a high frequency range, and a diffusion tendency was observed at medium and low frequency ranges. The capacity values of the composite electrodes relative to the LiMn 2O 4 mass were 178.6/177.5 and 145/140 mAh g -1 for the first and 25th charge/discharge cycles, respectively.

  6. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    PubMed

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  7. Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing

    NASA Astrophysics Data System (ADS)

    Banai, R. E.; Cordell, J. C.; Lindwall, G.; Tanen, N. J.; Shang, S.-L.; Nasr, J. R.; Liu, Z.-K.; Brownson, J. R. S.; Horn, M. W.

    2016-01-01

    Tin (II) Monosulfide (SnS) has become an interesting new material for thin film photovoltaics. SnS-based devices have achieved limited success in improved solar cell efficiency. While annealing is a typical post-deposition treatment used to improve thin film quality, sulfur volatility is an issue, despite strong Sn-S bonds in tin sulfide compounds. Annealing of sulfur-rich sputtered tin sulfide thin films in a vacuum environment has not been previously reported. In the present work, we investigated the optoelectronic properties, crystallographic phase, and morphology of annealed, sputtered tin sulfide thin films. Specifically, we studied the phase change and improvement in material quality as a result of post-deposition heat treatments. Tin sulfide thin films were sputtered with and without substrate heating. These samples were then annealed between 300°C and 500°C under moderate vacuum (<1 × 10-4 Pa) in the deposition chamber to find the optimal annealing process for producing α-SnS. Significantly improved crystallinity and morphology were seen in sulfur-rich thin films annealed at 400-500°C for 60 min. Annealed films had resistivity in the range of 30-300 Ω-cm. Experimental observations were confirmed by calculated phase diagrams, which show that annealing around 400°C at low pressure is optimal to obtain a phase-pure α-SnS film from an amorphous SnS2 film.

  8. [Antineoplastic effect of hydrogel prospidin on Seidel ascites hepatoma used as a model].

    PubMed

    Bychkovskiĭ, P M; Iurkshtovich, T L; Kladiev, A A; Revtovich, M Iu

    2012-01-01

    Antineoplastic effect of hydrogel dextran phosphate, hydrogel prospidin, and prospidin in an injectable preparation has been assessed using Seidel ascites hepatoma as a model. Injectable and hydrogel prospidin in doses from 250, 500 to 1000 mg/kg and hydrogel phosphate dextran in doses of 500 and 1000 mg/kg were administered to rats intraperitoneally in a single dose in a volume of 1 or 2 ml per each 100 g of animal body weight. The study has shown that irrespective of rats with Seidel ascites hepatoma and significantly increase in the dosage of prospidin preparations and hydrogel dextran phosphate results in a longer average life expectancy of rats Compared with its injectable variant, hydrogel prospidin appears to produce more than twice as high antineoplastic effect, and is found to provide prolonged therapeutic effects, as well as cure of animals in more than 60 % of cases.

  9. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    PubMed

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels.

  10. The rational design of a peptide-based hydrogel responsive to H2S.

    PubMed

    Peltier, Raoul; Chen, Ganchao; Lei, Haipeng; Zhang, Mei; Gao, Liqian; Lee, Su Seong; Wang, Zuankai; Sun, Hongyan

    2015-12-18

    The development of hydrogels that are responsive to external stimuli in a well-controlled manner is important for numerous biomedical applications. Herein we reported the first example of a hydrogel responsive to hydrogen sulphide (H2S). H2S is an important gasotransmitter whose deregulation has been associated with a number of pathological conditions. Our hydrogel design is based on the functionalization of an ultrashort hydrogelating peptide sequence with an azidobenzyl moiety, which was reported to react with H2S selectively under physiological conditions. The resulting peptide was able to produce hydrogels at a concentration as low as 0.1 wt%. It could then be fully degraded in the presence of excess H2S. We envision that the novel hydrogel developed in this study may provide useful tools for biomedical research.

  11. Adhesion in hydrogel contacts

    NASA Astrophysics Data System (ADS)

    Torres, J. R.; Jay, G. D.; Kim, K.-S.; Bothun, G. D.

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  12. Adhesion in hydrogel contacts.

    PubMed

    Torres, J R; Jay, G D; Kim, K-S; Bothun, G D

    2016-05-01

    A generalized thermomechanical model for adhesion was developed to elucidate the mechanisms of dissipation within the viscoelastic bulk of a hyperelastic hydrogel. Results show that in addition to the expected energy release rate of interface formation, as well as the viscous flow dissipation, the bulk composition exhibits dissipation due to phase inhomogeneity morphological changes. The mixing thermodynamics of the matrix and solvent determines the dynamics of the phase inhomogeneities, which can enhance or disrupt adhesion. The model also accounts for the time-dependent behaviour. A parameter is proposed to discern the dominant dissipation mechanism in hydrogel contact detachment.

  13. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.

    PubMed

    Kapoor, Sonia; Kundu, Subhas C

    2016-02-01

    Hydrogels are a class of advanced material forms that closely mimic properties of the soft biological tissues. Several polymers have been explored for preparing hydrogels with structural and functional features resembling that of the extracellular matrix. Favourable material properties, biocompatibility and easy processing of silk protein fibers into several forms make it a suitable material for biomedical applications. Hydrogels made from silk proteins have shown a potential in overcoming limitations of hydrogels prepared from conventional polymers. A great deal of effort has been made to control the properties and to integrate novel topographical and functional characteristics in the hydrogel composed from silk proteins. This review provides overview of the advances in silk protein-based hydrogels with a primary emphasis on hydrogels of fibroin. It describes the approaches used to fabricate fibroin hydrogels. Attempts to improve the existing properties or to incorporate new features in the hydrogels by making composites and by improving fibroin properties by genetic engineering approaches are also described. Applications of the fibroin hydrogels in the realms of tissue engineering and controlled release are reviewed and their future potentials are discussed. This review describes the potentiality of silk fibroin hydrogel. Silk Fibroin has been widely recognized as an interesting biomaterial. Due to its properties including high mechanical strength and excellent biocompatibility, it has gained wide attention. Several groups are exploring silk-based materials including films, hydrogels, nanofibers and nanoparticles for different biomedical applications. Although there is a good amount of literature available on general properties and applications of silk based biomaterials, there is an inadequacy of extensive review articles that specifically focus on silk based hydrogels. Silk-based hydrogels have a strong potential to be utilized in biomedical applications. Our

  14. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

    PubMed Central

    2015-01-01

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers. PMID:26646318

  15. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials.

    PubMed

    Du, Xuewen; Zhou, Jie; Shi, Junfeng; Xu, Bing

    2015-12-23

    In this review we intend to provide a relatively comprehensive summary of the work of supramolecular hydrogelators after 2004 and to put emphasis particularly on the applications of supramolecular hydrogels/hydrogelators as molecular biomaterials. After a brief introduction of methods for generating supramolecular hydrogels, we discuss supramolecular hydrogelators on the basis of their categories, such as small organic molecules, coordination complexes, peptides, nucleobases, and saccharides. Following molecular design, we focus on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators. Particularly, we discuss the applications of supramolecular hydrogelators after they form supramolecular assemblies but prior to reaching the critical gelation concentration because this subject is less explored but may hold equally great promise for helping address fundamental questions about the mechanisms or the consequences of the self-assembly of molecules, including low molecular weight ones. Finally, we provide a perspective on supramolecular hydrogelators. We hope that this review will serve as an updated introduction and reference for researchers who are interested in exploring supramolecular hydrogelators as molecular biomaterials for addressing the societal needs at various frontiers.

  16. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    PubMed Central

    Song, Ji Eun; Cho, Eun Chul

    2016-01-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes). PMID:27703195

  17. Dual-responsive and Multi-functional Plasmonic Hydrogel Valves and Biomimetic Architectures Formed with Hydrogel and Gold Nanocolloids

    NASA Astrophysics Data System (ADS)

    Song, Ji Eun; Cho, Eun Chul

    2016-10-01

    We present a straightforward approach with high moldability for producing dual-responsive and multi-functional plasmonic hydrogel valves and biomimetic architectures that reversibly change volumes and colors in response to temperature and ion variations. Heating of a mixture of hybrid colloids (gold nanoparticles assembled on a hydrogel colloid) and hydrogel colloids rapidly induces (within 30 min) the formation of hydrogel architectures resembling mold shapes (cylinder, fish, butterfly). The biomimetic fish and butterfly display reversible changes in volumes and colors with variations of temperature and ionic conditions in aqueous solutions. The cylindrical plasmonic valves installed in flow tubes rapidly control water flow rate in on-off manner by responding to these stimuli. They also report these changes in terms of their colors. Therefore, the approach presented here might be helpful in developing new class of biomimetic and flow control systems where liquid conditions should be visually notified (e.g., glucose or ion concentration changes).

  18. PAMAM dendrimer hydrogel film—biocompatible material to an efficient dermal delivery of drugs

    NASA Astrophysics Data System (ADS)

    Magalhães, Thamiris Machado; Guerra, Rodrigo Cinti; San Gil, Rosane Aguiar da Silva; Valente, Ana Paula; Simão, Renata Antoun; Soares, Bluma Guenther; Mendes, Thamara de Carvalho; Pyrrho, Alexandre dos Santos; Sousa, Valeria Pereira de; Rodrigues-Furtado, Vanessa Lúcia

    2017-08-01

    We report the preparation, characterization, and drug release kinetics of a pH-responsive hydrogel film from a dendrimer megamer. The megamer (GP32) is a three-dimensional reticulated structure with a mean diameter of 71.16 nm (PDI 0.150) and was prepared by the reaction between Poly(amidoamine) generation4 (PAMAM G4) dendrimer and glutaraldehyde (G:P molar ratio 32). The crosslinking units in the megamer are provided mainly by the bicyclic dimer 2-hydroxy-3,4,4a,7,8,8a-hexahydro-2 H-chromene-6-carbaldehyde as determined by high-resolution (800 MHz) 1H NMR and FTIR. The hydrogel film (F[GP32]) is formed upon evaporation of a methanolic solution of the megamer and has a high degree of organization and homogeneity. Further crosslinking with glutaraldehyde (CLF[GP32]) enhanced the mechanical properties of the hydrogel film. The chemical constitution and unique megamer architecture enable the hydrogel film to carry both lipophilic and hydrophilic substances. The film did not cause any dermal irritation or clinical signs of toxicity in tests on rabbits, allowed for a sustained release of ketoprofen and played an important role in the process of drug delivery into the receptor medium. This performance taken together with the absence of toxicity makes this hydrogel film a good choice for dermal sustained drug release. [Figure not available: see fulltext.

  19. Double network bacterial cellulose hydrogel to build a biology-device interface.

    PubMed

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2014-01-21

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  20. Double network bacterial cellulose hydrogel to build a biology-device interface

    NASA Astrophysics Data System (ADS)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  1. Growth mechanism of carbon nanotubes produced by pyrolysis of a composite film of poly (vinyl alcohol) and fly ash

    NASA Astrophysics Data System (ADS)

    Nath, Dilip C. D.; Sahajwalla, Veena

    2011-08-01

    We produced carbon nanotubes (CNTs) by pyrolysis of a composite film of poly (vinyl alcohol) (PVA) with fly ash (FA) at 500°C for 10 min under nitrogen. The composite films were prepared by a suspension of PVA and FA in deionized water and cast onto glass petri dishes. The morphologies of the CNTs were observed in the images of scanning and transmission electron microscopy, showing different types of structures, e.g. whiskers, branches, ropes and graphene sheets. The widths of the CNTs measured varied in the range 18-80 nm. X-ray photoelectron spectroscopy analysis showed five types of carbon binding peaks, C-C/C-H (˜77%), C-O-H (˜9%), -C-O-C (˜5%), C=O (˜5%) and -O-C=O (˜3%). From an image of a broken CNT, a mechanism was proposed for the formation of CNTs. The CNTs grown on FA surfaces have potential for the fabrication of high-strength composite materials with polymer and metal.

  2. Diagnostics of glow discharges used to produce hydrogenated amorphous silicon films. Subcontract report, 15 April 1984-14 April 1985

    SciTech Connect

    Gallagher, A; Scott, J

    1985-07-01

    Measurements of monosilane and disilane radicals were made at the surface of dc glow discharges (GD) in pure silane and silane-argon mixtures. These observations were interpreted as discharge kinetic models. It was inferred that the dominant radical, SiH/sub 3/, is produced in the gas and is primarily responsible for film growth. The heavier radicals observed in the gas appear to be a consequence of surface reactions, as is the disilane, a major product of the monosilane decomposition. A detailed model of the ion chemistry in the discharge was formulated to derive theoretical distributions of ions at the cathodes of low-pressure dc discharges. Chemical vapor deposition (CVD) rates of silane and disilane, measured previously in the laboratory, have now also been interpreted in detail to yield a self-consistent model for the CVD process. This model identifies and quantifies the role of H/sub 2/ as an inhibitor of silane GD and CVD deposition. Implications of these discoveries to deposition rates and film properties are discussed.

  3. Ultrathin Chitosan Films with Tailored Properties

    NASA Astrophysics Data System (ADS)

    Murray, Chris; Stukalov, Oleg; Dutcher, John

    2004-03-01

    Chitosan is a biodegradable polysaccharide derived from seashell waste products. Though abundant, the industrial use of this polymer has up until recently been limited to water treatment products. The high water absorbency and biocompatibility of chitosan have enabled its use as a hydrogel in specialty applications such as wound dressings and drug delivery systems. The most convenient method of processing chitosan is solution casting to form films, since the polymer is soluble in weakly acidic solvents. Based on previous work with synthetic polymers, we have developed a protocol for preparing thin, uniform films of chitosan by spincoating from solution onto silicon substrates. Films with thicknesses between 30 and 600 nm (as measured by ellipsometry) and rms roughnesses of less than 1 nm (as measured by atomic force microscopy) were prepared. After preparation, these films quickly absorb water in the presence of high humidity. Heating of the films to high temperature causes large reductions in film thickness h and index of refraction n. After cooling the films to room temperature, h and n remain constant in the presence of high humidity. Using this simple procedure, we are able to produce films with tailored thickness, optical properties and water absorbency.

  4. Low-energy mass-selected ion beam production of fragments produced from hexamethyldisilane for SiC film formation

    SciTech Connect

    Yoshimura, Satoru Sugimoto, Satoshi; Kiuchi, Masato

    2016-03-14

    We have proposed an experimental methodology which makes it possible to deposit silicon carbide (SiC) films on Si substrates with a low-energy mass-selected ion beam system using hexamethyldisilane (HMD) as a gas source. In this study, one of the fragment ions produced from HMD, SiCH{sub 4}{sup +}, was mass-selected. The ion energy was approximately 100 eV. Then, the SiCH{sub 4}{sup +} ions were irradiated to a Si(100) substrate. When the temperature of the Si substrate was set at 800 °C during the ion irradiation, the X-ray diffraction and Raman spectroscopy of the substrate following the completion of ion irradiation experiment demonstrated the occurrence of 3C-SiC deposition.

  5. Aqueous compatible boron nitride nanosheets for high-performance hydrogels

    NASA Astrophysics Data System (ADS)

    Hu, Xiaozhen; Liu, Jiahui; He, Qiuju; Meng, Yuan; Cao, Liu; Sun, Ya-Ping; Chen, Jijie; Lu, Fushen

    2016-02-01

    Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ~94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ~95 wt%) was highly flexible. Its elongation and compressive strength exceeded 10 000% and 8 MPa at 97% strain, respectively. Moreover, the aforementioned hydrogel recovered upon the removal of compression force, without obvious damage. The substantially improved water retentivity and flexibility revealed that BNNSs can serve as a promising new platform in the development of high-performance hydrogels.Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ~94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ~95 wt%) was highly flexible. Its

  6. Films

    NASA Astrophysics Data System (ADS)

    Li, Ming; Zhang, Yang; Shao, Yayun; Zeng, Min; Zhang, Zhang; Gao, Xingsen; Lu, Xubing; Liu, J.-M.; Ishiwara, Hiroshi

    2014-09-01

    In this paper, we investigated the microstructure and electrical properties of Bi2SiO5 (BSO) doped SrBi2Ta2O9 (SBT) films deposited by chemical solution deposition. X-ray diffraction observation indicated that the crystalline structures of all the BSO-doped SBT films are nearly the same as those of a pure SBT film. Through BSO doping, the 2Pr and 2Ec values of SBT films were changed from 15.3 μC/cm2 and 138 kV/cm of pure SBT to 1.45 μC/cm2 and 74 kV/cm of 10 wt.% BSO-doped SBT. The dielectric constant at 1 MHz for SBT varied from 199 of pure SBT to 96 of 10 wt.% BSO-doped SBT. The doped SBT films exhibited higher leakage current than that of non-doped SBT films. Nevertheless, all the doped SBT films still had small dielectric loss and low leakage current. Our present work will provide useful insights into the BSO doping effects to the SBT films, and it will be helpful for the material design in the future nonvolatile ferroelectric memories.

  7. Reusable optical bioassay platform with permeability-controlled hydrogel pads for selective saccharide detection.

    PubMed

    Cheung, Kwan Yee; Mak, Wing Cheung; Trau, Dieter

    2008-01-28

    A reusable optical bioassay platform using permeability-controlled hydrogel pads for selective saccharide detection has been developed. An optical glucose detection assay based on fluorescence resonance energy transfer (FRET) between dye-labeled dextran and Concanavalin A (ConA) was incorporated into hydrogel pads by entrapment. The hydrogel pads are constructed from hemispherical hydrogel attached onto hydrophobic surfaces of a microtiter plate. The resulted hemispherical hydrogel pads entrapping the sensing biological materials were further surface coated with polyelectrolyte multilayers through a Layer-by-Layer (LbL) self-assembly process to create a permeability-controlled membrane with nanometer thickness. The selective permeable LbL film deposited on the hydrogel surface allows small molecular weight analytes to diffuse into the hydrogel pads while the large molecular weight sensing biological molecules are immobilized. An encapsulation efficiency of 75% for the ConA/Dextran complex within the coated hydrogel pads was achieved and no significant leakage of the complex was observed. Glucose calibration curve with linear range from 0 to 10mM glucose was obtained. Selective permeability of the hydrogel pads has been demonstrated by measurement of saccharides with various molecular weights. The LbL hydrogel pads could selectively detect monosaccharides (glucose, MW=180) and disaccharides (sucrose, MW=342) while polysaccharides (dextran, MW approximately 70kDa) cannot diffuse through the LbL layer and are excluded. LbL hydrogel pads allow regeneration of the FRET system with good signal reproducibility of more than 90% to construct a reusable and reagentless optical bioassay platform.

  8. Intelligent hydrogels for drug delivery system.

    PubMed

    He, Liumin; Zuo, Qinhua; Xie, Shasha; Huang, Yuexin; Xue, Wei

    2011-09-01

    Intelligent hydrogel, also known as smart hydrogels, are materials with great potential for development in drug delivery system. Intelligent hydrogel also has the ability to perceive as a signal structure change and stimulation. The review introduces the temperature-, pH-, electric signal-, biochemical molecule-, light- and pressure- sensitive hydrogels. Finally, we described the application of intelligent hydrogel in drug delivery system and the recent patents involved for hydrogel in drug delivery.

  9. Chemomechanical properties and the applications of semi-confined hydrogel microstructures

    NASA Astrophysics Data System (ADS)

    Ding, Zhenwen

    Environmentally sensitive hydrogels are three-dimensional crosslinked polymer networks capable of undergoing reversible volume change in response to different stimuli such as temperature, pH, ionic strength, electric field, etc. The integration of these soft polymeric materials with conventional micromachined hard materials (such as silicon and glass) offers unique opportunities to enhance their applications and functionalities. Many such applications require the hydrogel to be trapped in a semi-confined structure. This calls for a careful study of hydrogel thermodynamics, kinetics, and chemomechanical properties associated with such a confinement. This physiochemical understanding is essential in order to design hydrogel-based smart sensing and actuating microdevices. This Ph.D. thesis consists of two parts. The first part will be focused on the physical concepts and measurements of the physical parameters of hydrogels. We will discuss the hydrogel network structure, kinetics of hydrogel volume phase transition (VPT), biomolecule diffusion in hydrogel network, and characterizations of hydrogel properties. In the second part, we will discuss the applications of semi-confined hydrogel structures in microsystems. A high-resolution technique for fabricating hydrogel microstructures will be presented. In this method, squeeze-film is used to generate hydrogel thin film on a smooth substrate. Parylene passivation and dry etching are utilized for micropatterning. This method allows for the integration of hydrogel with MEMS and NEMS microstructures in order to fabricate miniaturized devices for sensing and actuating. Subsequently, two applications will be discussed using the patterning technique: a hydrogel diffraction grating and a hydrogel-based integrated-antenna pH sensor. Microscale patterning of biomolecules (DNA, antibody, enzyme, etc.) on solid surfaces is necessary for the successful development of many biotechnological microdevices. We developed a hydrogel

  10. Ion-beam-produced damage and its stability in AlN films

    NASA Astrophysics Data System (ADS)

    Kucheyev, S. O.; Williams, J. S.; Zou, J.; Jagadish, C.; Pophristic, M.; Guo, S.; Ferguson, I. T.; Manasreh, M. O.

    2002-10-01

    Structural characteristics of single-crystal wurtzite AlN epilayers (grown on sapphire substrates) bombarded with 300 keV 197Au+ ions at room and liquid-nitrogen temperatures (RT and LN2) are studied by a combination of Rutherford backscattering/channeling spectrometry and cross-sectional transmission electron microscopy. Results reveal extremely strong dynamic annealing of ion-beam-generated defects in AlN. Lattice amorphization is not observed even for very large doses of keV heavy ions at LN2. An increase in irradiation temperature from LN2 to RT has a relatively small effect on the production of stable structural damage in AlN. In contrast to the case of AlxGa1-xN with x⩽0.6, neither damage saturation in the crystal bulk (below the random level) nor preferential surface disordering is revealed for AlN. Results also show that structural lattice disorder produced in AlN by high-dose keV heavy-ion bombardment is stable to rapid thermal annealing at temperatures as high as 1000 °C.

  11. Modified Gellan Gum hydrogels with tunable physical and mechanical properties

    PubMed Central

    Coutinho, Daniela F.; Sant, Shilpa; Shin, Hyeongho; Oliveira, João T.; Gomes, Manuela E.; Neves, Nuno M.; Khademhosseini, Ali; Reis, Rui L.

    2010-01-01

    Gellan Gum (GG) has been recently proposed for tissue engineering applications. GG hydrogels are produced by physical crosslinking methods induced by temperature variation or by the presence of divalent cations. However, physical crosslinking methods may yield hydrogels that become weaker in physiological conditions due to the exchange of divalent cations by monovalent ones. Hence, this work presents a new class of GG hydrogels crosslinkable by both physical and chemical mechanisms. Methacrylate groups were incorporated in the GG chain, leading to the production of a methacrylated gellan gum (MeGG) hydrogel with highly tunable physical and mechanical properties. The chemical modification was confirmed by proton nuclear magnetic resonance (1H-NMR) and Fourier transform infrared spectroscopy (FTIR-ATR). The mechanical properties of the developed hydrogel networks, with Young’s modulus values between 0.15 and 148 kPa, showed to be tuned by the different crosslinking mechanisms used. The in vitro swelling kinetics and hydrolytic degradation rate was dependent on the crosslinking mechanisms used to form the hydrogels. Three-dimensional (3D) encapsulation of NIH-3T3 fibroblast cells in MeGG networks demonstrated in vitro biocompatibility confirmed by high cell survival. Given the highly tunable mechanical and degradation properties of MeGG, it may be applicable for a wide range of tissue engineering approaches. PMID:20663552

  12. Supramolecular hydrogels for long-term bioengineered stem cell therapy.

    PubMed

    Yeom, Junseok; Kim, Su Jin; Jung, Hyuntae; Namkoong, Hong; Yang, Jeonga; Hwang, Byung Woo; Oh, Kyunghoon; Kim, Kimoon; Sung, Young Chul; Hahn, Sei Kwang

    2015-01-28

    Synthetic hydrogels have been extensively investigated as artificial extracellular matrices (ECMs) for tissue engineering in vitro and in vivo. Crucial challenges for such hydrogels are sustaining long-term cytocompatible encapsulation and providing appropriate cues at the right place and time for spatio-temporal control of the cells. Here, in situ supramolecularly assembled and modularly modified hydrogels for long-term engineered mesenchymal stem cell (eMSC) therapy are reported using cucurbit[6]uril-conjugated hyaluronic acid (CB[6]-HA), diaminohexane conjugated HA (DAH-HA), and drug-conjugated CB[6] (drug-CB[6]). The eMSCs producing enhanced green fluorescence protein (EGFP) remain alive and emit the fluorescence within CB[6]/DAH-HA hydrogels in mice for more than 60 d. Furthermore, the long-term expression of mutant interleukin-12 (IL-12M) by eMSCs within the supramolecular hydrogels results in effective inhibition of tumor growth with a significantly enhanced survival rate. Taken together, these findings confirm the feasibility of supramolecular HA hydrogels as 3D artificial ECMs for cell therapies and tissue engineering applications.

  13. Use of radiation in the production of hydrogels

    NASA Astrophysics Data System (ADS)

    Lugao, Ademar B.; Malmonge, Sônia Maria

    2001-12-01

    The first hydrogel for wound dressing processed by radiation left the laboratories in Poland in 1986 by the hands of its inventor Janusz M. Rosiak and soon, after formal tests, arrived in the local market (1992). It was a technological breakthrough due to its product characteristics as pain reliever and enhanced healing properties besides its clever production process combining sterilization and crosslinking in a simultaneous operation. IAEA invited professor Rosiak to support the transference of his technology for many laboratories around the world. The laboratories of developing countries, which face all kinds of restrictions, were seduced by the simplicity of the process and low cost of its raw materials. This was the seed of the flourishing activities in hydrogel dressings in Brazil and other developing countries. The technology transfer of the radiation production of hydrogel dressings and other hydrogels to the Brazilian industry is under way. The usual issues associated with radiation processing arise from this experience, i.e. capital costs, misinformation about radiation and lack of expertise on radiation processing. Some other issues concerning local market and social peculiarities also add to the problem. Notwithstanding, many different opportunities arise from those challenges. These technical and commercial issues are roughly: (i) There are plenty of new hydrogels in the market and all say the same. What else radiation processed hydrogels can say? (ii) Regarding to hydrogels and its industrial production as market product, what are the unique characteristics of radiation processing? It was shown that the radiation is a powerful tool for producing hydrogels the same basic formula with improved flexibility, control and purity.

  14. Cyclodextrin Inclusion Polymers Forming Hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Jun

    This chapter reviews the advances in the developments of supramolecular hydrogels based on the polypseudorotaxanes and polyrotaxanes formed by inclusion complexes of cyclodextrins threading onto polymer chains. Both physical and chemical supramolecular hydrogels of many different types are discussed with respect to their preparation, structure, property, and gelation mechanism. A large number of physical supramolecular hydrogels were formed induced by self-assembly of densely packed cyclodextrin rings threaded on polymer or copolymer chains acting as physical crosslinking points. The thermo-reversible and thixotropic properties of these physical supramolecular hydrogels have inspired their applications as injectable drug delivery systems. Chemical supramolecular hydrogels synthesized from polypseudorotaxanes and polyrotaxanes were based on the chemical crosslinking of either the cyclodextrin molecules or the included polymer chains. The chemical supramolecular hydrogels were often made biodegradable through incorporation of hydrolyzable threading polymers, end caps, or crosslinkers, for their potential applications as biomaterials.

  15. Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)†

    PubMed Central

    Bailey, Brennan Margaret; Hui, Vivian; Fei, Ruochong

    2012-01-01

    Poly(ethylene glycol) diacrylate (PEG-DA) hydrogels are widely utilized to probe cell-material interactions and ultimately for a material-guided approach to tissue regeneration. In this study, PEG-DA hydrogels were fabricated via solvent-induced phase separation (SIPS) to obtain hydrogels with a broader range of tunable physical properties including morphology (e.g. porosity), swelling and modulus (G′). In contrast to conventional PEG-DA hydrogels prepared from an aqueous precursor solution, the reported SIPS protocol utilized a dichloromethane (DCM) precursor solution which was sequentially photopolymerized, dried and hydrated. Physical properties were further tailored by varying the PEG-DA wt% concentration (5 wt%–25 wt%) and Mn (3.4k and 6k g mol −1). SIPS produced PEG-DA hydrogels with a macroporous morphology as well as increased G′ values versus the corresponding conventional PEG-DA hydrogels. Notably, since the total swelling was not significantly changed versus the corresponding conventional PEG-DA hydrogels, pairs or series of hydrogels represent scaffolds in which morphology and hydration or G′ and hydration are uncoupled. In addition, PEG-DA hydrogels prepared via SIPS exhibited enhanced degradation rates. PMID:22956857

  16. Biological evaluation of intervertebral disc cells in different formulations of gellan gum-based hydrogels.

    PubMed

    Khang, G; Lee, S K; Kim, H N; Silva-Correia, J; Gomes, M E; Viegas, C A A; Dias, I R; Oliveira, J M; Reis, R L

    2015-03-01

    Gellan gum (GG)-based hydrogels are advantageous in tissue engineering not only due to their ability to retain large quantities of water and provide a similar environment to that of natural extracellular matrix (ECM), but also because they can gelify in situ in seconds. Their mechanical properties can be fine-tuned to mimic natural tissues such as the nucleus pulposus (NP). This study produced different formulations of GG hydrogels by mixing varying amounts of methacrylated (GG-MA) and high-acyl gellan gums (HA-GG) for applications as acellular and cellular NP substitutes. The hydrogels were physicochemically characterized by dynamic mechanical analysis. Degradation and swelling abilities were assessed by soaking in a phosphate buffered saline solution for up to 170 h. Results showed that as HA-GG content increased, the modulus of the hydrogels decreased. Moreover, increases in HA-GG content induced greater weight loss in the GG-MA/HA-GG formulation compared to GG-MA hydrogel. Potential cytotoxicity of the hydrogel was assessed by culturing rabbit NP cells up to 7 days. An MTS assay was performed by seeding rabbit NP cells onto the surface of 3D hydrogel disc formulations. Viability of rabbit NP cells encapsulated within the different hydrogel formulations was also evaluated by Calcein-AM and ATP assays. Results showed that tunable GG-MA/HA-GG hydrogels were non-cytotoxic and supported viability of rabbit NP cells. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Synthesis of chemical cross-linked gelatin hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Yin, Ooi Shok; Ahmad, Ishak; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    A novel method was performed to obtain hydrogel with superior sensitivity towards changes in pH and temperature by incorporation of CNC into gelatin based hydrogel. Glutaraldehyde was used as cross-linker due to its high chemical reactivity towards NH2 group on gelatin. Different ratio of gelatin / CNC hydrogel was produced in order to study the effects of CNC towards the swelling behaviour of hydrogel at different pH and temperature. Swelling tests were performed at different pH range from pH 3 to pH 11. Temperature swelling tests were performed at 25 °C and 37 °C. The hydrogel showed impressive pH sensitivity and maximum swelling was obtained at pH 3. Higher swelling ratio was observed at higher temperature. SEM micrographs showed that the pore size of hydrogel decreased with increasing CNC content due to formation of more rigid hydrogel structure. The characteristics of the hydrogel to respond to different pH and temperature suggest that gelatin / CNC hydrogel are promising candidates to be developed as drug carrier.

  18. Asymmetric hydrogel membranes for biohybrid artificial organs and bioseparations

    NASA Astrophysics Data System (ADS)

    Dai, Weihua Sonya

    1999-11-01

    Homogeneous hydrogel membranes were prepared by crosslinking poly(vinyl alcohol) (PVA) with glutaraldehyde. These membranes were then modified to create asymmetry by establishing a glutaraldehyde concentration gradient across the hydrogel thickness. Creatinine (MW: 113), goat Fab (MW: 50 kD) and human IgG (MW: 150 kD) were used to simulate the molecular size of nutrients, therapeutic proteins, and immunological molecules, respectively, involved in cell encapsulation. Permeation experiments were performed in a stirred diffusion cell through homogeneous and asymmetric PVA hydrogels. At a given value of IgG rejection, the asymmetric membranes had higher creatinine and Fab permeabilities than the corresponding homogeneous membranes, indicating that creating mesh size asymmetry in a hydrogel can result in a high-flux, high-selectivity membrane for bioartificial organs and bioseparations. The hydrogel membranes with mesh size asymmetry were characterized with laser scanning confocal fluorescence microscopy. A fluorescent label, DTAF (5-{[4,6-dichlorotriazin-2-yl] amino}-fluorescein) was attached to poly(vinyl alcohol), which then was used to prepare homogeneous and asymmetric hydrogel membranes. Structural asymmetry was clearly present in the gradient-modified membranes from the intensity as a function of membrane depth. From the relationships between fluorescence intensity and water content and between solute permeability and water content for homogeneous membranes, the permeabilities of creatinine, Fab and IgG for the asymmetric membranes were predicted from a sum-of-resistances model. The predicted solute permeabilities compared well to experimental values. The hydrogel membranes were mechanically supported with flat-sheet microfiltration membranes by impregnating the pores with a PVA solution, which was crosslinked with glutaraldehyde and then modified under a glutaraldehyde gradient to produce mesh size asymmetry. The supported, PVA hydrogel membranes with mesh size

  19. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    PubMed

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N3). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    PubMed

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Liquid-liquid two phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review

    PubMed Central

    Elbert, Donald L.

    2010-01-01

    Macroporous hydrogels may have direct applications in regenerative medicine as scaffolds to support tissue formation. Hydrogel microspheres may be used as drug delivery vehicles or as building blocks to assemble modular scaffolds. A variety of techniques exist to produce macroporous hydrogels and hydrogel microspheres. A subset of these relies on liquid-liquid two phase systems. Within this subset, vastly different types of polymerization processes are found. In this review, the history, terminology and classification of liquid-liquid two phase polymerization and crosslinking are described. Instructive examples of hydrogel microsphere and macroporous scaffold formation by precipitation/dispersion, emulsion and suspension polymerizations are used to illustrate the nature of these processes. The role of the kinetics of phase separation in determining the morphology of scaffolds and microspheres is also delineated. Brief descriptions of miniemulsion, microemulsion polymerization and ionotropic gelation are also included. PMID:20659596

  2. A film producer focuses on issues of social justice and nurses: an interview with Richard Harding. Interviewed by Kathleen McHugh.

    PubMed

    Harding, Richard

    2012-01-01

    This case study of Richard Harding, a producer currently making a film about the Benghazi Six, includes an introductory biography, an interview with the producer, and a brief conclusion. Harding's commitments to both filmmaking and social justice issues led him to The Benghazi Six and the injustices suffered by these Bulgarian nurses, who were persecuted and imprisoned in Libya for 9 years on false charges of infecting Libyan children with HIV. The film production ran alongside of and aided international efforts to free the nurses and one physician from Libya.

  3. Sequential assembly of 3D perfusable microfluidic hydrogels.

    PubMed

    He, Jiankang; Zhu, Lin; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2014-11-01

    Bottom-up tissue engineering provides a promising way to recreate complex structural organizations of native organs in artificial constructs by assembling functional repeating modules. However, it is challenging for current bottom-up strategies to simultaneously produce a controllable and immediately perfusable microfluidic network in modularly assembled 3D constructs. Here we presented a bottom-up strategy to produce perfusable microchannels in 3D hydrogels by sequentially assembling microfluidic modules. The effects of agarose-collagen composition on microchannel replication and 3D assembly of hydrogel modules were investigated. The unique property of predefined microchannels in transporting fluids within 3D assemblies was evaluated. Endothelial cells were incorporated into the microfluidic network of 3D hydrogels for dynamic culture in a house-made bioreactor system. The results indicated that the sequential assembly method could produce interconnected 3D predefined microfluidic networks in optimized agarose-collagen hydrogels, which were fully perfusable and successfully functioned as fluid pathways to facilitate the spreading of endothelial cells. We envision that the presented method could be potentially used to engineer 3D vascularized parenchymal constructs by encapsulating primary cells in bulk hydrogels and incorporating endothelial cells in predefined microchannels.

  4. Structure and magnetic properties of hcp and fcc nanocrystalline thin Ni films and nanoparticles produced by radio frequency magnetron sputtering.

    PubMed

    Kapaklis, Vassilios; Pappas, Spiridon D; Poulopoulos, Panagiotis; Trachylis, Dimitrios; Schweiss, Peter; Politis, Constantin

    2010-09-01

    We report on the growth of thin Ni films by radio frequency magnetron sputtering in Ar-plasma. The growth temperature was about 350 K and the films were deposited on various substrates such as glass, silicon, sapphire and alumina. The thickness of the thinnest films was estimated by the appearance of Kiessig fringes up to about 2theta = 8 degrees in the small-angle X-ray diffraction pattern, as expected for high-quality atomically-flat thin films. With the help of this, a quartz balance system was calibrated and used for measuring the thickness of thicker samples with an accuracy of better than 5%. Structural characterization via X-ray diffraction and high resolution transmission electron microscopy revealed an Ar-gas pressure window, where single phase hcp Ni films may be grown. The magnetic response of the Ni films was checked at room temperature via a newly established and fully automatic polar magneto-optic Kerr effect magnetometer. The hcp films show no magnetic response. Interestingly, the magnetic saturation field of fcc films deposited at low Ar pressure is comparable to the one of bulk Ni, while the one of fcc films deposited at high Ar pressures is decreased, revealing the presence of residual strain in the films. Finally, it is shown that it is possible to form films which contain magnetic Ni fcc nanoparticles in a non-magnetic hcp matrix, i.e., a system interesting for technological applications demanding a single Ni target for its production.

  5. Annealing effect on the magnetic induced austenite transformation in polycrystalline freestanding Ni-Co-Mn-In films produced by co-sputtering

    SciTech Connect

    Crouïgneau, G.; Porcar, L.; Pairis, S.; Mossang, E.; Eyraud, E.; Bourgault, D.; Courtois, P.

    2015-01-21

    Ni-Co-Mn-In freestanding films, with a magneto-structural transformation at room temperature were successfully produced by co-sputtering and post-annealing methods leading to film composition mastering. For a post-annealing temperature of 700 °C, the phase transformation occurs slightly above room temperature, with a twisted martensitic microstructure phase observed at 300 K by Field Emission Scanning Electron Microscopy. Magnetization measurements on a polycrystalline film showed a phase transformation from a weakly magnetic martensite to a magnetic austenite phase. Moreover, an inverse magnetocaloric effect with an entropy variation of 4 J/kg K under 5 T was also measured. A simple magneto-actuation experiment based on the magnetic induced austenite transformation was also successfully completed. The possibility to insert such films in microsystems is clearly demonstrated in this work.

  6. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    SciTech Connect

    Andarini, Mellissa; Lazim, Azwan

    2014-09-03

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10{sup −4} g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 – 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application in various areas, especially the use of hydrogel system as a responsive template.

  7. Nata de coco (NDC) hydrogel as nanoreactors for preparation iron nanoparticles (FeNps) from ferrocenium reduction

    NASA Astrophysics Data System (ADS)

    Andarini, Mellissa; Lazim, Azwan

    2014-09-01

    This study focuses on hydrogel as nano template to produce iron nanoparticles (FeNps). Radical polymerization was used to synthesize the hydrogel from nata de coco (NDC-g-PAA). Ferrocenium (FcCL) with 1 × 10-4 g/ml has successfully incorporated with NDC-g-PAA hydrogel system and reduce using sodium hydroxide (NaOH) at different concentrations. Transmission electron microscopy (TEM) result demonstrates that the size of FeNps produced was about 5 - 20 nm. Morphological analysis of hydrogel is carried out by scanning electron microscopy (SEM), SEM-EDEX is used to determine percentage of iron (Fe) in hydrogel. The results offer a wide range of application in various areas, especially the use of hydrogel system as a responsive template.

  8. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  9. Magnetically Aligned Supramolecular Hydrogels

    PubMed Central

    Wallace, Matthew; Cardoso, Andre Zamith; Frith, William J; Iggo, Jonathan A; Adams, Dave J

    2014-01-01

    The magnetic-field-induced alignment of the fibrillar structures present in an aqueous solution of a dipeptide gelator, and the subsequent retention of this alignment upon transformation to a hydrogel upon the addition of CaCl2 or upon a reduction in solution pH is reported. Utilising the switchable nature of the magnetic field coupled with the slow diffusion of CaCl2, it is possible to precisely control the extent of anisotropy across a hydrogel, something that is generally very difficult to do using alternative methods. The approach is readily extended to other compounds that form viscous solutions at high pH. It is expected that this work will greatly expand the utility of such low-molecular-weight gelators (LMWG) in areas where alignment is key. PMID:25345918

  10. Mediating conducting polymer growth within hydrogels by controlling nucleation

    NASA Astrophysics Data System (ADS)

    Patton, A. J.; Green, R. A.; Poole-Warren, L. A.

    2015-01-01

    This study examines the efficacy of primary and secondary nucleation for electrochemical polymerisation of conductive polymers within poly(vinyl alcohol) methacrylate hydrogels. The two methods of nucleation investigated were a primary heterogeneous mechanism via introduction of conductive bulk metallic glass (Mg64Zn30Ca5Na1) particles and a secondary mechanism via introduction of "pre-polymerised" conducting polymer within the hydrogel (PEDOT:PSS). Evidence of nucleation was not seen in the bulk metallic glass loaded gels, however, the PEDOT:PSS loaded gels produced charge storage capacities over 15 mC/cm2 when sufficient polymer was loaded. These studies support the hypothesis that secondary nucleation is an efficient approach to producing stand-alone conducting hydrogels.

  11. Aerobic biodegradation of 2 fluorotelomer sulfonamide-based aqueous film-forming foam components produces perfluoroalkyl carboxylates.

    PubMed

    D'Agostino, Lisa A; Mabury, Scott A

    2017-08-01

    The biodegradation of 2 common fluorotelomer surfactants used in aqueous film forming foams (AFFFs), 6:2 fluorotelomer sulfonamide alkylamine (FTAA) and 6:2 fluorotelomer sulfonamide alkylbetaine (FTAB), was investigated over 109 d with aerobic wastewater-treatment plant (WWTP) sludge. Results show that biodegradation of 6:2 FTAA and 6:2 FTAB produces 6:2 fluorotelomer alcohol (FTOH), 6:2 fluorotelomer carboxylic acid (FTCA), 6:2 fluorotelomer unsaturated carboxylic acid (FTUCA), 5:3 FTCA, and short-chain perfluoroalkyl carboxylates (PFCAs). Additional degradation products included 6:2 fluorotelomer sulfonamide (FTSAm), which was a major degradation product in the presence of either active or sterilized sludge, whereas 6:2 fluorotelomer sulfonate (FTSA) production was measured with sterilized sludge only. Six additional degradation products were tentatively identified by quadrupole time-of-flight mass spectrometry (qTOF-MS) and attributed to N-dealkylation and oxidation of 6:2 FTAA. Environ Toxicol Chem 2017;36:2012-2021. © 2017 SETAC. © 2017 SETAC.

  12. Rapid self-healing hydrogels

    PubMed Central

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  13. Dose-response curve of EBT, EBT2, and EBT3 radiochromic films to synchrotron-produced monochromatic x-ray beams

    SciTech Connect

    Brown, Thomas A. D.; Hogstrom, Kenneth R.; Alvarez, Diane; Matthews, Kenneth L. II; Ham, Kyungmin; Dugas, Joseph P.

    2012-12-15

    Purpose: This work investigates the dose-response curves of GAFCHROMIC{sup Registered-Sign} EBT, EBT2, and EBT3 radiochromic films using synchrotron-produced monochromatic x-ray beams. EBT2 film is being utilized for dose verification in photoactivated Auger electron therapy at the Louisiana State University Center for Advanced Microstructures and Devices (CAMD) synchrotron facility. Methods: Monochromatic beams of 25, 30, and 35 keV were generated on the tomography beamline at CAMD. Ion chamber depth-dose measurements were used to determine the dose delivered to films irradiated at depths from 0.7 to 8.5 cm in a 10 Multiplication-Sign 10 Multiplication-Sign 10-cm{sup 3} polymethylmethacrylate phantom. AAPM TG-61 protocol was applied to convert measured ionization into dose. Films were digitized using an Epson 1680 Professional flatbed scanner and analyzed using the net optical density (NOD) derived from the red channel. A dose-response curve was obtained at 35 keV for EBT film, and at 25, 30, and 35 keV for EBT2 and EBT3 films. Calibrations of films for 4 MV x-rays were obtained for comparison using a radiotherapy accelerator at Mary Bird Perkins Cancer Center. Results: The sensitivity (NOD per unit dose) of EBT film at 35 keV relative to that for 4-MV x-rays was 0.73 and 0.76 for doses 50 and 100 cGy, respectively. The sensitivity of EBT2 film at 25, 30, and 35 keV relative to that for 4-MV x-rays varied from 1.09-1.07, 1.23-1.17, and 1.27-1.19 for doses 50-200 cGy, respectively. For EBT3 film the relative sensitivity was within 3% of unity for all three monochromatic x-ray beams. Conclusions: EBT and EBT2 film sensitivity showed strong energy dependence over an energy range of 25 keV-4 MV, although this dependence becomes weaker for larger doses. EBT3 film shows weak energy dependence, indicating that it would be a better dosimeter for kV x-ray beams where beam hardening effects can result in large changes in the effective energy.

  14. CotA laccase-ABTS/hydrogen peroxide system: An efficient approach to produce active and decolorized chitosan-genipin films.

    PubMed

    Gonçalves, Idalina; Nunes, Cláudia; Mendes, Sónia; Martins, Lígia O; Ferreira, Paula; Coimbra, Manuel A

    2017-11-01

    Chitosan-genipin films present a bluish-green color due to the conjugated double bonds formed when monomeric or dimeric genipin residues bridge chitosan. This phenomenon limits their use when colorless materials are required. In this work, a two-step oxidation strategy was developed aiming to remove color from chitosan-genipin films while preserving their functional properties. A combined system using the recombinant CotA laccase from Bacillus subtilis mediated by 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) followed by a H2O2 oxidation step was settled. ABTS boosted the laccase performance resulting in light brown chitosan-genipin films that were further decolorized upon immersion in a 5% H2O2 solution at pH 11.0 and 40°C for 30min. The applied methodology leads to films that sustain both acidic stability and antioxidant capacity of the pristine films. Overall, the combined CotA laccase-ABTS/hydrogen peroxide developed methodology efficiently produce active and decolorized chitosan-genipin films with potential for application as eco-friendly transparent material which may have application as food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Micropatterning of hydrogels by soft embossing.

    PubMed

    Kobel, Stefan; Limacher, Monika; Gobaa, Samy; Laroche, Thierry; Lutolf, Matthias P

    2009-08-04

    Conventional in situ hydrogel micropatterning techniques work successfully for relatively stiff hydrogels, but they often result in locally damaged surfaces upon demolding in the case of soft and fragile polymer networks formed at low precursor concentration. To overcome this limitation, we have developed a versatile method, termed soft embossing, for the topographical micropatterning of fragile chemically cross-linked polymer hydrogels. Soft embossing is based on the imprinting of a microstructured template into a gel surface that is only partially cross-linked. Free functional groups continue to be consumed and upon complete cross-linking irreversibly confine the microstructure on the gel surface. Here we identify and optimize the parameters that control the soft embossing process and show that this method allows the fabrication of desired topographies with good fidelity. Finally, one of the produced gel micropatterns, an array of microwells, was successfully utilized forculturing and analyzing live single hematopoietic stem cells. Confining the stem cells to their microwells allowed for efficient quantification of their growth potential during in vitro culturing.

  16. About the Sterilization of Chitosan Hydrogel Nanoparticles.

    PubMed

    Galante, Raquel; Rediguieri, Carolina F; Kikuchi, Irene Satiko; Vasquez, Pablo A S; Colaço, Rogério; Serro, Ana Paula; Pinto, Terezinha J A

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles.

  17. About the Sterilization of Chitosan Hydrogel Nanoparticles

    PubMed Central

    Galante, Raquel; Rediguieri, Carolina F.; Kikuchi, Irene Satiko; Vasquez, Pablo A. S.; Colaço, Rogério; Pinto, Terezinha J. A.

    2016-01-01

    In the last years, nanostructured biomaterials have raised a great interest as platforms for delivery of drugs, genes, imaging agents and for tissue engineering applications. In particular, hydrogel nanoparticles (HNP) associate the distinctive features of hydrogels (high water uptake capacity, biocompatibility) with the advantages of being possible to tailor its physicochemical properties at nano-scale to increase solubility, immunocompatibility and cellular uptake. In order to be safe, HNP for biomedical applications, such as injectable or ophthalmic formulations, must be sterile. Literature is very scarce with respect to sterilization effects on nanostructured systems, and even more in what concerns HNP. This work aims to evaluate the effect and effectiveness of different sterilization methods on chitosan (CS) hydrogel nanoparticles. In addition to conventional methods (steam autoclave and gamma irradiation), a recent ozone-based method of sterilization was also tested. A model chitosan-tripolyphosphate (TPP) hydrogel nanoparticles (CS-HNP), with a broad spectrum of possible applications was produced and sterilized in the absence and in the presence of protective sugars (glucose and mannitol). Properties like size, zeta potential, absorbance, morphology, chemical structure and cytotoxicity were evaluated. It was found that the CS-HNP degrade by autoclaving and that sugars have no protective effect. Concerning gamma irradiation, the formation of agglomerates was observed, compromising the suspension stability. However, the nanoparticles resistance increases considerably in the presence of the sugars. Ozone sterilization did not lead to significant physical adverse effects, however, slight toxicity signs were observed, contrarily to gamma irradiation where no detectable changes on cells were found. Ozonation in the presence of sugars avoided cytotoxicity. Nevertheless, some chemical alterations were observed in the nanoparticles. PMID:28002493

  18. Alginate-hyaluronan composite hydrogels accelerate wound healing process.

    PubMed

    Catanzano, O; D'Esposito, V; Acierno, S; Ambrosio, M R; De Caro, C; Avagliano, C; Russo, P; Russo, R; Miro, A; Ungaro, F; Calignano, A; Formisano, P; Quaglia, F

    2015-10-20

    In this paper we propose polysaccharide hydrogels combining alginate (ALG) and hyaluronan (HA) as biofunctional platform for dermal wound repair. Hydrogels produced by internal gelation were homogeneous and easy to handle. Rheological evaluation of gelation kinetics of ALG/HA mixtures at different ratios allowed understanding the HA effect on ALG cross-linking process. Disk-shaped hydrogels, at different ALG/HA ratio, were characterized for morphology, homogeneity and mechanical properties. Results suggest that, although the presence of HA does significantly slow down gelation kinetics, the concentration of cross-links reached at the end of gelation is scarcely affected. The in vitro activity of ALG/HA dressings was tested on adipose derived multipotent adult stem cells (Ad-MSC) and an immortalized keratinocyte cell line (HaCaT). Hydrogels did not interfere with cell viability in both cells lines, but significantly promoted gap closure in a scratch assay at early (1 day) and late (5 days) stages as compared to hydrogels made of ALG alone (p<0.01 and 0.001 for Ad-MSC and HaCaT, respectively). In vivo wound healing studies, conducted on a rat model of excised wound indicated that after 5 days ALG/HA hydrogels significantly promoted wound closure as compared to ALG ones (p<0.001). Overall results demonstrate that the integration of HA in a physically cross-linked ALG hydrogel can be a versatile strategy to promote wound healing that can be easily translated in a clinical setting.

  19. An organophosphate sensor based on photo-crosslinked hydrogel-entrapped E. coli.

    PubMed

    Fleischauer, Valerie; Heo, Jinseok

    2014-01-01

    This paper describes a whole cell sensor using E. coli entrapped within photocrosslinked hydrogel beads. Hydrogel beads containing organophosphorus hydrolase (OPH)-expressed E. coli were prepared by adding a hydrogel precursor solution containing the E. coli to an oil phase using a precision syringe pump, forming droplets, and photopolymerizing them. The beads showed good monodispersity with an average size of 1.2 mm. We detected organophosphates (OPs) using the beads. The detection relied on a pH-sensitive fluorescence dye that responds to protons produced from the intracellular OPH reaction with the OPs. This sensor could detect up to 80 μM of paraoxon with a detection limit of 3 μM. The enzyme activity of E. coli entrapped within the hydrogel beads showed stable enzyme activity for at least two weeks. This whole cell sensor will be implemented in a microfluidic system by directly photopolymerizing the hydrogel precursor solution within microfluidic channels.

  20. Slippery when sticky: Lubricating properties of thin films of Taxus baccata aril mucilage.

    PubMed

    Røn, Troels; Rishikesan, Sankaranarayanan; Chronakis, Ioannis S; Lee, Seunghwan

    2016-03-22

    Mucilage is hydrogel produced from succulent plants and microorganisms displaying unique adhesiveness and slipperiness simultaneously. The objective of this study is to establish an understanding on the lubricating mechanisms of the mucilage from Taxus baccata aril as thin, viscous lubricant films. Oscillation and flow rheological studies revealed that T. baccata mucilage is shear-thinning, thixotropic, and weak hydrogel that is highly stretchable under shear stress due to its high density physical crosslinking characteristics. In addition, T. baccata mucilage showed a distinct Weissenberg effect, i.e., increasing normal force with increasing shear rate, and thus it contributes to deplete the lubricant from tribological interfaces. Lubrication studies with a number of tribopairs with varying mechanical properties and surface wettability have shown that the lubricity of T. baccata mucilage is most effectively manifested at soft, hydrophilic, and rolling tribological contacts. Based on tenacious spreading on highly wetting surfaces, slip plane can be formed within mucilage hydrogel network even when the lubricating films cannot completely separate the opposing surfaces. Moreover, highly stretchable characteristics of mucilage under high shear enhance smooth shearing of two opposing surfaces as lubricating film.

  1. Preparation and characterization of oil palm frond based cellulose hydrogel and its swelling properties

    NASA Astrophysics Data System (ADS)

    Selvakumaran, Nesha; Lazim, Mohd Azwani Shah bin Mat

    2016-11-01

    Malaysia is one of the largest producer of palm oil thus the quantity of biomass each year from this industry is very large. The oil palm frond from palm oil industry can be used as a source of cellulose which can be incorporated into hydrogel to be used as adsorbent. This research reported how to disperse 2 % cellulose in a `green-solution' prepared by using urea and sodium hydroxide. Polymerization is carried out between the monomers polyacrylamide and cellulose using microwave to form hydrogel. Hydrogel with 2 % cellulose have a swelling index of 1814 %. Meanwhile, zero hydrogel which is made with only polyacrylamide has swelling index of 15 %. Scanning electron microscope shows that cellulose hydrogel have a rough surface compared with zero hydrogel. This might attribute to the high swelling index for cellulose hydrogel compared with zero hydrogel. Meanwhile, FTIR shows that successful polymerization has occurred between polyacrylamide and cellulose with the characteristic band at 1657.99 cm-1 which is for N-H bond.

  2. Injectable and Self-Healing Carbohydrate-Based Hydrogel for Cell Encapsulation.

    PubMed

    Lü, Shaoyu; Gao, Chunmei; Xu, Xiubin; Bai, Xiao; Duan, Haogang; Gao, Nannan; Feng, Chen; Xiong, Yun; Liu, Mingzhu

    2015-06-17

    With the fast development of cell therapy, there has been a shift toward the development of injectable hydrogels as cell carriers that can overcome current limitations in cell therapy. However, the hydrogels are prone to damage during use, inducing cell apoptosis. Therefore, this study was carried out to develop an injectable and self-healing hydrogel based on chondroitin sulfate multiple aldehyde (CSMA) and N-succinyl-chitosan (SC). By varying the CSMA to SC ratio, the hydrogel stiffness, water content, and kinetics of gelation could be controlled. Gelation readily occurred at physiological conditions, predominantly due to a Schiff base reaction between the aldehyde groups on CSMA and amino groups on SC. Meanwhile, because of the dynamic equilibrium of Schiff base linkage, the hydrogel was found to be self-healing. Cells encapsulated in the hydrogel remained viable and metabolically active. In addition, the hydrogel produced minimal inflammatory response when injected subcutaneously in a rat model and showed biodegradability in vivo. This work establishes an injectable and self-healing hydrogel derived from carbohydrates with potential applications as a cell carrier and in tissue engineering.

  3. Novel amelogenin-releasing hydrogel for remineralization of enamel artificial caries

    PubMed Central

    Fan, Yuwei; Wen, Zezhang T; Liao, Sumei; Lallier, Thomas; Hagan, Joseph L; Twomley, Jefferson T; Zhang, Jian-Feng; Sun, Zhi; Xu, Xiaoming

    2013-01-01

    Recently, the use of recombinant full-length amelogenin protein in combination with fluoride has shown promising results in the formation of densely packed enamel-like structures. In this study, amelogenin (rP172)-releasing hydrogels containing calcium, phosphate, and fluoride were investigated for remineralization efficacy using in vitro early enamel caries models. The hydrogels were applied to artificial caries lesions on extracted human third molars, and the remineralization efficacy was tested in different models: static gel remineralization in the presence of artificial saliva, pH cyclic treatment at pH 5.4 acetic buffer and pH 7.3 gel remineralization, and treatment with multispecies oral biofilms grown in a continuous flowing constant-depth film fermenter. The surface microhardness of remineralized enamel increased significantly when amelogenin was released from hydrogel. No cytotoxicity was observed when periodontal ligament cells were cultured with the mineralized hydrogels. PMID:23338820

  4. Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing.

    PubMed

    Griffete, Nébéwia; Frederich, Hugo; Maître, Agnès; Ravaine, Serge; Chehimi, Mohamed M; Mangeney, Claire

    2012-01-10

    Inverse opal films of molecularly imprinted polymers (MIP) were elaborated using the colloidal crystal template method. The colloidal crystals of silica particles were built by the Langmuir-Blodgett technique, allowing a perfect control of the film thickness. Polymerization in the interspaces of the colloidal crystal in the presence of bisphenol A (BPA) and removal of the used template provides 3D-ordered macroporous methacrylic acid-based hydrogel films in which nanocavities derived from bisphenol A are distributed within the thin walls of the inverse opal hydrogel. The equilibrium swelling properties of the nonimprinted (NIPs) and molecularly imprinted polymers (MIPs) were studied as a function of pH and bisphenol A concentration, while the molecular structures of the bulk hydrogels were analyzed using a cross-linked network structure theory. This study showed an increase in nanopore (mesh) size in the MIPs after BPA extraction as compared to NIPs, in agreement with the presence of nanocavities left by the molecular imprints of the template molecule. The resulting inverse opals were found to display large responses to external stimuli (pH or BPA) with Bragg diffraction peak shifts depending upon the hydrogel film thickness. The film thickness was therefore shown to be a critical parameter for improving the sensing capacities of inverse opal hydrogel films deposited on a substrate.

  5. Hydrogel control of xylem hydraulic resistance in plants.

    PubMed

    Zwieniecki, M A; Melcher, P J; Michele Holbrook, N M

    2001-02-09

    Increasing concentrations of ions flowing through the xylem of plants produce rapid, substantial, and reversible decreases in hydraulic resistance. Changes in hydraulic resistance in response to solution ion concentration, pH, and nonpolar solvents are consistent with this process being mediated by hydrogels. The effect is localized to intervessel bordered pits, suggesting that microchannels in the pit membranes are altered by the swelling and deswelling of pectins, which are known hydrogels. The existence of an ion-mediated response breaks the long-held paradigm of the xylem as a system of inert pipes and suggests a mechanism by which plants may regulate their internal flow regime.

  6. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Joshi, Ujjwal Man; Subedi, Deepak Prasad

    2015-07-01

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H2O), glycerol (C3H8O3) and diiodomethane (CH2I2) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  7. Chalcopyrite CuGaxIn1 - xSe2 semiconducting thin films produced by radio frequency sputtering

    NASA Astrophysics Data System (ADS)

    Hernández-Rojas, J. L.; Lucía, M. L.; Mártil, I.; Santamaría, J.; González-Díaz, G.; Sánchez-Quesada, F.

    1992-04-01

    CuGaxIn1-xSe2 thin films have been deposited by rf sputtering from three targets with different (Ga,In) content (x=0.25, x=0.5, and x=0.75). A structural, compositional, optical, and electrical study has been carried out for films grown at substrates temperatures higher than 350 °C. We have successfully obtained chalcopyrite single phase stoichiometric films. Very sharp absorption edges are obtained, with band gaps of 1.12, 1.35, and 1.51 eV for x=0, x=0.5, and x=0.75, respectively.

  8. Supressed Water Crystallization in Nano-Structured Physical Hydrogel

    NASA Astrophysics Data System (ADS)

    Wiener, Clinton; Vogt, Bryan; Weiss, Robert

    2015-03-01

    Suppressed water crystallization occurs in some organisms, such as the common wood frog, which allows it to hibernate in a frozen state without damage to its cells. Knowledge of the behavior of supercooled water and alternate ice forms may have many implications to many fields of science. Supercooling of water by several degrees below the normal freezing point is often observed in hydrogels that have attractive interactions with water, e.g., hydrogen bonding. Repulsive confinement, such as in hydrophobic porous carbon, can have even more significant effects on the supercooling of the entrapped water. This talk describes the freezing behavior in nano-structured, hydrophobically modified poly(dimethyl acrylamide) hydrogels that possess attractive and repulsive interactions with water and are physically crosslinked by hydrophobic nanodomains. Three distinct water freezing regimes were observed in the hydrogel swollen to about 50% water by weight. Differential scanning calorimetry detected three crystallization exotherms at 254K, 244K, and 227K. Quasi-elastic neutron scattering experiments have shown that although the water mobility was suppressed at room temperature, the water remained significantly mobile below the normal freezing point of water. The talk will discuss how tuning the concentration of the hydrophobic composition of the hydrogel affects the porous length scales in the hydrogel, which may alter the state of water and the crystal form produced by supercooling.

  9. Enzyme-responsive hydrogel microparticles for pulmonary drug delivery.

    PubMed

    Secret, Emilie; Kelly, Stefan J; Crannell, Kelsey E; Andrew, Jennifer S

    2014-07-09

    Poly(ethylene glycol) based hydrogel microparticles were developed for pulmonary drug delivery. Hydrogels are particularly attractive for pulmonary delivery because they can be size engineered for delivery into the bronchi, yet also swell upon reaching their destination to avoid uptake and clearance by alveolar macrophages. To develop enzyme-responsive hydrogel microparticles for pulmonary delivery a new synthesis method based on a solution polymerization was developed. This method produces spherical poly(ethylene glycol) (PEG) microparticles from high molecular weight poly(ethylene glycol) diacrylate (PEGDA)-based precursors that incorporate peptides in the polymer chain. Specifically, we have synthesized hydrogel microparticles that degrade in response to matrix metalloproteinases that are overexpressed in pulmonary diseases. Small hydrogel microparticles with sizes suitable for lung delivery by inhalation were obtained from solid precursors when PEGDA was dissolved in water at a high concentration. The average diameter of the particles was between 2.8 and 4 μm, depending on the molecular weight of the precursor polymer used and its concentration in water. The relation between the physical properties of the particles and their enzymatic degradation is also reported, where an increased mesh size corresponds to increased degradation.

  10. Aqueous compatible boron nitride nanosheets for high-performance hydrogels.

    PubMed

    Hu, Xiaozhen; Liu, Jiahui; He, Qiuju; Meng, Yuan; Cao, Liu; Sun, Ya-Ping; Chen, Jijie; Lu, Fushen

    2016-02-21

    Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ∼94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ∼95 wt%) was highly flexible. Its elongation and compressive strength exceeded 10,000% and 8 MPa at 97% strain, respectively. Moreover, the aforementioned hydrogel recovered upon the removal of compression force, without obvious damage. The substantially improved water retentivity and flexibility revealed that BNNSs can serve as a promising new platform in the development of high-performance hydrogels.

  11. Nano-Fibrous Biopolymer Hydrogels via Biological Conjugation for Osteogenesis.

    PubMed

    Chen, Huinan; Xing, Xiaodong; Jia, Yang; Mao, Jiahui; Zhang, Ziwei; Tan, Huaping

    2016-06-01

    Nanostructured biopolymer hydrogels have great potential in the field of drug delivery and regenerative medicine. In this work, a nano-fibrous (NF) biopolymer hydrogel was developed for cell growth factors (GFs) delivery and in vitro osteogenesis. The nano-fibrous hydrogel was produced via biological conjugation of streptavidin functionalized hyaluronic acid (HA-Streptavidin) and biotin terminated star-shaped poly(ethylene glycol) (PEG-Biotin). In the present work, in vitro gelation, mechanical properties, degradation and equilibrium swelling of the NF hydrogel were examined. The potential application of this NF gel scaffold in bone tissue engineering was confirmed by encapsulation behavior of osteoblasts. Osteoblasts seeded directly in NF gel scaffold containing cell growth factor, e.g. bone morphogenetic protein 2 (BMP-2), was to mimic the in vivo microenvironment in which cells interface biomaterials and interact with BMP-2. In combination with BMP-2, the NF hydrogel exhibited beneficial effects on osteoblast activity and differentiation, which suggested a promising future for local treatment of pathologies involving bone loss.

  12. Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds.

    PubMed

    Baier Leach, Jennie; Bivens, Kathryn A; Patrick, Charles W; Schmidt, Christine E

    2003-06-05

    Ideally, rationally designed tissue engineering scaffolds promote natural wound healing and regeneration. Therefore, we sought to synthesize a biomimetic hydrogel specifically designed to promote tissue repair and chose hyaluronic acid (HA; also called hyaluronan) as our initial material. Hyaluronic acid is a naturally occurring polymer associated with various cellular processes involved in wound healing, such as angiogenesis. Hyaluronic acid also presents unique advantages: it is easy to produce and modify, hydrophilic and nonadhesive, and naturally biodegradable. We prepared a range of glycidyl methacrylate-HA (GMHA) conjugates, which were subsequently photopolymerized to form crosslinked GMHA hydrogels. A range of hydrogel degradation rates was achieved as well as a corresponding, modest range of material properties (e.g., swelling, mesh size). Increased amounts of conjugated methacrylate groups corresponded with increased crosslink densities and decreased degradation rates and yet had an insignificant effect on human aortic endothelial cell cytocompatibility and proliferation. Rat subcutaneous implants of the GMHA hydrogels showed good biocompatibility, little inflammatory response, and similar levels of vascularization at the implant edge compared with those of fibrin positive controls. Therefore, these novel GMHA hydrogels are suitable for modification with adhesive peptide sequences (e.g., RGD) and use in a variety of wound-healing applications.

  13. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation.

    PubMed

    Zamora-Mora, Vanessa; Velasco, Diego; Hernández, Rebeca; Mijangos, Carmen; Kumacheva, Eugenia

    2014-10-13

    The preparation of composite biopolymer hydrogels offers the capability to produce biocompatible and biodegradable materials with cooperative properties. In this paper, two natural polymers, namely, chitosan and agarose were employed to prepare composite hydrogels with dual pH and temperature properties. The elastic modulus of the composite hydrogels increased with agarose concentration reaching the value of 1 kPa for the chitosan/agarose gel with a 2% (w/v) concentration of agarose. In addition, composite gels exhibited a higher stability in acidic aqueous solutions, in comparison with agarose gels. The drug release properties of the composite hydrogels were tested by loading a model anticancer drug, 5-Fluorouracil, in the hydrogel interior. At pH=7.4, the cumulative release of 5-FU was ∼ 50% within 96 h and decreased to ∼ 33% at pH = 5.2, which was attributed to the different solubility of 5-FU as a function of pH. The preparation of composite microgels with controllable dimensions in the range from 42 to 18 μm and with narrow size distribution (polidispersity not exceeding 1.5%) was achieved by the microfluidic emulsification of an aqueous mixture of chitosan and agarose and subsequent gelation of the precursor droplets by cooling.

  14. Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size

    SciTech Connect

    Bocharova, Vera; Sharp, Danna; Jones, Aaron; Cheng, Shiwang; Griffin, Philip J.; Agapov, Alexander L.; Voylov, Dmitry; Wang, Yangyang; Kisliuk, Alexander; Melman, Artem; Sokolov, Alexei P.

    2015-03-09

    Here, we report a novel approach to synthesize monodisperse hydrogel nanoparticles that are tunable in size. The distinctive feature of our approach is the use of a multicopper oxidase enzyme, laccase, as both a biocatalyst and template for nanoparticle growth. We utilize the ferroxidase activity of laccase to initiate localized production of iron(III) cations from the oxidation of iron(II) cations. We demonstrate that nanoparticles are formed in a dilute polymer solution of alginate as a result of cross-linking between alginate and enzymatically produced iron(III) cations. Exerting control over the enzymatic reaction allows for nanometer-scale tuning of the hydrogel nanoparticle radii in the range of 30–100 nm. Moreover, the nanoparticles and their growth kinetics were characterized via dynamic light scattering, atomic force microscopy, and UV–vis spectroscopy. Our finding opens up a new avenue for the synthesis of tunable nanoscale hydrogel particles for biomedical applications.

  15. Noncovalent hydrogel beads as microcarriers for cell culture.

    PubMed

    Wieduwild, Robert; Krishnan, Swati; Chwalek, Karolina; Boden, Annett; Nowak, Mirko; Drechsel, David; Werner, Carsten; Zhang, Yixin

    2015-03-23

    Hydrogel beads as microcarriers could have many applications in biotechnology. However, bead formation by noncovalent cross-linking to achieve high cell compatibility by avoiding chemical reactions remains challenging because of rapid gelation rates and/or low stability. Here we report the preparation of homogeneous, tunable, and robust hydrogel beads from peptide-polyethylene glycol conjugates and oligosaccharides under mild, cell-compatible conditions using a noncovalent crosslinking mechanism. Large proteins can be released from beads easily. Further noncovalent modification allows for bead labeling and functionalization with various compounds. High survival rates of embedded cells were achieved under standard cell culture conditions and after freezing the beads, demonstrating its suitability for encapsulating and conserving cells. Hydrogel beads as functional system have been realized by generating protein-producing microcarriers with embedded eGFP-secreting insect cells. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Magnetostrictions and magnetic properties of Fe-Co-RE (RE: rare earth elements) films produced by DC triode sputtering

    SciTech Connect

    Shima, T.; Kataoka, N.; Fujimori, H. )

    1993-11-01

    Fe[sub 0.7]Co[sub 0.3] alloy has a large magnetostriction value and a high saturation magnetization. They have investigated the magnetostriction and magnetic properties of bcc Fe-Co-RE (RE a rare earth element) films. These films were prepared by dc triode sputtering. Addition of the RE elements Pr and Tb was found to increase the magnetostriction, while addition of the RE elements Ce, Nd, Sm and Er decreased it. These alloys film all exhibited high saturation magnetization values in excess of 200 emu/g. The high saturation magnetization appeared on addition of a small percentage of the RE element. Such films may be useful as soft magnetic materials.

  17. In situ observation of atomic hydrogen etching on diamond-like carbon films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Cheng, C.-L.; Chia, C.-T.; Chiu, C.-C.; Wu, C.-C.; Cheng, H.-F.; Lin, I.-N.

    2001-04-01

    Atomic hydrogen etching on the pulsed laser deposited (PLD) diamond-like carbon (DLC) films were examined in situ by using Raman spectroscopy. Thermal annealing of the as-prepared DLC films was found to alter the D-band (˜1355 cm -1) and G-band (˜1582 cm -1) from unresolved features at room temperature to clearly separated bands at above 500°C, indicating graphitization of the films. The presence of atomic hydrogen retards graphitization at temperatures lower than 500°C, presumably because reactive atomic hydrogen formed sp 3-bonding carbons which prevented graphitization at below 500°C, while at above 500°C, the hydrogen etches away disordered structure of the DLC film as the intensity changes of the D-bands demonstrate.

  18. Mussel-Inspired Silver-Releasing Antibacterial Hydrogels

    PubMed Central

    Fullenkamp, Dominic E.; Rivera, José G.; Gong, Yong-kuan; Lau, K. H. Aaron; He, Lihong; Varshney, Rahul; Messersmith, Phillip B.

    2012-01-01

    A silver-releasing antibacterial hydrogel was developed that simultaneously allowed for silver nanoparticle formation and gel curing. Water-soluble polyethylene glycol (PEG) polymers were synthesized that contain reactive catechol moieties, inspired by mussel adhesive proteins, where the catechol containing amino acid 3,4-dihydroxyphenylalanine (DOPA) plays an important role in the ability of the mussel to adhere to almost any surface in an aqueous environment. We utilized silver nitrate to oxidize polymer catechols, leading to covalent cross-linking and hydrogel formation with simultaneous reduction of Ag(I). Silver release was sustained for periods of at least two weeks in PBS solution. Hydrogels were found to inhibit bacterial growth, consistent with the well-known antibacterial properties of silver, while not significantly affecting mammalian cell viability. In addition, thin hydrogel films were found to resist bacterial and mammalian cell attachment, consistent with the antifouling properties of PEG. We believe these materials have a strong potential for antibacterial biomaterial coatings and tissue adhesives, due to the material-independent adhesive properties of catechols. PMID:22374454

  19. Mussel-inspired silver-releasing antibacterial hydrogels.

    PubMed

    Fullenkamp, Dominic E; Rivera, José G; Gong, Yong-Kuan; Lau, K H Aaron; He, Lihong; Varshney, Rahul; Messersmith, Phillip B

    2012-05-01

    A silver-releasing antibacterial hydrogel was developed that simultaneously allowed for silver nanoparticle formation and gel curing. Water-soluble polyethylene glycol (PEG) polymers were synthesized that contain reactive catechol moieties, inspired by mussel adhesive proteins, where the catechol containing amino acid 3,4-dihydroxyphenylalanine (DOPA) plays an important role in the ability of the mussel to adhere to almost any surface in an aqueous environment. We utilized silver nitrate to oxidize polymer catechols, leading to covalent cross-linking and hydrogel formation with simultaneous reduction of Ag(I). Silver release was sustained for periods of at least two weeks in PBS solution. Hydrogels were found to inhibit bacterial growth, consistent with the well-known antibacterial properties of silver, while not significantly affecting mammalian cell viability. In addition, thin hydrogel films were found to resist bacterial and mammalian cell attachment, consistent with the antifouling properties of PEG. We believe these materials have a strong potential for antibacterial biomaterial coatings and tissue adhesives, due to the material-independent adhesive properties of catechols. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Flash imprint lithography using a mask aligner: a method for printing nanostructures in photosensitive hydrogels

    NASA Astrophysics Data System (ADS)

    Fozdar, David Y.; Zhang, Wande; Palard, Marylene; Patrick, Charles W., Jr.; Chen, Shaochen

    2008-05-01

    In this paper, we report a general method for imprinting nanometer-scale features in low-viscosity photosensitive hydrogels using conventional optical mask aligner technology. We call this method flash imprint lithography using a mask aligner (FILM). The FILM process makes it possible to fabricate nanometer-scale features in ultraviolet (UV)-curable hydrogels quickly, inexpensively and reproducibly. We believe that the FILM process will be useful in many areas of research but is particularly applicable to tissue engineering. Accordingly, we demonstrate the FILM process by imprinting dense arrays of nanostructures in polyethylene glycol dimethacrylate (PEGDMA), a material commonly utilized as a substrate in micro-and nanoscale tissue scaffolds; finite element modeling and contact angle analysis are employed to characterize pattern transfer of low-viscosity polymers (e.g. PEGDMA) in the FILM process.

  1. Electrical properties of a-C:Mo films produced by dual-cathode filtered cathodic arc plasma deposition

    SciTech Connect

    Sansongsiri, Sakon; Anders, Andre; Yodsombat, Banchob

    2008-01-20

    Molybdenum-containing amorphous carbon (a-C:Mo) thin films were prepared using a dual-cathode filtered cathodic arc plasma source with a molybdenum and a carbon (graphite) cathode. The Mo content in the films was controlled by varying the deposition pulse ratio of Mo and C. Film sheet resistance was measured in situ at process temperature, which was close to room temperature, as well as ex situ as a function of temperature (300-515 K) in ambient air. Film resistivity and electrical activation energy were derived for different Mo and C ratios and substrate bias. Film thickness was in the range 8-28 nm. Film resistivity varied from 3.55x10-4 Omega m to 2.27x10-6 Omega m when the Mo/C pulse ratio was increased from 0.05 to 0.4, with no substrate bias applied. With carbon-selective bias, the film resistivity was in the range of 4.59x10-2 and 4.05 Omega m at a Mo/C pulse ratio of 0.05. The electrical activation energy decreased from 3.80x10-2 to 3.36x10-4 eV when the Mo/C pulse ratio was increased in the absence of bias, and from 0.19 to 0.14 eV for carbon-selective bias conditions. The resistivity of the film shifts systematically with the amounts of Mo and upon application of substrate bias voltage. The intensity ratio of the Raman D-peak and G-peak (ID/IG) correlated with the pre-exponential factor (sigma 0) which included charge carrier density and density of states.

  2. Rationalising polymer selection for supersaturated film forming systems produced by an aerosol spray for the transdermal delivery of methylphenidate.

    PubMed

    Edwards, A; Qi, S; Liu, F; Brown, M B; McAuley, W J

    2017-05-01

    Film forming systems offer a number of advantages for topical and transdermal drug delivery, in particular enabling production of a supersaturated state which can greatly improve drug absorption and bioavailability. However the suitability of individual film forming polymers to stabilise the supersaturated state and optimise delivery of drugs is not well understood. This study reports the use of differential scanning calorimetry (DSC) to measure the solubility of methylphenidate both as the free base and as the hydrochloride salt in two polymethacrylate copolymers, Eudragit RS (EuRS) and Eudragit E (EuE) and relates this to the ability of films formed using these polymers to deliver methylphenidate across a model membrane. EuRS provided greater methylphenidate delivery when the drug was formulated as the free base in comparison EuE because the lower solubility of the drug in EuRS provided a higher degree of drug saturation in the polymeric film. In contrast EuE provided greater delivery of methylphenidate hydrochloride as EuRS could not prevent its crystallisation from a supersaturated state. Methylphenidate flux across the membrane could be directly related to degree of saturation of the drug in the film formulation as estimated by the drug solubility in the individual polymers demonstrating the importance of drug solubility in the polymer included in film forming systems for topical/transdermal drug delivery. In addition DSC has been demonstrated to be a useful tool for determining the solubility of drugs in polymers used in film forming systems and the approaches outlined here are likely to be useful for predicting the suitability of polymers for particular drugs in film forming transdermal drug delivery systems. Copyright © 2017. Published by Elsevier B.V.

  3. Synthesis and characterization of Cu-doped TiO2 thin films produced by the inert gas condensation technique

    NASA Astrophysics Data System (ADS)

    Ahmed, H. A.; Abu-Eishah, S. I.; Ayesh, A. I.; Mahmoud, S. T.

    2017-07-01

    The bandgap of thin films Cu-doped TiO2 nanoclusters prepared using the inert gas condensation (IGC) technique have been investigated at various Cu contents. The samples were characterized using XRD, SEM/EDS and UV-visible spectrophotometer. It was found that doping of TiO2 thin film nanoclusters with Cu enhance its optical activity and shift it to the visible region; which makes it useful in photocatalytic applications.

  4. Relating Redox Properties of Polyvinylamine-g-TEMPO/Laccase Hydrogel Complexes to Cellulose Oxidation.

    PubMed

    Fu, Qiang; Sutherland, Alexander; Gustafsson, Emil; Ali, M Monsur; Soleymani, Leyla; Pelton, Robert

    2017-08-15

    The structure and electrochemical properties of adsorbed complexes based on mixtures of polyvinylamine-g-TEMPO (PVAm-T) and laccase were related to the ability of the adsorbed complexes to oxidize cellulose. PVAm-T10 with 10% of the amines bearing TEMPO moieties (i.e., DS = 10%), adsorbed onto gold sulfonate EQCM-D sensor surfaces giving a hydrogel film that was 7 nm thick, 89% water, and encasing laccase (200 mM) and TEMPO moieties (33 mM). For DS values >10%, all of the TEMPOs in the hydrogel film were redox-active in that they could be oxidized by the electrode. With hydrogel layers made with lower-DS PVAm-Ts, only about half of the TEMPOs were redox-active; 10% DS appears to be a percolation threshold for complete TEMPO-to-TEMPO electron transport. In parallel experiments with hydrogel complexes adsorbed onto regenerated cellulose films, the aldehyde concentrations increased monotonically with the density of redox-active TEMPO moieties in the adsorbed hydrogel. The maximum density of aldehydes was 0.24 μmol/m(2), about 10 times less than the theoretical concentration of primary hydroxyl groups exposed on crystalline cellulose surfaces. Previous work showed that PVAm-T/laccase complexes are effective adhesives between wet cellulose surfaces when the DS is >10%. This work supports the explanation that TEMPO-to-TEMPO electron transport is required for the generation of aldehydes necessary for wet adhesion to PVAm.

  5. New ion-assisted filtered cathodic arc deposition (IFCAD) technology for producing advanced thin films on temperature-sensitive substrates

    NASA Astrophysics Data System (ADS)

    Fulton, Michael L.

    1999-10-01

    An innovative Ion-Assisted Filtered Cathodic Arc Deposition (IFCAD) system has been developed for low temperature production of thin-film coatings. The IFCAD system employs electro-magnetic and mechanical filtering techniques to remove unwanted macroparticles and neutral atoms from the plasma stream. Therefore, only ions within a defined energy range arrive at the substrate surface, depositing thin-films with excellent mechanical and optical properties. Ion- Assisted-Deposition is coupled with Filtered Cathodic Arc technology to enhance and modify the arc deposited thin- films. Using an advanced computer controlled plasma beam scanning system, high quality, large area, uniform IFCAD multi-layer film structures are attained. Amorphous Diamond- Like-Carbon films (up to 85% sp3 bonded carbon; and micro- hardness greater than 50 GPa) have been deposited in multi- layer thin-film combinations with other IFCAD source materials (such as: Al2O3) for optical and tribological applications. Rutile TiO2 (refractive index of 2.8 at 500 nm) has been deposited with this technology for advanced optical filter applications. The new IFCAD technology has been included in development programs, such as: plastic and glass lens coatings for optical systems; wear resistant coatings on various metal substrates, ultra smooth, durable, surface hydrophobic coatings for aircraft windows; EUV coatings for space instrumentation; transparent conductive coatings; and UV protective coatings for solar cell concentrator plastic Fresnel lens elements for space power.

  6. Environmentally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Schueneman, Susan M.; Chen, Wei

    2002-07-01

    A hydrogel experimental module was designed for an undergraduate upper-level laboratory course. Cross-linked poly(N-isopropylacrylamide) (PIPAM) is a thermo-sensitive hydrogel; it undergoes a volume collapse driven by hydrophobic interactions in pure water as the temperature increases to 32 °C. The extent and temperature of the volume transition are two critical parameters in its applications ranging from pharmaceutics to biotechnology and they can be controlled by incorporating ionic components in the PIPAM system. In this experiment, linear PIPAM, cross-linked neutral PIPAM gel, and cross-linked ionic PIPAM gel were prepared by radical polymerization. Viscosity, molecular weight, and thermal transition (cloud point) of linear PIPAM were determined. Volume collapses of the neutral and ionic PIPAM gels as a function of temperature were examined and compared. In this module, students were exposed to original literature and contemporary chemical research in polymer chemistry and they learned to integrate concepts from different disciplines of chemistry into a unified experimental approach to problem solving. This module could also be used for polymer chemistry or physical chemistry laboratory courses.

  7. Unconfined compression properties of a porous poly(vinyl alcohol)-chitosan-based hydrogel after hydration.

    PubMed

    Lee, Si-Yuen; Pereira, Barry P; Yusof, N; Selvaratnam, L; Yu, Zou; Abbas, A A; Kamarul, T

    2009-07-01

    A poly(vinyl alcohol) (PVA) hydrogel composite scaffold containing N,O-carboxymethylated chitosan (NOCC) was tested to assess its potential as a scaffold for cartilage tissue engineering in a weight-bearing environment. The mechanical properties under unconfined compression for different hydration periods were investigated. The effect of supplementing PVA with NOCC (20wt.% PVA:5vol.% NOCC) produced a porosity of 43.3% and this was compared against a non-porous PVA hydrogel (20g PVA: 100ml of water, control). Under non-hydrated conditions, the porous PVA-NOCC hydrogel behaved in a similar way to the control non-porous PVA hydrogel, with similar non-linear stress-strain response under unconfined compression (0-30% strain). After 7days' hydration, the porous hydrogel demonstrated a reduced stiffness (0.002kPa, at 25% strain), resulting in a more linear stiffness relationship over a range of 0-30% strain. Poisson's ratio for the hydrated non-porous and porous hydrogels ranged between 0.73 and 1.18, and 0.76 and 1.33, respectively, suggesting a greater fluid flow when loaded. The stress relaxation function for the porous hydrogel was affected by the hydration period (from 0 to 600s); however the percentage stress relaxation regained by about 95%, after 1200s for all hydration periods assessed. No significant differences were found between the different hydration periods between the porous hydrogels and control. The calculated aggregate modulus, H(A), for the porous hydrogel reduced drastically from 10.99kPa in its non-hydrated state to about 0.001kPa after 7days' hydration, with the calculated shear modulus reducing from 30.92 to 0.14kPa, respectively. The porous PVA-NOCC hydrogel conformed to a biphasic, viscoelastic model, which has the desired properties required for any scaffold in cartilage tissue engineering.

  8. Synthesis and Characterization of Photo-Cross-Linkable Keratin Hydrogels for Stem Cell Encapsulation.

    PubMed

    Barati, Danial; Kader, Safaa; Pajoum Shariati, Seyed Ramin; Moeinzadeh, Seyedsina; Sawyer, Roger H; Jabbari, Esmaiel

    2017-02-13

    The objective of this work was to synthesize an injectable and photopolymerizable hydrogel based on keratin extracted from poultry feather for encapsulation and delivery of stem cells in tissue regeneration. Since feather keratin is rich in cysteine residue, allylation of sulfhydryl groups was used for functionalization of keratin. Keratin was extracted from feather barbs by reducing the disulfide bonds in cysteine residues to sulfhydryl groups (-SH). Next, the free thiol groups were converted to dehydroalanine (Dha) by oxidative elimination using O-(2,4,6-trimethylbenzenesulfonyl) hydroxylamine. Then, the Dha moieties were converted to s-allyl cysteine by reaction with allyl mercaptan to produce keratin allyl thioether (KeratATE) biopolymer. Human mesenchymal stem cell (hMSCs) were suspended in the aqueous solution of KeratATE, injected into a mold, and photopolymerized to generate a KeratATE hydrogel encapsulating hMSCs. The freeze-dried photo-cross-linked KeratATE hydrogels had a porous, interconnected, honeycomb microstructure with pore sizes in the 20-60 μm range. The compressive modulus of the hydrogels ranged from 1 to 8 kPa depending on KeratATE concentration. KeratATE hydrogels had <5% mass loss in collagenase solution after 21 days of incubation, whereas the mass loss was 15% in trypsin solution. Degradation of KeratATE hydrogel was strongly dependent on trypsin concentration but independent of collagenase. hMSCs proliferated and adopted an elongated spindle-shape morphology after seeding on KeratATE hydrogel. KeratATE hydrogel supported differentiation of the encapsulated hMSCs to the osteogenic and chondrogenic lineages to the same extent as those hMSCs encapsulated in gelatin methacryloyl hydrogel. The results suggest that keratin allyl thioether hydrogel with controllable degradation is a viable matrix for encapsulation and delivery of stem cells in tissue regeneration.

  9. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus.

    PubMed

    Borges, Ana C; Eyholzer, Christian; Duc, Fabien; Bourban, Pierre-Etienne; Tingaut, Philippe; Zimmermann, Tanja; Pioletti, Dominique P; Månson, Jan-Anders E

    2011-09-01

    The swelling and compressive mechanical behavior as well as the morphology and biocompatibility of composite hydrogels based on Tween® 20 trimethacrylate (T3), N-vinyl-2-pyrrolidone (NVP) and nanofibrillated cellulose (NFC) were assessed in the present study. The chemical structure of T3 was verified by Fourier transform infrared spectroscopy and proton nuclear magnetic resonance, and the degree of substitution was found to be around 3. Swelling ratios of neat hydrogels composed of different concentrations of T3 and NVP were found to range from 1.5 to 5.7 with decreasing concentration of T3. Various concentrations of cellulose nanofibrils (0.2-1.6wt.%) were then used to produce composite hydrogels that showed lower swelling ratios than neat ones for a given T3 concentration. Neat and composite hydrogels exhibited a typical nonlinear response under compression. All composite hydrogels showed an increase in elastic modulus compared to neat hydrogel of about 3- to 8-fold, reaching 18kPa at 0% strain and 62kPa at 20% strain for the hydrogel with the highest NFC content. All hydrogels presented a porous and homogeneous structure, with interconnected pore cells of around 100nm in diameter. The hydrogels are biocompatible. The results of this study demonstrate that composite hydrogels reinforced with NFC may be viable as nucleus pulposus implants due to their adequate swelling ratio, which may restore the annulus fibrosus loading, and their increased mechanical properties, which could possibly restore the height of the intervertebral discs. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Synthetically simple, highly resilient hydrogels.

    PubMed

    Cui, Jun; Lackey, Melissa A; Madkour, Ahmad E; Saffer, Erika M; Griffin, David M; Bhatia, Surita R; Crosby, Alfred J; Tew, Gregory N

    2012-03-12

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were controlled by the relative amounts of PEG and PDMS. The fracture toughness (G(c)) was increased to 80 J/m(2) as the water content of the hydrogel decreased from 95% to 82%. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains.

  11. Potentiodynamic Polarization Studies and Surface Chemical Composition of Bismuth Titanate (BixTiyOz) Films Produced through Radiofrequency Magnetron Sputtering

    PubMed Central

    Alfonso, José E.; Olaya, Jhon J.; Pinzón, Manuel J.; Marco, José F.

    2013-01-01

    The applications of Bismuth Titanate (BixTiyOz) materials have been focused on their electronic and optical properties, but with respect to the use of these compounds in applications like corrosion resistance, have been very few or nonexistent. For this reason, in the present investigation BixTiyOz thin films were deposited using RF magnetron sputtering onto silicon wafers, stainless steel 316L, and titanium alloy (Ti6Al4V) substrates, in order to carry out a study of the corrosion behavior of this compound. The structural properties of the coatings were studied through X-ray diffraction (XRD), the morphology was determined using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and surface chemical composition was evaluated through X-ray photoelectron spectroscopy (XPS). The XRD results indicated that the films were amorphous. The SEM micrographs showed that the deposited films were homogeneous, but in some cases there were cracks. The potentiodynamic polarization technique showed that the corrosion current in the coated substrates decreased by an order of two magnitudes with respect to the uncoated substrates, but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS analysis shows that the deposited films contain both Bi3+ and Ti4+. PMID:28788338

  12. Potentiodynamic Polarization Studies and Surface Chemical Composition of Bismuth Titanate (BixTiyOz) Films Produced through Radiofrequency Magnetron Sputtering.

    PubMed

    Alfonso, José E; Olaya, Jhon J; Pinzón, Manuel J; Marco, José F

    2013-10-08

    The applications of Bismuth Titanate (BixTiyOz) materials have been focused on their electronic and optical properties, but with respect to the use of these compounds in applications like corrosion resistance, have been very few or nonexistent. For this reason, in the present investigation BixTiyOz thin films were deposited using RF magnetron sputtering onto silicon wafers, stainless steel 316L, and titanium alloy (Ti₆Al₄V) substrates, in order to carry out a study of the corrosion behavior of this compound. The structural properties of the coatings were studied through X-ray diffraction (XRD), the morphology was determined using Scanning Electron Microscopy (SEM), the corrosion resistance behavior of the coated and uncoated substrates was evaluated via the Potentiodynamic Polarization technique, and surface chemical composition was evaluated through X-ray photoelectron spectroscopy (XPS). The XRD results indicated that the films were amorphous. The SEM micrographs showed that the deposited films were homogeneous, but in some cases there were cracks. The potentiodynamic polarization technique showed that the corrosion current in the coated substrates decreased by an order of two magnitudes with respect to the uncoated substrates, but in both cases the corrosion mechanism was pitting due to the pores in the film. The XPS analysis shows that the deposited films contain both Bi(3+) and Ti(4+).

  13. Stretchable Hydrogel Electronics and Devices.

    PubMed

    Lin, Shaoting; Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Koo, Hyunwoo; Yu, Cunjiang; Zhao, Xuanhe

    2016-06-01

    Stretchable hydrogel electronics and devices are designed by integrating stretchable conductors, functional chips, drug-delivery channels, and reservoirs into stretchable, robust, and biocompatible hydrogel matrices. Novel applications include a smart wound dressing capable of sensing the temperatures of various locations on the skin, delivering different drugs to these locations, and subsequently maintaining sustained release of drugs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  15. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  16. Structuring and calorie control of bakery products by templating batter with ultra melt-resistant food-grade hydrogel beads.

    PubMed

    Thompson, Benjamin R; Horozov, Tommy S; Stoyanov, Simeon D; Paunov, Vesselin N

    2017-08-01

    We report the use of a temperature insensitive, food-grade hydrogel to reduce the caloric density of pancakes that were prepared at temperatures much higher than the boiling point of water. This cheap, facile method utilises a mixed agar-methylcellulose hydrogel, which was blended to produce a slurry of hydrogel microbeads. The pancake batter was mixed with a controlled volume percentage of slurry of hydrogel beads and cooked. From bomb calorimetry experiments, the composites were found to have a reduced caloric density that reflects the volume percentage of hydrogel beads mixed with the batter. Using this procedure, we were able to reduce the caloric density of pancakes by up to 23 ± 3% when the volume percentage of hydrogel beads initially used was 25%. The method is not limited to pancakes and could potentially be applied to various other food products. The structure and morphology of the freeze-dried pancakes and pancake-hydrogel composites were investigated and pores of a similar size to the hydrogel beads were found, confirming that the gel beads maintained their structure during the cooking process. There is scope for further development of this method by the encapsulation of nutritionally beneficial or flavour enhancing ingredients within the hydrogel beads.

  17. The influence of silkworm species on cellular interactions with novel PVA/silk sericin hydrogels.

    PubMed

    Lim, Khoon S; Kundu, Joydip; Reeves, April; Poole-Warren, Laura A; Kundu, Subhas C; Martens, Penny J

    2012-03-01

    Sericin peptides and PVA are chemically modified with methacrylate groups to produce a covalent PVA/sericin hydrogel. Preservation of the sericin bioactivity following methacrylation is confirmed, and PVA/sericin hydrogels are fabricated for both B. mori and A. mylitta sericin. Cell adhesion studies confirm the preservation of sericin bioactivity post incorporation in PVA gels. PVA/A. mylitta gels are observed to facilitate cell adhesion to a significantly greater degree than PVA/B. mori gels. Overall, the incorporation of sericin does not alter the physical properties of the PVA hydrogels but does result in significantly improved cellular interaction, particularly from A. mylitta gels.

  18. Ultrathin, freestanding, stimuli-responsive, porous membranes from polymer hydrogel-brushes

    NASA Astrophysics Data System (ADS)

    Kang, Chengjun; Ramakrishna, Shivaprakash N.; Nelson, Adrienne; Cremmel, Clement V. M.; Vom Stein, Helena; Spencer, Nicholas D.; Isa, Lucio; Benetti, Edmondo M.

    2015-07-01

    The fabrication of freestanding, sub-100 nm-thick, pH-responsive hydrogel membranes with controlled nano-morphology, based on modified poly(hydroxyethyl methacrylate) (PHEMA) is presented. Polymer hydrogel-brush films were first synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequently detached from silicon substrates by UV-induced photo-cleavage of a specially designed linker within the initiator groups. The detachment was also assisted by pH-induced osmotic forces generated within the films in the swollen state. The mechanical properties and morphology of the freestanding films were studied by atomic force microscopy (AFM). Inclusion of nanopores of controlled diameter was accomplished by performing SI-ATRP from initiator-coated surfaces that had previously been patterned with polystyrene nanoparticles. Assembly parameters and particle sizes could be varied, in order to fabricate nanoporous hydrogel-brush membranes with tunable pore coverage and characteristics. Additionally, due to the presence of weak polyacid functions within the hydrogel, the membranes exhibited pH-dependent thickness in water and reversible opening/closing of the pores.The fabrication of freestanding, sub-100 nm-thick, pH-responsive hydrogel membranes with controlled nano-morphology, based on modified poly(hydroxyethyl methacrylate) (PHEMA) is presented. Polymer hydrogel-brush films were first synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequently detached from silicon substrates by UV-induced photo-cleavage of a specially designed linker within the initiator groups. The detachment was also assisted by pH-induced osmotic forces generated within the films in the swollen state. The mechanical properties and morphology of the freestanding films were studied by atomic force microscopy (AFM). Inclusion of nanopores of controlled diameter was accomplished by performing SI-ATRP from initiator-coated surfaces that had

  19. Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics.

    PubMed

    Orelma, Hannes; Filpponen, Ilari; Johansson, Leena-Sisko; Osterberg, Monika; Rojas, Orlando J; Laine, Janne

    2012-12-01

    We introduce a new method to modify films of nanofibrillated cellulose (NFC) to produce non-porous, water-resistant substrates for diagnostics. First, water resistant NFC films were prepared from mechanically disintegrated NFC hydrogel, and then their surfaces were carboxylated via TEMPO-mediated oxidation. Next, the topologically functionalized film was activated via EDS/NHS chemistry, and its reactivity verified with bovine serum albumin and antihuman IgG. The surface carboxylation, EDC/NHS activation and the protein attachment were confirmed using quartz crystal microbalance with dissipation, contact angle measurements, conductometric titrations, X-ray photoelectron spectroscopy and fluorescence microscopy. The surface morphology of the prepared films was investigated using confocal laser scanning microscopy and atomic force microscopy. Finally, we demonstrate that antihuman IgG can be immobilized on the activated NFC surface using commercial piezoelectric inkjet printing.

  20. Energy conversion in polyelectrolyte hydrogels

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Erbas, Aykut; Olvera de la Cruz Team

    Energy conversion and storage have been an active field of research in nanotechnology parallel to recent interests towards renewable energy. Polyelectrolyte (PE) hydrogels have attracted considerable attention in this field due to their mechanical flexibility and stimuli-responsive properties. Ideally, when a hydrogel is deformed, applied mechanical work can be converted into electrostatic, elastic and steric-interaction energies. In this talk, we discuss the results of our extensive molecular dynamics simulations of PE hydrogels. We demonstrate that, on deformation, hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. This is due to the hydrogel's inherent tendency to preserve electro-neutrality in its interior, in combination with correlations imposed by backbone charges. Our findings are valid for a wide range of compression ratios and ionic strengths. The electrostatic-energy alterations that we observe in our MD simulations may induce pH or redox-potential changes inside the hydrogels. The resulting energetic difference can be harvested, for instance, analogously to a Carnot engine, or facilitated for sensor applications. Center for Bio-inspired Energy Science (CBES).

  1. Microfluidics assisted generation of innovative polysaccharide hydrogel microparticles.

    PubMed

    Marquis, M; Davy, J; Cathala, B; Fang, A; Renard, D

    2015-02-13

    Capillary flow-based approach such as microfluidic devices offer a number of advantages over conventional flow control technology because they ensure highly versatile geometry and can be used to produce monodisperse spherical and non-spherical polymeric microparticles. Based on the principle of a flow-focusing device to emulsify the coflow of aqueous solutions in an organic phase, we were able to produce the following innovative polysaccharide hydrogel microparticles: - Janus hydrogel microparticles made of pectin–pectin (homo Janus) and pectin–alginate (hetero Janus) were produced. The efficiency of separation of the two hemispheres was investigated by confocal scanning laser microscopy (CSLM) of previously labelled biopolymers. The Janus structure was confirmed by subjecting each microparticle hemisphere to specific enzymatic degradation. As a proof of concept, free BSA or BSA grafted with dextran, were encapsulated in each hemisphere of the hetero Janus hydrogel microparticles. While BSA, free or grafted with dextran, was always confined in the alginate hemisphere, a fraction of BSA diffused from the pectin to the alginate hemisphere. Methoxy groups along the pectin chain will be responsible of the decrease of the number of attractive electrostatic interactions occurring between amino groups of BSA and carboxylic groups of pectin. - Pectin hydrogel microparticles of complex shapes were successfully produced by combining on-chip the phenomenon of gelation and water diffusion induced self-assembly, using dimethyl carbonate as continuous phase, or by deformation of the pre-gelled droplets off-chip at a fluid–fluid interface. Sphere, oblate ellipsoid, torus or mushroom-type morphologies were thus obtained. Moreover, it was established that after crossing the interface during their collect, mushroom-type microparticles did not migrate in the calcium or DMC phase but stayed at the liquid–liquid interface. These new and original hydrogel microparticles will

  2. High-RRR thin-films of NB produced using energetic condensation from a coaxial, rotating vacuum ARC plasma (CEDTM)

    SciTech Connect

    Enrique Francisco Valderrama, Colt James, Mahadevan Krishnan, Xin Zhao, Larry Phillips, Charles Reece, Kang Seo

    2012-07-01

    We have recently demonstrated unprecedentedly high values of RRR (up to 542) in thin-films of pure Nb deposited on a-plane sapphire and MgO crystal substrates. The Nb films were grown using a vacuum arc discharge struck between a reactor grade Nb cathode rod (RRR {approx} 30) and a coaxial, semi-transparent Mo mesh anode, with a heated substrate placed just outside it. The substrates were pre-heated for several hours prior to deposition at different temperatures. Low pre-heat temperatures (<300 C) and deposition temperatures (<300 C) give low RRR (<50) films, whereas higher pre-heat (700 C) and coating temperatures (500 C) give RRR=214 on a-sapphire and RRR=542 on MgO. XRD (Bragg-Brentano scans and Pole Figures), EBSD and SIMS data reveal several features: (1) on asapphire, higher temperatures show better 3D registry for epitaxial growth of Nb; the crystal structure evolves from textured, polycrystalline (with twins) to single-crystal; (2) on MgO, there is a transition from {l_brace}110{r_brace} planes to {l_brace}100{r_brace} as the temperature is increased beyond 500 C. The dramatic increase in RRR (from {approx}10 at <300 C to {approx}500 at >600 C) is correlated with better epitaxial crystal structure in both a-sapphire and MgO substrate grown films. However, the SIMS data reveal that the most important requirement for high-RRR Nb films on either substrate is the reduction of impurities in the film, especially hydrogen. The hydrogen content in the MgO grown films is 1000 times lower than in bulk Nb tested as a reference from SRF cavity grade Nb. This result has potential implications for SRF accelerators. Coating bulk Nb cavities with an MgO layer followed by our CEDTM deposited Nb films, might create superior SRF cavities that would avoid Q-slope and operate at higher peak fields.

  3. Materials engineering of hydrogels

    NASA Astrophysics Data System (ADS)

    Kiser, Patrick Franklin

    I. Design and performance of biodegradable crosslinkers based on alpha-hydroxy acids. There is a need for biodegradable hydrogels that deteriorate at defined rates under physiological conditions and which contain components that are readily synthesized and easily incorporated into hydrogel networks. This need was addressed through the synthesis of a series of novel crosslinkers composed of alpha-hydroxy esters were incorporated into polymer networks with free-radical polymerization. The hydrogel networks were shown to undergo swelling and degradation at physiological pH between 5 and 50 days. A model relating the swelling and the crosslink density was used to obtain a rate constant for the change in the network crosslink density. Homologous model compounds to crosslinkers were synthesized and their degradation kinetics were measured by NMR. II. Microgel synthesis. Reactive microgels are a new class of polymer molecules that are synthesized through precipitation polymerization. The first systematic study detailing the effect the solvent has on the size of the resultant microgel particle is described. The particle size was found to be inversely proportional to the solubility parameter difference between the solvent and the polymer. Chemical modifications to the current reactive monomers used in this polymerization resulted in an improved polymer product. This allowed the synthesis of a of the reactive group, which displayed a lack of chain transfer and intramolecular cyclization. The properties of pH response and zeta-potential of these materials are described. III. Design of a synthetic mimic of the secretory granule. Hormones are secreted by specialized cells in response to biological signals. These cells contain condensed secretory granules composed of a poly-anionic polymer matrix encapsulated within a lipid membrane. The condensed matrix functions as a storage and triggered release vehicle for the stable encapsulation of a variety of hormones. A multi

  4. Design of Responsive Peptide-based Hydrogels as Therapeutics

    NASA Astrophysics Data System (ADS)

    Schneider, Joel

    2008-03-01

    Hydrogels composed of self-assembled peptides have been designed to allow minimally invasive delivery of cells in-vivo. These peptides undergo sol-gel phase transitions in response to biological media enabling the three-dimensional encapsulation of cells. Peptides are designed such that when dissolved in aqueous solution, exist in an ensemble of random coil conformations rendering them fully soluble. The addition of an exogenous stimulus results in peptide folding into beta-hairpin conformation. This folded structure undergoes rapid self-assembly into a highly crosslinked hydrogel network whose nanostructure is defined and controllable. This mechanism, which links intramolecular peptide folding to self-assembly, allows temporally resolved material formation. In general, peptides can be designed to fold and assemble affording hydrogel in response to changes in pH or ionic strength, the addition of heat or even light. In addition to these stimuli, DMEM cell culture media is able to initiate folding and consequent self-assembly. DMEM-induced gels are cytocompatible towards NIH 3T3 murine fibroblasts, mesenchymal stem cells, hepatocytes, osteoblasts and chondrocytes. As an added bonus, many of these hydrogels possess broad spectrum antibacterial activity suggesting that adventitious bacterial infections that may occur during surgical manipulations and after implantation can be greatly reduced. Lastly, when hydrogelation is triggered in the presence of cells, gels become impregnated and can serve as a delivery vehicle. A unique characteristic of these gels is that when an appropriate shear stress is applied, the gel will shear-thin, becoming an injectable low viscosity gel. However, after the application of shear has stopped, the material quickly self-heals producing a gel with mechanical rigidity nearly identical to the original hydrogel. This attribute allows cell-impregnated gels to be delivered to target tissues via syringe where they quickly recover complementing

  5. Three-dimensional bioprinting of complex cell laden alginate hydrogel structures.

    PubMed

    Tabriz, Atabak Ghanizadeh; Hermida, Miguel A; Leslie, Nicholas R; Shu, Wenmiao

    2015-12-21

    Different bioprinting techniques have been used to produce cell-laden alginate hydrogel structures, however these approaches have been limited to 2D or simple three-dimension (3D) structures. In this study, a new extrusion based bioprinting technique was developed to produce more complex alginate hydrogel structures. This was achieved by dividing the alginate hydrogel cross-linking process into three stages: primary calcium ion cross-linking for printability of the gel, secondary calcium cross-linking for rigidity of the alginate hydrogel immediately after printing and tertiary barium ion cross-linking for long-term stability of the alginate hydrogel in culture medium. Simple 3D structures including tubes were first printed to ensure the feasibility of the bioprinting technique and then complex 3D structures such as branched vascular structures were successfully printed. The static stiffness of the alginate hydrogel after printing was 20.18 ± 1.62 KPa which was rigid enough to sustain the integrity of the complex 3D alginate hydrogel structure during the printing. The addition of 60 mM barium chloride was found to significantly extend the stability of the cross-linked alginate hydrogel from 3 d to beyond 11 d without compromising the cellular viability. The results based on cell bioprinting suggested that viability of U87-MG cells was 93 ± 0.9% immediately after bioprinting and cell viability maintained above 88% ± 4.3% in the alginate hydrogel over the period of 11 d.

  6. Effect of Crosslinking Agent Concentration on the Properties of Unmedicated Hydrogels

    PubMed Central

    Wong, Rachel Shet Hui; Ashton, Mark; Dodou, Kalliopi

    2015-01-01

    Novel polyethylene oxide (PEO) hydrogel films were synthesized via UV crosslinking with varying concentrations of pentaerythritol tetra-acrylate (PETRA) as crosslinking agent. The aim was to study the effects of the crosslinking agent on the material properties of hydrogel films intended for dermatological applications. Fabricated film samples were characterized using swelling studies, scanning electron microscopy, tensile testing and rheometry. Films showed rapid swelling and high elasticity. The increase of PETRA concentration resulted in significant increase in the gel fraction and crosslinking density (ρc), while causing a significant decrease in the equilibrium water content (EWC), average molecular weight between crosslinks (M¯c), and mesh size (ζ) of films. From the scanning electron microscopy, cross-linked PEO hydrogel network appeared as cross-linked mesh-like structure with interconnected micropores. Rheological studies showed PEO films required a minimum of 2.5% w/w PETRA to form stable viscoelastic solid gels. Preliminary studies concluded that a minimum of 2.5% w/w PETRA is required to yield films with desirable properties for skin application. PMID:26371031

  7. Supramolecular hydrogels as drug delivery systems.

    PubMed

    Saboktakin, Mohammad Reza; Tabatabaei, Roya Mahdavi

    2015-04-01

    Drug delivery from a hydrogel carrier implanted under the kidney capsule is an innovative way to induce kidney tissue regeneration and/or prevent kidney inflammation or fibrosis. We report here on the development of supramolecular hydrogels for this application. Chain-extended hydrogelators containing hydrogen bonding units in the main chain, and bifunctional hydrogelators end-functionalized with hydrogen bonding moieties, were made. The influence of these hydrogels on the renal cortex when implanted under the kidney capsule was studied. The overall tissue response to these hydrogels was found to be mild, and minimal damage to the cortex was observed, using the infiltration of macrophages, formation of myofibroblasts, and the deposition of collagen III as relevant read-out parameters. Differences in tissue response to these hydrogels could be related to the different physico-chemical properties of the three hydrogels.

  8. Patterns in swelling hydrogels

    NASA Astrophysics Data System (ADS)

    MacMinn, Chris; Bertrand, Thibault; Peixinho, Jorge; Mukhopadhyay, Shomeek

    2016-11-01

    Swelling is a process in which a porous material spontaneously grows by absorbing additional pore fluid. Polymeric hydrogels are highly deformable materials that can experience very large volume changes during swelling. This allows a small amount of dry gel to absorb a large amount of fluid, making gels extremely useful in applications from moisture control to drug delivery. However, a well-known consequence of these extreme volume changes is the emergence of a striking morphological instability. We study the transient mechanics of this instability here by combining a theoretical model with a series of simple experiments, focusing on the extent to which this instability can be controlled by manipulating the rate of swelling.

  9. Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature

    NASA Astrophysics Data System (ADS)

    de Castro, Marcelo S. B.; Ferreira, Carlos L.; de Avillez, Roberto R.

    2013-09-01

    Vanadium oxide thin films were grown by RF magnetron sputtering from a V2O5 target at room temperature, an alternative route of production of vanadium oxide thin films for infrared detector applications. The films were deposited on glass substrates, in an argon-oxygen atmosphere with an oxygen partial pressure from nominal 0% to 20% of the total pressure. X-ray diffraction (XRD) and X-ray photon spectroscopy (XPS) analyses showed that the films were a mixture of several vanadium oxides (V2O5, VO2, V5O9 and V2O3), which resulted in different colors, from yellow to black, depending on composition. The electrical resistivity varied from 1 mΩ cm to more than 500 Ω cm and the thermal coefficient of resistance (TCR), varied from -0.02 to -2.51% K-1. Computational thermodynamics was used to simulate the phase diagram of the vanadium-oxygen system. Even if plasma processes are far from equilibrium, this diagram provides the range of oxygen pressures that lead to the growth of different vanadium oxide phases. These conditions were used in the present work.

  10. Control of chemical composition of PZT thin films produced by ion-beam deposition from a multicomponent target

    NASA Astrophysics Data System (ADS)

    Hlubucek, Jiri; Vapenka, David; Horodyska, Petra; Vaclavik, Jan

    2016-11-01

    Lead zirconate titanate (PZT) is widely used for its ferroelectric and piezoelectric properties, which are conditioned by perovskite structure. Crystallization into this desired phase is determined also by a proper stoichiometry, where the lead concentration is a crucial parameter. The crystallization process takes place during annealing under high temperatures, which is linked to heavy lead losses, so the lead has to be in excess. Therefore, this paper is devoted to the control of chemical composition of PZT thin films deposited via ion beam sputtering (IBS). A commonly used approach for IBS relies on employing a multicomponent target to obtain films with the same composition as that of the target. However, in the case of PZT it is favorable to have the ability to controllably change the chemical composition of thin films in order to acquire high perovskite content. Our study revealed that the determinative lead content in PZT layers prepared by simple and dual ion-beam deposition from a multicomponent target can be easily controlled by the power of primary ion source. At the same time, the composition is also dependent on the substrate temperature and the power of assistant ion source. Thin PZT films with more than 30 % lead excess were acquired from a stoichiometric multicomponent target (i.e. a target without any lead excess). We can therefore propose several possible sets of deposition parameters suitable for the PZT deposition via IBS to obtain high perovskite content.

  11. Multifunctional 3D printing of heterogeneous hydrogel structures.

    PubMed

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-09-15

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

  12. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  13. Radio-synthesized polyacrylamide hydrogels for proteins release

    NASA Astrophysics Data System (ADS)

    Ferraz, Caroline C.; Varca, Gustavo H. C.; Lopes, Patricia S.; Mathor, Monica B.; Lugão, Ademar B.

    2014-01-01

    The use of hydrogels for biomedical purposes has been extensively investigated. Pharmaceutical proteins correspond to highly active substances which may be applied for distinct purposes. This work concerns the development of radio-synthesized hydrogel for protein release, using papain and bovine serum albumin as model proteins. The polymer was solubilized (1% w/v) in water and lyophilized. The proteins were incorporated into the lyophilized polymer and the hydrogels were produced by simultaneous crosslinking and sterilization using γ-radiation under frozen conditions. The produced systems were characterized in terms of swelling degree, gel fraction, crosslinking density and evaluated according to protein release, bioactivity and cytotoxicity. The hydrogels developed presented different properties as a function of polymer concentration and the optimized results were found for the samples containing 4-5% (w/v) polyacrylamide. Protein release was controlled by the electrostatic affinity of acrylic moieties and proteins. This selection was based on the release of the proteins during the experiment period (up to 50 h), maintenance of enzyme activity and the nanostructure developed. The system was suitable for protein loading and release and according to the cytotoxic assay it was also adequate for biomedical purposes, however this method was not able to generate a matrix with controlled pore sizes.

  14. Multifunctional 3D printing of heterogeneous hydrogel structures

    NASA Astrophysics Data System (ADS)

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-09-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing.

  15. Multifunctional 3D printing of heterogeneous hydrogel structures

    PubMed Central

    Nadernezhad, Ali; Khani, Navid; Skvortsov, Gözde Akdeniz; Toprakhisar, Burak; Bakirci, Ezgi; Menceloglu, Yusuf; Unal, Serkan; Koc, Bahattin

    2016-01-01

    Multimaterial additive manufacturing or three-dimensional (3D) printing of hydrogel structures provides the opportunity to engineer geometrically dependent functionalities. However, current fabrication methods are mostly limited to one type of material or only provide one type of functionality. In this paper, we report a novel method of multimaterial deposition of hydrogel structures based on an aspiration-on-demand protocol, in which the constitutive multimaterial segments of extruded filaments were first assembled in liquid state by sequential aspiration of inks into a glass capillary, followed by in situ gel formation. We printed different patterned objects with varying chemical, electrical, mechanical, and biological properties by tuning process and material related parameters, to demonstrate the abilities of this method in producing heterogeneous and multi-functional hydrogel structures. Our results show the potential of proposed method in producing heterogeneous objects with spatially controlled functionalities while preserving structural integrity at the switching interface between different segments. We anticipate that this method would introduce new opportunities in multimaterial additive manufacturing of hydrogels for diverse applications such as biosensors, flexible electronics, tissue engineering and organ printing. PMID:27630079

  16. Multifunctional hydrogel nano-probes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  17. Tough, in-situ thermogelling, injectable hydrogels for biomedical applications.

    PubMed

    Jalani, Ghulam; Rosenzweig, Derek H; Makhoul, Georges; Abdalla, Sherif; Cecere, Renzo; Vetrone, Fiorenzo; Haglund, Lisbet; Cerruti, Marta

    2015-04-01

    Injectable hydrogels are extensively used in drug delivery and tissue engineering to administer drugs, genes, growth factors and live cells. We report a method to produce tough, in-situ thermogelling, non-toxic, injectable hydrogels made of chitosan and hyaluronic acid co-crosslinked with β-glycerophophate and genipin. The gels are highly homogeneous and form within 32 min, i.e., faster than gels crosslinked with either genipin or β-glycerophophate. The shear strength of co-crosslinked hydrogels is 3.5 kPa, higher than any chitosan-based gel reported. Chondrocytes and nucleus pulposus cells thrive inside the gels and produce large amounts of collagen II. Injection in rats shows that the gels form in-vivo within a short time and remain well localized for more than one week while the rats remain healthy and active. The excellent mechanical properties, fast in-situ gelation, good biocompatibility and the ability to encapsulate live cells at physiological conditions make these hydrogels ideal for tissue engineering, especially cartilage regeneration.

  18. Zwitterionic Hydrogel-Biopolymer Assembly towards Biomimetic Superlubricants

    NASA Astrophysics Data System (ADS)

    Seekell, Raymond; Zhu, Elaine

    2014-03-01

    One superlubricant in nature is the synovial fluid (SF), comprising of a high molecular weight polysaccharide, hyaluronic acid (HA), and a globule protein, lubricin. In this bio-inspired materials research, we have explored hydrogel particles to mimic lubricin as a ``ball-bearing'' and control their interaction with the viscoelastic HA matrix. Biocompatible poly(N-[2-(Methacyloyloxy)ethyl]dimethyl-(3-sulfopropyl) ammonium hydroxide) (PMSA) hydrogel particles are synthesized to examine the electrostatic induced assembly of PMSA-HA supramolecular complexes in aqueous solutions. Fluorescence microscopy and rheology experiments have characterized the tunable network structure and viscoelastic properties of PMSA-HA aggregates by HA concentration and ionic conditions in aqueous solution. When being grafted to a solid surface, the PMSA-HA composite thin film exhibits superior low biofouling and friction performance, suggesting great promises as artificial superlubricants.

  19. Antitumor activity of TNF-α after intratumoral injection using an in situ thermosensitive hydrogel.

    PubMed

    Xu, Yourui; Shen, Yan; Ouahab, Ammar; Li, Chang; Xiong, Yerong; Tu, Jiasheng

    2015-03-01

    Local drug delivery strategies based on nanoparticles, gels, polymeric films, rods and wafers are increasingly used in cancer chemotherapy in order to enhance therapeutic effect and reduce systemic toxicity. Herein, a biodegradable and biocompatible in situ thermosensitive hydrogel was designed and employed to deliver tumor necrosis factor-α (TNF-α) locally by intratumoral injection. The triblock copolymer was synthesized by ring-opening polymerization (ROP) of β-butyrolactone (β-BL) and lactide (LA) in bulk using polyethylene glycol (PEG) as an initiator and Sn(Oct)2 as the catalyst, the polymer was characterized by NMR, gel permeation chromatography and differential scanning calorimetry. Blood and tumor pharmacokinetics and in vivo antitumor activity of TNF-α after intratumoral administration in hydrogel or solution with the same dose were evaluated on S180 tumor-bearing mice. Compared with TNF-α solution, TNF-α hydrogel exhibited a longer T1/2 (4-fold) and higher AUCtumor (19-fold), but Cmax was lower (0.5-fold), which means that the hydrogel formulation improved the efficacy with a lower systhemic exposure than the solution formation. In addition, TNF-α hydrogel improved the antitumor activity and survival due to lower systemic exposure than the solution. These results demonstrate that the in situ thermosensitive hydrogel-based local delivery system by intratumoral injection is well suited for the administration of TNF-α.

  20. Novel copper (II) alginate hydrogels and their potential for use as anti-bacterial wound dressings.

    PubMed

    Klinkajon, Wimonwan; Supaphol, Pitt

    2014-08-01

    The incorporation of a metal ion, with antimicrobial activity, into an alginate dressing is an attractive approach to minimize infection in a wound. In this work, copper (II) cross-linked alginate hydrogels were successfully prepared using a two-step cross-linking procedure. In the first step, solid alginate films were prepared using a solvent-casting method from soft gels of alginate solutions that had been lightly cross-linked using a copper (II) (Cu(2+)) sulfate solution. In the second step, the films were further cross-linked in a corresponding Cu(2+) sulfate solution using a dipping method to further improve their dimensional stability. Alginate solution (at 2%w/v) and Cu(2+) sulfate solution (at 2%w/v) in acetate buffer at a low pH provided soft films with excellent swelling behavior. An increase in either Cu(2+) ion concentration or cross-linking time led to hydrogels with more densely-cross-linked networks that limited water absorption. The hydrogels clearly showed antibacterial activity against Escherichia coli, Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis and Streptococcus pyogenes, which was proportional to the Cu(2+) ion concentration. Blood coagulation studies showed that the tested copper (II) cross-linked alginate hydrogels had a tendency to coagulate fibrin, and possibly had an effect on pro-thrombotic coagulation and platelet activation. Conclusively, the prepared films are likely candidates as antibacterial wound dressings.

  1. Evaluation of anisotropic chitosan hydrogels using analytical Mueller matrix method and scanned laser pico-projector.

    PubMed

    Huang, Chih-Ling; Chuang, Chin-Ho; Lo, Yu-Lung

    2013-07-25

    Chitosan has excellent biodegradable, biocompatible and bio-absorbable properties and has been found increasing use in the biomedical field in recent decades. The linear birefringence (LB), linear diattenuation (LD), circular birefringence (CB), circular diattenuation (CD), and depolarization properties of chitosan hydrogel films crosslinked in citrate acid buffer solution (CBS) are extracted using an analytical Mueller matrix method. It is shown that the optical phase retardance property of the hydrogel films provides a reliable indication of both the chitosan concentration of the film and the pH value of the CBS crosslinking environment. In addition, chitosan hydrogel suspension with low-concentration crosslinked in CBS environments with various pH values are studied by the speckle contrast of the projected images obtained when illuminating the suspension with a scanned laser pico-projector (SLPP). It is found that for the samples crosslinked in an acidic environment, the speckle contrast decreases with an increasing pH value. By contrast, for the samples crosslinked in an alkaline CBS environment, the speckle contrast increases as the pH value increases. It is concluded that both the phase retardance and the speckle contrast enable the pH value of the CBS crosslinking solution to be reliably determined. However, of the two methods, the SLPP method yields improved measurement sensitivity. Overall, the results presented in this study show that the analytical Mueller matrix method and SLPP method provide an effective means of characterizing the optical properties, concentration and crosslinking environment of chitosan hydrogel films and suspensions.

  2. Alginate-Collagen Fibril Composite Hydrogel

    PubMed Central

    Baniasadi, Mahmoud; Minary-Jolandan, Majid

    2015-01-01

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel. PMID:28787971

  3. Self-Adjustable Adhesion of Polyampholyte Hydrogels.

    PubMed

    Roy, Chanchal Kumar; Guo, Hong Lei; Sun, Tao Lin; Ihsan, Abu Bin; Kurokawa, Takayuki; Takahata, Masakazu; Nonoyama, Takayuki; Nakajima, Tasuku; Gong, Jian Ping

    2015-12-02

    Developing nonspecific, fast, and strong adhesives that can glue hydrogels and biotissues substantially promotes the application of hydrogels as biomaterials. Inspired by the ubiquitous adhesiveness of bacteria, it is reported that neutral polyampholyte hydrogels, through their self-adjustable surface, can show rapid, strong, and reversible adhesion to charged hydrogels and biological tissues through the Coulombic interaction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Emerging hydrogel designs for controlled protein delivery.

    PubMed

    Bae, Ki Hyun; Kurisawa, Motoichi

    2016-08-19

    Hydrogels have evolved into indispensable biomaterials in the fields of drug delivery and regenerative medicine. This minireview aims to highlight the recent advances in the hydrogel design for controlled release of bioactive proteins. The latest developments of enzyme-responsive and externally regulated drug delivery systems are summarized. The design strategies and applications of phase-separated hydrogel systems are also described. We expect that these emerging approaches will enable expanded use of hydrogels in biomedicine and healthcare.

  5. Alginate-Collagen Fibril Composite Hydrogel.

    PubMed

    Baniasadi, Mahmoud; Minary-Jolandan, Majid

    2015-02-16

    We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.

  6. A 'degradable' poly(vinyl alcohol) iron oxide nanoparticle hydrogel.

    PubMed

    Bannerman, A Dawn; Li, Xinyi; Wan, Wankei

    2017-08-01

    Polymeric materials that contain magnetic nanoparticles are extremely useful in many applications including as multifunctional drug carriers, imaging contrast agents, or scaffold material. There is a need for biomaterials with appropriate chemical, mechanical, and magnetic properties that also have the ability to degrade or dissolve over time so they can be eliminated from the body following use. In this work, we explore the use of iron oxide nanoparticle (IONP) formation in poly(vinyl alcohol) (PVA) as a crosslinking method in conjunction with physical crosslinking achieved using low temperature thermal cycling (LTTC). PVA-IONP hydrogels were fabricated and characterized. IONPs contribute to the crosslinking of the PVA-IONP material, and their subsequent removal reduces crosslinking, and therefore stability, of the material, allowing dissolution to occur. Dissolution studies were performed on PVA-IONP hydrogels and dissolution was compared for films in solutions of varying pH, in the presence of iron chelating agents, and in simulated physiological and tumor conditions in cell culture media. Iron release, mass loss, and mechanical testing data was collected. This work demonstrates the ability of this biomaterial to 'degrade' over time, which may be very advantageous for applications such as drug delivery. This importance of this work extends to other areas such as the use of stimuli-responsive hydrogels. This manuscript explores the stability of an iron oxide nanoparticle (IONP)-containing, physically crosslinked poly(vinyl alcohol) (PVA) hydrogel. The PVA-IONP hydrogel's stability is imparted through crosslinks created through a low temperature thermal cycling process and through the IONPs. Subsequent IONP removal reduces crosslinks so material dissolution can occur, resulting in a 'degradable' and multifunctional biomaterial. PVA-IONP films were fabricated, characterized and evaluated in terms of dissolution in solutions of varying pH and in the presence of

  7. Free-Standing Photonic Crystal Films with Gradient Structural Colors.

    PubMed

    Ding, Haibo; Liu, Cihui; Ye, Baofen; Fu, Fanfan; Wang, Huan; Zhao, Yuanjin; Gu, Zhongze

    2016-03-23

    Hydrogel colloidal crystal composite materials have a demonstrated value in responsive photonic crystals (PhCs) via controllable stimuli. Although they have been successfully exploited to generate a gradient of color distribution, the soft hydrogels have limitations in terms of stability and storage caused by dependence on environment. Here, we present a practical strategy to fabricate free-standing PhC films with a stable gradient of structural colors using binary polymer networks. A colloidal crystal hydrogel film was prepared for this purpose, with continuously varying photonic band gaps corresponding to the gradient of the press. Then, a second polymer network was used to lock the inside non-close-packed PhC structures and color distribution of the hydrogel film. It was demonstrated that our strategy could bring about a solution to the angle-dependent structural colors of the PhC films by coating the surface with special microstructures.

  8. Sustained Small Molecule Delivery from Injectable Hyaluronic Acid Hydrogels through Host-Guest Mediated Retention

    PubMed Central

    Mealy, Joshua E.; Rodell, Christopher B.; Burdick, Jason A.

    2015-01-01

    Self-assembled and injectable hydrogels have many beneficial properties for the local delivery of therapeutics; however, challenges still exist in the sustained release of small molecules from these highly hydrated networks. Host-guest chemistry between cyclodextrin and adamantane has been used to create supramolecular hydrogels from modified polymers. Beyond assembly, this chemistry may also provide increased drug retention and sustained release through the formation of inclusion complexes between drugs and cyclodextrin. Here, we engineered a two-component system from adamantane-modified and β-cyclodextrin (CD)-modified hyaluronic acid (HA), a natural component of the extracellular matrix, to produce hydrogels that are both injectable and able to sustain the release of small molecules. The conjugation of cyclodextrin to HA dramatically altered its affinity for hydrophobic small molecules, such as tryptophan. This interaction led to lower molecule diffusivity and the release of small molecules for up to 21 days with release profiles dependent on CD concentration and drug-CD affinity. There was significant attenuation of release from the supramolecular hydrogels (~20% release in 24h) when compared to hydrogels without CD (~90% release in 24h). The loading of small molecules also had no effect on hydrogel mechanics or self-assembly properties. Finally, to illustrate this controlled delivery approach with clinically used small molecule pharmaceuticals, we sustained the release of two widely used drugs (i.e., doxycycline and doxorubicin) from these hydrogels. PMID:26693019

  9. A novel pH- and ionic-strength-sensitive carboxy methyl dextran hydrogel.

    PubMed

    Zhang, Rhongsheng; Tang, Mingguo; Bowyer, Adrian; Eisenthal, Robert; Hubble, John

    2005-08-01

    A fast and simple method for the preparation of pH-sensitive hydrogel membranes for drug delivery and tissue engineering applications has been developed using carbodiimide chemistry. The hydrogels were formed by the intermolecular cross-linking of carboxymethyl dextran (CM-dextran) using 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Infrared spectra of the hydrogels suggest the formation of ester bonds between the hydroxyl and carboxyl groups in the CM-dextran. The porosity of the hydrogels produced, as shown by protein diffusion, increases in response to changes in the pH and the ionic strength of the external medium. The results show pH-dependent swelling behaviour arising from the acidic pedant groups in the polymer network. The diffusion of the protein lysozyme through the hydrogel membranes increased with increases in both pH (5.0-9.0) and ionic strength. The effect of changes of pH and ionic strength on the hydrogel's permeability was shown to be reversible. Scanning electron microscopy of these hydrogels showed that pH-dependent changes in permeability are mirrored by morphological changes in gel structure.

  10. 2D and 3D Self-Assembling Nanofiber Hydrogels for Cardiomyocyte Culture

    PubMed Central

    Ikonen, Liisa; Kerkelä, Erja; Metselaar, Gerald; Stuart, Marc C. A.; de Jong, Menno R.; Aalto-Setälä, Katriina

    2013-01-01

    Collagen is a widely used biomaterial in cardiac tissue engineering studies. However, as a natural material, it suffers from variability between batches that can complicate the standardization of culture conditions. In contrast, synthetic materials are modifiable, have well-defined structures and more homogeneous batches can be produced. In this study, several collagen-like synthetic self-assembling nanofiber hydrogels were examined for their suitability for cardiomyocyte culture in 2D and 3D. Six different nanofiber coatings were used in the 2D format with neonatal rat cardiomyocytes (NRCs) and human embryonic stem-cell-derived cardiomyocytes (hESC-CMs). The viability, growth, and functionality of the 2D-cultured cardiomyocytes were evaluated. The best-performing nanofiber coatings were selected for 3D experiments. Hydrophilic pH-sensitive nanofiber hydrogel coassembled with hyaluronic acid performed best with both NRCs and hESC-CMs. Hydrophilic non-pH-sensitive nanofiber hydrogels supported the growth of NRCs; however, their ability to promote attachment and growth of hESC-CMs was limited. NRCs also grew on hydrophobic nanofiber hydrogels; however, the cell-supporting capacity of these hydrogels was inferior to that of the hydrophilic hydrogel materials. This is the first study demonstrating that hydrophilic self-assembling nanofiber hydrogels support the culture of both NRCs and hESC-CMs, which suggests that these biomaterials hold promise for cardiac tissue engineering. PMID:23573513

  11. Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks

    PubMed Central

    2016-01-01

    The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins. PMID:28006103

  12. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    PubMed Central

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  13. The effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function

    PubMed Central

    Weber, Laney M.; Lopez, Christina G.; Anseth, Kristi S.

    2010-01-01

    The rational design of immunoprotective hydrogel barriers for transplanting insulin-producing cells requires an understanding of protein diffusion within the hydrogel network and how alterations to the network structure affect protein diffusion. Hydrogels of varying crosslinking density were formed via the chain polymerization of dimethacrylated PEG macromers of varying molecular weight, and the diffusion of six model proteins with molecular weights ranging from 5,700 to 67,000 g/mol was observed in these hydrogel networks. Protein release profiles were used to estimate diffusion coefficients for each protein/gel system that exhibited Fickian diffusion. Diffusion coefficients were on the order of 10−6 to 10−7 cm2/s, such that protein diffusion time scales (td = L2/D) from 0.5 mm thick gels vary from 5 minutes to 24 hours. Adult murine islets were encapsulated in PEG hydrogels of varying crosslinking density, and islet survival and insulin release was maintained after two weeks of culture in each gel condition. While the total insulin released during a one hour glucose stimulation period was the same from islets in each sample, increasing hydrogel crosslinking density contributed to delays in insulin release from hydrogel samples within the one hour stimulation period. PMID:18570315

  14. Injectable photo crosslinked enhanced double-network hydrogels from modified sodium alginate and gelatin.

    PubMed

    Yuan, Liu; Wu, Yu; Gu, Qi-Sheng; El-Hamshary, Hany; El-Newehy, Mohamed; Mo, Xiumei

    2017-03-01

    Recently, photocrosslinked hydrogels have attracted more and more attention in biomedical applications. In this study, a serials of injectable hydrogels were fabricated from aldehyde methacrylate sodium alginate and amino gelatin (AMSA/AG) using a two-step process. Here, sodium alginate, a kind of natural polysaccharide, was modified by oxidizer to form aldehyde sodium alginate (ASA), and methacrylate groups were further grafted on the main chain of ASA. Gelatin, the denatured form of collagen, was modified with ethylenediamine (ED) to graft more amino groups. When AMSA and AG aqueous solutions were mixed, the Schiff base reaction occurred quickly to form the primary network between aldehyde groups in AMSA and amino groups in AG, and then a 365nm ultraviolet (UV) light was used to initiate the radical reaction of methacrylate groups in AMSA to produce the secondary network. The structures and properties of AMSA/AG hydrogels were evaluated by Fourier Transforms Infrared spectroscopy (FTIR) and (1)HNMR analysis. The swelling ratio confirmed the density of crosslinked networks, and the mechanical performance demonstrated that the UV initiated the double crosslinking network hydrogels have an improved mechanical properties compared to the single Schiff base networks hydrogels. The results showed that the photocrosslinked double network hydrogels have enhanced mechanical properties, good biocompatibility and controllable degradation rate. So, this hydrogels may have great potential utilized in regenerative medicine as therapeutic materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Self-assembled rosette nanotube/hydrogel composites for cartilage tissue engineering.

    PubMed

    Chen, Yupeng; Bilgen, Bahar; Pareta, Rajesh A; Myles, Andrew J; Fenniri, Hicham; Ciombor, Deborah McK; Aaron, Roy K; Webster, Thomas J

    2010-12-01

    Recently, hydrogels (alginate, agarose, polyethylene glycol, etc.) have been investigated as promising cartilage-healing materials. To further improve cell-material interactions or mechanical properties of such hydrogel scaffolds, many materials (such as ceramics or carbon nanotubes) have been added to produce composites with tailored properties. In this study, rosette nanotubes (RNTs, self-assembled nanotubes built from DNA base pairs), hydrogels, and cells (specifically, fibroblast-like type-B synoviocytes [SFB cells] and chondrocytes) were combined via a novel electrospinning technique to generate three-dimensional implantable scaffolds for cartilage repair. Importantly, results of this study showed that electrospun RNT/hydrogel composites improved both SFB cell and chondrocyte functions. RNT/hydrogel composites promoted SFB cell chondrogenic differentiation in 2 week culture experiments. Further, studies demonstrated that RNTs enhanced hydrogel adhesive strength to severed collagen. Results of this study thus provided a nanostructured scaffold that enhanced SFB cell adhesion, viability, and chondrogenic differentiation compared to nanosmooth hydrogels without RNTs. This study provided an alternative cartilage regenerative material derived from RNTs that could be directly electrospun into cartilage defects (with SFB cells and/or chondrocytes) to bond to severed collagen and promote cell adhesion, viability, and subsequent functions.

  16. Cyclodextrin modified hydrogels of PVP/PEG for sustained drug release.

    PubMed

    Nielsen, Anne Louise; Madsen, Flemming; Larsen, Kim Lambertsen

    2009-02-01

    Hydrogels are water swollen networks of polymers and especially hydrogels consisting of poly vinylpyrrolidone/poly ethyleneglycol-dimethacrylate (PVP/PEG-DMA) blends show promising wound care properties. Enhanced functionality of the hydrogels can be achieved by incorporating drugs and other substances that may assist wound healing into the gel matrix. Controlling the release of active compounds from the hydrogels may be possible by carefully modifying the polymer matrix. For this purpose, cyclodextrins (CD) were grafted to the polymer matrix in 4-5 w/w% in an attempt to retard the release of water-soluble drugs. Ibuprofenate (IBU) was chosen as model drug and loaded in IBU/CD ratios of 0.6, 1.2, and 2.5. Vinyl derivatives of alpha-, beta- and gamma-CD were produced, added to the prepolymer blend and cured by UV-light. During this curing process the CD derivatives were covalently incorporated into the hydrogel matrix. The modified hydrogels were loaded with ibuprofenate by swelling. The release of the model drug from CD modified hydrogels show that especially covalently bonded beta-cyclodextrin can change both the release rate and the release profile of ibuprofen.

  17. Mechanochemical Synthesis of PEDOT:PSS Hydrogels for Aqueous Formulation of Li-Ion Battery Electrodes.

    PubMed

    Sandu, Georgiana; Ernould, Bruno; Rolland, Julien; Cheminet, Nathalie; Brassinne, Jeremy; Das, Pratik; Filinchuk, Yaroslav; Cheng, Luhua; Komsiyska, Lidiya; Dubois, Philippe; Melinte, Sorin; Gohy, Jean-François; Lazzaroni, Roberto; Vlad, Alexandru

    2017-09-14

    Water-soluble binders can enable greener and cost effective Li-ion battery manufacturing by eliminating the standard fluorine-based formulations and associated organic solvents. The issue with water-based dispersions, however, remains the difficulty to stabilize them, requiring additional processing complexity. Herein, we show that mechanochemical conversion of a regular poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) water-based dispersion produces a hydrogel that meets all the requirements as binder for lithium-ion battery electrode manufacture. We particularly highlight the suitable slurry rheology, improved adhesion, intrinsic electrical conductivity, large potential stability window and limited corrosion of metal current collectors and active electrode materials, compared to standard binder or regular PEDOT:PSS solution based processing. When incorporating the active materials, conductive carbon and additives with PEDOT:PSS, the mechanochemical processing induces simultaneous binder gelation and fine mixing of the components. The formed slurries are stable, show no phase segregation when stored for months and produce highly-uniform thin (25 μm) to very thick (500 μm) films in a single coating step, with no material segregation even upon slow drying. In conjunction with PEDOT:PSS hydrogels, technologically-relevant materials including silicon, tin, and graphite negative electrodes as well as LiCoO2, LiMn2O4, LiFePO4 and carbon-sulfur positive electrodes show superior cycling stability and power-rate performances compared to standard binder formulation, while significantly simplifying the aqueous-based electrode assembly.

  18. Hydrogels with covalent and noncovalent crosslinks

    NASA Technical Reports Server (NTRS)

    Kilck, Kristi L. (Inventor); Yamaguchi, Nori (Inventor)

    2013-01-01

    A method for targeted delivery of therapeutic compounds from hydrogels is presented. The method involves administering to a cell a hydrogel in which a therapeutic compound is noncovalently bound to heparin. The hydrogel may contain covalent and non-covalent crosslinks.

  19. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

    PubMed

    Rakhshaei, Rasul; Namazi, Hassan

    2017-04-01

    Lack of antibacterial activity, deficient water vapor and oxygen permeability, and insufficient mechanical properties are disadvantages of existing wound dressings. Hydrogels could absorb wound exudates due to their strong swelling ratio and give a cooling sensation and a wet environment. To overcome these shortcomings, flexible nanocomposite hydrogel films was prepared through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug carrier with carboxymethyl cellulose (CMC) hydrogel. Citric acid was used as cross linker to avoid the cytotoxicity of conventional cross linkers. The prepared nanocomposite hydrogel was characterized using X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Zeta potential and UV-vis spectroscopy. Results of swelling and erosion tests showed CMC/ZnO nanocomposite hydrogel disintegrated during the first hours of the test. Using MCM-41 as a substrate for ZnO nanoparticles solved this problem and the CMC/ZnO-MCM-41 showed a great improvement in tensile strength (12%), swelling (100%), erosion (53%) and gas permeability (500%) properties. Drug delivery and antibacterial properties of the nanocomposite hydrogel films studied using tetracycline (TC) as a broad spectrum antibiotic and showed a sustained TC release. This could efficiently decrease bandage exchange. Cytocompatibility of the nanocomposite hydrogel films has been analyzed in adipose tissue-derived stem cells (ADSCs) and results showed cytocompatibility of CMC/ZnO-MCM-41. Based on these results the prepared CMC nanocomposite hydrogel containing ZnO impregnated MCM-41, could serve as a kind of promising wound dressing with sustained drug delivery properties.

  20. XPS-nanocharacterization of organic layers electrochemically grafted on the surface of SnO2 thin films to produce a new hybrid material coating

    NASA Astrophysics Data System (ADS)

    Drevet, R.; Dragoé, D.; Barthés-Labrousse, M. G.; Chaussé, A.; Andrieux, M.

    2016-10-01

    This work presents the synthesis and the characterization of hybrid material thin films obtained by the combination of two processes. The electrochemical grafting of organic layers made of carboxyphenyl moieties is carried out from the reduction of a diazonium salt on tin dioxide (SnO2) thin films previously deposited on Si substrates by metal organic chemical vapor deposition (MOCVD). Since the MOCVD experimental parameters impact the crystal growth of the SnO2 layer (i.e. its morphology and its texturation), various electrochemical grafting models can occur, producing different hybrid materials. In order to evidence the efficiency of the electrochemical grafting of the carboxyphenyl moieties, X-ray Photoelectron Spectroscopy (XPS) is used to characterize the first nanometers in depth of the synthesized hybrid material layer. Then three electrochemical grafting models are proposed.

  1. Soft nanotube hydrogels functioning as artificial chaperones.

    PubMed

    Kameta, Naohiro; Masuda, Mitsutoshi; Shimizu, Toshimi

    2012-06-26

    Self-assembly of rationally designed asymmetric amphiphilic monomers in water produced nanotube hydrogels in the presence of chemically denatured proteins (green fluorescent protein, carbonic anhydrase, and citrate synthase) at room temperature, which were able to encapsulate the proteins in the one-dimensional channel of the nanotube consisting of a monolayer membrane. Decreasing the concentrations of the denaturants induced refolding of part of the encapsulated proteins in the nanotube channel. Changing the pH dramatically reduced electrostatic attraction between the inner surface mainly covered with amino groups of the nanotube channel and the encapsulated proteins. As a result, the refolded proteins were smoothly released into the bulk solution without specific additive agents. This recovery procedure also transformed the encapsulated proteins from an intermediately refolding state to a completely refolded state. Thus, the nanotube hydrogels assisted the refolding of the denatured proteins and acted as artificial chaperones. Introduction of hydrophobic sites such as a benzyloxycarbony group and a tert-butoxycarbonyl group onto the inner surface of the nanotube channels remarkably enhanced the encapsulation and refolding efficiencies based on the hydrophobic interactions between the groups and the surface-exposed hydrophobic amino acid residues of the intermediates in the refolding process. Refolding was strongly dependent on the inner diameters of the nanotube channels. Supramolecular nanotechnology allowed us to not only precisely control the diameters of the nanotube channels but also functionalize their surfaces, enabling us to fine-tune the biocompatibility. Hence, these nanotube hydrogel systems should be widely applicable to various target proteins of different molecular weights, charges, and conformations.

  2. Nanostructure of silver metal produced photocatalytically in TiO2 films and the mechanism of the resulting photochromic behavior.

    PubMed

    Kelly, K Lance; Yamashita, Koichi

    2006-04-20

    The optical activity of composite films created by the photocatalytic reduction of silver or gold ions in TiO(2) upon irradiation by UV light has up to now been discussed in terms of the formation and light-induced destruction of distinct nanoparticles molded inside the porous nanocrystalline film. We present results from classical light scattering calculations and a logical analysis of experimental observations to add detail to the mechanism. As opposed to large, solid metal nanoparticles, coatings and small particles in heterogeneous external dielectric environments account for observations such as the broad optical spectrum and multiwavelength photochromic responses. For some steps of the photochromic process, we propose that visible light permits an equilibrium promoting the growth of small metal features or suspended particles. We use a new expression for the restricted path length in our size-dependent broadening corrections of metal shells and discuss this briefly. We conclude by discussing the consequence of plasmon absorption in the proximity of the electronically active TiO(2) surrounding matrix, leading to mass transfer and shape change of the metal and photochromic properties of the film.

  3. Pulsed Polarization-Based NOx Sensors of YSZ Films Produced by the Aerosol Deposition Method and by Screen-Printing.

    PubMed

    Exner, Jörg; Albrecht, Gaby; Schönauer-Kamin, Daniela; Kita, Jaroslaw; Moos, Ralf

    2017-07-26

    The pulsed polarization technique on solid electrolytes is based on alternating potential pulses interrupted by self-discharge pauses. Since even small concentrations of nitrogen oxides (NOx) in the ppm range significantly change the polarization and discharge behavior, pulsed polarization sensors are well suited to measure low amounts of NOx. In contrast to all previous investigations, planar pulsed polarization sensors were built using an electrolyte thick film and platinum interdigital electrodes on alumina substrates. Two different sensor layouts were investigated, the first with buried Pt electrodes under the electrolyte and the second one with conventional overlying Pt electrodes. Electrolyte thick films were either formed by aerosol deposition or by screen-printing, therefore exhibiting a dense or porous microstructure, respectively. For screen-printed electrolytes, the influence of the electrolyte resistance on the NOx sensing ability was investigated as well. Sensors with buried electrodes showed little to no response even at higher NOx concentrations, in good agreement with the intended sensor mechanism. Electrolyte films with overlying electrodes, however, allowed the quantitative detection of NOx. In particular, aerosol deposited electrolytes exhibited high sensitivities with a sensor output signal ΔU of 50 mV and 75 mV for 3 ppm of NO and NO₂, respectively. For screen-printed electrolytes, a clear trend indicated a decrease in sensitivity with increased electrolyte resistance.

  4. 365 days UNDER ANTARCTIC ICE - a Djamel Tahi film, produced by Terra Incognita in coproduction with CNRS

    NASA Astrophysics Data System (ADS)

    Schlich, R.; Lorius, C.

    2009-04-01

    The 1st July 1957 marks the beginning of the International Geophysical Year. The scientific world decided to explore the Antarctic. Twelve nations would join efforts to initiate a vast research programme aimed to penetrate the mysteries of the white continent. Three Frenchmen, Jacques Dubois, a meteorologist, Roland Schlich, a geophysicist, and Claude Lorius a glaciologist, occupied the Charcot Station built near the South magnetic pole and located 320 km from the coast, during a whole year without any possibility of relief. They wintered from January 1957 to January 1958 in an aluminium hut only 24 m2 in size, buried under the ice. Today, Roland Schlich of the School and Observatory of Earth Sciences, Strasbourg and Claude Lorius of the Laboratory of Glaciology and Geophysics of the Environment, Grenoble, are the last witnesses of this wintering and they remember … The film traces this human and scientific adventure, thanks to their evidence and unpublished documents, filmed 50 years ago. The English version of the film is sponsored by the European Geosciences Union (EGU) and the Scientific Committee on Antarctic Research (SCAR).

  5. Metal nanostructures with complex surface morphology: The case of supported lumpy Pd and Pt nanoparticles produced by laser processing of metal films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Maugeri, P.; Cacciato, G.; Zimbone, M.; Grimaldi, M. G.

    2016-09-01

    In this work we report on the formation of lumpy Pd and Pt nanoparticles on fluorine-doped tin oxide/glass (FTO/glass) substrate by a laser-based approach. In general, complex-surface morphology metal nanoparticles can be used in several technological applications exploiting the peculiarities of their physical properties as modulated by nanoscale morphology. For example plasmonic metal nanoparticles presenting a lumpy morphology (i.e. larger particles coated on the surface by smaller particles) can be used in plasmonic solar cell devices providing broadband scattering enhancement over the smooth nanoparticles leading, so, to the increase of the device efficiency. However, the use of plasmonic lumpy nanoparticles remains largely unexplored due to the lack of simply, versatile, low-cost and high-throughput methods for the controllable production of such nanostructures. Starting from these considerations, we report on the observation that nanoscale-thick Pd and Pt films (17.6 and 27.9 nm, 12.1 and 19.5 nm, respectively) deposited on FTO/glass surface irradiated by nanosecond pulsed laser at fluences E in the 0.5-1.5 J/cm2 range, produce Pd and Pt lumpy nanoparticles on the FTO surface. In addition, using scanning electron microscopy analyses, we report on the observation that starting from each metal film of fixed thickness h, the fraction F of lumpy nanoparticles increases with the laser fluence E and saturates at the higher fluences. For each fixed fluence, F was found higher starting from the Pt films (at each starting film thickness h) with respect to the Pd films. For each fixed metal and fluence, F was found to be higher decreasing the starting thickness of the deposited film. To explain the formation of the lumpy Pd and Pt nanoparticles and the behavior of F as a function of E and h both for Pd and Pt, the thermodynamic behavior of the Pd and Pt films and nanoparticles due to the interaction with the nanosecond laser is discussed. In particular, the

  6. Novel Hydrogels from Renewable Resources

    NASA Astrophysics Data System (ADS)

    Karaaslan, Muzafer Ahmet

    2011-12-01

    The cell wall of most plant biomass from forest and agricultural resources consists of three major polymers, cellulose, hemicellulose and lignin. Of these, hemicelluloses have gained increasing attention as sustainable raw materials. In the first part of this study, novel pH-sensitive semi-IPN hydrogels based on hemicelluloses and chitosan were prepared using glutaraldehyde as the crosslinking agent. The hemicellulose isolated from aspen was analyzed for sugar content by HPLC, and its molecular weight distribution was determined by high performance size exclusion chromatography. Results revealed that hemicellulose had a broad molecular weight distribution with a fair amount of polymeric units, together with xylose, arabinose and glucose. The effect of hemicellulose content on mechanical properties and swelling behavior of hydrogels were investigated. The semi-IPNs hydrogel structure was confirmed by FT-IR, X-ray study and ninhydrin assay method. X-ray analysis showed that higher hemicellulose contents yielded higher crystallinity. Mechanical properties were mainly dependent on the crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and were high at low pH values due to repulsion between similarly charged groups. In vitro release study of a model drug showed that these semi-IPN hydrogels could be used for controlled drug delivery into gastric fluid. The aim of the second part of this study was to control the crosslink density and the mechanical properties of hemicellulose/chitosan semi-IPN hydrogels by changing the crosslinking sequence. It has been hypothesized that by performing the crosslinking step before introducing hemicellulose, covalent crosslinking of chitosan would not be hindered and therefore more and/or shorter crosslinks could be formed. Furthermore, additional secondary interactions and crystalline domains introduced through hemicellulose could be favorable in terms of

  7. Magnetic hydrogel with high coercivity

    SciTech Connect

    Sözeri, H.; Alveroğlu, E.; Kurtan, U.; Şenel, M.; Baykal, A.

    2013-08-01

    Highlights: • Polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles have been prepared. • Magnetization measurements reveal that hydrogels have hard magnetic properties with high coercivity. • Magnetic nanoparticles makes the gel more homogeneous and do not diffuse out of the gel during water intake. • These gels are useful in applications as wastewater treatment once gels are magnetized before its usage. - Abstract: This study investigates the synthesis and characterization of polyacrylamide (PAAm) hydrogels containing magnetic BaFe{sub 12}O{sub 19} nanoparticles. Structural, electrical, and magnetic characterization of the gels have been performed with X-ray powder diffractometry, scanning electron microscopy, DC conductivity, magnetization and fluorescence spectroscopy techniques. The preparation and characterization of polyacrylamide (PAAm) hydrogels that contain 5 and 10 mg BaFe{sub 12}O{sub 19} (16 and 21 nm diameter) nanoparticles are described herein. It is seen from the fluorescence spectra that, nanoparticles surrounded to pyranine molecules so that some of pyranine molecules could not bound to the polymer strands. Electrical measurements show that presence of nanoparticles make the gel more homogeneous. Magnetization measurements reveal that hydrogels have hard magnetic properties with quite high coercivity of 4.2 kOe, which does not change with swelling. This feature makes these gels useful in applications as wastewater treatment if they are magnetized before use.

  8. High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism.

    PubMed

    Han, Jingquan; Lei, Tingzhou; Wu, Qinglin

    2014-02-15

    Cellulose nanoparticle (CNP) reinforced polyvinyl alcohol-borax (PB) hydrogels were produced via a facile approach in an aqueous system. The effects of particle size, aspect ratio, crystal structure, and surface charge of CNPs on the rheological properties of the composite hydrogels were investigated. The rheological measurements confirmed the incorporation of well-dispersed CNPs to PB system significantly enhanced the viscoelasticity and stiffness of hydrogels. The obtained free-standing, high elasticity and mouldable hydrogels exhibited self-recovery under continuous step strain and thermo-reversibility under temperature sweep. With the addition of cellulose I nanofibers, a 19-fold increase in the high-frequency plateau of storage modulus was obtained compared with that of the pure PB. CNPs acted as multifunctional crosslinking agents and nanofillers to physically and chemically bridge the 3D network hydrogel. The plausible mechanism for the multi-complexation between CNPs, polyvinyl alcohol and borax was proposed to understand the relationship between the 3D network and hydrogel properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering.

    PubMed

    Fan, Ming; Ma, Ye; Tan, Huaping; Jia, Yang; Zou, Siyue; Guo, Shuxuan; Zhao, Meng; Huang, Hao; Ling, Zhonghua; Chen, Yong; Hu, Xiaohong

    2017-02-01

    Injectable hydrogels and microspheres derived from natural polysaccharides have been extensively investigated as drug delivery systems and cell scaffolds. In this study, we report a preparation of covalent hydrogels basing polysaccharides via the Schiff' base reaction. Water soluble carboxymethyl chitosan (CMC) and oxidized chondroitin sulfate (OCS) were prepared for cross-linking of hydrogels. The mechanism of cross-linking is attributed to the Schiff' base reaction between amino and aldehyde groups of polysaccharides. Furthermore, bovine serum albumin (BSA) loaded chitosan-based microspheres (CMs) with a diameter of 3.8-61.6μm were fabricated by an emulsion cross-linking method, followed by embedding into CMC-OCS hydrogels to produce a composite CMs/gel scaffold. In the current work, gelation rate, morphology, mechanical properties, swelling ratio, in vitro degradation and BSA release of the CMs/gel scaffolds were examined. The results show that mechanical and bioactive properties of gel scaffolds can be significantly improved by embedding CMs. The solid CMs can serve as a filler to toughen the soft CMC-OCS hydrogels. Compressive modulus of composite gel scaffolds containing 20mg/ml of microspheres was 13KPa, which was higher than the control hydrogel without CMs. Cumulative release of BSA during 2weeks from CMs embedded hydrogel was 30%, which was significantly lower than those of CMs and hydrogels. Moreover, the composite CMs/gel scaffolds exhibited lower swelling ratio and slower degradation rate than the control hydrogel without CMs. The potential of the composite hydrogel as an injectable scaffold was demonstrated by encapsulation of bovine articular chondrocytes in vitro. These results demonstrate the potential of CMs embedded CMC-OCS hydrogels as an injectable drug and cell delivery system in cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Supramolecular hydrogels from cisplatin-loaded block copolymer nanoparticles and α-cyclodextrins with a stepwise delivery property.

    PubMed

    Zhu, Wen; Li, Yanli; Liu, Lixin; Chen, Yongming; Wang, Chun; Xi, Fu

    2010-11-08

    A stepwise anticancer drug delivery system based on an injectable supramolecular hydrogel was presented. In this system, poly(ethylene glycol)-b-poly(acrylic acid) (PEG-b-PAA) block copolymer nanoparticles containing cisplatin were released by erosion of the hydrogels and then the cisplatin was released from the nanoparticles by exchanging with chloride ions. By mixing α-cyclodextrins (α-CDs) and the PEG-b-PAA micelles with their PAA cores loaded with the cisplatin in water, the novel supramolecular hydrogels were generated by threading α-CDs onto the PEG segments and forming physical cross-links of molecular necklaces. The gelation properties could be tuned by changing concentrations of the polymers and cisplatin, their feeds, and by adding PEG homopolymers or Pluronic copolymers as additives. Structures and properties of the supramolecular hydrogels containing cisplatin were studied by wide-angle X-ray diffraction (XRD) and rheology measurements, respectively. The thixotropic effect of the hydrogels and their reversible sol-gel transition were confirmed. In vitro hydrogel erosion experiments were conducted and cisplatin release in saline and pure water was quantified. Hydrogel erosion produced discrete nanoparticles from which cisplatin was released completely in saline. In contrast, the hydrogels were eroded into nanoparticles in pure water, but no cisplatin could be released. In vitro cytotoxicity studies showed that the cisplatin-loaded hydrogels inhibited the growth of human bladder carcinoma EJ cells with a similar potency as that of the free cisplatin, whereas the hydrogels without cisplatin showed no cytotoxicity. These results suggested that the cisplatin-coordinated PEG-b-PAA/α-CD supramolecular hydrogels hold great potential as an injectable system for sustained delivery of cisplatin in cancer therapy.

  11. Improved Skin Penetration Using In Situ Nanoparticulate Diclofenac Diethylamine in Hydrogel Systems: In Vitro and In Vivo Studies.

    PubMed

    Sengupta, Soma; Banerjee, Sarita; Sinha, Biswadip; Mukherjee, Biswajit

    2016-04-01

    Delivering diclofenac diethylamine transdermally by means of a hydrogel is an approach to reduce or avoid systemic toxicity of the drug while providing local action for a prolonged period. In the present investigation, a process was developed to produce nanosize particles (about 10 nm) of diclofenac diethylamine in situ during the development of hydrogel, using simple mixing technique. Hydrogel was developed with polyvinyl alcohol (PVA) (5.8% w/w) and carbopol 71G (1.5% w/w). The formulations were evaluated on the basis of field emission scanning electron microscopy, texture analysis, and the assessment of various physiochemical properties. Viscosity (163-165 cps for hydrogel containing microsize drug particles and 171-173 cps for hydrogel containing nanosize drug particles, respectively) and swelling index (varied between 0.62 and 0.68) data favor the hydrogels for satisfactory topical applications. The measured hardness of the different hydrogels was uniform indicating a uniform spreadability. Data of in vitro skin (cadaver) permeation for 10 h showed that the enhancement ratios of the flux of the formulation containing nanosize drug (without the permeation enhancer) were 9.72 and 1.30 compared to the formulation containing microsized drug and the marketed formulations, respectively. In vivo plasma level of the drug increased predominantly for the hydrogel containing nanosize drug-clusters. The study depicts a simple technique for preparing hydrogel containing nanosize diclofenac diethylamine particles in situ, which can be commercially viable. The study also shows the advantage of the experimental transdermal hydrogel with nanosize drug particles over the hydrogel with microsize drug particles.

  12. Catalysis of Supramolecular Hydrogelation.

    PubMed

    Trausel, Fanny; Versluis, Frank; Maity, Chandan; Poolman, Jos M; Lovrak, Matija; van Esch, Jan H; Eelkema, Rienk

    2016-07-19

    One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical

  13. Photocrosslinkable Hyaluronan-Gelatin Hydrogels for Two-Step Bioprinting

    PubMed Central

    Skardal, Aleksander; Zhang, Jianxing; McCoard, Lindsi; Xu, Xiaoyu; Oottamasathien, Siam

    2010-01-01

    Bioprinting by the codeposition of cells and biomaterials is constrained by the availability of printable materials. Herein we describe a novel macromonomer, a new two-step photocrosslinking strategy, and the use of a simple rapid prototyping system to print a proof-of-concept tubular construct. First, we synthesized the methacrylated ethanolamide derivative of gelatin (GE-MA). Second, partial photochemical cocrosslinking of GE-MA with methacrylated hyaluronic acid (HA-MA) gave an extrudable gel-like fluid. Third, the new HA-MA:GE-MA hydrogels were biocompatible, supporting cell attachment and proliferation of HepG2 C3A, Int-407, and NIH 3T3 cells in vitro. Moreover, hydrogels injected subcutaneously in nude mice produced no inflammatory response. Fourth, using the Fab@Home printing system, we printed a tubular tissue construct. The partially crosslinked hydrogels were extruded from a syringe into a designed base layer, and irradiated again to create a firmer structure. The computer-driven protocol was iterated to complete a cellularized tubular construct with a cell-free core and a cell-free structural halo. Cells encapsulated within this printed construct were viable in culture, and gradually remodeled the synthetic extracellular matrix environment to a naturally secreted extracellular matrix. This two-step photocrosslinkable biomaterial addresses an unmet need for printable hydrogels useful in tissue engineering. PMID:20387987

  14. Multi-casting approach for vascular networks in cellularized hydrogels.

    PubMed

    Justin, Alexander W; Brooks, Roger A; Markaki, Athina E

    2016-12-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200-250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel.

  15. Tunicate-mimetic nanofibrous hydrogel adhesive with improved wet adhesion.

    PubMed

    Oh, Dongyeop X; Kim, Sangsik; Lee, Dohoon; Hwang, Dong Soo

    2015-07-01

    The main impediment to medical application of biomaterial-based adhesives is their poor wet adhesion strength due to hydration-induced softening and dissolution. To solve this problem, we mimicked the wound healing process found in tunicates, which use a nanofiber structure and pyrogallol group to heal any damage on its tunic under sea water. We fabricated a tunicate-mimetic hydrogel adhesive based on a chitin nanofiber/gallic acid (a pyrogallol acid) composite. The pyrogallol group-mediated cross-linking and the nanofibrous structures improved the dissolution resistance and cohesion strength of the hydrogel compared to the amorphous polymeric hydrogels in wet condition. The tunicate-mimetic adhesives showed higher adhesion strength between fully hydrated skin tissues than did fibrin glue and mussel-mimetic adhesives. The tunicate mimetic hydrogels were produced at low cost from recyclable and abundant raw materials. This tunicate-mimetic adhesive system is an example of how natural materials can be engineered for biomedical applications.

  16. Multi-casting approach for vascular networks in cellularized hydrogels

    PubMed Central

    Justin, Alexander W.; Brooks, Roger A.

    2016-01-01

    Vascularization is essential for living tissue and remains a major challenge in the field of tissue engineering. A lack of a perfusable channel network within a large and densely populated tissue engineered construct leads to necrotic core formation, preventing fabrication of functional tissues and organs. We report a new method for producing a hierarchical, three-dimensional (3D) and perfusable vasculature in a large, cellularized fibrin hydrogel. Bifurcating channels, varying in size from 1 mm to 200–250 µm, are formed using a novel process in which we convert a 3D printed thermoplastic material into a gelatin network template, by way of an intermediate alginate hydrogel. This enables a CAD-based model design, which is highly customizable, reproducible, and which can yield highly complex architectures, to be made into a removable material, which can be used in cellular environments. Our approach yields constructs with a uniform and high density of cells in the bulk, made from bioactive collagen and fibrin hydrogels. Using standard cell staining and immuno-histochemistry techniques, we showed good cell seeding and the presence of tight junctions between channel endothelial cells, and high cell viability and cell spreading in the bulk hydrogel. PMID:27928031

  17. Superconductivity of an oxide film on the surface of Bi(1-x)Sb(x) alloy single crystals produced by electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Alfeev, V. N.; Aminov, B. A.; Brandt, N. B.; Vasina, S. Ia.; Damaskin, B. B.

    1989-10-01

    A study is made of the volt-ampere characteristics of point contacts produced by the mechanical compression of the electrochemically oxidized Bi(1-x)Sb(x) single crystals. Volt-ampere characteristics of the Josephson type have been observed at temperatures below Tc=6-8 K, indicating that the oxide films have superconducting properties at these temperatures. In a magnetic field, Mersereau oscillations, typical of a Josephson transition net, are observed in the contact region. In an external microwave field, the volt-ampere characteristics exhibit a structure related to the occurrence of Shapiro steps.

  18. Note: application of UF-4 emulsion films to detect low-energy ions from plasmas produced by laser ablation.

    PubMed

    Nishio, M; Shrestha, I; Kantsyrev, V L; Tooth, M; Takasugi, K

    2014-04-01

    Detection of low-energy ions via Thomson parabola mass analyzer in the absence of any additional electrical systems is examined. Numerous low-energy ions were recorded on UF-4 solid state emulsion films. Kinetic energies between 1 and 4 keV of ions generated by YAG laser focused on Al and Ti targets were obtained using Thomson parabola measurements. Characteristics of ion tracks on the UF-4 detector are discussed in terms of pressure ranges of vacuum chamber. Moreover, differences in charges of ions between this study and previous spectroscopic measurements are discussed.

  19. Morphological effect on swelling behaviour of hydrogel

    SciTech Connect

    Yacob, Norzita; Hashim, Kamaruddin

    2014-02-12

    Hydrogels are hydrophilic polymer networks that are capable of imbibing large amounts of water. In this work, hydrogels prepared from natural and synthetic polymers were irradiated by using electron beam irradiation. The morphology of hydrogel inter-polymeric network (IPN) was investigated using Scanning Electron Microscopy (SEM). The studies reveal correlations between pore sizes of IPN with degree of cross-linking. This relation also has an effect on swelling properties of the hydrogel. The results indicated that hydrogel with smaller pore size, as a result of much dense IPN, would decrease water uptake capacity. Combination of natural and synthetic polymers to form hydrogel affects the pore size and swelling property of the hydrogel as compared to each component of polymer.

  20. Tough photoluminescent hydrogels doped with lanthanide.

    PubMed

    Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei

    2015-03-01

    Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels.

  1. Energy Conversion in Polyelectrolyte Hydrogels

    SciTech Connect

    Erbas, Aykut; Olvera de la Cruz, Monica

    2015-08-18

    Using extensive molecular dynamics simulations of polyelectrolyte hydrogels we demonstrate that, on deformation, these hydrogels adjust their deformed state predominantly by altering electrostatic interactions between their charged groups rather than excluded-volume and bond energies. On deformation, due to the hydrogel’s inherent tendency to preserve electroneutrality in its interior, the translational entropy of counterions decreases and the total electrostatic energy becomes more attractive. This result is valid for a wide range of compression ratios and Bjerrum lengths. The change in the electrostatic energy is more marked in highly swollen gels at low ionic strengths. At high Bjerrum lengths, where most of the counterions are condensed on hydrogel chains and the gel resembles a neutral system, the electrostatic-energy change with deformation is weaker.

  2. Synthetically Simple, Highly Resilient Hydrogels

    PubMed Central

    Cui, Jun; Lackey, Melissa A.; Madkour, Ahmad E.; Saffer, Erika M.; Griffin, David M.; Bhatia, Surita R.; Crosby, Alfred J.; Tew, Gregory N.

    2014-01-01

    Highly resilient synthetic hydrogels were synthesized by using the efficient thiol-norbornene chemistry to cross-link hydrophilic poly(ethylene glycol) (PEG) and hydrophobic polydimethylsiloxane (PDMS) polymer chains. The swelling and mechanical properties of the hydrogels were well-controlled by the relative amounts of PEG and PDMS. In addition, the mechanical energy storage efficiency (resilience) was more than 97% at strains up to 300%. This is comparable with one of the most resilient materials known: natural resilin, an elastic protein found in many insects, such as in the tendons of fleas and the wings of dragonflies. The high resilience of these hydrogels can be attributed to the well-defined network structure provided by the versatile chemistry, low cross-link density, and lack of secondary structure in the polymer chains. PMID:22372639

  3. Supramolecular hydrogels with reverse thermal gelation properties from (oligo)tyrosine containing block copolymers.

    PubMed

    Huang, Jin; Hastings, Conn L; Duffy, Garry P; Kelly, Helena M; Raeburn, Jaclyn; Adams, Dave J; Heise, Andreas

    2013-01-14

    Novel block copolymers comprising poly(ethylene glycol) (PEG) and an oligo(tyrosine) block were synthesized in different compositions by N-carboxyanhydride (NCA) polymerization. It was shown that PEG2000-Tyr(6) undergoes thermoresponsive hydrogelation at a low concentration range of 0.25-3.0 wt % within a temperature range of 25-50 °C. Cryogenic transmission electron microscopy (Cryo-TEM) revealed a continuous network of fibers throughout the hydrogel sample, even at concentrations as low as 0.25 wt %. Circular dichroism (CD) results suggest that better packing of the β-sheet tyrosine block at increasing temperature induces the reverse thermogelation. A preliminary assessment of the potential of the hydrogel for in vitro application confirmed the hydrogel is not cytotoxic, is biodegradable, and produced a sustained release of a small-molecule drug.

  4. Poly(vinyl alcohol) Physical Hydrogels: Matrix-Mediated Drug Delivery Using Spontaneously Eroding Substrate

    PubMed Central

    2016-01-01

    Poly(vinyl alcohol) hydrogels have a long and successful history of applications in biomedicine. Historically, these matrices were developed to be nondegradable—limiting their utility to applications as permanent implants. For tissue engineering and drug delivery, herein we develop spontaneously eroding physical hydrogels based on PVA. We characterize in detail a mild, noncryogenic method of producing PVA physical hydrogels using poly(ethylene glycol) as a gelating agent, and investigate PVA molar mass as a means to define the kinetics of erosion of these biomaterials. PVA hydrogels are characterized for associated inflammatory response in adhering macrophages, antiproliferative effects mediated through delivery of cytotoxic drugs to myoblasts, and pro-proliferative activity achieved via presentation of conjugated growth factors to endothelial cells. Together, these data present a multiangle characterization of these novel multifunctional matrices for applications in tissue engineering and drug delivery mediated by implantable biomaterials. PMID:26958864

  5. Surface treatment of polypropylene (PP) film by 50 Hz dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure

    SciTech Connect

    Joshi, Ujjwal Man Subedi, Deepak Prasad

    2015-07-31

    Thin films of polypropylene (PP) are treated for improving hydrophilicity using non-thermal plasma generated by 50 Hz line frequency dielectric barrier discharge produced in air and argon/air mixture at atmospheric pressure. PP samples before and after the treatments are studied using contact angle measurements, surface free energy calculations and scanning electron microscopy (SEM). Distilled water (H{sub 2}O), glycerol (C{sub 3}H{sub 8}O{sub 3}) and diiodomethane (CH{sub 2}I{sub 2}) are used as test liquids. The contact angle measurements between test liquids and PP samples are used to determine total surface free energy using sessile drop technique. PP films show a remarkable increase in surface free energy after plasma treatment. SEM analysis of the plasma-treated PP films shows that plasma treatment introduces greater roughness on the surface leading to the increased surface free energy. Furthermore, it is found that introducing a small quantity of argon can enhance the surface treatment remarkably.

  6. Effect of adding sorbitol to the electroplating solution on the process of depositing lead on copper and the morphology of the film produced

    NASA Astrophysics Data System (ADS)

    Siqueira, J. L. P.; Carlos, I. A.

    The electrodeposition of lead on to a copper substrate from a plumbite solution, 0.1 M Pb(NO 3) 2 + 0.2 M sorbitol + NaOH, was investigated over a range of concentrations of the hydroxide. Interactions between the copper electrode surface and the lead deposit were investigated by the voltammetric technique. From these experiments, it was concluded that underpotential deposition (upd) of lead does not occur on copper and that lead nucleation occurs as soon as deposition is operative from -0.78 V. Energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) of the lead films corroborates this result. Lead films obtained at -0.78 and -0.90 V were adherent and could be used as a support in battery plates, but this adhesion of lead to copper cannot be attributed to upd. SEM analysis showed that films produced at potentials down to -0.90 V were smooth and that this is the critical potential for a transition from dense to pyramidal or dendritic crystals patterns. The dendritic crystallites can be transformed into a high-purity lead powder.

  7. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film

    NASA Astrophysics Data System (ADS)

    Pan, Lijia; Chortos, Alex; Yu, Guihua; Wang, Yaqun; Isaacson, Scott; Allen, Ranulfo; Shi, Yi; Dauskardt, Reinhold; Bao, Zhenan

    2014-01-01

    Pressure sensing is an important function of electronic skin devices. The development of pressure sensors that can mimic and surpass the subtle pressure sensing properties of natural skin requires the rational design of materials and devices. Here we present an ultra-sensitive resistive pressure sensor based on an elastic, microstructured conducting polymer thin film. The elastic microstructured film is prepared from a polypyrrole hydrogel using a multiphase reaction that produced a hollow-sphere microstructure that endows polypyrrole with structure-derived elasticity and a low effective elastic modulus. The contact area between the microstructured thin film and the electrodes increases with the application of pressure, enabling the device to detect low pressures with ultra-high sensitivity. Our pressure sensor based on an elastic microstructured thin film enables the detection of pressures of less than 1 Pa and exhibits a short response time, good reproducibility, excellent cycling stability and temperature-stable sensing.

  8. Hydrogels and their medical applications

    NASA Astrophysics Data System (ADS)

    Rosiak, Janusz M.; Yoshii, Fumio

    1999-05-01

    Biomaterials play a key role in most approaches for engineering tissues as substitutes for functional replacement, for components of devices related to therapy and diagnosis, for drug delivery systems and supportive scaffolds for guided tissue growth. Modern biomaterials could be composed of various components, e.g. metals, ceramics, natural tissues, polymers. In this last group, the hydrogels, hydrophilic polymeric gels with requested biocompatibility and designed interaction with living surrounding seem to be one of the most promising group of biomaterials. Especially, if they are formed by means of ionizing radiation. In early 1950s, the pioneers of the radiation chemistry of polymers began some experiments with radiation crosslinking of hydrophilic polymers. However, hydrogels were analyzed mainly from the point of view of the phenomenon associated with radiation synthesis, with topology of network and relation between radiation parameters of the processes. Fundamental monographs on radiation polymer physics and chemistry written by A. Charlesby (Atomic Radition and polymers, Pergamon Press, Oxford, 1960) and A. Chapiro (Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962) proceed from this time. The noticeable interest in the application of radiation techniques to obtain hydrogels for biomedical purposes began in the late sixties as a result of the papers and patents invented by Japanese and American scientists, headed by Kaetsu in Japan and Hoffman in USA. Immobilization of biologically active species in hydrogel matrices, their use as drug delivery systems and enzyme traps as well as the modification of material surfaces to improve biocompatibility and their ability to bond antigens and antibodies had been the main subjects of these investigations. In this article a brief summary of investigations on mechanism and kinetics of radiation formation of hydrogels as well as some examples of commercialized hydrogel biomaterials have been

  9. Rational design of heat-set and specific-ion-responsive supramolecular hydrogels based on the Hofmeister effect.

    PubMed

    Nebot, Vicent J; Ojeda-Flores, Juan J; Smets, Johan; Fernández-Prieto, Susana; Escuder, Beatriu; Miravet, Juan F

    2014-10-27

    Smart supramolecular hydrogels have been prepared from a bolaamphiphilic L-valine derivative in aqueous solutions of different salts. The hydrogels respond selectively to different ions and are either reinforced or weakened. In one case, in contrast to conventional systems, the hydrogels are formed upon heating of the system. The use of the hydrogels in the controlled release of an entrapped dye is described as a proof of the potential applications of these systems. The responsive hydrogels were rationally designed by taking into account the noticeable effect of different ions from the Hofmeister series in the solubility of the hydrogelator, which was assessed by using NMR experiments. On the one hand, kosmotropic anions such as sulfate produce a remarkable solubility decrease in the gelator, which is associated with gel reinforcement, as measured by rheological experiments. On the other hand, chaotropic species such as perchlorate weaken the gel. A dramatic effect was observed in the presence of guanidinium chloride, which boosted the solubility of the gelator, in accordance with its chaotropic behaviour reported in protein science. In this case, a direct interaction of the guanidinium species with the carbonyl groups of the hydrogelator is detected by (13) C NMR spectroscopy. The weakening of this interaction upon a temperature increase allows for the preparation of heat-set hydrogelating systems.

  10. Temperature-responsive properties of poly(N-vinylcaprolactam) multilayer hydrogels in the presence of Hofmeister anions

    NASA Astrophysics Data System (ADS)

    Zavgorodnya, Oleksandra; Kozlovskaya, Veronika; Liang, Xing; Kothalawala, Nuwan; Catledge, Shane A.; Dass, Amala; Kharlampieva, Eugenia

    2014-09-01

    We report on the effect of Hofmeister anions on the temperature-induced volume transitions and optical responses of ultrathin hydrogels of poly(N-vinylcaprolactam) (PVCL). The hydrogels were produced by glutaraldehyde-assisted cross-linking of hydrogen-bonded multilayers of poly(N-vinylcaprolactam)-co-(aminopropyl)methacrylamide) and poly(methacrylic acid). We found that swelling and temperature-induced shrinkage of PVCL hydrogels were suppressed in the order SO42- > H2PO4- > Cl-, following the Hofmeister series. In contrast, I- increased hydrogel swelling but suppressed thermal response. A layer of glutathione-stabilized gold nanoparticles was introduced within the PVCL hydrogel to initiate an optical response in the presence of anions. We found the signal intensity of (PVCL)81-Au hydrogels and the plasmon band position to be largely controlled by ion type and concentration when the temperature reversibly changed from 20 °C to 50 °C. The band consistently shifted to lower wavelengths with an increase in chloride concentration. In contrast, a red shift was observed in the iodide solutions with increasing salt concentration; an exception to this was for the 0.1 M solution which resulted in a blue shift. We believe that our findings provide new prospects for understanding the effect of Hofmeister anions on ultrathin non-ionic polymer networks. In addition, the (PVCL)81-Au hybrid hydrogels afford a clear and fast optical monitoring of hydrogel temperature-triggered response at varied ion concentrations.

  11. Chitosan-based thermosensitive hydrogel as a promising ocular drug delivery system: preparation, characterization, and in vivo evaluation.

    PubMed

    Chen, Xingwei; Li, Xinru; Zhou, Yanxia; Wang, Xiaoning; Zhang, Yanhui; Fan, Yating; Huang, Yanqing; Liu, Yan

    2012-11-01

    The purpose of this study was to evaluate the feasibility of in situ thermosensitive hydrogel based on chitosan in combination with disodium α-d-Glucose 1-phosphate (DGP) for ocular drug delivery system. Aqueous solution of chitosan/DGP underwent sol-gel transition as temperature increased which was flowing sol at room temperature and then turned into non-flowing hydrogel at physiological temperature. The properties of gels were characterized regarding gelation time, gelation temperature, and morphology. The sol-to-gel phase transition behaviors were affected by the concentrations of chitosan, DGP and the model drug levocetirizine dihydrochloride (LD). The developed hydrogel presented a characteristic of a rapid release at the initial period followed by a sustained release and remarkably enhanced the cornea penetration of LD. The results of ocular irritation demonstrated the excellent ocular tolerance of the hydrogel. The ocular residence time for the hydrogel was significantly prolonged compared with eye drops. The drug-loaded hydrogel produced more effective anti-allergic conjunctivitis effects compared with LD aqueous solution. These results showed that the chitosan/DGP thermosensitive hydrogel could be used as an ideal ocular drug delivery system in terms of the suitable sol-gel transition temperature, mild pH environment in the hydrogel as well as the organic solvent free.

  12. Temperature dependent photoreflectance study of Cu2SnS3 thin films produced by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Raadik, T.; Grossberg, M.; Krustok, J.; Kauk-Kuusik, M.; Crovetto, A.; Bolt Ettlinger, R.; Hansen, O.; Schou, J.

    2017-06-01

    The energy band structure of Cu2SnS3 (CTS) thin films fabricated by pulsed laser deposition was studied by photoreflectance spectroscopy (PR). The temperature-dependent PR spectra were measured in the range of T = 10-150 K. According to the Raman scattering analysis, the monoclinic crystal structure (C1c1) prevails in the studied CTS thin film; however, a weak contribution from cubic CTS (F-43m) was also detected. The PR spectra revealed the valence band splitting of CTS. Optical transitions at EA = 0.92 eV, EB = 1.04 eV, and EC = 1.08 eV were found for monoclinic CTS at low-temperature (T = 10 K). Additional optical transition was detected at EAC = 0.94 eV, and it was attributed to the low-temperature band gap of cubic CTS. All the identified optical transition energies showed a blueshift with increasing temperature, and the temperature coefficient dE/dT was about 0.1 meV/K.

  13. The Effects of Thermal Annealing on ZnO Thin Films Produced by Spin-Coating Method on Quartz Substrates

    NASA Astrophysics Data System (ADS)

    Ertek, Özlem; Okur, İbrahim

    2015-07-01

    In this work, zinc oxide (ZnO) thin films on quartz substrates were fabricated using the spin-coating method. Thermal annealings from to have been performed in increments and for two annealing durations (0.5 h and 8 h). X-ray diffraction (XRD) spectra, scanning electron microscopy micrographs, and UV-Vis absorption spectra of all the samples have been elucidated from mechanical and optical points of view. It has been observed that for all annealing temperatures, the crystal phase has been obtained. After annealings, a new crystal phase related to (willemite) has also been appeared in XRD spectra. This phase remained stable up to annealing together with the ZnO crystal phase. It has been found that the nano/micro rod diameters of the ZnO crystals reach to a maximum at the annealing for both annealing durations. For annealings, ZnO nanorods appeared to be split into two homogeneous nanorods of length of and of width of (350 nm) which was not the case for all other annealing temperatures. After annealings, ZnO nano/micro rods started to disappear and formed homogeneous ZnO thin films.

  14. Micromolded Gelatin Hydrogels for Extended Culture of Engineered Cardiac Tissues

    PubMed Central

    McCain, Megan L.; Agarwal, Ashutosh; Nesmith, Haley W.; Nesmith, Alexander P.; Parker, Kevin Kit

    2014-01-01

    Defining the chronic cardiotoxic effects of drugs during preclinical screening is hindered by the relatively short lifetime of functional cardiac tissues in vitro, which are traditionally cultured on synthetic materials that do not recapitulate the cardiac microenvironment. Because collagen is the primary extracellular matrix protein in the heart, we hypothesized that micromolded gelatin hydrogel substrates tuned to mimic the elastic modulus of the heart would extend the lifetime of engineered cardiac tissues by better matching the native chemical and mechanical microenvironment. To measure tissue stress, we used tape casting, micromolding, and laser engraving to fabricate gelatin hydrogel muscular thin film cantilevers. Neonatal rat cardiac myocytes adhered to gelatin hydrogels and formed aligned tissues as defined by the microgrooves. Cardiac tissues could be cultured for over three weeks without declines in contractile stress. Myocytes on gelatin had higher spare respiratory capacity compared to those on fibronectin-coated PDMS, suggesting that improved metabolic function could be contributing to extended culture lifetime. Lastly, human induced pluripotent stem cell-derived cardiac myocytes adhered to micromolded gelatin surfaces and formed aligned tissues that remained functional for four weeks, highlighting their potential for human-relevant chronic studies. PMID:24731714

  15. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature

    SciTech Connect

    Fortunato, Elvira M.C.; Barquinha, Pedro M.C.; Pimentel, Ana C.M.B.G.; Goncalves, Alexandra M.F.; Marques, Antonio J.S.; Martins, Rodrigo F.P.; Pereira, Luis M.N.

    2004-09-27

    We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a saturation mobility of 27 cm{sup 2}/V s, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3x10{sup 5}. The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics.

  16. Photoluminescence Properties of β-Ga2O3 Thin Films Produced by Ion-Plasma Sputtering

    NASA Astrophysics Data System (ADS)

    Bordun, O. M.; Bordun, B. O.; Kukharskyy, I. Yo.; Medvid, I. I.

    2017-03-01

    Photoluminescence and photoexcitation spectra of β-Ga2O3 thin films prepared by high-frequency ion-plasma sputtering in an Ar atmosphere were investigated. Photoluminescence spectra were deconvoluted by the Alentsev—Fock method into ultimate constituents. The nature of two strong bands with maxima at 2.95 and 3.14 eV and two weak bands with maxima at 3.90 and 4.25 eV was discussed. The two strong bands were attributed to an associate originating from the interaction of oxygen and gallium vacancies; the weak ones, recombination of excitons in quantum wells formed by acceptor clusters. It was found that the damping time constant for the 3.14-eV band was 105 μs; for the 2.95-eV band, 114 μs. The similarity of the decay time constants for these bands confirmed their relationship to a common associate.

  17. Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions.

    PubMed

    Gogoi, Neelam; Barooah, Mayuri; Majumdar, Gitanjali; Chowdhury, Devasish

    2015-02-11

    A robust solid sensing platform for an on-site operational and accurate detection of heavy metal is still a challenge. We introduce chitosan based carbon dots rooted agarose hydrogel film as a hybrid solid sensing platform for detection of heavy metal ions. The fabrication of the solid sensing platform is centered on simple electrostatic interaction between the NH3+ group present in the carbon dots and the OH- groups present in agarose. Simply on dipping the hydrogel film strip into the heavy metal ion solution, in particular Cr6+, Cu2+, Fe3+, Pb2+, Mn2+, the strip displays a color change, viz., Cr6+→yellow, Cu2+→blue, Fe3+→brown, Pb2+→white, Mn2+→tan brown. The optical detection limit of the respective metal ion is found to be 1 pM for Cr6+, 0.5 μM for Cu2+, and 0.5 nM for Fe3+, Pb2+, and Mn2+ by studying the changes in UV-visible reflectance spectrum of the hydrogel film. Moreover, the hydrogel film finds applicability as an efficient filtration membrane for separation of these quintet heavy metal ions. The strategic fundamental feature of this sensing platform is the successful capability of chitosan to form colored chelates with transition metals. This proficient hybrid hydrogel solid sensing platform is thus the most suitable to employ as an on-site operational, portable, cheap colorimetric-optical detector of heavy metal ion with potential skill in their separation. Details of the possible mechanistic insight into the colorimetric detection and ion separation are also discussed.

  18. A hydrogel pen for electrochemical reaction and its applications for 3D printing

    NASA Astrophysics Data System (ADS)

    Kang, Hosuk; Hwang, Seongpil; Kwak, Juhyoun

    2014-12-01

    A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate small sizes (110 nm in diameter), tall heights (up to 30 μm), and arbitrary structures, thereby indicating an additive process in 3 dimensions by localized electrodeposition.A hydrogel pen consisting of a microscopic pyramid containing an electrolyte offers a localized electroactive area on the nanometer scale via controlled contact of the apex with a working electrode. The hydrogel pen merges the fine control of atomic force microscopy with non-linear diffusion of an ultramicroelectrode, producing a faradaic current that depends on the small electroactive area. The theoretical and experimental investigations of the mass transport behavior within the hydrogel reveal that the steady-state current from the faradaic reaction is linearly proportional to the deformed length of the hydrogel pen by contact, i.e. signal transduction of deformation to an electrochemical signal, which enables the fine control of the electroactive area in the nanometer-scale regime. Combined with electrodeposition, localized electrochemistry of the hydrogel pen results in the ability to fabricate

  19. In vitro evaluation of the mixed xanthan/lignin hydrogels as vanillin carriers

    NASA Astrophysics Data System (ADS)

    Raschip, Irina Elena; Hitruc, Elena Gabriela; Oprea, Ana Maria; Popescu, Maria-Cristina; Vasile, Cornelia

    2011-09-01

    Various amounts of lignin from annual fiber crops (GL) exhibiting antioxidant properties were incorporated in xanthan to obtain hydrogel films. These mixed xanthan/lignin hydrogels were evaluated as matrices for vanillin release as active aroma ingredient. The new obtained biodegradable polymeric matrices, containing vanillin, have been characterized by the swelling/release experiments, FT-IR and AFM analysis. As a novelty, AFM microscopy was done on powder form. In FT-IR spectra after incorporation of the aroma, the shifting of the bands at 1618 and 1510 cm -1 (assigned to C dbnd C stretching vibration) to higher wavenumbers was observed, indicating interactions between components. The comparison of all the results afforded by the various characterization methods leads to the conclusion that the 70X/30GL hydrogel (15% within 100 min) slower releases the vanillin aroma more than 90X/10GL (18% within 100 min) one because of stronger inter- and intramolecular interactions between matrix and active substance.

  20. Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection.

    PubMed

    Kestwal, Rakesh Mohan; Bagal-Kestwal, Dipali; Chiang, Been-Huang

    2015-07-30

    A biosensor was fabricated to detect pesticides in food samples. Acetylcholinesterase was immobilized in a novel fenugreek hydrogel-agarose matrix with gold nanoparticles. Transparent thin films with superior mechanical strength and stability were obtained with 2% fenugreek hydrogel and 2% agarose. Immobilization of acetylcholinesterase on the membrane resulted in high enzyme retention efficiency (92%) and a significantly prolonged shelf life of the enzyme (half-life, 55 days). Transmission electron microscopy revealed that, gold nanoparticles (10-20 nm in diameter) were uniformly dispersed in the fenugreek hydrogel-agarose-acetylcholinesterase membrane. This immobilized enzyme-gold nanoparticle dip-strip system detected various carbamates, including carbofuran, oxamyl, methomyl, and carbaryl, with limits of detection of 2, 21, 113, and 236 nM (S/N = 3), respectively. Furthermore, the fabricated biosensor exhibited good testing capabilities when used to detect carbamates added to various fruit and vegetable samples.